机械原理 第五章 机械的效率和自锁
孙桓《机械原理》笔记和课后习题(含考研真题)详解(机械的效率和自锁)【圣才出品】
第5章机械的效率和自锁5.1 复习笔记一、机械的效率1.功和效率(1)机械效率①驱动功机械上的驱动功(输入功)为W d,有效功(输出功)为W r,损失功为W f。
则有W d=W r+W f②机械效率a.定义机械的输出功与输入功之比称为机械效率,反映了输入功在机械中的有效利用程度,以η表示。
b.计算方法用功计算时η=W r/W d=1-W f/W d;用功率计算时η=P r/P d=1-P f/P d;式中,P d——输入功率;P r——输出功率;P f——损失功率。
(2)损失率①定义机械的损失功与输入功之比称为损失率,以ξ表示。
②计算方法由定义有ξ=W f/W d=P f/P d。
注:η+ξ=1,由于摩擦损失不可避免,故必有ξ>0和η<1。
(3)效率的简便计算方法为便于效率的计算,可应用下式进行计算η=理想驱动力/实际驱动力=理想驱动力矩/实际驱动力矩①斜面机构正反行程的机械效率分别为η=tanα/tan(α+φ)η′=tan(α-φ)/tanα式中,α——斜面夹角;φ——总反力与法向反力的夹角。
②螺旋机构拧紧和放松螺母时的效率计算式分别为η=tanα/tan(α+φv)η′=tan(α-φv)/tanα式中,α——中径升角;φv——螺旋副的摩擦角。
2.机器(或机组)的效率已知各机构的效率可计算确定整个机构的效率。
常用机构的效率见教材表5-1。
(1)串联①计算公式由k个机器串联组成的机组,设各机器的效率分别为η1、η2、…、ηk,机组的输入功率为P d,输出功率为P r。
则整个串联机组的机械效率为η=P r/P d=(P1/P d)(P2/P1)…(P k/P k-1)=η1η2…ηk②特点a.前一机器的输出功率即为后一机器的输入功率;b.只要串联机组中任一机器的效率很低,就会使整个机组的效率极低;c.串联机器的数目越多,机械效率也越低。
③提高串联机组效率的措施a.减少串联机器的数目;b.优先提高效率最低机器的效率。
机械原理 第五章机械的效率
(机械自锁时已不能运动,它已不能克服任何工作阻力(即使很小),工作阻力
G〈 0 意味着只有工作阻力反向而变成驱动力后,才可能使机械运动,即G〈 0 机 械自锁)
机械原理
第5章机械的效率和自锁
例1偏心夹具
确定当作用在手柄上的力去 掉后夹具不至松开的条件 (即自锁条件)
7。 风 力 发 电 机 中 的 叶 轮 受 到 流 动 空 气 的 作 用 力,
此力在机械中属于
。
A) 驱 动 力;B) 生 产 阻 力; C) 有 害 阻 力; D) 惯 性 力。
8。在机械中阻力与 其作用点速度方向
。
A).相 同; B).一定相反; C).成锐角; D).相反或成钝角 。
机械原理
第5章机械的效率和自锁
思考题:
1。移动副的自锁条件是—————————,转动副的自锁条件是—————— ———,螺旋副的自锁条件是—————————。
2。机械中V带比平带应用广泛,从摩擦角度来看,其主要原因是——————。
3。在由 若 干机 器 并 联 构 成 的 机 组 中, 若 这 些 机 器 的 单 机 效
A) 都 不 可 能;B) 不 全 是;C) 一 定 都。
6。在 车 床 刀 架 驱 动 机 构 中, 丝 杠 的 转 动 使 与 刀 架 固
联 的 螺 母 作 移 动, 则 丝 杠 与 螺 母 之 间 的 摩 擦 力 矩
属于
。
A)驱 动 力;B)生 产 阻 力;C)有 害 阻 力;D)惯 性 力。
(2)并联:由几种机器并联组成的机组。
(3)混联:包含串、并联。
机械原理
第5章机械的效率和自锁
机械原理5机械效率与自锁
套筒滚子链 无声链
0.96
润滑良好
0.97
平摩擦轮传动 槽摩擦轮传动
球轴承 滚子轴承 滑动螺旋 滚动螺旋
0.85~0.92 0.88~0.90
0.94 0.97 0.99
0.99 0.98
0.30~0.80 0.85~0.95
润滑不良 润滑正常 液体润滑
稀油润滑 稀油润滑
复杂机械的机械效率计算方法:
3.)混联
方法:先分别计算,合成后按串联或并联计算。
Nd
N1 1
N2 2
’
3 4 N ’ N N d‘2
’ d3‘
r
Nk 作者:潘存云教授
3
“
N”d34“
N”d2
N”r
Nd
N1 N2 1 2 作者:潘存云教授
N’d3‘2
N’d34‘NN’kr
N’串联计算
r
3
“
N”d34“N”rN”r
N”d2
并联计算
Nd
N1 1
N2 2
NN N ’ r 作者:r潘存云教授k
N”r
串联计算
例题,如图所示的机械传动中,已知各传动机构的效率, 并已知输出功率分别为5kW和0.2kW。求该机械传动装 置的机械效率。
Pd
P1 1
P’
P2 2
3
‘
2
P”2 3
4 P’
‘r
4
5 P”r
“
“
“
解 P2'
Pr'
3'4'
5 0.96 0.96
圆锥齿 8级精度齿轮传动 轮传动 切制齿、开式齿轮传动
铸造齿、开式齿轮传动
机械原理(机械效率和自锁)
输入功—在一个机械系统中,驱动力(或驱动力矩)所作的功 称为输入功,用Wd 表示;
输出功—在一个机械系统中,克服工作阻力(或驱动力矩)所 作的功,称为输出功,用Wr 表示;
损失功—在一个机械系统中,克服有害阻力(如摩擦阻力、空) 气阻力等)所作的功,称为损失功,用Wf表示;
机械在稳定运转时期,输入功等于输出功与损耗功之和,即:
G0、M0 — 理想工作阻力、理想工作阻力矩;
G、M — 实际工作阻力、实际工作阻力矩;
当需计算整台机器或整个机组的机械效率时,常用以下三种 方法,其中在实际设计中,更常用到的是实验法和经验法, 即确定机械效率的三种方法分别为: 计算法 实验法 —对于已有的机器,可以用实验法直接测得机械效率。 经验法 —对于正在设计和制造的机器,不能直接用实验法测
定效率,但由于各种机器都是由一些基本机构组合而 成,而这些基本机构的效率通过实验积累的资料却是 可以预先估定的,在已知这些基本机构和运动副的机 械效率后,就可以通过计算确定出整个机器的效率。 同理,对于由多个机器组成的机组,只要知道各台机 器的效率,就可以根据各机组的组合情况用计算的办 法求出该机组的总效率。(见P76表5-1) 三种不同机器组合的效率计算
Pd
Pd
令式中: Pr
Pd
得到机械效率的表达式为:
1
Pf
令: Pf Wf
Pd
Pd Wd
效率恒小于1
— 机械损失系数 1
由于机械摩擦不可避免,故必有: 0, 1
由以上公式可知:为使其具有较高的机械效率,应尽量减小 机械中的损耗,主要是磨擦损耗。这就要求:一方面应尽量 简化机械传动系统,使功率传递通过的运动副数目越少越好。 另一方面,应设法减少运动副中的磨擦,如采用滚动磨擦代 替滑动磨擦,选用适当的润滑剂及润滑装置进行润滑,合理 选用运动副元素的材料等。
机械原理第五章机械效率及自锁
5
第五页,编辑于星期五:十一点 九分。
例2 螺旋机构
G/2
G/2
F
s =n p
G
α
α d2 G
已知:拧紧时 M = Gd2tan(α+φv)/2 放松时 M′=Gd2tan(α-φv)/2
现求:η及η ′
解: 采用上述类似的方法,可得
拧紧时 η = M0/M = tanα/ tan(α+φv) 放松时 η′=G0/G = tan(α-φv)/ tanα
2022/1/8
9
第九页,编辑于星期五:十一点 九分。
例 设已知某机械传动装置的机构的效率和输出功率,
求该机械传动装置的机械效率。
P' P' P'=5 kW
η3'3' η4'4
Pd P P η11 η22
0.98 0.98
0.96 0.96
P'' P'' P'' P''=0.2 kW η3''3 4η'4' 5η'5'
螺旋副
G/2
G/2
s =n p
G
α
α d2 G
放松时 M′=Gd2tan(α-φv)/2
结论:螺旋副的自锁条件是螺旋升角≤当量摩擦角,即
α≤ φv
2022/1/8
16
第十六页,编辑于星期五:十一点 九分。
2. 从所能克服的生产阻力≤0的条件来确定
所能克服的生产阻力≤0 意味着只有阻抗力反向变为驱动 力后,才能使机械运动,此时机械已发生自锁。
• 减小因惯性力引起的动载荷
2022/1/8
11
第十一页,编辑于星期五:十一点 九分。
§5-2 机械的自锁
一、机械的自锁现象
机械中存在着使其运动的驱动力和阻碍其运动的摩 擦力。如果由于摩擦力的存在,驱动力无论多么大, 都不能使机械运动,称这种现象为自锁。
机械原理5机械的效率和自锁
为了判断一个机构是否会自锁?和在什么条件下发生自锁?需பைடு நூலகம்据具体 情况,视方便程度来决定用上述哪种方法进行分析。现通过如下例子来加以 说明。
实例: 斜面压榨机构的自锁条件确定 偏心夹具的自锁条件确定 凸轮机构推杆自锁条件的确定
第5章 机械的效率和自锁
主讲:曹国忠
第 5章
§5-1 机械的效率
机械的效率和自锁
1. 机械效率的定义
2. 机械的效率的确定 3. 机组的机械效率确定 §5-2 机械的自锁 1. 机械自锁的概念、意义和条件
实例: 手摇螺旋千斤顶
2. 机械自锁条件的确定
2. 机械自锁条件的确定
对于一个机械来说,我们可以通过分析其所含的运动副的自锁情况或从 机械效率的观点分析来判断其是否自锁,也可从生产阻力方面或自锁的现象 (或定义)方面分析来判断其是否自锁,故判断机械发生自锁的条件就有如下 四种方法: 1)根据机械所含运动副的自锁条件来判断其是否自锁。 2)根据机械效率小于等于零(即η ≤0)的自锁条件来判断其是否自锁。 3)根据机械的生产阻力小于等于零(即G≤0)的自锁条件来判断其自锁状 态。 4)根据作用在构件上的驱动力的有效分力小于等由其所引起的同方向上最 大摩擦力(即Ft≤Ffmax)的自锁条件来判断其自锁状态。
机械原理第05章
二、自锁条件
常用的机械自锁条件有: 1)机械效率条件:η≤0。 或:反行程自锁条件:η'≤0;正 行程不自锁条件:η>0。 2)生产阻力条件: 生产阻力小于或等于零,即G≤0
上海海运大学专用
3)运动副的自锁条件:
a、移动副的自锁条件:β≤ϕ 其中, β 为作用于滑块1上的 外主动力系的合力F与接 触面法线n - n间的夹角, 如图5-8所示;ϕ v为当量摩 图5-8 擦角。 几何意义:移动副自锁的条件是:作用于 滑块1上的外主动力系的合力F的作用线 切于或割于摩擦锥(约束总反力FR21绕法 线n-n转动一周所形成的圆锥)。
上海海运大学专用
自锁机构
反行程自锁( η '<0)的机构称 为自锁机构。 对于一些典型常用机构(如斜面 机构、螺旋机构和蜗杆蜗轮机构 等),其正、反行程的定义是特 别约定的,不能随便定义(见 §5-2)。
返回章五
上海海运大学专用
第17讲 机械的自锁
§5-2 机械的自锁 一、机械的自锁 二、自锁条件
上海海运大学专用
v
b、轴颈自锁的条件:α≤ρ 其中,α为作用于轴颈1上的外主动力
系的合力F离轴颈中心的O的距离; ρ为摩擦圆半径,如图5-9所示。 几何意义:轴颈自锁 的条件是:作用于 轴颈1上的外主动力 系的合力F的作用 线切于或割于摩擦 圆。
上海海运大学专用
图5-9
例1a
例1推导图5-10所示偏心夹具的自锁条件。 解 要求在夹紧工件并撤去 手柄力F后,保证偏心盘 不能松转。 显然,使偏心盘发生松转 的力是FR23 ,而FR23 是作 用在轴颈O上的主动外 力。由轴颈的自锁条件 知,应保证: a=s-s1≤ρ
ω:0↗ωm,
2、稳定运转阶段
机械原理(机械的效率和自锁)
摩擦自锁原理 来保持齿轮停止。
安全钳
安全钳使用支点原理和重力来 实现自锁。
楼梯式推车
楼梯式推车使用滑轮和重力来 实现自锁。
结论
机械效率影响重大
了解机械效率对于开发出更高效、可持续的机器非常重要。
自锁是安全的基础
机械原理(机械的效率和 自锁)
在这个演讲中,我们将介绍机械原理、机械效率、自锁的概念和原理、以及 这些因素是如何影响机械性能的。
什么是机械效率?
定义
机械效率是指将输入的能量转换 成有用输出的能力。它是衡量机 械能力的重要标准。
意义
了解机械效率对于设计、生产和 维护能效机器非常重要,因为它 可以使机器的运行更节能、更可 持续。
润滑
润滑可减少磨损和摩擦,并增加 机器效率和寿命。
更换磨损部件
损坏的部件会对机器的效率和性 能产生影响。及时更换会让机器 保持良好的工作状态。
机械原理的重要性
1 推动技术进步
了解机械原理对于发展先 进技术非常重要。
2 提高机械效率
了解机械效率的计算方法 让我们更容易地优化机器 以提高效率。
3 提高机械安全性
计算方法
机械效率计算公式:(实际输出工 作)÷(输入能量或功率)*100%。 这可以帮助我们了解如何提高机 器的效率。
什么是自锁?
概念
自锁是一种避免装置因不当 使用而发生事故的设计。它 可以使机器在运行时自动锁 定,避免作为输入源的能量 产生反作用。
原理
这是通过使用特殊的机械结 构来实现的。这些结构包括 正反馈,使用滑轮、齿轮以 及其他机械属性来实现。
应用
自锁广泛应用于许多机械装 置中,包括建筑、运输和工 业机械。
5.2 机械的效率和自锁-自锁
机械原理
移动副
设驱动力为F, 传动角为β ,
摩擦角为φ 。则
Ft = Fsinβ = Fntanβ
FR F
n
β
φ Fn
Ffmax= 当β≤φ 时,有Fntanφ
Ft ≤Ffmax
滑块发生自锁
结论:移动副发生自锁的条件为:在移动副中, 如果作用于滑块上的 驱动力作用在其摩 擦角之内(即β ≤φ ),则发生自锁。
阻力作的损耗功,机械系统无输出功,导致无法运动。
用机械效率表示的机械自锁条件为
0
Thank you!
Ft Ffmax n
机械原理
转动副
设驱动力为F,力臂长为a,摩擦 圆半径为ρ ,当F 作用在摩擦圆之 内时(即a≤ ρ ),则
M = aF ≤ Mf =FR ρ = F ρ
即F 任意增大(a不变),也不
能使轴颈转动,即发生了自锁现象。
结论:作用在轴颈上的驱动力为单力F, 且作用于摩擦角之内,即 a ≤ ρ 。
1
ρ
2aF FR=F来自机械原理 用机械效率表示的机械自锁
• 在实际机械中,因为 W f 0, 所以 1。
自锁
• 如果 W f Wd ,则 0,说明驱动力所做的功完全被消耗掉了,
机械系统无输出功,导致 无法运动。
• 如果 W f Wd 则 0 ,说明驱动力所做的功不足以克服有害
机械原理
第五章 机械的效率和自锁
主要内容
1 机械的效率 2 机械的自锁
机械原理
机械的自锁 (1)现象
某些机械,就其机械而言是能够运动的,但由于摩擦的 存在,却会出现无论驱动力如何增大,也无法使机械运动的 现象。
机械的效率和自锁机械原理
第五章机械的效率和自锁研究内容:1 机械的效率2 机械的自锁第1讲机械的效率5.1.1 机械效率的概念5.1.2机械效率的计算5.1.3机组效率的计算机械效率的概念及意义:(1) 概念: 机械效率 η 机械损失率 ξ η=W r W d 摩擦损失是不可避免的,总有 ξ >0 和 η < 1;机械效率反映了输入功在机械中的有效利用的程度。
(2) 意义: 降耗节能是国民经济可持续发展的重要任务之一。
机械效率的高低是机械中的一个主要性能指标。
—— 机械的输出功(W r )与输入功(W d )之比—— 机械的损失功(W f )与输入功(W d )之比=1−Wf W d =1−ξ机械效率的计算:1) 以功表示的计算公式 η=W r W d =1−W f W d2) 以功率表示的计算公式 η=P r P d =1−P f P d 3) 以力或力矩表示的计算公式η=F 0F =M 0M实际机械装置 ηF 0v F机械传动装置 Gv Gη=P r P d =Gv G Fv F η0=Gv G F 0v F =1即 η=理想驱动力实际驱动力=理想驱动力矩实际驱动力矩机组 ——由若干个机器组成的机械系统整机 ——由若干个机构组成的整台机器 已知机组各机器的效率,便可计算该机组的总效率。
1. 串联机组1) 功率传动特点: 前一机器的输出功率即为后一机器的输入功率。
2) 总机械效率:η=P r P d =P 1P d P 2P 1…P k P k−1=η1η2…ηn⋯1 2kP dP 1P 2P k -1P k串联机组模型结论:串联机组中任一机器效率很低,整个机械效率就会极低;且串联机器的数目越多,机械效率也越低。
2.并联机组1)传动功率特点:机组的输入功率为各机器的输入功率之和,而输出功率为各机器的输出功率之和。
2) 总机械效率:η=P riP di=P1η1+P2η2+⋯+P kηkP1 +P2 +⋯+P kη1 η2 ηkP1η1P1 P2 P kP dP2η2Pkηk结论:⏹并联机组的总效率与各机器的效率和传动功率大小均有关;⏹其总效率主要取决于传动功率大的机器的效率;⏹要提高并联机组的总效率,应着重提高传动功率大的路线的效率。
机械原理(第5章 机械中的摩擦、机械效率及自锁)
二、转动副中摩擦力:
轴 轴承
轴径
Northwest A&F University
第五章 机械中的摩擦、机械效率及自锁
二、转动副中摩擦力:
1.轴径摩擦: 轴用于承受径向力放在轴承中的部分称为轴径。 1)摩擦力矩的确定: 设有径向载荷G作用的轴径1,在驱 动力矩Md的作用下,在轴承2中等速运动。 此时转动副两元素必将产生摩擦力以阻 止轴径向对于轴承的滑动。则:
Northwest A&F University
第五章 机械中的摩擦、机械效率及自锁
一、移动副中摩擦力的确定:
2)三角形螺纹螺旋中的摩擦:
β
β △N β △N
Q
△N
△N
β
Q
β-牙形半角
Northwest A&F University
第五章 机械中的摩擦、机械效率及自锁
一、移动副中摩擦力的确定:
2)三角形螺纹螺旋中的摩擦: 螺母和螺纹的相对运动完全相同两者受力分析的方法一致。 运动副元素的几何形状不同在轴向载荷完全相同的情况下, 两者在运动副元素间的法向反力不同接触面间产生的摩擦力不 同。 引入当量摩擦系数: 当量摩擦角: fv = f / cosβ
第五章 机械中的摩擦、机械效率及自锁
二、研究机械中摩擦的内容:
1.几种常见的运动副中摩擦的分析; 2.考虑摩擦时机构的受力分析; 3.机械效率的计算; 4.由于摩擦的存在而可能发生的所谓机械的“自锁” 现 象,以及自锁现象发生的条件。
Northwest A&F University
第五章 机械中的摩擦、机械效率及自锁
Northwest A&F University
第五章 机械中的摩擦、机械效率及自锁
第五章 机械的效率和自锁武汉理工大学,机械原理,课件
2. 并联 图示为几种机器并联组成的机组。
Nd1 Nd2
1 2 总输入功率为: Nr1 Nr2 Nd = Nd1 + Nd2 + …+ NdK 总输出功率为: Nr = Nr1 + Nr2 + …+ NrK ∵hi= Nri/Ndi 而 Nr = Nd1h1 + Nd2h2 + …+ NdKhK
Nd Nd3 NdK
c. 力(矩)表示 设:F——实际驱动力;Q——实 际生产阻力;VF、VQ作用点沿力方向线 速度。 Q 设想机器中无有害阻力——理想机器。设F0为对应(克服)同一生产 阻力Q时的理想阻力。对于理想机器,有
h = Nr / Nd = QVQ /FVF
vQ
vF F
h0= QVQ /F0VF = 1
即: QVQ = F0VF
越大,表明自锁越可靠。
四、楔形面自锁条件 与平面摩擦相对应,对于楔形面摩擦可
θ 1
θ
以直接用fv代替f,相应地可以用jv代替j。
结论:自锁条件——a≤jv 五、斜面自锁条件
N′ n R21 1 F
2 Q N′
1. 等速上升
建立力平衡条件,有P = Q tg (a + j) 于是: P0 = Q tg a 即斜面的机械效率为
h
h
h3
Nr3 Nr
hK
NrK
∴h =
=
(Nd1h1 + Nd2h2 + …+ NdKhK) (Nd1 + Nd2 + …+ NdK) (Nd1h1 + Nd2h2 + …+ NdKhK) Nd
∴h = (Nd1h1 + Nd2h2 + …+ NdKhK) / (Nd1 + Nd2 + …+ NdK) = (Nd1h1 + Nd2h2 + …+ NdKhK) / Nd
机械的效率和自锁-机械原理
机械原理简介:机械原理是研究机械力学和运动的科学,深入了解机械的效 率和自锁对于设计和优化机械系统至关重要。
机械的效率概述
机械的效率是指机械系统中将输入的能量转化为有用输出的能力。高效的机械可以最大限度地利械系统的一种特性,使得在特定情况下能够防止或阻碍机械部件的意外移动或倾斜。它通过特 殊的设计实现。
实例分析:机械自锁的实际应 用
以汽车手刹为例,手刹使用自锁机构来保持车辆在停放状态,防止车辆滑动。 这种机械自锁体现了系统设计的稳定性和安全性。
结论和总结
机械的效率和自锁是机械原理中重要的概念。通过优化设计和选择合适的自 锁机构,可以提高机械系统的效率和安全性。
机械自锁对效率的影响
机械自锁可以增加系统的稳定性和安全性,减少意外事故的发生。然而,它可能会增加机械的复杂性和摩擦损 失,降低系统的效率。
自锁机构的种类和应用
自锁机构包括螺纹、斜轮、齿轮、离合器等,每种机构都有自己的特点和适 用领域。它们在各种机械系统中得到广泛应用,例如汽车、工程机械和风力 涡轮机。
05 机构的效率与自锁
并联系统
总输入功率
Pd = P1 +P+ Pk P1 1 h1 P’1 2 P2 h2 P’2
Pd Pk k hk P’k
总输出功率
Pr = P’1 + P’2 + P’k
效率 h Pr P1h1 P2h 2 Pkh k Pd P 1P 2 P k • 总效率不仅与各台机器的效率有关,而且与各台机器 传递的功率大小有关 • 总效率主要取决于传递功率最大的机器 若各台机器的输入功率相等 h (h1 h 2 h k ) / k
§5-1 机械的效率
一、机械效率的概念
作用在机械上的力: 驱动力F、 生产阻力Q、 有害阻力Ff 作用力所作的功: 输入功 Wd 、 输出功 Wr 、 损耗功 Wf 力所具有的功率: 输入功率 Nd 、输出功率 Nr 、损耗功率 Nf 通常,将驱动力做的功称为输入功(Wd);克服生产阻力做的功称 为输出功(Wr);克服有害阻力做的功称为损耗功 (Wf)。
Wd Wd / t Pd Pd
Pd
由于实际中,损耗功率不可能为零,故效率始终小于1 减小损耗功率(主要减小摩擦损耗),可以提高效率
简单传动机构和运动副的效率 :表5-1/P69
2 力或力矩形式表达效率
Pr GvG h Pd FvF 对理想机械:不存在摩擦 理想驱动力:F0<F 理想机械的效率:
•尽量简化机械系统。采用最简单的机构满足工作要求,使传递功率通过 的运动副最少 •选择适当的运动副形式。转动副易保证精度,效率高;移动副不易保证 精度,效率低 •减小构件尺寸。如轴径增大时会使摩擦力矩增大,机械易发生自锁 •减少运动副中的摩擦。如矩形螺纹效率高于三角螺纹;平面摩擦效率高 于槽面摩擦;滚动摩擦效率高于滑动摩擦;表面精度高效率高于表面精 度低;选用摩擦系数小的材料;合理润滑等 •减少动载荷
机械原理本科机械效率和自锁
Wd =
Wr + Wf
损耗功 (摩擦等)
驱动功 有效功 (动力) (克服生产阻力)
机械效率: = Wr / Wd = 1 - Wf / Wd
损失不可避免, Wf> 0: < 1
2、机械效率的几种表达方式 1)用功表示的机械效率 : = Wr / Wd = 1 - Wf / Wd 2)用功率表示的机械效率: = Pr /Pd = 1 - Pf / Pd 3)用力(或力矩)表示的机械效率: 右图中G为生产阻力, F为驱动力, G 和 F 分别为对应力的作用 点处沿力作用线方向 上的速度
作者:潘存云教授
P”r P’r
串联计算
Pd
P2 P’d2 P’d3 Pk 1作者:潘存云教授 2 “ “” 3 4 P P”d2 P”d3 r P”r P1 P2 Pr P’r P P1 3‘
‘’ 4P r
并联计算
Pd
1
2
k 作者:潘存云教授
P”r
串联计算
§5 -2 机械的自锁
一、自锁的概念
对于有些机构,由于摩擦的存在,致使无 论驱动力如何增大均不能使静止的机构产生运 动。这种现象称之为自锁。
η越小自锁越可靠。
2) 从生产阻抗力方面来判断
由于当自锁时,机械已不能运动,所以 这时它所能克服的生产阻抗力G将小于或等 于零,即: 自锁条件:G ≤0
例1、斜面压榨机:在回弹力G 作用下(F为阻抗力时)的 自锁条件(设:摩擦角均为 )
1
G
90º (2)
FR13 FR23
90º
4 4 FR13 1 v FR2 31
G0 = F cot
孙恒《机械原理》(第八版)学习辅导书第5章 机械的效率和自锁【圣才出品】
第5章 机械的效率和自锁5.1 复习笔记本章主要介绍了机械的效率和自锁条件的计算。
考试时,常与第4章摩擦力的计算及机构的受力分析综合考察,主要是计算题。
复习时需要把握其具体内容,重点掌握。
一、机械的效率1.功和效率(见表5-1-1)表5-1-1 功和效率注:η+ξ=1,由于实际情况下,摩擦损失不可避免,故必有η<1和ξ>0。
2.机器(或机组)的效率(见表5-1-2)表5-1-2 机器(或机组)的效率注:①若已知各机构的效率,则可计算确定整个机构的效率。
常用机构的效率见教材表5-1。
②设各机器的效率分别为η1、η2、…、ηk,输入功率分别为P1、P2、…P k,则各机器的输出功率分别为P1η1、P2η2、…、P kηk。
3.提高机械的效率的方法(1)减小介质阻力①使用流线型外形设计;②应注意高速旋转零件的结构设计,减小风阻。
(2)减小运动副中的摩擦①用滚动摩擦代替滑动摩擦;②注意各运动副的润滑;③对高速轴承可采用空气轴承、磁悬浮轴承等。
二、机械的自锁(见表5-1-3)表5-1-3 机械的自锁图5-1-1 移动副的自锁图5-1-2 转动副的自锁5.2 课后习题详解5-1 眼镜用小螺钉(M1×0.25)与其他尺寸螺钉(例如M8×1.25)相比,为什么更易发生自动松脱现象(螺纹中径=螺纹大径-0.65×螺距)?解:(1)求眼镜用小螺钉的螺纹升角M1×0.25型螺纹,其大径d′为1mm,螺距P′为0.25mm。
则M1×0.25螺钉的螺纹中径为d′2=(1-0.65×0.25)mm=0.8375mm;螺纹升角为α′=arctan(P′/d′2)=arctan(0.25/0.8375)=16.62°(2)求其他尺寸螺钉的螺纹升角同理,M8×1.25型螺钉,其大径d″为8mm,螺距P″为1.25mm。
则M8×1.25螺钉的螺纹中径为d″2=(8-0.65×1.25)mm=7.1875mm;螺纹升角为α′′=arctan(P′′/d′′2)=arctan(1.25/7.1875)=9.87°<α′。
机械原理第五章机械的效率和自锁
机械效率和机械自锁的关系
机械效率和机械自锁密切相关,一些自锁机构的应用可 以提高机械效率,更加安全可靠。
机械自锁的定义和分类
机械自锁是指机械装置自身具有防止倒退或松动的特性,分为正向自锁和反向自锁。正向自锁是 防止负载向反向移动,反向自锁是防止负载向正向移动载倒退。
自锁蜗轮机构
利用蜗轮和蜗杆的摩擦阻力,确保负载在停止状态下不会移动。
丝杠自锁机构
利用丝杠和螺母的摩擦阻力,防止负载向下滑动。
自锁机构的应用范围
自锁机构被广泛应用于各种机械装置中,如起重机、传送带、滑车、石材切割机等。它们可以防止因负载运动产 生的安全事故,提高设备效率和可靠性。
双蜗杆自锁机构
棘轮与制动器自锁机构
双蜗杆自锁机构通过两个蜗杆不同的螺旋角度实现自锁。 棘轮与制动器自锁机构通过摩擦力和弹簧力实现自锁。
自锁机构的设计和计算
自锁机构的设计和计算需要考虑多个因素,如负载大小和重量、自锁机构的类型和材料、以及工 作环境和要求等。设计过程需要综合材料力学、机械结构、热力学和工程力学等知识。
材料选择
材料选择需要考虑自锁机构的使用环境和要求,如机械性能、耐磨性、耐腐蚀性等。
自锁角计算
自锁角是指自锁机构能保持自锁状态的最大倾斜角度。当自锁角大于工作角度时,自锁机构 才能起到良好的效果。
弹簧力计算
有些自锁机构需要利用弹簧力来实现自锁,弹簧力的大小和设计也需要计算和考虑。
机械效率和自锁的关系
1
石材切割机
在切割大理石或花岗岩的时候,自锁机构可以确保切割刀不发生倒退或滑动。
2
电梯传动系统
在电梯传动系统中,自锁机构可以保证电梯不会发生自由下落。
机械原理第五章 机械的效率和自锁.
机械的效率(2/10)
2.机械效率的确定 (1)机械效率的计算确定 1)以功表示的计算公式
实际机械装置 理论机械装置
F0 vF
h0
h=Wr/Wd=1-Wf/Wd
2)以功率表示的计算公式
G0
vG
h = Pr /Pd=GvG /FvF
h=Pr/Pd=1-Pf/Pd
3)以力或力矩表示的计算公式 h=F0/F=M0/M=G/G0=Mr/Mr0 即
2)实验方法 实验时,可借助于磅秤测定出定子平衡杆的压力F来确定出 主动轴上的力矩M主, 即 M主=Fl。 同时,根据弹性梁上的千分表读数(即代表Q力)来确定 制动轮上的圆周力Ft=Q-G, 从而确定出从动轴上的力矩M从,
M从=FtR=(Q-G)R 该蜗杆的传动机构的效率公式为 η =P从/P主 =ω从M从/(ω主M主) =M从/(iM主) 式中 i为蜗杆传动的传动比。 对于正在设计和制造的机械,虽然不能直接用实验法测定其 机械效率,但是由于各种机械都不过是由一些常用机构组合而成 的,而这些常用机构的效率又是可通过实验积累的资料来预先估 定的(如表5-1 简单传动机构和运动副的效率)。 据此,可通过 计算确定出整个机械的效率。
0.94 0.94 0.42
解 机构1、2、3′ 及4′串联的部分
′ 4 )′ =5 kW/(0.982×0.962)=5.649 kW P′d=P′r /(η1η2η3 η 机构1、2、3" 、4"及5"串联的部分 " =Pr"/(η1η2η3 " "5 )" =0.2 kW/(0.982×0.942×0.42)=0.561 kW Pd η4 η 故该机械的总效率为 η = ∑Pr /∑Pd =(5+0.2) kW/(5.649+0.561) kW=0.837
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a F
例 转动副 力臂长为a, 设驱动力为F, 摩擦圆半径为ρ,当F作用在摩 擦圆之内时(即a≤ ρ),则
1
ρ
2
FR=F
M0=Fa ≤ Mf=FR ρ =F ×ρ
即F 任意增大(a不变),也不 能使轴颈转动, 即发生了自锁 现象。
结论 转动副发生自锁的条件为:作用在 轴颈上的驱动力为单力F,且作用于摩擦圆之 内,即a≤ ρ。
手把6
F
(3)从效率η ≤0的条件来确定 当机械发生自锁时,无论驱动力如何增大,其驱动力所作的 故 功Wd总是不足以克服其引起的最大损失功Wf, η=1-Wf /Wd ≤0
例 手摇螺旋千斤顶 其反行程的效率为: η′=G0/G= tan(α-φv) /tanα 令η′≤0, 则得此自锁条件为α≤φv
0.94 0.94 0.42
解 机构1、2、3′ 及4′串联的部分
′ ′ =5kW/(0.982×0.962)=5.649 kW P′ d=Pr /(η1η2η3 η′4 ) 机构1、2、3" 、4"及5"串联的部分 " =P" " " Pd r /(η1η2η3 η4 η"5 ) =0.2kW/(0.982×0.942×0.42)=0.561kW 故该机械的总效率为 η = ∑Pr /∑Pd =(5+0.2)kW/(5.649+0.561)kW=0.837
α
F
G
解 因其正行程实际驱动力为F=Gtan(α+φ),理想驱动力为 F0=Gtanα,故 η=F0/F=tanα/ tan(α+φ) 因其反行程实际驱动力为G=F′/tan(α-φ),理想驱动力为 G0= F′/tanα,故 η′=G0/G= tan(α-φ)/ tanα
例2 螺旋机构:见图4-5 已知 拧紧时 M = Gd2tan(α+φv)/2 放松时 M′=Gd2tan(α-φv)/2 现求 η及η ′ 解 采用上述类似的方法,可得 拧紧时 η = M0/M = tanα/ tan(α+φv)
α
F
G
放松时 η′=G0/G = tan(α-φv)/ tanα
(2)机械效率的实验测定 机械效率的确定除了用计算法外,更常用实验法来测定, 许多机械尤其是动力机械在制成后,往往都需作效率实验。 现以蜗杆传动效率实验测定为例加以说明 1)实验装置
电机定子 电机转子 定子平衡杆
F
磅秤
蜗轮 制动轮
联轴器 千分表
0.40~0.45 0.70~0.75 0.75~0.82 0.80~0.92 0.85~0.95
备
注
良好跑合、稀油润滑 稀油润滑 稀油润滑 干油润滑 良好跑合、稀油润滑 稀油润滑 干油润滑
6~7级精度齿轮传动 圆锥齿 8级精度齿轮传动 轮传动 切制齿、开式齿轮传动 铸造齿、开式齿轮传动
自锁蜗杆 单头蜗杆 双头蜗杆 三头、四头蜗杆 圆弧面蜗杆
§5-2 机械的自锁
1. 机构的自锁 (1) 自锁现象 某些机构,就其机构而言是能够运动的,但由于摩擦的存在, 却会出现无论驱动力如何增大,也无法使机械运动的现象。 (2)自锁意义
设计机械时,为使机械能实现预期的运动,必须避免机械在 所需的运动方向发生自锁;有些机械的工作需要具有自锁的特性, 如手摇螺旋千斤顶
2R
蜗杆 皮带
弹性梁
Q
砝码
G
2)实验方法 实验时,可借助于磅秤测定出定子平衡杆的压力F来确定出 主动轴上的力矩M主, 即 M主=Fl 同时,根据弹性梁上的千分表读数(即代表Q力),来确定 出制动轮上的圆周力Ft=Q-G,从而确定出从动轴上的力矩M从, M从=FtR=(Q-G)R
该蜗杆的传动机构的效率公式为 η =P从/P主 =ω从M从/(ω主M主)=M从/(iM主) 式中 i为蜗杆传动的传动比。 对于正在设计和制造的机械,虽然不能直接用实验法测定其 机械效率,但是由于各种机械都不过是由一些常用机构组合而成 的,而这些常用机构的效率又是可通过实验积累的资料来预先估 定的(如表5-1 简单传动机构和运动副的效率)。 据此,可通过 计算确定出整个机械的效率。
η 1 1
P1η1
η2 2
P2η2
ηk k
k
P2η2
即并联机组的总效率与各机器的效率及其所传动的功率的大 小有关,且ηmin< η < ηmax; 机组的总效率主要取决于传动功率大 的机器的效率。 结论 要提高并联机组的效率,应着重提高传动功率大的路 线的效率。
(3)混联 混联机组的机械效率计算步骤为 1)先将输入功至输出功的路线弄清楚; 2)然后分别计算出总的输入功率∑Pd 和总的输出功率∑Pr; 3)最后按下式计算其总机械效率。
作力多边形,于是由正弦定律得: F = FR32sin(α - 2φ)/cosφ G = FR23cos(α - 2φ)/cosφ 又因R32 = R23,
F = G tg(α-2φ)
令 F = G tg(α-2φ)≤0 即 tg(α-2φ)≤0
于是机构的自锁条件为
α≤ 2φ
自锁问题小结
通过以上分析,判断机构是否自锁可采用以下方法:
1、分析驱动力是否作用于摩擦角(或摩 擦圆)之内;
2、机械效率是否等于或小于零; 3、阻抗力是否等于或小于零; 4、驱动力是否等于或小于最大摩擦力。
要做到正确确定机械的自锁条件,一是要清楚 机械自锁的概念;二是要清楚机械是正行程自 锁,还是反行程自锁;三是要根据机械的具体 情况,选用简便的机械自锁条件确定的方法。
(2)机械效率的意义
机械效率反映了输入功在机械中的有效利用的程度, 它是 机械中的一个主要性能指标, 因摩擦损失是不可避免的,故必 有ξ >0和η <1。 降耗节能是国民经济可持续发展的重要任务之一。
2. 机械效率的确定 (1)机械效率的计算确定 1)以功表示的计算公式 η=Wr/Wd=1-Wf/Wd 2)以功率表示的计算公式 η=Pr/Pd=1-Pf/Pd
蜗杆传动
润滑良好
续表5-1 简单传动机械和运动副的效率 名 称 带传动 链传动 摩擦轮 传动 滑动轴承 滚动轴承 球轴承 滚子轴承 滑动螺旋 滚动螺旋 传 动 形 式 效率值 备 注
平型带传动 V型带传动
套筒滚子链 无声链 平摩擦轮传动 槽摩擦轮传动
0.90~0.98 0.94~0.96
0.96 0.97 0.85~0.92 0.88~0.90 润滑良好
第五章
机械的效率及自锁
§5-1 机械的效率
§5-2 机械的自锁
返回
§5-1 机械的效率
1. 机械效率的概念及意义 (1)机械效率 机械的输出功(Wr)与输入功(Wd)的比值, 以η表示。 机械损失系数或损失率, 机械的损失功(Wf)与输入功(Wd) 的比值, 以ξ 表示。
η=Wr/Wห้องสมุดไป่ตู้ =1-Wf/Wd =1- ξ
0.94 0.97 0.99
0.99 0.98 0.30~0.80 0.85~0.95
润滑不良 润滑正常 液体润滑
稀油润滑 稀油润滑
螺旋传动
3. 机组的机械效率计算 机组 由若干个机器组成的机械系统。 当已知机组各台机器的机械效率时,则该机械的总效率可 由计算求得。 (1)串联 Pd Pk-1 P P P Pkr=Pr 1 2 η η η 1 2 k 1 2 k 串联机组功率传动的特点是前一机器的输出功率即为后一机 器的输入功率。 串联机组的总机械效率为
(3)自锁条件 机械发生自锁实质上是机械中的运动副发生的自锁。
例 移动副 设驱动力为F, 传动角为β, 摩擦角φ。则
FR
F
n
β
φ Fn
Ft=Fsinβ=Fntanβ Ffmax=Fntanφ
当β≤φ时,有
Ft
Ffmax
n
Ft≤Ffmax
即β≤φ当时,无论驱动力F 如何增大,其有效分力Ft总小于 驱动力F 本身所引起的最大摩擦 力,因而总不能推动滑块运动。即自锁现 象。 结论 移动副发生自锁的条件为:在移动副 中,如果作用于滑块上的驱动力作用在其摩擦角 之内(即β≤φ ),则发生自锁。
η = ∑Pr /∑Pd
例 设已知某机械传动装置的机构的效率和输出功率,求该 机械传动装置的机械效率。 P' P' P' =5kW ' ' η η 4' 3 3 4
Pd
η 11
P
η 22
0.98
P
0.96
0.96
0.98
' P' ' P' ' P' ' P' =0.2kW ' ' ' η' η' η 3' 4 5 3 4 5
理论机械装置 实际机械装置 η0
F0 vF
G
vG
η = Pr /Pd=GvG /FvF η0 = GvG /F0vF =1
3)以力或力矩表示的计算公式 η=F0/F=M0/M
即 理想驱动力 理想驱动力矩 η= = 实际驱动力 实际驱动力矩
例1 斜面机构:见图4-3 已知 正行程 F = Gtan(α+φ) 反行程 现求 η及η ′ F′=Gtan(α-φ)
表5-1 简单传动机械和运动副的效率 名 称 圆柱齿 轮传动 传 动 形 式
6~7级精度齿轮传动 8级精度齿轮传动 9级精度齿轮传动 切制齿、开式齿轮传动 铸造齿、开式齿轮传动
效率值
0.98~0.99 0.97 0.96 0.94~0.96 0.9~0.93 0.97~0.98 0.94~0.97 0.92~0.95 0.88~0.92
例2:如图所示,为一斜面压榨机,,求在 G 作 用下的自锁条件。
解:1)作出各移动副 的总反力。 2)分别取滑块2、3 为分离体
F2 0 F3 0
FR13 FR23 FR32
G
FR13 FR12 FR23
FR12