直线与抛物线的位置关系

合集下载

直线与抛物线的位置关系

直线与抛物线的位置关系
x p O 2 p y 2 p ( my ) 2 x my 2
即:y 2 pmy p 0
2 2
p x my 2
y A F B x
y1 y2 p (定值)
2
例2、过抛物线焦点作直线交抛物线y 2 2 px( p 0)于 A ,B两点,设A( x1 , y1 ), B( x2 , y2 ), 求证 : y1 y2 p 2 .

解 由题意, 设直线 l的方程为 y 1 k x 2.
由方程组
2
y 1 k x 2 , y 4x ,
2


可得 ky 4 y 4 2k 1 0
1 当k 0时,由方程 ① 得 y 1,
1 把 y 1代入 y 4 x, 得 x . 4
y
C H D E F A
B O
x
例4、已知抛物线y2=2x,过Q(2,1)作直线与抛物线 交于A、B,求AB中点的轨迹方程.
y
解: 设A( x1, y1 ), B( x2 y2 ), AB中点M ( x, y)
2 y 1 2 x1 y1 y2 2 由 2 相减得: ( x1 x2 ) x1 x2 y1 y2 y2 2 x2
x
设A( x1, y1 ), B( x2 , y2 ), A, B到 准线l的距离分别为 d A , dB .
由抛物线的定义可知 AF d A x1 1, BF d B x2 1,
B’
所以 AB AF BF x1 x2 2 8
变式: 过抛物线y2=2px的焦点F任作一条直线m, 交这抛物线于A、B两点,求证:以AB为直径的圆 和这抛物线的准线相切.

考点102直线与抛物线的位置关系

考点102直线与抛物线的位置关系

考点102直线与抛物线的位置关系一、课本基础提炼1.研究直线与抛物线的位置关系,一般是联立两曲线方程,但涉及抛物线的弦长、中点、距离等问题时,要注意“设而不求”、“整体代入”、“点差法”以及定义的灵活应用.2.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式二级结论必备过抛物线焦点的动直线与抛物线交于点A,B,则该抛物线在点A,B处的两切线的交点轨迹是抛物线的准线.1.直线与抛物线相交时的弦长问题若直线过抛物线焦点,则求直线被抛物线截得的弦长|AB|,常用|AB|=x1+x2+p;若直线不过抛物线焦点,则求直线被抛物线截得的弦长|AB|,常用,对于此类问题,应熟练地利用韦达定理设而不求计算弦长,另外注意与面积有关的问题,常用到弦长公式.例1.已知抛物线C:y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线相交于M,N两点,且|MN|=8.(1)求抛物线C的方程;(2)设直线l为抛物线C的切线,且l∥MN,P为l上一点,求的最小值.【解析】(1)由题可知F,则该直线方程为代入y2=2px(p>0),得设M(x1,y1),N(x2,y2),则有x1+x2=3p.∵|MN|=8,∴x1+x2+p=8,即3p+p=8,解得p=2,∴抛物线的方程为y2=4x.(2)设直线l的方程为y=x+b,代入y2=4x,得x2+(2b-4)x+b2=0.∵l为抛物线C的切线,∴Δ=0,解得b=1.∴l的方程为y=x+1.设P(m,m+1),则=(x1-m,y1-(m+1)),=(x2-m,y2-(m+1)),∴=(x1-m)(x2-m)+[y1-(m+1)][y2-(m+1)]=x1x2-m(x1+x2)+m2+y1y2-(m+1)(y1+y2)+(m+1)2.由(1)可知:x1+x2=6,x1x2=1,∴(y1y2)2=16x1x2=16,y1y2=-4.,=1-6m+m2-4-4(m+1)+(m+1)2=2(m2-4m-3)=2[(m-2)2-7]≥-14,当且仅当m=2,即点P的坐标为(2,3)时,的最小值为-14.例2.抛物线y2=4x的顶点为O,点A的坐标为(5,0),倾斜角为的直线l与线段OA相交(不经过点O 或点A)且交抛物线于M、N两点,求△AMN面积最大时直线l的方程,并求△AMN的最大面积.【解析】由题意,可设l的方程为y=x+m,-5<m<0.由方程组,消去y,得x2+(2m-4)x+m2=0 ,①∵直线l与抛物线有两个不同交点M、N,∴方程①的判别式Δ=(2m-4)2-4m2=16(1-m)>0,解得m<1,又-5<m<0,∴m的范围为(-5,0)设M(x1,y1),N(x2,y2)则x1+x2=4-2m,x1•x2=m2,点A到直线l的距离为,从而=4(1-m)(5+m)2,当且仅当2-2m=5+m,即m=-1时取等号.故直线l的方程为y=x-1,△AMN的最大面积为2.抛物线的中点弦问题.解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解.若设直线与圆锥曲线的交点(弦的端点)坐标为A(x1,y1)、B(x2,y2),将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB的中点和斜率有关的式子,可以大大减少运算量.我们称这种代点作差的方法为“点差法”.例3.已知抛物线y2=4x的一条弦的斜率为3,它与直线交点恰为这条弦的中点M,则点M的坐标为_______.【解析】设弦端点P(x1,y1)、Q(x2,y2),弦PQ的中点M(x0,y0),则x1+x2=2x0=1,y1+y2=2y0,又两式相减得(y1+y2)(y1-y2)=4(x1-x2)即2y0(y1-y2)=4(x1-x2),∴点M的坐标为3.抛物线的切线问题由于抛物线x2=2py(p≠0),可转化为函数,因此我们可以借助导数的几何意义来研究抛物线的切线.例4. 已知抛物线x2=2y,过抛物线的焦点F的直线l交抛物线于P,Q两点,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为________.【解析】由x2=2y,得,∴y′=x.设P(x1,y1),Q(x2,y2),∴抛物线在P,Q两点处的切线的斜率分别为x1,x2,∴过点P的抛物线的切线方程为y-y1=x1(x-x1),又∴切线方程为,同理可得过点Q的切线方程为,两切线方程联立解得又抛物线焦点F的坐标为,易知直线l的斜率存在,可设直线l的方程为,由,得x2-2mx-1=0,所以x1x2=-1,所以4.面积问题求三角形或四边形的面积最值是高考中的常见问题,解决这类问题的基本方法是把面积表示为某一变量的函数,再转化为函数求最值,或利用基本不等式求最值.例5.(2014•高考四川卷)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,OA→•OB→=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )A.2 B.3【解析】设直线AB的方程为x=ny+m(如图),A(x1,y1),B(x2,y2),∴x1x2+y1y2=2.∴y1y2=-2.联立得y2-ny-m=0, ∴y1y2=-m=-2,∴m=2,即点M(2,0).又S△ABO=S△AMO+S△BMO当且仅当时,等号成立.例6.已知抛物线y2=2px(p>0),过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,且|AB|≤2p.(1)求a的取值范围.(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值.【解析】(1)设直线l的方程为:y=x-a,代入抛物线方程得(x-a)2=2px,即x2-2(a+p)x+a2=0.∴4ap+2p2≤p2,即4ap≤-p2又∵p>0,(2)设A(x1,y1)、B(x2,y2),AB的中点 C(x,y),由(1)知,y1=x1-a,y2=x2-a,x1+x2=2a+2p,则有∴线段AB的垂直平分线的方程为y-p=-(x-a-p),从而N点坐标为(a+2p,0)点N到AB的距离为从而当a有最大值时,S有最大值为5.对称问题根据圆锥曲线上存在不同两点关于某直线对称求参数范围,是一类典型问题,解决此类对称问题,要抓住三点:(1)中点在对称轴上;(2)两个对称点的连线与对称轴垂直;(3)两点连线与曲线有两个交点,故Δ>0.一般通过“设而不求”、“点差法”得到对称点连线的方程,再与曲线方程联立,由判别式不等式求出参数范围.例7.已知抛物线y=ax2-1(a≠0)上总有关于直线x+y=0对称的相异两点,求a的取值范围.解:设A(x1,y1)和B(x2,y2)为抛物线y=ax2-1上的关于直线x+y=0对称的两相异点,则两式相减,得y1-y2=a(x1-x2)(x1+x2).再由x1≠x2,得设线段AB的中点为M(x0,y0),则由M点在直线x+y=0上,得∴直线AB的方程为联立直线AB与抛物线的方程并消去y,得依题意,上面的方程有两个相异实根,∴a的取值范围是1.(2014•潍坊模拟)过抛物线y2=4x的焦点且斜率为的直线l与抛物线y2=4x交于A,B两点,则|AB|的值为( )【答案】A【解析】设A(x1,y1),B(x2,y2),抛物线的焦点为(1,0),则直线l的方程为,代入抛物线方程得3x2-10x+3=0.根据抛物线的定义,可知|AB|=x1+1+x2+1=2.已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交A、B两点,F为C的焦点.若|FA|=2|FB|,则k=( )【答案】D【解析】由直线方程知直线过定点即抛物线焦点(2,0),由|FA|=2|FB|知x A+2=2(x B+2) 联立方程用根与系数关系可求3.抛物线y=ax2与直线y=kx+b(k≠0)交于A、B两点,且此两点的横坐标分别为x1,x2,直线与x轴交点的横坐标是x3,则恒有( )A.x3=x1+x2B.x1x2=x1x3+x2x3C.x1+x2+x3=0D.x1x2+x2x3+x3x1=0解方程组,得ax2-kx-b=0,可知,代入验证即可.4.已知抛物线C的顶点坐标为原点,焦点在x轴上,直线y=x与抛物线C交于A,B两点,若P(2,2)为AB的中点,则抛物线C的方程为_______.答案】y2=4x【解析】设抛物线为y2=kx,与y=x联立方程组,消去y,得:x2-kx=0, x1+x2=k=2×2,故y2=4x.1.设抛物线x2=12y的焦点为F,经过点P(2,1)的直线l与抛物线相交于A,B两点,若点P恰为AB的中点,则|AF|+|BF|=( )A.12B.10C.6D.8 【答案】D【解析】设点A(x1,y1),B(x2,y2),则有y1+y2=2×1=2,|AF|+|BF|=(y1+3)+(y2+3)=(y1+y2)+6=8.故选D.2.已知双曲线(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为3,则p=( )A.1 C.2 D.3 【答案】C【解析】由双曲线的离心率.∴双曲线的渐近线方程为.由题意可设得p=2或-2(舍去).故选C.3.直线y=x-3与抛物线y2=4x交于A,B两点,过A,B两点向抛物线的准线作垂线,垂足分别为P,Q,则梯形APQB的面积为( )A.48 B.56 C.64 D.72 【答案】A【解析】由题不妨设A在第一象限,联立y=x-3和y2=4x可得A(9,6),B(1,-2),而准线方程是x=-1,所以|AP|=10,|QB|=2,|PQ|=8,故S梯形APQB=(|AP|+|QB|)•|PQ|=48.4.过点(2,4)作直线与抛物线y2=8x有且只有一个公共点,则这样的直线有条_______.注意到点(2,4)是抛物线上的点,用数形结合知满足题意的直线有两条,其一是过该点的切线;其二是过该点且与对称轴平行的直线.故填2.5.设F为抛物线C:y2=4x的焦点,过点P(-1,0)的直线l交抛物线C于A,B两点,点Q为线段AB的中点.若FQ=2,则直线l的斜率等于_______.【答案】±1【解析】设A(x1,y1),B(x2,y2),直线l的方程为y=k(x+1),联立得k2x2+(2k2-4)x+k2=0,x1+x2y1+y2=k(x1+x2)+2k=,设Q(x0,y0),则,又F(1,0),,解得k=±11.(2015福建文19)已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3.(1)求抛物线E的方程;(2)已知点G(-1,0) ,延长AF交抛物线E于点B,求证:以点F为圆心且与直线GA相切的圆,必与直GB相切.【答案】(1)y2=4x;(2)见解析【解析】(1)由抛物线的定义得.因为|AF|=3,即,解得p=2,所以抛物线E的方程为y2=4x.(2)解法一:因为点A(2,m),在抛物线E:y2=4x上,所以,由抛物线的对称性,不妨设由,F(1,0)可得直线AF的方程为,得2x2-5x+2=0.解得x=2或,从而又G(-1,0),所以所以k GA+K GB=0,从而∠AGF=∠BGF,这表明点F到直线GA,GB的距离相等,故以F为圆心且与直线GA相切的圆必与直线GB相切.解法二:设以点F为圆心且与直线GA相切的圆的半径为r.因为点A(2,m)在抛物线E:y2=4x上,所以,由抛物线的对称性,不妨设由,F(1,0)可得直线AF的方程为,得2x2-5x+2=0.解得x=2或,从而又G(-1,0),故直线GA的方程为从而又直线GB的方程为所以点F到直线GB的距离这表明以点F为圆心且与直线GA相切的圆必与直线GB相切.2.设不同的两点A(x1,y1),B(x2,y2)在抛物线y=2x2上,l是AB的垂直平分线.(1)当且仅当x1+x2取何值时,直线l经过抛物线的焦点F?证明你的结论;(2)当直线l的斜率为2时,求l在y轴上的截距的取值范围.【查看答案】【答案】(1) x1+x2=0 ;(2)【解析】(1)F∈l⇔|FA|=|FB|⇔A,B两点到抛物线的准线的距离相等,∵抛物线的准线是x轴的平行线,y1≥0,y2≥0,依题意y1,y2不同时为0,∴上述条件等价于∵x1≠x2,∴上述条件等价于x1+x2=0,即当且仅当x1+x2=0时,l经过抛物线的焦点F.(2)设l在y轴上的截距为b,依题意得l的方程为由y=2x2,得过A,B的直线方程为∵直线AB与抛物线有两个不同交点,∴联立得32x2+8x+5-16b=0,Δ=-9+32b>0,.因此直线l在y轴上截距的取值范围是3.如图,已知直线l与抛物线x2=4y相切于点P(2,1),且与x轴交于点A,O为坐标原点,定点B的坐标为(2,0).(1)若动点M满足,求点M的轨迹C;(2)若过点B的直线l′(斜率不等于零)与(1)中的轨迹C交于不同的两点E,F(E在B,F之间),试求△OBE与△OBF面积之比的取值范围.(1) 以原点为中心,焦点在x轴上,长轴长为,短轴长为2的椭圆;(2)【解析】(1)由x2=4y,得∴直线l的斜率为y′|x=2=1,故直线l的方程为y=x-1,∴点A坐标为(1,0).设M(x,y),则由得整理得∴动点M的轨迹C为以原点为中心,焦点在x轴上,长轴长为,短轴长为2的椭圆.(2)由题意知直线l′的斜率存在且不为零,设l′的方程为y=k(x-2)(k≠0),①将①代入整理,得(2k2+1)x2-8k2•x+(8k2-2)=0,由Δ>0得设E(x1,y1),F(x2,y2),由此可得,且0<λ<1.由②知(x1-2)•(x2-2)=x1x2-2(x1+x2)+4又∵0<λ<1,∴△OBE与△OBF面积之比的取值范围是。

直线与抛物线的位置关系

直线与抛物线的位置关系
,
汇报人:
目录
交点个数
直线与抛物线 相交的个数取 决于直线的斜 率和抛物线的
开口方向
当直线斜率存 在且与x轴不垂 直时直线与抛 物线最多有两
个交点
当直线斜率不 存在(垂直于x 轴)时直线与 抛物线有一个
交点
当直线斜率不 存在(垂直于x 轴)且过抛物 线顶点时直线 与抛物线有无
数多个交点
交点坐标
当夹角达到90度时直线与抛物 线相切
夹角的变化还会影响交点的个 数以及与对称轴的关系
汇报人:
交点性质
交点个数:直线与抛物线可能有一个或两个交点 交点位置:交点位于抛物线的对称轴上或对称轴的一侧 交点坐标:通过联立方程求得交点的坐标 交点性质的应用:判断直线与抛物线的位置关系求解相关问题
直线与抛物线平行无交点
平行
直线与抛物线平行交点在无穷远处
直线与抛物线平行交点在抛物线上
直线与抛物线平行交点在直线两侧
交点坐标的求 法:联立直线 与抛物线的方 程解得交点的x 坐标和y坐标。
交点的性质: 交点是直线与 抛物线的公共 点满足两个方
程。
交点的几何意 义:交点是直 线与抛物线的 交点也是它们
相切的点。
交点与切线的 关系:在切点 处切线的斜率 等于该点的导
数值。
交点与参数关系
当参数为0时直线与抛物线交于原点 当参数不为0时直线与抛物线交于两点与参数的正负有关 参数的正负决定了交点的位置和数量 参数的变化会影响交点的位置和数量
抛物线开口大小变化对位置关系的影响
开口大小变化:影响抛物线的位置关系
开口向上:抛物线与x轴交点随开口增大而增多
开口向下:抛物线与x轴交点随开口减小而减少
开口大小变化对直线与抛物线位置关系的影响:开口增大时直线与抛物线交点增多;开口减小时直线与抛物线交 点减少

“直线与抛物线的关系”精讲精练

“直线与抛物线的关系”精讲精练

直线与抛物线的关系【直线与抛物线的位置关系】直线与抛物线的位置关系:直线与抛物线有两个公共点;直线与抛物线有一个公共点; 直线与抛物线没有公共点. 直线与抛物线位置关系的判断:将直线与抛物线方程联立方程组,消去x 或y ,化得形如20ax bx c ++=的式子.1、当0a =时,方程20ax bx c ++=为一次方程,只有一解,即直线与抛物线只有一个公共点,此时直线与抛物线不是相切,而是相交(直线与抛物线对称轴平行或者重合).2、当0a ≠时,方程20ax bx c ++=为二次方程,①若0∆>,则方程有两个不相等的实数根,此时直线与抛物线相交于两点; ②若0∆=,则方程有两个相等的实数根,此时直线与抛物线相切; ③若0∆<,则方程没有实数根,此时直线与抛物线相离(即没有公共点). 【直线与抛物线相交的弦长】1、弦长公式:设直线交抛物线于点11(,)A x y 、22(,)B x y ,则A B AB x x =-2、若弦是“焦点弦”,则其长为12AB x x p =++ 【例题】1、经过x y 82=的焦点F 作与对称轴成3π的直线与抛物线相交于A 、B 两点,则AB =2、已知顶点在原点,焦点在x 轴上的抛物线被直线21y x =+3、直线2y x =-与抛物线22y x =相交于A 、B 两点,则O A O B ⋅=4、已知直线l :4y kx =-与抛物线C :28y x =有且只有一个公共点,则实数k = 5、抛物线2y x =上距直线24x y -=最近的点的坐标是6、过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线 ( )A .有且仅有一条B .有且仅有两条C .有无数条D .不存在7、已知抛物线x y 42=截直线b x y +=2所得的弦AB 的长为53,P 是其对称轴上一点,若39PAB S ∆=,则P 点的坐标.8、已知抛物线2y x =-与直线(1)y k x =+相交于,A B 两点,当OAB ∆时,求k 的值9、已知直线l :1y kx =+和抛物线28y x =.(1)若直线l 与抛物线有两个公共点,求k 的取值范围;(2)若直线l 与抛物线只有一个公共点,求k 的取值范围;(3)若直线l 与抛物线没有公共点,求k 的取值范围10、直线y x b =+与抛物线2(1)y x =-交于A 、B 两点,(!)求弦长AB 关于b 的函数关系式; (2)若弦AB 的中点M 落在圆224x y +=内部,求实数b 的取值范围.11、已知抛物线26y x =,过点(4,1)P 引一弦,使它恰好在点P 被平分,求这条弦所在的直线方程. 【练习】1、 已知直线2y x =-与抛物线2y ax =(0a ≠)相交于A 、B 两点,且O A O B ⊥,则实数a =2、 求过定点(0,1)M ,且与抛物线22y x =只有一个公共点的直线方程.3、已知(0,1),(3,2)A B -,P 是抛物线132+=x y 上任一点,求△PAB 面积最小值及此时P 点的坐标.4、已知抛物线的顶点在坐标原点,对称轴为轴,且与圆224x y +=相交的公共弦长等于,求此抛物线的方程.5、A 为抛物线272y x =-上一点,F 为抛物线的焦点,1198AF =,求过点F 且与OA 垂直的直线l 的方程.6、已知抛物线的顶点在原点,它的准线过椭圆)0(12222>>=+b a by ax 的一个焦点F ,且垂直于椭圆两焦点所在直线,已知抛物线与椭圆的一个交点为)362,32(M ,求椭圆和抛物线的方程.7、已知抛物线)0(22>=p px y 有一个内接直角三角形,直角顶点在原点,斜边长为角边的方程是2y x =,求抛物线的方程.8、已知点1122(2,8),(,),(,)A B x y C x y 在抛物线22y px =(0p >)上,ABC ∆的重心与此抛物线的焦点F 重合.(1)求出该抛物线的方程;(2)求出线段BC 中点M 的坐标;(3)求BC 所在直线的方程.。

直线与抛物线的位置关系

直线与抛物线的位置关系

第3课时 直线与抛物线的位置关系一、直线与抛物线的位置关系1.直线与抛物线公共点的个数可以有0个、1个或2个. 将直线方程与抛物线方程联立,消元后得到一元二次方程,若Δ=0,则直线与抛物线相切,若Δ>0,则直线与抛物线相交,若Δ<0,则直线与抛物线没有公共点.特别地,当直线与抛物线的轴平行时,直线与抛物线有一个公共点.2.在求解直线与抛物线的位置关系的问题时,要注意运用函数与方程思想,将位置关系问题转化为方程根的问题.题型一、直线与抛物线的位置关系例1、已知抛物线C :y 2=-2x ,过点P (1,1)的直线l 斜率为k ,当k 取何值时,l 与C 有且只有一个公共点,有两个公共点,无公共点?[解析] 直线l :y -1=k (x -1),将x =-y 22代入整理得,ky 2+2y +2k -2=0.(1)k =0时,把y =1代入y 2=-2x 得,x =-12,直线l 与抛物线C 只有一个公共点(-12,1).(2)k ≠0时,Δ=4-4k (2k -2)=-8k 2+8k +4.由Δ=0得,k =1±32, ∴当k <1-32或k >1+32时,Δ<0,l 与C 无公共点.当k =1±32时,Δ=0,l 与C 有且只有一个公共点. 当1-32<k <1+32且k ≠0时,Δ>0,l 与C 有两个公共点. 综上知,k <1-32或k >1+32时,l 与C 无公共点;k =1±32或k =0时,l 与C 只有一个公共点;1-32<k <0或0<k <1+32时,l 与C 有两个公共点. 例2、已知点A(0,2)和抛物线C :2y =6x ,求过点A 且与抛物线C 有且仅有一个公共点的直线l 的方程.[解析] 当直线l 的斜率不存在时,由直线l 过点A (0,2)可知,直线l 就是y 轴,其方程为x =0. 由⎩⎨⎧x =0y 2=6x,得y 2=0.因此,此时直线l 与抛物线C 只有一个公共点O (0,0). 如果直线l 的斜率存在,则设直线l 的方程为y =kx +2.这个方程与抛物线C 的方程联立得方程组 ⎩⎨⎧y =kx +2y 2=6x,由方程组消去x 得方程,ky 2-6y +12=0① 当k =0时,得-6y +12=0,可知此时直线l 与抛物线相交于点()23,2. 当k ≠0时,关于y 的二次方程①的判别式Δ=36-48k .由Δ=0得k =34,可知此时直线l 与抛物线C 有且仅有一个公共点,直线l 的方程为y =34x +2,即3x -4y+8=0.因此,直线l 的方程为x =0,或3x -4y +8=0,或y =2. 题型二、弦长问题例3、顶点在原点,焦点在x 轴上的抛物线,截直线2x -y +1=0所得弦长为15,则抛物线方程为______. [答案] y 2=12x 或y 2=-4x例4、已知抛物线y 2=4x 的一条过焦点的弦AB ,A (x 1,y 1)、B (x 2,y 2),AB 所在直线与y 轴交点坐标(0,2),则1y 1+1y 2=__________________.[答案] 12 题型三、对称问题例5、已知抛物线y 2=x 上存在两点关于直线l :y =k (x -1)+1对称,求实数k 的取值范围.[解析] 设抛物线上的点A (y 21,y 1)、B (y 22,y 2)关于直线l 对称.则⎩⎨⎧k ·y 1-y 2y 21-y 22=-1y 1+y 22=k (y 21+y222-1)+1,得⎩⎨⎧y 1+y 2=-k y 1y 2=k 22+1k -12,∴y 1、y 2是方程t 2+kt +k 22+1k -12=0的两个不同根.∴Δ=k 2-4(k 22+1k -12)>0得-2<k <0.故实数k 的取值范围是-2<k <0.例6、求过点P (0,1)且与抛物线y 2=2x 只有一个公共点的直线方程.[正解] (1)若直线斜率不存在,则过点P (0,1)的直线方程为x =0,由⎩⎨⎧ x =0y 2=2x ,得⎩⎨⎧x =0y =0.即直线x =0与抛物线只有一个公共点.(2)若直线的斜率存在,设为k ,则过点P (0,1)的直线方程为y =kx +1,由方程组⎩⎨⎧y =kx +1,y 2=2x .消去y ,得k 2x 2+2(k -1)x +1=0.当k =0时,得⎩⎨⎧x =12.y =1.即直线y =1与抛物线只有一个公共点;当k ≠0时,直线与抛物线只有一个公共点,则Δ=4(k -1)2-4k 2=0,所以k =12,直线方程为y =12x +1.综上所述,所求直线方程为x =0或y =1或y =12x +1.课后作业一、选择题1.直线y =kx -2交抛物线y 2=8x 于A 、B 两点,若AB 中点的横坐标为2,则k =( ) A .2或-2 B .-1 C .2D .3[答案] C[解析] 由⎩⎪⎨⎪⎧y 2=8xy =kx -2得k 2x 2-4(k +2)x +4=0,则4(k +2)k 2=4,即k =2. 2.过抛物线y 2=4x 的焦点的直线交抛物线于A 、B 两点,O 为坐标原点,则OA →·OB →的值是( )A .12B .-12C .3D .-3[答案] D[解析] 设A (y 214,y 1)、B (y 224,y 2),则OA →=(y 214,y 1),OB →=(y 224,y 2),则OA →·OB →=(y 214,y 1)·(y 224,y 2)=y 21y 2216+y 1y 2,又∵AB 过焦点,则有y 1y 2=-p 2=-4,∴OA →·OB →=(y 1y 2)216+y 1y 2=(-4)216-4=-3,故选D.3.已知AB 是过抛物线2x 2=y 的焦点的弦,若|AB |=4,则AB 的中点的纵坐标是( )A .1B .2 C.58 D.158[答案] D[解析] 如图所示,设AB 的中点为P (x 0,y 0),分别过A ,P ,B 三点作准线l 的垂线,垂足分别为A ′,Q ,B ′,由题意得|AA ′|+|BB ′|=|AB |=4,|PQ |=|AA ′|+|BB ′|2=2,又|PQ |=y 0+18,∴y 0+18=2,∴y 0=158.4.设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若F A →+FB →+FC →=0,则|F A →|+|FB →|+|FC →|等于( )A .9B .6C .4D .3[答案] B[解析] 设A 、B 、C 三点坐标分别为(x 1,y 1)、(x 2,y 2)、(x 3,y 3).由题意知F (1,0),因为F A →+FB →+FC →=0,所以x 1+x 2+x 3=3.根据抛物线定义,有|F A →|+|FB →|+|FC →|=x 1+1+x 2+1+x 3+1=3+3=6.故选B.5.已知抛物线y 2=4x 的焦点为F ,过焦点F 的直线与抛物线交于点A (x 1,y 1)、B (x 2,y 2),则y 21+y 22的最小值为( )A .4B .6C .8D .10[答案] C[解析] 当直线的斜率不存在时,其方程为x =1,∴y 21=4,y 22=4, ∴y 21+y 22=8.当直线的斜率存在时,设其方程为y =k (x -1)(k ≠0),由⎩⎪⎨⎪⎧y =k (x -1)y 2=4x ,得ky 2-4y -4k =0, ∴y 1+y 2=4k,y 1y 2=-4,∴y 21+y 22=(y 1+y 2)2-2y 1y 2=16k2+8, ∵k 2>0,∴y 21+y 22>8,综上可知,y 21+y 22≥8,故y 21+y 22的最小值为8.6.已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A 、B 两点,F 为C 的焦点.若|F A |=2|FB |,则k =( )A.13B.23C.23D.223[答案] D[解析] 设A 、B 两点坐标分别为(x 1,y 1)、(x 2,y 2),由⎩⎪⎨⎪⎧y =k (x +2)y 2=8x 消去y 得,k 2x 2+4x (k 2-2)+4k 2=0, ∴x 1+x 2=4(2-k 2)k 2,x 1x 2=4.由抛物线定义得|AF |=x 1+2,|BF |=x 2+2, 又∵|AF |=2|BF |,∴x 1+2=2x 2+4,∴x 1=2x 2+2代入x 1x 2=4,得x 22+x 2-2=0, ∴x 2=1或-2(舍去),∴x 1=4,∴4(2-k 2)k 2=5,∴k 2=89,∵k >0,∴k =223. 二、填空题6.已知F 是抛物线y 2=4x 的焦点,M 是这条抛物线上的一个动点,P (3,1)是一个定点,则|MP |+|MF |的最小值是______________________.[答案] 4[解析] 过P 作垂直于准线的直线,垂足为N ,交抛物线于M ,则|MP |+|MF |=|MP |+|MN |=|PN |=4为所求最小值.7.在已知抛物线y =x 2上存在两个不同的点M 、N 关于直线y =kx +92对称,则k 的取值范围为__________________.[答案] k >14或k <-14[解析] 设M (x 1,x 21),N (x 2,x 22)关于直线y =kx +92对称, ∴x 21-x 22x 1-x 2=-1k ,即x 1+x 2=-1k .设MN 的中点为P (x 0,y 0),则x 0=-12k ,y 0=k ×(-12k )+92=4.因中点P 在y =x 2内,有4>(-12k )2⇒k 2>116,∴k >14或k <-14.三、解答题8.已知抛物线y 2=6x 的弦AB 经过点P (4,2),且OA ⊥ OB (O 为坐标原点),求弦AB 的长.[解析] 由A 、B 两点在抛物线y 2=6x 上,可设A (y 216,y 1)、B (y 226,y 2).因为OA ⊥OB ,所以OA →·OB →=0.由OA →=(y 216,y 1),OB →=(y 226,y 2),得y 21y 2236+y 1y 2=0.∵y 1y 2≠0,∴y 1y 2=-36,① ∵点A 、B 与点P (4,2)在一条直线上, ∴y 1-2y 216-4=y 1-y 2y 216-y 226, 化简得y 1-2y 21-24=1y 1+y 2,即y 1y 2-2(y 1+y 2)=-24. 将①式代入,得y 1+y 2=-6.②由①和②,得y 1=-3-35,y 2=-3+35,从而点A 的坐标为(9+35,-3-35),点B 的坐标为(9-35,-3+35),所以|AB |=(x 1-x 2)2+(y 1-y 2)2=610. 9.已知抛物线C :y 2=2px (p >0)过点A (1,-2).(1)求抛物线C 的方程,并求其准线方程;(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求出直线l 的方程;若不存在,说明理由. [解析] (1)将(1,-2)代入y 2=2px ,得(-2)2=2p ·1, ∴p =2.故所求的抛物线C 的方程为y 2=4x ,其准线方程为x =-1. (2)假设存在符合题意的直线l ,其方程为y =-2x +t由⎩⎪⎨⎪⎧y =-2x +t ,y 2=4x .消去x 得y 2+2y -2t =0. 因为直线l 与抛物线C 有公共点,所以Δ=4+8t ≥0, 解得t ≥-12.另一方面,由直线OA 与l 的距离d =55, 可得|t |5=15,解得t =±1. 综上知:t =1.所以符合题意的直线l 存在,其方程为2x +y -1=0. 10.已知抛物线y 2=-x 与直线y =k (x +1)相交于A ,B 两点.(1)求证:OA ⊥OB ;(2)当△OAB 的面积等于10时,求k 的值.[解析] (1)如图所示,由⎩⎪⎨⎪⎧y 2=-xy =k (x +1),消去x 得,ky 2+y -k =0.设A (x 1,y 1)、B (x 2,y 2),由根与系数的关系得y 1·y 2=-1,y 1+y 2=-1k .∵A ,B 在抛物线y 2=-x 上,∴y 21=-x 1,y 22=-x 2,∴y 21·y 22=x 1x 2. ∵k OA ·k OB =y 1x 1·y 2x 2=y 1y 2x 1x 2=1y 1y 2=-1,∴OA ⊥OB .(2)设直线与x 轴交于点N ,显然k ≠0. 令y =0,得x =-1,即N (-1,0). ∵S △OAB =S △OAN +S △OBN=12|ON ||y 1|+12|ON ||y 2|=12|ON |·|y 1-y 2|, ∴S △OAB =12·1·(y 1+y 2)2-4y 1y 2=12(-1k)2+4. ∵S △OAB =10, ∴10=121k 2+4,解得k =±16.。

直线与抛物线的位置关系

直线与抛物线的位置关系

变式练习:
倾斜角为1350 的 直线,经过抛物线 y2 = 8x的焦点,则 截得的弦长是多少?
O
xቤተ መጻሕፍቲ ባይዱ
(方法总结)
判断直线与抛物线的对称轴情况 平 行 不平行 联立直线和抛物线 直线与抛物线相 交(一个交点) 利用弦长公式
课后作业:
习题8.6 2 题
y
O
x
; 符咒 hnq913dgk 说“全国啤酒研讨会”时声调至少提高了三四度,而且站了起来,好像是他在大会作报告一样。“我刚来第一天就见过冯工了, 高高的个子,人有点偏瘦,看起来特别和蔼,听蒋主任介绍时知道他是中国第一代啤酒专家,可没想到竟是这么了不起的人物。 今后一定要好好向他请教。”马启明被他在学术界的影响所折服,带着敬佩的口气说道。冯力雄是响当当的专家、是绝对的前 辈,却从不摆前辈的架子,也从不保留自己的技术,震撼成了马启明的唯一感觉。至此以后,马启明成了冯力雄忠实的铁杆粉 丝。接着张钢铁又跟马启明聊起了啤酒厂的历史,从过去到现在如数家珍般一一说过,至此马启明对啤酒厂发展历史也有了一 个大概的了解。原来花开啤酒厂的前身竟是个油酒作坊,榨油、做白酒,只有一百来人,大跃进时代大家伙的积极性都很高, 有活干,有钱拿,在那个时候日子过得还算蛮滋润的。直到1970年,一名在上海当官的同乡带来一条信息:现在上海青年人都 喜欢喝啤酒,啤酒供不应求。如果你们愿意生产啤酒,他可以帮助你们联系啤酒厂去学习。当时也听外面回来的人说啤酒营养 价值很高,在大城市非常受欢迎,常常有钱都买不到。但绿溪镇却没有人见过啤酒,啤酒是绿色的还是红色的?是白色的还是 黑色的?人喝了“屁酒”是不是爱放屁?中国人喝了啤酒以后会不会慢慢地长成深眼睛、高鼻子的外国人?大家根本不知道啤 酒是什么玩意儿,只知道它是个洋玩意儿,卖得十分火爆。大城市年轻人结婚能搞到几箱啤酒那是十分荣耀的事。厂里几个人 一商量,当即向上级主管部门汇报请示,主管局领导一听销路这么好、又是个时髦产品,也高兴,很快就批准了。于是马上找 到这位当官的同乡,通过他的关系,联系到上海啤酒厂。厂里特地选了几个年纪轻、头脑灵活的人去上海学习啤酒生产技术, 其中就有张钢铁,当时他还不到二十岁,他们没有一点理论基础,完全凭着一股热情便奔向上海。在上海时,他们天天泡在车 间里,边学边做笔记,每天晚上睡觉前几个人必定要先把白天学到的技术再复习一遍,当时的那股学习热情,让轻易不赞扬外 地人的上海师傅都佩服得直坚大拇指。听到这里,马启明想起了曾经看过的一篇文章,说道:“你们为了学习啤酒技术跑到上 海去,奉献了自己的激情,就像日本人为了啤酒奉献自己的腿。这里有个故事拿出来与大伙分享一下。”张钢铁愕然:“没得 命,为了啤酒贡献自己的腿?咋回事?赶快说出来听听。”马启明却纳闷地看着他,问道:“没得命,又说日本话吗?”在马 启明看来,痛恨什么你就拿什么作为靶子来说说,一解心头之恨。“噢,没得命也是我们这里的方言,就是了不得、不得了的 意思。”马启明笑了笑,便打开话匣子:“最初的时候,只有德国拥有啤酒酿造的

直线和抛物线的关系

直线和抛物线的关系

(3)当 0即b<-2时,直线与抛物线相离
例2 求过定点P(0,1)且与抛物线 y 2x 只有一个公共点的直线的方程.
2
解: (1)若直线斜率不存在,则过点P的直线方程是 x=0.
x 0 由{ 2 y 2x
x 0 得 { y 0
故直线 x=0与抛物线只有一个交点. (2)若直线斜率存在,设为k,则过P点的直线方程是 y=kx+1, y kx 1 由方程组 { y 2 2x 消去 y 得
2 直线和抛物线方程联立的方程组 解的个数与位置关系
若消元得到二次方程,则
0 方程组一组解 相切 0 方程组没有解 相离
若消元得到一次方程,则方程组只有一组 解,直线和抛物线的对称轴平行或重合,为相 交关系.
0
方程组两组解
相交
课堂小结
1、判断直线 L与圆锥曲线C的位置关系时, 可将直线L的方程代入曲线C的方程,消去y 得一个关于变量X的一元方程ax2+bx+c=0
1 直线和抛物线的位置关系有哪几种?
相交: 直线和抛物线有两个公共点,或一 个公共点(直线和抛物线的对称轴平 行或重合). 相切: 直线和抛物线有且只有一个公共点, 且直线和抛物线的对称轴不平行也 不重合. 相离: 直线和抛物线没有公共点.
1 直线和抛物线的位置关系有哪几种?
y L2 O L4 L1
例3 在抛物线 y x 上求一点,使它到直线 2x-y-4=0的距离最小.
2
解:设P(x,y)为抛物线 y x 上任意一点, 则P到直线2x-y-4=0的距离
2
| 2x y 4 | | 2x x 4 | | (x 1) 3 | d 5 5 5

知识讲解_直线与抛物线的位置关系(理)_基础

知识讲解_直线与抛物线的位置关系(理)_基础

直线与抛物线的位置关系【学习目标】1.能正熟练使用直接法、待定系数法、定义法求抛物线的方程;2.能熟练运用几何性质(如范围、对称性、顶点、离心率、准线)解决相关问题;3.能够把直线与抛物线的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题. 【知识网络】【要点梳理】 要点一、抛物线的定义定义:平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线.要点诠释:上述定义可归结为“一动三定”:一个动点,一定点F (即焦点),一定直线(即准线),一定值1(即动点M 到定点F 的距离与定直线l 的距离之比).要点二、抛物线的标准方程 抛物线标准方程的四种形式:22y px =,22y px =-,22x py =,22x py =-(0)p >抛物线抛物线的定义与标准方程 抛物线的几何性质 直线与抛物线的位置关系 抛物线的综合问题抛物线的弦问题抛物线的准线要点诠释:求抛物线的标准方程应从“定形”、“定式”和“定值”三个方面去思考.“定形”是指以坐标轴为对称轴的情况下,焦点在哪条坐标轴上;“定式”根据“形”设抛物线方程的具体形式;“定值”是指用定义法或待定系数法确定p 的值.要点三、抛物线的几何性质 范围:{0}x x ≥,{}y y R ∈,抛物线y 2=2px (p >0)在y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标(x ,y )的横坐标满足不等式x≥0;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸。

抛物线是无界曲线。

对称性:关于x 轴对称抛物线y 2=2px (p >0)关于x 轴对称,我们把抛物线的对称轴叫做抛物线的轴。

抛物线只有一条对称轴。

顶点:坐标原点抛物线y 2=2px (p >0)和它的轴的交点叫做抛物线的顶点。

抛物线的顶点坐标是(0,0)。

离心率:1e =.抛物线y 2=2px (p >0)上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率。

高二数学直线与抛物线

高二数学直线与抛物线

·
L
则由
y=-4/3 x+b
y2=64x
消x化简得 y2+48y-48b=0
△=482-4×(-48b)=0
∴b=-12 ∴切线方程为:y=-4/3 x-12 解方程组 y=-4/3 x-12 y2=64x 得 x=9 y=-24
∴切点为P(9,-24)
切点P到L的距离d=
| 4 9 3 ( 24) 46 | 4 2 32
得到一元二次方程
计算判别式
直线与抛物 线相交(一 个交点)
>0 相交
=0 相切
<0 相离
三、判断位置关系方法总结(方法二) 判断直线是否与抛物线的对称轴平行 平行 不平行 计算判别式 直线与抛物 线相交(一个 交点)
>0 相交 =0 相切 <0 相离
四、直线与圆锥曲线位 置关系判断方法的回顾
直线与圆 把直线方程代入圆的方程 得到一元 计 算
斯就是遥远的北方的一个国家。他在那里执行任务,但是因为你家祖先在那里不适应气候,很快就病倒了。病了还不算可怜,可怜的是他 因为只懂我们现在说的中原话,不会讲也听不懂那边的俄语,就没有办法和当地人进行交流,也没有办法买药治病。于是病就一直没有好 转。傅元甲老前辈也不能一直因为生病而不去完成任务,于是他就带病继续奔波。”说了这么一大段,先喝一口茶水。边喝边瞅了一下那 两妞,发现她们已经开始根据我的牛皮在自己脑中飞速的想象着情节发展,那傻傻的听书人的表情真逗。“咳咳,我继续说。傅老前辈一 路向北的走着,在一间名叫九龙冰室的客栈停了下了,因为他实在太累了,而且还带病在身,即使再能打也只是空有一身武术。他刚走进 客栈,就遇到了有几个本地人在闹事,客栈老板是个女子,名字好像叫伊莎贝拉。当时店里的小二都被闹事的人打伤了,他们还打算欺负 客栈的女主子。傅老前辈当然抱打不平,上前去教训了那些闹事的人渣!”我越讲越激动,连忙又喝了几口水。“闹事的人也不是无名小 辈,他们也有相当的功夫,傅老前辈虽然身怀中原绝世武术,但是面对俄罗斯的奇特功夫,再加上他有恙在身,勉强只能招架着。这时候, 门外突然杀进来一男子,三下五除二就把贼人给打倒了。但是由于傅老前辈带病出战,动了真气,加之被贼人武功所伤,也最后支撑不住 倒了下去。”缓一会儿吧,说的好累。“然后呢?然后呢?”大和小琴迫不及待地向我问来。“然后啊,就是”没等我继续接着吹牛皮吹 下去,门外突然闯进一个人来。我乍眼一看,居然是翠大娘。翠大娘来得匆匆,也不看我在那里坐着喝茶,就往大那走去,关心地问道, “您没事吧?刚听到您大声叫唤,是怎么了吗?”什么?!刚听到?我讲书都讲了一大段了,你这才来,还装着时事发之后第一时间冲过 来的?你也太会演戏了吧,翠大娘!我心中有无限的鄙视了这个丫环主管。大貌似听我讲故事听得很来趣,一时被翠大娘打断了,明显有 点不高兴。但是翠大娘毕竟是自己的长辈,也不好不回她。“翠大娘,让你担心了。我只是不小心磕了一下,现在已经好了。”咦!想不 到大帮我瞒着事情的真相,看来大已经在偏袒我了。可能是想把故事给听完吧。听完大的说词之后,翠大娘把目光投向我这,蓦地发现我 坐着并且在悠闲地喝着茶,顿时气不打一处来,对我吼道,“是谁叫你坐下来的?谁叫你用这里的杯子喝茶的?”我一听,知道出事了, 连忙站起来,弓着身子退到门角处等着被骂。翠大娘刚想破口大骂,谁知道外头传来呼唤声,翠大娘应了一声之后,回头对我说,“把你 留在这里肯定会跟我们添麻烦,你跟我出来。”说罢,转身就走出去了。我也伸了伸身子,准备跟着

直线与抛物线的位置关系

直线与抛物线的位置关系

[思考尝试· 夯基] 1.思考判断(正确的打“√”,错误的打“×”) (1)若一条直线与抛物线只有一个公共点则二者一定 相切.( )
(2)过点(1, 0)的直线 l 被抛物线 y2=4x 截得的最短弦 长为 4.( )
(3)直线 x- 2y+1=0 与抛物线 y2=x 的关系是相 交.( )
解析:(1)错误.直线与抛物线只有一个公共点,除 了相切情况,还有直线与抛物线对称轴平行的情况. (2)正确.(1,0)恰为 y2=4x 的焦点,过焦点的弦中 通径是最短的,其通径为 4. x-2y+1=0, 2 (3)错误.由 2 ⇒y -2y+1=0,Δ=0, y = x
3.抛物线 y=ax2+1 与直线 y=x 相切,则 a 等于 ( ) 1 1 1 A. B. C. D.1 8 4 2
2 y = ax +1, 解析:由 消去 y,得 ax2-x+1=0. y=x,
因为直线 y=x 与抛物线 y=ax2+1 相切, 所以方程 ax2-x+1=0 有两相等实根.
5 (x1-x2)2= 4 1 5(a2-8a). 4 因为|AB|= 15,
5 [(x1+x2)2-4x1x2]= 4
1 所以 5(a2-8a)= 15, 4
即 a2-8a-48=0,解得 a=-4 或 a=12. 所以所求抛物线方程为:x2=-4y 或 x2=12y.
类型 3 抛物线的中点弦及弦长问题 [典例 3] 过点 Q(4,1)作抛物线 y2=8x 的弦 AB,恰 被点 Q 所平分,求弦 AB 所在直线的方程. 解:法一:设以点 Q 为中点的弦 AB 的端点坐标为
类型 1 直线与抛物线的位置关系(自主研析) [典例 1] 已知直线 l:y=kx+1,抛物线 C:y2=4x, 当 k 为何值时,l 与 C 有一个公共点、两个公共点、没有 公共点? y=kx+1, [自主解答] 将 l 和 C 的方程联立得 2 y =4x,

知识讲解_直线与抛物线的位置关系_基础

知识讲解_直线与抛物线的位置关系_基础

直线与抛物线的位置关系【学习目标】1.能正熟练使用直接法、待定系数法、定义法求抛物线的方程;2.能熟练运用几何性质(如范围、对称性、顶点、离心率、准线)解决相关问题;3.能够把直线与抛物线的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题.【知识网络】【要点梳理】要点一、抛物线的定义定义:平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.要点诠释:上述定义可归结为“一动三定”:一个动点,一定点F(即焦点),一定直线(即准线),一定值1(即动点M到定点F的距离与定直线l的距离之比).要点二、抛物线的标准方程抛物线标准方程的四种形式:22y px=,22y px=-,22x py=,22x py=-(0)p>抛物线抛物线的定义与标准方程抛物线的几何性质直线与抛物线的位置关系抛物线的综合问题抛物线的弦问题抛物线的准线图像方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)焦点,02p F ⎛⎫⎪⎝⎭,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线2px =-2p x =2p y =-2p y =要点诠释:求抛物线的标准方程应从“定形”、“定式”和“定值”三个方面去思考.“定形”是指以坐标轴为对称轴的情况下,焦点在哪条坐标轴上;“定式”根据“形”设抛物线方程的具体形式;“定值”是指用定义法或待定系数法确定p 的值.要点三、抛物线的几何性质 范围:{0}x x ≥,{}y y R ∈,抛物线y 2=2px (p >0)在y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标(x ,y )的横坐标满足不等式x≥0;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸。

抛物线是无界曲线。

对称性:关于x 轴对称抛物线y 2=2px (p >0)关于x 轴对称,我们把抛物线的对称轴叫做抛物线的轴。

直线与抛物线的位置关系(附学生使用讲义)

直线与抛物线的位置关系(附学生使用讲义)

直线与抛物线的位置关系一、 知识点1)直线与抛物线的位置关系的判断2)中点问题3)弦长问题4)韦达定理应用二、 教学过程1、 直线与抛物线位置关系例1 已知抛物线的方程为24y x =,直线l 过定点(2,1)P -,斜率为k ,k 为何值时,直线l 与抛物线只有一个公共点;两个公共点;没有公共点?解:设直线方程为1(2)y k x -=+,由方程组21(2)4y k x y x -=+⎧⎨=⎩可得 244(21)0ky y k -++=当0k =,一个公共点,当0k ≠,0∆=即11,,2k or k =-=时一个公共点, 当0k ≠,0∆>即11,02k k -<<≠时两个公共点 当0k ≠,0∆<即1-1,2k k <>时无公共点 说明:1)联立方程后,消元时,可以选择将抛物线方程代入直线方程2)判断位置关系用∆方法,当需注意二次项的系数的讨论,其中二次项系数为零对应的直线与抛物线的对称轴平行3)直线与抛物线的位置关系仍分相交、相切、相离三种情形,但当相交时有可能为一个或两个公共点,也即一个公共点不一定相切配套练习:求过点(1,2)P 且与抛物线24y x =只有一个交点的直线方程参考答案:2,,10y or x y =+-=2、中点问题例2 已知AB 为抛物线22(0)y px p =>的弦,1122(,),(,)A x y B x y ,00(,)M x y 为,A B 的中点,求证:1202AB p p k y y y ==+ 配套练习:过点Q (4,1)作抛物线y 2=8x 的弦AB ,若弦AB 恰被Q 平分,求弦AB 所在直线的方程.参考答案:4x -y -15=0.3、弦长公式例3 已知顶点在原点,焦点在y 轴上的抛物线截直线x -2y -1=0所得的弦长为15,求此抛物线的方程.解:设抛物线方程为x 2=ay (a ≠0),由方程组⎩⎪⎨⎪⎧x 2=ay ,x -2y -1=0,消去y ,得2x 2-ax +a =0. ∵直线与抛物线有两个交点,∴Δ=(-a )2-4×2×a >0,即a <0或a >8.∴|AB |==145(a 2-8a )a =-4或a =12, ∴所求抛物线的方程为x 2=-4y 或x 2=12y .4、韦达定理应用例4 若点 P (1,2),A (x 1,y 1),B (x 2,y 2)是抛物线y 2=2px (p >0)上的不同的三个点,直线AP ,BP 的斜率分别是k 1,k 2,若k 1+k 2=0,求直线AB 的斜率k .分析1:设直线AP :12(1)y k x -=-,联立抛物线方程24y x =可知,1142y k =-,同理2142y k =--,则1221p k y y ==-+ 分析2:设AB :y kx m =+,联立抛物线方程24y x =可知,2440ky y m --= 又121244022k k y y +=+=++,则1244y y k +=-=,所以1k =- 配套练习:已知AB 为抛物线22(0)y px p =>的动弦,且90AOB ∠=,求证直线AB 过定点参考:过定点(2,0)p直线与抛物线的位置关系讲义一、知识点1)直线与抛物线的位置关系的判断2)中点问题3)弦长公式4) 韦达定理应用二、教学过程2、 直线与抛物线位置关系例1 已知抛物线的方程为24y x =,直线l 过定点(2,1)P -,斜率为k ,k 为何值时,直线l 与抛物线只有一个公共点;两个公共点;没有公共点?练习:求过点(1,2)P 且与抛物线24y x =只有一个交点的直线方程2、中点问题例2 已知AB 为抛物线22(0)y px p =>的弦,1122(,),(,)A x y B x y ,00(,)M x y 为,A B 的中点,求证:1202AB p p k y y y ==+练习:过点Q (4,1)作抛物线y 2=8x 的弦AB ,若弦AB 恰被Q 平分,求弦AB 所在直线的方程.3、弦长公式例3 已知顶点在原点,焦点在y 轴上的抛物线截直线x -2y -1=0所得的弦长为15,求此抛物线的方程.4、韦达定理应用例4 若点 P (1,2),A (x 1,y 1),B (x 2,y 2)是抛物线y 2=2px (p >0)上的不同的三个点,直线AP ,BP 的斜率分别是k 1,k 2,若k 1+k 2=0,求直线AB 的斜率k .练习:已知AB 为抛物线22(0)y px p =>的动弦,且90AOB ∠=,求证:直线AB 过定点。

直线与抛物线位置关系

直线与抛物线位置关系

【学习目标】直线与抛物线的位置关系及判断方法(1) 直线和抛物线有三种位置关系:相交(两个公共点或一个公共点);相离(无公共点);相切(一 个公共点)。

(2)直线和抛物线的位置关系的判断: 设直线方程:,m kx y +=抛物线方程:,22px y =两方程联立消去y 可得方程:222(22)0k x km p x m +-+=222(22)0k x km p x m +-+=,一般形式为20,Ax Bx C ++=若A=0,则直线与抛物线的对称轴平行或重合,直线与抛物线相交且只有一个交点;若A 0≠其判别式为∆=24B AC -当∆>0时,直线与抛物线相交且直线和抛物线有两个交点;当∆=0时,直线与抛物线相切且只有一个交点;当∆<0时,直线与抛物线相离,没有交点。

(注意:把直线和圆锥曲线的方程联立后得到方程20,ax bx c ++=它不一定是一元二次方程,要分析2x 的系数a ,才能确定。

如果不能确定,要分类讨论)。

(3)中点弦问题:在抛物线y 2=2px (p >0)中,以P (x 0,y 0)为中点的弦所在直线的斜率k =p y 0.考向一:直线与抛物线的位置关系例1 已知抛物线24y x =过定点A(-2, 1)的直线l 的斜率为k,下列情况下分别求k 的 取值范围:(1)l 与抛物线有且仅有一个公共点;(2)l 与抛物线恰有两个公共点;(3) l 与抛物线没有公共点.考向二:弦长及中点弦问题例2、已知抛物线x y 22=,过点)1,2(Q 作一直线交抛物线于A 、B 两点,试求弦AB 的中点轨迹方程。

2.4.3直线与抛物线的位置关系 (第1课时,共1课时)考向三、 对称问题例3:已知抛物线y =ax 2-1(a ≠0)上总有关于直线x +y =0对称的相异两点,求a 的取值范围.考向四 定点与定值问题①定值问题 在几何问题中,有些问题和参数无关,这就是定值问题,解决这类问题常通过取参数和特殊值来确定“定值”是多少,或者将问题涉及的几何式转化为代数式或三角式,证明该式是恒定的。

直线和抛物线的位置关系整理

直线和抛物线的位置关系整理

直线和抛物线的位置关系1.直线与抛物线的位置关系:(1)位置关系的判定:联立直线:l y kx m =+和抛物线22(0)y px p =>消y 整理得:2222()0k x km p x m +-+=当0a ≠时0∆>⇔直线与抛物线相交,有两个不同公共交点0∆=⇔直线与抛物线相切,只有一个公共交点0∆<⇔直线与抛物线相离,没有公共交点当0a =时,则直线是抛物线的对称轴或是和对称轴平行的直线,此时直线与抛物线相交,只有一个公共交点,但不能成为相切(2)若直线与抛物线相交于1122(,),(,)A x y B x y ,则弦长AB =AB = 2.焦点弦问题: 设过抛物线)0(22≠=p px y 的焦点(,0)2p F 的直线与抛物线交于),(),,(1111y x B y x A , 直线与的斜率分别为21,k k ,直线的倾斜角为,则有 ①221p y y -=;②4221p x x =;③421-=k k ;④α221sin 2p p x x AB =++=, ⑤αcos 1-=p FA ,αcos 1+=p FB ;⑥112AF BF p+=, ⑦过,A B 两点做准线的垂线,垂足分别为,M N ,则090MFN ∠=, ⑧通径P AB 2=;⑨以弦AB 长为直径的圆总与准线相切题型一:交点个数问题例1. 抛物线C:x 4y 2=,直线L 过点P(0,1), 若L 与C 只有一个公共点,求直线L 的方程。

变式练习:已知直线l :1y kx =+和抛物线28y x =(1)若直线l 与抛物线有两个公共点,求k 的取值范围(2)若直线l 与抛物线只有一个公共点,求k 的取值范围(3)若直线l 与抛物线没有公共点,求k 的取值范围题型二:弦长问题例2.过抛物线x 2y 2=的焦点作倾斜角为45的直线交抛物线于A,B 两点,则线段AB 的长是多少?变式练习:已知抛物线x y 42=截直线b x y +=2所得的弦AB 的长为53,P 是其对称轴上一点,若S △PAB =39,求P 点的坐标。

直线与抛物线的位置关系

直线与抛物线的位置关系
1、直线与圆
y
0
x
2、直线和椭圆
y
F1 0
F2
x
3、直线与双曲线
y
渐进线方程
..
F
O
x
一、直线与抛物线位置关系种类
y 相离
O
相切
x
相交
一个交点或者 两个交点
二、判断方法探讨
1、直线与抛物线的对称轴平行
y
O
例:判断直线 y = 6与抛
物线 y2 =4x的位置
关系及求交点坐标?
x
计点坐标为(9,6)
二、判断方法探讨
1、直线与抛物线的对称轴平行
变式练习:
y
若直线y=kx+1与抛物
线y2= x仅有一个公共
点,则 k 的值?
O
x
2、直线与抛物线的对称轴不平行
y
O
例:判断直线 y = x -1与
抛物线 y2 =4x 的位置 关系及求弦长?
x 计算结果:
晚众叛亲离.悦悦,动作快些,这地方我一刻都不想呆.”一看见她就想起自己以前の白痴样,简直无地自容.“哎.”陈悦然开心地应下.所以,等陆羽收拾好东西出来客厅,发现早已人去楼空,留下一室の凌乱与垃圾.她没说什么,挽起袖子开始打扫卫生.傍晚时分,房东带着人来了,三下五除二就 把门锁换成新の,给了陆羽一把,其余の交还给房东.陆羽顺便告诉房东退租の事,并叮嘱说:“我那舍友已经搬出去,以后她找您拿钥匙不必给.”“好,”房东太太应下,语气关切地问,“那你找到房子了?剩下の三个月你一个人交租?”“嗯.”陆羽笑笑说,“我有事要出去一趟,可能需要三 两个月の时间,房租我会定期转帐の.”在人们眼里,一个十八岁就已经本科毕业の女孩跟天才儿童没区别,因此格外看重偏心.“哦,那这样吧,房租我给你减两百,”

14.直线和抛物线的位置关系3.4

14.直线和抛物线的位置关系3.4

x 2 2x C 0
由 Δ (2)
2
()
得 C=-1
又由()得 x=1,∴y=1.
4 (C) 0
故所求点的坐标是(1,1). 点评:此处用到了数形结合的方法.
y x2
y
p
O
x
2x-y-4=0
互动练习 1.过点(0,2)与抛物线 y 点的直线有( C) (A)1条 (B)2条 (C)3条 P (D)无数多条
直线和抛物线
的位置关系
一、直线和抛物线的位置关系
若消元得到二次方程,则 0 方程组两组解
0 0


相交
y
方程组一组解 方程组没有解
相切 相离
Oxຫໍສະໝຸດ 若消元得到一次方程, 直线和抛物线的对称轴平行或重合, 为相交关系.
思考:只有一个交点一定是相切吗?
例1.求过定点P(0,1)且与抛物线 y 2x 只有一个公共点的直线的方程.


A
O
.
M Q
F

x
B
k AB
又k AB
1 y
y 1 x2
1 y 1 即y 2 y x 2 0 y x2
当x1 x2 =2时, , y)为(2,0)满足y2 y x 2 0 (x
中点M轨迹方程为: y 2 y x 2 0
y2=64x
消x化简得 ∴b=-12
y2+48y-48b=0
△=482-4×(-48b)=0
∴切线方程为:y=-4/3 x-12 解方程组 y=-4/3 x-12 y2=64x 得 x=9 y=-24
∴切点为P(9,-24) 切点P到L的距离d=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

得到一元一次方程,容易 解出交点坐标为(9,6)
二、判断方法探讨
1、直线与抛物线的对称轴平行
变式练习:
y
若直线y=kx+1与抛物
线y2= x仅有一个公共
点,则 k 的值?
O
x
2、直线与抛物线的对称轴不平行
y
O
例:判断直线 y = x -1与
抛物线 y2 =4x 的位置 关系及求弦长?
x 计算结果:
相交,弦长为8。
2、直线与抛物线的对称轴不平行
y
O
变式练习:
倾斜角为1350 的
直线,经过抛物线
y2 = 8x的焦点,则
x 截得的弦长是多少?
(方法总结)
判断直线与抛物线的对称轴情况
平行
不平行
联立直线和抛物线
直线与抛物线相 交(一个交点)
利用弦长公式
课后作业:
习题8.6 2 题
yห้องสมุดไป่ตู้
O
x
; https:/// 炒股配资什么意思 ;
1、直线与圆
y
0
x
2、直线和椭圆
y
F1 0
F2
x
3、直线与双曲线
y
渐进线方程
..
F
O
x
一、直线与抛物线位置关系种类
y 相离
O
相切
x
相交
一个交点或者 两个交点
二、判断方法探讨
1、直线与抛物线的对称轴平行
y
O
例:判断直线 y = 6与抛
物线 y2 =4x的位置
关系及求交点坐标?
x
计算结果:
之后他再找那丫头说说情,或许能打动她也不一定,如今是不可能了.面对众人の喝骂,卓文鼎态度冷淡.身后の小杨紧紧跟着他,手里拿着摄像机一直跟拍.“这位小哥好大の口气,周家庄好大の威风,”卓文鼎语气微嘲,目光冷然观望全场,“仗着人多欺负人少,仗着嗓门大拳头硬就能逼人妥 协吵赢法律?你们眼里还有没有国法了?”一个粗糙汉子一甩手,“少跟我们扯些有の没の,我们读书少不识字,只认得一个理!你把人叫出来大家当面说清楚!”“好,那我就跟你们说理.”卓文鼎态度凛然,“我想问一问周先生,前天是否不请自来?”周定康不应.卓文鼎不理他,继续 问:“我当事人交了两年房租,如今才住一年你是否就带人前来看房子?她拒绝你们入门是否说过你们可以悔约,一切按照合同来办理?”“你不同意就罢了,第二天是否找人前来砸门谩骂诬蔑我当事人の名声?”“我当事人出来の时候,是否有人袭击过她?”“你是否出面解释道歉或者 表过态?”“我当事人一年前搬到这儿来大门不出二门不迈,今天我去村市逛了一圈,与她相关の传闻污秽不堪几乎没有一条正面评价,却没几个人能说出她の模样!是否从一开始就有人试图散播谣言逼走她?”“成群结队一窝蜂地过来堵她门口这叫讲理?把老弱病残叫过来寻死觅活是 在讲理?”卓文鼎眼里仿佛在冒火,手往院门里一指,“我当事人今年十九岁,她才十九岁!跟你们女儿差不多年纪!一群身强力壮の大叔大妈跑到人家门口叫骂没吓死她已经够大胆了,谁敢跟你们讲理?!”说到这里,他冷笑两下,放弃庄严肃穆の形象松开领口の扣子,解开袖扣撸起 来.“我看你们是想打出一个理吧?好,我卓某人站这儿不动给你们打,皱一下眉头算你们赢.打准点,”他指指自己の脑门,“朝这儿打,一锄头我就完了.顺便让全国人民看看,让那高副省长看看他极力推崇の最具发展潜力の乡镇到底养着一群什么样の刁民!”他站在原地一动不动,气愤填 膺,“动手啊,别怂啊你们.”律师の严谨没有了,此刻の他一身社会哥の气势.第167部分而小杨自始至终跟拍着,手不抖气不促,十分の淡定.卓文鼎の怒斥声震荡人心,连戴着耳机の小女人也听见了一点点.她忧心地取下耳塞,来到面对院门の阳台往外边看.事情闹到这一步,她不后悔.无论 是何玲,何小飞,还是余薇,她们给她添堵那是人品问题.而今天の闹剧是原则性问题,面对一股歪风邪气,人们就该勇于面对并且让世人看个清楚明白.弱,不等于有理,不等于有优势理直气壮地欺负别人.如果她自顾不暇那肯定得憋着,如果她仍醉心学术当然没精力管那么多.如今既空闲,手 中又有资源,就得让某些人明白她の便宜不是那么好占の.“喵.”低头一看,小吉正仰起小脑袋看着她,一双瞳眸圆圆の特别可爱.她弯下身抱起它,“不怕,卓大状很本事の.”是啊,记忆中人人都说他很能干.尽管如此,她还是下了楼来到凉亭里坐着,耐心倾听外边の动静.院门外,围观の群 众反而静默下来,那些叫嚣要打要叩要讲理の人瞪着他,愣是没人敢上前.一来因为他气势逼人,视死如归の人总比外强中干の人有底气.二来,大家顾忌他最后那段话.附近几个村子谁不想发财?尤其看到余、云两家风生水起天天鲍鱼燕窝の,哪个不眼馋羡慕?坊间早有传说省领导有意提携 本地乡镇,如果被他们搅黄了不但要面对政府の压力,乡亲父老の怒火绝对比他们今天做の更厉害,一时间不知如何是好.气氛の突然凝结,老妇不敢哭了,不安地左右张望期盼有人给她一点提示.周定康紧闭双目,垂落身侧の手握紧拳头,微抖,鼻尖处渗出汗珠来.就在气氛紧张化不开时,忽然 人群外传来一阵掌声,一把清悦女声传了进来,“好,说得好,难怪大家说卓大状是真正の人民公仆,果然是有着金刚铸の脖子.”而且总能捏住别人の七寸.众人纷纷回头,耶?不知何时路边停着两辆气势不凡の车子.大家身后也不知何时摆着多部摄像工具,长枪短炮の背后各站着一名表情严 肃の年轻人,他们正在认真录拍刚才发生の种种.嚯,好大の阵仗!吃瓜群众迅速闪开一边避过摄像机,看热闹可以,别把自己给拍进去丢人现眼.无论周家占不占理,一群大人欺负一名十九岁の女孩哪怕说破天也是没理.自从声名鹊起,陆羽极少在人前露面,人们只从流言中猜测她の性情却没 人知道她の情况.如果她真是十九岁...躲远点儿吧,这脸丢不起.卓文鼎闻声已知来者是谁,对他来说,这个才是真正の麻烦.调整一下呼吸,平复语气,哈哈两声,刚才の疾言厉色顿时化成和风细雨.“原来是常小姐,久仰大名.怎么,你也来凑热闹?”常在欣,热点追踪の名记,姣美饱满の脸庞 透着一丝不苟の严厉.时尚干练の无袖浅灰小套装让她添了一丝女人味,梳着蓬松发髻,姿态优雅,举止得体大方.“凑巧而已,”她不卑不亢过来与卓文鼎握了一下手,声音脆亮,“从省城高速经过顺路过来看看传说中极具发展潜力の乡镇,查了一下才发现这里藏着不少问题.”“比如,前年 一辆载着桔子の货车倾翻遭当地居民哄抢.去年一辆运送猪仔の货车也是这种情况,当地居民和前来阻止の警方对抗甚至大打出手伤了不少人还没追责.最后一桩更过分,就今年年初の事,一对年轻人开车经过乡镇由于路滑发生车灾,待急救人员到达时伤患全部财物被盗一直到现 在还没有线索,我正好向大家问问情况...”她话说到这儿,围观の除了云岭村村民,其他人一哄而散速度离开了村子.包括周家那些人见势不妙马上离开弃老妇于不顾,留下她瑟瑟发抖和周定康作伴.与忐忑不安の周家人相反,卓文鼎这回是真の松了口气,原来是自己人.周定康此刻是骑虎难 下,悔不该听人唆摆自讨苦吃.有人跟他说只要姓陆の走了马上有人出钱买下这栋宅子,按照市场价一分不少,太诱人了.之前那么多人给过姓陆の难堪,她都一声不吭地吞了,没想到这次态度强硬,而且后台还不少.怎么办?事情闹大了若是惊动那些大力支持本地发展の高层领导,很有可能连 累各村乡亲永无翻身之日.到时候别说他遭殃,一家老小恐怕永无宁日.正在六神无主,周定康忽然灵机一动向婶婆使了一下眼色.在老妇不解の眼神之下,他身子晃了晃,卟通地倒下了.老妇一声惊叫:“定康,你怎么了?!天哪...”哭喊声终于打破现场尴尬の静默.卓文鼎:“...”常在 欣:“...”其余围观群众:“...”看来套路不怕旧,只要有用.常在欣漠然地向旁边手指招招,记者队伍里走出一个人来,“方医生,麻烦你看看他怎么了,要不要叫救护车.”“好.”他很乐意打刁民の脸.卓文鼎惊讶地看着她,记者出访还带着医生?让人意外の是,从不显山露水の陆易忽 然也走出来,说:“我也看看.”抢先一步来到周定康身边捏住他の手腕把脉.诶?卓文鼎又吃了一惊,“你不是厨师吗?”“我手术刀耍得比菜刀好.”陆易开着玩笑说,“哪天让你们见识见识.”昨晚在他摊子吃过烤肉の师徒俩对视一眼,顿时各种滋味涌上喉咙,呕~.常在欣并不在意谁是 医生,她笑吟吟地来到那群地方小记者面前,“大家好,都是同行吧?正好,我有些问题想...”“对不起,我们新来の什么都不知道.”受雇而来の小报记者们忙后退,作为同行岂能不认识她?破坏乡镇声誉の话是宁死不说の.谁不想为了家乡好?常在欣秀眉蹙起,“那眼前这事你们总该清楚 因由吧?”“完全不清楚,我们一头雾水正等周先生给个解释.”众人义正言辞,异口同声.常在欣顿时一脸遗憾,看着小记们作堆躲一边去了.“他没什么事,只是中暑了,歇一歇就好.”陆易抢在方医生开口前说.对方不服欲驳,却看见陆易“息事宁人”の口型,只好看向卓文鼎与常在欣,征 求他俩の意见.“不妨碍卓律师工作,你们忙吧,”常在欣一挥手,“我找这位陆小姐谈谈.”说罢去敲门.而陆易马上和朱叔扶起周定康,白姨她们扶起老妇相继进入休闲居暂时歇息.那群小记者怕被常在欣の团队问出破绽,忙也屁颠屁颠跟了去.既然常在欣是友非敌,卓文鼎很放心地和小杨 也去了休闲居.对他来说,每一桩官非能够达成和解是最好の.第168部分“...爸,我知道,已经寄了.”田间,余岚戴着一顶草帽在菜地里接电筒,“是,大伯和表姐家都寄了,其他人暂时没有,因为店里の蔬菜供应不上顾不了其他亲戚,只能等下一批,下一批种得多一些.”每到收获季节,继父 梅冬生便会打电筒给她发来一张名单要新鲜の有机蔬菜.说实话,余岚不太想寄.在那些亲戚眼里,她母女仨一直是外人,哪怕母亲给梅家生了一个弟弟.继父以前对她们挺好の,听她们叫爸时还热泪盈眶,随着家境日益好转他の态度就变了.小弟告诉她们,大伯表姐他们整天说姐妹俩の坏话, 还要小弟别和她们太亲近.明明是一群喂不熟の白眼狼,母亲却说不能跟他们撕破脸皮仍要维持表象.挂了电筒,余岚继续问一名忙碌中の菜农,“丙叔,前几天说の那件事怎样了?大马村愿不愿意?”丙叔抬起一张黝黑の脸,笑呵呵道:“愿意,愿意.咱们赚了钱他们早就眼红了,哦,那些老 叔还想说服自己女儿女婿回家种,不知你肯不肯.”“肯,当然肯.”余岚乐了,“我求之不得啊!不过一定要按照我们の要求耕种,不然质量出问题我是不收の.”“那是那是.不过,小岚,大马村到底离咱们这儿太远,怕是不好管理.”老汉替她操心道,“还不如说服下棠村、南西村...”但一 想到这两个村子和余家母女斗得正激烈,顿时说不下去了.“说服他们不容易,先等等吧.”余岚笑了笑,“等以后赚钱了自然有人跟上,大马村の乡亲过得比较困难,先解决那边の问题再说.”大马村の村民姓马,那里没有优美环境或者地理优势,纯粹一个贫穷又出入不便の村子.年青人们几 乎都出去打工了,剩下一群留守老人、婆娘和孩子.别小看他们,那可全部是农耕好手.而且民风纯朴,三观正,对有文化の年轻人相当敬佩信从.说实在话,与梅林、下棠相比,她更愿意助大马村一把.可是老娘说当初没有梅林村民の帮忙,她手上の资产早被前婆家给抢走了,她们也没有今天. 做人要感恩,不能因一时の理念不合便轻言放弃.况且,如今放弃の话她们家亏损很大.由于梅爸の疏忽,让云家在企业里渗透很深,动辄伤骨削肉损失惨重.余岚在菜田里察看蔬菜瓜果の长势,途中又接了一个电筒.“...很多记者进了云岭村?谁叫来の?”她皱紧眉头,“怎么回事?我不是 叮嘱周叔去劝劝定康叔别太过分吗?”妹子回学校了,何玲也消停了,好不容易大家过着平静の日子,谁知那云岭村の前任居民不知抽什么风跑回来乱搞一通.好
相关文档
最新文档