人教案八年级数学(上)三角形几何证明专题练习题(无答案)

合集下载

八年级上册《数学》三角形专项练习题(含答案)

八年级上册《数学》三角形专项练习题(含答案)

八年级上册《数学》三角形专项练习题11.1.1三角形的边一、能力提升1.如图,在图形中,三角形有()A.4个B.5个C.6个D.7个2.已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为()A.2B.3C.5D.133.若一个三角形的两条边长分别为3和8,而第三条边长为奇数,则第三条边长为()A.5或7B.7C.9D.7或94.在△ABC中,若三条边长均为整数,周长为11,且有一条边长为4,则这个三角形最长边可能取值的最大值是()A.7B.6C.5D.45.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC 为公共边的“共边三角形”有对.6.若等腰三角形的腰长为6,则它的底边长a的取值范围是.7.用7根相同的火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为.8.已知等腰三角形的两边长分别为3cm和7cm,求这个三角形的周长.9.已知等腰三角形的周长是16cm.(1)若其中一边的长为4cm,求另外两边的长;(2)若其中一边的长为6cm,求另外两边的长.10.若a,b,c是△ABC的三边长,请化简|a-b-c|+|b-c-a|+|c-a-b|.11.已知等腰三角形的周长为20cm,设腰长为xcm.(1)用含x的式子表示底边长.(2)腰长x能否为5cm,为什么?(3)求x的取值范围.二、创新应用12.在平面内,分别用3根、5根、6根、…小棒首尾依次相接,能搭成什么形状的三角形?通过尝试,形状如表所示.小棒数目3 5 6 ……示意图……形状等边三角形等腰三角形等边三角形……(1)4根小棒能搭成三角形吗?(2)8根、12根小棒能搭成几种不同形状的三角形?并画出它们的示意图.答案一、能力提升1.B2.B;由题意知2+x>13,且x<13+2,解得11<x<15,因为x为正整数,所以x 可以是12,13,14.故选B.3.D;由题意知第三条边长大于5小于11.因为第三条边长为奇数,所以它的大小为7或9.4.C由题意知三角形的三条边长分别为2,4,5或3,4,4,所以最长边可能取值的最大值为5.5.3;△BDC与△BEC,△BDC与△BAC,△BEC与△BAC,共3对.6.0<a<12.7.2.8.解:若腰长为3cm,则三边长分别为3cm,3cm,7cm,而3+3<7,此时不能构成三角形;若腰长为7cm,则三边长分别为3cm,7cm,7cm.此时能构成三角形,其周长为3+7+7=17(cm).故这个三角形的周长为17cm. 9.解:(1)若腰长为4cm,则底边长为16-4-4=8(cm).三边长分别为4cm,4cm,8cm,不符合三角形的三边关系,所以应该是底边长为4cm.所以腰长为(16-4)÷2=6(cm).三边长分别为4cm,6cm,6cm,符合三角形的三边关系.所以另外两边的长都为6cm.(2)若腰长为6cm,则底边长为16-6-6=4(cm).三边长分别为4cm,6cm,6cm,符合三角形的三边关系.所以另外两边的长分别为6cm 和4cm.若底边长为6cm,则腰长为(16-6)÷2=5(cm).三边长分别为6cm,5cm,5cm,符合三角形的三边关系.所以另外两边的长都为5cm.10.解:因为a,b,c是△ABC的三边长,所以a<b+c,b<c+a,c<a+b,即a-b-c<0,b-c-a<0,c-a-b<0.所以|a-b-c|+|b-c-a|+|c-a-b|=-(a-b-c)-(b-c-a)-(c-a-b)=a+b+c.11.解:(1)底边长为(20-2x)cm.(2)不能.理由如下:若腰长为5cm,则底边长为20-2×5=10(cm).因为5+5=10,不满足三角形的三边关系.所以腰长不能为5cm.(3)根据题意,得解得0<x<10.由三角形的三边关系,得x+x>20-2x,解得x>5.综上所述,x的取值范围是5<x<10.二、创新应用12.解:(1)4根小棒不能搭成三角形.(2)8根小棒能搭成一种三角形,示意图如图甲;12根小棒能搭成三种不同形状的三角形,示意图如图乙.11.1.2三角形的高、中线与角平分线一、能力提升1.若一个三角形中仅有一条高在三角形的内部,则该三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.直角三角形或钝角三角形2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D.在△ABC中,边AC上的高是线段()A.AEB.CDC.BFD.AF3.如图,线段AE是△ABC的中线,已知EC=6,DE=2,则线段BD的长为()A.2B.3C.4D.64.如图,在△ABC中,∠C=90°,D,E为AC上的两点,且AE=DE,BD平分∠EBC,则下列说法不正确的是()A.线段BC是△ABE的高B.线段BE是△ABD的中线C.线段BD是△EBC的角平分线D.∠ABE=∠EBD=∠DBC5.如图,在△ABC中,E,F分别是AB,AC的中点,△CEF的面积为2.5,则△ABC的面积为()A.6B.7C.8D.106.如图,BD和CE是△ABC的两条角平分线,且∠DBC=∠ECB=31°,则∠ABC=度,∠ACB=度.7.如图,线段AD,CE分别是△ABC中边BC,AB上的高.若AD=10,CE=9,AB=12,则BC的长是.8.如图,在△ABC中,AB=AC,线段AD是△ABC的中线,△ABC的周长为34cm,△ABD的周长为30cm,求AD的长.9.已知在等腰三角形ABC中,AB=AC,若腰AC上的中线BD将等腰三角形ABC的周长分成15和6两部分,求三角形ABC的腰长及底边长.10.如图,AD是△CAB的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是△EDF的角平分线吗?如果是,请给予证明;如果不是,请说明理由.二、创新应用11.有一块三角形优良品种试验基地,如图,由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择.(画图即可)答案一、能力提升1.D;直角三角形和钝角三角形都只有一条高在三角形的内部.2.C3.C4.D5.D;∵F为AC的中点,∴线段EF为△AEC的中线,∴S△AEC=2S△CEF=5.∵E为AB的中点,∴线段CE为△ABC的中线,∴S△ABC=2S△AEC=10.6.62;62.7.10.8;S△ABC=BC·AD=AB·CE,则BC===10.8.8.解:∵线段AD是△ABC的中线,∴BC=2BD.∵AB=AC,△ABC的周长为34cm,∴2AB+2BD=34cm,即AB+BD=17cm.又△ABD的周长为30cm,即AB+BD+AD=30cm,∴AD=13cm.9.解:设AB=AC=2x,则AD=CD=x.当AB+AD=15,BC+CD=6时,有2x+x=15,所以x=5,AB=AC=2x=10,BC=6-5=1.当BC+CD=15,AB+AD=6时,有2x+x=6,所以x=2,AB=AC=2x=4,BC=13.因为4+4<13,所以不能组成三角形.故三角形ABC的腰长为10,底边长为1.10.解:DO是△EDF的角平分线.证明如下:∵AD是△CAB的角平分线,∴∠EAD=∠FAD.∵DE∥AB,DF∥AC,∴∠EDA=∠FAD,∠FDA=∠EAD.∴∠EDA=∠FDA,即DO是△EDF的角平分线.二、创新应用11.解:如图(答案不唯一).11.1.3三角形的稳定性一、能力提升1.如图,桥梁的斜拉钢索是三角形的结构,主要是为了()A.节省材料,节约成本B.保持对称C.利用三角形的稳定性D.美观漂亮2.下列不是利用三角形稳定性的是()A.伸缩晾衣架B.三角形房架C.自行车的三角形车架D.矩形门框的斜拉条3.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短4.王师傅用四根木条钉成一个四边形木架.如图,要使这个木架不变形,他至少还要再钉上()根木条.A.0B.1C.2D.35.如图,要使四边形木条框架ABCD变“活”(具有不稳定性),应将木条拆除.6.伸缩铁门能自由伸缩,主要是应用了四边形的.7.我们所用的课桌和所坐的凳子,时间长了总是摇摇晃晃的,这是什么原因?要使自己用的桌凳不晃动应该怎么办?如图,如果有六边形木框,要使它不变形,应该怎么办?二、创新应用8.如图,我们知道要使四边形木架不变形,至少要钉一根木条.那么要使五边形木架不变形,至少要钉几根木条?要使七边形木架不变形,至少要钉几根木条?要使n边形木架不变形,又至少要钉多少根木条呢?答案一、能力提升1.C.2.A.3.A;打开的那一扇窗户下边的一部分OB、窗户框下边的一部分OA 及AB组成一个三角形,根据三角形的稳定性,知可用AB固定窗户.4.B.5.AC.6.不稳定性.7.解:这是因为课桌和凳子的四个侧面都是四边形木架,当交接处松动后就具有不稳定性.解决这类问题的方法是在每个侧面加上一根木条(或木板),使之成为三角形.要使六边形木框不变形,至少应加3根木条使其划分为三角形.二、创新应用8.解:要使五边形木架不变形,至少要钉2根木条;要使七边形木架不变形,至少要钉4根木条;要使n边形木架不变形,至少要钉(n-3)根木条.11.2.1三角形的内角一、能力提升1.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B的度数为()A.50°B.75°C.100°D.125°2.如图,CD∥AB,∠1=120°,∠2=80°,则∠E等于()A.40°B.60°C.80°D.120°3.(2020·辽宁锦州中考)如图,在△ABC中,∠A=30°,∠B=50°,CD平分∠ACB,则∠ADC的度数是()A.80°B.90°C.100°D.110°4.在△ABC中,若∠A=∠B+∠C,则∠A的度数是.5.如图,点B,C,D在同一条直线上,CE∥AB,∠ACB=90°.如果∠ECD=36°,那么∠A的度数是.6.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2的度数是.7.在△ABC中,若最大角∠A等于最小角∠C的两倍,最大角又比另一个角大20°,则△ABC的三个角的度数分别是多少?8.如图,E是△ABC中边AC上的一点,过点E作ED⊥AB,垂足为D.若∠1=∠2,则△ABC是直角三角形吗?为什么?9.如图,在△ABC中,D是BC上一点,F是BA延长线上一点,连接DF交AC于点E,且∠B=42°,∠C=59°,∠DEC=47°,求∠F的度数.二、创新应用10.如图,在△ABC中,∠ABC,∠ACB的平分线相交于点D.(1)若∠ABC+∠ACB=110°,则∠BDC=;(2)若∠A=100°,则∠BDC=;(3)若∠A=n°,求∠BDC的度数.答案一、能力提升1.B;设∠C的度数为x°,则∠B的度数为x°+25°,则55°+x°+x°+25°=180°,解得x=50,则∠B=75°.2.A;∵CD∥AB,∠1=120°,∴∠CDB=∠1=120°,∴∠EDC=60°.∵∠2=80°,∴∠E=180°-80°-60°=40°.3.C∵∠A=30°,∠B=50°,∴∠ACB=180°-∠A-∠B=100°.又CD平分∠ACB,∴∠ACD=∠ACB=50°.∴∠ADC=180°-∠A-∠ACD=100°.4.90°.5.54°.6.270°.由三角形三内角之间的关系,得∠3+∠4=90°,所以∠1+∠2=(180°-∠3)+(180°-∠4)=2×180°-(∠3+∠4)=360°-90°=270°.7.解:设∠C=x°,则∠A=2x°,∠B=2x°-20°,根据三角形的内角和定理,有2x+(2x-20)+x=180,解得x=40,即∠C=40°.所以2x=80,∠A=80°,2x-20=60,∠B=60°.故△ABC的三个角的度数分别为∠A=80°,∠B=60°,∠C=40°.8.解:△ABC是直角三角形.理由如下:∵ED⊥AB,∴∠ADE=90°,∴∠1+∠A=90°.又∠1=∠2,∴∠2+∠A=90°.∴△ABC是直角三角形.9.解:在△EDC中,∠EDC=180°-(∠C+∠DEC)=180°-(59°+47°)=74°.∴∠FDB=180°-∠EDC=180°-74°=106°.在△BDF中,∠F=180°-(∠B+∠FDB)=180°-(42°+106°)=32°.二、创新应用10.解:(1)125°.(2)140°.(3)∵∠A=n°,∴∠ABC+∠ACB=180°-n°.∵BD平分∠ABC,CD平分∠ACB,∴∠DBC+∠DCB=∠ABC+∠ACB=(∠ABC+∠ACB)=×(180°-n°)=90°-.∴∠BDC=180°-(∠DBC+∠DCB)=180°-=90°+.11.2.2三角形的外角一、能力提升1.一副三角尺有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165°B.120°C.150°D.135°2.如图,在△ABC中,AD为边BC上的中线,在△ABD中,AE为边BD上的中线,在△ACD中,AF为边DC上的中线,则下列结论错误的是()A.∠1>∠2>∠3>∠CB.BE=ED=DF=FCC.∠1>∠4>∠5>∠CD.∠1=∠3+∠4+∠53.如图,若∠A=32°,∠B=45°,∠C=38°,则∠DFE等于()A.120°B.115°C.110°D.105°4.(2020·湖北中考)将一副三角尺按如图摆放,点E在AC上,点D在BC 的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°5.如图,∠ABC的平分线与∠ACD的平分线相交于点P.若∠A=60°,则∠P等于()A.30°B.40°C.50°D.60°6.(2020·湖北黄冈中考)如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=.7.如图,已知在△ABC中,D是AB上一点,E是AC上一点,BE与CD相交于点F,∠A=62°,∠ACD=35°,∠ABE=20°,则∠BDC=,∠BFC=.8.如图,D,E,F分别是△ABC三边延长线上的点,求∠D+∠E+∠F+∠1+∠2+∠3的度数.9.如图,在△ABC中,E是AC延长线上的一点,D是BC上的一点.求证:(1)∠BDE=∠E+∠A+∠B.(2)∠BDE>∠A.10.如图,在△ABC中,D是边BC上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.二、创新应用11.如图①,有一个五角形图案ABCDE,你能说明∠A+∠DBE+∠C+∠D+∠E=180°吗?如果点B向下移动到AC上(如图②)或AC的另一侧(如图③),上述结论是否依然成立?请说明理由.答案一、能力提升1.A如图,∵∠2=90°-45°=45°,∴∠1=∠2-30°=15°.∴∠α=180°-∠1=165°.2.C由三角形的一个外角大于与它不相邻的内角,知∠1>∠2>∠3>∠C,故选项A正确;根据三角形中线的定义,知BE=ED=DF=FC,故选项B正确;∠4与∠5的大小不能判定,故选项C错误;根据三角形的一个外角等于与它不相邻两个内角的和,知∠1=∠2+∠4,∠2=∠3+∠5,所以∠1=∠3+∠4+∠5,故选项D正确.3.B4.A5.A利用三角形的外角性质,得∠P=∠PCD-∠PBD=(∠ACD-∠ABC)=∠A=30°.6.30°.7.97°;117°.8.解:∵∠D+∠3=∠CAB,∠E+∠1=∠ABC,∠F+∠2=∠ACB,∴∠D+∠E+∠F+∠1+∠2+∠3=∠CAB+∠ABC+∠ACB=180°.9.证明:(1)∵∠BDE,∠DCE分别是△CDE,△ABC的一个外角,∴∠BDE=∠E+∠DCE,∠DCE=∠A+∠B,∴∠BDE=∠E+∠A+∠B.(2)由(1)得∠BDE=∠E+∠A+∠B,∴∠BDE>∠A.10.解:∵∠3是△ABD的外角,∴∠3=∠1+∠2.∵∠1=∠2,∠3=∠4,∴∠4=2∠2.在△ABC中,∵∠2+∠4=180°-∠BAC=180°-63°=117°,∴∠1=∠2=117°÷(1+2)=39°.∴∠DAC=∠BAC-∠1=63°-39°=24°.二、创新应用11.解:在题图①中,∠A+∠C=∠DNM, ①∠DBE+∠E=∠DMN, ②①+②,得∠A+∠DBE+∠C+∠E=∠DNM+∠DMN.∵∠D+∠DNM+∠DMN=180°,∴∠A+∠DBE+∠C+∠D+∠E=180°.在题图②、题图③中,上述结论仍然成立,理由与题图①完全相同.11.3.1多边形一、能力提升1.在下列关于正多边形的特征说法中,错误的是()A.每一条边都相等B.每一个内角都相等C.每一个外角都相等D.所有对角线都相等2.过多边形的一个顶点可以引2017条对角线,则这个多边形的边数是()A.2017B.2018C.2019D.20203.如果过多边形的一个顶点的对角线把多边形分成8个三角形,那么这个多边形的边数为()A.8B.9C.10D.114.将一个四边形截去一个角后,它不可能是()A.三角形B.四边形C.五边形D.六边形5.在n边形的一边上任取一点(不包含顶点)与各顶点相连,可得三角形的个数是()A.nB.n-2C.n-1D.n+16.过m边形的一个顶点有7条对角线,n边形没有对角线,则m n=.7.已知一个多边形的边数恰好是从这个多边形的一个顶点出发所作的对角线的条数的2倍,求此多边形的边数.二、创新应用8.观察下面图形,解答下列问题:(1)在上面第四个图中画出六边形的所有对角线;(2)观察规律,把下表填写完整.边数 3 4 5 6 7 …n对角线条0 2 5 …数答案一、能力提升1.D2.D3.C4.D一个多边形截去一个角后,可能出现三种情况:少一个角、角的个数不变或多一个角.5.C6.1000;从m边形的一个顶点出发有(m-3)条对角线,由m-3=7,得m=10. n边形没有对角线,所以n=3.所以m n=103=1000.7.解:设这个多边形的边数为n,则从多边形的一个顶点出发所作的对角线的条数为n-3.依题意,得n=2(n-3),解得n=6.二、创新应用8.解:(1)(2)边数 3 4 5 6 7 …n对角线条数0 2 5 9 14 …n(n-3)11.3.2多边形的内角和一、能力提升1.如果一个正多边形的每一个外角都是锐角,那么这个正多边形的边数一定不小于()A.3B.4C.5D.62.(2020·山东济宁中考)一个多边形的内角和是1080°,则这个多边形的边数是()A.9B.8C.7D.63.若一个多边形的边数由5增加到11,则内角和增加的度数是()A.1080°B.720°C.540°D.360°4.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是()A.110°B.108°C.105°D.100°5.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形6.若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是.7.如图,在四边形ABCD中,∠A+∠B=210°,且∠ADC的平分线与∠DCB的平分线相交于点O,则∠COD的度数是.8.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.9.如图,求∠A+∠B+∠OCD+∠ODC+∠E+∠F的度数.二、创新应用10.在一个多边形中,一个内角相邻的外角与其他各内角的和为600°.(1)如果这个多边形是五边形,请求出这个外角的度数;(2)是否存在符合题意的其他多边形?如果存在,请求出边数及这个外角的度数;如果不存在,请说明理由.答案一、能力提升1.C每个外角都是锐角,即小于90°,设边数为n,则这些锐角的和一定小于n×90°.而外角和为360°,所以360°<n×90°,n>4,即n不小于5.2.B设这个多边形的边数是n,则(n-2)×180°=1080°,解得n=8.3.A因为每增加一条边,内角和增加180°,所以增加6条边,内角和增加180°×6=1080°.4.D由题意知∠AED的补角为80°,则∠AED=100°.5.D多边形的外角和是360°,内角和等于外角和的一半,则内角和是180°,可知此多边形为三角形.6.6因为凸n边形的内角和为1260°,所以(n-2)×180°=1260°,得n=9.故从一个顶点出发引的对角线的条数为9-3=6.7.105°∵四边形的内角和为360°,∠A+∠B=210°,∴∠ADC+∠BCD=360°-210°=150°.∵DO,CO分别为∠ADC与∠BCD的平分线,∴∠ODC=∠ADC,∠OCD=∠BCD.∴∠ODC+∠OCD=(∠ADC+∠BCD)=×150°=75°.∴∠COD=180°-75°=105°.8.解:由题意知这个多边形的内角和为3×360°-180°=900°.设这个多边形的边数为n,根据题意,得(n-2)×180°=900°,解得n=7.故这个多边形的边数为7.9.解:如图,连接BE,则在△COD与△BOE中,∠ODC+∠OCD+∠COD=180°,∠OBE+∠OEB+∠BOE=180°.∵∠COD与∠BOE是对顶角,∴∠COD=∠BOE.∵∠ODC+∠OCD=180°-∠COD,∠OBE+∠OEB=180°-∠BOE,∴∠ODC+∠OCD=∠OBE+∠OEB.∴题图中的∠A+∠B+∠OCD+∠ODC+∠E+∠F等于上图中的∠A+∠F+∠ABC+∠DEF+∠OBE+∠OEB=∠A+∠F+∠ABE+∠BEF=360°,即所求六个角的和为360°.二、创新应用10.解:(1)设这个外角的度数是x°,则(5-2)×180-(180-x)+x=600,解得x=120.故这个外角的度数是120°.(2)存在.设边数为n,这个外角的度数是x°,则(n-2)×180-(180-x)+x=600,整理得x=570-90n.因为0<x<180,即0<570-90n<180,并且n为正整数,所以n=5或n=6.故这个多边形的边数是6,这个外角的度数为30°.。

人教案八年级数学(上)三角形几何证明专题练习题(无答案)

人教案八年级数学(上)三角形几何证明专题练习题(无答案)
A
G E
B
D
F C
10.如图所示, 已知点 D 是等边三角形 ABC 的边 BC 延长线上的一点, ∠EBC= ∠ DAC , CE∥ AB。求证:△ CDE 是等边三角形。
A
E
B
C
D
11.如图所示,在△ ABC 中, AB=AC ,在 AB 边上取点 D,在 AC 的延长线上 取点 E,使得 BD=CE ,连接 DE 交 BC 于点 G,求证: DG=GE。
的形状,并证明你的结论。
C
N O
AM
B
6、如图,△ ABC 为等边三角形,延长 BC 到 D,延长 BA 到 E, AE=BD , 连结 EC、 ED ,求证: CE=DE
7、如图,等腰三角形 ABC 中, AB = AC ,∠ A = 90°, BD 平分∠ ABC , DE⊥ BC 且 BC = 10,求△ DCE的周长。
8.如图所示,已知 AD 是∠ BAC 的平分线, EF 垂直平分 AD 交 BC 的延长线于 点 F,交 AD 于点 E,连接 AF ,求证:∠ B=∠CAF 。
A
E
B
D
C
F
9.如图所示, AD 是∠ BAC 的平分线, DE⊥AB ,DF⊥AC ,垂足分别为 E,F, 连接 EF,EF 与 AD 交于点 G,求证: AD 垂直平分 EF。
八年级数学(上)几何证明专题练习题
1、 已知:在⊿ ABC中,∠ A=900, AB=AC,在 BC上任取一点 P,作 PQ∥ AB交 AC于 Q,作 PR ∥CA交 BA于 R, D 是 BC的中点,求证:⊿ RDQ是等腰直角三角形。
A Q
பைடு நூலகம்
R
C
B

初中八年级上册全等三角形证明教案及习题集

初中八年级上册全等三角形证明教案及习题集

证明方法举例点B、E、C、F在同一直线上,AB=DE、AC=DF、BE=CF。

求证:△ABC≌△DEF。

解题思路:由已知条件AB=DE,AC=DF知道,要证明△ABC≌△DEF还差一个条件(BC=EF),而已知条件中还有BE=CF,而通过观察发现EC分别为BC,EF的公共段,所以由BE=CF得到BE+EC=CF+EC,即BC=EC。

已知:∠1=∠2,∠ABC=∠DCB 。

求证:AB=DC 。

解题思路:要证AB=DC ,只要证△ABO ≌△DOC 。

而我们由已知和图知∠1=∠2,∠AOB=∠DOC (对顶角相等),那么△ABO ≌△DOC 只差一个条件:两相等角之间夹边对应相等即可证明其全等(ASA ),即只要证明BO=CO 再由已知∠ABC=∠DCB ,∠1=∠2知∠ABC -∠1=∠DCB -∠2所以∠OBC=∠OCB 所以: OB=OC (等角对等边)已知:在△ABC 中,AD 为BC 边上的中线,CE ⊥AD ,BF ⊥AD 。

求证:CE=BF解题思路:由已知AD 为中线,可知BD=CD,由CE ⊥AD ,BF ⊥AD 知∠BFD=∠CED=90° 又∠BDF=∠CDE (对顶角相等)所以△BDF ≌△CDE(ASA) 所以:CE=BF如图AC=BD ,∠CAB=∠DBA 。

求证:△CAO ≌△DBOABCD1 2后面有很多几种方法证明△CAO ≌△DBO ,例举两种:1.∠ACB=∠BDA ,∠COA=∠DOB ,AC=BD 所以△CAO ≌△DBO (AAS )2.△CAB ≌△DBA 知∠OAB=∠OBA 所以OA=OB 又因为∠CAB=∠DBA 所以∠CAD=∠DBC 又因为AC=BD所以△CAO ≌△DBO (SAS )例题:1. 已知:如图,AB=DC ,AE=DF ,CE=FB ,求证:AF=DE 。

【解析】要证AF=DE ,可证△AFB 与△DEC 全等,但还缺少相关角相等的条件,所以先证△AEB 与△DFC 全等。

八年级数学上册 11.2 全等三角形的判定综合练习课教案 新人教版

八年级数学上册 11.2 全等三角形的判定综合练习课教案 新人教版

课题全等三角形的判定综合练习课授课时间年月日教学目标知识与能力掌握直角三角形全等的条件,并能运用其解决一些实际问题过程与方法经历探索直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;情感态度价值观在学习过程中,通过交流合作,使学生体会成功的喜悦。

教学重点运用三角形全等的条件解决一些实际问题。

教学难点熟练运用三角形全等的条件解决一些实际问题。

教学方法合作学习、讨论法,讲授法教具准备课型新授教学活动教学环节补充一、情境引入:1、判定一般两个三角形全等的方法: SSS 、 SAS 、 ASA 、 AAS2、判定直角三角形全等的方法:HL二、知识应用:1、已知:如图,点D、E在BC上,且BD=CE,AD=AE,求证:AB=AC.2、已知:如图,A、C、F、D在同一直线上,AF=D C,AB=DE,BC=EF,求证:△ABC≌△DEF.3、已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DAE;②DF⊥BC.4、如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________.5、如图,∠DCE=90o,CD=CE,AD⊥AC,BE⊥AC,垂足分别为A、B,试说明AD+AB=BE.6、如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证:(1)△ABC≌△ADC;(2)BO=DO.四、小结:至此,我们有六种判定三角形全等的方法:1.全等三角形的定义2.边边边(SSS)3.边角边(SAS)4.角边角(ASA)5.角角边(AAS)6.HL(仅用在直角三角形中)五、检测:判断题:(1)一个锐角和这个锐角的对边对应相等的两个直角三角形全等。

()(2)一个锐角和锐角相邻的一直角边对应相等的两个直角三角形全等()(3)一个锐角与一斜边对应相等的两个直角三角形全等()(4)两直角边对应相等的两个直角三角形全等()(5)两边对应相等的两个直角三角形全等()(6)两锐角对应相等的两个直角三角形全等()(7)一个锐角与一边对应相等的两个直角三角形全等()(8)一直角边和斜边上的高对应相等的两个直角三角形全等()板书设计:教后记:第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。

八年级上册几何证明题

八年级上册几何证明题

八年级上册几何证明题一、三角形内角和定理相关证明题。

1. 已知:在△ABC中,∠A = 50°,∠B = 60°,求证:∠C = 70°。

解析:根据三角形内角和定理,三角形内角和为180°。

在△ABC中,因为∠A+∠B +∠C=180°,已知∠A = 50°,∠B = 60°,所以∠C=180°∠A ∠B = 180°-50° 60° = 70°。

2. 如图,在△ABC中,AD是∠BAC的平分线,∠B = 70°,∠C = 30°,求∠ADC的度数。

解析:根据三角形内角和定理,在△ABC中,∠BAC=180°∠B ∠C = 180°-70° 30° = 80°。

因为AD是∠BAC的平分线,所以∠BAD = 1/2∠BAC = 40°。

在△ABD中,根据三角形外角性质,∠ADC = ∠B+∠BAD,所以∠ADC = 70°+40° = 110°。

二、等腰三角形性质证明题。

3. 已知:在等腰△ABC中,AB = AC,∠A = 80°,求∠B和∠C的度数。

解析:因为AB = AC,所以△ABC是等腰三角形,根据等腰三角形两底角相等的性质,设∠B =∠C=x。

根据三角形内角和定理,∠A+∠B +∠C = 180°,即80°+x + x = 180°,2x=180° 80°,2x = 100°,x = 50°,所以∠B =∠C = 50°。

4. 如图,在等腰三角形ABC中,AB = AC,BD⊥AC于点D,求证:∠CBD=(1)/(2)∠A。

解析:设∠A=x。

因为AB = AC,所以∠ABC =∠ACB=(1)/(2)(180° x)=90°-(x)/(2)。

人教版八年级上册 几何证明-常用辅助线专题讲义:中线倍长法和截长补短法(无答案)

人教版八年级上册 几何证明-常用辅助线专题讲义:中线倍长法和截长补短法(无答案)

几何证明-常用辅助线 (一)中线倍长法:例1 、求证:三角形一边上的中线小于其他两边和的一半。

已知:如图,△ABC 中,AD 是BC 边上的中线,求证:AD ﹤21(AB+AC) 分析:要证明AD ﹤21(AB+AC),就是证明AB+AC>2AD ,也就是证明两条线段之和大于第三条线段,而我们只能用“三角形两边之和大于第三边”,但题中的三条线段共点,没有构成一个三角形,不能用三角形三边关系定理,因此应该进行转化。

待证结论AB+AC>2AD 中,出现了2AD ,即中线AD 应该加倍。

证明:延长AD 至E ,使DE=AD ,连CE ,则AE=2AD 。

在△ADB 和△EDC 中,AD =DE ∠ADB =∠EDCBD =DC∴△ADB ≌△EDC(SAS) ∴AB=CE又 在△ACE 中, AC+CE >AE∴AC+AB >2AD ,即AD ﹤21(AB+AC)小结:(1)涉及三角形中线问题时,常采用延长中线一倍的办法,即中线倍长法。

它可以将分居中线两旁的两条边AB 、AC 和两个角∠BAD 和∠CAD 集中于同一个三角形中,以利于问题的获解。

课题练习:ABC ∆中,AD 是BAC ∠的平分线,且BD=CD ,求证AB=ACC例2: 中线一倍辅助线作法△ABC 中方式1: 延长AD 到E ,AD 是BC 边中线使DE=AD ,连接BE 方式2:间接倍长作CF ⊥AD 于F ,延长MD 到N ,作BE ⊥AD 的延长线于使DN=MD , 连接BE 连接CD例3:△ABC 中,AB=5,AC=3,求中线AD 的取值范围例4:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE课堂练习:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF例5:已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC.求证:AE 平分BAC ∠课堂练习:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE作业:1、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。

第十二章全等三角形证明题变式训练(2)2021-2022学年八年级数学人教版上册

第十二章全等三角形证明题变式训练(2)2021-2022学年八年级数学人教版上册

第十二章全等三角形证明题变式训练21.问题情境:已知,在等边△ABC中,∠BAC与∠ACB的角平分线交于点O,点M、N分别在直线AC,AB上,且∠MON=60°,猜想CM、MN、AN三者之间的数量关系.方法感悟:小芳的思考过程是在CM上取一点,构造全等三角形,从而解决问题;小丽的思考过程是在AB取一点,构造全等三角形,从而解决问题;问题解决:(1)如图1,M、N分别在边AC,AB上时,探索CM、MN、AN三者之间的数量关系,并证明;变式:(2)如图2,M在边AC上,点N在BA的延长线上时,请你在图2中补全图形,标出相应字母,探索CM、MN、AN三者之间的数量关系,并证明.2.在四边形ABDC中,AD平分∠BAC,并且∠B+∠C=180°.(1) 如图1,当∠C=90°时,求证:BD=CD;变式一:(2) 如图2,当∠C是钝角时,(1)中的结论是否仍然成立?请证明你的判断;变式二:(3) 如图3,在(2)的条件下,过点D作DE⊥AB于点E,若AC=2,BE=3,△ABD的面积为24,求DE的长.3.如图1,在△ABC中,∠A=120°,∠C=20°,BD平分∠ABC,交AC于点D.(1)求证:BD=CD.变式一:(2)如图2,若∠BAC的角平分线AE交BC于点E,求证:AB+BE=AC.变式二:(3)如图3,若∠BAC的外角平分线AE交CB的延长线于点E,则(2)中的结论是否成立?若成立,给出证明,若不成立,写出正确的结论.4.已知:▵ABC中,过B点作BE⊥AD,.(1)如图1,点D在BC的延长线上,连AD,作BE⊥AD于E,交AC于点F.求证:;变式一:(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;变式二:(3)如图3,点D在CB延长线上,且AE⊥AD,连接BE、AC的延长线交BE于点M,的值.若,请直接写出DBBC5.在△ABC中,∠ACB=2∠B,如图1,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.(1)如图2,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.变式:(2)如图3,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.6.如图,△ABC中,CD⊥AB于点D,CD=BD,点E在CD上,DE=DA,连接BE.(1)求证:BE=CA;(2)延长BE交AC于点F,连接DF,求∠CFD的度数;变式:(3)过点C作CM⊥CA,CM=CA,连接BM交CD于点N,若BD=12,AD=5,直接写出△NBC的面积____.7.如图1,等腰直角三角形ABC中,O为斜边AC的中点,CD为∠ACB的平分线,过点B作BE⊥CD,垂足为D,交AC于点E,CD与BO交于点F.(1)求证:△BOE≌△COF;变式:(2)将∠DCB沿CB方向移动至P处,角的一边分别交BE,BO于点Q,H,如图2所示,试探究线段BQ和PH的数量关系,以及它们所在直线的位置关系.8.等边△ABC中,点H在边BC上,点K在边AC上,且满足AK=HC,连接AH,BK交于点F.(1)如图1,求∠AFB的度数;(2)如图2,连接FC,若∠BFC=90°,点G为边AC上一点,且满足∠GFC=30°,求证:AG⊥BG;变式:(3)如图3,在(2)条件下,在BF上取点D使得DF=AF,连接CD交AH于点E,若△DEF 面积为1,则△AHC的面积为__________.9.如图,在△ABC中,∠ABC为锐角,点D为直线BC上一动点,以AD为直角边且在AD的右侧作等腰直角三角形ADE,∠DAE=90°,AD=AE.(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时,如图1,线段CE,BD的位置关系为________,数量关系为________.变式一:②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立,请说明理由.变式二:(2)如图3,如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.探究:当∠ACB多少度时,CE⊥BC?请说明理由.10.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;变式一:(2)延长CG交AB于H,连接AG,过点C作CP // AG交BE的延长线于点P,求证:PB=CP+CF;变式二:(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3√3,BG=6,求AC的长.11.已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B,点C重合),以AD为边作等边三角形ADE,连接CE.(1)如图1,当点D在边BC上时,①求证:△ABD≌△ACE;②直接判断结论BC=DC+CE是否成立(不需证明).变式:(2)如图2,当点D在边BC的延长线上时,其他条件不变,请写出BC,DC,CE之间存在的数量关系,并写出证明过程.12.如图1,△ABC是等腰直角三角形,AC=BC=2√2,∠ACB=90°,点D是AB中点,在△ABC外取一点E,使DE=AD,连接DE,AE,BE.(1)求证:AE⊥BE.变式一:(2)如图2,若点E在直线AB下方,且∠AAA=30°,求CE的长.变式二:(3)若AE:AB=1:4,求△ACE的面积.13.将两个全等的直角三角形ABC和DBE按图(1)方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:CF=EF;变式一:(2)若将图(1)中的△DBE绕点B按顺时针方向旋转角a,且0°<a<60°,其他条件不变,如图(2).请你直接写出AF+EF与DE的大小关系:AF+EF________DE.(填“>”或“=”或“<”)变式二:(3)若将图(1)中△DBE的绕点B按顺时针方向旋转角B,且60°<β<180°,其他条件不变,如图(3).请你写出此时AF、EF与DE之间的关系,并加以证明.14.如图①,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边且在AD的上方作等腰直角三角形ADF,连接CF.(1)若AB=AC,∠BAC=90°①当点D在线段BC上时(与点B不重合),试探究CF与BD的数量关系和位置关系,并说明理由.变式一:②当点D在线段BC的延长线上时,①中的结论是否仍然成立,请在图②中画出相应图形并直接写出你的猜想.变式二:(2)如图③,若AB≠AC,∠BAC≠90°,∠BCA=45°,点D在线段BC上运动,试探究CF 与BC的位置关系,并说明理由.15.(1)如图,已知在△ABC中,AD为中线,求证:AB+AC>2AD;变式:(2)如图,在△ABC中,D为BC的中点,DE⊥DF分别交AB,AC于点E,F.求证:BE+CF>EF.16.(1)问题发现:如图1,△ABC与△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,则线段AE、BD的数量关系为_______,AE、BD所在直线的位置关系为________;变式:(2)深入探究:在(1)的条件下,若点A,E,D在同一直线上,CM为△DCE中DE边上的高,请判断∠ADB的度数及线段CM,AD,BD之间的数量关系,并说明理由.17.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,求∠BCE的度数;变式:(2)设∠BAC=α,∠BCE=β.如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.。

八年级数学上册 全等三角形专题练习(解析版)

八年级数学上册 全等三角形专题练习(解析版)

八年级数学上册全等三角形专题练习(解析版)一、八年级数学轴对称三角形填空题(难)1.在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=12BC,则△ABC的顶角的度数为_____.【答案】30°或150°或90°【解析】试题分析:分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.解:①BC为腰,∵AD⊥BC于点D,AD=12 BC,∴∠ACD=30°,如图1,AD在△ABC内部时,顶角∠C=30°,如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,②BC为底,如图3,∵AD⊥BC于点D,AD=12 BC,∴AD=BD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=12×180°=90°,∴顶角∠BAC=90°,综上所述,等腰三角形ABC的顶角度数为30°或150°或90°.故答案为30°或150°或90°.点睛:本题考查了含30°交点直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键.2.如图,P为∠AOB内一定点,M,N分别是射线OA,OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=___________.【答案】40°【解析】【分析】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质即可求解.【详解】如图:作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA、OB 的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM=50°同理,∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.∴∠OP2N=∠OP1M=50°,∴∠P1OP2=180°-2×50°=80°,∴∠AOB=40°,故答案为:40°【点睛】本题考查了对称的性质,正确作出图形,证得△P 1OP 2是等腰三角形是解题的关键.3.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D 下列结论:①EF BE CF =+;②点O 到ABC ∆各边的距离相等;③1902BOC A ∠=+∠;④设OD m =,AE AF n +=,则AEF S mn ∆=;⑤1()2AD AB AC BC =+-.其中正确的结论是.__________.【答案】①②③⑤【解析】【分析】由在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,根据角平分线的定义与三角形内角和定理,即可求得③∠BOC =90°+12∠A 正确;由平行线的性质和角平分线的定义得出△BEO 和△CFO 是等腰三角形得出EF =BE +CF 故①正确;由角平分线的性质得出点O 到△ABC 各边的距离相等,故②正确;由角平分线定理与三角形面积的求解方法,即可求得④设OD =m ,AE +AF =n ,则S △AEF =12mn ,故④错误,根据HL 证明△AMO ≌△ADO 得到AM =AD ,同理可证BM =BN ,CD =CN ,变形即可得到⑤正确.【详解】∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°﹣12∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+12∠A;故③正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF.∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA.∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=12AE•OM+12AF•OD=12OD•(AE+AF)=12mn;故④错误;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故②正确;∵AO=AO,MO=DO,∴△AMO≌△ADO(HL),∴AM=AD;同理可证:BM=BN,CD=CN.∵AM+BM=AB,AD+CD=AC,BN+CN=BC,∴AD=12(AB+AC﹣BC)故⑤正确.故答案为:①②③⑤.【点睛】本题考查了角平分线的定义与性质,等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.4.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的垂直平分线上;④S△DAC:S△ABC=1:3.其中正确的是__________________.(填所有正确说法的序号)【答案】4【解析】【分析】①连接NP,MP,根据SSS定理可得△ANP≌△AMP,故可得出结论;②先根据三角形内角和定理求出∠CAB的度数,再由AD是∠BAC的平分线得出∠1=∠2=30°,根据直角三角形的性质可知∠ADC=60°;③根据∠1=∠B可知AD=BD,故可得出结论;④先根据直角三角形的性质得出∠2=30°,CD=12AD,再由三角形的面积公式即可得出结论.【详解】①连接NP,MP.在△ANP与△AMP中,∵AN AMNP MPAP AP=⎧⎪=⎨⎪=⎩,∴△ANP≌△AMP,则∠CAD=∠BAD,故AD是∠BAC的平分线,故此选项正确;②∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.∵AD是∠BAC的平分线,∴∠1=∠2=12∠CAB=30°,∴∠3=90°﹣∠2=60°,∴∠ADC=60°,故此选项正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上,故此选项正确;④∵在Rt△ACD中,∠2=30°,∴CD=12AD,∴BC=BD+CD=AD+12AD=32AD,S△DAC=12AC•CD=14AC•AD,∴S △ABC=12AC•BC=12AC•32AD=34AC•AD,∴S△DAC:S△ABC=1:3,故此选项正确.故答案为①②③④.【点睛】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.5.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA2=4,则△A n B n A n+1的边长为_____.【答案】2n.【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2…进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∵∠MON=30°,∵OA2=4,∴OA1=A1B1=2,∴A2B1=2,∵△A2B2A3、△A3B3A4是等边三角形,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2=32,以此类推△A n B n A n+1的边长为 2n.故答案为:2n.【点睛】本题主要考查等边三角形的性质及含30°角的直角三角形的性质,由条件得到OA5=2OA4=4OA3=8OA2=16OA1是解题的关键.6.如图,在平面直角坐标系中,点 A,B 的坐标分别是(1,5)、(5,1),若点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有_____________个【答案】5【解析】【分析】分别以A、B为圆心,AB为半径画圆,及作AB的垂直平分线,数出在x轴上的点C的数量即可【详解】解:由图可知:点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有5个故答案为:5【点睛】本题考查了等腰三角形的存在性问题,掌握“两圆一线”找等腰三角形是解题的关键7.如图,30AOB ∠=︒,P 是AOB ∠内一点,10PO =.若Q 、R 分别是边OA 、OB 上的动点,则PQR ∆周长的最小值为_______.【答案】10【解析】【分析】作点P 关于OB 的对称点P′,点P 关于OA 的对称点P″,连接P′P″交OB 于R ,交OA 于Q ,连接PR 、PQ ,如图3,利用对称的性质得到△PQR 周长=P′P″,根据两点之间线段最短可判断此时△PQR 周长最小,最小值为P′P″的长,再证明△P′OP″为等边三角形得到P′P″=OP′=OP=10,从而得到△PQR 周长的最小值【详解】解:作点P关于OB的对称点P′,点P关于OA的对称点P″,连接P′P″交OB于R,交OA于Q,连接PR、PQ,如图3,则OP=OP′,OP=OP″,RP=RP′,QP=QP″,∴△PQR周长=PR+RQ+PQ=RP′+RQ+QP″=P′P″,∴此时△PQR周长最小,最小值为P′P″的长,∵由对称性可知OP=OP′,OP=OP″,PP′⊥OB,PP″⊥OA,∴∠1=∠2,∠3=∠4,∴∠P′OP″=∠1+∠2+∠3+∠4=2∠2+2∠3=2∠BOA=60°,∴△P′OP″为等边三角形,∴P′P″=OP′=OP=10,故答案是:10.【点睛】本题考查了几何变换综合题:熟练掌握轴对称的性质和等边三角形的性质;会利用两点之间线段最短解决最短路径问题.8.如图,过边长为1的等边三角形ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,当AP=CQ时,PQ交AC于D,则DE的长为______.【答案】1 2【解析】过点Q作AD的延长线的垂线于点F.因为△ABC是等边三角形,所以∠A=∠ACB=60°.因为∠ACB=∠QCF,所以∠QCF=60°.因为PE⊥AC,QF⊥AC,所以∠AEP=∠CFQ=90°,又因为AP=CQ,所以△AEP≌△CFQ,所以AE=CF,PE=QC.同理可证,△DEP≌△DFQ,所以DE=DF.所以AC=AE+DE+CD=DE+CD+CF=DE+DF=2DE,所以DE=12AC=12.故答案为1 2 .9.如图,在四边形ABCD中,∠A=60°,∠ADC=∠ABC=90°,在AB、AD上分别找一点F、E,连接CE、EF、CF,当△CEF的周长最小时,则∠ECF的度数为______.【答案】60°【解析】【分析】此题需分三步:第一步是作出△CEF的周长最小时E、F的位置(用对称即可);第二步是证明此时的△CEF的周长最小(利用两点之间线段最短);第三步是利用对称性求此时∠ECF的值.【详解】分别作出C关于AD、AB的对称点分别为C1、C2,连接C1C2,分别交AD,AB于点E、F再连接CE、CF此时△CEF的周长最小,理由如下:在AD、AB上任意取E1、F1两点根据对称性:∴CE=C1E,CE1=C1E1,CF=C2F,CF1=C2F1∴△CEF的周长= CE+EF+CF= C1E+EF+C2F= C1C2而△CE1F1的周长= CE1+E1F1+CF1= C1E1+E1F1+C2F1根据两点之间线段最短,故C1E1+E1F1+C2F1>C1C2∴△CEF的周长的最小为:C1C2.∵∠A=60°,∠ADC=∠ABC=90°∴∠DCB=360°-∠A-∠ADC-∠ABC=120°∴∠C C1C2+∠C C2C1=180°-∠DCB=60°根据对称性:∠C C1C2=∠E CD,∠C C2C1=∠F CB∴∠E CD+∠F CB=∠C C1C2+∠C C2C1=60°∴∠ECF=∠DCB-(∠E CD+∠F CB)=60°故答案为:60°【点睛】此题考查的是周长最小值的作图方法(对称点),及周长最小值的证法:两点之间线段最短,掌握周长最小值的作图方法是解决此题的关键.10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为_________【答案】8 5【解析】【分析】首先根据折叠可得CD=AC=6,B′C=BC=8,∠ACE=∠DCE ,∠BCF=∠B′CF ,CE ⊥AB ,然后求得△ECF 是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=4.8,由勾股定理求出AE ,得出BF 的长,即 B′F 的长.【详解】解:根据折叠的性质可知:DE=AE ,∠ACE=∠DCE ,∠BCF=∠B′CF ,CE ⊥AB ,B′F=BF ,∴B′D=8-6=2,∠DCE+∠B′CF=∠ACE+∠BCF ,∵∠ACB=90°,∴∠ECF=45°,∴△ECF 是等腰直角三角形,∴EF=CE ,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FE=90°,∵S △ABC =12AC•BC=12AB•CE , ∴AC•BC=AB•CE , ∵根据勾股定理得:22226810ABAC BC ∴ 4.8AC BC CE AB⋅== ∴EF=4.8,22 3.6AE AC EC -=∴B′F=BF=AB -AE-EF=10-3.6-4.8=1.6=85, 故答案是:85.【点睛】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理等知识;熟练掌握翻折变换的性质,由直角三角形的性质和勾股定理求出CE 、AE 是解决问题的关键.二、八年级数学轴对称三角形选择题(难)11.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A .32B .332C .32D .不能确定【答案】B 【解析】 已知,如图,P 为等边三角形内任意一点,PD 、PE 、PF 分别是点P 到边AB 、BC 、AC 的距离,连接AP 、BP 、CP ,过点A 作AH ⊥BC 于点H ,已知等边三角形的边长为3,可求得高线AH =332,因S △ABC =12BC •AH =12AB •PD+12BC•PE +12AC •PF ,所以12×3×AH =12×3×PD +12×3×PE +12×3×PF ,即可得PD +PE +PF =AH =332,即点P 到三角形三边距离之和为332.故选B.点睛:本题考查了等边三角形的性质,根据三角形的面积求点P 到三边的距离之和等于等边三角形的高是解题的关键,作出图形更形象直观.12.已知:如图,点D ,E 分别在△ABC 的边AC 和BC 上,AE 与BD 相交于点F ,给出下面四个条件:①∠1=∠2;②AD=BE ;③AF=BF ;④DF=EF ,从这四个条件中选取两个,不能判定△ABC 是等腰三角形的是( )A .①②B .①④C .②③D .③④【答案】C【解析】【分析】 根据全等三角形的判定和性质以及等腰三角形的判定进行判断即可.【详解】选取①②:在ADF ∆ 和BEF ∆ 中1=2{12AFD BFEAD BEADF BEFAF BFFAB FBACAB CBAAC BC∠∠∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=选取①④:在ADF ∆ 和BEF ∆ 中 1=2{12AFD BFEFD FEADF BEFAF BFFAB FBACAB CBAAC BC∠∠∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=选取③④:在ADF ∆ 和BEF ∆ 中 ={12AF BFAFD BFEFD FEADF BEFAF BFFAB FBACAB CBAAC BC∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=故选C.【点睛】本题考查了等腰三角形的性质和判定,全等三角形的性质和判定的应用,关键是熟练地运用定理进行推理,是一道开放性的题目,能培养学生分析问题的能力.13.如图所示,在ABC 中,AC BC =,90ACB ︒∠=,AD 平分BAC ∠,BE AD ⊥交AC 的延长线F ,E 为垂足.则有:①AD BF =;②CF CD =;③AC CD AB +=;④BE CF =;⑤2BF BE =,其中正确结论的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】 利用全等三角形的判定定理及其性质以及等腰三角形的三线合一的性质逐项分析即可得出答案.【详解】解:∵AC BC =,90ACB ︒∠=∴45CAB ABC ︒∠=∠=∵AD 平分BAC ∠∴22.5BAE EAF ︒∠=∠=∵90EAF F FBC F ︒∠+∠=∠+∠=∴EAF FBC ∠=∠∴ADC BFC ≅∴AD=BF ,CF=CD ,故①②正确;∵CD=CF,∴AC+CD=AC+CF=AF∵67.5F ︒∠=∵18018067.54567.5ABF F CAB ︒︒︒︒︒∠=-∠-∠=--=∴AF=AB ,即AC+CD=AB ,故③正确;由③可知,三角形ABF 是等腰三角形,∵BE AD ⊥∴12BE BF = 若BE CF =,则30CBF ∠=︒与②中结论相矛盾,故④错误;∵三角形ABF 是等腰三角形,∵BE AD ⊥∴12BE BF = ∴BF=2BE ,故⑤正确;综上所述,正确的选项有4个.故选:D .【点睛】本题考查的知识点是全等三角形的判定定理及其性质,等腰三角形的判定与性质,等腰直角三角形的性质,掌握以上知识点是解此题的关键.14.等边△ABC ,在平面内找一点P ,使△PBC 、△PAB 、△PAC 均为等腰三角形,具备这样条件的P 点有多少个?( )A .1个B .4个C .7个D .10个【答案】D【解析】试题分析:根据点P 在等边△ABC 内,而且△PBC 、△PAB 、△PAC 均为等腰三角形,可知P 点为等边△ABC 的垂心;由此可得分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.解:由点P 在等边△ABC 内,而且△PBC 、△PAB 、△PAC 均为等腰三角形,可知P 点为等边△ABC 的垂心;因为△ABC 是等边三角形,所以分别以三角形各顶点为圆心,边长为半径画弧,交垂直平分线的交点就是满足要求的,每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.故选D .点评:此题主要考查等腰三角形的性质和等边三角形的性质,有一定的拔高难度,属于中档题.15.如图,AOB α∠=,点P 是AOB ∠内的一定点,点,M N 分别在OA OB 、上移动,当PMN ∆的周长最小时,MPN ∠的值为( )A .90α+B .1902α+C .180α-D .1802α-【答案】D【解析】【分析】 过P 点作角的两边的对称点,在连接两个对称点,此时线段与角两边的交点,构成的三角形周长最小.再根据角的关系求解.【详解】解:过P 点作OB 的对称点1P ,过P 作OA 的对称点2P ,连接12PP ,交点为M,N ,则此时PMN 的周长最小,且△1P NP 和△2PMP 为等腰三角形.此时∠12P PP =180°-α;设∠NPM=x°,则180°-x°=2(∠12P PP -x°) 所以 x°=180°-2α 【点睛】求出M,N 在什么位子△PMN 周长最小是解此题的关键.16.如图,ABC ∆中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①DE DF =;②DE DF AD +=;③DM 平分EDF ∠;④2AB AC AE +=,其中正确的是( )A .①②B .①②③C .①②④D .①②③④【答案】C【解析】【分析】 ①由角平分线的性质可知①正确;②由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD ,DF=12AD ,从而可证明②正确;③若DM 平分∠EDF ,则∠EDM=90°,从而得到∠ABC 为直角三角形,条件不足,不能确定,故③错误;④连接BD、DC,然后证明△EBD≌△DFC,从而得到BE=FC,从而可证明④.【详解】解:如图所示:连接BD、DC.①∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴ED=DF.∴①正确.②∵∠EAC=60°,AD平分∠BAC,∴∠EAD=∠FAD=30°.∵DE⊥AB,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=12AD.同理:DF=12AD.∴DE+DF=AD.∴②正确.③由题意可知:∠EDA=∠ADF=60°.假设MD平分∠EDF,则∠ADM=30°.则∠EDM=90°,又∵∠E=∠BMD=90°,∴∠EBM=90°.∴∠ABC=90°.∵∠ABC是否等于90°不知道,∴不能判定MD平分∠EDF,故③错误.④∵DM是BC的垂直平分线,∴DB=DC.在Rt△BED和Rt△CFD中DE DFBD DC⎧⎨⎩==,∴Rt△BED≌Rt△CFD.∴BE=FC.∴AB+AC=AE-BE+AF+FC又∵AE=AF,BE=FC,∴AB+AC=2AE.故④正确.综上所述,①②④正确,故选:C.【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质,掌握本题的辅助线的作法是解题的关键.17.如图,C 是线段 AB 上一点,且△ACD 和△BCE 都是等边三角形,连接 AE、BD 相交于点O,AE、BD 分别交 CD、CE 于 M、N,连接 MN、OC,则下列所给的结论中:①AE=BD;②CM=CN;③MN∥AB;④∠AOB=120º;⑤OC 平分∠AOB.其中结论正确的个数是()A.2 B.3 C.4 D.5【答案】D【解析】【分析】由题意易证:△ACE≅△DCB,进而可得AE=BD;由△ACE≅△DCB,可得∠CAE=∠CDB,从而△ACM ≅△DCN,可得:CM=CN;易证△MCN是等边三角形,可得∠MNC=∠BCE,即MN∥AB;由∠CAE=∠CDB,∠AMC=∠DMO,得∠ACM=∠DOM=60°,即∠AOB=120º;作CG⊥AE,CH⊥BD,易证CG=CH,即:OC 平分∠AOB.【详解】∵△ACD 和△BCE 都是等边三角形,∴AC=DC,CE=CB,∠ACE=∠DCB=120°,∴△ACE≅△DCB(SAS)∴AE=BD,∴①正确;∵△ACE≅△DCB,∴∠CAE=∠CDB,∵△ACD 和△BCE 都是等边三角形,∴∠ACD=∠BCE=∠DCE=60°,AC=DC,在△ACM 和△DCN中,∵60CAE CDB AC DCACD DCE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴△ACM ≅△DCN (ASA ),∴CM =CN ,∴②正确;∵CM =CN ,∠DCE=60°,∴△MCN 是等边三角形,∴∠MNC=60°,∴∠MNC=∠BCE ,∴MN ∥AB ,∴③正确;∵△ACE ≅△DCB ,∴∠CAE=∠CDB ,∵∠AMC=∠DMO ,∴180°-∠CAE-∠AMC=180°-∠CDB-∠DMO ,即:∠ACM=∠DOM=60°,∴∠AOB =120º,∴④正确;作CG ⊥AE ,CH ⊥BD ,垂足分别为点G ,点H ,如图,在△ACG 和△DCH 中,∵90?AMC DHC CAE CDB AC DC ∠=∠=⎧⎪∠=∠⎨⎪=⎩∴△ACG ≅△DCH (AAS ),∴CG =CH ,∴OC 平分∠AOB ,∴⑤正确.故选D.【点睛】本题主要考查全等三角形的判定定理和性质定理,等边三角形的性质定理以及角平分线性质定理的逆定理,添加合适的辅助线,是解题的关键.18.如图,等腰三角形ABC的底边BC长为4,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,若△CDM周长的最小值为8,则△ABC的面积为()A.12 B.16 C.24 D.32【答案】A【解析】【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,再根据三角形的周长求出AD的长,由此即可得出结论.【详解】连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∵△CDM周长的最小值为8,∴AD=8-12BC=8-2=6∴S△ABC=12BC•AD=12×4×6=12,故选A.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.19.如图,已知,点A(0,0)、B(43,0)、C(0,4),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第2017个等边三角形的边长等于()A .201532B .201632C .3D .201932【答案】A【解析】【分析】【详解】根据锐角三函数的性质,由OB=43,OC=1,可得∠OCB=90°,然后根据等边三角形的性质,可知∠A 1AB=60°,进而可得∠CAA 1=30°,∠CA 1O=90°,因此可推导出∠A 2A 1B=30°,同理得到∠CA 2B 1=∠CA 3B 2=∠CA 4B 3=90°,∠A 2A 1B=∠A 3A 2B 2=∠A 4A 3B 3=30°,故可得后一个等边三角形的边长等于前一个等边三角形的边长的一半,即OA 1=OCcos ∠CAA 1=23,B 1A 2=1232⨯,以此类推,可知第2017个等边三角形的边长为:201713()432⨯=. 故选A.【点睛】此题主要考查了等边三角形的性质,属于规律型题目,解题关键是仔细审图,得出:后一个等边三角形的边长等于前一个等边三角形的边长的一半.20.如图,在△ABC 中,AB=AC=8,BC=5,AB 的垂直平分线交AC 于D ,则△BCD 的周长为( )A .13B .15C .18D .21【答案】A【解析】 根据线段垂直平分线的性质,可由AB=AC=8,BC=5,AB 的垂直平分线交AC 于D ,得到AD=BD ,进而得出△BCD 的周长为:CD+BD+BC=AC+BC=8+5=13.故选A .点睛:此题主要考查了线段垂直平分线的性质,关键是掌握垂直平分线上任意一点,到线段两端点的距离相等.。

人教版八年级数学上等边三角形教案导学案教学案教学设计课时作业试卷同步练习含答案解析

人教版八年级数学上等边三角形教案导学案教学案教学设计课时作业试卷同步练习含答案解析

等边三角形(1)【目标导航】1.了解等边三角形的性质和判定;2.理解如何用轴对称性质解释等边三角形的有关性质.【要点梳理】活动1 复习旧知1.等腰三角形的定义:.答案:有两条边相等的三角形叫做等腰三角形.2.等腰三角形的性质:⑴;⑵.答案:(1)等腰三角形的两个底角相等;(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.3.等腰三角形的判定:.答案:如果一个三角形有两个底角相等,那么这两个角所对的边也相等.活动2 等边三角形的性质与判定1.等边三角形的定义:.答案:三条边都相等的三角形叫做等边三角形.2.等边三角形的性质:⑴;⑵.答案:(1)等边三角形的三条边都相等;(2)等边三角形的三个内角都相等,并且每一个角都等于60°;3.等边三角形的判定:⑴;⑵.答案:(1)三个角都相等的三角形是等边三角形;(2)有一个角是60°的等腰三角形是等边三角形.指出:1.等边三角形是特殊的等腰三角形,除有本身的性质外,还具有等腰三角形的所有性质.2.等边三角形的定义既是等边三角形的性质,又是它的判定.在证明等边三角形时,若已知三边关系,则先选用定义法;若已知三角关系,则先选用判定1;若已知等腰三角形,则先选用判定2.活动3 等边三角形的性质与判定的应用1.如图,△ABC是等边三角形,DE∥BC,交AB,AC于D,E.求证:△ADE是等边三角形.AD EB C答案:∵△ABC是等边三角形,∴∠A=∠B=∠C.∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴∠A =∠ADE =∠AED .∴△ADE 是等边三角形.2.如图,在等边三角形ABC 的三边上,分别取 点D ,E ,F ,使AD =BE =CF . 求证:△DEF 是等边三角形.FAB CDE答案:∵△ABC 是等边三角形,∴∠A =∠B=∠C ,AB =BC =AC .∵AD =BE =CF ,∴BD =CE =AF .∴△DBE ≌△ECF ≌△FAD .∴DE =EF =DF .∴△DEF 是等边三角形.3. 如图,△ABC 是等边三角形,D 是BC 延长线上一点,CE 平分∠ACD ,且CE =BD .求证:△DAE 为等边三角形.AB C ED答案:∵△ABC 是等边三角形,∴AB =AC ,∠B =∠ACB =60°,∴∠ACD =120°.∵CE 平分∠ACD ,∴∠ACE =∠DCE =60°.在△ABD 和△ACE 中,∵AB =AC ,∠B =∠ACE ,BD =CE ,∴△ABD ≌△ACE (SAS ),∴AD =AE ,∠BAD =∠CAE ,∴∠DAE =∠BAC =60°,∴△ADE 为等边三角形.4. 如图,△ABD ,△AEC 都是等边三角形,BE ,CD 相交于O .⑴求证:BE =DC ;⑵求∠BOC 的度数.O AB CDE答案:(1)∵△ABD ,△AEC 都是等边三角形,∴AD =AB ,AC =AE ,∠DAB =∠CAE =60°.∴∠DAC =∠BAE .∴△DAC ≌△BAE (SAS ).∴BE =DC ;(2)∠BOC =∠DBO +∠BDO =∠ABO +∠ABD+∠BDO =∠ADC +∠ABD +∠BDO =∠ABD +∠ADB =60°+60°=120°.5.如图1,点A 是线段BC 上一点,△ABD ,△AEC 都是等边三角形,BE 交AD 于点M ,CD 交AE 于N . ⑴求证:BE =DC ;⑵求证:△AMN 是等边三角形;⑶将△ACE 绕点A 按顺时针方向旋转90°,其它条件不变,在图2中补出符合要求的图形,并判断⑴、⑵两小题结论是否仍然成立,并加以证明.图1答案:(1)∵△ABD ,△AEC 都是等边三角形,∴AD =AB ,AC =AE ,∠DAB =∠CAE =60°.∴∠DAC =∠BAE .∴△DAC ≌△BAE (SAS ).∴BE =DC ;(2)∵△DAC ≌△BAE ,∴∠ABM=∠ADN.∵∠BAD=∠EAC=60°,∴∠DAN=60°.又∵AB=AD ,∴△ABM ≌△ADN (ASA ).∴AM=AN.又∵∠MAN=60°,∴△AMN 是等边三角形;(3)图略,⑴小题结论仍然成立,过程同(1);(2)小题结论不成立,因为此时∠MAN 并不等于60°.6.如图,△ABC 是等边三角形,延长BC 到D ,延长BA 到E ,使AE =BD ,连结CE ,DE .求证:EC =ED .AB C ED答案:延长CD 到F ,使DF =BC ,连结EF ,∵AE =BD ,∴AE =CF . ∵△ABC 为等边三角形,∴BE =BF ,∠B =60°. ∴△EBF 为等边三角形,∴∠F =60°,EF =EB . 在△EBC 和△EFD 中,EB =EF ,∠B=∠F ,BC =DF ,∴△EBC ≌△EFD ,∴EC =ED (SAS ).【课堂操练】1.在△ABC 中∠A =60°,要使△ABC 是等边三角形,则需添加的一个条件是: .答案:AB =AC ,或∠B =60°等2. (2011年广东茂名中考)如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG =CD ,DF =DE ,则∠E = 度.答案:15 ABC D E F G图2A BD CE N M A B CD E3.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;•③三个外角(每个顶点处各取一个外角)都相等的三角形;•④一腰上的中线也是这条腰上的高的等腰三角形,其中是等边三角形的有( )A.①②③B.①②④C.①③D.①②③④答案:D4.如图,△ABC 和△ADE 都是等边三角形.求证:BE =CD .A B C ED答案:∵△ABC 和△ADE 都是等边三角形,∴AB =AC ,AE =AD ,∠BAE =∠CAD =60°.∴△BAE ≌△CAD .∴BE =CD .5.如图,在等边△ABC 中,点D 、E 分别在边BC 、AC 上,DC =AE ,AD 、BE 交于点F ,求∠BFD 的度数.FABCE D答案:∵△ABC 是等边三角形,∴AB =AC ,∠BAC =∠C =60°.又∵DC =AE ,∴△BAE ≌△ACD .∴∠ABE =∠DAC .∴∠BFD =∠ABE +∠BAD =∠DAC +∠BAD =∠BAC =60°.6.如图,在△ABC 中,AB =AC ,D 是CB 延长线上一点,∠D =60°,E 是AD 上一点,且有DE =DB ,求证:AE =BE +BC .A B C ED答案:过点A 作AF ⊥BC 于F .∵AF 是等腰△ABC 底边上的高,∴BC = 2BF .∵∠D =60°,DE =DB ,∴△BDE 是等边三角形,BE = DE = DB .在Rt △ADF 中,∠AFD = 90°,∠ADF = 60°,可得AD = 2DF .所以,AE = AD -DE = 2DF -DB = 2(DB +BF )-DB = DB +2BF = BE +BC .【课后巩固】1. 等边三角形是轴对称图形,它有 条对称轴,对称轴是 所在的直线.答案:3,各边中线2.已知AD 是等边△ABC 的高,BE 是AC 边的中线,AD 与BE 交于点F ,则∠AFE =______. 答案:60°3. (2011年广西梧州中考)如图,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( )A .△ACE ≌△BCDB .△BGC ≌△AFCC .△DCG ≌△ECFD .△ADB ≌△CEA答案:D4.如图1,在等边△ABC 中,AD 是BC 上的高,∠BDE =∠CDF =60°,图中与BD 相等的线段有: .答案:BE ,DE ,CD ,CF ,DF ,AE ,AF图1FA BC E D5.如图2,E 是等边△ABC 中AC 边上的点,∠1=∠2,BE =CD ,则对△ADE 的形状最准确的判断是( )A .等腰三角形B .等边三角形C .不等边三角形D .不能确定形状答案:B6.如图3,△ABC 是等边三角形,AD 是角平分线,△ADE 是等边三角形,下列结论:①AD ⊥BC ;②EF =FD ;③BE =BD .其中正确的有( )A .3个B .2个C .1个D .0个答案:A7.如图4,已知点D 是BC 上一点,且满足AB =AC =BD ,那么∠1与∠2的关系是( )图3图4AB CDFABC E D答案:相等8.下列说法正确的是( )A .有一个角相等的两个等腰三角形全等B .有一条边对应相等两个等腰三角形全等C .有一腰和底边对应相等的两个等腰三角形全等D .有一条边对应相等的两个等边三角形不一定全等 AB C D E 12图2A B C E G F D答案:C9.如图△ABC 是等边三角形,BD 是中线,延长BC 至E ,使CE =CD ,求证:DB =DE .答案:∵BD 是等边△ABC 的中线,∴∠DBC =21∠ABC =21×60°=30°.∠DCE =180°-∠ACB =120°,又∵CE =CD ,所以∠E =∠CDE =30°.∴∠E =∠DBE ,∴BD =DE .10.已知:AD 是△ABC 的中线,∠ADC =60°,BC =4.把△ADC 沿直线AD 折叠后,点C 落在点C ′的位置上,求BC ′的长.AB CD C '答案:连接BC ′.∵AD 是△ABC 的中线,∴BD =DC.又∵DC =DC ′,∴BD =DC ′.∵∠ADC =60°,∴∠ADC ′=60°,∴∠BDC ′=60°,∴△BDC ′是等边三角形,∴BC ′= BD =BC 21=2.11.如图,△ABC 是等边三角形,延长BC 至E ,延长BA 至F ,使AF =BE ,连结CF 、EF ,过点F 作直线FD ⊥CE 于D ,试发现∠FCE 与∠FEC 的数量关系,并说明理由.答案:∠FCE =∠FEC.∵△ABC 是等边三角形,∴AB =BC ,∠B =60°.∵FD ⊥CE ,∴∠BFD =30°,∴BD =21BF ,又∵BC =AB ,∴CD +BC =21(AF +BC ),∵AF =BE ,CD =21(AF -BC )=21(BE -BC ),∴CD =21CE .又∵FD ⊥CE ,∴FC =FE ,∴∠FCE =∠FEC.12.如图,点D 是等边△ABC 内一点,DB =DA ,BP =AB ,∠DBP =∠DBC .求∠BPD 的度数.AB C D EAPDB C答案:作AB的垂直平分线,∵DA=DB,CA=CB,∴AB的垂直平分线必过C、D两点,∴∠BCD=30°.∵AB=BP=BC,∠DBP=∠DBC,BD=BD,∴△BDC≌△BDP,∴∠BPD=∠BCD=30°.13.如图,在△ABC中,AB=AC,D是△ABC外一点,且∠ABD=∠ACD=60°.求证:BD+DC=AB.ADB C答案:延长BD至F,使得AF=AB,连结CF.∵AB=AF,∠ABF=60°,∴△ABC是等边三角形,∴∠AFB=60°,AB=BF,∴∠AFB=∠ACD.∵AB=AC,∴AC=AF.∴∠ACF=∠AFC.∴∠ACF-∠ACD=∠AFC-∠AFB.∴∠DCF=∠DFC.∴DC=DF.∴DC+BD=DF+BD=BF,又∵AB=BF,∴DC+BD=AB.【课外拓展】14.等边三角形给人以“稳如泰山”的视觉感受,它具有独特的对称性,请你至少用三种不同的方法,将以下三个等边三角形分割成四个等腰三角形(在图中画出分割线,并标出必要的角的度数).答案:如图所示:15.如图,点D 是等边△ABC 内一点,将△BOC 绕点C 顺时针旋转60°得△ADC ,连接OD . ⑴求证:△DOC 是等边三角形;⑵当α=150°时,判断△AOD 的形状,并说明理由;⑶探究:当α为多少度时,△AOD 是等腰三角形.答案:(1)证明:∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,∴△BOC ≌△ADC ,∠OCD =60°,∴CO =CD .∴△COD 是等边三角形;(2)∵△ADC ≌△BO C ,∴DA =OB .∵△COD 是等边三角形,∴OD =OC ,且∠ADC =∠α=150°,即可得∠ADO =90°,∴△AOD 为直角三角形.(3)若△AOD 是等腰三角形,所以分三种情况:①∠AOD =∠ADO ;②∠ODA =∠OAD ;③∠AOD =∠DAO .∵∠AOB =110°,∠COD =60°,∴∠BOC =190°-∠AOD ,而∠BOC =∠ADC =∠ADO +∠CDO ,由①∠AOD =∠ADO 可得∠BOC=∠AOD +60°,求得α=125°;由②∠ODA =∠OAD 可得∠BOC =150°- ∠AOD ,求得α=110°;由③∠AOD =∠DAO 可得∠BOC =240°-2∠AOD ,求得α=140°;综上可知α=125°,或α=110°或α=140°.16. (2011年浙江绍兴中考)数学课上,李老师出示了如下框中的题目.小敏与同桌小聪讨论后,进行了如下解答: αA B C D O 110°(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”,“<”或“=”).AEDB C图1图2(2)特例启发,解答题目【答案】解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).答案:(1)=;(2)=.证明:在等边△ABC中,∠ABC=∠ACB=∠BAC=60°,AB=BC=AC,∵EF∥BC,∴∠AEF=∠AFE=60°=∠BAC,∴AE=AF=EF,∴AB-AE=AC-AF,即BE=CF.∵∠ABC=∠EDB+∠BED=60°,∠ACB=∠ECB+∠FCE=60°,∵ED=EC,∴∠EDB=∠ECB,∴∠BED=∠FCE,∴△DBE≌△EFC,∴DB=EF,∴AE=BD.(3)1或3.。

八年级数学上册三角形的几何证明及答案解析

八年级数学上册三角形的几何证明及答案解析

人教版初中数学三角形的相关证明练习1.△ABC中,AD是高,AE 、BF是角平分线,∠BAC=50°,∠C=62°,求:∠DAC和∠BOA的度数。

2.已知△ABC中,一条中线将三角形分成周长分别为9cm和15cm的两部分,求三角形的腰长和底边长。

3.在△ABC中,BD是三角形的高线,求证:∠CBD=1∠A24.如图,AD和AF分别是钝角三角形ABC和ABE的高,若AD=AF,AC=AE,求证:BC=BE.5.如图,将Rt△ABC沿AB边平移得到Rt△DEF,已知BE=5,EF=8,CG=3,求图中四边形ACDG的面积。

6.△ABC中,∠DAC=2x,∠ABC=3x,∠ACB=4x,求:∠BAD的度数。

7.如图所示,△ABC是等腰三角形,AB=AC,CD是∠BCA的角平分线,EF∥BC,延长CD到E,连接EF,∠A=∠ECF=20°,求∠CFE。

8.在△ABC中,∠C=2∠CAD=45°,BD=2AC,求∠B的度数。

9.如图,等腰直角△ABC中,AE平分∠BAC,且AE⊥CF,求证:AD=2CE.10.如图,在△ABC中,E是BC边的中点,AB=5,AE=2,AC=3,求BC的长度。

参考答案1.解:∵AD是△ABC的高,∠C=62°,∴∠ADC=90°,∠DAC=180°-∠ADC-∠C=180°-90°-62°=28°∵∠BAC=50°∴∠ABC=180°-∠BAC-∠C=68°又∵BF平分∠ABC∴∠ABF=12∠ABC=12x68°=34°∵AE平分∠BAC∴∠BAE=12∠BAC=12x50°=25°∴∠BOA=180°-∠ABF-∠BAE=180°-34°-25°=121°2.解:设腰长为xcm,①腰长与腰长的一半是9cm时,x+1/2x=9,解得x=6,所以,底边=15﹣1/2×6=12,∵6+6=12,∴6cm、6cm、12cm不能组成三角形;②腰长与腰长的1/2是15cm时,x+1/2x=15,解得x=10,∴底边=9﹣1/2×10=4,∴三角形的腰为10cm,底边长为4cm.3.证明:如图,过A作∠BAC的角平分线AE,∠BAC∴∠CAE=12∵AB=AC,∴AE⊥BC∴∠CAE+∠C=90°∵BD是高,∴∠BDC=90°∴∠BDC+∠C=90°∠BAC∴∠CAE=∠DBC,∠DBC=124.证明:∵AD,AF分别是两个钝角△ABC和△ABE的高,且AD=AF,AC=AE,∴Rt△ADC≌Rt△AFE(HL).∴CD=EF.∵AD=AF,AB=AB,∴Rt△ABD≌Rt△ABF(HL).∴BD=BF.∴BD-CD=BF-EF.即BC=BE.5.解:∵直角△DEF是平移得到的,∴S△DEF=S△ABC∴S△DEF-S△DBG=S△ABC-S△DGBS梯形BEFG=S四边形ADGCBG=EF-CG=5=32.5 ∴S四边形ADGC=S梯形BEFG=(8+5)x5x126.解7.解:已知AB=AC,所以∠B=∠ACB=½(180°-20°)=80°又CE平分∠ACB,∠ECF=20°所以∠BCD=40°,∠ACF=20°又EF∥BC,所以FEC=40°所以∠CFE=180°-20°-40°=120°8.解:过A作AE⊥BC于E,过D作DF⊥AC于F,BD=2x设AC=x,AE=√2∠CAD=∠DAE=22.5°,可证△ADE≌△ADF(AAS),得AE=AF=√2则CF=(2−√2)x,CD=(√2-1)x,BC=BD+CD=(√2+1)x2则有BC/AC=AC/CD=√2+1,得△ACD~△BCA,则∠B=∠CAD=22.5°9.证明:如图,延长AB,CE交于F,∵AE平分∠BAC,AE⊥CF,∴∠FAE=∠CAE,∠AEF=∠CAE=90°且AE=AE,则△AEF≌△AEC,CF,∴CE=CF=12在△ABD和△CBF中,∠FAE+∠F=90°,∠F+∠FCB=90°,∴∠FAE=∠FCB,AB=BC,∴△ABD≌△CBF,则CF=AD, AD=2CE10.解:如图,延长AD至E,使DE=AD,∵D是中点,则:BD=DC,∠BDE=∠ADC,AD=DE=2,∴△BDE≌△CAD,BE=AC=3,AE=2AD=4,又∵AB=5,∴△ABE是直角三角形∴在△BED中,BD²=DE²+BE²,解得BD=√22+32=√13∴BC=2BD=2√13。

(简化版)八年级数学上册几何练习题

(简化版)八年级数学上册几何练习题

(简化版)八年级数学上册几何练习题1. 直线和角度1. 用直尺画一条长10厘米的直线段AB。

2. 在AB上任取一点C,使得AC=5厘米。

3. 以直尺作出AC的垂线CD,垂足为D。

4. 以直尺作出AB的中线EF,中点为M。

问题1. 证明AB平分CD。

2. 计算∠AEC和∠DEM的度数。

2. 三角形的性质1. 两个角度分别为30°和60°的角,这两个角的角度和是多少?2. 以直角尺作为基准,作出一个∠ABC=60°的等边三角形。

3. 在等边三角形ABC中,以AB为边作∠MBN为直线,使得∠MBN=60°。

4. 以直角尺作出直线MN,直线通过点C和点B的延长线相交于点P。

问题1. 解释为什么∠MBN=∠PCB。

2. 证明三角形CBN与三角形CPB全等。

3. 计算∠BNP的度数。

3. 四边形和多边形1. 以尺和速写纸作出一个边长分别为3厘米和5厘米的矩形ABCD。

2. 以尺和速写纸作出一个周长为18厘米的正方形EFGH。

3. 将正方形EFGH的一个边以EF为底边,将正三角形JKL贴在EF上。

4. 以尺和速写纸作出一个周长为15厘米的等腰梯形MNOP。

问题1. 证明四边形EFGH是一个正方形。

2. 计算三角形JKL的周长。

3. 计算梯形MNOP的面积。

4. 合作解决问题小明、小红和小华将一根7厘米的直尺共分为三段,小明得到了3厘米,小红得到了2厘米,那么小华得到了几厘米?问题1. 计算小华得到的直尺长度。

5. 空间与立体图形1. 用透明纸将一个边长为4厘米的正方体剪下来。

2. 将剪下的正方体叠成一个棱长为2厘米的边长的立方体。

3. 将剩余的透明纸用直尺固定在桌面上。

问题1. 证明剪下的正方体与原正方体全等。

2. 计算剩余透明纸覆盖的面积。

6. 测量和判断1. 用尺子测量桌子的宽度,结果是1米。

2. 用铅笔在纸上画一条长度为5厘米的线段。

3. 用直尺测量两个角,一个角的度数是120°,另一个角的度数是60°。

专题01 三角形-2021-2022学年八年级数学上学期期末解答题必刷专题训练(人教版)(解析版)

专题01 三角形-2021-2022学年八年级数学上学期期末解答题必刷专题训练(人教版)(解析版)

三角形1.如图,在四边形ABCD 中,90A C Ð=Ð=°,BE 平分ABC Ð,DF 平分ADC Ð.(1)求ABC ADC Ð+Ð的度数;(2)求证:BE DF ∥.【答案】(1)∠ABC +∠ADC =180°;(2)见解析.【分析】(1)根据四边形的内角和定理求出即可;(2)求出∠2=∠DFC ,根据平行线的判定推出即可.【详解】(1)解:∵∠A =∠C =90°,∴∠ABC +∠ADC =360°-90°-90°=180°;(2)证明:∵BE 平分∠ABC ,DF 平分∠ADC ,∴∠2=12∠ABC ,∠4=12∠ADC ,∵四边形ABCD 中,∠A =∠C =90°,∴∠4+∠DFC =90°,由(1)得∠ABC +∠ADC =180°,∴∠2+∠4=90°,∵∠4+∠DFC =90°,∴∠2=∠DFC ,∴BE ∥DF ..【点睛】本题考查了平行线的判定,角平分线定义,三角形的内角和定理,四边形的内角和定理的应用,解此题的关键是求出∠EBC =∠DFC .2.如图,在△ABC中,AE是角平分线,AD是高,∠BAC=70°,∠EAD=10°,求∠B的度数.【答案】45°【分析】∠BAC=35°,那么∠BAD=∠BAE+∠EAD=45°.根据AD是△ABC的高,根据AE是角平分线,得∠BAE=12得∠ADC=90°.根据三角形外角的性质,得∠ADC=∠B+∠BAD,那么∠B=∠ADC−∠BAD=45°.【详解】解:∵AE是角平分线,∴∠BAE=1∠BAC=35°.2∴∠BAD=∠BAE+∠EAD=35°+10°=45°.∵AD是△ABC的高,∴∠ADC=90°.∵∠ADC=∠B+∠BAD,∴∠B=∠ADC−∠BAD=90°−45°=45°.【点睛】本题主要考查三角形的高、角平分线的定义、三角形外角的性质,熟练掌握三角形的高、角平分线的定义、三角形外角的性质是解决本题的关键.3.如图,AD为V ABC中线,AB=12cm,AC=9cm,V ACD的周长为27cm,求V ABD的周长.【答案】△ABD的周长为30cm【分析】利用中线定义可得BD=CD,进而可得AD+DC=AD+BD,然后再求△ABD的周长即可.【详解】解:∵△ACD的周长为27cm,∴AC+DC+AD=27cm,∵AC=9cm,∴AD+CD=18cm,∵AD为△ABC的中线,∴BD=CD,∴AD+BD=18cm,∵AB=12cm,∴AB+AD+BD=30cm,∴△ABD的周长为30cm.【点睛】此题主要考查了三角形的中线,关键是掌握三角形的中线定义.4.如图①,V ABC的角平分线BD、CE相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,过P点作直线MN,分别交AB和AC于点M和N,且MN平行于BC,则有∠MPB+∠NPC=90°﹣12∠A.①若将直线MN绕点P旋转,如图③,试探索∠MPB、∠NPC、∠A三者之间的数量关系是否依然成立,并说明理由;②当直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的延长线上时,如图④,试问①中∠MPB、∠NPC、∠A三者之间的数量关系是否仍然成立?若不成立,请给出∠MPB、∠NPC、∠A三者之间的数量关系,并说明你的理由.【答案】(1)130°;(2)①仍然成立,见解析;②不成立,∠MPB﹣∠NPC=90°﹣12∠A,见解析【分析】(1)运用三角形的内角和定理及角平分线的定义,首先求出∠1+∠2,进而求出∠BPC即可解决问题.(2)运用(1)中的结论,结合三角形的内角和定理逐一分类解析,即可解决问题.【详解】解:(1)如图①∵在△ABC中,∠A+∠ABC+∠ACB=180°,且∠A=80°,∴∠ABC+∠ACB=100°,∵∠1=12∠ABC,∠2=12∠ACB,∴∠1+∠2=12(∠ABC+∠ACB)=12×100°=50°,∴∠BPC =180°﹣(∠1+∠2)=180°﹣50°=130°.(2)①如图③,由(1)知:∠BPC =180°﹣(∠1+∠2);∵∠1+∠2=12(180°﹣∠A )=90°-12∠A ,∴∠BPC =180°﹣(90°﹣12∠A )=90°+12∠A ;∴∠MPB +∠NPC =180°﹣∠BPC =180°﹣(90°+12∠A )=90°﹣12∠A .②不成立,∠MPB ﹣∠NPC =90°﹣12∠A .如图④,由①知:∠BPC =90°+12∠A ,∴∠MPB ﹣∠NPC =180°﹣∠BPC=180°﹣(90°+12∠A )=90°﹣12∠A .【点睛】该题主要考查了三角形的内角和定理、角平分线的定义等几何知识点及其应用问题;牢固掌握三角形的内角和定理、角平分线的定义等几何知识点是基础,灵活运用是关键.5.如图,在△ABC 中,AE 是BC 边上的高,AD 是角平分线,∠B =42°,∠C =68°.①求∠DAE 的度数;②若∠B =α,∠C =β(α<β),用含α,β的代数式表示∠DAE .(直接写出结论)【答案】(1)13°(2)2b a -【分析】(1)根据三角形内角和定理求出∠BAC ,求出∠DAC ,根据三角形内角和定理求出∠AC ,代入∠DAE =∠DAC −∠EAC 求出即可.(2)同(1)的方法即可求解.【详解】解:(1)∵∠B =42°,∠C =68°,∴∠BAC =180°−∠B −∠C =70°,∵AD 是∠BAC 的平分线,∴∠DAC =12∠BAC =35°,∵AE 是BC 边上的高,∴∠AEC =90°,∵∠C =68°,∴∠EAC =180°−∠AEC −∠C =22°,∴∠DAE =∠DAC −∠EAC =35°−22°=13°.(2)∵∠B =α,∠C =β,∴∠BAC =180°−∠B −∠C =180°−α−β,D 是∠BAC 的平分线,∴∠DAC =12∠BAC =90°−12α−12β,AE 是BC 边上的高,∴∠AEC =90°,∵∠C =β,∴∠EAC =180°−∠AEC −∠C =90°−β,∠DAE =∠DAC −∠EAC =(90°−12α−12β)−(90°−β)=2b a -.【点睛】本题考查了三角形内角和定理的应用,主要考查学生运用定理进行推理和计算的能力.6.如图,在ABC V 中,BF 平分ABC Ð,CF 平分ACB Ð,65A Ð=°,求F Ð的度数.【答案】122.5°【分析】由题意直接根据三角形内角和定理和角平分线的定义进行分析,并利用角的等量替换即可得出答案.【详解】解:在ABC V 中,∵65A Ð=°(已知),∴180115ABC ACB A Ð+Ð=°-Ð=°(三角形内角和定理).∵BF 平分ABC Ð,CF 平分ACB Ð(已知),∴12FBC ABC Ð=Ð,12FCB ACB Ð=Ð(角平分线的定义).在FBC V 中,∵180F FBC FCB Ð+Ð+Ð=°(三角形内角和定理),∴(180)F FBC FCB Ð=°-Ð+Ð1118022ABC ACB æö=°-Ð+Ðç÷èø1180()2ABC ACB =°-Ð+Ð11801152=-´°122.5=°.【点睛】本题考查三角形内角和定理和角平分线的定义,熟练掌握三角形内角和定理和角平分线的定义是解题的关键.7.阅读下列材料:阳阳同学遇到这样一个问题:如图1,在ABC D 中AB AC =,BD 是ABC D 的高,P 是BC 边上一点,PM 、PN 分别与直线AB ,AC 垂直,垂足分别为点M 、N .求证:BD PM PN =+.阳阳发现,连接AP ,有ABC ABP ACP S S S D D D =+,即111222AC BD AB PM AC PN ×=×+×.由AB AC =,可得BD PM PN =+.他又画出了当点P 在CB 的延长线上,且上面问题中其他条件不变时的图形,如图2所示,他猜想此时BD 、PM 、PN 之间的数量关系是:BD PN PM =-.请回答:(1)请补全阳阳同学证明猜想的过程;证明:连接AP .ABC APC S S D D =-Q ________,1122AC BD AC \×=×________12AB -×________.AB AC =Q ,BD PN PM \=-.(2)参考阳阳同学思考问题的方法,解决下列问题:在ABC D 中,AB AC BC ==,BD 是ABC D 的高.P 是ABC D 所在平面上一点,PM 、PN 、PQ 分别与直线AB 、AC 、BC 垂直,垂足分别为点M 、N 、Q .①如图3,若点P 在ABC D 的内部,猜想BD 、PM 、PN 、PQ 之间的数量关系并写出推理过程.②若点P 在如图4所示的位置,利用图4探究得此时BD 、PM 、PN 、PQ 之间的数量关系是:_______.(直接写出结论即可)【答案】(1)S △APB ;PN ;PM ;(2)①BD =PM +PN +PQ ,证明见解析②BD =PM +PQ −PN .【分析】(1)根据图形,结合阅读材料填写即可;(2)①连接AP 、BP 、CP ,根据S △ABC =S △APC +S △APB +S △BPC 得出12AC •BD =12AC •PN +12AB •PM +12BC •PQ ,由AB =AC =BC ,即可得出BD =PM +PN +PQ ;②连接AP 、BP 、CP ,根据S △ABC =S △APB +S △BPC −S △APC ,得出12AC •BD =12AB •PM +12BC •PQ −12AC •PN ,由于AB =AC =BC ,即可证得BD =PM +PQ −PN .【详解】解:(1)证明:连接AP .∵S △ABC =S △APC −S △APB ,∴12AC •BD =12AC •PN −12AB •PM .∵AB =AC ,∴BD =PN −PM .故答案为:S △APB ;PN ;PM ;(2)①BD =PM +PN +PQ ;如图3,连接AP 、BP 、CP ,∵S △ABC =S △APC +S △APB +S △BPC ∴12AC •BD =12AC •PN +12AB •PM +12BC •PQ ,∵AB =AC =BC ,∴BD =PM +PN +PQ ;②BD =PM +PQ −PN ;如图4,连接AP 、BP 、CP ,∵S △ABC =S △APB +S △BPC −S △APC .∴12AC •BD =12AB •PM +12BC •PQ −12AC •PN ,∵AB =AC =BC ,∴BD =PM +PQ −PN .【点睛】本题考查了等边三角形的性质,三角形的面积等,作出辅助线构建三个三角形是解题的关键.8.(1)如图1,在ABC V 中,BP 平分ABC Ð,CP 平分ACB Ð,求证:1902P A Ð=°+Ð;(2)如图2,在ABC V 中,BP 平分ABC Ð,CP 平分外角ACE Ð,猜想P Ð和A Ð有何数量关系,并证明你的结论.【答案】(1)见解析;(2)12P A Ð=Ð,证明见解析【分析】(1)根据三角形内角和定理以及角平分线的定义进行证明即可:(2)根据一个三角形的外角等于与它不相邻的两个内角和,可求出A ACE ABC Ð=Ð-Ð,P PCE PBC Ð=Ð-Ð,再由角平分线的定义得到12PBC ABC Ð=Ð,12PCE ACE Ð=Ð, 则()11112222P ACE ABC ACE ABC A Ð=Ð-Ð=Ð-Ð=Ð.【详解】(1)证明:()180P PBC PCB Ð=-Ð+Ðo ,∵BP 平分ABC Ð,CP 平分ACB Ð,∴12PBC ABC Ð=Ð,12PCB ACB Ð=Ð,∴()111222PBC PCB ABC ACB ABC ACB Ð+Ð=Ð+Ð=Ð+Ð∴()11801802P PBC PCB ABC ACB Ð=--=-Ð+Ðo o ∠∠,∵=180ABC ACB A+-o ∠∠∠()11180180=9022P A A \Ð=--+Ðo o o ∠;(2)猜想:12P A Ð=Ð,证明:ACE A ABC Ð=Ð+ÐQ ,A ACE ABC \Ð=Ð-Ð,∵PCE P PBC Ð=Ð+Ð,∴P PCE PBC Ð=Ð-Ð,又BP 平分ABC Ð,CP 平分ACE Ð,∴12PBC ABC Ð=Ð,12PCE ACE Ð=Ð,()11112222P ACE ABC ACE ABC A \Ð=Ð-Ð=Ð-Ð=Ð,12P A \Ð=Ð.【点睛】本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义,解题的关键在于能够熟练掌握角平分线的定义.9.如图,在ABC V 中,75A Ð=°,45C Ð=°,BE 是ABC V 的角平分线,BD 是边AC 上的高.(1)求CBE Ð的度数;(2)求DBE Ð的度数.【答案】(1)∠CBE =30°;(2)∠DBE =15°.【分析】(1)根据三角形内角和可求∠ABC =180°-∠A -∠C =180°-75°-45°=60°,然后根据角平分线∠CBE =11603022ABC Ð=´°=°;(2)先求∠DBC =90°-∠C=90°-45°=45°,再利用两角之差计算即可.【详解】解:(1)∵∠ABC +∠A +∠C =180°,75A Ð=°,45C Ð=°,∴∠ABC =180°-∠A -∠C =180°-75°-45°=60°,∵BE 是ABC V 的角平分线,∴∠CBE =11603022ABC Ð=´°=°;(2)∵BD ⊥AC ,∴∠BDC =90°,∴∠DBC +∠C =90°,∵45C Ð=°∴∠DBC =90°-∠C=90°-45°=45°,∴∠DBE =∠DBC -∠CBE =45°-30°=15°.【点睛】本题考查三角形内角和,角平分线定义,直角三角形两锐角互余,角的和差,掌握三角形内角和,角平分线定义,直角三角形两锐角互余,角的和差是解题关键.10.如图,在V ABC中,∠1=∠2=∠3.(1)求证:∠ABC=∠EDF;(2)若∠ABC=45°,∠DFE=50°,求∠BAC的度数.【答案】(1)见解析;(2)85°【分析】(1)利用三角形的外角的性质可得∠EDF=∠1+∠ABD,再结合∠ABC=∠2+∠ABD,∠1=∠2即可证得∠ABC =∠EDF;(2)先根据三角形的内角和定理求得∠DEF=85°,再利用三角形的外角的性质结合∠1=∠3即可求得答案.【详解】(1)证明:∵∠1=∠2,∴∠1+∠ABD=∠2+∠ABD,又∵∠EDF=∠1+∠ABD,∠ABC=∠2+∠ABD,∴∠ABC=∠EDF;(2)解:∵∠ABC=∠EDF,∠ABC=45°,∴∠EDF=45°,又∵∠DFE=50°,∴∠DEF=180°-∠DFE-∠EDF=85°,∴∠EAC+∠3=∠DEF=85°,又∵∠1=∠3,∴∠BAC=∠EAC+∠1=∠EAC+∠3=85°.【点睛】本题考查三角形内角和定理,三角形外角的性质等知识,解题的关键是熟练掌握三角形内角和定理,属于中考常考题型.11.如图,在V ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=56°,∠C=70°.(1)求∠DAE的度数;(2)求∠BOA的度数.【答案】(1)8°;(2)125°【分析】(1)根据角平分线的定义求出∠CAE ,根据直角三角形两锐角互补可得CAD Ð,根据DAE CAE CAD Ð=Ð-Ð计算即可;(2)根据三角形内角和求出ABC Ð,根据角平分线的定义求出,BAO ABO ÐÐ的度数,然后根据三角形内角和可得结果.【详解】解:(1)∵∠BAC =56°,∠C =70°,AE 是∠BAC 的平分线,∴∠CAE =1282BAC Ð=°∵AD 是BC 边上的高,∴90ADC Ð=°,∴∠CAD =907020°-°=°,∴28208DAE CAE CAD Ð=Ð-Ð=°-°=°;(2)∵∠C =70°,∠BAC =56°,∴∠ABC =180°−70°−56°=54°,∵BF 平分∠ABC ,∴1272ABO ABC Ð=Ð=°,∵AE 平分∠BAC ,1282OAB BAC Ð=Ð=°,∴∠BOA 180125ABO OAB =°-Ð-Ð=°.【点睛】本题考查的是三角形内角和定理,掌握三角形内角和等于180°是解题的关键.12.如图,△ABC 中,角平分线AD 、BE 、CF 相交于点H ,过H 点作HG ⊥AC ,垂足为G ,如果∠AHE=50度,求∠CHG 的度数.【答案】∠CHG =50°【分析】根据角平分线的定义可设可设=BAD CAD x =∠∠,=ABE CBE y Ð=Ð,=BCF ACF z Ð=Ð,则由三角形内角和定理可得90x y z ++=o ,再由三角形外角的性质可得==90AHE BAD ABE x y z ++=-o ∠∠∠,=90AGH ACF CHG +=o ∠∠∠,从而可以推出50CHG AHE Ð=Ð=o .【详解】解:∵AD ,BE ,CF 为△ABC 的角平分线,∴可设=BAD CAD x =∠∠,=ABE CBE y Ð=Ð,=BCF ACF z Ð=Ð,∵=180ABC BAC ACB ++o ∠∠∠,∴222180x y z ++=o ,即90x y z ++=o ,∵==90AHE BAD ABE x y z ++=-o ∠∠∠,=90AGH ACF CHG +=o ∠∠∠,∴==90CHG AGH ACF z --o ∠∠∠,∴50CHG AHE Ð=Ð=o .【点睛】本题主要考查了角平分线的定义,三角形内角和定理,三角形外角的性质,解题的关键在于能够熟练掌握角平分线的定义.13.已知,Rt △ABC 中,∠C =90°,点D 、E 分别是边AC ,BC 上的点,点P 是斜边AB 上一动点.令∠PDA =∠1,∠PEB =∠2,∠DPE =∠α.(1)如图①所示,当点P 运动至∠α=50°时,则∠1+∠2= ;(2)如图②所示,当P 运动至AB 上任意位置时,试探求∠α,∠1,∠2之间的关系,并说明理由.【答案】(1)12140Ð+Ð=°;(2)1290a Ð+Ð=Ð+°,理由见解析【分析】(1)根据平角的定义求得1180,2180PDC PEC Ð+Ð=°Ð+Ð=°,进而根据四边形的内角和等于360°,以及∠α=50°,即可求得∠1+∠2的值;(2)方法同(1).【详解】(1)Q 1180,2180PDC PEC Ð+Ð=°Ð+Ð=°,12360PDC PEC \Ð+Ð+Ð+Ð=°,在四边形CEPD 中,360C PDC PEC a Ð+Ð+Ð+Ð=°,12C a \Ð+Ð=Ð+Ð,Q ∠α=50°,90C Ð=°,\12140Ð+Ð=°,故答案为:140°(2)1290a Ð+Ð=Ð+°,理由如下,Q Q 1180,2180PDC PEC Ð+Ð=°Ð+Ð=°,12360PDC PEC \Ð+Ð+Ð+Ð=°,在四边形CEPD 中,360C PDC PEC a Ð+Ð+Ð+Ð=°,12C a \Ð+Ð=Ð+Ð,Q 90C Ð=°,\1290a Ð+Ð=Ð+°【点睛】本题考查了平角的定义,四边形内角和为360°,掌握四边形的内角和是解题的关键.14.如图,AD 是△ABC 的角平分线,CE 是△ABC 的高,∠BAC =50°,∠BCE =25°,求∠AOC 和∠ADB 的度数.【答案】∠AOC 的度数为115°,∠ADB 的度数为90°【分析】根据AD是△ABC的角平分线,CE是△ABC的高,∠BAC=50°可得∠BAD=∠CAD=25°,∠CEA=90°,从而求得∠ACE的度数,由此可得∠AOC的度数,又因为∠BCE=25°,∠ADB=∠BCE+∠ACE+∠CAD,从而求得∠ADB的度数.【详解】解:∵AD是△ABC的角平分线,∠BAC=50°,∴∠BAD=∠CAD=12∠BAC=25°,∵CE是△ABC的高,∴∠CEA=90°,∴∠ACE=90°-∠BAC=40°,∴∠AOC=180°-∠ACE-∠CAD=180°-40°-25°=115°,∵∠BCE=25°,∠ACE=40°,∠CAD=25°,∴∠ADB=∠BCE+∠ACE+∠CAD=25°+40°+25°=90°,答:∠AOC的度数为115°,∠ADB的度数为90°.【点睛】本题考查三角形的内角和、三角形的平分线和高的定义以及三角形的一个外角等于和它不相邻的内角的和,关键是根据具体目中的信息,灵活变化,求出相应的问题的答案.15.如图,在△ABC中,∠ACB=90°,CD,CE分别是△ABC的高和中线,F是CB的延长线上一点.(1)若∠ACD=53°,求∠ABF的度数;(2)若BC=6 cm,AC=8 cm,AB=10 cm,求CD的长和△BCE的面积.【答案】(1)127°;(2)24cm5CD=,212cmBCES=V【分析】(1)结合CD为△ABC的高,先求出∠A,然后结合三角形的外角定理求解即可;(2)先根据等面积法求出CD,然后结合中线的性质求出BE,从而利用三角形的面积公式求解即可.【详解】解:(1)∵CD 为△ABC 的高,∴CD ⊥AB ,∠ADC =90°,∵∠ACD =53°,∴∠A =180°-90°-53°=37°,∵∠ABF 为△ABC 的外角,∴∠ABF =∠A +∠ACB =37°+90°=127°;(2)由题意,1122ABC S AC BC AB CD ==V g g ,∴6824cm 105AC BC CD AB ´===g ,∵CE 是△ABC 的中线,∴E 为AB 的中点,即:152AE BE AB ===,∴21124512cm 225BCE S BE CD ==´´=V g .【点睛】本题考查三角形中线,高相关的定义与计算,理解三角形中重要线段的定义与性质,熟悉等面积法是解题关键.16.如图,在△ABC 中,30A Ð=°,60B Ð=°,CF 平分ACB Ð交AB 于点E .(1)求ACE Ð的度数:(2)若CD AB ^于点D ,75CDF Ð=°.判断△CFD 的形状,并说明理由.【答案】(1)45ACE Ð=°;(2)CFD △是直角三角形,理由见解析.【分析】(1)依据三角形内角和定理以及角平分线的定义,即可得到ACE Ð的度数.(2)依据三角形内角和定理以及直角三角形的性质,即可得到DCF Ð的度数,进而得出CFD Ð的度数.【详解】解:(1)ABC QV 中,30A Ð=°,60B Ð=°,180306090ACB \Ð=°-°-°=°,又CE Q 平分ACB Ð,1452ACE ACB \Ð=Ð=°,即45ACE Ð=°;(2)CFD △是直角三角形,理由:CD AB ^Q 于点D ,60B Ð=°,906030BCD \Ð=°-°=°,又45BCE ACE Ð=Ð=°Q ,15DCF BCE BCD \Ð=Ð-Ð=°,又75CDF Ð=°Q ,180751590CFD \Ð=°-°-°=°,CFD \△是直角三角形.【点睛】本题考查了三角形的内角和定理,直角三角形的性质,角平分线定义等知识点,关键是求出各个角的度数.17.已知,如图,在△ABC 中,AD ,AE 分别是△ABC 的高和角平分线,若∠B =30°,∠C =50°.(1)求∠DAE 的度数.(2)试写出∠DAE 与∠C -∠B 有何关系,给出证明.【答案】(1)10°;(2)()1,2DAE C B Ð=Ð-Ð证明见解析【分析】(1)先求解,,BAC CAE ÐÐ 再求解,CAD Ð 再利用角的和差可得答案;(2)先求解()190,90,2CAE B C DAC C Ð=°-Ð+ÐÐ=°-Ð 再利用角的和差可得结论.【详解】解:(1)Q ∠B =30°,∠C =50°,180100,BAC B C \Ð=°-Ð-Ð=°Q AD ,AE 分别是 △ ABC 的高和角平分线,150,90,2BAE CAE BAC ADE ADC \Ð=Ð=Ð=°Ð=Ð=° 905040,DAC \Ð=°-°=°504010.DAE EAC DAC \Ð=Ð-Ð=°-°=°(2)()1,2DAE C B Ð=Ð-Ð 理由如下:Q AD ,AE 分别是 △ ABC 的高和角平分线。

人教版八年级数学上册 第11章 三角形几何证明专题练习题(无答案)

人教版八年级数学上册 第11章 三角形几何证明专题练习题(无答案)

C A B C DE P 图 ⑴八年级数学(上)几何证明专题练习题1、 已知:在⊿ABC 中,∠A=900,AB=AC ,在BC 上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR∥CA 交BA 于R ,D 是BC 的中点,求证:⊿RDQ 是等腰直角三角形。

2、 已知:在⊿ABC 中,∠A=900,AB=AC ,D 是AC 的中点,AE ⊥BD ,AE 延长线交BC 于F ,求证:∠ADB=∠FDC 。

3、 已知:在⊿ABC 中BD 、CE 是高,在BD 、CE 或其延长线上分别截取BM=AC 、CN=AB ,求证:MA ⊥NA 。

4、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .5、在Rt △ABC 中,AB =AC ,∠BAC =90°,O 为BC 的中点。

(1)写出点O 到△ABC 的三个顶点A 、B 、C 的距离的大小关系(不要求证明);(2)如果点M 、N 分别在线段AB 、AC 上移动,在移动中保持AN =BM ,请判断△OMN 的形状,并证明你的结论。

6、如图,△ABC 为等边三角形,延长BC 到D ,延长BA 到E ,AE=BD , 连结EC 、ED ,求证:CE=DE7、如图,等腰三角形ABC 中,AB =AC ,∠A =90°,BD 平分∠ABC ,DE ⊥BC 且BC =10,求△DCE 的周长。

8.如图所示,已知AD 是∠BAC 的平分线,EF 垂直平分AD 交BC 的延长线于点F ,交AD 于点E ,连接AF ,求证:∠B=∠CAF 。

A B COM N9.如图所示,AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,连接EF ,EF 与AD 交于点G ,求证:AD 垂直平分EF 。

C10.如图所示,已知点D 是等边三角形ABC 的边BC 延长线上的一点,∠EBC=∠DAC ,CE ∥AB 。

(完整版)八年级上册几何证明题专项练习

(完整版)八年级上册几何证明题专项练习

八年级上册几何证明题专项练习1.如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA≌△CEB.2.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.3.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.4.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.5.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.6.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.7.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.8.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF.9.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.10.如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.11.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.12.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.13.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.14.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.求证:△ACD≌△CBE.15.如图,四边形ABCD中,E点在AD上,∠BAE=∠BCE=90°,且BC=CE,AB=DE.求证:△ABC≌△DEC.16.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.17.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.18.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.19.已知△ABC中,AD是∠BAC的平分线,AD的垂直平分线交BC的延长线于F.求证:∠BAF=∠ACF.20.如图所示,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC边上的中点,CE⊥AD于点E,BF∥AC交CE的延长线于点F,求证:AB垂直平分DF.21.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.22.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.23.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.24.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.25.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.26.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.27.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.28.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.29.图1、图2中,点C为线段AB上一点,△ACM与△CBN都是等边三角形.(1)如图1,线段AN与线段BM是否相等?证明你的结论;(2)如图2,AN与MC交于点E,BM与CN交于点F,探究△CEF的形状,并证明你的结论.30.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.(1)图中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系,并说明理由.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.。

重庆南开2018-2019学年度初二上数学几何证明( 无答案)

重庆南开2018-2019学年度初二上数学几何证明( 无答案)

重庆南开2018-2019 学年度初二上几何证明1.如图,△ABC 中,∠ACB=90°,AC=BC,点E 是AC 上一点,连接BE.(1)如图1,若,BE=5,求AE 的长;(2)如图2,点D 是线段BE 延长线上一点,过点A 作AF⊥BD 于点F,连接CD、CF,当AF=DF 时,求证:DC=BC.2.在△ABC 中,∠ABM=45°,AM⊥BM,垂足为M,点C 是BM 延长线上一点,连接AC.(1)如图1,若,BC=5,求AC 的长;(2)如图2,点D 是线段AM 上一点,MD=MC,点E 是△ABC 外一点,EC=AC,连接ED 并延长交BC 于点F,且点F 是线段BC 的中点,求证:∠BDF=∠CEF.3.如图,在△ABC 中,AB=AC,点D 是△ABC 内一点,AD=BD,且AD⊥BD,连接CD.过点C 作CE⊥BC 交AD 的延长线于点E,连接BE.过点D 作DF⊥CD 交BC 于点F.(1)若BD=DE=,求BC 的长;(2)若BD=DE,求证:BF=CF.4.如图,△ABC 和△BDE 都是等腰直角三角形,其中∠ACB=∠BDE=90°,AC=BC,BD=ED,连接AE,点F 是AE 的中点,连接DF.(1)如图1,若B、C、D 共线,且AC=CD=2,求BF 的长度;(2)如图2,若A、C、F、E 共线,连接CD,求证:.5.△ABC 是等腰直角三角形,AC=BC,∠ACB=90°,(1)如图1,点M 是BA 延长线上一点,连结CM,K 是AC 上一点,BK 延长线交CM 于N,∠MBN=∠MCA=15°,BK=8 求CM 的长度.(2)如图2,直线l 经过点C,AF⊥l 于点F,BE⊥l 于点E,点D 是AB 的中点,连接ED.求证:AF=BE DE.6.△ABC 中,点D 为BC 上一点,E 为AC 上一点,连接AD,BE,DE,已知BD=DE,AD=DC,∠ADB=∠EDC.(1)如图1,若∠ACB=40°,求∠BAC 的度数;(2)如图2,F 是BE 的中点,过点F 作AD 的垂线,分别交AD、AC 于点G、H.求证:AH=CH.7.如图,四边形ABCD 中,AD∥BC,CE⊥AB,△BDC 为等腰直角三角形,∠BDC=90°,BD=CD;CE 与BD 交于F,连AF,M 为BC 中点,连接DM 交CE 于N.请说明:(1)△ABD≌△NCD;(2)CF=AB+AF.8.如图,在△ABC 中,AB=BC,AD⊥BC 于点D,点E 为AC 中点,连接BE 交AD 于点F,且BF=AC,过点D 作DG∥AB,交AC 于点G.求证:(1)∠BAD=2∠DAC(2)EF=EG.9.如图(1):在△ABC 中,∠ACB=90°,AC=BC,过点C 在△ABC 外作直线MN,AM⊥MN 于M,BN⊥MN 于N.(1)求证:MN=AM+BN.(2)如图(2),若过点C 在△ABC 内作直线MN,AM⊥MN 于M,BN⊥MN 于N,则图(1)中的结论是否仍然成立?请说明理由.10.如图,已知,∠BAC=90°,AB=AC,BD 是∠ABC 的平分线,且CE⊥BD 交BD 延长线于点E.(1)若AD=1,求DC;(2)求证:BD=2CE.11.如图,已知AB=AC,AD=AE,∠BAC=90°,∠EAD=90°,BE 的延长线交AC 于G,交CD 于F.(1)求证:BF⊥CD;(2)若AE平分∠BAC,BF平分∠ABC,求证:FG.12.如图,在矩形ABCD 中,E 在BA 延长线上,连接DE,F 在DE 上,连接AF、FC,且BE=BD.(1)如果AB=4,∠ADB=30°,求DE 的长;(2)如果EF=AF,求证:AF⊥CF.13.如图,在等腰Rt△ABC 中,∠ABC=90°,AB=BC,D 为斜边AC 延长线上一点,过D 点作BC 的垂线交其延长线于点E,在AB 的延长线上取一点F,使得BF=CE,连接EF.(1)若AB=2,BF=3,求AD 的长度;(2)G 为AC 中点,连接GF,求证:∠AFG+∠BEF=∠GFE.14.已知:如图,在△ABC 中,AB=AC,延长BC 到D,使BD=2BC,连接AD,过C 作CE⊥BD 交AD 于点E,连接BE 交AC 于点O.(1)求证:∠CAD=∠ABE.(2)求证:OA=OC.15.如图,在等腰Rt△ABC 中,O 为斜边AC 的中点,连接BO,以AB 为斜边向三角内部作Rt△ABE,且∠AEB=90°,连接EO.求证:(1)∠OAE=∠OBE;(2)AE=BE OE.16.如图,△ABD 和△ACE 均为等腰直角三角形,A 为公共直角顶点,过A 作AF 垂直CB 交CB 的延长线于F.(1)若AC=10,求四边形ABCD 的面积;(2)求证:CE=2AF.17.如图,△ABC 中,∠ABC=90°,D 为BC 上一点,且BD=AB,连接AD,E 是AC 上一点,∠ABE=∠BDE 且∠C+2 ∠EBC=90°.(1)求证:DE2+BE2=DB2;(2)已知DE=2,求BE 的长.18.如图,△ABC 和△DEC 都是等腰直角三角形,C 为它们的公共直角顶点,连AD,BE,F 为线段AD 的中点,连接CF(1)如图1,当D 点在BC 上时,求证:①BE=2CF,②BE⊥CF.(2)如图2,把△DEC 绕C 点顺时针旋转一个锐角,其他条件不变,问(1)中的关系是否仍然成立?如果成立请证明.如果不成立,请写出相应的正确的结论并加以证明.19.等腰Rt△ABC 中,∠ACB=90°,AC=BC,点G 是BC 上一点,CF⊥AG 于E,BF⊥CF,D 为AB 中点,连接DF.(1)求证:△AEC≌△CFB;(2)求证:2DF.20.已知等腰Rt△ABC 中,∠ACB=90°,AC=BC,点G 在BC 上,连接AG,过C 作CF⊥AG,垂足为点E,过点B 作BF⊥CF 于点F.(1)求证:△CBF≌△ACE;(2)若点D 是AB 的中点,连接DE、DF,求证:DE=DF.21.操作:如图①,△ABC 是等边三角形,△BDC 是顶角∠BDC=120°的等腰三角形,以D 为顶点作一个60°角:(1)角的两边分别交AB、AC 边于M、N 两点,连接MN.探究:线段BM、MN、NC 之间的关系,并加以证明.(2)若角的两边分别交AB、CA 的延长线于M、N 两点,连接MN.在图②中画出图形,再直接写出线段BM、MN、NC 之间的关系.22.如图,在等腰直角△ACB 中,∠ACB=90°,CE=CD,连接BE、DA 交于点O,CF⊥BE 交AB 于点F,在BE 的延长线上取一点G,连接GF 与AC、AD 分别交于点M、点N,使得GM=GE.(1)求证:△ADC≌△BEC;GF⊥AD;(2)若FG=5,BG=11,求CF 的长.23.已知△ACD 与△AGF 都为等腰直角三角形,∠GAF=∠CAD=90°.连接GD、CF,N 为线段GD 的中点,连接AN.(1)求证:2AN=CF;(2)求证:AN⊥CF.24.如图,等腰三角形ABC 中,∠BAC=90°,D,E 分别为AB,AC 边上的点.AD=AE,AF⊥BE 交BC 于点F,过点F 作FG⊥CD,交BE 于点G,交AC 于点M.(1)求证:GM=GE;(2)求证:BG=AF+FG.25.如图,△ABC 中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE 平分∠BAD,交BC 于点E.在△ABC 外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB 上取一点M,使BM=2DE,连接MC,交AD 于点N,连接ME.求证:①ME⊥BC;②DE=DN.26.(1)如图1,正方形ABCD 中,点E,F 分别在边BC,CD 上,∠EAF=45°,延长CD 到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC 中,∠BAC=90°,AB=AC,点M,N 在边BC 上,且∠MAN=45°,若BM=1,CN=3,求MN 的长.27.如图,在△ABC 中,∠ACB=90°,AC=BC,E 为AC 边的中点,过点A 作AD⊥AB 交BE 的延长线于点D,CG 平分∠ACB 交BD 于点G,F 为AB 边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.28.如图,在△ABC 中,AD 平分∠BAC,DF⊥AB 于点F,E 为AC 上一点,且AE=DE.(1)求证:DF⊥DE;(2)若∠ABC+∠AED=180°,求证:AB+AE=2AF.29.在等腰直角△ABC 中,∠BAC=90°,AB=AC,(1)如图1,点D、E 分别是AB、AC 边的中点,AF⊥BE 交BC 于点F,连结EF、CD 交于点H.求证:EF⊥CD;(2)如图2,AD=AE,AF⊥BE 于点G 交BC 于点F,过F 作FP⊥CD 交BE 的延长线于点P,试探究线段BP,FP,AF 之间的数量关系,并说明理由.30.如图,在Rt△ABC 中,∠BAC=90°,D 为BC 的中点,连接AD,E 为AB 上一点,过E 作EF∥BC 交AD 于F.(1)求证:EF=AF.(2)若H 为EC 的中点,连接FH、DH,求证:DH⊥FH.。

(完整版)初二上几何证明题100题专题训练(可编辑修改word版)

(完整版)初二上几何证明题100题专题训练(可编辑修改word版)

A D P E 八年级上册几何题专题训练 100 题1、 已知:在⊿ABC 中,∠A=900,AB=AC ,在 BC 上任取一点 P ,作 PQ∥AB 交 AC 于 Q ,作 PR∥CA 交 BA 于 R ,D 是 BC的中点,求证:⊿RDQ 是等腰直角三角形。

C2、 已知:在⊿ABC 中,∠A=900,AB=AC ,D 是 AC 的中点,AE⊥BD,AE 延长线交 BC 于 F ,求证:∠ADB=∠FDC。

3、 已知:在⊿ABC 中 BD 、CE 是高,在 BD 、CE 或其延长线上分别截取 BM=AC 、CN=AB ,求证:MA⊥NA。

4、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点 P 交 AB 于 D ,交 AC 于 E ,且 DE ∥ BC .求证:DE -DB=EC .BC5、在Rt△ABC 中,AB=AC,∠BAC=90°,O 为BC 的中点。

(1)写出点O 到△ABC 的三个顶点A、B、C 的距离的大小关系(不要求证明);(2)如果点M、N 分别在线段AB、AC 上移动,在移动中保持AN=BM,请判断△OMN 的形状,并证明你的结论。

CNOA M B6、如图,△ABC 为等边三角形,延长BC 到D,延长BA 到E,AE=BD,连结EC、ED,求证:CE=DE7、如图,等腰三角形ABC 中,AB=AC,∠A=90°,BD 平分∠ABC,DE⊥BC 且BC=10,求△DCE 的周长。

8.如图,已知△EAB≌△DCE,AB,EC 分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数.9.如图,点 E、A、B、F 在同一条直线上,AD 与BC 交于点 O, 已知∠CAE=∠DBF,AC=BD.求证:∠C=∠DC DOE B10.如图,OP 平分∠AOB,且OA=OB.(1)写出图中三对你认为全等的三角形(注:不添加任何辅助线);(2)从(1)中任选一个结论进行证明.11.已知:如图,AB=AC,DB=DC,AD 的延长线交 BC 于点E,求证:BE=EC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的形状,并证明你的结论。
C
N O
AM
B
6、如图,△ ABC 为等边三角形,延长 BC 到 D,延长 BA 到 E, AE=BD , 连结 EC、 ED ,求证: CE=DE
7、如图,等腰三角形 ABC 中, AB = AC ,∠ A = 90°, BD 平分∠ ABC , DE⊥ BC 且 BC = 10,求△ DCE的周长。
八年级数学(上)几何证明专题练习题
1、 已知:在⊿ ABC中,∠ A=900, AB=AC,在 BC上任取一点 P,作 PQ∥ AB交 AC于 Q,作 PR ∥CA交 BA于 R, D 是 BC的中点,求证:⊿ RDQ是等腰直角三角形。
A Q
R
C
B
P
D
2、 已知:在⊿ ABC中,∠ A=900,AB=AC,D 是 AC的中点, AE⊥ BD,AE延长线交 BC于 F,求 证:∠ ADB=∠ FDC。
小红折叠时,顶点 D 落在 BC 边上的点 F 处(折痕为 AE ).想一想,此时 EC 有多长? ?
A
D
E
B
FC
17. 如图一块四边形草坪 ABCD,其中∠ B=∠ D=90°, AB=20cm, BC=15cm, CD=7cm 求这块草坪的面积。
A
D
C
B
G
E
13.如图,公园内两条小河 MO 、 NO 在 O 处汇合,两河形成的半岛上有一处古 迹 P。现计划在两条小河上各建一座小桥 Q 和 R,并在半
M
岛上修三段小路, 连通两座小桥和古迹。 这两座小桥应建 在何处,才能使修路费最少?
P
O
N
14.△ ABC 中, AB=AC ,∠ BAC=120 °, AC 的垂直平分线 EF 交 AC 于 E,交 BC 于 F.若 FC=3cm ,则 BF 等于多少?
8.如图所示,已知 AD 是∠ BAC 的平分线, EF 垂直平分 AD 交 BC 的延长线于 点 F,交 AD 于点 E,连接 AF ,求证:∠ B=∠CAF 。
A
E
B
D
C
F
9.如图所示, AD 是∠ BAC 的平分线, DE⊥AB ,DF⊥AC ,垂足分别为 E,F, 连接 EF,EF 与 AD 交于点 G,求证: AD 垂直平分 EF。
A E B
C F
15.在 Rt△ ABC 中,∠ ACB=90 度,∠ A=30 度, CD 是斜边上的中线, CE 是斜边上的高。 (1)请说明△ BCD 是正三角形, ( 2)如果 DE=1 ,请求出 AB 的长。
C
A
B
D
E
16.如图,小红用一张长方形纸片 ABCD 进行折纸,已知该纸片宽 AB 为 8cm 长 BC 为 10cm.当
A
D E
B
F
C
3、 已知: 在⊿ ABC中 BD、CE是高, 在 BD、CE或其延长线上分别截取 MA⊥ NA。
BM=AC、CN=AB,求证:
N
A
E D
M
B
C
4、已知:如图 (1) ,在△ ABC中, BP、CP分别平分∠ ABC和∠ ACB, DE过点 P交 AB于 D,交 AC于 E,且 DE∥ BC.求证: DE- DB=EC. A
A
G EBD来自F C10.如图所示, 已知点 D 是等边三角形 ABC 的边 BC 延长线上的一点, ∠EBC= ∠ DAC , CE∥ AB。求证:△ CDE 是等边三角形。
A
E
B
C
D
11.如图所示,在△ ABC 中, AB=AC ,在 AB 边上取点 D,在 AC 的延长线上 取点 E,使得 BD=CE ,连接 DE 交 BC 于点 G,求证: DG=GE。
DP
E
B 图⑴
C
5、在 Rt△ ABC 中, AB= AC,∠ BAC=90°, O 为 BC 的中点。 (1) 写出点 O 到△ ABC 的三个顶点 A、 B、 C 的距离的大小关系 (不要求证明 ); (2) 如果点 M 、N 分别在线段 AB、 AC 上移动,在移动中保持 AN= BM,请判断△ OMN
相关文档
最新文档