2011成都七中实验学校八年级下数学期末模拟试卷(A、B卷)
【三套打包】成都七中育才学校学道分校八年级下学期期末数学试卷
最新八年级(下)数学期末考试题(答案)一、选择题(本大题有8小题,每小题3分,共24分.每小题只有一个选项是正确的,请把你认为正确的选项代号涂在答题卡相应位置上)1.(3分)下列图形中,不属于中心对称图形的是()A.等边三角形B.菱形C.矩形D.平行四边形2.(3分)下列事件中,是必然事件的是()A.3天内会下雨B.经过有交通信号灯的路口遇到红灯C.打开电视,正在播广告D.367人中至少有2个人的生日相同3.(3分)下列各式成立的是()A.2﹣=2B.﹣=3C.(﹣)2=﹣5D.=3 4.(3分)下列式子从左到右变形错误的是()A.=B.=﹣C.=D.=5.(3分)下列条件中,不能判定四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB∥CD,∠B=∠DC.AB∥CD,AD=BC D.AB∥CD,AB=CD6.(3分)已知点P(a,m),Q(b,n)都在反比例函数y=﹣的图象上,且a<0<b,则下列结论一定正确的是()A.m<n B.m>n C.m+n<o D.m+n>07.(3分)若分式方程+1=有增根,则a的值是()A.4B.3C.2D.18.(3分)如图,在平面直角坐标系中,直线与y轴交于点B(0,4),与x轴交于点A,∠BAO=30°,将△AOB沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k的值为()A.﹣8B.﹣16C.﹣8D.﹣12二、填空题(本大题有8小题,每小题3分,共24分.请把答案直接填写在答题卡上)9.(3分)若式子是二次根式,则x的取值范围是.10.(3分)当x=时,分式的值为零.11.(3分)一只不透明的袋子中有1个白球、1个红球和2个黄球,这些球除颜色不同外其它都相同.搅均后从中任意摸出1个球,摸出白球可能性摸出黄球可能性.(填“等于”或“小于”或“大于”).12.(3分)已知+=0,则比较大小23(填“<“或“>”)13.(3分)若最简二次根式与能合并成一项,则a=.14.(3分)在反比例函数的图象每一条曲线上,y都随x的增大而减小,则m的取值范围是.15.(3分)若关于x的分式方程当=1的解为正数,那么字母a的取值范围是.16.(3分)如图,点P为函数y=(x>0)图象上一点过点P作x轴、y轴的平行线,分别与函数y=(x>0)的图象交于点A,B,则△AOB的面积为.三、解答题(本题有10小题,共102分.解答时应写出必要的步骤、过程或文字说明)17.(8分)计算:(1)(+)();(2)(2)×.18.(10分)解分式方程:(1)=;(2)=1;19.(10分)先化简再求值:(1﹣)÷,再从0,﹣1,2中选一个数作为a的值代入求值.20.(10分)已知反比例函数y=(k为常数,k≠0)的图象经过点A(2,3).(1)求这个函数的解析式;(2)判断点B(﹣1,6),C(3,2)是否在这个函数的图象上,并说明理由;(3)当﹣3<x<﹣1时,求y的取值范围.21.(8分)为了改善生态环境,防止水土流失,胜利村计划在荒坡上种树960棵.由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,原计划每天种树多少棵?22.(10分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查,调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他.该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了名购买者:(2)请补全条形统计图:在扇形统计图中A种支付方式所对应的圆心角为度;(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?23.(10分)某地建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式;(2)当运输公司平均每天的工作量15万米3,完成任务所需的时间是多少?(3)为了能在150天内完成任务,平均每天的工作量至少是多少万米3?24.(10分)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.25.(12分)已知反比例函数y=的图象与一次函数y=ax+b的图象交于点A(1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得>ax+b成立的自变量x的取值范围;(3)过点A作AC⊥x轴,垂足为C,在平面内有点D,使得以A,O,C,D四点为顶点的四边形为平行四边形,直接写出符合条件的所有D点的坐标.26.(14分)小华思考解决如下问题:原题:如图1,点P,Q分别在菱形ABCD的边BC,CD上,∠P AQ=∠B,求证:AP=AQ.(1)小华进行探索,若将点P,Q的位置特殊化:把∠P AQ绕点A旋转得到∠EAF,使AE⊥BC,点E、F分别在边BC、CD上,如图2.此时她证明了AE=AF,请你证明;(2)由以上(1)的启发,在原题中,添加辅助线:如图3,作AE⊥BC,AF⊥CD,垂足分别为E,F.请你继续完成原题的证明;(3)如果在原题中添加条件:AB=4,∠B=60°,如图1,求四边形APCQ的周长的最小值2018-2019学年江苏省连云港市赣榆区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题有8小题,每小题3分,共24分.每小题只有一个选项是正确的,请把你认为正确的选项代号涂在答题卡相应位置上)1.【解答】解:A、不是中心对称图形,故本选项正确;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误.故选:A.2.【解答】解:3天内会下雨是随机事件,A错误;经过有交通信号灯的路口遇到红灯是随机事件,B错误;打开电视,正在播广告是随机事件,C错误;367人中至少有2个人的生日相同是必然事件,D正确,故选:D.3.【解答】解:A、原式=,不符合题意;B、原式为最简结果,不符合题意;C、原式=5,不符合题意;D、原式=3,符合题意,故选:D.4.【解答】解:≠,故选:C.5.【解答】解:A、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故A可以判断四边形ABCD是平行四边形;B、∵AB∥CD,∴∠B+∠C=180°,∵∠B=∠D,∴∠D+∠C=180°,∴AC∥BD,∴四边形ABCD是平行四边形,故B可以判断四边形ABCD是平行四边形;C、∵AB∥CD,AD=BC,∴四边形ABCD可能是平行四边形,有可能是等腰梯形.故C不可以判断四边形ABCD是平行四边形D、∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,故D可以判断四边形ABCD是平行四边形;故选:C.6.【解答】解:∵点P(a,m),Q(b,n)都在反比例函数y=﹣的图象上,且a<0<b,∴点P在第三象限,点Q在第一象限,∴m<0<n;故选:A.7.【解答】解:原方程两边同乘以(x﹣3)得1+(x﹣3)=a﹣x∵方程有增根,∴将x=3代入得1+(3﹣3)=a﹣3∴a=4故选:A.8.【解答】解:过点C作CD⊥y轴,垂足为D,由折叠得:OB=BC=4,∠OAB=∠BAC=30°∴∠OBA=∠CBA=60°=∠CBD,在Rt△BCD中,∠BCD=30°,∴BD=BC=2,CD=,∴C(﹣,6)代入得:k=﹣×6=﹣故选:D.二、填空题(本大题有8小题,每小题3分,共24分.请把答案直接填写在答题卡上)9.【解答】解:若式子是二次根式,则x的取值范围是:x≥1.故答案为:x≥1.10.【解答】解:由题意得,x﹣3=0且x+1≠0,解得x=3.故答案为:3.11.【解答】解:∵袋子中有1个白球、1个红球和2个黄球,共有4个球,∴摸到白球的概率是,摸到红球的概率是,摸到黄球的概率是=,∴摸出白球可能性<摸出黄球的可能性;故答案为:小于.12.【解答】解:∵+=0,∴a﹣3=0,2﹣b=0,解得a=3,b=2,∴2,,∴.故答案为:<13.【解答】解:=2,由最简二次根式与能合并成一项,得a+1=2.解得a=1.故答案为:1.14.【解答】解:∵在反比例函数的图象每一条曲线上,y都随x的增大而减小,∴m﹣2>0,∴m>2.故答案为m>2.15.【解答】解:去分母得:3x﹣a=x﹣1,解得:x=,由分式方程的解为正数,得到>0,≠1,解得:a>1且a≠3,故答案为:a>1且a≠316.【解答】解:作AD⊥x轴于D,设PB⊥x轴于E,∵点P为函数y=(x>0)图象上一点,过点P作x轴、y轴的平行线,∴设P(m,),则A(2m,),B(m,),∵点A、B在函数y=(x>0)的图象上,∴S△OBE=S△OAD,∵S△AOB=S四边形ABOD﹣S△OAD=S四边形ABOD﹣S△OBE=S梯形ABED,∴S△AOB=(+)(2m﹣m)=6,故答案为6.三、解答题(本题有10小题,共102分.解答时应写出必要的步骤、过程或文字说明)17.【解答】解:(1)原式=3﹣2=1;(2)原式=(4﹣)×=3×=9.18.【解答】解:(1)去分母得:3x﹣3=2x,解得:x=3,经检验x=3是分式方程的解;(2)去分母得:x2+4x+4﹣4=x2﹣4,解得:x=﹣1,经检验x=﹣1是分式方程的解.19.【解答】解:原式===,∵a≠0,a2﹣1≠0,a2+a≠0,即a≠0,且a≠±1,∴取a=2,原式==.20.【解答】解:(1)∵反比例函数y=的图象经过点A(2,3),把点A的坐标(2,3)代入解析式,得3=,解得k=6.∴这个函数解析式为y=.(2)分别把点B,C的坐标代入y=,可知点B的坐标不满足函数解析式,点C的坐标满足函数解析式,∴点B不在这个函数的图象上,点C在这个函数的图象上.(3)∵当x=﹣3时,y=﹣2,当x=﹣1时,y=﹣6,又由k>0知,在x<0时,y随x的增大而减小,∴当﹣3<x<﹣1时,﹣6<y<﹣2.21.【解答】解:设原计划每天种树x棵,由题意得:﹣=4,解得:x=120,经检验:x=120是原分式方程的解,答:原计划每天种树120棵.22.【解答】解:(1)56÷28%=200,即本次一共调查了200名购买者;故答案为:200;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200﹣56﹣44﹣40=60(人),补全的条形统计图如右图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×=108°,故答案为:108;(3)1600×=928(名),答:使用A和B两种支付方式的购买者共有928名.23.【解答】解:(1)运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x (单位:万米3)之间的函数关系式为:xy=360,故y=;(2)∵当运输公司平均每天的工作量15万米3,∴完成任务所需的时间是:y==24(天),答:完成任务所需的时间是24天;(3)为了能在150天内完成任务,设平均每天的工作量是m,格局题意可得:150≥,解得:x≥2.4,答:平均每天的工作量至少是2.4万米3.24.【解答】解:连接EF,(1)∵点F,G,H分别是BC,BE,CE的中点,∴FH∥BE,FH=BE,FH=BG,∴∠CFH=∠CBG,∵BF=CF,∴△BGF≌△FHC,(2)当四边形EGFH是正方形时,连接GH,可得:EF⊥GH且EF=GH,∵在△BEC中,点,H分别是BE,CE的中点,∴GH=,且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC,∴AB=EF=GH=a,∴矩形ABCD的面积=.25.【解答】解:(1)将A(1,4)代入y=,得:4=k,∴反比例函数的关系式为y=;当y=﹣2时,﹣2=,解得:m=﹣2,∴点B的坐标为(﹣2,﹣2).将A(1,4),B(﹣2,﹣2)代入y=ax+b,得:,解得:,∴一次函数的关系式为y=2x+2.(2)观察函数图象,可知:当x<﹣2或0<x<1时,反比例函数图象在一次函数图象上方,∴使得>ax+b成立的自变量x的取值范围为x<﹣2或0<x<1.(3)∵点A的坐标为(1,4),∴点C的坐标为(1,0).设点D的坐标为(c,d),分三种情况考虑,如图所示:①当OC为对角线时,,解得:,∴点D1的坐标为(0,﹣4);②当OA为对角线时,,解得:,∴点D2的坐标为(0,4);③当AC为对角线时,,解得:,∴点D3的坐标为(2,4).综上所述:以A,O,C,D四点为顶点的四边形为平行四边形时,点D的坐标为(0,﹣4),(0,4)或(2,4).26.【解答】(1)证明:如图2,∵四边形ABCD是菱形,∴∠B+∠C=180°,∠B=∠D,AB=AD,∵∠EAF=∠B,∴∠EAF+∠C=180°,∴∠AEC+∠AFC=180°,∵AE⊥BC,∴AF⊥CD,在△AEB和△AFD中,,∴△AEB≌△AFD(AAS),∴AE=AF;(2)证明:如图3,由(1)得,∠P AQ=∠EAF=∠B,AE=AF,∴∠EAP=∠F AQ,在△AEP和△AFQ中,,∴△AEP≌△AFQ(ASA),∴AP=AQ;(3)解:如图4,连接AC,∵∠ABC=60°,BA=BC=4,∴△ABC为等边三角形,∵AE⊥BC,∴BE=EC=2,同理,CF=FD=2,∴AE==2,∴四边形APCQ的周长=AP+PC+CQ+AQ=2AP+CP+CF+FQ=2AP+2CF,∵CF是定值,当AP最小时,四边形APCQ的周长最小,∴当AP=AE时,四边形APCQ的周长最小,此时四边形APCQ的周长的最小值=2×2 +4=4+4.新人教版八年级数学下册期末考试试题(含答案) 一、选择题(每小题3分,共30分)1.当分式3-1x有意义时,字母x应满足()A、x≠1B、x=0C、x≠-1D、x≠3 答案:A考点:分式的意义。
四川省成都七中学实验校2020-2021学年数学八下期末经典模拟试题含解析
四川省成都七中学实验校2020-2021学年数学八下期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)1.在如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )A .B .C .D .2.使2x -有意义的x 取值范围是( ) A .2x >B .2x >-C .2x ≥D .2x ≥-3.下列说法中,正确的是( ) A .有两边相等的平行四边形是菱形 B .两条对角线互相垂直平分的四边形是菱形 C .两条对角线相等且互相平分的四边形是菱形 D .四个角相等的四边形是菱形4.如图,将边长为10的正三角形OAB 放置于平面直角坐标系xOy 中,C 是AB 边上的动点(不与端点A ,B 重合),作CD ⊥OB 于点D ,若点C ,D 都在双曲线y =kx上(k >0,x >0),则k 的值为( )A .3B .3C .9D .35.已知:菱形ABCD 中,对角线AC 与BD 相交于点O ,OE∥DC 交BC 于点E ,AD=6cm ,则OE 的长为【 】A .6cmB .4cmC .3cmD .2cm6.在下列条件中,不能确定四边形ABCD 为平行四边形的是( ). A .∠A=∠C ,∠B=∠DB .∠A+∠B=180°,∠C+∠D=180°C .∠A+∠B=180°,∠B+∠C=180°D .∠A=∠B=∠C=90°7.若a b >,则下列不等式成立的是( ) A .55-<-a bB .22a b -<-C .3322a b ++< D .22a b >8.下而给出四边形ABCD 中,,,A B C D ∠∠∠∠的度数之比,其中能判定四边形ABCD 为平行四边形的是( ). A .1:2:3:4B .1:2:2:3C .2:2:3:3D .2:3:2:39.如图,正方形ABCD 的边长为4,点E 是AB 的中点,点P 从点E 出发,沿E A D C →→→移动至终点C ,设P 点经过的路径长为x ,CPE ∆的面积为y ,则下列图象能大致反映y 与x 函数关系的是( )A .B .C .D .10.如图是某校七、八两个年级借阅图书的人数的扇形统计图,下列说法错误的是( )A .七年级借阅文学类图书的人数最多B .八年级借阅教辅类图书的人数最少C .两个年级借阅文学类图书的人数最多D .七年级借阅教辅学类图书的人数与八年级借阅科普类图书的人数相同11.如图,在平面直角坐标系中,正三角形OAB 的顶点B 的坐标为(2,0),点A 在第一象限内,将△OAB 沿直线OB 的方向平移至△O′B′A′的位置,此时点B′的横坐标为5,则点A′的坐标为( )A .(1,3)B .(2,3)C .(3,3)D .(4,3)12.已知一次函数3y kx =+,且y 随x 的增大而减小,那么它的图象经过 A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限D .第二、三、四象限二、填空题(每题4分,共24分)13.下列4种图案中,既是轴对称图形,又是中心对称图形的有__________个.14.小强调查“每人每天的用水量”这一问题时,收集到80个数据,最大数据是70升,最小数据是42升,若取组距为4,则应分为_________组绘制频数分布表.15.若一次函数y =kx+b 的图象经过点P (﹣2,3),则2k ﹣b 的值为_____.16.如图放置的两个正方形,大正方形ABCD 边长为a ,小正方形CEFG 边长为b (a >b ),M 是BC 边上一个动点,联结AM ,MF ,MF 交CG 于点P ,将△ABM 绕点A 旋转至△ADN ,将△MEF 绕点F 旋转恰好至△NGF .给出以下三个结论:①∠AND=∠MPC;②△ABM≌△NGF;③S四边形AMFN=a1+b1.其中正确的结论是_____(请填写序号).17.在实数范围内定义一种运算“﹡”,其规则为a﹡b=a2﹣b2,根据这个规则,方程(x+1)﹡3=0的解为_____.18.在平行四边形ABCD中,∠B+∠D=190°,则∠A=_____°.三、解答题(共78分)19.(8分)市教育局为了解本市中学生参加志愿者活动情况,随机拍查了某区部分八年级学生一学年来参加志愿者活动的次数,并用得到的数据绘制了如下两幅不完整的统计图.(1)求参加这次调查统计的学生总人数及这个区八年级学生平均每人一学年来参加志愿者活动的次数;(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该区共有八年级学生3000人,请你估计“活动次数不少于4次”的学生人数大约多少人.20.(8分)在如图所示的平面直角坐标系内画一次函数y1=-x+4和y2=2x-5的图象,根据图象写出:(1)方程-x+4=2x-5的解;(2)当x取何值时,y1>y2?当x取何值时,y1>0且y2<0?21.(8分)垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某校对本校甲、乙两班各60名学生进行了垃极分类相关知识的测试,并分别随机抽取了15份成绩,整理分析过程如下,请补充完整(收集数据)甲班15名学生测试成绩统计如下:(满分100分)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80乙班15名学生测试成绩统计如下:(满分100分)86,89,83,76,73,78,67,80,80,79,80,84,82,80,83(整理数据)按如下分数段整理、描述这两组样本数据在表中,a=,b=.(分析数据)(1)两组样本数据的平均数、众数、中位数、方差如下表所示:在表中:x=,y=.(2)若规定得分在80分及以上(含80分)为合格,请估计乙班60名学生中垃圾分类相关知识合格的学生有人(3)你认为哪个班的学生掌握垃圾分类相关知识的情况较好,说明理由.22.(10分)新定义:[a,b,c]为二次函数y=ax2+bx+e(a≠0,a,b,c为实数)的“图象数”,如:y=-x2+2x+3的“图象数”为[-1,2,3](1)二次函数y=13x2-x-1的“图象数”为.(2)若图象数”是[m,m+1,m+1]的二次函数的图象与x轴只有一个交点,求m的值.23.(10分)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A 出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是_____米(平面镜的厚度忽略不计).24.(10分)某游泳池有900立方米水,每次换水前后水的体积保持不变.设放水的平均速度为v立方米/小时,将池内的水放完需t小时,(1)求v关于t的函数表达式,并写出自变量t的取值范围;(2)若要求在2.5小时至3小时内(包括2.5小时与3小时)把游泳池内的水放完,求放水速度的范围.25.(12分)解不等式组3(21)4213213x xxx⎧--⎪⎪⎨+⎪>-⎪⎩,并写出x的所有整数解.26.已知:在平面直角坐标系中有两条直线y=﹣1x+3和y=3x﹣1.(1)确定这两条直线交点所在的象限,并说明理由;(1)求两直线与坐标轴正半轴围成的四边形的面积.参考答案一、选择题(每题4分,共48分)1、D【解析】【分析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【详解】由题意知,函数关系为一次函数y=-1x+4,由k=-1<0可知,y随x的增大而减小,且当x=0时,y=4,当y=0时,x=1.故选D.【点睛】本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-1x+4,然后根据一次函数的图象的性质求解. 2、C 【解析】 【分析】根据二次根式的非负性可得x 20-≥,解得:2x ≥ 【详解】∴ x 20-≥ 解得2x ≥ 故选C 【点睛】本题考查二次根式有意义的条件,熟练掌握二次根式的非负性为解题关键 3、B 【解析】 【分析】利用菱形的判定定理及性质即可求解. 【详解】解:A. 有两边相等的平行四边形不是菱形,此选项错误; B. 两条对角线互相垂直平分的四边形是菱形,此选项正确; C. 两条对角线相等且互相平分的四边形是矩形,此选项错误; D. 四个角相等的四边形是矩形,此选项错误. 故选:B . 【点睛】本题考查的知识点是菱形的判定定理、平行四边形的性质、线段垂直平分线的性质,掌握菱形的判定定理是解此题的关键. 4、D 【解析】 【分析】根据等边三角形的性质表示出D ,C 点坐标,进而利用反比例函数图象上点的坐标特征得出答案. 【详解】解:过点D 作DE ⊥x 轴于点E ,过C 作CF ⊥x 轴于点F ,如图所示.可得:∠ODE=30°,∠BCD=30°,设OE=a,则OD=2a,DE=3a,∴BD=OB﹣OD=10﹣2a,BC=2BD=20﹣4a,AC=AB﹣BC=4a﹣10,∴AF=12AC=2a﹣1,CF=3AF=3(2a﹣1),OF=OA﹣AF=11﹣2a,∴点D(a,3a),点C[11﹣2a,3(2a﹣1)].∵点C、D都在双曲线y=kx上(k>0,x>0),∴a•3a=(11﹣2a)×3(2a﹣1),解得:a=3或a=1.当a=1时,DO=OB,AC=AB,点C、D与点B重合,不符合题意,∴a=1舍去.∴点D(3,33),∴k=3×33=93.故选D.【点睛】本题考查了反比例函数图象上点的坐标特征以及等边三角形的性质,解题的关键是找出点D、C的坐标.5、C【解析】∵四边形ABCD是菱形,∴OB=OD,CD=AD=6cm,∵OE∥DC,∴OE是△BCD的中位线。
2010成都七中实验学校八年级下数学期末模拟试卷(A、B卷)
2011成都七中实验学校八年级下数学期末模拟试卷本试卷分为A卷和B卷,A卷满分100分,B卷满分50分,全卷总分150分.题号A 卷A卷总分B卷B卷总分全卷总分一二三四五一二三四得分A卷(100分)一、选择题(把正确答案的代号填入表内,每小题3分,共30分)1.观察下列各式:①2a+b和a+b;②)(5bam-和ba+-;③)(3ba+和ba--;④22yx-和22yx+;其中有公因式的是( )A.①② B.②③ C.③④ D·①④2.当x=2时,下列各式的值为0的是( )A.2322+--xxxB.21-xC.942--xxD.12-+xx3.下列分式运算,结果正确的是()A.nmmnnm=⋅3454B.bcaddcba=⋅ C.222242baabaa-=⎪⎭⎫⎝⎛-D.3335353yxyx=⎪⎪⎭⎫⎝⎛4.解关于x的方程116-=--xmxx产生增根,则常数m的值等于()A.2- B.3- C.1 D.5-5.2009年成都市大约有50000名学生参加高考,为了考查他们的数学成绩考试情况,平卷人抽去了2000名学生的数学成绩进行统计,那么下列四个判断正确的是()A.每名学生的数学成绩是个体 B.50000名学生是总体C.2000名考生是总体的一个样本 D.上述调查是普查6.某班某同学要测量学校升旗的旗杆高度,在同一时刻,量得某一同学的身高是1.5m,影长是1m,旗杆的影长是8m,则旗杆的高度是()A.12m B.11m C.10m D.9m7.如图1,由下列条件不能判定△ABC与△ADE相似的是()A.AE ACAD AB= B.∠B=∠ADE C.AE DEAC BC= D.∠C=∠AED(1) (2) (3)8.如图2,△ABC 中,∠BAC=90°,AD ⊥BC 于D ,若AB=2,BC=3,则CD 的长是( )A .83 B .23 C .43 D .53 9、已知75==d c b a ,则d b ca ++(其中0≠+db )的值等于( )A 、73B 、75C 、710D 、14510.如图(3),在△ABC 中,∠ACB=90,∠B=30,AC=1,过点C 作AB CD ⊥1 与1D ,过1D 作ABD D ⊥21于2D ,过2D 作AB D D ⊥32于3D ,这样继续作下去,线段1+n n D D 的长度(n为正整数)等于( )A .121+⎪⎭⎫ ⎝⎛n B .123+⎪⎭⎫⎝⎛n C .n⎪⎪⎭⎫ ⎝⎛23 D .123+⎪⎪⎭⎫ ⎝⎛n二、填空题:(每小题4分,共20分) 11、分解因式2322a b b ab +-= 12、在分式11||+-x x 中,x =_______时,分式无意义;当x =_________时,分式的值为零. 13.如果点P 是线段AB 的黄金分割点,且AP>PB ,则下列命题,①PB AP AB ⋅=2②AB AP BP ⋅=2,③AP 2=PB·AB,④AP PB AB AP ::=,其中正确的是14.某学校准备从甲、乙、丙三位同学中选拔一人参加全市射击比赛,他们在选拔比赛中,射靶十次的平均环数是丙乙甲x x x ===1.8,方差分别是,3.12=甲s ,6.22=乙s 0.32=丙s ,那么根据以上提供的信息,你认为应该推荐参加全市射击比赛的同学是 。
成都七中初中数学八年级下期末经典测试卷(培优)
一、选择题1.(0分)[ID :10232]若2(5)x -=x ﹣5,则x 的取值范围是( ) A .x <5 B .x ≤5C .x ≥5D .x >52.(0分)[ID :10221]若等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为( ) A .7B .6C .5D .43.(0分)[ID :10218]某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示: 鞋的尺码/cm 23 23.5 24 24.5 25 销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( ) A .24.5,24.5B .24.5,24C .24,24D .23.5,244.(0分)[ID :10209]估计()-⋅1230246的值应在( ) A .1和2之间B .2和3之间C .3和4之间D .4和5之间5.(0分)[ID :10204]如图,在平行四边形ABCD 中,ABC ∠和BCD ∠的平分线交于AD 边上一点E ,且4BE =,3CE =,则AB 的长是( )A .3B .4C .5D .2.56.(0分)[ID :10199]将一张长方形纸片按如图所示的方式折叠,,BC BD 为折痕,则CBD ∠的度数为( )A .60︒B .75︒C .90︒D .95︒7.(0分)[ID :10198]如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4)AOB DEOF S S 四边形∆=中正确的有 A .4个B .3个C .2个D .1个8.(0分)[ID :10138]小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s (千米)与所用时间t (分)之间的关系( )A .B .C .D .9.(0分)[ID :10193]如图,以 Rt △ABC 的斜边 BC 为一边在△ABC 的同侧作正方形 BCEF,设正方形的中心为 O ,连接 AO ,如果 AB =4,AO =62,那么 AC 的长等于( )A .12B .16C .3D .210.(0分)[ID :10191]在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( ) A .众数B .平均数C .中位数D .方差11.(0分)[ID :10189]为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表: 尺码(厘米)2525.52626.527购买量(双)12322则这10双运动鞋尺码的众数和中位数分别为( ) A .25.5厘米,26厘米 B .26厘米,25.5厘米 C .25.5厘米,25.5厘米 D .26厘米,26厘米12.(0分)[ID :10185]若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是( ) A .矩形B .一组对边相等,另一组对边平行的四边形C .对角线互相垂直的四边形D .对角线相等的四边形 13.(0分)[ID :10176]如图(1),四边形ABCD 中,AB ∥CD ,∠ADC =90°,P 从A 点出发,以每秒1个单位长度的速度,按A →B →C →D 的顺序在边上匀速运动,设P 点的运动时间为t 秒,△PAD 的面积为S ,S 关于t 的函数图象如图(2)所示,当P 运动到BC 中点时,△APD 的面积为( )A .4B .5C .6D .714.(0分)[ID :10160]如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 的中点C '上.若6AB =,9BC =,则BF 的长为( )A .4B .32C .4.5D .515.(0分)[ID :10158]下列运算正确的是( )A.235+=B.32﹣2=3C.236⨯=D.632÷=二、填空题16.(0分)[ID:10330]如图,在▱ABCD中,E为CD的中点,连接AE并延长,交BC的延长线于点G,BF⊥AE,垂足为F,若AD=AE=1,∠DAE=30°,则EF=_____.17.(0分)[ID:10329]如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=_________°.18.(0分)[ID:10307]如图,一次函数y=kx+b的图象与x轴相交于点(﹣2,0),与y 轴相交于点(0,3),则关于x的方程kx=b的解是_____.19.(0分)[ID:10279]菱形ABCD的边长为5,一条对角线长为6,则该菱形的面积为__________.20.(0分)[ID:10276]在矩形ABCD中,AD=5,AB=4,点E,F在直线AD上,且四边形BCFE为菱形,若线段EF的中点为点M,则线段AM的长为.21.(0分)[ID:10270]如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为_____.22.(0分)[ID:10263]直角三角形两直角边长分别为3+1,31,则它的斜边长为____.23.(0分)[ID:10256]已知一次函数y=kx+b的图象如图,则关于x的不等式kx+b>0的解集是______.ABCD O是BC边上一点,P为CD中24.(0分)[ID:10243]如图,已如长方形纸片,的度数是______.点,沿AO折叠使得顶点B落在CD边上的点P处,则OAB25.(0分)[ID:10234]已知一直角三角形两直角边的长分别为6cm和8cm,则第三边上的高为________.三、解答题26.(0分)[ID:10401]某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.27.(0分)[ID:10387]已知:如图,在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:∠EBF=∠EDF.28.(0分)[ID:10377]甲、乙两名射击选示在10次射击训练中的成绩统计图(部分)如图所示:根据以上信息,请解答下面的问题;选手A平均数中位数众数方差甲a88c乙7.5b6和9 2.65(1)补全甲选手10次成绩频数分布图.(2)a=,b=,c=.(3)教练根据两名选手手的10次成绩,决定选甲选手参加射击比赛,教练的理由是什么?(至少从两个不同角度说明理由).29.(0分)[ID:10339]如图,四边形ABCD的对角线AC⊥BD,垂足为O,点E,F,G,H 分别是AB,BC,CD,DA的中点.求证:四边形EFGH是矩形.30.(0分)[ID:10336]如图,将□ABCD的对角线BD向两个方向延长至点E和点F,使BE=DF,证:四边形AECF是平行四边形.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.C3.A4.B5.D6.C7.B8.D9.B10.D11.D12.D13.B14.A15.C二、填空题16.﹣1【解析】【分析】首先证明△ADE≌△GCE推出EG=AE=AD=CG=1再求出FG即可解决问题【详解】∵四边形ABCD是平行四边形∴AD∥BGAD=BC∴∠DAE=∠G=30°∵DE=EC∠AE17.15°【解析】【分析】【详解】解:由题意可知:是等腰三角形故答案为18.x=2【解析】【分析】依据待定系数法即可得到k和b的值进而得出关于x的方程kx=b的解【详解】解:∵一次函数y=kx+b的图象与x轴相交于点(﹣20)与y轴相交于点(03)∴解得∴关于x的方程kx=19.24【解析】【分析】根据菱形的性质利用勾股定理求得另一条对角线再根据菱形的面积等于两对角线乘积的一半求得菱形的面积【详解】解:如图当BD=6时∵四边形ABCD是菱形∴AC⊥BDAO=COBO=DO=20.5或05【解析】【分析】两种情况:①由矩形的性质得出CD=AB=4BC=AD=5∠ADB=∠CDF=90°由菱形的性质得出CF=EF=BE=BC=5由勾股定理求出DF 得出MF即可求出AM;②同①得出21.x>1【解析】试题分析:根据两直线的图象以及两直线的交点坐标来进行判断试题解析:由图知:当直线y=x+b的图象在直线y=ax+3的上方时不等式x+b>ax+3成立;由于两直线的交点横坐标为:x=1观22.【解析】【分析】已知直角三角形的两条直角边由勾股定理直角三角形两条直角边的平方和等于斜边的平方即可求得斜边的长度【详解】由勾股定理得(2 +1)2+(2 −1)2=斜边2斜边=故答案为:【点睛】勾股23.【解析】【分析】直接利用一次函数图象结合式kx+b>0时则y的值>0时对应x的取值范围进而得出答案【详解】如图所示:关于x的不等式kx+b>0的解集是:x<2故答案为:x<2【点睛】此题主要考查了一24.30°【解析】【分析】根据题意先通过△ADP求出∠DAP的因为△ABO≌△APO即可求出∠OAB的度数【详解】解:∵P是CD的中点沿折叠使得顶点落在边上的点∴DP=PC=CD△ABO≌△APO∵四边25.8cm【解析】【分析】先由勾股定理求出斜边的长再用面积法求解【详解】解:如图在Rt△ABC中∠ACB=90°AC=6cmBC=8cmCD⊥AB则(cm)由得解得CD=48(cm)故答案为48cm【点三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题 1.C 解析:C 【解析】 【分析】因为2a =-a (a≤0),由此性质求得答案即可. 【详解】 ∵()25x -=x-5,∴5-x≤0 ∴x≥5. 故选C . 【点睛】此题考查二次根式的性质:2a =a (a≥0),2a =-a (a≤0).2.C解析:C 【解析】 【分析】 【详解】∵等腰三角形ABC 中,AB =AC ,AD 是BC 上的中线, ∴BD =CD =12BC =3, AD 同时是BC 上的高线, ∴AB =22AD BD +=5.故它的腰长为5. 故选C.3.A解析:A 【解析】【分析】根据众数和中位数的定义进行求解即可得.【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,故选A.【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.4.B解析:B【解析】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围.【详解】(==2,而,所以2<2<3,所以估计(2和3之间,故选B.【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.5.D解析:D【解析】【分析】由▱ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,易证得△ABE,△CDE是等腰三角形,△BEC是直角三角形,则可求得BC的长,继而求得答案.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠CBE,∠DEC=∠BCE,∠ABC+∠DCB=90°,∵BE,CE分别是∠ABC和∠BCD的平分线,∴∠ABE=∠CBE=12∠ABC,∠DCE=∠BCE=12∠DCB,∴∠ABE=∠AEB,∠DCE=∠DEC,∠EBC+∠ECB=90°,∴AB=AE ,CD=DE ,∴AD=BC=2AB ,∵BE=4,CE=3,∴BC=2222345BE CE =+=+,∴AB=12BC=2.5. 故选D .【点睛】 此题考查了平行四边形的性质、等腰三角形的判定与性质以及直角三角形的性质.注意证得△ABE ,△CDE 是等腰三角形,△BEC 是直角三角形是关键.6.C解析:C【解析】【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等,利用平角定义ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°,再通过等量代换可以求出CBD ∠. 【详解】解:∵长方形纸片按如图所示的方式折叠,,BC BD 为折痕∴A BC ABC '∠=∠,E BD EBD '∠=∠∵ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°(平角定义)∴A BC '∠+A BC '∠+E BD '∠+E BD '∠=180°(等量代换)A BC '∠+E BD '∠=90°即CBD ∠=90°故选:C .【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.7.B解析:B【解析】【分析】根据正方形的性质得AB=AD=DC ,∠BAD=∠D=90°,则由CE=DF 易得AF=DE ,根据“SAS”可判断△ABF ≌△DAE ,所以AE=BF ;根据全等的性质得∠ABF=∠EAD ,利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE ⊥BF ;连结BE ,BE >BC ,BA≠BE ,而BO ⊥AE ,根据垂直平分线的性质得到OA≠OE ;最后根据△ABF ≌△DAE 得S △ABF =S △DAE ,则S △ABF -S △AOF =S △DAE -S △AOF ,即S △AOB =S 四边形DEOF .【详解】解:∵四边形ABCD 为正方形,∴AB=AD=DC ,∠BAD=∠D=90°,而CE=DF ,∴AF=DE ,在△ABF 和△DAE 中AB DA BAD ADE AF DE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DAE ,∴AE=BF ,所以(1)正确;∴∠ABF=∠EAD ,而∠EAD+∠EAB=90°,∴∠ABF+∠EAB=90°,∴∠AOB=90°,∴AE ⊥BF ,所以(2)正确;连结BE ,∵BE >BC ,∴BA≠BE ,而BO ⊥AE ,∴OA≠OE ,所以(3)错误;∵△ABF ≌△DAE ,∴S △ABF =S △DAE ,∴S △ABF -S △AOF =S △DAE -S △AOF ,∴S △AOB =S 四边形DEOF ,所以(4)正确.故选B .【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了正方形的性质.8.D解析:D【解析】【分析】根据描述,图像应分为三段,学校离家最远,故初始时刻s 最大,到家,s 为0,据此可判断.【详解】因为小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家,所以图象应分为三段,根据最后离家的距离为0,由此可得只有选项DF 符合要求.故选D .【点睛】本题要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.9.B解析:B【解析】【分析】首选在AC 上截取4CG AB ==,连接OG ,利用SAS 可证△ABO ≌△GCO ,根据全等三角形的性质可以得到:OA OG ==AOB COG ∠=∠,则可证△AOG 是等腰直角三角形,利用勾股定理求出12AG =,从而可得AC 的长度.【详解】解:如下图所示,在AC 上截取4CG AB ==,连接OG ,∵四边形BCEF 是正方形,90BAC ∠=︒,∴OB OC =,90BAC BOC ∠=∠=︒,∴点B 、A 、O 、C 四点共圆,∴ABO ACO ∠=∠,在△ABO 和△GCO 中,{BA CGABO ACO OB OC=∠=∠=,∴△ABO ≌△GCO ,∴OA OG ==AOB COG ∠=∠,∵90BOC COG BOG ∠=∠+∠=︒,∴90AOG AOB BOG ∠=∠+∠=︒,∴△AOG 是等腰直角三角形,∴()()22626212AG =+=,∴12416AC =+=.故选:B .【点睛】本题考查正方形的性质;全等三角形的判定与性质;勾股定理;直角三角形的性质.10.D解析:D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。
2011成都七中实验学校八年级下数学期末模拟试卷(A、B卷)-推荐下载
2
A
D.
(第 15 题)
C
D
3 2
s
n1
2 甲
1.3,
B
三、计算题:(每小题 6 分)
16、解不等式组
x 2 16 x 2 17、解方程 x 2 x2 4 x 2
x132( xx 3
2) x
4 1
,并写出不等式组的非负整数解。
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
成都七中实验学校八年级_数学期末复习试卷(北师大)
考室班级考号姓名_________________◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆成都七中实验学校八年级下数学期末复习测试题本试卷分为A卷和B卷,A卷满分100分,B卷满分50分,全卷总A卷(100分)1.观察下列各式:①2a+b和a+b;②)(5bam-和ba+-;③)(3ba+和ba--;④22yx-和22yx+;其中有公因式的是( )A.①②B.②③C.③④D·①④2.当的是(A B C D3.下列分式运算,结果正确的是()A.B.C.D4.解关于xm的值等于()A.2-B.3-C.1 D.5-5.2009年成都市大约有50000名学生参加高考,为了考查他们的数学成绩考试情况,平卷人抽去了2000名学生的数学成绩进行统计,那么下列四个判断正确的是()A.每名学生的数学成绩是个体B.50000名学生是总体C.2000名考生是总体的一个样本D.上述调查是普查6.某班某同学要测量学校升旗的旗杆高度,在同一时刻,量得某一同学的身高是1.5m,影长是1m,旗杆的影长是8m,则旗杆的高度是()A.12m B.11m C.10mD.9m7.如图1△ABC与△ADE相似的是()A.B.∠B=∠ADE C.D.∠C=(1)(2) (3)8.如图2,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=2,BC=3,则CD)A B C D9(其中0≠+db)的值等于()A10.如图(3),在△ABC中,∠ACB=90,∠B=30,AC=1,过点C作ABCD⊥1与1D,过1D作ABDD⊥21于2D,过2D作ABDD⊥32于3D,这样继续作下去,线段1+n n D D 的长度(n为正整数)等于( )ABCD二、填空题:(每小题4分,共20分)1112x =_______时,分式无意义;当x =_________时,分13.如果点P 是线段AB 的黄金分割点,且AP>PB ,则下列命题,①PB AP AB ⋅=2②AB AP BP ⋅=2,③AP 2=PB·AB ,④AP PB AB AP ::=,其中正确的是14.某学校准备从甲、乙、丙三位同学中选拔一人参加全市射击比赛,他们=1.8,方差分别是,3.12=甲s ,6.22=乙s 0.32=丙s ,那么根据以上提供的信息,你认为应该推荐参加全市射击比赛的同学是 。
成都七中育才学校八年级下期期末数学模拟试题
八年级下期期末数学模拟试题A 卷(共100分)1. 不等式250x +>的解集是( )A .52x <B .52x >C .52x >-D .52x <-2. 下列多项式能用完全平方公式进行分解因式的是( )A .21x +B .224x x ++C .221x x -+D .21x x ++3. 若分式||11x x -+的值为0,则( ) A .1x =± B .1x = C .1x =- D .0x =4. 要使分式11x +有意义,则x 应满足的条件是( )A .1x ≠B .0x ≠C .1x ≠D .1x >5. 计算:22()ab a b-的结果是( )A .aB .bC .b -D .16. 如图,已知直线1y ax b =+与2y mx n =+相交于点A (2,1-),若12y y >,则x 的取值范围是( )A .2x <B .2x >C .1x <-D .1x >-7. 如图,在ABC △中,D 、E 分别是BC 、AC 边的中点,若3DE =,则AB 的长是( )A .9B .5C .6D .48. 下列一元二次方程中,无实数根的是( )A .2440x x -+=B .2(2)1x -=C .2x x =-D .2220x x -+=9. 解关于x 的方程311x mx x -=--产生增根,则常数m 的值等于( ) A .2-B .1-C .1D .210. 如图,在ABC △中,75CAB ∠=,在同一平面内,将ABC△绕点A 旋转到ABC ''△的位置,使得CC AB '∥,则BAB '∠=( ) A .30B .35C .40D .50二、填空题:(每小题4分,共20分)11. 已知关于x 的方程27x a x +=-的解为正数,则实数a 的取值范围是 。
四川省成都七中实验学校2013-2014学年下期八年级入学考试数学试题(含答案)
(全卷共 150 分,时间 120 分钟)
A 卷(100 分) 一、选择题(每小题 3 分,共 30 分)
1、下列各数中是无理数的是( )
1 (A) 7
3
(B) 9 ) (B)7,24,25, (D)n, 2n 1 ,n+1 (D)±1 (D) y (C) 27
3
(D)
2、下列各组数中,是勾股数的为( (A)1.5,2,2.5, (C)0.3,0.4,0.5,
3、已知点 A(3,a+1)在 x 轴上,则 a 等于( ) (A)-1 (B)1 (C)0 4、下列函数中,y 随 x 增大而减小的是( ) (A) y x 1 (B) y 2 x 3 5、下列不等式中,总能成立的是( (A) a 2 0 (B)2a>a ) (C) a 2 0 (C) y 2 x 1
1 x 1 与 x 轴交于点 C,两 2
直线 l1 , l 2 相交于点 B。 (1) 、求直线 l1 的解析式和点 B 的坐标; (2) 、求△ABC 的面积。
五、解答题(共 18 分)
19、 (8 分)如图,A、B 两座城市相距 100 千米,现计划要在两座城市之间修筑一条高等级 公路(即:线段 AB) 。经测量,森林保护区中心 P 点在 A 城市的北偏东 30 0 方向,B 城市的 北偏西 45 0 方向上。已知森林保护区的范围在以 P 为圆心,50 千米为半径的圆形区域内。 请问:计划修筑这条高等级公路会不会穿越森林保护区?为什么?
5 x 2 3( x 1) (2)解不等式组 1 3 1 7 x 2 2
(3)计算: (3) 27 1 2
成都市2010-2011学年度下期八年级数学期末模拟试题(A、B卷)
成都市2010-2011学年度下期八年级数学期末模拟试题本卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分,考试时间120分钟。
A 卷(共100分)注意事项:选择题共有四个选项,其中只有一项符合题目要求,请将你认为正确的答案标号填在下面的表格中。
一、选择题(每小题3分,共30分)1.已知x y <,则下列各式正确的是( )A .33x y >B .1133x y >C .22x y ->-D .22x y -<-2.下列各式中,能用平方差公式分解因式的是( )A .224x y +B .221x y -+C .224x y -+D .224x y --3.如图,AB //CD ,CE 平分ACD ∠,30AEC ∠=,则A ∠度数为( )A .60B .120C .110D .1154.下列命题中,真命题的个数为( )①若a b >,则22a b >。
②两个矩形一定相似。
③两条平行线被第三条直线所截,同位角的平分线互相平行。
④位似图形一定相似,但相似图形不一定位似。
A .1个 B .2个 C .3个 D .4个 5.化简211()x x x-÷+的结果是( ) A .1x --B .1x -+C .11x -+ D .11x + 6.下列调查方式,你认为正确的是( )A .了解一批炮弹的杀伤半径,采用普查方式。
B .了解成都市居民日平均用水量采用普查方式。
C .了解成都市每天流动人口数采用抽查方式。
D .要保证“神舟”六号载人飞船成功发射,对重要部件采用抽查方式。
7.如图,已知AB //CD ,AD 与BC 相交于点P ,4,6,10AB CD AD ===,则AP 的长为( )A .6B .5C .3D .48.下列方程是一元二次方程的是( )A .20ax bx c ++=B .226x x-=C .22211x x x ++=-D .2230x x -+=9.甲从A 地到B 地要走mh ,乙从B 地到A 地要走nh ,甲、乙两人同时从A 、B 两地相向而行则需( )h 两人相遇A .m n +B .mnm n+ C .m nmn+ D .2m n+ 10.ABC FDE ∽,A 、B 、C 三点的坐标分别为(5,4)A 、(0,0)B 、(5,1)C ,F 、D 两点的坐标分别是(10,8)F 、(0,0)D ,则E 点的坐标是( ) A .(3,0)B .(10,2)C .(2,10)D .(5,4)二、填空题(每小题4分,共20分)11.当a = 时,分式22183a a -+的值为0。
【三套打包】成都七中八年级下学期期末数学试题含答案
最新八年级下册数学期末考试题【答案】一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1a的取值范围是()A.a≥2B.a≤2C.a>2D.a≠22.方程2x2﹣3x﹣5=0的二次项系数、一次项系数、常数项分别为()A.3、2、5B.2、3、5C.2、﹣3、﹣5D.﹣2、3、53.如图,A、B两点被一座山隔开,M、N分别是AC、BC中点,测量MN的长度为40m,那么AB的长度为()A.40m B.80m C.160m D.不能确定4.将方程x2+4x+1=0配方后,原方程变形为()A.(x+2)2=3B.(x+4)2=3C.(x+2)2=﹣3D.(x+2)2=﹣55.一个菱形的两条对角线分别是6cm,8cm,则这个菱形的面积等于()A.48cm2B.24cm2C.12cm2D.18cm26.若函数y=x m+1+1是一次函数,则常数m的值是()A.0B.1C.﹣1D.﹣27.顺次连接四边形各边中点所得的四边形是()A.平行四边形B.矩形C.菱形D.以上都不对8.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形9.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<32B.x<3C.x>32D.x>310.如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG 于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=12BE,正确的有()A.2个B.3个C.4个D.5个二、填空题(本题共6小题,每题4分,共24分)11.直角三角形两直角边长为5和12,则此直角三角形斜边上的中线的长是.12.若一次函数y=(k﹣2)x+1(k是常数)中y随x的增大而增大,则k的取值范围是.13.一组数据3,5,a,4,3的平均数是4,这组数据的方差为.14.勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”.中国是发现和研究勾股定理最古老的国家之一.中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理.三国时期吴国赵爽创制了“勾股圆方图”(如图)证明了勾股定理.在这幅“勾股圆方图”中,大正方形ABCD是由4个全等的直角三角形再加上中间的那个小正方形EFGH组成的.若小正方形的边长是1,每个直角三角形的短的直角边长是3,则大正方形ABCD的面积是.15.“绿水青山就是金山银山”.为了山更绿、水更清,某县大力实施生态修复工程,发展林业产业,确保到2021年实现全县森林覆盖率达到72.75%的目标.已知该县2019年全县森林覆盖率为69.05%,设从2019年起该县森林覆盖率年平均增长率为x ,则可列方程 .16.在矩形ABCD 中,对角线AC 、BD 相交于点O ,过A 点作AE ⊥BD ,垂足为点E ,若ED =3OE ,AE BD 的长为 .三、解答题(本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.)17.(801)( 3.14)π--18.(8分)如图,在▱ABCD 中,E 、F 分别是BC 、AD 的中点,求证:四边形AECF 是平行四边形.19.(8分)已知关于x 的一元二次方程x 2﹣(n +3)x +3n =0.求证:此方程总有两个实数根.20.(8分)如图,矩形纸片ABCD 中,AD =4,AB =8,把纸片沿直线AC 折叠,使点B 落在E 处,AE 交DC 于点F ,求△CEF 的面积.21.(8分)如图,点A和点B分别在x轴和y轴上,且OA=OB=4,直线BC交x轴于点C,S△BOC=S△ABC.(1)求直线BC的解析式;(2)在直线BC上求作一点P,使四边形OBAP为平行四边形(尺规作图,保留痕迹,不写作法).22.(10分)甲、乙两市参加省教育厅举办的学生机器人大赛,两市参赛队伍数相等.比赛结束后,发现两市各队共有以下四种得分情况,分别为70分、80分、90分、100分(满分为100分).依据统计数据绘制了如下尚不完整的统计图表(1)在图1中,“70分”所在扇形的圆心角等于度.(2)请你将图2的条形统计图补充完整.(3)经计算,乙市的平均分是83分,中位数是80分,请将图3中空格补充完整并求甲市的平均分、中位数;并从平均分和中位数的角度分析哪个市的成绩较好.23.(10分)电商时代使得网购更加便捷和普及.小张响应国家号召,自主创业,开了家淘宝店.他购进一种成本为100元/件的新商品,在试销中发现:销售单价x(元)与每天销售量y(件)之间满足如图所示的关系.(1)求y与x之间的函数关系式;(2)若某天小张销售该产品获得的利润为1200元,求销售单价x的值.24.(12分)如图1,在平面直角坐标系中,放置一个边长为5正方形ABCD,人使得它的两个顶点B和A恰好落在x轴正半轴和y轴正半轴上,M为正方形的中心.(1)若点B和点A在x轴和y轴上滑动,求证:在这个运动过程中,M始终在第一象限的角平分线上.(2)若点A运动到(0,3),求此时M点的坐标.25.(14分)已知直线l:y=kx+k+1与x轴、y轴分别交于点A、B.(1)直线l经过定点M,请写出定点M坐标.(2)若原点O①求出此时直线的解析式;②将直线l绕A点顺时针旋转90°与y轴交于点C,在l上是否存在一点P,使得OP+PC的值最小?若存在,请求出P点坐标,并求出OP+PC的最小值;若不存在,请说明理由.参考答案一、选择题1.A ; 2.C ; 3.B ; 4.A ; 5.B ; 6.A ; 7.A ; 8.D ; 9.A ; 10.C ; 二、填空题 11.132; 12.k >2; 13.0.8; 14.25; 15.69.05%(1+x )2=72.75%;16.4; 三、解答题(本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.)17.解:原式=2+2-1=3 18.证明:因为ABCD 为平行四边形, 所以,AD =BC ,AD ∥BC , 因为E 、F 为BC 、AD 的中点, 所以,AF =12AD ,EC =12BC , 所以,AF =EC ,AF ∥EC ,所以,四边形AECF 是平行四边形.19.解:△=222(3)126912(3)0n n n n n n +-=++-=-≥, 所以,方程总有两个实数根.20. 解:AD =EC ,∠D =∠C ,∠AFD =∠CFE , 所以,△AFD ≌△CFE , 所以,FD =FE ,FA =FC , 设FD =x ,则FA =FC =8-x 在Rt △ADF 中,42+x 2=(8-x )2,解得:x =3, 所以,新人教版八年级(下)期末模拟数学试卷(含答案)一、选择题(本题共10个小题,每小题3分,共30分) 1.下列式子中,属于最简二次根式的是( ) A .B .C .D .2.下列各组数中能作为直角三角形的三边长的是( ) A .1,2,3B .2,3,4C .3,4,5D .4,5,63. 已知□ABCD 中,∠A +∠C =200°,则∠B 的度数是( ) A .100°B .160°C .60°D .80°4. 要从甲、乙、丙三名学生中选出一名学生参加数学竞赛,对这三名学生的10次数学测试成绩进行数据分析,3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,则这10次测试成绩比较稳定的是( ) A .甲B .乙C .丙D .无法确定5. 函数y =﹣x 的图象与函数y =x +1的图象的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限6. 如图,在矩形ABCD 中,点M 从点B 出发沿BC 向点C 运动,点E 、F 分别是AM 、MC 的中点,则EF 的长随着M 点的运动( ) A .不变 B .变长 C .变短 D .先变短再变长7.已知x =+1,y =﹣1,则x 2+xy +y 2的值为( ) A .4B .6C .8D .108. 将四根长度相等的细木条首尾顺次相接,用钉子钉成四边形ABCD ,转动这个四边形可以使它的形状改变. 当∠B =60°时,如图(1),测得AC =2;当∠B =90°时,如图(2),此时AC 的长为( ) A .B .2C .D .9. 已知张强家、体育场、文具店在同一直线上.如图的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示时间,y 表示张强离家的距离.则下列说法错误的是( )A.体育场离张强家2.5千米B.体育场离文具店1千米C.张强在文具店逗留了15分D.张强从文具店回家的平均速度是703千米/分 10.正方形111A B C O 、2221A B C C 、3332A B C C …按如图所示的方式放置.点1A 、2A 、3A …和点1C 、2C 、3C …分别在直线1y x =+和x 轴上,则点2019A 的坐标是( ) A. )2,2(20192018B. )2,1-2(20182018第6题 第8题第9题C. )22(20182019, D. )2,1-2(20192018二、填空题(本题共5小题,每小题3分,共15分)11. 若二次根式m -3有意义,则实数m 的取值范围是 .12.12位参加歌唱比赛的同学的成绩各不相同,按成绩取前6名进入决赛,如果小亮知道了自己的成绩后,要判断能否进入决赛,在平均数、众数、中位数和方差四个统计量中,小亮应该最关注的一个统计量是 .13.如果一次函数y =kx +3(k 是常数,k ≠0)的图象经过点(1,0),那么y 的值随x 的增大而_______.(填“增大”或“减小”)14.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若25)2=+b a (,大正方形的面积为13,则小正方形的面积为 .15.如图,已知正方形ABCD 的边长为7,点E 、F 分别在AD 、DC上,AE =DF =3,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为 . 三、解答题(本题共8小题,满分75分) 16.(8分)计算: )(1-22-182-32第14题第15题17.(9分)某学生本学期6次数学考试成绩如下表所示: (1)6次考试成绩的中位数为 ,众数为 . (2)求该生本学期四次月考的平均成绩.(3)如果本学期的总评成绩按照月考平均成绩占20﹪、期中成绩占30﹪、期末成绩占50﹪计算,那么该生本学期的数学总评成绩是多少?18.(9分)如图(1)是超市的儿童玩具购物车,图(2)为其侧面简化示意图,测得支架AC =24cm ,CB =18cm ,两轮中心的距离AB =30cm ,求点C 到AB 的距离.(结果保留整数)19.(9分)问题:探究函数1-1+=x y 的图象与性质.小明根据学习函数的经验,对函数1-1+=x y 的图象与性质进行了研究. 下面是小明的研究过程,请补充完成.(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值列表如下:其中,m = n = ;(1)(2)(2)在如图所示的平面直角坐标中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象.(3)观察图象,写出该函数的两条性质.20.(9分)如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (4,-3),且与y 轴相交于点B ,与正比例函数y =21x 的图象交于点C ,点C 的横坐标为2. (1)求k 、b 的值;(2)若点D 在x 轴上,且满足S △COD =S △BOC ,求点D 的坐标.21.(10分)如图,在四边形ABCD 中,AB ∥CD ,AC 垂直平分BD ,交BD 于点F ,延长DC 到点E ,使得CE =DC ,连接BE . (1)求证:四边形ABCD 是菱形. (2)填空:①当∠ADC = °时,四边形ACEB 为菱形; ②当∠ADC =90°,BE =4时,则DE =22.(10分)某体育用品商店,准备用不超过2800元购买足球和篮球共计60个,已知一个篮球的进价为50元,售价为65元;一个足球的进价为40元,售价为50元.(1)若购进x个篮球,购买这批球共花费y元,求y与x之间的函数关系式;(2)设售出这批球共盈利w元,求w与x之间的函数关系式;(3)体育用品商店购进篮球和足球各多少个时,才能获得最大利润?最大利润是多少?23.(11分)已知正方形ABCD与正方形CEFG(点C、E、F、G按顺时针排列),M是AF 的中点,连接DM,EM.(1)如图1,点E在CD上,点G在BC的延长线上,求证:DM=EM,DM⊥EM.简析:由M是AF的中点,AD∥EF,不妨延长EM交AD于点N,从而构造出一对全等的三角形,即≌.由全等三角形性质,易证△DNE是三角形,进而得出结论.(2)如图2新人教版八年级(下)期末模拟数学试卷(含答案)一、选择题(本题共10个小题,每小题3分,共30分)1.下列式子中,属于最简二次根式的是()A.B.C.D.2.下列各组数中能作为直角三角形的三边长的是()A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,63. 已知□ABCD中,∠A+∠C=200°,则∠B的度数是()A.100°B.160°C.60°D.80°4. 要从甲、乙、丙三名学生中选出一名学生参加数学竞赛,对这三名学生的10次数学测试成绩进行数据分析,3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,则这10次测试成绩比较稳定的是()A.甲B.乙C.丙D.无法确定5.函数y=﹣x的图象与函数y=x+1的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限6. 如图,在矩形ABCD 中,点M 从点B 出发沿BC 向点C 运动,点E 、F 分别是AM 、MC 的中点,则EF 的长随着M 点的运动( ) A .不变 B .变长 C .变短 D .先变短再变长7.已知x =+1,y =﹣1,则x 2+xy +y 2的值为( ) A .4B .6C .8D .108. 将四根长度相等的细木条首尾顺次相接,用钉子钉成四边形ABCD ,转动这个四边形可以使它的形状改变. 当∠B =60°时,如图(1),测得AC =2;当∠B =90°时,如图(2),此时AC 的长为( ) A .B .2C .D .9. 已知张强家、体育场、文具店在同一直线上.如图的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示时间,y 表示张强离家的距离.则下列说法错误的是( )A.体育场离张强家2.5千米B.体育场离文具店1千米C.张强在文具店逗留了15分D.张强从文具店回家的平均速度是703千米/分 10.正方形111A B C O 、2221A B C C 、3332A B C C …按如图所示的方式放置.点1A 、2A 、3A …和点1C 、2C 、3C …分别在直线1y x =+和x 轴上,则点2019A 的坐标是( ) A. )2,2(20192018B. )2,1-2(20182018C. )22(20182019, D. )2,1-2(20192018二、填空题(本题共5小题,每小题3分,共15分)11. 若二次根式m -3有意义,则实数m 的取值范围是 .12.12位参加歌唱比赛的同学的成绩各不相同,按成绩取前6名进入决赛,如果小亮知道第6题 第8题第10题第9题了自己的成绩后,要判断能否进入决赛,在平均数、众数、中位数和方差四个统计量中,小亮应该最关注的一个统计量是 .13.如果一次函数y =kx +3(k 是常数,k ≠0)的图象经过点(1,0),那么y 的值随x 的增大而_______.(填“增大”或“减小”)14.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若25)2=+b a (,大正方形的面积为13,则小正方形的面积为 .15.如图,已知正方形ABCD 的边长为7,点E 、F 分别在AD 、DC上,AE =DF =3,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为 . 三、解答题(本题共8小题,满分75分) 16.(8分)计算: )(1-22-182-3217.(9分)某学生本学期6次数学考试成绩如下表所示: (1)6次考试成绩的中位数为 ,众数为 . (2)求该生本学期四次月考的平均成绩.(3)如果本学期的总评成绩按照月考平均成绩占20﹪、期中成绩占30﹪、期末成绩占50﹪计算,那么该生本学期的数学总评成绩是多少?第14题第15题18.(9分)如图(1)是超市的儿童玩具购物车,图(2)为其侧面简化示意图,测得支架AC =24cm ,CB =18cm ,两轮中心的距离AB =30cm ,求点C 到AB 的距离.(结果保留整数)19.(9分)问题:探究函数1-1+=x y 的图象与性质.小明根据学习函数的经验,对函数1-1+=x y 的图象与性质进行了研究. 下面是小明的研究过程,请补充完成.(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值列表如下:其中,m = n = ;(2)在如图所示的平面直角坐标中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象.(3)观察图象,写出该函数的两条性质.(1)(2)20.(9分)如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (4,-3),且与y 轴相交于点B ,与正比例函数y =21x 的图象交于点C ,点C 的横坐标为2. (1)求k 、b 的值;(2)若点D 在x 轴上,且满足S △COD =S △BOC ,求点D 的坐标.21.(10分)如图,在四边形ABCD 中,AB ∥CD ,AC 垂直平分BD ,交BD 于点F ,延长DC 到点E ,使得CE =DC ,连接BE . (1)求证:四边形ABCD 是菱形. (2)填空:①当∠ADC = °时,四边形ACEB 为菱形; ②当∠ADC =90°,BE =4时,则DE =22.(10分)某体育用品商店,准备用不超过2800元购买足球和篮球共计60个,已知一个篮球的进价为50元,售价为65元;一个足球的进价为40元,售价为50元. (1)若购进x 个篮球,购买这批球共花费y 元,求y 与x 之间的函数关系式; (2)设售出这批球共盈利w 元,求w 与x 之间的函数关系式;(3)体育用品商店购进篮球和足球各多少个时,才能获得最大利润?最大利润是多少?23.(11分)已知正方形ABCD 与正方形CEFG (点C 、E 、F 、G 按顺时针排列),M 是AF的中点,连接DM,EM.(1)如图1,点E在CD上,点G在BC的延长线上,求证:DM=EM,DM⊥EM.简析:由M是AF的中点,AD∥EF,不妨延长EM交AD于点N,从而构造出一对全等的三角形,即≌.由全等三角形性质,易证△DNE是三角形,进而得出结论.(2)如图2。
成都七中实验学校八年级(下)开学数学试卷含答案
A. 220cm2
B. 196cm2
C. 168cm2
D.
无法确定
9. 如图,△ABC 中 BD、CD 平分∠ABC、∠ACB 过 D 作直线平 行于 BC,交 AB、AC 于 E、F,当∠A 的位置及大小变化时
,线段 EF 和 BE+CF 的大小关系是( )
第 1 页,共 19 页
A. EF=BE+CF
17. 等腰三角形一腰上的高与另一腰的夹角为 20°,则顶角的度数是____.
18. 已知关于 x 的不等式组
有且只有两个整数解,则实数 a 的取值范围是
______. 19. 在△ABC 中,P、Q 分别是 BC、AC 上的点,作 PR⊥AB,
PS⊥AC,垂足分别是 R,S,PR=PS,AQ=PQ,则下面三个结论 :①AS=AR;②PQ∥AR;③△BRP≌△CSP.其中正确的是______ .
的解 x、y 均是正数,
第 3 页,共 19 页
23. 已知:如图,BD=DC,ED⊥BC 交∠BAC 的平分线于 E, 作 EM⊥AB,EN⊥AC.求证:BM=CN.
24. 将一箱苹果分给若干位小朋友,若每位小朋友分 4 个苹果,则还剩 20 个苹果,若 每位小朋友分 8 个苹果,则有一位小朋友分到了苹果但不足 8 个,则有小朋友多少 个,苹果多少个?
四川省成都七中育才学校八年级下期半期考试卷数学试题
成都七中育才学校八年级数学半期试卷A卷(共100分)第I卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上)1. 如图所示,其中是中心对称图形的是()A B C D2.下列各式由左边到右边的变形中,是分解因式的为()A、(a+3)(a-3)=a2-9B、x2+x-5=(x-2)(x+3)+1C、x2+1=x(x+)D、a2b+ab2=ab(a+b)3. 已知a>b, c为任意实数,则下列不等式中总是成立的是()A.a+c<b+cB. ac<bcC.ac>bcD.a-c>b-c4. 已知等腰三角形的两边长分别为8㎝、4㎝,则该等腰三角形的周长是()A.12㎝B.16㎝ C.20㎝D.16㎝或20㎝5.下列各式中能用完全平方公式进行因式分解的是()A.x2+x+1 B.x2+2x﹣1 C.x2﹣1 D.x2﹣6x+96. 如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70° B.65°C.60° D.55°7. 如果把分式yxx23-中的 x,y都扩大7倍,那么分式的值()A、扩大7倍B、扩大14倍C、扩大21倍D、不变(6题)(8题)(10题)8.如图,函数y1=k1x和y2=k2x+4的图像相交于点)3,23(A,则不等式k1x<k2x+4的解集为()A. x< B. x<3 C. x> D. x>39. 若多项式24x mx++能用完全平方公式分解因式,则m的值可以是()A.4B. 4± C.2 D. 2±x1()⎪⎩⎪⎨⎧+<-≤+--131512153122x x x x )(10. 如图,O 是△ABC 的两边垂直平分线的交点,∠BAC=70°,则∠BOC= ( ) A 、120° B 、125° C 、130° D 、140°第II 卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11.满足6.2->x 的负整数解是 .12. 点P (-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为__________. 13、化简:11222-+-a a a = .14. 如图所示,在△ABC 中,∠B=90°,AB=3,AC=5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为 .(14题) 三、解答题(本大题共6个小题,共54分。
【三套打包】成都七中实验学校八年级下学期期中数学试题含答案
最新人教版八年级(下)期中模拟数学试卷及答案一、选择题(本大题共10小题,每小题3分,共30分。
每小题都有四个选项,其中有且只有一个选项正确)1.若二次根式a―2有意义,则a的取值范围是()A.a≥0 B.a≥2 C.a>2 D.a≠22.根据下列条件,不能判定四边形是平行四边形的是()A.一组对边平行且相等的四边形 B.两组对边分别相等的四边形C.对角线相等的四边形 D.对角线互相平分的四边形3.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是( ) A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a2=b﹣2c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形4.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是()A.AB∥CD,AD∥BC ;B.OA=OC,OB=OD;C.AD=BC,AB∥CD;D.AB=CD,AD=BC5.如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm6.化简(3―2)2018•(3+2)2019的结果为()A.―1 B.3+2 C.3―2 D.―3―27.实数a、b在数轴上对应的位置如图,则=()A.b﹣a B.2﹣a﹣b C.a﹣b D.2+a﹣b8.如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在A1处,已知OA=,AB=1,则点A 1的坐标是( )A .()B .()C .()D .()9.如图,在△ABC 中,∠C=90°,AC=2,D 在BC 边上,∠ADC=2∠B ,AD=,BC 长为 ( )A .﹣1 B .+1 C .﹣1 D .+110.如图,DE 是△ABC 的中线,F 是DE 的中点,CF 的延长线交AB 于点G ,若△CEF 的面积为18cm 2,则SDGF 等于( )二、填空题(本大题共6小题,每小题3分,共18分) 11.计算的结果是 .12.如图,已知正方形ABCD 的边长为4,对角线AC 与BD 相交于点O ,点E 在DC 边的延长线上.若∠CAE=15°,则CE= .13.在ABC ∆中,=90C ∠︒,分别以AB 、AC 为边向外作正方形,面积分别记为12,S S .若91621==S S ,,则BC=______.14.如图,在Rt △ABC 中,∠ACB=90°,点D 、E 、F 分别是AB 、AC 、BC 中点,若CD=5,则EF 长为 .15.如图,ABCD 是对角线互相垂直的四边形,且OB=OD ,请你添加一个适当的条件 ,使ABCD 成为菱形(只需添加一个即可)16. a 的取值范围为 . 三、解答题(本大题共9小题,共72分) 17.计算:(1)(3+)(3﹣) (2)(﹣3)-2+﹣|1﹣2|﹣(﹣3)0(32(1.-18.在某校组织的“交通安全宣传教育月”活动中,八年级数学兴趣小组的同学进行了如下的课外实践活动.具体内容如下:在一段笔直的公路上选取两点A 、B ,在公路另一侧的开阔地带选取一观测点C ,在C 处测得点A 位于C 点的南偏西45°方向,且距离为100米,又测得点B 位于C 点的南偏东60°方向.已知该路段为乡村公路,限速为60千米/时,兴趣小组在观察中测得一辆小轿车经过该路段用时13秒,请你帮助他们算一算,这辆小车是否超速?(参考数据:≈1.41,≈1.73,计算结果保留两位小数)19.如图,在 ABCD中,点E,F分别是边AB,CD的中点,(1)求证:△CFB≌△AED;(2)若∠ADB=90°,判断四边形BFDE的形状,并说明理由;20.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM ⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.21.如图,在□ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)试说明:AB=CF;(2)连接DE,若AD=2AB.试说明:DE⊥AF.22. 若1x =+,1y =,求代数式22x y -的值。
成都市七中育才学校初中数学八年级下期末阶段测试(答案解析)
一、选择题1.(0分)[ID :10228]如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB 生长在它的正中央,高出水面部分BC 的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B′,则这根芦苇AB 的长是( )A .15尺B .16尺C .17尺D .18尺2.(0分)[ID :10222]一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥3.(0分)[ID :10219]均匀地向如图的容器中注满水,能反映在注水过程中水面高度h 随时间t 变化的函数图象是( )A .B .C .D .4.(0分)[ID :10214]要使函数y =(m ﹣2)x n ﹣1+n 是一次函数,应满足( )A .m ≠2,n ≠2B .m =2,n =2C .m ≠2,n =2D .m =2,n =05.(0分)[ID :10142]如图,在ABCD 中, 对角线AC 、BD 相交于点O. E 、F 是对角线AC 上的两个不同点,当E 、F 两点满足下列条件时,四边形DEBF 不一定是平行四边形( ).A .AE =CFB .DE =BFC .ADE CBF ∠=∠D .AED CFB ∠=∠6.(0分)[ID :10138]小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s (千米)与所用时间t (分)之间的关系( )A .B .C .D .7.(0分)[ID :10137]下列有关一次函数y =﹣3x +2的说法中,错误的是( ) A .当x 值增大时,y 的值随着x 增大而减小B .函数图象与y 轴的交点坐标为(0,2)C .函数图象经过第一、二、四象限D .图象经过点(1,5)8.(0分)[ID :10135]若函数()0y kx k =≠的值随自变量的增大而增大,则函敷2y x k =+的图象大致是( )A .B .C .D .9.(0分)[ID :10191]在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )A .众数B .平均数C .中位数D .方差10.(0分)[ID :10190]下列计算中正确的是( )A .325+=B .321-=C .3333+=D .3342= 11.(0分)[ID :10188]如图,O 是矩形ABCD 对角线AC 的中点,M 是AD 的中点,若BC =8,OB =5,则OM 的长为( )A .1B .2C .3D .4 12.(0分)[ID :10166]如图,点P 是矩形ABCD 的边上一动点,矩形两边长AB 、BC 长分别为15和20,那么P 到矩形两条对角线AC 和BD 的距离之和是( )A .6B .12C .24D .不能确定13.(0分)[ID :10161]如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为( )A .10mB .15mC .18mD .20m14.(0分)[ID :10160]如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 的中点C '上.若6AB =,9BC =,则BF 的长为( )A .4B .32C .4.5D .515.(0分)[ID :10150]如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .80二、填空题16.(0分)[ID :10328]如图,矩形ABCD 中,AC 、BD 相交于点O ,AE 平分∠BAD ,交BC 于E ,若∠EAO=15°,则∠BOE 的度数为 度.17.(0分)[ID :10324]若x=2-1, 则x 2+2x+1=__________.18.(0分)[ID :10318]长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b +ab 2的值为_____.19.(0分)[ID :10309]若ab <0,则代数式2a b 可化简为_____.20.(0分)[ID :10300]如图,在平面直角坐标系xOy 中,点(0,6)C ,射线//x CE 轴,直线y x b =-+交线段OC 于点B ,交x 轴于点A ,D 是射线CE 上一点.若存在点D ,使得ABD △恰为等腰直角三角形,则b 的值为_______.21.(0分)[ID :10283]如图,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG ,EF 交AD 于点H ,那么DH 的长是______.22.(0分)[ID :10257]如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交AB ,AD 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作AP 射线,交边CD 于点Q ,若DQ =2QC ,BC =3,则平行四边形ABCD 周长为_____.23.(0分)[ID :10252]有一组数据如下:2,3,a ,5,6,它们的平均数是4,则这组数据的方差是 .24.(0分)[ID :10250]如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需______米.25.(0分)[ID :10248]已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是_________.三、解答题26.(0分)[ID :10420]先化简,再求值:()22111a a a ⎛⎫-+÷+ ⎪+⎝⎭,其中21a =-.27.(0分)[ID :10387]已知:如图,在平行四边形ABCD 中,E 、F 是对角线AC 上的两点,且AE =CF .求证:∠EBF =∠EDF .28.(0分)[ID :10369]如图,已知一次函数y=kx+b 的图象经过A (﹣2,﹣1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .(1)求该一次函数的解析式;(2)求△AOB 的面积.29.(0分)[ID :10358]如图,在正方形网格中,小正方形的边长为1,A ,B ,C 为格点 ()1判断ABC 的形状,并说明理由.()2求BC边上的高.30.(0分)[ID:10353]如图,在平行四边形ABCD中,已知点E在AB上,点F在CD =.上,且AE CF求证:DE BF=.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.A3.A4.C5.B6.D7.D8.C9.D10.D11.C12.B13.C14.A15.C二、填空题16.75°【解析】试题分析:根据矩形的性质可得△BOA为等边三角形得出BA=BO又因为△B AE为等腰直角三角形BA=BE由此关系可求出∠BOE的度数解:在矩形ABCD中∵AE平分∠BAD ∴∠BAE=∠E17.2【解析】【分析】先利用完全平方公式对所求式子进行变形然后代入x的值进行计算即可【详解】∵x=-1∴x2+2x+1=(x+1)2=(-1+1)2=2故答案为:2【点睛】本题考查了代数式求值涉及了因式18.【解析】【分析】由周长和面积可分别求得a+b和ab的值再利用因式分解把所求代数式可化为ab(a+b)代入可求得答案【详解】∵长宽分别为ab的矩形它的周长为14面积为10∴a+b==7ab=10∴a219.【解析】【分析】二次根式有意义就隐含条件b>0由ab<0先判断出ab的符号再进行化简即可【详解】若ab<0且代数式有意义;故有b>0a<0;则代数式=|a|=-a故答案为:-a【点睛】本题主要考查二20.3或6【解析】【分析】先表示出AB坐标分①当∠ABD=90°时②当∠ADB=90°时③当∠DAB=90°时建立等式解出b即可【详解】解:①当∠ABD=90°时如图1则∠DBC+∠ABO=90°∴∠D21.【解析】【分析】思路分析:把所求的线段放在构建的特殊三角形内【详解】如图所示连接HCDF且HC与DF交于点P∵正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG ∴∠BCF=∠DCG=3022.【解析】试题解析:∵由题意可知AQ是∠DAB的平分线∴∠DAQ=∠BAQ∵四边形ABCD 是平行四边形∴CD∥ABBC=AD=3∠BAQ=∠DQA∴∠DAQ=∠DAQ∴△AQD是等腰三角形∴DQ =AD23.2【解析】试题分析:先由平均数计算出a=4×5-2-3-5-6=4再计算方差(一般地设n个数据x1x2…xn的平均数为=()则方差=)==2考点:平均数方差24.2+2【解析】【分析】地毯的竖直的线段加起来等于BC水平的线段相加正好等于AC即地毯的总长度至少为(AC+BC)【详解】在Rt△ABC中∠A=30°BC=2m∠C=90°∴AB=2BC=4m ∴AC=25.a>b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2∴该函数中y随着x的增大而减小∵1<2∴a>b故答案为a>b【点睛】本题考查一次函数图象上点的坐标特征三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB'的长为16尺,则B'C=8尺,设出AB=AB'=x尺,表示出水深AC,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长.【详解】解:依题意画出图形,设芦苇长AB=AB′=x 尺,则水深AC=(x-2)尺,因为B'E=16尺,所以B'C=8尺在Rt △AB'C 中,82+(x-2)2=x 2,解之得:x=17,即芦苇长17尺.故选C .【点睛】本题主要考查勾股定理的应用,熟悉数形结合的解题思想是解题关键.2.A解析:A【解析】【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤.故选:A .【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键.3.A解析:A【解析】试题分析:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h 随时间t 的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A . 考点:函数的图象.4.C解析:C【解析】【分析】根据y=kx+b (k 、b 是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案.【详解】解:∵y=(m ﹣2)x n ﹣1+n 是一次函数,∴m﹣2≠0,n﹣1=1,∴m≠2,n=2,故选C.【点睛】本题考查了一次函数,y=kx+b,k、b是常数,k≠0,x的次数等于1是解题关键.5.B解析:B【解析】【分析】根据平行四边形的性质以及平行四边形的判定定理即可作出判断.【详解】解:A、∵在平行四边形ABCD中,OA=OC,OB=OD,若AE=CF,则OE=OF,∴四边形DEBF是平行四边形;B、若DE=BF,没有条件能够说明四边形DEBF是平行四边形,则选项错误;C、∵在平行四边形ABCD中,OB=OD,AD∥BC,∴∠ADB=∠CBD,若∠ADE=∠CBF,则∠EDB=∠FBO,∴DE∥BF,则△DOE和△BOF中,EDB FBO OD OBDOE BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DOE≌△BOF,∴DE=BF,∴四边形DEBF是平行四边形.故选项正确;D、∵∠AED=∠CFB,∴∠DEO=∠BFO,∴DE∥BF,在△DOE和△BOF中,DOE BOFDEO BFO OD OB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DOE≌△BOF,∴DE=BF,∴四边形DEBF是平行四边形.故选项正确.故选B.【点睛】本题考查了平行四边形的性质以及判定定理,熟练掌握定理是关键.6.D解析:D【解析】【分析】根据描述,图像应分为三段,学校离家最远,故初始时刻s最大,到家,s为0,据此可判断.【详解】因为小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家,所以图象应分为三段,根据最后离家的距离为0,由此可得只有选项DF符合要求.故选D.【点睛】本题要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.7.D解析:D【解析】【分析】A、由k=﹣3<0,可得出:当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、利用一次函数图象上点的坐标特征,可得出:函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、由k=﹣3<0,b=2>0,利用一次函数图象与系数的关系可得出:一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、利用一次函数图象上点的坐标特征,可得出:一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.此题得解.【详解】解:A、∵k=﹣3<0,∴当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、当x=0时,y=﹣3x+2=2,∴函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、∵k=﹣3<0,b=2>0,∴一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D 、当x =1时,y =﹣3x +2=﹣1,∴一次函数y =﹣3x +2的图象不经过点(1,5),选项D 符合题意.故选:D .【点睛】此题考查一次函数图象上点的坐标特征以及一次函数的性质,逐一分析四个选项的正误是解题的关键.8.C解析:C【解析】【分析】根据正比例函数和一次函数的图像与性质逐项判断即可求解.【详解】∵函数()0y kx k =≠的值随自变量的增大而增大,∴k >0,∵一次函数2y x k =+,∴1k =1>0,b=2k >0,∴此函数的图像经过一、二、四象限;故答案为C.【点睛】本题考查了正比例函数和一次函数的图像与性质,熟练掌握正比例函数和一次函数的图像特点是解题的关键.9.D解析:D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。
八年级下摸底试卷
三角形 等腰梯形 正五边形 正六边形成都七中实验学校2010~2011学年度下期摸底考试题八年级数学 (时限:120分钟 满分:150分)班级 姓名 得分A 卷(100分)一、选择题(每小题3分,共30分)1. 在下列实数中,无理数是 ( ) . (A)13(B) π (C) 16(D)2272. 下列图形中既是轴对称图形又是中心对称图形的是( ). (A) (B) (C) (D)3. 如图,在平行四边形ABCD 中,如果125A =o∠,则∠D =( ).(A) 35o(B) 30o(C) 55o(D) 25o4.某城市准备对人行道路进行翻修,设计选用同一种多边形地砖无缝隙地铺设人行道. 下列多边形的地砖中,不能进行密铺的是( ).(A) (B) (C) (D) 5.将一长方形纸片按如图的方式折叠,A ′、E ′、B 在同一条直线上,BC 、BD 为折痕,则∠CBD 的度数为( ).(A )60º (B )75º (C )90º (D )95º6. 如图,数轴上点P 表示的数可能是( ). (A) 7 (B) 7- (C) 3.2- (D) 10-7. 一导线,在0℃时的电阻为2欧,温度每增加1℃,电阻增加0.008欧,那么电阻R 欧表示为温度t ℃的函数关系为( ).(A) R=2992.1+-t (B) R=2008.0+t (C) R=2008.2+t (D) R=22+t A BCD第3题 第5题第6题8. 下列命题中,正确的是( ).(A) 两条对角线互相平分的四边形是平行四边形 (B) 两条对角线互相垂直的四边形是菱形(C) 两条对角线互相垂直且相等的四边形是正方形 (D) 两条对角线相等的四边形是矩形 9. 下列计算正确的是( ).=4÷==(D)(11+-=10.某工厂去年前五个月生产某种产品的总产量...Q (件)与时间t (月)的函数图象如图所示,对这种产品来说,下列说法正确的是( ).(A) 1月至3月每月产量逐渐增加,4、5两月每月产量逐月减少 (B) 1月至3月每月产量不变,4、5两月每月产量与3月持平 (C) 1月至3月每月产量逐渐增加,4、5两月停止生产 (D) 1月至3月每月产量不变,4、5两月停止生产二、填空题(每小题4分,共20分)11. -8的立方根是 .12. 如果点(13)P -,和点()Q a b ,关于y 轴对称,则a 的值为 . 13. 若一个多边形外角和与内角和相等,则这个多边形是 边形. 14. 按下面程序计算,输入4x =,则输出的答案是 .…15. 图(1)是一个黑色的正三角形,顺次连结三边中点,得到如图(2)所示的第2个图形(它的中间为一个白色的正三角形);在图(2)的每个黑色的正三角形中分别重复上述的作法,得到如图(3)所示的第3个图形.如此继续作下去,则在得到的第5个图形中,白色的正三角形的个数是 .三、解答题(每题6分,共24分)16. 计算: 2163)1526(-⨯- 17. 解方程组:521x y x y +=⎧⎨-=⎩第14题)第10题图(2) 图(3)第15题图(1)18. 如图,已知点A,B的坐标分别为(0,0),(4,0),将△ABC绕点A按逆时针方向旋转90º得到△AB ´C ´.(1)画出△AB ´C ´;(2)写出点C ´的坐标.19. 如图,已知在矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC ,且EF=EC,DE=3cm,BC=7cm.(1)求证:△AEF ≌△DCE ;(2)请你求出EF的长.四、解答题(共26分)20. (6分)为迎接2008年北京奥运会,学校决定举办“迎奥运”知识竞赛,并对获得一、二、三等奖的学生进行奖励,奖品是“福娃”和徽章.在购买奖品时,了解到如下的信息.请你通过这些信息,提出一个你想知道的问题,并予以解答.第19题B CAEDFBA OCyx 第18题2盒福娃与1枚徽章共315元1盒福娃与3枚徽章共195元21. (6分)某学校打算从804、808两个先进班级中推荐一个班参加市级先进班集体的 项目 班级行为规 范 学 习 成 绩 运 动 健 康 艺 术 表 现 劳 动 卫 生 平均数 中位数 众数804班 10 8 8 9 8 8 808班9109698.69(1)请完成表格的填写;(2)如将行为规范、学习成绩、运动健康、艺术表现、劳动卫生五项得分按3:2:3:1:1的比例确定各班最终得分,并以此为依据推荐参加市级先进班集体的评选,你认为哪个班将会被推荐?22.(6分)如图一次函数y =kx +b 的图象经过点A 和点B .(1)写出点A 和点B 的坐标并求出k 、b 的值;(2)求出当x =23时的函数值.23.(8分)如图,等腰梯形ABCD 中,AD ∥BC ,AB=DC ,AC ⊥BD ,过D 点作DE ∥AC 交BC 的 延长线于E 点。
四川省成都七中八年级下期末数学试卷
2014-2015学年四川省成都七中八年级(下)期末数学试卷一、选择题(每小题3分,共30分,每小题都只有一个正确选项)1.观察如图所示图案,在A,B,C,D四幅图案中,能通过图案平移得到的是( )A.B.C.D.2.等腰三角形的一边为4,另一边为9,则这个三角形的周长为( )A.17B.22C.13D.17或223.下列图案是几种小汽车的标志,其中是轴对称图形,但不是中心对称图形的图案的是( )A.B.C.D.4.已知a>b,则下列不等式中正确的是( )A.﹣3a>﹣3b B.﹣>﹣C.3﹣a>3﹣b D.a﹣3>b﹣35.如图是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A.△ABC的三条中线的交点B.△ABC三边的中垂线的交点C.△ABC三条高所在直线的交点D.△ABC三条角平分线的交点....)解不等式≤)解不等式组.18.(9分)已知,如图,D是△ABC的BC边的中点,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF,求证:AB=AC.19.郑校长暑假将带领该校市级“三好学生”去北京旅游,甲旅行社说:“如果校长买全票一张,则其余的学生可享受半价优惠.”乙旅行社说:“包括校长在内全部按票价的六折优惠.”若全票价为2400元,两家旅行社的服务质量相同,根据“三好学生”的人数你认为选择哪一家旅行社才比较合算?20.(10分)(2010•泰安校级模拟)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DC⊥BE.一、填空题(每小题4分,共20分.)的不等式组无解,则=以相同的速度由点B向CB延长线方向运动(点Q与点B不重合),过点P作PE⊥AB于点E,连结PQ交AB于点D.(1)当∠BQD=30°时,求AP的长.(2)在运动过程中,线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化,请说明理由.2014-2015学年四川省成都七中八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分,每小题都只有一个正确选项)1.(3分)(2015春•成都校级期末)观察如图所示图案,在A,B,C,D四幅图案中,能通过图案平移得到的是( )A.B.C.D.【考点】生活中的平移现象.【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【解答】解:A、图案属于旋转所得到,故错误;B、图案属于旋转所得到,故错误;C、图案形状与大小没有改变,符合平移性质,故正确;D、图案属于旋转所得到,故错误.故选C.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.2.(3分)(2015•诏安县校级模拟)等腰三角形的一边为4,另一边为9,则这个三角形的周长为( )A.17B.22C.13D.17或22【考点】等腰三角形的性质.【分析】本题可先根据三角形三边关系,确定等腰三角形的腰和底的长,然后再计算三角形的周长.【解答】解:当腰长为4时,则三角形的三边长为:4、4、9;∵4+4<9,∴不能构成三角形;因此这个等腰三角形的腰长为9,则其周长=9+9+4=22.故本题选B.【点评】本题考查了等腰三角形的性质和三角形的三边关系;对于已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.3.(3分)(2015春•成都校级期末)下列图案是几种小汽车的标志,其中是轴对称图形,但不是中心对称图形的图案的是( )A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(3分)(1999•广州)已知a>b,则下列不等式中正确的是( )A.﹣3a>﹣3b B.﹣>﹣C.3﹣a>3﹣b D.a﹣3>b﹣3【考点】不等式的性质.【分析】看各不等式是加(减)什么数,或乘(除以)什么数得到的,再判断用不用变号.【解答】解:A、不等式两边都乘以﹣3,不等号的方向改变,﹣3a<﹣3b,故A错误;B、不等式两边都除以﹣3,不等号的方向改变,﹣<﹣,故B错误;C、同一个数减去一个大数小于减去一个小数,3﹣a<3﹣b,故C错误;D、不等式两边都减3,不等号的方向不变,故D正确.故选:D.【点评】不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.(3分)(2015春•成都校级期末)如图是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A.△ABC的三条中线的交点B.△ABC三边的中垂线的交点C.△ABC三条高所在直线的交点D.△ABC三条角平分线的交点【考点】角平分线的性质;作图—应用与设计作图.【分析】由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到边的距离相等,可知是△ABC三条角平分线的交点.由此即可确定凉亭位置.【解答】解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC三条角平分线的交点.故选D.【点评】本题主要考查的是角的平分线的性质在实际生活中的应用.主要利用了到线段的两个端点的距离相等的点在这条线段的垂直平分线上.6.(3分)(2008•德阳)如图,在△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为( )A.80°B.75°C.65°D.45°【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】计算题;压轴题.【分析】首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.【解答】解:已知AB=AC,∠A=30°可得∠ABC=∠ACB=75°根据线段垂直平分线的性质可推出AD=CD所以∠A=∠ACD=30°所以∠BCD=∠ACB﹣∠ACD=45°.故选D.【点评】本题运用两个知识点:线段垂直平分线的性质以及等腰三角形的性质,难度一般.7.(3分)(2011•抚顺)不等式2x﹣6>0的解集在数轴上表示正确的是( )A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】根据解不等式的方法,可得答案.【解答】解:2x﹣6>0,解得x>3,故选:A.【点评】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画).8.(3分)(2015春•成都校级期末)如图,用不等式表示数轴上所示的解集,正确的是( )A.x<﹣1或x≥3B.x≤﹣1或x>3C.﹣1≤x<3D.﹣1<x≤3【考点】在数轴上表示不等式的解集.【分析】不等式的解集表示﹣1与3之间的部分,其中不包含﹣1,而包含3.【解答】解:由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是空心圆,表示x>﹣1;从3出发向左画出的折线且表示3的点是实心圆,表示x≤3.所以这个不等式组为﹣1<x≤3故选D.【点评】此题主要考查利用数轴上表示的不等式组的解集来写出不等式组.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.(3分)(2015春•成都校级期末)不等式﹣3x+6>0的正整数解有( )A.1个B.2个C.3个D.无数多个【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【解答】解:不等式的解集是x<2,故不等式﹣3x+6>0的正整数解为1.故选A.BAD=×【考点】一次函数与一元一次不等式.【专题】数形结合.【分析】观察函数图象得到x<2.5时,一次函数图象在x轴下方,所以y=kx+b<0.【解答】解:当x<2.5时,y<0,即kx+b<0.故答案为<2.5.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.三、解答题(共50分)16.(12分)(2015春•成都校级期末)(1)解不等式≤5﹣x,并把解集表示在数轴上;(2)解不等式组.【考点】解一元一次不等式组;在数轴上表示不等式的解集;解一元一次不等式.【分析】(1)先求出不等式的解集,再在数轴上表示出来即可;(2)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)去分母得,x﹣1≤15﹣3x,移项、合并同类项得,4x≤16,把x的系数化为1得,x≤4.在数轴上表示为:;(2),由①得x>1,由②得x≤2,不等式①②的解集在同一数轴上表示如下:【解答】解:(1)Rt△A1B1C1如图所示,A1(2,1);(2)P1(a+8,b);(3)Rt△A2B2C2如图所示.故答案为:(1)2,1;(2)a+8,b.【点评】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.18.(9分)(2015春•成都校级期末)已知,如图,D是△ABC的BC边的中点,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF,求证:AB=AC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】首先运用HL定理证明△BDE≌△CDF,进而得到∠B=∠C,运用等腰三角形的判定定理即可解决问题.【解答】证明:如图,∵D是△ABC的BC边的中点,DE⊥AB,DF⊥AC,∴BD=CD,△BDE、△CDF均为直角三角形;在△BDE、△CDF中,,∴△BDE≌△CDF(HL),∴∠B=∠C,∴AB=AC.【点评】该题主要考查了全等三角形的判定、等腰三角形的判定等几何知识点及其应用问题;牢固掌握全等三角形的判定、等腰三角形的判定等几何知识点是解题的基础和关键. 19.(10分)(2015春•成都校级期末)郑校长暑假将带领该校市级“三好学生”去北京旅游,甲旅行社说:“如果校长买全票一张,则其余的学生可享受半价优惠.”乙旅行社说:“包括校长在内全部按票价的六折优惠.”若全票价为2400元,两家旅行社的服务质量相同,根据“三好学生”的人数你认为选择哪一家旅行社才比较合算?【考点】一次函数的应用.【分析】设三好学生为x人,选择甲旅行社费用为y1元,乙旅行社费用为y2元,分别表示出y1元,y2元,再通过讨论就可以得出结论.【解答】解:设三好学生为x人,选择甲旅行社费用为y1元,乙旅行社费用为y2元,由题意,得y1=2400×0.5x+2400,y1=1200x+2400.y2=0.6×2400(x+1),y2=1440x+1440.当y1>y2时,1200x+2400>1440x+1440,解得:x<4;当y1=y2时,1200x+2400=1440x+1440,解得:x=4;当y1<y2时,1200x+2400<1440x+1440,解得:x>4.综上所述,当三好学生人数少于4人时,选择乙旅行社合算;等于4人时,甲、乙两家一样合算;多于4人时,选择甲旅行社合算.【点评】本题考查了一次函数的解析式的运用,总价=单价×数量的运用,方案设计的运用,解答时求出一次函数的解析式是关键.20.(10分)(2010•泰安校级模拟)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DC⊥BE.【考点】等腰直角三角形;全等三角形的判定与性质;等腰三角形的判定与性质.【专题】证明题.【分析】①可以找出△BAE≌△CAD,条件是AB=AC,DA=EA,∠BAE=∠DAC=90°+∠CAE.②由①可得出∠DCA=∠ABC=45°,则∠BCD=90°,所以DC⊥BE.【解答】解:(1)∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°.∠BAE=∠DAC=90°+∠CAE,在△BAE和△DAC中∴△BAE≌△CAD(SAS).的不等式组无解,则解:,由围,由<<,∴≥>,不合题意舍去.,则= .=,即可求出=.在Rt△ABD与Rt△EBD中,,∴Rt△ABD≌Rt△EBD(HL),∴AB=EB,∴BC﹣AB=BC﹣EB=CE.∵在Rt△ABC中,∠A=90°,∠B=45°,∴∠C=45°.在Rt△CED中,cos∠C=cos45°=,∴=.故答案为.【点评】本题考查了角平分线的性质,全等三角形的判定与性质,锐角三角函数的定义,难度适中.准确作出辅助线构造全等三角形,进而得出BC﹣AB=CE是解题的关键.二、解答题26.(8分)(2015春•成都校级期末)如图,小将同学将一个直角三角形的纸片折叠,A 与B重合,折痕为DE,若已知AC=10cm,BC=6cm,你能求出CE的长吗?【考点】翻折变换(折叠问题).x=,CE=cm(2)请你帮该农家乐设计一种种殖方案,可获得最大收益.【考点】一次函数的应用;一元一次不等式组的应用.【分析】(1)设种植枇杷的面积为x亩,则种植水蜜桃的面积为(10﹣x)亩,根据条件建立不等式组求出其解即可;(2)设可获得最大收益为W元,种植枇杷的面积为x亩,则种植水蜜桃的面积为(10﹣x)亩,根据收益=毛利润﹣成本+政府补贴建立W与x的函数关系式,由一次函数的性质就可以求出结论.【解答】解:(1)设种植枇杷的面积为x亩,则种植水蜜桃的面积为(10﹣x)亩,由题意,得,解得:6≤x≤8.∵x为整数,∴x=6,7,8.∴有3种种植方案.方案1,种植枇杷6亩,水蜜桃4亩;方案2,种植枇杷7亩,水蜜桃3亩;方案3,种植枇杷8亩,水蜜桃2亩;(2)设可获得最大收益为W元,由题意,得W=(2.5﹣1.5+0.2)x+(1.8﹣1+0.1)(10﹣x),W=0.3x+9.∴k=0.3>0,∴W随x的增大而增大,∴当x=8时,W最大=11.4万元.【点评】本题考查了列一元一次不等式组解实际问题的运用,一元一次不等式组的解法的运用,一次函数的性质的运用,收益=毛利润﹣成本+政府补贴的关系的运用,方案设计的运用,解答时建立一次函数的关系式是关键.28.(12分)(2015春•成都校级期末)如图,已知△ABC是等腰三角形,且∠C=60°,AB=10,点P是AC边上一动点,由点A向点C运动(点P与点A、C不重合),Q是CB 延长线上一点,与点P同时以相同的速度由点B向CB延长线方向运动(点Q与点B不重合),过点P作PE⊥AB于点E,连结PQ交AB于点D.(1)当∠BQD=30°时,求AP的长.(2)在运动过程中,线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化,请说明理由.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)首先得出△ABC是边长为10的等边三角形,再由∠BQD=30°可知∠QPC=90°,设AP=x,则PC=10﹣x,QB=x,在Rt△QCP中,∠BQD=30°,PC=QC,即10﹣x=(10+x),求出x的值即可;(2)作QF⊥AB,交直线AB于点F,连接QE,PF,由点P、Q做匀速运动且速度相同,可知AP=BQ,再根据全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE∥QF,可知四边形PEQF是平行四边形,进而可得出EB+AE=BE+BF=AB,DE=AB,由等边△ABC的边长为10可得出DE=5,故当点P、Q运动时,线段DE的长度不会改变.【解答】解:(1)∵△ABC是等腰三角形,且∠C=60°,∴△ABC是边长为10的等边三角形,∵∠BQD=30°,∴∠QPC=90°,设AP=x,则PC=10﹣x,QB=x,∴QC=QB+BC=10+x,∵在Rt△QCP中,∠BQD=30°,∴PC=QC,即10﹣x=(10+x),解得:x=,∴AP=;(2)当点P、Q同时运动且速度相同时,线段DE的长度不会改变.理由如下:作QF⊥AB,交直线AB于点F,连接QE,PF,又∵PE⊥AB于E,∴∠DFQ=∠AEP=90°,∵点P、Q速度相同,∴AP=BQ,∵△ABC是等边三角形,∴∠A=∠ABC=∠FBQ=60°,∵∠AEP=∠BFQ=90°,∴∠APE=∠BQF,在△APE和△BQF中,,∴△APE≌△BQF(AAS),∴AE=BF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=EF,∵EB+AE=BE+BF=AB,∴DE=AB,又∵等边△ABC的边长为10,∴DE=5,∴点P、Q同时运动且速度相同时,线段DE的长度不会改变.【点评】本题考查的是等边三角形的性质及全等三角形的判定定理、平行四边形的判定与性质,根据题意作出辅助线构造出全等三角形是解答此题的关键.参与本试卷答题和审题的老师有:py168;蓝月梦;MMCH;zhjh;caicl;lanchong;sjzx;haoyujun;csiya;2300680618;王学峰;张其铎;cook2360;73zzx;wdxwzk;lk;gsls;CJX;星期八;sjw666;hdq123;孟维良;ZJX;马兴田;HJJ;Linaliu;zhangCF;sd2011(排名不分先后)菁优网2016年5月20日第31页(共31页)。
成都七中育才学校八年级(下)期末数学试卷(含答案)
2014-2015学年四川省成都七中育才学校八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列图形中,是中心对称但不一定是轴对称图形的是()A.等边三角形B.矩形C.菱形D.平行四边形2.使分式有意义的x的取值范围是()A.x≥B.x≤C.x>D.x≠3.一元二次方程x2﹣4x﹣1=0配方后正确的是()A.(x﹣2)2=1 B.(x﹣2)2=5 C.(x﹣4)2=1 D.(x﹣4)2=54.在平面直角坐标系xOy中,已知点A(2,3),若将OA绕原点O逆时针旋转90°得到OA′,则点A′的坐标为()A.(﹣2,3)B.(﹣3,2)C.(2,﹣3)D.(3,﹣2)5.下列命题正确的是()A.一组对边相等,另一组对边平行的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是正方形D.两条对角线相等且互相垂直平分的四边形一定是正方形6.如图,△ABC中,AB=AC,AD是角平分线,DE⊥AB,DF⊥AC,E、F为垂足,对于结论:①DE=DF;②BD=CD;③AD上任一点到AB、AC的距离相等;④AD上任一点到B、C的距离相等.其中正确的是()A.仅①②B.仅③④C.仅①②③D.①②③④(第6题) (第13题)7.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠58.若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是()A.6 B.8 C.18 D.279.甲、乙两人同时从A地出发,骑自行车行30千米到B地,甲比乙每小时少走3千米,结果乙先到40分钟.若设乙每小时走x千米,则可列方程()A.B.﹣=C.﹣=D.﹣=10.用边长相等的下列两种正多边形,不能进行平面镶嵌的是()A.等边三角形和正六边形B.正方形和正八边形C.正五边形和正十边形D.正六边形和正十二边形二、填空题11.当x=时,分式的值为0.12.若实数a满足a2﹣2a﹣1=0,则2a2﹣4a+5=.13.如图,▱ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE 的周长为.14.如图,面积为12cm2的△ABC沿BC方向平移至△DEF位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积是cm2.(第14题) (第15题)15.如图,▱ABCD中,∠ABC=60°,E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,DF=2,则EF的长为.三、解答题:16.解方程:﹣1.17.解方程:(2x+3)2=3(2x+3)18.先化简,再求值:,其中.四、解答题19.如图,方格纸中的最小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点C坐标为(0,﹣1)①画出△ABC向上平移3个单位后得到的△A1B1C1;②画出△ABC绕点C顺时针旋转90°后得到的△A2B2C2;③画出△ABC关于点C中心对称后得到的△A3B3C3.20.某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?21.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.22.矩形ABCD中,M是BC的中点,DE⊥AM,E是垂足.(1)求证:△ABM∽△DEA;(2)求证:DC•AE=DE•MC;(3)若AB=4,BC=6,求ME的长.五、填空题(共5小题,每小题3分,满分15分)23.若关于x的方程的解为正数,则a的取值范围是.24.如图,△DEF是由△ABC绕某点旋转得到的,则这点的坐标是.(第24题) (第26题) (第27题)25.若关于x的一元二次方程x2+kx+4k2﹣3=0的两个实数根x1,x2,且满足x1+x2=x1•x2,则k的值为.26.如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C 落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.正确的有()A.1个B.2个C.3个D.4个27.如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于(结果保留根号).二、解答题28.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2010年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房.29.情境观察将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.观察图2可知:与BC相等的线段是,∠CAC′=°.问题探究如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ 之间的数量关系,并证明你的结论.拓展延伸如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.30.如图,若四边形ABCD、四边形GFED都是正方形,显然图中有AG=CE,AG⊥CE.(1)当正方形GFED绕D旋转到如图2的位置时,AG=CE是否成立?若成立,请给出证明,若不成立,说明理由.(2)若正方形GFED绕D旋转到如图3的位置(F在线段AD上)时,延长CE交AG于H,交AD 于M,①求证:AG⊥CH;②当AD=4,DG=时,求CH的长.(3)在(2)的条件下,在如图所示的平面上,是否存在以A、G、D、N为顶点的四边形为平行四边形的点N?如果存在,请在图中画出满足条件的所有点N的位置,并直接写出此时CN的长度;若不存在,请说明理由.参考答案一、选择题1.下列图形中,是中心对称但不一定是轴对称图形的是()A.解:A、等边三角形是轴对称图形,不是中心对称图形.故错误;B、矩形是轴对称图形,也是中心对称图形.故错误;C、菱形是轴对称图形,也是中心对称图形.故错误;D、平行四边形不一定是轴对称图形,是中心对称图形.故正确.故选D.2.解:根据题意得2x﹣1≠0,解得x≠,故选:D.3.解:∵x2﹣4x﹣1=0,∴x2﹣4x=1,∴x2﹣4x+4=1+4,∴(x﹣2)2=5.故选B.4.解:如图,点A′的坐标为(﹣3,2).故选B.5.解:A、一组对边相等,且这组对边平行的四边形一定是平行四边形,所以A选项错误;B、对角线相等的平行四边形一定是矩形,所以B选项错误;C、两条对角线相等且互相垂直平分的四边形一定是正方形,所以C选项错误;D、两条对角线相等且互相垂直平分的四边形一定是正方形,所以D选项正确.故选D.6.解:∵AD是角平分线,DE⊥AB,DF⊥AC,E、F为垂足,∴DE=DF,且AD上任一点到AB、AC的距离相等;又AB=AC,根据三线合一的性质,可得AD垂直平分BC∴BD=CD,AD上任一点到B、C的距离相等.故选D.7.解:分类讨论:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;②当a﹣5≠0即a≠5时,∵关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根∴16+4(a﹣5)≥0,∴a≥1.∴a的取值范围为a≥1.故选:A.8.解:∵凸n边形的内角和为1260°,∴(n﹣2)×180°=1260°,解得n=9,∴9﹣3=6.故选:A.9.解:设乙每小时走x千米,则甲每小时走(x﹣3)千米,由题意得:﹣=,故选:A.10.解:A、正三角形的每个内角是60°,正六边形的每个内角是120°,∵2×60°+2×120°=360°,能密铺,故此选项不合题意;B、正八边形的每个内角是135°,正方形的每个内角是90°,∵2×135°+90°=360°,能密铺,故此选项不合题意;C、正五形的每个内角是108°,正十边形的每个内角是144°,∵2×108°+144°=360°,能密铺,故此选项不合题意;D、正六边形的每个内角是120°和正十二边形的每个内角是150°,120m+150n=360°,m=3﹣n,显然n取任何正整数时,m不能得正整数,故不能铺满,符合题意.故选:D.二、填空题11.解:由题意得:x2﹣1=0,且x+1≠0,解得:x=1,故答案为:1.12.解:∵a2﹣2a﹣1=0,∴a2﹣2a=1,∴2a2﹣4a=2,∴2a2﹣4a+5=2+5=7.故答案为7.13.解:∵▱ABCD的周长为36,∴2(BC+CD)=36,则BC+CD=18.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=6.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD,∴OE=BC,∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=6+9=15,即△DOE的周长为15.故答案为:15.14.解:∵平移的距离是边BC长的两倍,∴BC=CE=EF,∴四边形ACED的面积是三个△ABC的面积;∴四边形ACED的面积=12×3=36cm2.15.解:∵在平行四边形ABCD中,AB∥CD,∠ABC=60°,∴∠DCF=60°,又∵EF⊥BC,∴∠CEF=30°,∴CF=CE,又∵AE∥BD,∴AB=CD=DE,∴CF=CD,又∵∠DCF=60°,∴∠CDF=∠DFC=60°,∴CD=CF=DF=DE=2,∴在Rt△CEF中,由勾股定理得:EF====.故答案为2.三、解答题:16.解:去分母得:1=﹣2x﹣x+3,解得:x=,经检验x=是分式方程的解.17.解:方程整理得:(2x+3)2﹣3(2x+3)=0,分解因式得:(2x+3)(2x+3﹣3)=0,解得:x1=﹣,x2=0.18.解:==,当时,原式=.四、解答题19.解:①如图,△A1B1C1为所作;②如图,△A2B2C2为所作;③如图,△A3B3C3为所作.20.解:(1)设第一批购进书包的单价是x元.则:×3=.解得:x=80.经检验:x=80是原方程的根.答:第一批购进书包的单价是80元.(2)×(120﹣80)+×(120﹣84)=3700(元).答:商店共盈利3700元.21.解:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.22.(1)证明:∵四边形ABCD为矩形,∴∠B=90°,AD∥BC,∴∠DAE=∠AMB,∵DE⊥AM∴∠B=∠AED=90°,∴△ADE∽△MAB;(2)∵△ADE∽△MAB,∴AB•AE=DE•MB,∵四边形ABCD为矩形,∴AB=CD,∵M是BC的中点,∴BM=MC,∴DC•AE=DE•MC;(3)解:∵M是BC中点,AD=BC=6∴BM=BC=3,在Rt△ABM中,AB=4,∴AM==5,∵△ADE∽△MAB,∴=,即=,∴AE=,∴EM=AM﹣AE=5﹣=.五、填空题(共5小题,每小题3分,满分15分)23.解:解方程,得x=,∵关于x的方程的解为正数,∴x>0,即>0,当x﹣1=0时,x=1,代入得:a=﹣1.此为增根,∴a≠﹣1,解得:a<1且a≠﹣1.故答案为:a<1且a≠﹣1.24.解:如图,连接AD、BE,作线段AD、BE的垂直平分线,两线的交点即为旋转中心O′.其坐标是(0,1).故答案为(0,1).25.解:由根与系数的关系,得x1+x2=﹣k,x1x2=4k2﹣3,又∵x1+x2=x1x2,所以﹣k=4k2﹣3,即4k2+k﹣3=0,解得k=或﹣1,因为△≥0时,所以k2﹣4(4k2﹣3)≥0,解得:≤k≤,故k=﹣1舍去,∴k=.故答案是:.26.解:∵△BMN是由△BMC翻折得到的,∴BN=BC,又点F为BC的中点,在Rt△BNF中,sin∠BNF==,∴∠BNF=30°,∠FBN=60°,∴∠ABN=90°﹣∠FBN=30°,故②正确;在Rt△BCM中,∠CBM=∠FBN=30°,∴tan∠CBM=tan30°==,∴BC=CM,AB2=3CM2故③正确;∠NPM=∠BPF=90°﹣∠MBC=60°,∠NMP=90°﹣∠MBN=60°,∴△PMN是等边三角形,故④正确;由题给条件,证不出CM=DM,故①错误.故正确的有②③④,共3个.故选:C.27.解:∵△ABC∽△ADE,AB=2AD,∴=,∵AB=2AD ,S△ABC=,∴S△ADE=,如图,在△EAF中,过点F作FH⊥AE交AE于H,∵∠EAF=∠BAD=45°,∠AEF=60°,∴∠AFH=45°,∠EFH=30°,∴AH=HF,设AH=HF=x,则EH=xtan30°=x.又∵S△ADE=,作CM⊥AB交AB于M,∵△ABC 是面积为的等边三角形,∴×AB×CM=,∠BCM=30°,设AB=2k,BM=k,CM=k,∴k=1,AB=2,∴AE=AB=1,∴x+x=1,解得x==.∴S△AEF=×1×=.故答案为:.二、解答题28.解:(1)设每年市政府投资的增长率为x,根据题意,得:2+2(1+x)+2(1+x)2=9.5,整理,得:x2+3x﹣1.75=0,解得:x1=0.5,x2=﹣3.5(舍去).答:每年市政府投资的增长率为50%;(2)到2012年底共建廉租房面积=9.5÷=38(万平方米).答:到2012年的共建设了38万平方米廉租房.29.解:①观察图形即可发现△ABC≌△AC′D,即BC=AD,∠C′AD=∠ACB,∴∠CAC′=180°﹣∠C′AD﹣∠CAB=90°;故答案为:AD,90.②FQ=EP,理由如下:∵∠FAQ+∠CAG=90°,∠FAQ+∠AFQ=90°,∴∠AFQ=∠CAG,同理∠ACG=∠FAQ,又∵AF=AC,∴△AFQ≌△CAG,∴FQ=AG,同理EP=AG,∴FQ=EP.③HE=HF.理由:过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.∵四边形ABME是矩形,∴∠BAE=90°,∴∠BAG+∠EAP=90°,又AG⊥BC,∴∠BAG+∠ABG=90°,∴∠ABG=∠EAP.∵∠AGB=∠EPA=90°,∴△ABG∽△EAP,∴AG:EP=AB:E A.同理△ACG∽△FAQ,∴AG:FQ=AC:F A.∵AB=k•AE,AC=k•AF,∴AB:EA=AC:FA=k,∴AG:EP=AG:FQ.∴EP=FQ.又∵∠EHP=∠FHQ,∠EPH=∠FQH,∴Rt△EPH≌Rt△FQH(AAS).∴HE=HF.30.解:(1)成立.如图2,∵∠CDE+∠EDA=∠ADG+∠ADE=90°,∴∠ADG=∠CDE,在△ADG和△CDE中,,∴△ADG≌△CDE(SAS),∴AG=CE;(2)如图3,过点E作EP⊥CD于点P,连接AC,①同(1)可证△ADG≌△CDE,∴∠DAG=∠DCE,∵∠DCM+∠DMC=90°,∴∠DAG+∠AMH=90°,∴AG⊥CH;②∵∠EDF=∠EDC=45°,DG=,∴DP=EP=1,∵CD=AD=4,∴CP=3,∴CE=,∴AG=,∵∠DAC=∠ADG=45°,∴DG∥AC,∴S△AGC=S△ADC==8,∵,∴;(3)①如图4,NADG是平行四边形,此时,CN=CA+AN=CA+DG==;②如图5,ANDG是平行四边形,此时,CN=CA﹣AN=CA﹣DG==;③如图6,GADN是平行四边形,延长CD交GN于点R,则CR=CD+RD=4+1=5,RN=GN﹣GR=4﹣1=3,∴CN==.。
【三套打包】成都七中万达学校八年级下学期期末数学试题
最新人教版八年级(下)期末模拟数学试卷【含答案】一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.下列式子中,属于最简二次根式的是( )A B C D 2.下列四个点中,在函数3y x =的图象上的是( )A .(-1,3)B .3(,-1)C .(1,3)D .(3,1) 3.如图,在△ABC 中,∠ACB =90°,AB =10,点D 是AB 的中点,则CD =( )A .4B .5C .6D .84( )A B .C D .15.以下列三个数据为三角形的三边,其中能构成直角三角形的是( )A .2,3,4B .4,5,6C .5,12,13D .5,6,76.现有甲、乙两个合唱队,队员的平均身高都是175cm ,方差分别为2s =0.51甲,2s =0.35乙,那么两个队中队员的身高较整齐的是( )A .甲队B .乙队C .两队一样高D .不能确定 7.菱形的对角线长分别为6和8,则该菱形的面积是( )A .24B .48C .12D .108.一次函数24y x =-的图象经过( )A .一、二、三象限B .一、二、四象限C .二、三、四象限D .一、三、四象限9.已知E 、F 、G 、H 分别是菱形ABCD 的边AB 、BC 、CD 、AD 的中点,则四边形EFGH 的形状一定是( )A .平行四边形B .矩形C .菱形D .正方形10.如图,菱形ABCD 中,点M 是AD 的中点,点P 由点A 出发,沿A →B →C →D 作匀速运动,到达点D 停止,则△APM 的面积y 与点P 经过的路程x 之间的函数关系的图象大致是( )二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上。
11.一组数据2,3,1,3,5,4,这组数据的众数是 .12.当a 时,.13.将函数2y x =的图象向上平移2个单位,所得的函数图象的解析式为 .14.若平行四边形中相邻两个内角的度数比为1:3,则其中较小的内角是___________度.15.已知直角三角形的两条边为5和12,则第三条边长为 .16.如图是我国古代数学家赵爽的《勾股圆方图》,由四个全等的直角三角形和一个小正方形拼成的大正方形.如果图中大、小正方形的面积分别为52和4,直角三角形两条直角边分别为x ,y ,那么2+x y ()= .三、解答题(一)(本大题3小题,每小题6分,共18分)17218.如图,直线2y kx =+与直线13y x =相交于点A (3,1),与x 轴交于点B . (1)求k 的值;(2)不等式123kx x +<的解集是________________.19.珠海市某中学在创建“书香校园”活动中,为了解学生的读书情况,某校抽样调查了部分同学在一周内的阅读时间,绘制如下统计图.根据图中信息,解答下列问题:(1)被抽查学生阅读时间的中位数为h,平均数为h;(2)若该校共有1500名学生,请你估算该校一周内阅读时间不少于3h的学生人数.四、解答题(二)(本大题3小题,每小题7分,共21分)20.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)求证:四边形ADCF是菱形.21. 晨光文具店的某种毛笔每支售价30元,书法纸每本售价10元.为促销制定了两种优惠方案:甲方案,买一支毛笔就送一本书法纸;乙方案,按购买的总金额打8折.某校欲为书法小组购买这种毛笔10支,书法纸x(x≥10)本.(1)求甲方案实际付款金额y甲元与x的函数关系式和乙方案实际付款金额y乙元与x的函数关系式;(2)试通过计算为该校提供一种节约费用的购买方案.22. 如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F,点B的对应点为B′.(1)证明:AE=CF;(2)若AD=12,DC=18,求DF的长.五、解答题(三)(本大题3小题,每小题9分,共27分)23.一个有进水管与出水管的容器,从某时刻开始8min内既进水又出水,在随后的4min 内只进水不出水,每分钟的进水量和出水量是两个常数.容器内的水量y(单位:L)与时间x(单位:min)(0≤x≤12)之间的关系如图所示:(1)求y关于x的函数解析式;(2)每分钟进水、出水各多少升?24.如图,正方形ABCD中,点E在BC边上,AF平分∠DAE,DF//AE,AF与CD相交于点G.(1)如图1,当∠AEC=120,AE=4时,求FG的长;(2)如图2,在AB边上截取点H,使得DH=AE,DH与AF、AE分别交于点M、N,求证:AE=AH+DG25.如图,已知等腰Rt△ABC中,AB=AC,∠BAC=90,点A、B分别在x轴和y轴上,点C的坐标为(6,2).(1)如图1,求A点坐标;(2)如图2,延长CA至点D,使得AD=AC,连接BD,线段BD交x轴于点E,问:在x 轴上是否存在点M,使得△BDM的面积等于新人教版数学八年级下册期末考试试题(答案)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个B.2个C.3个D.4个2.若a>b,则下列式子正确的是()A.a+2<b+2 B.﹣2a>﹣2b C.a﹣2>b﹣2 D.<3.多项式m2﹣4与多项式m2﹣4m+4的公因式是()A.m﹣2 B.m+2 C.m+4 D.m﹣44.已知分式的值等于零,则x的值为()A.﹣2 B.﹣3 C.3 D.±35.将一次函数y=﹣2x的图象向下平移6个单位,得到新的图象的函数解析式为()A.y=﹣8x B.y=4x C.y=﹣2x﹣6 D.y=﹣2x+6 6.用正三角形和正方形镶嵌一个平面,在同一个顶点处,正三角形和正方形的个数之比为()A.1:1 B.1:2 C.2:3 D.3:27.如图,将等边△ABC沿直线BC平移到△DEF,使点E与点C重合,连接BD,若AB=2,则BD的长为()A.2B.C.3 D.28.如图,在△ABC中,AB=AC,直线l1∥l2,且分别与△ABC的两条边相交,若∠1=40°,∠2=23°,则∠C的度数为()A.40°B.50°C.63°D.67°9.如图,在△ABC中,点E,F分别是边BC上两点,ED垂直平分AB,FG垂直平分AC,连接AE,AF,若∠BAC=115°,则∠EAF的大小为()A.45°B.50°C.60°D.65°10.如图,直线y1=kx和直线y2=ax+b相交于点(1,2).则不等式组ax+b>kx>0的解集为()A.x<0 B.0<x<1 C.x<1 D.x<0或x>1二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.因式分解:x2﹣9y2=.12.若关于x的分式方程=产生增根,则m=.13.如图,两张等宽的纸条交叉叠放在一起,在重叠部分构成的四边形ABCD中,若AB=10,AC=12,则BD的长为.14.如图,在▱ABCD中,按以下步骤作图:①以C为圆心,以适当长为半径画弧,分别交BC,CD于M,N两点;②分别以M,N为圆心,以大于MN的长为半径画弧,两弧在∠BCD的内部交于点P;⑨连接CP并延长交AD于E.若AE=2,CE=6,∠B=60°,则ABCD的周长等于.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(1)分解因式:a2b﹣4ab2+4b3.(2)解方程﹣2=.16.解不等式组,并在数轴上表示出它的解集.17.化简求值:(﹣1)÷,其中a=2﹣.18.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点分别为A (0,4),B(﹣4,2),C(0,2).(1)画△A1B1C1,使它与△ABC关于点C成中心对称;(2)平移△ABC,使点A的对应点A2坐标为(﹣2,4),画出平移后对应的△A2B2C2;(3)若将△A1B1C1绕点P旋转可得到△A2B2C2,请直接写出旋转中心P的坐标.19.如图:在△ABC中,点E,F分别是BA,BC边的中点,过点A作AD∥BC交FE的延长线于点D,连接DB,DC.(1)求证:四边形ADFC是平行四边形;(2)若∠BDC=90°,求证:CD平分∠ACB;(3)在(2)的条件下,若BD=DC=6,求AB的长.20.如图1,E为正方形ABCD的边BC上一点,F为边BA延长线上一点,且CE=AF.(1)求证:DE⊥DF;(2)如图2,若点G为边AB上一点,且∠BGE=2∠BFE,△BGE的周长为16,求四边形DEBF的面积;(3)如图3,在(2)的条件下,DG与EF交于点H,连接CH且CH=5,求AG的长.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.已知a+b=0目a≠0,则=.22.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC至F,使CF=BC,若EF=13,则线段AB的长为.23.若次函数y=(a﹣1)x+a﹣8的图象经过第一,三,四象限,且关于y的分式方程有整数解,则满足条件的整数a的值之和为.24.如图,在△ABC中,AC=BC=9,∠C=120°,D为AC边上一点,且AD=6,E是AB边上一动点,连接DE,将线段DE绕点D逆时针旋转30°得到DF,若F恰好在BC边上,则AE的长为.25.如图,将菱形OABC放置于平面直角坐标系中,边OA与x轴正半轴重合,D为边OC的中点,点E,F,G分别在边OA,AB与BC上,若∠COA=60°,OA=4,则当四边形DEFG 为菱形时,点G的坐标为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.某市计划修建一条长60千米的地铁,根据甲,乙两个地铁修建公司标书数据发现:甲,乙两公司每天修建地铁长度之比为3:5;甲公司单独完成此项工程比乙公司单独完成此项工程要多用240天.(1)求甲,乙两个公司每天分别修建地铁多少千米?(2)该市规定:“该工程由甲,乙两个公司轮流施工完成,工期不超过450天,且甲公司工作天数不少于乙公司工作天数的”.设甲公司工作a天,乙公司工作b天.①请求出b与a的函数关系式及a的取值范围;②设完成此项工程的工期为W天,请求出W的最小值.27.如图,在矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点A逆时针旋转得到矩形AEFG.(1)如图1,若在旋转过程中,点E落在对角线AC上,AF,EF分别交DC于点M,N.①求证:MA=MC;②求MN的长;(2)如图2,在旋转过程中,若直线AE经过线段BG的中点P,连接BE,GE,求△BEG 的面积28.如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B 的直线交x轴于C,且△ABC面积为10.(1)求点C的坐标及直线BC的解析式;(2)如图1,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG 右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G的坐标;(3)如图2,若M为线段BC上一点,且满足S△AMB=S△AOB,点E为直线AM上一动点,在x轴上是否存在点D,使以点D,E,B,C为顶点的四边形为平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个B.2个C.3个D.4个【分析】根据中心对称的概念对各图形分析判断即可得解.【解答】解:第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.故选:B.2.若a>b,则下列式子正确的是()A.a+2<b+2 B.﹣2a>﹣2b C.a﹣2>b﹣2 D.<【分析】依据不等式的基本性质进行判断,即可得出结论.【解答】解:若a>b,则a+2>b+2,故A选项错误;若a>b,则﹣2a<﹣2b,故B选项错误;若a>b,则a﹣2>b﹣2,故C选项正确;若a>b,则a>b,故D选项错误;故选:C.3.多项式m2﹣4与多项式m2﹣4m+4的公因式是()A.m﹣2 B.m+2 C.m+4 D.m﹣4【分析】根据公因式定义,对各选项整理然后即可选出有公因式的项.【解答】解:m2﹣4=(m+2)(m﹣2),m2﹣4m+4=(m﹣2)2,m2﹣4与多项式m2﹣4m+4的公因式是m﹣2,故选:A.4.已知分式的值等于零,则x的值为()A.﹣2 B.﹣3 C.3 D.±3【分析】根据分式的值为零的条件可以求出x的值.分式的值是0的条件是,分子为0,分母不为0.【解答】解:∵x2﹣9=0且x+2≠0∴x=±3且x≠﹣2.故选:D.5.将一次函数y=﹣2x的图象向下平移6个单位,得到新的图象的函数解析式为()A.y=﹣8x B.y=4x C.y=﹣2x﹣6 D.y=﹣2x+6【分析】直接利用一次函数平移规律,“上加下减”进而得出即可.【解答】解:将一次函数y=﹣2x的图象向下平移6个单位,那么平移后所得图象的函数解析式为:y=﹣2x﹣6,故选:C.6.用正三角形和正方形镶嵌一个平面,在同一个顶点处,正三角形和正方形的个数之比为()A.1:1 B.1:2 C.2:3 D.3:2【分析】分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可求出答案.【解答】解:正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,∴用正三角形和正方形镶嵌平面,每一个顶点处有3个正三角形和2个正方形.∴正三角形和正方形的个数之比为3:2,故选:D.7.如图,将等边△ABC沿直线BC平移到△DEF,使点E与点C重合,连接BD,若AB=2,则BD的长为()A.2B.C.3 D.2【分析】利用平移的性质得出BC,CF、DF的长,得∠BDF=90°,∠DBF=30°,可得结论.【解答】解:由平移得:△ABC≌△DEF,∵△ABC是等边三角形,且AB=2,∴BC=EF=DF=2,∠DEF=60°,∴∠CBD=∠CDB=30°,∵∠CDF=60°,∴∠BDF=90°,Rt△BDF中,∠DBF=30°,∴BD=2,故选:A.8.如图,在△ABC中,AB=AC,直线l1∥l2,且分别与△ABC的两条边相交,若∠1=40°,∠2=23°,则∠C的度数为()A.40°B.50°C.63°D.67°【分析】根据平行线的性质得到∠ABD=∠1=40°,∠CBD=∠2=23°,根据等腰三角形的性质即可得到结论.【解答】解:过B作BD∥l1,∵l1∥l2,∴BD∥l1∥l2,∴∠ABD=∠1=40°,∠CBD=∠2=23°,∴∠ABC=∠ABD+∠CBD=63°,∵AB=AC,∴∠C=∠ABC=63°,故选:C.9.如图,在△ABC中,点E,F分别是边BC上两点,ED垂直平分AB,FG垂直平分AC,连接AE,AF,若∠BAC=115°,则∠EAF的大小为()A.45°B.50°C.60°D.65°【分析】根据三角形内角和定理得到∠B+∠C=65°,根据线段垂直平分线的性质得到EA =EB,FA=FC,根据等腰三角形的性质得到∠EAB=∠B,∠FAC=∠C,结合图形计算即可.【解答】解:∵∠BAC=115°,∴∠B+∠C=180°﹣115°=65°,∵ED垂直平分AB,FG垂直平分AC,∴EA=EB,FA=FC,∴∠EAB=∠B,∠FAC=∠C,∴∠EAB+∠FAC=∠B+∠C=65°,∴∠EAF=∠BAC﹣(∠EAB+∠FAC)=50°,故选:B.10.如图,直线y1=kx和直线y2=ax+b相交于点(1,2).则不等式组ax+b>kx>0的解集为()A.x<0 B.0<x<1 C.x<1 D.x<0或x>1 【分析】在x轴的上方,直线y1=kx和直线y2=ax+b的图象上方部分对应的自变量的取值范围即为不等式ax+b>kx>0的解集.【解答】解:在x轴的上方,直线y1=kx和直线y2=ax+b的图象上方部分对应的自变量的取值范围即为不等式ax+b>kx>0的解集,观察图象可知:不等式的解集为:0<x<1,故选:B.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.因式分解:x2﹣9y2=(x+3y)(x﹣3y).【分析】直接利用平方差公式分解即可.【解答】解:x2﹣9y2=(x+3y)(x﹣3y).12.若关于x的分式方程=产生增根,则m= 2 .【分析】方程两边都乘以x+2化为整式方程,表示出方程的解,依据增根为x=﹣2,即可求出m的值.【解答】解:方程去分母得:3x=2x﹣m,解得:x=﹣m,由方程有增根x=﹣2,得到﹣m=﹣2,则m的值为2.故答案为:2.13.如图,两张等宽的纸条交叉叠放在一起,在重叠部分构成的四边形ABCD中,若AB=10,AC=12,则BD的长为16 .【分析】过点A作AE⊥BC于E,AF⊥CD于F,设AC、BD交点为O,首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.然后依据勾股定理求得OB的长,从而可得到BD的长.【解答】解:过点A作AE⊥BC于E,AF⊥CD于F,设AC、BD交点为O.∵两条纸条宽度相同,∴AE=AF.∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形.=BC•AE=CD•AF.∵S▱ABCD又∵AE=AF.∴BC=CD,∴四边形ABCD是菱形;∴OB=OD,OA=OC=6,AC⊥BD.∴OB===8.∴BD=2OB=16.故答案为:16.14.如图,在▱ABCD中,按以下步骤作图:①以C为圆心,以适当长为半径画弧,分别交BC,CD于M,N两点;②分别以M,N为圆心,以大于MN的长为半径画弧,两弧在∠BCD的内部交于点P;⑨连接CP并延长交AD于E.若AE=2,CE=6,∠B=60°,则ABCD的周长等于28 .【分析】首先证明△DEC是等边三角形,求出AD,DC即可解决问题.【解答】解:由作图可知∠ECD=∠ECB,∵四边形ABCD是平行四边形,∴AD∥BC,∠B=∠D=60°,∴∠DEC=∠ECB=∠ECD,∴DE=DC,∴△DEC是等边三角形,∴DE=DC=EC=6,∴AD=BC=8,AB=CD=6,∴四边形ABCD的周长为28,故答案为28.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(1)分解因式:a2b﹣4ab2+4b3.(2)解方程﹣2=.【分析】(1)运用提公因式法与公式法进行因式分解即可;(2)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.【解答】解:(1)a2b﹣4ab2+4b3=b(a2﹣4ab+4b2)=b(a﹣2b)2;(2)去分母,得4x﹣2(x﹣3)=﹣x,解得x=﹣2,经检验:x=﹣2是原方程的解.16.解不等式组,并在数轴上表示出它的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x≥﹣1,解不等式②,得:x<3,则不等式组的解集为﹣1≤x<3,将解集表示在数轴上如下:17.化简求值:(﹣1)÷,其中a=2﹣.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:(﹣1)÷===﹣=,当a=2﹣时,原式=﹣=.18.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点分别为A (0,4),B(﹣4,2),C(0,2).(1)画△A1B1C1,使它与△ABC关于点C成中心对称;(2)平移△ABC,使点A的对应点A2坐标为(﹣2,4),画出平移后对应的△A2B2C2;(3)若将△A1B1C1绕点P旋转可得到△A2B2C2,请直接写出旋转中心P的坐标.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)分别求出A,B,C的对应点A2,B2,C2即可.(3)对应点连线段的垂直平分线的交点即为所求的点P.【解答】解:(1)△A1B1C1即为所求.(2)△A2B2C2即为所求.(3)P(﹣1,2).19.如图:在△ABC中,点E,F分别是BA,BC边的中点,过点A作AD∥BC交FE的延长线于点D,连接DB,DC.(1)求证:四边形ADFC是平行四边形;(2)若∠BDC=90°,求证:CD平分∠ACB;(3)在(2)的条件下,若BD=DC=6,求AB的长.【分析】(1)证明EF是△ABC的中位线,得出EF∥AC,DF∥AC,由AD∥BC,即可得出四边形ADFC是平行四边形;(2)由直角三角形斜边上的中线性质得出DF=BC=CF,得出平行四边形ADFC为菱形,由菱形的性质即可得出结论;(3)证出△BDC为等腰直角三角形,得出BC=BD=6,由等腰三角形的性质得出DF⊥BC,FC=BC=3,证出四边形ADFC为正方形,得出∠ACB=90°,AC=FC=3,由勾股定理即可得出结果.【解答】(1)证明:∵点E,F分别是BA,BC边的中点,∴EF是△ABC的中位线,∴EF∥AC,∴DF∥AC,又∵AD∥BC,∴四边形ADFC是平行四边形;(2)解:∵∠BDC=90°,F是BC边的中点,∴DF=BC=CF,∴平行四边形ADFC为菱形,∴CD平分∠ACB;(3)解:∵BD=CD=6,∠BDC=90°,∴△BDC为等腰直角三角形,∴BC=BD=6,∵F是BC边的中点,∴DF⊥BC,FC=BC=3,∵四边形ADFC是菱形,∴四边形ADFC为正方形,∴∠ACB=90°,AC=FC=3,∴AB===3.20.如图1,E为正方形ABCD的边BC上一点,F为边BA延长线上一点,且CE=AF.(1)求证:DE⊥DF;(2)如图2,若点G为边AB上一点,且∠BGE=2∠BFE,△BGE的周长为16,求四边形DEBF的面积;(3)如图3,在(2)的条件下,DG与EF交于点H,连接CH且CH=5,求AG的长.【分析】(1)证明△ADF≌△CDE,根据全等三角形的性质得到∠ADF=∠CDE,根据垂直的定义证明;(2)根据三角形的外角的性质、等腰三角形的判定定理得到GE=GF,根据三角形的周长公式求出BA,根据正方形的面积公式计算;(3)作HP⊥HC交CB的延长线于点P,证明△HDC≌△HEP,得到DC=PE=8,CH=HP=5,根据勾股定理列方程求出EG,计算即可.【解答】(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠DAF=∠DCE=90°,在△ADF和△CDE中,,∴△ADF≌△CDE(SAS)∴∠ADF=∠CDE,∵∠ADE+∠CDE=90°,∴∠ADF+∠ADE=90°,即∠FDE=90°,∴DE⊥DF;(2)解:∵∠BGE=2∠BFE,∠BGE=∠BFE+∠GEF,∴∠GEF=∠GFE,∴GE=GF,∵△BGE的周长为16∴BE+GB+GE=16∴BE+GB+GF=16∴BE+BA+AF=16∵CE=AF,∴BA+CB=16,∴BC=BA=8,∴S四边形DEBF=S四边形DEBA=S四边形DEBA+S△DCE=S正方形ABCD=AB2=64;(3)过点H作HP⊥HC交CB的延长线于点P,∵GF=GE,DF=DE,∴DG垂直平分EF,∵∠FDE=90°,∴DH=EH,∠DHE=∠PHC=90°,∴∠DHE﹣∠EHC=∠PHC﹣∠EHC,即∠DHC=∠EHP,∵在四边形DHEC中,∠HDC+∠HEC=180°,∠HEC+∠HEP=180°,∴∠HEP=∠HDC,在△HDC和△HEP中,,∴△HDC≌△HEP(ASA)∴DC=PE=8,CH=HP=5,∴在Rt△PHC中,PC=10,∴EC=PC﹣PE=2,∴AF=2,BE=6,在Rt△BGE中,设EG=x,则BG=10﹣x,由勾股定理得,(10﹣x)2+62=x2解得:x=,∴AG=GF﹣AF=.一.填空题(共5小题)21.已知a+b=0目a≠0,则=﹣1 .【分析】先将分式变形,然后将a+b=0代入即可.【解答】解:====1,故答案为122.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC至F,使CF=BC,若EF=13,则线段AB的长为26 .【分析】根据三角形中位线定理得到DE=BC,DE∥BC,根据平行四边形的性质求出CD,根据直角三角形的性质计算即可.【解答】解:∵点D,E分别是边AB,AC的中点,∴DE=BC,DE∥BC,∵CF=BC,∴DE=CF,又DE∥CF,∴四边形DEFC为平行四边形,∴CD=EF=13,∵∠ACB=90°,点D是边AB的中点,∴AB=2CD=26,故答案为:26.23.若次函数y=(a﹣1)x+a﹣8的图象经过第一,三,四象限,且关于y的分式方程有整数解,则满足条件的整数a的值之和为8 .【分析】根据题意得到关于a的不等式组,解之得到a的取值范围,解分式方程根据“该方程有整数解,且y≠1”,得到a的取值范围,结合a为整数,取所有符合题意的整数a,即可得到答案.【解答】解:∵函数y=(a﹣1)x+a﹣8的图象经过第一,三,四象限,∴解得:1<a<8,方程两边同时乘以(y﹣1)得:﹣(y﹣5)+3(y﹣1)=a,去括号得:﹣y+5+3y﹣3=a,移项得:﹣y+3y=a﹣5+3,合并同类项得:2y=a﹣2,系数化为1得:y=,∵该方程有整数解,且y≠1,a﹣2是2的整数倍,且a﹣2≠2,即a﹣2是2的整数倍,且a≠4,∵1<a<8,∴整数a为:2,6,∴2+6=8,故答案为8.24.如图,在△ABC中,AC=BC=9,∠C=120°,D为AC边上一点,且AD=6,E是AB边上一动点,连接DE,将线段DE绕点D逆时针旋转30°得到DF,若F恰好在BC边上,则AE的长为3+4.【分析】由∠C=120°,AC=BC可知∠A=30°,又有∠EDF=30°,联想一线三等角模型,延长DC到G,使DG=AE,得△DFG≌△EDA,进而可得GF=6,∠G=30°,由于∠FCG =60°,即可得△CFG是直角三角形,易求CG,由DG=AE即可解题.【解答】解:如图,延长DC到G,使DG=AE,连接FG,∵AC=BC,∠C=120°,∴∠A=30°,∠FCG=60°,∵∠A+∠1=∠EDF+∠2,又∵∠EDF=30°,∴∠1=∠2,在△EDA和△DFG中,,∴△EDA≌△DFG(SAS)∴AD=GF=6,∠A=∠G=30°,∵∠G+∠FCG=90°,∴∠CFG=90°,设CF=x,则CG=2x,由CF2+FG2=CG2得:x2+62=(2x)2,解得x1=,x2=﹣(不合题意舍去),∴CG=4,∴AE=DG=3+4,故答案为:3+4.25.如图,将菱形OABC放置于平面直角坐标系中,边OA与x轴正半轴重合,D为边OC的中点,点E,F,G分别在边OA,AB与BC上,若∠COA=60°,OA=4,则当四边形DEFG 为菱形时,点G的坐标为(3,2).【分析】作辅助线,构建全等三角形,证明△ODN≌△CDM(AAS),得DN=DM,由中点得OD=2,根据直角三角形30度角的性质和勾股定理得:ON=,DN=,所以MN =EG=2,证明DF=OA=4,根据菱形的对角线互相垂直平分得:DH的长,从而得EN的长,可得结论.【解答】解:过D作MN⊥OA于N,交BC的延长线于M,连接DF、EG,交于点H,∵四边形ABCO是菱形,∴BM∥OA,∴∠M=∠OND=90°,∵OD=DC,∠ODN=∠MDC,∴△ODN≌△CDM(AAS),∴DN=DM,∵OA=OC=4,∴OD=2,Rt△DON中,∠DON=60°,∴∠ODN=30°,∴ON=,DN=,∴MN=2DN=2,∵四边形DEFG是菱形,∴DF⊥EG,DH=,DG=DE,∴Rt△DMG≌Rt△DNE(HL),∴MG=EN,∵MG∥EN,∠M=90°,∴四边形MNEG为矩形,∴EG⊥BM,EG=MN=2,∵BC∥OA,DF⊥EG,EG⊥BC,∴DF∥OA∥BC,∵OD∥AF,∴四边形DOAF是平行四边形,∴DF=OA=4,∴DH=EN=DF=2,∴OE=ON+EN=3,∴G(3,2),故答案为:(3,2).二.解答题(共3小题)26.某市计划修建一条长60千米的地铁,根据甲,乙两个地铁修建公司标书数据发现:甲,乙两公司每天修建地铁长度之比为3:5;甲公司单独完成此项工程比乙公司单独完成此项工程要多用240天.(1)求甲,乙两个公司每天分别修建地铁多少千米?(2)该市规定:“该工程由甲,乙两个公司轮流施工完成,工期不超过450天,且甲公司工作天数不少于乙公司工作天数的”.设甲公司工作a天,乙公司工作b天.①请求出b与a的函数关系式及a的取值范围;②设完成此项工程的工期为W天,请求出W的最小值.【分析】(1)甲公司每天修3x千米,乙公司每天修5x千米,根据题意列分式方程解答即可;(2)①由题意得,再根据题意列不等式组即可求出a的取值范围;②写出W与a、b之间的关系式,再根据一次函数的性质解答即可.【解答】解:(1)设甲公司每天修3x千米,乙公司每天修5x千米,根据题意得,,解得,经检验,为原方程的根,∴,,答:甲公司每天修建地铁千米,乙公司每天修建地铁千米;(2)①由题意得,,∴,又∵,∴200≤a≤225;②由题意得W=a+b,∴W=a+(﹣a+360),即W=+360,∵a=,∴W随x的增大而增大,又∵200≤a≤225,∴a=200时,W最小值为440天.27.如图,在矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点A逆时针旋转得到矩形AEFG.(1)如图1,若在旋转过程中,点E落在对角线AC上,AF,EF分别交DC于点M,N.①求证:MA=MC;②求MN的长;(2)如图2,在旋转过程中,若直线AE经过线段BG的中点P,连接BE,GE,求△BEG 的面积【分析】(1)①由矩形的性质得出AB∥CD,得出∠DCA=∠BAC,由旋转的性质得:∠FAE =∠BAC,证出∠DCA=∠FAE,即可得出MA=MC;②设MA=MC=x,则DM=8﹣x,在Rt△ADM中,由勾股定理得出方程62+(8﹣x)2=x2,解得:x=,在Rt△AEF中,由勾股定理得出AF==10,得出MF=AF﹣AM=,证出∠AFE=∠CNE=∠MNF,得出MN=MF=即可;(2)分情况讨论:①过点B作BH⊥AE于H,证明△HBP≌△AGP,得出AP=HP,BH=AG =6,在Rt△ABH中,由勾股定理得出AH==2,得出AP=AH=,得出PE=AE﹣AP=8﹣,得出△BEG的面积=2△GPE的面积=48﹣6;②同①得:AH=2,AP=,得出PE=8+,得出△BEG的面积=2△GPE的面积=48+6即可.【解答】(1)①证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠DCA=∠BAC,由旋转的性质得:∠FAE=∠BAC,∴∠DCA=∠FAE,∴MA=MC;②解:设MA=MC=x,则DM=8﹣x,在Rt△ADM中,62+(8﹣x)2=x2,解得:x=,在Rt△AEF中,AF===10,∴MF=AF﹣AM=,∵∠AEF=∠CEN=90°,∴∠MCA+∠CNE=∠MAC+∠AEF=90°,又∵∠MCA=∠MAC,∴∠AFE=∠CNE=∠MNF,∴MN=MF=;(2)解:分情况讨论:①如图2所示:过点B作BH⊥AE于H,则∠GAP=∠BHP=90°,在△HBP和△AGP中,,∴△HBP≌△AGP(AAS),∴AP=HP,BH=AG=6,在Rt△ABH中,AH===2,∴AP=AH=,∴PE=AE﹣AP=8﹣,∴△BEG的面积=2△GPE的面积=2××6×(8﹣)=48﹣6;②如图3所示:同①得:AH=2,AP=,∴PE=8+,∴△BEG的面积=2△GPE的面积=2××6×(8+)=48+6;综上所述,△BEG的面积为48﹣6或48+6.28.如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B 的直线交x轴于C,且△ABC面积为10.(1)求点C的坐标及直线BC的解析式;(2)如图1,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG 右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G的坐标;(3)如图2,若M为线段BC上一点,且满足S△AMB=S△AOB,点E为直线AM上一动点,在x轴上是否存在点D,使以点D,E,B,C为顶点的四边形为平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.【分析】(1)利用三角形的面积公式求出点C坐标,再利用待定系数法即可解决问题.(2)分两种情形:①当n>2时,如图2﹣1中,点Q落在BC上时,过G作直线平行于x 轴,过点F,Q作该直线的垂线,垂足分别为M,N.求出Q(n﹣2,n﹣1).②当n<2时,如图2﹣2中,同法可得Q(2﹣n,n+1),利用待定系数法即可解决问题.(3)利用三角形的面积公式求出点M的坐标,求出直线AM的解析式,作BE∥OC交直线AM于E,此时E(,4),当CD=BE时,可得四边形BCDE,四边形BECD1是平行四边形,可得D(,0),D1(﹣,0),再根据对称性可得D2解决问题.【解答】解:(1)∵直线y=2x+4与x轴交于点A,与y轴交于点B,∴A(﹣2,0),B(0,4),∴OA=2,OB=4,∵S△ABC=•AC•OB=10,∴AC=5,∴OC=3,∴C(3,0),设直线B的解析式为y=kx+b,则有,∴.∴直线BC的解析式为y=﹣x+4.(2)∵FA=FB,A(﹣2,0),B(0,4),∴F(﹣1,2),设G(0,n),①当n>2时,如图2﹣1中,点Q落在BC上时,过G作直线平行于x轴,过点F,Q作该直线的垂线,垂足分别为M,N.∵四边形FGQP是正方形,易证△FMG≌△GNQ,∴MG=NQ=1,FM=GN=n﹣2,∴Q(n﹣2,n﹣1),∵点Q在直线y=﹣x+4上,∴n﹣1=﹣(n﹣2)+4,∴n=,∴G(0,).②当n<2时,如图2﹣2中,同法可得Q(2﹣n,n+1),∵点Q在直线y=﹣x+4上,∴n+1=﹣(2﹣n)+4,∴n=﹣1,∴G(0,﹣1).综上所述,满足条件的点G坐标为(0,)或(0,﹣1).(3)如图3中,设M(m,﹣m+4),∵S△AMB=S△AOB,∴S△ABC﹣S△AMC=S△AOB,∴×5×4﹣×5×(﹣m+4)=×2×4,∴m=,∴M(,),∴直线AM的解析式为y=x+,作BE∥OC交直线AM于E,此时E(,4),当CD=BE时,可得四边形BCDE,四边形BECD1是平行四边形,可得D(,0),D1(﹣,0),根据对称性可得点D关于点A的对称点D2(﹣,0)也符合条件,综上所述,满足条件的点D的坐标为(,0)或(﹣,0)或(﹣,0).新人教版数学八年级下册期末考试试题(答案)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个B.2个C.3个D.4个2.若a>b,则下列式子正确的是()A.a+2<b+2 B.﹣2a>﹣2b C.a﹣2>b﹣2 D.<3.多项式m2﹣4与多项式m2﹣4m+4的公因式是()A.m﹣2 B.m+2 C.m+4 D.m﹣44.已知分式的值等于零,则x的值为()A.﹣2 B.﹣3 C.3 D.±35.将一次函数y=﹣2x的图象向下平移6个单位,得到新的图象的函数解析式为()A.y=﹣8x B.y=4x C.y=﹣2x﹣6 D.y=﹣2x+6 6.用正三角形和正方形镶嵌一个平面,在同一个顶点处,正三角形和正方形的个数之比为()A.1:1 B.1:2 C.2:3 D.3:27.如图,将等边△ABC沿直线BC平移到△DEF,使点E与点C重合,连接BD,若AB=2,则BD的长为()A.2B.C.3 D.28.如图,在△ABC中,AB=AC,直线l1∥l2,且分别与△ABC的两条边相交,若∠1=40°,∠2=23°,则∠C的度数为()A.40°B.50°C.63°D.67°9.如图,在△ABC中,点E,F分别是边BC上两点,ED垂直平分AB,FG垂直平分AC,连接AE,AF,若∠BAC=115°,则∠EAF的大小为()A.45°B.50°C.60°D.65°10.如图,直线y1=kx和直线y2=ax+b相交于点(1,2).则不等式组ax+b>kx>0的解集为()A.x<0 B.0<x<1 C.x<1 D.x<0或x>1二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都七中实验学校八年级下数学期末模拟试卷
本试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分,全卷总分150分.
A 卷(100分)
一、选择题(把正确答案的代号填入表内,每小题3分,共30分)
1.观察下列各式:①2a+b和a+b ;②)(5b a m -和b a +-;③)(3b a +和b a --;④22y x - 和
22y x +;其中有公因式的是( )
A .①②
B .②③
C .③④ D·①④ 2.当x=2时,下列各式的值为0的是( )
A .2
32
2+--x x x B .21-x C .942--x x D .12-+x x
3.下列分式运算,结果正确的是( )
A .n m m n n m =⋅3454
B .bc ad d c b a =⋅
C .2
222
42b a a b a a -=⎪⎭⎫ ⎝⎛- D .333
5353y x y x =⎪⎪⎭⎫ ⎝⎛ 4.解关于x 的方程
1
16-=--x m x x 产生增根,则常数m 的值等于( ) A .2- B .3- C .1 D .5-
5.2009年成都市大约有50000名学生参加高考,为了考查他们的数学成绩考试情况,平卷人抽去了2000名学生的数学成绩进行统计,那么下列四个判断正确的是( ) A .每名学生的数学成绩是个体 B .50000名学生是总体 C .2000名考生是总体的一个样本 D .上述调查是普查
6.某班某同学要测量学校升旗的旗杆高度,在同一时刻,量得某一同学的身高是1.5m ,影长是1m ,旗杆的影长是8m ,则旗杆的高度是( ) A .12m B .11m C .10m D .9m
7.如图1,由下列条件不能判定△ABC 与△ADE 相似的是( )
A .AE AC AD A
B = B .∠B=∠ADE
C .AE DE
AC BC
= D .∠C=∠AED
(1) (2) (3)
8.如图2,△ABC 中,∠BAC=90°,AD ⊥BC 于D ,若AB=2,BC=3,则CD 的长是( )
A .83
B .23
C .43
D .53
9、已知7
5
==d c b a ,则d b c a ++(其中0≠+d b )的值等于( )
A 、73
B 、75
C 、710
D 、145
10.如图(3),在△ABC 中,∠ACB= 90,∠B= 30,AC=1,过点C 作AB CD ⊥1 与1D ,
过1D 作AB D D ⊥21于2D ,过2D 作AB D D ⊥32于3D ,这样继续作下去,线段1+n n D D 的长度(n为正整数)等于( )
A .1
21+⎪⎭
⎫ ⎝⎛n B .1
23+⎪
⎭
⎫
⎝⎛n C .n ⎪⎪⎭⎫ ⎝⎛23 D .1
23+⎪⎪⎭
⎫
⎝⎛n
二、填空题:(每小题4分,共20分) 11、分解因式2322a b b ab +-=
12、在分式
1
1
||+-x x 中,x =_______时,分式无意义;当x =_________时,分式的值为零. 13.如果点P 是线段AB 的黄金分割点,且AP>PB ,则下列命题,
①PB AP AB ⋅=2②AB AP BP ⋅=2,③AP 2=PB·AB ,④AP PB AB AP ::=,其中正确的是 14.某学校准备从甲、乙、丙三位同学中选拔一人参加全市射击比赛,他们在选拔比赛中,
射靶十次的平均环数是
丙
乙甲x x x ===1.8,方差分别是
,3.12=甲s ,6.22=乙s 0.32=丙s ,那么根据以上提供的信息,你认为应该推
荐参加全市射击比赛的同学是 。
15、如图在RT ∆ABC 中,AC ⊥BC ,CD ⊥AB 于D ,AC=8,BC=6,则AD=_________。
三、计算题:(每小题6分)
(第15题) C B D
16、解不等式组⎪⎩⎪
⎨⎧->+≥--1
3
214)2(3x x x x ,并写出不等式组的非负整数解。
17、解方程22162
242
x x x x x -+-=+--
18.化简求值:x x x x x x
x x -++⨯-+÷+--39
623446222
,其中x=4。
四、解答题(每小题8分)
19、为加快西部大开发,某区决定新修一条公路,甲、乙两工程队承包此项工程。
如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成。
问原来规定修好这条公路需多长时间?
20.如图,学校的围墙外有一旗杆AB ,甲在操场上C 处直立3m 高的竹竿CD ,乙从C 处退到E 处恰
好看到竹竿顶端D ,与旗杆顶端B 重合,量得CE=3m ,乙的眼睛到地面的距离FE=1.5m ;丙在C 1处也直立3m 高的竹竿C 1D l ,乙从E 处退后6m 到E l 处,恰好看到两根竹竿和旗杆重合,且竹竿顶端D l 与旅杆顶端B 也重合,艇得C l E l =4m 。
求旗杆AB 的高。
21、某中学部分同学参加全国初中数学竞赛,取得了优异的成绩.指导老师统计了所有参赛同学的成绩(成绩都是整数,试题满分120分),并且绘制了“频数分布直方图”(如图). 请回答:
(1)中学参加本次数学竞赛的有 名同学。
(2)如果成绩在90分以上(含90分)的同学获奖,那么该中学参赛同学的获奖率是 。
(3)这次竟赛成绩的中位数落在哪个分数段内 。
(4)图中还提供了其它信息,例如该中学没有获得满分的同学等等.请再写出两条信息.
五、证明题(8分)
22、如图:△PQR 是等边三角形,∠APB =120°
(1)求证:QR 2=AQ ·RB
(2)若AP =72,AQ =2,PB =14。
求RQ 的长和△PRB 的面积
R Q
P
B
A
B 卷(共50分)
一、填空题(每小题4分,共20分)
23、如图,在三角形ABC 中,AB=24,AC=18,D 是AC 上一点AD=12,在AB 上取一点
E,使A 、D 、E 三点组成的三角形与ABC 相似,则AE=
24、已知一组数据-3,-2,1,3,6,x 的中位数为1,则其方差为
标准差为 25.如图,点D 是Rt △ABC 的斜边AB 上一点,DE ⊥BC 于E ,DF ⊥AC 于F ,若AF=•15,
BE=10,则四边形DECF 的面积是__________.
26、已知三个边长分别为1,2,3的正方形如图排成一排,图中四边形ABCD 的周长是
27、如图,AD ∥EF ∥BC ,AD=12CM ,BC=18CM ,AE :BE=3:2,则EF=
(23题)
二、计算题(每小题5分)
28、已知12,4-=-=+xy y x ,求1
1
11+++++y x x y 的值。
29. 若
||()x x y m -+--=4502
,求当y ≥0时,m 的取值范围。
三、解答题(8分)
30、某童装厂,现有甲种布料38米,乙种布料26米,现计划用这两种布料生产L、M两种型号的童装共50套.已知做一套L型号的童装需用甲种布料0.5米,乙种布料1米,可获利45元,做一套M型号的童装需用甲种布料0.9米,乙种布料0.2米,可获利30元,设生产L型号的童装套数为x(套),用这些布料生产两种型号的童装所获得利润为y(元).
(1)写出y(元)关于x(套)的代数式,并求出x的取值范围.
(2)该厂生产这批童装中,当L型号的童装为多少套时,能使该厂的利润最大?最大利
润是多少?
四、解答题(12分)
31、如图,在Rt△ABC中,∠C=90°,AC=12,BC=16,动点P从点A出发沿AC边向点C以每秒3个单位长的速度运动,动点Q从点C出发沿CB边向点B以每秒4个单位长的速度运动.P,Q分别从点A,C同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ关于直线PQ对称的图形是△PDQ.设运动时间为t(秒).(1)设四边形PCQD的面积为y,求y与t的函数关系式;
(2)t为何值时,四边形PQBA是梯形?
(3)是否存在时刻t,使得PD∥AB?若存在,求出t的值;若不存在,请说明理由;
P
C
B。