河南省郑州市名校联考2021届新高三第一次调研考试数学(理科)试题卷
2021年河南省六市高三第一次联考数学(理科)答案
{
代入 x2+y2-2x-2 3y=0 得:
t2-2(3-1)
s
i
n
φ·t-2 3=0,
设点 A ,
B 所对应的参数分别为t1 和t2,
则t1+t2=2(3-1)
s
i
n
t1·t2=-2 3,
φ,
→
→
2
2
则|PA -PB|=|
t1-t2|= (
t1+t2)
-4
t1t2 = 4(3-1)
s
i
n2φ+8 3 ,
× = ,
2 4 8
4
1
4
1 3 1 1 5
× + × = ,
2 4 2 2 8
5
5
8
6
1
8
1
5
1 39
E(
Z) 13
+5× +6× = ,它与成本价之比为
= , … 11 分
4
8
8 8
5+2+2 24
21 13
∵ < ,
40 24
∴ 从性价比角度考虑,方案乙更实惠 .……………………………………… 12 分
x)≥ (
x-2)
-3(
x-2)成立。 ……………………… 6 分
f(
3
当 x>3 时,设 h(
x)=f(
x)-g(
x)=ex-1-2
l
nx- (
x-2)
+4x-6,
2
2
则h
'(
x)=ex-1- -3(
x-2)
+4,
x
河南省六市2021届高三第一次联考数学(理科)试题
由 S15 15a8 30 a8 2 ,又 a10 4 , 2a9 a8 a10 6 a9 3
答案选 B 【点睛】 本题考查等差数列基本量的求法,常规思路为求解首项和公差,本通解题思路运用了
答案第 1 页,总 23 页
本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
显然选项 A 不符合,选项 C 符合, 故选:C 8.A 【分析】
分别取 BC 、 BB1 的中点 E 、 F ,连 EF ,利用线面垂直的判定定理和性质可证动点 P 的
答案第 3 页,总 23 页
本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
轨迹是线段 EF ,求出 EF 的长度即可得解.
tan A cos C .
(1)求角 A 的大小;
(2)若 b 3 2 , c 2 ,点 D 在边 BC 上,且 CD 2DB ,求 a 及 AD .
18.如图,在四棱锥 A BCFE 中,四边形 EFCB 为梯形, EF //BC ,且 2EF 射影为点 G ,且 FG 3 ,
故选:C 2.A 【分析】
先化简计算求出 z ,即可求出 z .
【详解】
(1-i)2 =1+ i ,
z
z
1 i2
1 i
2i 1 i
2i 1 i 1 i1 i
i 1 i
1 i ,
z 12 12 2 .
故选:A. 3.B 【分析】
根据 S15 30 ,可算出 a8 ,又 a10 4 ,根据等差中项的性质求解即可
f
x
2 1 ex
1 sin
x
1 ex 1 ex
sin
x
,显然定义域为全体实数集,
因为
河南省六市2021届高三第一次联考理数
★ 2021年3月22日下午2021年河南省六市高三第一次联考数学(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分.考试时间为120 分钟,其中第n 卷22题,23题为选考题,其它题为必考题.考试结束后,将答题卡交回・ 注意事项:1. 答题前,考生必须将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码 区域内.2. 选择题必须用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字 体工整、笔迹清楚.3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草 稿纸、试题卷上答题无效.4. 保持卡面清洁,不要折叠、不要弄破、不准使用涂改液、刮纸刀.第I 卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给岀的四个选项中,只有一个 是符合题目要求的. ■ ' I •- ■ I , ,, - - -''O' ' __ -1 -- ■ -1. 集合A =仕|三宜〈0},集合B =任成=丿叫1一工)},则集合AUB 等于A ,C0»y] B.(—1»+°°) C, (— 1,1) D.[—1,4*8)2. 已知i 是虚数単位,复数Z 满足冬二业=i+「,则|z|等于ZAg • 1 ,,B.2,冒‘ ..,I C :! . *D .饵 3. 等差数列{a n } 刖n 项和为S”9Si5 = 3O,Gio = 49则Q9等于A.2B.3C.4D.84. 为了得到函数g(z) = sin2z 的图象,需将函数/(x) = sin(^ —2x)的图象 6yrB.向右平移亙个单位长度m '■ ' . _ ' " -1!' ■; .• 'J '■! D.向右平移*个单位长度B.2T < 31og 3 2 V log? 6 D.31og 32 < log 2 6 V2 *6.(l-x) • (x + - + 2)4的展开式中x 的系数是XA.10B.2C. —14D.34高三数学(理科)试题第1页(共4页) /C.向左平移詩个单位长度 5.2, ,log 26,31og 32的大小关系是A.27 <log 26<31og 32C.31og 32<2^<log z 67•两数 /(z) = ( 】)si 心的部分图象大致形状是8-如图;在校长为1正方体ABCD-A X B }C }D }中,M 为棱AB 的中 点,动点P 在侧面BCC1B 】及其边界上运动,总有APID.M,^ 动点P 的轨迹的长度为 A-f B •乎 c •佥 4C i %! A , j 3 9. 已知抛物线C :x 2 = 2py{p>0)的焦点为F,M(x 0,y)为该抛物线上一点,若以M 为圆 心的圆与C 的准线相切于点A,匕AMF = 120°,过F 且与y 轴垂直的直线Z 与C 交于 G,H 两点,P 。
2021届河南省六市高三第一次联考数学(理)试题(解析版)
2021届河南省六市高三第一次联考数学(理)试题一、单选题1.集合2101x A xx ⎧⎫-=≤⎨⎬+⎩⎭,集合B x y ⎧⎪==⎨⎪⎩,则集合A B 等于( ) A .10,2⎡⎤⎢⎥⎣⎦B .()1,-+∞C .()1,1-D .[)1,-+∞【答案】C【分析】化简集合,A B ,根据集合的并集运算可得结果.【详解】2101x A xx ⎧⎫-=≤⎨⎬+⎩⎭1{|1}2x x =-<≤,由011x <-≤得01x ≤<,所以{|01}B x x =≤<, 所以 A B {|11}x x =-<<.故选:C2.已知i 是虚数单位,复数z 满足211i i z,则z 等于( )A B .2C .1D 【答案】A【分析】先化简计算求出z ,即可求出z .【详解】211i i z,()()()()()21212111111i i i iz i i i ii i i ----∴====--=--+++-,z ∴==.故选:A.3.已知等差数列{}n a 的前n 项和为n S ,若1530S =,104a ,则9a 等于A .2B .3C .4D .8【答案】B【分析】根据1530S =,可算出8a ,又104a ,根据等差中项的性质求解即可【详解】由158815302S a a ==⇒=,又104a ,98109263a a a a =+=⇒=答案选B【点睛】本题考查等差数列基本量的求法,常规思路为求解首项和公差,本通解题思路运用了()2121n n S n a -=-和等差中项的性质,简化了运算4.为了得到函数()sin 2g x x =的图象,需将函数()πsin 26f x x ⎛⎫=- ⎪⎝⎭的图象( )A .向左平移π6个单位长度 B .向右平移π12个单位长度 C .向左平移5π12个单位长度,D .向右平移5π12个单位长度【答案】D【分析】根据诱导公式将函数()πsin 26f x x ⎛⎫=- ⎪⎝⎭化为5()sin 2()12f x x π⎛⎫=+ ⎪⎝⎭,再根据三角函数的图象变换规律可得答案. 【详解】因为函数()πsin 26f x x ⎛⎫=- ⎪⎝⎭5sin 2sin(2)66x x πππ⎛⎫⎛⎫=--=+ ⎪ ⎪⎝⎭⎝⎭5sin 2()12x π⎛⎫=+ ⎪⎝⎭,所以将5()sin 2()12f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移512π可得函数()sin 2g x x =的图象. 故选:D 5.132,2log 6,33log 2的大小关系是( )A .13232log 63log 2<<B .133223log 2log 6<<C .13323log 22log 6<< D .13323log 2log 62<< 【答案】B【分析】根据对数函数和指数函数的单调性,判断这三个数所在的大致范围,即得大小关系. 【详解】11323222<<,33333log 2log 422=>,3333log 2log 8log 92=<=,22log 6log 42>=, 133223log 2log 6∴<<.故选:B .【点睛】本题考查指数函数和对数函数的单调性,属于基础题.6.41(1)2x x x ⎛⎫-++ ⎪⎝⎭的展开式中x 的系数是( ) A .10 B .2C .14-D .34【答案】C【分析】将二项式变形为()()()84411112x x x x x x -+⎛⎫-++=⎪⎝⎭,利用二项式定理求得()()811x x -+的展开式中5x 的系数,进而可得解.【详解】由题意,()()()()4842411112121x x x x x x x x x x -+⎛⎫++⎛⎫-++=-= ⎪ ⎪⎝⎭⎝⎭, 因此,只需求()()811x x -+的展开式中 5x 的系数. 又()81x +的展开式的通项公式为818rrr T C x-+=⋅,且()()()()8881111x x x x x -+=+-+,所以,()()811x x -+的展开式通项为11,188rrkk r k T C x C x+++=⋅-⋅,令515r k =⎧⎨+=⎩,得54r k =⎧⎨=⎩,因此,()4112x x x ⎛⎫-++ ⎪⎝⎭的展开式中x 的系数是548814C C -=-.故选:C.【点睛】本题考查利用二项式定理求指定项的系数,考查计算能力,属于中等题. 7.函数()21sin 1xf x x e ⎛⎫=-⎪+⎝⎭的部分图象大致形状是( ) A . B .C .D .【答案】C【分析】判断函数的奇偶性,再根据指数函数的性质和正弦函数的性质,用特殊值法进行判断即可.【详解】()211sin sin 11x x xe f x x x e e -⎛⎫=-=⋅ ⎪++⎝⎭,显然定义域为全体实数集, 因为()()11sin()(sin )sin 1111x x xx x xe e ef x x x x f x e e e-----=⋅-=⋅-=⋅=+++-, 所以该函数是偶函数,图象关于纵轴对称,因此排除B 、D ,当0x >时,有1x e >,因此当(0,)x π∈时,sin 0x >,所以当(0,)x π∈时,()0f x <, 显然选项A 不符合,选项C 符合, 故选:C8.如图,在棱长为1正方体1111ABCD A B C D -中,M 为棱AB 的中点,动点P 在侧面11BCC B 及其边界上运动,总有1AP D M ⊥,则动点P 的轨迹的长度为( )A .22B .5 C .π16D .3 【答案】A【分析】分别取BC 、1BB 的中点E 、F ,连EF ,利用线面垂直的判定定理和性质可证动点P 的轨迹是线段EF ,求出EF 的长度即可得解.【详解】如图:分别取BC 、1BB 的中点E 、F ,连,,AE AF EF ,1,A M DM ,1A F ,因为M 为AB 的中点,E 为BC 的中点,ABCD 为正方形,所以DM AE ⊥, 又1D D ⊥平面ABCD ,所以1D D AE ⊥,而1DM D D D =,所以AE ⊥平面1D DM ,所以1D M AE ⊥,同理可得1D M AF ⊥,又AE AF A ⋂=,所以1D M ⊥平面AEF , 因为AP ⊂平面AEF ,所以1AP D M ⊥,因为动点P 在侧面11BCC B 及其边界上运动,所以动点P 的轨迹是线段EF ,而22EF =,所以动点P 的轨迹的长度为22. 故选:A【点睛】关键点点睛:作出并证明动点P 的轨迹是本题解题关键,分别取BC 、1BB 的中点E 、F ,连EF ,则线段EF 即为动点P 的轨迹,利用线面垂直的判定定理和性质即可得证.9.已知抛物线C :()220x py p =>的焦点为F ,01,2M x ⎛⎫⎪⎝⎭为该抛物线上一点,若以M 为圆心的圆与C 的准线相切于点A ,120AMF ∠=︒,过F 且与y 轴垂直的直线l 与C 交于G ,H 两点,0P 为C 的准线上的一点,则0GHP △的面积为( )A .1B .2C .4D .9【答案】D【分析】根据题意得0x p =,进而将问题转化为在Rt ABF 中,解三角形求得3p =,再根据通经得26GH p ==,进而根据等面积法求解即可. 【详解】解:如图,由抛物线的定义得:12pMA MF +==,//MA y 轴, 因为01,2M x ⎛⎫⎪⎝⎭为该抛物线上一点,所以0x p =,所以AB p =,因为120AMF ∠=︒,所以30,60MFA MAF MFB ∠=∠=∠=, 因为在Rt ABF 中,30AFB ∠=,BF p =, 所以由三角函数关系得:tan AB AFB BF∠=,即:tan 30p=,解得3p =, 此时26GH p ==,所以0GHP △的面积为1163922BGH S S GH BF ===⨯⨯=△. 故选:D.【点睛】本题考查抛物线与直线的位置关系,考查数形结合思想,运算求解能力,是中档题.本题解题的关键在于根据已知条件,将问题转化为直角三角形ABF 中,利用边角关系求解得3p =.10.二进制是计算机技术中广泛采用的一种数制.二进制数据是用0和1两个数码来表示的数.它的基数为2,进位规则是“逢二进一”,借位规则“借一当二”.当前的计算机系统使用的基本上是二进制系统,计算机中的二进制则是一个非常微小的开关,用1来表示“开”,用0来表示“关”.如图所示,把十进制数()1010化为二进制数21010(),十进制数()1099化为二进制数()21100011,把二进制数210110()化为十进制数为304211202121202164222⨯⨯⨯⨯⨯++++=++=,随机取出1个不小于2100000(),且不超过()2111111的二进制数,其数码中恰有4个1的概率是A .932B .931C .1031D .516【答案】D【分析】利用古典概型的概率公式求解. 【详解】二进制的后五位的排列总数为52=32, 二进制的后五位恰好有三个“1”的个数为35=10C , 由古典概型的概率公式得1053216P ==. 故选D【点睛】本题主要考查排列组合的应用,考查古典概型的概率的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.11.在三棱锥A BCD -中,4AB CD ==,3AC BD AD BC ====,则该三棱锥的内切球的表面积为( ) A .4π5B .17πC .3π2D .3π4【答案】A【分析】将该三棱锥还原到长方体中,根据已知求出长宽高,求出三棱锥体积,再利用内切球的半径表示出体积,即可求出半径,得出表面积.【详解】由题可将该三棱锥还原到如图长方体中,设长方体的长宽高分别为,,a b a ,则22222234a b a a ⎧+=⎨+=⎩,解得22,1a b ==, 11822122422122323D ABC V -∴=⨯⨯⨯⨯⨯=,设内切球的半径为r ,则()1833D ABC ABC ABD BCD ACD V r S S S S-=+++=, 221432252ABCABDBCDACDSS SS====⨯-=,则1825433r ⨯⨯=,解得55r =, 则内切球的表面积为254455ππ⎛⎫⨯= ⎪ ⎪⎝⎭. 故选:A.【点睛】关键点睛:本题考查几何体的内切问题,解题的关键是将几何体还原到长方体中,立体等体积关系求出内切球半径. 12.若函数()()3ln 2ln 1x f x ax x a x x ⎛⎫=+-- ⎪⎝⎭有三个不同的零点,则实数a 的取值范围是( )A .22410,44e e e ⎛⎫+ ⎪-⎝⎭B .22411,44e e e ⎛⎫+ ⎪-⎝⎭C .()22410,11,44e e e ⎛⎫+ ⎪-⎝⎭ D .()22410,144e e e ⎧⎫+⎨⎬-⎩⎭【答案】B【分析】令()0f x =,可得()22ln 210ln x x a a x x+--=,令2ln x t x =,可得()2210t at a +--=,令()()221h t t at a =+--,令()2ln xg x x=,其中0x >且1x ≠,作出函数()t g x =的图象,根据函数()y f x =有三个零点可得出()2210t at a +--=的两根的取值范围,利用二次函数的零点分布得出关于实数a 的不等式组,可求得实数a 的取值范围. 【详解】()()3ln 2ln 1x f x ax x a x x ⎛⎫=+-- ⎪⎝⎭,则()11f a =-.令()0f x =,可得()22ln 210ln x x a a x x+--=,令2ln x t x =,则120a a t t-+-=,即()2210t at a +--=,设()()221h t t at a =+--, 构造函数()2ln xg x x =,其中0x >且1x ≠, 则()212ln xg x x-'=,令()0g x '=,得x e =, 列表如下:x()0,1()1,ee(),e +∞()g x ' ++-()g x单调递增单调递增极大值12e单调递减函数()t g x =(0x >且1x ≠)的图象如下图所示:由于函数()y f x =有三个不同的零点,而关于t 的二次方程()2210t at a +--=至多有两个根.当关于t 的二次方程()2210t at a +--=有两根时,设这两根分别为1t 、2t ,则10t <,2102t e<<,此时,()()()2010111210222h a h a a e e e ⎧=--<⎪⎨⎛⎫⎛⎫=+⋅-->⎪ ⎪ ⎪⎝⎭⎝⎭⎩,解得2241144e a e e +<<-; 若1a =,则()10f =,关于t 的二次方程为220t t +=,两根分别为10t =,22t =-,()0g x =在0x >且1x ≠时无实根,()2g x =-只有一个实根,此时,函数()y f x =只有两个零点,不合乎题意.综上所述,实数a 的取值范围是22411,44e e e ⎛⎫+ ⎪-⎝⎭.故选:B.【点睛】本题考查利用导数研究函数的零点个数问题,将问题转化为复合函数的零点问题是解答的关键,考查数形结合思想的应用,属于难题.二、填空题13.已知向量(1,2)a =,(,1)b k =,且2a b +与向量a 的夹角为90°,则向量a 在向量b 方向上的投影为________.【分析】由题可知()20a b a +⋅=,依据数量积的坐标公式可求出k ,即求出向量b ,从而得到向量a 在向量b 方向上的投影为cos ,a b a a b b⋅⋅<>=.【详解】因为向量(1,2)a =,(,1)b k =, 则2(2,5)a b k +=+,又2a b +与向量a 的夹角为90°, 所以()20a b a +⋅=,即2100k ++=, 解得12k =-,即(12,1)b =-,因此向量a 在向量b方向上的投影为cos ,145a b aa b b⋅⋅<>===,故答案为. 【点睛】本题综合考查了数量积的坐标运算及投影的求法,难度不大.14.已知实数x ,y 满足220330240x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则3z x y =-的最小值为______.【答案】7-【分析】由约束条件得到可行域,将问题转化为133zy x =-在y 轴截距最大问题的求解,利用数形结合的方式可求得结果.【详解】由约束条件可得可行域如下图阴影部分所示:将3z x y =-化为133z y x =-,则当z 取最小值时,133zy x =-在y 轴截距最大, 由图象可知:当133zy x =-过A 时,直线在y 轴截距最大,由330240x y x y --=⎧⎨-+=⎩得:23x y =⎧⎨=⎩,()2,3A ∴, min 297z ∴=-=-.故答案为:7-.【点睛】方法点睛:线性规划问题中几种常见形式有: ①截距型:z ax by =+,将问题转化为a z y b b=-+在y轴截距的问题; ②斜率型:y bz x a-=-,将问题转化为(),x y 与(),a b 连线斜率的问题; ③两点间距离型:()()22z x a y b =-+-,将问题转化为(),x y 与(),a b 两点间距离的平方的问题;④点到直线距离型:z Ax By C =++,将问题转化为(),x y 到直线0Ax By C ++=的22A B +倍的问题.15.设正数数列{}n a 的前n 项和为n S ,数列{}n S 的前n 项之积为n T ,且21n n S T +=,则数列{}n a 的通项公式是______.【答案】()()21134241n n a n n ⎧=⎪⎪=⎨⎪≥⎪-⎩【分析】由递推关系可得()1122n n S n S -=≥-,求出{}n S 前几项,可猜想出2121+n n S n -=,再加以验证,利用()()1112n nn S n a S S n -⎧=⎪=⎨-≥⎪⎩即可求出. 【详解】当1n =时,1121S T +=,即1121S S +=,则113S =, 当2n ≥时,21n n S T +=,1121n n S T --∴+=,则1112121n n n n n n n T T S S T T S ----===-,整理可得()1122nn S n S -=≥-, 则可得113S =,235S =,357S =,479S =, 则猜想2121+n n S n -=,代入112n n S S -=-检验得1112123221221+n n n S n S n n --===----,满足猜想,()21121+n n S n n -∴=≥, 1113a S ∴==,当2n ≥时,1221234212141+n n n n n a S S n n n ---=-=-=--,∴()()21134241n n a n n ⎧=⎪⎪=⎨⎪≥⎪-⎩.故答案为:()()21134241n n a n n ⎧=⎪⎪=⎨⎪≥⎪-⎩. 【点睛】关键点睛:本题考查利用递推关系求数列得通项公式,解题的关键是根据递推关系先得出()1122n n S n S -=≥-,利用猜想得出2121+n n S n -=.16.已知直线l:0x -=交双曲线Γ:()222210,0x y a b a b-=>>于A ,B 两点,过A 作直线l 的垂线AC 交双曲线Γ于点C .若60ABC ∠=︒,则双曲线Γ的离心率为______.【分析】联立直线x =和双曲线方程可得A ,B 的坐标,以及||AB ,直角三角形的性质可得|||AC AB ,设出直线AC 的方程,联立双曲线方程,运用韦达定理可得C 的横坐标,由弦长公式,化简计算可得a b =,进而得到所求离心率.【详解】解:联立直线x =和双曲线方程可得2222233a b x b a =-,222223a b y b a =-,可设A ,可得||2||AB OA ==在直角三角形ABC 中,60ABC ∠=︒,可得|||AC AB =,设直线AC 的方程为y =+,代入双曲线方程可得42222222216(3)03a b b a x a b b a -+--=-,可得C x +=即有|||C A x x -==,可得2223(||23ab AC b a ==-,即为2222|3|a b b a +=-,可得a b =,c e a ===.【点睛】本题考查双曲线的方程和运用,考查直线和双曲线的位置关系,以及联立方程组,运用韦达定理,考查化简运算能力.三、解答题17.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若sin bC a-=tan cos A C -. (1)求角A 的大小;(2)若b =,2c =,点D 在边BC 上,且2CD DB =,求a 及AD .【答案】(1)π4A =;(2)a =,AD =【分析】(1)由正弦定理化边为角,()sin sin sin tan cos C B A C A C -=-,再化简计算即可求出cos 2A =(2)由余弦定理求得a =,求得cos 10B =-,由题得出33a BD ==,再由余弦定理即可求出AD .【详解】解:(1)由正弦定理,()sin sin sin tan cos C B A C A C -=-,()()sin sin sin tan cos C A C A C A C -+=-,2sin sin cos cos sin sin sin cos cos AC A C A C C A C A --=-,∵sin 0C ≠,∴2sin cos cos AA A+=∴cos A =0πA <<,∴π4A =.(2)由余弦定理可得:2222cos 1841210a b c bc A =+-=+-=,∴a =,∵点D 在边BC 上,且2CD DB =,∴3a BD ==,又222cos 210a cb B ac +-==-,∴222582cos 9AD AB BD AB BD B =+-⋅⋅=,∴3AD =. 【点睛】关键点睛:本题考查正余弦定理的应用,解题的关键是正确利用正弦定理化边为角处理条件,再结合三角恒等变换化简运算.18.如图,在四棱锥A BCFE -中,四边形EFCB 为梯形,//EF BC ,且2EF BC =,ABC 是边长为2的正三角形,顶点F 在AC 上的射影为点G ,且3FG =,212CF =,52BF =.(1)求证:平面FGB ⊥平面ABC ; (2)求二面角E AB F --的余弦值. 【答案】(1)证明见解析;(2)1517. 【分析】(1)取AC 中点O ,连结OB ,利用勾股定理可求得BG 长,从而得到FG BG ⊥,由线面垂直的判定可证得FG ⊥平面ABC ,由面面垂直的判定定理可证得结论; (2)根据垂直关系,以O 为原点可建立空间直角坐标系,利用空间向量法可求得所求二面角的余弦值.【详解】(1)取AC 中点O ,连结OB ,顶点F 在AC 上投影为点G ,∴FG AC .在Rt FGC △中,3FG =21CF =,32CG ∴=,12OG ∴=. ABC 为等边三角形,O 为AC 中点,BO AC ∴⊥在Rt GBO △中,3OB =12OG =,13BG ∴=. 222BG GF FB +=,FG BG ∴⊥.FG AC ⊥,AC BG G ⋂=,,AC BG ⊂平面ABC ,FG ∴⊥平面ABC ,又FG ⊂平面FGB ,∴平面FGB ⊥平面ABC .(2)由(1)知:OB FG ⊥,OB AC ⊥,又FG ⊥平面ABC ,则以O 为坐标原点,以OB 所在直线为x 轴,OC 所在直线为y 轴,过点O 作平面ABC 的垂线为z 轴,建立空间直角坐标系,如图所示:则()0,1,0A -,)3,0,0B,10,32F ⎛- ⎝,33E -⎝, ()3,1,0BA =-∴-,33BE ⎛=-- ⎝,13,32BF ⎛=- ⎝, 设平面ABE 的法向量()111,,m x y z =,则11111303302m BA x y m BE x y z ⎧⋅=--=⎪⎨⋅=--+=⎪⎩,令11x =,则13y =-112z =-,11,3,2m ⎛⎫∴=-- ⎪⎝⎭,设平面ABF 的法向量()222,,n x y z =,则222223013302n BA x y n BF x y z ⎧⋅=--=⎪⎨⋅=--+=⎪⎩,令21x =,则23y =-212z =,11,3,2n ⎛⎫∴=- ⎪⎝⎭,113154cos ,17171744m n m n m n+-⋅∴<>===⋅⨯,由图形可知:二面角E AB F--为锐二面角,∴二面角E AB F--的余弦值为15 17.【点睛】方法点睛:空间向量法求解二面角的基本步骤是:(1)建立空间直角坐标系,利用坐标表示出所需的点和向量;(2)分别求得二面角的两个半平面的法向量,根据向量夹角公式求得法向量的夹角;(3)根据图形或法向量的方向确定所求角为二面角的大小或二面角补角的大小. 19.某种机器需要同时装配两个部件S才能正常运行,且两个部件互不影响,部件S有两个等级:一等品售价5千元,使用寿命为5个月或6个月(概率均为0.5);二等品售价2千元,使用寿命为2个月或3个月(概率均为0.5)(1)若从4件一等品和2件二等品共6件部件S中任取2件装入机器内,求机器可运行时间不少于3个月的概率.(2)现有两种购置部件S的方案,方案甲:购置2件一等品;方案乙:购置1件一等品和2件二等品,试从性价比(即机器正常运行时间与购置部件S的成本之比)角度考虑,选择哪一种方案更实惠.【答案】(1)4160;(2)方案乙更实惠.【分析】(1)由题意知机器运行时间不少于3个月,共有三种可能:第一,取到2个一等品,第二,取到1个一等品,1个二等品,且二等品的使用寿命为3个月,第三,取到2个二等品,且二者使用寿命均为3个月,由此利用互斥事件概率乘法公式能求出机器可运行时间不少于3个月的概率.(2)若采用甲方案,则机器正常运行的时间为X(单位:月),则X的可能取值为5,6,求出相应的概率,从而求出()E X,进而求出它与成本价之比;若采用方案乙,两个二等品的使用寿命之和Y(单位:月),Y的可能取值为4,5,6,分别求出相应的概率,记M为一等品的使用寿命(单位:月),此时机器的正常运用时间为Z,则Z的可能取值为4,5,6,分别求出相应的概率,从而求出Z的分布列()E Z,进而求出它与成本价之比.由此从性价比角度考虑,方案乙更实惠.【详解】解:(1)由题意知机器运行时间不少于3个月,共有三种可能:第一,取到2个一等品,对应概率为242625CC=,第二,取到1个一等品,1个二等品,且二等品的使用寿命为3个月,对应概率为11422614215 C CC⨯=,第三,取到2个二等品,且二者使用寿命均为3个月,对应概率为:22261112260C C ⨯⨯=, ∴机器可运行时间不少于3个月的概率241415156060P =++=. (2)若采用甲方案,则机器正常运行的时间为X (单位:月), 则X 的可能取值为5,6,111(6)224P X ==⨯=,3(5)1(6)4P X P X ==-==, 则X 的分布列为:3121()56444E X ∴=⨯+⨯=,它与成本价之比为()215540E X =+, 若采用方案乙,两个二等品的使用寿命之和Y (单位:月),Y 的可能取值为4,5,6, 111(4)224P Y ==⨯=,111(5)2222P Y ==⨯⨯=,111(6)224P Y ==⨯=,则Y 的分布列为:记M 为一等品的使用寿命(单位:月),此时机器的正常运用时间为Z , 则Z 的可能取值为4,5,6,1(4)(4)4P Z P Y ====, (5)(5P Z P M ===,5)(6Y P M >+=,131155)24228Y ==⨯+⨯=,111(6)(6)248P Z P M y =====⨯=,Z 的分布列为:15139()4564888E Z =⨯+⨯+⨯=,它与成本价之比为()1352224E Z =++,21134024<, ∴从性价比角度考虑,方案乙更实惠.【点睛】本题考查概率的求法,考查离散型随机变量的分布列、数学期望的求法及应用,考查互斥事件概率加法公式等基础知识,考查运算求解能力,是中档题.20.已知椭圆C :()222210y x a b a b +=>>()0,2.(1)求椭圆C 的方程;(2)若矩形ABCD 的四条边均与椭圆相切,求该矩形面积的取值范围.【答案】(1)2214y x +=;(2)[]8,10. 【分析】(1)根据椭圆的几何性质求出,a b 可得椭圆C 的方程;(2)①当矩形ABCD 的四条边与椭圆相切于顶点时,易知428S =⨯=,②当矩形的各边均不与坐标轴平行时,由矩形及椭圆的对称性,设出矩形的四条边所在的直线方程,利用直线与椭圆相切求出直线方程中参数之间的关系,利用平行直线的距离公式求出矩形的边长,利用矩形的面积公式求出面积,利用基本不等式可求出取值范围.【详解】(1)c e a ==∴224a b =又椭圆C 过点()0,2,∴24a =,21b =∴椭圆C 的方程:2214y x +=.(2)①当矩形ABCD 的四条边与椭圆相切于顶点时,易知428S =⨯=,②当矩形的各边均不与坐标轴平行时,由矩形及椭圆的对称性,设其中一边所在的直线方程为:y kx m =+(0)k ≠,则其对边所在的直线方程为:y kx m =-(0)k ≠, 另外两边所在的直线方程分别为:1y x n k =-+,1y x n k=--, 联立2244y kx mx y =+⎧⎨+=⎩,消去y 并整理可得:222(4)240k x kmx m +++-=, 由题意可得222244(4)(4)0k m k m ∆=-+-=, 整理可得224k m +=, 同理可得2214n k+=, 设两平行直线y kx m =+与y kx m =-之间的距离为1d,则1d ==== 设两平行直线1y x n k =-+与1y x n k=--之间的距离为2d,则2d =====, 依题意可知,12,d d 为矩形的两邻边的长度, 所以矩形的面积12S d d =⋅444===44== 因为20k >,所以2212k k+≥,当且仅当21k =时取等号,所以22990,142k k⎛⎤∈ ⎥⎝⎦++,52,2⎛⎤⎥⎝⎦,所以(]8,10S ∈.综上所述:该矩形面积的取值范围为[]8,10.【点睛】关键点点睛:利用直线与椭圆相切和平行直线间的距离公式求出矩形的面积是本题解题关键.21.已知函数1()2ln x f x e x x -=-+.(1)求()f x 的单调区间;(2)证明:3()(2)3(2)f x x x ---.【答案】(1)单调递减区间为(0,1),单调递增区间为(1,)+∞;(2)证明见解析【分析】(1)求导函数,利用(1)=0f ',解()0f x '<函数单调减区间. 解()0f x '>得单调递增区间.(2)先求出3()(2)3(2)g x x x =---在03x <≤的极大值为2,由min ()(1)2==f x f 得在03x <≤成立;再设13()()()e2ln (2)46(3)x h x f x g x x x x x -=-=---+->利用导数法研究函数()h x 在(3,+) 内单调性进行证明()0h x >.【详解】(1)解:()f x 的定义域为(0,)+∞,12()e 1x f x x-'=-+, 12()e 1x f x x -'=-+在(0,)+∞上单调递增,且()01f '=. 令()0f x '<,得01x <<,则()f x 的单调递减区间为(0,1);令()0f x '>,得1x >,则()f x 的单调递增区间为(1,)+∞.(2)证明:设3()(2)3(2)(0),()3(1)(3)g x x x x g x x x '=--->=--.令()0g x '<,得13x <<;令()0g x '>,得01x <<或3x >.所以当1x =时,()g x 取得极大值,且极大值为2,由(1)知,min ()(1)2==f x f ,故当03x <≤时,3()(2)3(2)f x x x ---.设13()()()e 2ln (2)46(3)x h x f x g x x x x x -=-=---+->,122()e 3(2)4x h x x x -'=---+,设122()(),()e 6(2)x p x h x p x x x-''==+--, 设134()(),()e 6x q x p x q x x-''==--,易知()q x '在(3,)+∞上单调递增, 则24()(3)e 6027q x q ''>=-->,则()q x 在(3,)+∞上单调递增,从而22()(3)609p x p e ''>=+->,则()h x '在(3,)+∞上单调递增, 则21()(3)03h x h e ''>=+>,从而()h x 在(3,)+∞上单调递增, 所以2()(3)e 52ln 30h x h >=+->,故当3x >时,3()(2)3(2)f x x x ---,从而3()(2)3(2)f x x x ---得证.【点睛】本题考查求含参数函数的单调区间及利用导数证明不等式.导数法研究函数()f x 在(,)a b 内单调性的步骤:(1)求()'f x ;(2)确定()'f x 在(,)a b 内的符号;(3)作出结论:()0f x '>时为增函数;()0f x '<时为减函数.研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.利用导数证明不等式()()f x g x >的基本方法:(1)若()f x 与()g x )的最值易求出,可直接转化为证明()()min max f x g x >;(2)若()f x 与()g x 的最值不易求出,可构造函数()()()h x f x g x = ,然后根据函数()h x 的单调性或最值,证明()0h x >22.在平面直角坐标系xOy 中,直线l 的参数方程为1cos 1sin x t y t ϕϕ=+⎧⎨=+⎩(t 为参数,[0,)ϕπ∈),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,圆C 的极坐标方程为4cos()3πρθ=-.(1)求圆C 的直角坐标方程;(2)设()1,1P ,若直线l 与圆C 相交于A ,B 两点,求||PA PB -的最大值.【答案】(1)2220x y x +--=;(2)4.【分析】(1)根据极坐标与直角坐标的转化公式,求得圆C 的直角坐标方程;(2)将直线方程与圆联立,由直线参数方程中参数的几何意义及根与系数的关系,求得||PA PB -的最大值.【详解】(1)圆C 的极坐标方程为:4cos()3πρθ=-,则22cos sin ρρθθ=+由极坐标与直角坐标的转化公式得222x y x +=+,所以:2220x y x +--=.(2)将线l 的参数方程为:1cos 1sin x t y t ϕϕ=+⎧⎨=+⎩(t 为参数),代入2220x y x +--=.所以21)sin 0t t ϕ-⋅-=设点A ,B 所对应的参数为1t 和2t ,则121)sin t t ϕ+=,12t t ⋅=-则12||||PA PB t t -=-==当sin 1ϕ=时,||PA PB -的最大值为4.【点睛】本题考查了极坐标方程与直角坐标方程的相互转化,直线参数方程的应用,属于中档题.23.已知,,a b c 为正数,且2a b c ++=,证明: (1)43ab bc ac ++≤; (2)2228a b c b c a---⋅⋅≥. 【答案】(1)见解析(2)见解析【分析】(1)将a +b +c =2平方,然后将基本不等式2222222,2,2a b ab b c bc a c ac +≥+≥+≥三式相加,进行证明;(2)由2a b c b b -+=≥22b a c c b a c c a a -+-+=≥=≥,三式相乘进行证明.【详解】(1)将a +b +c =2平方得:2222224a b c ab ab ac +++++=,由基本不等式知:2222222,2,2a b ab b c bc a c ac +≥+≥+≥,三式相加得:222a b c ab bc ac ++≥++,则2224222333a b c ab bc ac ab bc ac =+++++≥++ 所以43ab bc ac ++≤,当且仅当a =b =c =23时等号成立(2)由2a b c b b b -+=≥,同理22b a c c b a c c c a a a -+-+=≥=≥则2228a b c b c a ---⋅⋅≥=, 即2228a b c b c a ---⋅⋅≥当且仅当23a b c ===时等号成立 【点睛】本题考查利用基本不等式进行证明,属于中档题.。
2021年河南省郑州市新郑第一中学高一数学理联考试题含解析
2021年河南省郑州市新郑第一中学高一数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设,, 且∥,则锐角为()A、 B、 C、 D、参考答案:B略2. 已知定义域为R的函数f(x)满足,当时f(x)单调递减且,则实数a的取值范围是( )A.[2,+ ∞)B.[0,4]C. (-∞,0)D.(-∞,0)∪[4,+∞)参考答案:B由可知关于对称,则.∵时,单调递减,∴时,单调递增.又定义域为,∴可得,故选.3. 下列各组函数表示同一函数的是()A.B.C. D.参考答案:C略4. 已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有 ( )A.2个 B.4个 C.6个 D.8个参考答案:B5. 已知空间中点A(x,1,2)和点B(2,3,4),且,则实数x的值是()A.4或0 B.4 C.3或-4 D.-3或4参考答案:C6. (3分)若U={1,2,3,4,5,6,},M={1,2,5},则?U M=()A.{2,4} B.{1,3,6} C.{3,5} D.{3,4,6}参考答案:D考点:补集及其运算.专题:集合.分析:由全集U及M,求出M的补集即可.解答:解:∵U={1,2,3,4,5,6},M={1,2,5},∴?U M={3,4,6},故选:D.点评:此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.7. 设数列{a n}是等差数列且a4=-4, a9=6,S n是数列{a n}的前n项和,则() A.S5<S6 B.S5=S6 C.S7=S5 D.S7=S6参考答案:B8. 某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,事件“至少1名女生”与事件“全是男生”()A.是互斥事件,不是对立事件 B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件 D.既不是互斥事件也不是对立事件参考答案:C9. 已知数列{a n}是1为首项,2为公差的等差数列,{b n}是1为首项,2为公比的等比数列,设,,则当时,n的最大值是( )A. 9B. 10C. 11D. 12参考答案:B【分析】由题设知,,由和,得,由此能求出当时n的最大值.【详解】是以1为首项,2为公差的等差数列,,是以1为首项,2为公比的等比数列,,,,,解得:.则当时,n的最大值是10.故选:B.【点睛】本题考查了等差数列、等比数列的通项公式,结合含两个变量的不等式的处理问题,易出错,属于中档题.10. ,下列不等式中一定成立的是A. 若,则B. 若,则C. 若,则D. 若,则参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. (5分)已知函数f(x)=3x+x﹣3的零点为x1,函数g(x)=log3x+x﹣3的零点为x2,则x1+x2= .参考答案:3考点:函数零点的判定定理.专题:计算题;函数的性质及应用.分析:函数g(x)=log3x+x﹣3的零点即方程log3x+x﹣3=0的根,从而化为x=33﹣x;函数f(x)=3x+x﹣3的零点可化为方程3x=3﹣x的根,从而可得x1=3﹣x2,从而解得.解答:函数g(x)=log3x+x﹣3的零点即方程log3x+x﹣3=0的根,即log3x=﹣x+3,即x=33﹣x;同理,函数f(x)=3x+x﹣3的零点可化为方程3x=3﹣x的根,且方程3x=﹣x有且只有﹣个根,故x1=3﹣x2,故x1+x2=3;故答案为:3.点评:本题考查了函数的零点与方程的根的应用,属于基础题.12. 设向量则.参考答案:【知识点】诱导公式两角和与差的三角函数数量积的定义解:故答案为:13. 当时,函数的值域是. 参考答案:[-1,2]f (x )=sinx+cosx=2(sinx+cosx )=2sin(x+),∵﹣≤x≤,∴﹣≤x+≤,∴﹣≤sin (x+)≤1,∴函数f(x)的值域为[﹣1,2],故答案为:[﹣1,2].14. sin210°的值为▲.参考答案:15. 若函数是幂函数,且满足,则的值等于______________.参考答案:略16. 函数的最小值为.参考答案:217. 已知函数是偶函数,当时,,则的值为。
河南省郑州市2021 2021学年高考数学一模试卷(理科) Word版含解析
河南省郑州市2021 2021学年高考数学一模试卷(理科) Word版含解析河南省郑州市2021-2021学年高考数学一模试卷(理科)word版含解析2021-2021学年河南省郑州市高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分后,共60分后,在每个大题得出的四个选项中,只有一项就是渡河题目建议的.1.设全集u={x∈n*|x≤4},集合a={1,4},b={2,4},则?u(a∩b)=()a.{1,2,3}b.{1,2,4}c.{1,3,4}d.{2,3,4}2.设z=1+i(i是虚数单位),则=()a.ib.2ic.1id.0=,则cosb=()3.b,c所对的边分别为a,b,c,在△abc中,角a,若a.b.c.d.4.函数f(x)=excosx在点(0,f(0))处的切线方程就是()a.x+y+1=0b.x+y1=0c.xy+1=0d.xy1=05.已知函数f(x)=()xcosx,则f(x)在[0,2π]上的零点个数为()a.1b.2c.3d.46.按如下程序框图,若输入结果为273,则推论框内?细细的补足的条件为()a.i>7b.i≥7c.i>9d.i≥97.设双曲线+=1的一条渐近线为y=2x,且一个焦点与抛物线y=x2的焦点相同,则此双曲线的方程为()a.x25y2=1b.5y2x2=1c.5x2y2=1d.y25x2=18.a4031是函数(fx)=x34x2+6x3的极值点,正项等比数列{an}中的a1,则=()a.1b.2c.d.19.如图是一个四面体的三视图,这个三视图均是腰长为2的等腰直角三角形,正视图和俯视图中的虚线是三角形的中线,则该四面体的体积为()a.b.c.d.210.已知函数f(x)=x+,g(x)=2x+a,若?x1∈[,1],?x2∈[2,3],使得f(x1)≥g(x2),则实数a的取值范围是()a.a≤1b.a≥1c.a≤2d.a≥211.已知椭圆+=1(a>b>0)的左、右焦点分别为f1,f2,过f2的直线与椭圆交于a、b两点,若△f1ab就是以a为直角顶点的全等直角三角形,则距心率为()a.b.2c.2d.12.未知函数f(x)=,若关于x的不等式[f(x)]2+af(x)b2<0恰存有1个整数求解,则实数a的最大值就是()a.2b.3c.5d.8二、填空题:本大题共4小题,每小题5分,共20分.13.二项式的展开式中,x2项的系数为.14.若不等式x2+y2≤2所表示的区域为m,不等式组则表示的平面区域为n,现随机向区域n内抛一粒豆子,则豆子落在区域m内的概率为.15.△abc的三个内角a,b,c,若=tan(π),则2cosb+sin2c的最大值为.16.已知点a(0,1),b(3,0),c(1,2),平面区域p是由所有满足=λ+μ<λ≤m,2<μ≤n)的点m组成的区域,若区域p的面积为6,则m+n的最小值为.三、答疑题(满分60分后)17.已知数列{an}的首项a1=1,前n项和sn,且数列{}就是公差为2的等差数列.(2(1)谋数列{an}的通项公式;(2)若bn=(1)nan,求数列{bn}的前n项和tn.18.某中药栽种基地存有两处种植区的药材可于下周一、周二两天内栽种完,基地员工一天可以顺利完成一处种植区的栽种,由于下雪可以影响药材品质,基地收益如下表中右图:周一无雨无雨存有雨存有雨周二无雨存有雨无雨存有雨20万15万10万7.5万收益若基地额外聘用工人,可以在周一当天顺利完成全部栽种任务;无雨时收益为20万元;存有雨时收益为10万元,额外聘用工人的成本为a万元.未知下周一和之下周二存有雨的概率相同,两天与否下雪互不影响,基地收益为20万元的概率为0.36.(1)若不额外聘用工人,写下基地收益x的原产P43EI245SJ基地的预期收益;(2)该基地是否应该外聘工人,请说明理由.19.例如图,矩形cdef和梯形abcd互相横向,∠bad=∠adc=90°,ab=ad=cd,be⊥df.(1)若m位ea的中点,求证:ac∥平面mdf;(2)求平面ead与平面ebc所成的锐二面角的大小.20.未知点m(1,0),n(1,0),曲线e上任一一点到点m的距离均就是至点n的距离的倍.(1)求曲线e的方程;(2)未知m≠0,设立直线l:xmy1=0交曲线e于a,c两点,直线l2:mx+ym=0交曲线e于b,d两点,c,d两点均在x轴下方,当cd的斜率为1时,求线段ab的长.21.设函数f(x)=x2mlnx,g(x)=x2(m+1)x.(1)求函数f(x)的单调区间;(2)当m≥1时,探讨函数f(x)与g(x)图象的交点个数.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.选修4-1:几何证明选讲.22.例如图,∠bac的平分线与bc和△abc的外接圆分别平行于d和e,缩短ac没上d,e,c三点的圆于点f.(1)澄清:ec=ef;(2)若ed=2,ef=3,谋ac?af的值.选修4-4:坐标系与参数方程23.未知曲线c1的参数方程为曲线c2的极坐标方程为ρ=2cos(θ),以极点为座标原点,极轴为x轴正半轴创建平面直角坐标系则.(1)谋曲线c2的直角坐标方程;(2)求曲线c2上的动点m到直线c1的距离的最大值.报读4-5:不等式选讲24.已知函数f(x)=|x2||x+1|.(1)解不等式f(x)>1.(2)当x>0时,函数g(x)=a的取值范围.(a>0)的最小值总大于函数f(x),试求实数2021年河南省郑州市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是渡河题目要求的.1.设立全集u={x∈n*|x≤4},子集a={1,4},b={2,4},则?u(a∩b)=()a.{1,2,3}b.{1,2,4}c.{1,3,4}d.{2,3,4}【考点】缴、并、闭集的混合运算.【分析】由已知中全集u={x∈n*|x≤4},a={1,4},b={2,4},根据补集的性质及运算方法,我们求出a∩b,再求出其补集,即可求出答案.【答疑】求解:∵全集u={x∈n*|x≤4}={1,2,3,4},a={1,4},b={2,4}∴a∩b={4},∴?u(a∩b)={1,2,3}故选:a.2.设z=1+i(i就是虚数单位),则=()a.ib.2ic.1id.0【考点】复数代数形式的秦九韶运算.【分析】把复数z代入,然后直接利用复数代数形式的除法运算化简求值【解答】解:z=1+i(i是虚数单位),则=故选:d.3.b,c面元的边分别为a,b,c,在△abc中,角a,若a.b.c.d.=,则cosb=()(1i)=1+i=1i1+i=0,【考点】正弦定理;余弦定理.【分析】由已知及正弦定理可得求b=,即可暂解cosb=.=,,cosb=sinb,=,解得tanb=,融合范围0<b<π,可以【解答】解:∵又∵由正弦定理可得:∴∴tanb=∴b==,解得:,0<b<π,,cosb=.。
2021届河南省郑州市高三高考数学(理)第一次(一模)质量预测试题(解析版)
2021届河南省郑州市高三高考数学(理)第一次(一模)质量预测试题一、单选题1.已知集合{}04P x x =<<,(){}lg 3Q x y x ==-,则P Q =( ) A .{}34x x ≤< B .{}34x x <<C .{}03x x <<D .{}03x x <≤【答案】B【分析】由对数函数定义域的求解可求得集合Q ,由交集定义可得结果.【详解】{}{}303Q x x x x =->=>,{}04P x x =<<,{}34P Q x x ∴⋂=<<. 故选:B.2.已知命题p :x R ∀∈,0x x +≥,则( ) A .p ⌝:x R ∀∈,0x x +≤ B .p ⌝:x R ∃∈,0x x +≤ C .p ⌝:x R ∃∈,0x x +< D .p ⌝:x R ∀∈,0x x +<【答案】C【分析】根据全称命题的否定是特称命题进行否定即可得答案. 【详解】解:因为全称命题的否定为特称命题,所以命题p :x R ∀∈,0x x +≥的否定为:p ⌝:x R ∃∈,0x x +<. 故选:C.3.已知等差数列{}n a 的前n 项和为n S ,若952S =,422S =,则7a =( ) A .4 B .5C .6D .7【答案】C【分析】设出等差数列的首项和公差,直接由题意列式,由等差数列前n 项和公式作差后求得答案.【详解】解:已知等差数列{a n }的前n 项和为S n ,若S 9=52,S 4=22, 设等差数列的首项为a 1,公差为d , 由S 9=a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8+a 9=52, S 4=a 1+a 2+a 3+a 4=22,由两式相减可得(S 9﹣S 4)=a 5+a 6+a 7+a 8+a 9=52﹣22, 即5a 1+30d =30,即a 7=6, 故选:C .4.水晶是一种石英结晶体矿物,因其硬度、色泽、光学性质、稀缺性等,常被人们制作成饰品.如图所示,现有棱长为2cm 的正方体水晶一块,将其裁去八个相同的四面体,打磨成某饰品,则该饰品的表面积为(单位:cm 2)( )A .123+B .1643+C .1233+D .1633+【答案】A【分析】截去8个四面体后,还剩6个正方形,8个正三角形,只需求出对应面边长,即可求解【详解】设截去8个四面体后,该几何体棱长为a ,则有22112a +=, 此时,该几何体表面由8个正三角形和6个正方形构成,6个正方形的面积为:62212,8个正三角形面积为:23823=123+故选:A5.若3cos28sin 5αα=-,则tan α=( ) A .25B 25C .5D .25【答案】D【分析】利用二倍角余弦公式化简已知等式可求得sin α,由同角三角函数平方和商数关系可求得结果.【详解】由已知等式可得:()2312sin 8sin 5αα-=-,整理可得:23sin 4sin 40αα+-=,解得:2sin 3α=或sin 2α=-(舍),25cos 1sin αα∴=±-= sin 25tan cos ααα∴==6.如图是某主题公园的部分景观平面示意图,圆形池塘以O 为圆心,以452m 为半径,B 为公园入口,道路AB 为东西方向,道路AC 经过点O 且向正北方向延伸,10m OA =,100m AB =,现计划从B 处起修一条新路与道路AC 相连,且新路在池塘的外围,假设路宽忽略不计,则新路的最小长度为(单位:m )( )A .1002B .1003C .1502D .1503【答案】A【分析】根据题意可知新路和圆相切时距离最短,建系求得过点B 的直线方程,可得和OC 的交点,即可得解.【详解】以O 为原点建立如图直角坐标系,可得B 点坐标为(100,10)--, 如若要新路的长度最短,则新路和圆线切, 设过点B 的直线方程为(100)10y k x =+-,根据圆心到直线的距离等于半径可得:211940790k k --=, 根据图可得0k >,所以1k =,所以90y x =+,所以和OC 的交点为(0,90)D ,所以100AD =, 根据勾股定理可得:22100+100=1002BD =7.如图所示,平面向量OA ,OB 的夹角为60°,22OB OA==,点P 关于点A 的对称点Q ,点Q 关于点B 的对称点为点R ,则PR 为( )A 3B .23C .4D .无法确定【答案】B【分析】首先根据条件转化向量()2PR OB OA =-,再利用向量数量积求模. 【详解】()()222PR QR QP QB QA AB OB OA =-=-==-,()2222222PR OB OA OB OAOB OA OB OA ∴=-=-=+-⋅241221cos60=+-⨯⨯⨯23=故选:B8.已知函数()cos ,0,0x x f x kx x >⎧=⎨≤⎩,若方程()()0f x f x +-=有n 个不同的实根,从小到大依次为1x ,2x ,3x ,…,n x ,则下列说法错误..的是( ) A .1230n x x x x ++++=… B .当1n =时,1k π<-C .当3n =且0k <时,331tan x x =- D .当12x π>时,3n = 【答案】D【分析】令()()()g x f x f x =+-,判断()g x 的奇偶性,即可判断选项A ;利用分段函数的解析式得到0x =是函数的一个零点,利用()g x 为偶函数,只需研究0x >的情况,作出函数y kx =和cos y x =的图像,数形结合判断选项B 、C 、D.【详解】令()()()g x f x f x =+-,则()()()()g x f x f x g x -=-+=,所以()g x 为偶函数,所以零点关于0x =对称,则所有的零点之和为0,故A 正确;因为()cos ,0,0x x f x kx x >⎧=⎨≤⎩,所以()00f =,所以0x =是函数的一个零点,由上述过程可知,()g x 为偶函数,故只需研究0x >的情况即可,当0x >时,令()()()cos 0g x f x f x x kx =+-=-=,即cos x kx =,作出函数y kx =和cos y x =的图像,观察可知,当0k ≥时,y kx =与cos y x =至少有一个交点,即()()0f x f x +-=至少有3个根,不符合n =1;当0k <时,图中直线1l 为临界值,设其斜率为1k ,此时1l 与cos y x =相切, 若1k k <,则n =1,若10k k ≤<,则n 至少为3; 再作出斜率21k π=-的直线2l ,观察1l 与2l 的位置关系可知,121k k π<=-,所以n =1时,11k k π<<-,故B 正确;当3n =且0k <时,即为B 选项中讨论的1l ,此时直线1l 与cos y x =相切, 设切点(),cos m m ,则有3个不同的实数根123,0,x m x x m =-==,cos y x =的导数为sin y x '=-,故有cos sin m km m k =⎧⎨-=⎩,消去k 得:1tan m m =-,所以331tan x x =-,故C 正确; 作出如图示的3l 和4l ,其中3l 和cos y x =相切,4l 的斜率为412k π=, 设3l 的斜率为3k ,则34k k >. 当43k k k <<时,即312k k π<<,y kx =与cos y x =有3个交点,此时n =7; 当3k k =时,y kx =与cos y x =有2个交点,此时n =5;当3k k >时,y kx =与cos y x =有1个交点,此时n =3; 故D 错误. 故选:D.【点睛】判断函数有零点(方程有根)的常用方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.二、多选题9.将函数cos 23y x π⎛⎫=+ ⎪⎝⎭的图象向左平移4π个单位长度得到函数()f x 图象,则( )A .sin 23y x π⎛⎫=+ ⎪⎝⎭是函数()f x 的一个解析式B .直线712x π=是函数()f x 图象的一条对称轴 C .函数()f x 是周期为π的奇函数D .函数()f x 的递减区间为()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 【答案】BD【分析】先求出()f x 的解析式,对四个选项一一验证: 对于A :直接利用解析式验证; 对于B :直接求出对称轴方程进行验证; 对于C :利用奇函数的定义进行否定; 对于D :直接求出函数()f x 的递减区间.【详解】由函数cos 23y x π⎛⎫=+ ⎪⎝⎭的图象向左平移4π个单位长度得到函数()f x 图象,所以()5cos 2cos 2436f x x x πππ⎛⎫⎛⎫⎛⎫=++=+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 对于A :()5cos 2cos 2=sin 24363f x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故A 错误;对于B :()sin 23x f x π⎛⎫=-+ ⎪⎝⎭,要求()y f x =的对称轴,只需令()232x k k Z πππ+=+∈,当k =1时,解得:712x π=,所以直线712x π=是函数()f x 图象的一条对称轴,故B 正确;对于C :()5cos 26f x x π⎛⎫=+ ⎪⎝⎭,因为()()55cos 2cos 266f x x x f x ππ⎛⎫⎛⎫-=-+=-≠- ⎪ ⎪⎝⎭⎝⎭,所以函数()f x 不是奇函数,故C 错误;对于D :要求函数()f x 的递减区间,只需52226k x k ππππ≤+≤+,解得:51212k x k ππππ-+≤≤+,即函数()f x 的递减区间为()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,故D 正确. 故选:BD10.已知抛物线()2:20C y px p =>的焦点为F ,过F 且斜率为C 于A 、B 两点,其中A 在第一象限,若3AF =,则( )A .1p =B .32BF =C .以AF 为直径的圆与y 轴相切D .3OA OB ⋅=-【答案】BCD【分析】写出焦点F 的坐标,设出直线l 的方程,并与抛物线方程联立,根据点A 在第一象限即可求出点A ,B 的横坐标,进而可以求出p 的值,即可求出抛物线的方程,再对应各个选项逐个验证即可.【详解】设(2pF ,0),则过F 的直线斜率为)2p y x =-,代入抛物线方程消去y 可得:22450x px p -+=, 解得124p x p x ==,,因为点A 在第一象限,所以A x p =,4B px =,则3||322A p pAF x =+==,所以2p =,A 错误, 33||4242B p p p BF x ==+==,B 正确,由2p =可得抛物线的方程为:24y x =,且(2A ,,1(,2B ,所以1(,1432OA OB ⋅=⋅=-=-,D 正确, AF 的中点横坐标为32,以AF 为直径的圆的半径为32, 所以圆心到y 轴的距离等于半径,则以AF 为直径的圆与y 轴相切,C 正确, 故选:BCD .11.已知0a >,0b >,下列命题中正确的是( ) A .若2a b +=,则lg lg 0a b +≤ B .若20ab a b --=,则29a b +≥C .若2a b +=,则112a b ab +-≥D .若111123a b +=++,则14ab a b ++≥+【答案】ACD【分析】利用已知的等式,将其进行变形,利用基本不等式对选项逐一分析判断即可. 【详解】因为0a >,0b >,所以22a b ab =+,故1ab ,当且仅a b =时取等号, 此时()lg lg lg lg10a b ab +==,故选项A 正确;因为20ab a b --=,所以222ab a b ab =+,当且仅当2a b =时取等号, 所以228a b ab ,解得8ab ,则28a b +,故选项B 错误; 因为2a b +=,所以2b a =-,则22111111212(2)2211a a ab ab a a a ++-=-=-+--+,令21a t +=,则221411151522a a t t t +-=-++-⋅- 因为0a >,0b >,2a b +=,所以2a <,则22a a <,所以221101a a +->+, 故22151011a a +-<-+,所以1152a b ab +-,故选项C 正确; 因为111123a b +=++,所以27ab a b =++,所以271b ab +=-, 因为0a >,0b >,所以1b >, 所以41418237373(1)14254141411bab a b a b b b b b +++=++=++=-+++=+--,当且仅当1b 时取等号, 故1466ab a b +++D 正确. 故选:ACD .12.已知函数()()e 1xf x x =+,()()1lng x x x =+,则( )A .函数()f x 在R 上无极值点B .函数()g x 在()0,∞+上存在唯一极值点C .若对任意0x >,不等式()()2ln f ax f x ≥恒成立,则实数a 的最大值为2eD .若()()()120f x g x t t ==>,则()12ln 1t x x +的最大值为1e【答案】AD【分析】利用导数可求得()()20f x f ''≥->,得到()f x 在R 上单调递增,知A 正确; 利用导数可求得()()10g x g ''≥>,得到()g x 在()0,∞+上单调递增,知B 错误; 由()f x 在R 上单调递增得到2ln ax x ≥,利用分离变量的方法可得()2ln xa h x x≥=,利用导数可求得()max 2h x e=,可求得a 的范围,知C 错误; 易得12x e x =,()()()111121ln 1ln ln 11x x x e t k x x k x e ⎡⎤+⎣⎦==++,令()ln k m k k =,利用导数可求得()()max m k m e =,可知D 正确.【详解】对于A ,()()11xf x x e '=++,()()2x f x x e ''=+,当2x <-时,()0f x ''<;当2x >-时,()0f x ''>;()f x '∴在(),2-∞-上单调递减,在()2,-+∞上单调递增,()()2210f x f e -''∴≥-=-+>,()f x ∴在R 上单调递增,无极值点,A 正确;对于B ,()1ln 1g x x x '=++,()22111x g x x x x -''=-=,当01x <<时,()0g x ''<;当1x >时,()0g x ''>;()g x '∴在()0,1上单调递减,在()1,+∞上单调递增,()()120g x g ''∴≥=>,()g x ∴在()0,∞+上单调递增,无极值点,B 错误;对于C ,由A 知:()f x 在R 上单调递增,则由()()2ln f ax f x ≥得:2ln ax x ≥,当0x >时,2ln 2ln x xa x x≥=, 令()2ln x h x x =,则()()2221ln 22ln x x h x x x --'==, ∴当0x e <<时,()0h x '>;当x e >时,()0h x '<;()h x ∴在()0,e 上单调递增,在(),e +∞上单调递减,()()max 2h x h e e∴==,2a e ∴≥,则a 的最小值为2e,无最大值,C 错误;对于D ,()()112211ln x x e x x t +=+=,0t >,10x ∴>,21>x ,由A 知()()1xf x x e=+是增函数,所以12x e x =,()()()111121ln 1ln 11x x x e t x x x e ⎡⎤+⎣⎦∴=++ 设()111xk x e =+,则()12ln ln 1t kx x k=+,令()ln km k k=,则()21ln k m k k -'=,∴当0k e <<时,()0m k '>;当k e >时,()0m k '<;()m k ∴在()0,e 上单调递增,在(),e +∞上单调递减, ()()max 1m k m e e∴==,此时()()112211ln x e x e x x =+=+,()12ln 1t x x ∴+的最大值为1e ,D 正确. 故选:AD.【点睛】关键点点睛:本题考查导数在研究函数中的综合应用问题,选项D 中,对于多个变量的式子最值的求解关键是能够通过等价代换的方式,将所求式子化简为关于一个变量的函数的形式,从而利用导数求得函数最值得到结果.三、填空题13.已知1F ,2F 为双曲线()2222:10,0x yC a b a b-=>>的左、右焦点,过1F 作x 轴的垂线交C 于A 、B 两点,若122AB F F =,则C 的离心率为___________.1【分析】可令x =﹣c ,求得|AB |,再由|AB |=2|F 1F 2|,结合a ,b ,c 的关系和离心率公式,解方程可得所求值.【详解】解:可令x =﹣c ,代入双曲线的方程可得y =±2b a,可得|AB |22b a=,若|AB |=2|F 1F 2|,可得22b a=4c , 即c 2﹣a 2=2ac , 由e ca=,可得e 2﹣2e ﹣1=0,e >1. 解得e =12, 故答案为:12.14.已知数列{}n a 满足12a =,()*,N m n m n a a a m n ++=∈,用[]x 表示不超过x 的最大整数,则数列[]{}2log n a 的前10项和为__________. 【答案】29【分析】直接利用数列的递推关系式和数列的取整问题的应用求出结果.【详解】解:数列{a n }满足a 1=2,a m +a n =a m +n (m ,n ∈N ),设b n =[log 2a n ], 当n =m =1时,b 1=[log 22]=1, a 2=a 1+a 1=4,所以b 2=[log 24]=2, a 3=a 1+a 2=6,所以b 3=[log 26]=2, a 4=a 2+a 2=8,所以b 4=[log 28]=3, a 5=a 2+a 3=10,所以b 5=[log 210]=3, a 6=a 2+a 4=12,所以b 6=[log 212]=3, a 7=a 3+a 4=14,所以b 7=[log 214]=3, a 8=a 3+a 5=16,所以b 8=[log 216]=4, a 9=a 4+a 5=18,所以b 9=[log 218]=4, a 10=a 4+a 6=20,所以b 10=[log 220]=4,所以T 10=b 1+b 2+…+b 10=1+2+2+3+3+3+3+4+4+4=29. 故答案为:29.15.测量珠穆朗玛峰的高度一直受到世界关注,2020年12月8日,中国和尼泊尔共同宣布珠穆朗玛峰的最新高度为8848.86米某课外兴趣小组研究发现,人们曾用三角测量法对珠峰高度进行测量,其方法为:首先在同一水平面上选定两个点并测量两点间的距离,然后分别测量其中一个点相对另一点以及珠峰顶点的张角,再在其中一点处测量珠峰顶点的仰角,最后计算得到珠峰高度.该兴趣小组运用这一方法测量某建筑物高度,已知该建筑物CP 垂直于水平面,水平面上两点A ,B 的距离为200m ,60PAB ∠=︒,45PBA ∠=︒,30PAC ∠=︒,则该建筑物CP 的高度为__________(单位:m ). 【答案】()10031-【分析】先在PAB △中,利用正弦定理求得PA ,再在Rt PAC △中求解. 【详解】如图所示:在PAB △中,由正弦定理得200sin 45sin 75PA =︒︒,解得2003200PA =,所以在Rt PAC △中sin 100CP PA PAC =⋅∠=.故答案为:)1001四、双空题16.一个球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺的体积公式()233V R h h π=-,其中R 为球的半径,h为球缺的高.的正四面体的各棱均相切,则该球的半径为_________,该球被此正四面体的一个侧面所截得的球缺(小于半球)的体积为____________.【分析】作图可得正四面体两相对棱间的距离为球的直径长,解三角形可得球的半径,利用等体积法求出球心到一个侧面的距离得出球缺的高,结合题意的公式即可得出结果.【详解】如图,取BD 的中点E ,AC 的中点F ,连接EF ,则EF 是与正四面体ABCD 各棱相切的球O 的直径.,所以AE CE ===则EF ==O 的半径为R ;设底面BCD 的中心为G ,则2233CG CE ===A 到底面BCD 2=,12BCDS==,由等体积法可得112=433OG ⨯,得12OG =,所以球缺的体积为22(3)33V R h h ππ=-=⨯⨯=,五、解答题 173cossin 2A Ca b A +=,②cos 3sin a b C c B =,③()()22222cos a c a b c abc C --+=这三个条件中任选一个,补充在下面问题中,并给出解答.问题:已知ABC 内角A ,B ,C 的对边分别是a ,b ,c ,2b =, ,求ac 的最大值.【答案】答案不唯一,具体见解析.【分析】选择条件①、②、③中的一个,利用正弦定理,余弦定理进行边角转化,最后在余弦定理中利用基本不等式求得ac 的最大值. 【详解】解:若选①3sin sin sin ,0π,sin 02BA B A A A =<<≠, 32sin cos 222B B B =. 化简得3cos2B =()0,B π∈,所以26B π=,3B π=. 又2221cos 22a b c B ac +-==, 所以2242a c ac ac +=+≥,当且仅当a c =时取等号, 故4ac ≤,即ac 的最大值为4.若选②:由已知得sin sin cos 3sin A B C C B =,()sin sin cos 3sin sin B C B C C B +=,sin cos cos sin sin cos 3sin ,0π,0B C B C B C C B B sinB +=<<≠,化简得cos 3B B =,即3tan B =()0,B π∈,所以6B π=.由2223cos 2a b c B ac +-==可得22342a c ac ac -=+≥,当且仅当a c =时取等号,故8ac ≤+,即ac 的最大值为8+ 若选③:由已知()22cos 2cos a c ac B abc C -⋅=, 即()2cos cos a c B b C -=,又()2sin sin cos sin cos A C B B C -=,所以()2sin cos sin cos cos sin sin sin ,0π,sin 0A B B C B C B C A A A =+=+=<<≠. 所以1cos 2B =,因为()0,B π∈,所以3B π=.由2221cos 22a cb B ac +-==,得2242a c ac ac +=+≥,当且仅当a c =时取等号, 故4ac ≤,即ac 的最大值为4.【点睛】方法点睛:条件中出现边和角时,利用正弦定理进行边角转化,结合三角恒等变换公式化简得到某一个角或边,结合余弦定理,基本不等式求得最值. 18.已知数列{}n a 是各项均为正数的等比数列,其前n 项和为n S ,11a =,3139S =. (1)求数列{}n a 的通项公式;(2)令()21n n b n a =+,求数列{}n b 的前n 项和n T . 【答案】(1)113n n a -=;(2)1263nn n T -+=-. 【分析】(1)设公比为()0q q >,由3139S =可构造关于q 的方程求得q ,由等比数列通项公式可得结果;(2)由(1)可得n b ,利用错位相减法可求得n T . 【详解】(1)设等比数列{}n a 的公比为()0q q >,()223113119S a q q q q ∴=++=++=,解得:13q =或43q =-(舍),113n n a -∴=. (2)由(1)可得:1213n n n b -+=, 22157212133333n n n n n T ---+∴=+++⋅⋅⋅++,21135212133333n n n n n T --+=++⋅⋅⋅++,两式相减可得:21222221333333n n n n T -+⎛⎫=+++⋅⋅⋅+- ⎪⎝⎭22213331313nnn -+=+--1121433n n n -+=--, 1263n n n T -+∴=-. 【点睛】方法点睛:当数列通项公式满足等差⨯等比的形式时,采用错位相减法求解数列的前n 项和,具体步骤如下:①列出1231n n n S a a a a a -=+++⋅⋅⋅++的形式;②左右两侧同乘通项中的等比部分的公比q ,得到n qS ;③上下两式作差得到()1n q S -,结合等比数列求和公式可整理等式右侧的部分; ④整理所得式子求得n S .19.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PD ⊥底面ABCD ,M 为线段PC 的中点,PD AD =,N 为线段BC 上的动点.(1)证明:平面MND ⊥平面PBC ;(2)当点N 在线段BC 的何位置时,平面MND 与平面PAB 所成锐二面角的大小为30°?指出点N 的位置,并说明理由.【答案】(1)证明见解析;(2)N 为线段BC 的中点;答案见解析.【分析】(1)要证平面MND ⊥平面PBC ,可证DM ⊥平面PBC ,设法证明DM BC ⊥,DM PC ⊥即可;(2)以D 为坐标原点,分别以DA ,DC ,DP 方向为x ,y ,z 轴的正方向,建立空间直角坐标系D xyz -,设1PD =,(),1,0N λ,求出平面PAB 和平面MND 的法向量,结合向量夹角的余弦公式求解即可【详解】(1)因为PD ⊥底面ABCD ,BC ⊂面ABCD ,所以PD BC ⊥, 又CD BC ⊥,PD CD D ⋂=,所以BC ⊥平面PCD ,又DM ⊂平面PCD ,所以DM BC ⊥,因为在PDC △中,PD AD =,M 为PC 的中点,所以DM PC ⊥, 又PC BC C ⋂=,所以DM ⊥平面PBC ,又DM ⊂平面DMN ,所以平面MND ⊥平面PBC ;(2)设1PD =,以D 为坐标原点,分别以DA ,DC ,DP 方向为x ,y ,z 轴的正方向,建立空间直角坐标系D xyz -,设(),1,0N λ,则()1,0,1AP =-,()0,1,0AB =,(),1,0DN λ=,110,,22DM ⎛⎫= ⎪⎝⎭.设()111,,m x y z =为平面PAB 的一个法向量,则有00m AP m AB ⎧⋅=⎨⋅=⎩,即11100x z y -+=⎧⎨=⎩,令11x =,可得()1,0,1m =,设()222,,n x y z =为平面MND 的一个法向量,则有00n DN n DM ⎧⋅=⎨⋅=⎩,即2222011022x y y z λ+=⎧⎪⎨+=⎪⎩,令21x =,可得;()1,,n λλ=-, 因为平面MND 与平面PAB 夹角为30,所以3m n m n⋅=, 213212λλ+=+12λ=,故N 为线段BC 的中点.20.在研制飞机的自动着陆系统时,需要研究飞机的降落曲线.如图,一架水平飞行的飞机的着陆点为原点O ,飞机降落曲线大致为32y ax bx =+,其中x (单位:m )表示飞机距离着陆点的水平距离,y (单位:m )表示飞机距离着陆点的竖直高度.假设飞机开始降落时的竖直高度为4500m ,距离着陆点的水平距离为0x ,飞机在整个降落过程中始终在同一个竖直平面内飞行,且飞机开始降落时的降落曲线与平方向的直线相切.(1)用0x 分别表示a 和b :(2)若飞机开始降落时的水平速度150m/s ,且在整个降落过程中水平速度保持不变,另外,基于安全考虑,飞机在降落过程中的竖直加速度()y t ''(即y 关于降落时间t (单位:s )的导函数()y t '的导数)的绝对值不超过1m/s 2,求飞机开始降落时距离着陆点的水平距离0x 的最小值. 【答案】(1)309000a x =-,213500b x =;(2)450030. 【分析】(1)设()32f x ax bx =+,求()'f x ,由()()0045000f x f x ⎧=='⎪⎨⎪⎩解得,a b .(2)求得()f x 的解析式,设飞机降落时间为t ,则0150x x t =-,代入函数解析式,求导,结合题意求出0x 的最小值即可.【详解】(1)设()32f x ax bx =+.则()232f x ax bx '=+,由题意可知,()()0045000f x f x ⎧=='⎪⎨⎪⎩,即3200204500320ax bx ax bx ⎧+=⎨+=⎩ 解得309000a x =-,2013500b x =. (2)由(1)可知,323200900013500()f x x x x x =-+,[]00,x x ∈, 设飞机降落时间为t ,则0150x x t =-, 则()()()32003200900013500150150y t x t x t x x =--+-,00,150x t ⎡⎤∈⎢⎥⎣⎦, ()()203607500000150y t t x t x =-', ()()()()030607500000300y t y t t x x ''==-'',00,150x t ⎡⎤∈⎢⎥⎣⎦, 当0t =或150x 时,()y t ''取最大值20607500000x ,故26075000001x ≤, 可得0450030x ≥所以飞机开始下降时距离着陆点水平距离的最小值为米.21.已知椭圆()2222:10x y C a b a b+=>>的离心率为12,1F ,2F 为椭圆C 的左,右焦点,过1F 斜率不为零的直线1l 交椭圆于P ,Q 两点,2F PQ △的周长为8. (1)求椭圆C 的方程(2)设A 为椭圆C 的右顶点,直线AP ,AQ 分别交直线2:4l x =-于M ,N 两点,试判断以MN 为直径的圆是否恒过椭圆长轴上一个定点,并说明理由. 【答案】(1)22143x y +=;(2)是;答案见解析.【分析】(1)依题意求出a ,根据离心率求出c ,再根据222a b c =+,即可求出b ,即可得到椭圆方程;(2)设1l 的方程为:1x ty =-,联立直线与椭圆方程,消元、列出韦达定理,表示出直线AP 的方程,即可求出M 、N 的坐标,设()(),022H m m -≤≤,依题意0MH NH ⋅=,即可求出m 的值,即可得解;【详解】解:(1)由题意48a =,2a =,因为12c a =,所以1c =, 而222a b c =+,所以b = 故椭圆的方程为:22143x y +=, (2)由(1)知()11,0F -,设1l 的方程为:1x ty =-,代入22143x y +=得: ()2234690ty ty +--=,设()11,P x y ,()22,x y ,则122634t y y t +=+,122934y y t -=+, 因为111x ty =-,所以111123AP y y k x ty ==--, 所以直线AP 的方程为:()1123y y x ty =--, 令4x =-,得1163M y y ty -=-, 所以1164,3y M ty ⎛⎫-- ⎪-⎝⎭,同理可得2264,3y N ty ⎛⎫-- ⎪-⎝⎭,若以MN 为直径的圆过长轴上定点H ,则0MH NH ⋅=,设()(),022H m m -≤≤,则1164,3y MH m ty ⎛⎫=+ ⎪-⎝⎭,1264,3y NH m ty ⎛⎫=+ ⎪-⎝⎭,于是()()()21212364033y y m ty ty ++=--对任意实数t 恒成立,所以()()21221212364039y y m t y y t y y ++=-++,而()21222121222936363499639393434y y t t t y y t y y t t t t -⨯+==---++⨯-⨯+++所以()249m +=, 解得1m =-或7m =-,因为22m -≤≤,所以1m =-,即存在定点()1,0-满足条件.22.已知函数()1xf x e ax =--(a R ∈,e 为自然对数的底数)(1)若()f x 在定义域内有唯一零点,求a 的取值范围;(2)若()2xf x x e ≤在[)0,+∞上恒成立,求a 的取值范围.【答案】(1){|0a a ≤或1}a =;(2)[)1,+∞.【分析】(1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间,求出函数的最小值,结合()f x 在定义域内有唯一零点,求出a 的范围即可;(2)问题转化为2(1)1x x e ax -+对[0x ∈,)+∞恒成立,记2()(1)(1)(1)x x h x x e x x e =-=+-,根据函数的单调性求出a 的范围即可.【详解】解:(1)()x f x e a '=-,当0a ≤,()0f x '>,()f x 在R 上单调递增, 又()1110f a e-=-+<,()110f e a =-->,由零点存在定理知,函数()f x 在R 上有唯一零点,符合题意. 当0a >,令()0f x '=得ln x a =,当(),ln x a ∈-∞,()0f x '<,()f x 单调递减,()ln ,x a ∈+∞,()0f x '>,()f x 单调递增,所以()()ln min ln ln 1ln 1af x f a e a a a a a ==--=--.设()()ln 10g a a a a a =-->,则()()1ln 1ln g a a a +'=-=-, 当01a <<时,()0g a '>,()g a 单调递增, 当1a >时,()0g a '<,()g a 单调递减, 所以()()max 10g a g ==,故1a =,综上,实数a 的取值范围为{|0a a ≤或1}a =.(2)()2e xf x x ≤对[)0,x ∈+∞恒成立,即()211x x e ax -≤+对[)0,x ∈+∞恒成立, 记()()()()21e 11e x xh x x x x =-=+-,当1a ≥时,设函数()()1x m x x e =-,则()0xm x xe '=-≤,因此()m x 在[)0,+∞单调递减,又()01m =,故()1m x ≤,所以()()()111h x x m x x ax =+≤+≤+;当01a <<时,设函数()1xn x e x =--,则()10x n x e ='-≥,所以()n x 在[)0,+∞单调递减,且()00n =,故1x e x ≥+.当01x <<时,()()()211h x x x >-+,()()()221111x x ax x a x x -+--=---,取0x ,则()00,1x ∈,()()20001110x x ax -+--=,故()001h x ax >+,当0a ≤,取0x =,则()00,1x ∈,()()()200001111h x x x ax >-+=≥+. 综上,a 的取值范围为[)1,+∞.【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④ 讨论参数.。
2021届河南省高三联考数学(理)试题(解析版)
因为 ,
所以 ,
所以函数 为奇函数,排除选项C,D;
又当 时, ,所以排除B.
故选:A.
【点睛】
本题考查了奇函数图象的对称性,考查了排除法,考查了根据函数解析式选择图象,考查了诱导公式,属于基础题.
7.企业在生产中产生的废气要经过净化处理后才可排放,某企业在净化处理废气的过程中污染物含量 (单位: )与时间 (单位: )间的关系为 (其中 , 是正的常数).如果在前 消除了20%的污染物,则 后废气中污染物的含量是未处理前的()
2.已知集合 , ,则 ()
A. B. C. D.
【答案】D
【解析】化简集合 ,根据集合的交集运算可得结果.
【详解】
因为 , ,
所以 .
故选:D.
【点睛】
本题考查了利用对数函数的单调性解不等式,考查了集合的交集运算,属于基础题.
3.函数 的图象在点 处的切线的倾斜角为 ,则 ()
A. B. C. D.
A.40%B.50%C.64%D.81%
【答案】C
【解析】根据 得污染物含量得初始值为 ,根据 得 ,可得 。代入 可得 ,从而可得答案.
【详解】
当 时, ;
当 时, ,即 ,得 ,
所以 ;
当 时, ,
故选:C.
【点睛】
本题考查了指数型函数的应用,属于基础题.
8.在边长为2的正方形 中, 为 的中点, 交 于 .若 ,则 ()
【答案】B
【解析】求出函数的导函数,导函数在 的函数值即是切线的斜率,根据斜率求出倾斜角即可.
【详解】
由题意得 ,所以切线斜率 ,
所以 .
故选:B.
【点睛】
本题考查导数的几何意义,求切线的斜率.
河南省名校联盟2021-2022学年上学期高三第一次诊断考试理科数学试题(附解析)
河南省名校联盟2021-2022学年上学期高三第一次诊断考试理科数学试卷满分150分,时间120分钟注意事项:1.答题前,考生务必将自己的姓名、班级、考场填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案的标号;非选择题答案使用0.5毫米中性(签字)笔或碳素笔书写,字体工整,笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效。
一、选择题:本大题共12个小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}21,0,1,2,2M N x x =-=<,则MN =( )A .{}101-,,B .{}1-C .{0}1,D .{1,0,1,2}-2.设,a b 是空间中两条不同的直线,α是平面,已知a α⊥,则b a ⊥是//b α的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件3.在等比数列{}n a 中,21a =-,54a =,则8a =( )A .8B .16C .-8D .-164.若()3sin 0,222x x ππ⎛⎫+=∈⎪⎝⎭,则x 的值为( )A .56π或76π B .6π± C .56π± D .23π或43π 5.若实数x ,y 满足约束条件10,20,240,x y x y x y --≤⎧⎪-≥⎨⎪+-≤⎩则32z x y =-的最大值为( )A .113B .1C .53D .1-6.已知向量()2,a m =, ()2,4b =,若a b a b +=-,则实数m =( )A . 1B .-1C 5D .57.已知,x y 均为正实数,且满足4x y +=,则22log log (4)x y +的最大值为( )A .2B .3C .4D .58.人们一般把边长之比为黄金分割比的矩形称为黄金矩形,即黄金矩形的短边为长边 51-.黄金矩形能够给画面带来美感,令人愉悦,在很多艺术品以及大自然中都能找到它.巴特农神庙的部分轮廓ABCD 就是黄金矩形(如下图所示).则图中AOD ∠的余弦值等于( )A 5B 10C 5D 259.已知函数()sin cos f x x x x =+图象上在点(),x y 处的切线的斜率为k ,若()k g x =,则函数()g x 在原点附近的图象大致为( )A .B .C .D .10.已知圆柱12O O 的底面半径和母线长均为1,A 、B 分别为圆2O 、圆1O 上的点,若异面直线1O B ,2O A 所成的角为60︒,则AB =( ) A . 2 B .22C .2或 2 D .2或2211.已知定义域为R 函数()f x 满足()()17f x f x -=-+,且()f x 在区间[)4,+∞上单调递增,如果124x x <<,且128x x +>,则()()12f x f x +的值( ) A .可正可负B .恒为正C .可能为0D .恒为负12. 已知实数,,a b c 满足:2 21,31,log 1a b a b c c ⋅=⋅=⋅=,则( ) A . a b c << B . c b a << C . b c a <<D . b a c <<二、填空题:(本题共4小题,每小题5分,共20分)13.已知平面向量()1,2a =,()3,b m =-,若a b ⊥,则m =_______. 14.设n S 为等比数列{}n a 的前n 项和,若13a =,且321,2,3S S S 成等差数列,则n a =______.15.已知下面四种几何体:①圆锥,②圆台,③三棱锥,④四棱锥,如图所示,某几何体的正视图与侧视图均是等腰三角形,则该几何体可能是___________(将符合条件的几何体编号都填上).16.将函数()sin 2f x x =的图像向右平移6π个单位,再把每个点横坐标扩大为原来的2倍(纵坐标不变),得到函数()y g x =,则()g x 的解析式()g x =_________,若对于任意11,22a ⎡⎤∈-⎢⎥⎣⎦,在区间[0,]m 上总存在唯一确定的β,使得()g a β=,则m 的最小值为________.c b a <<B .b c a <<C .a c b<<D .c a b <<三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答) (一)必考题:共60分。
河南省郑州市2021-2022学年高三上学期第一次质量预测理科数学试题(2)
一、单选题二、多选题三、填空题四、解答题1.已知函数为奇函数,当时,.若有三个不同实根,则三个实根的和的取值范围是( )A.B.C.D.2.已知,则( )A.B.C.D.3. 已知m 、n 是实数,、是向量,对于命题:①②③若,则 ④若,则其中正确命题的个数是:( )A .1B .2C .3D .44.已知等差数列的前5项和为25,且,则( )A .10B .11C .12D .135.已知集合,则( )A.B.C.D.6. 函数在区间上单调递增,则( )A.B.C.D.7. 已知为双曲线右支上的一个动点(不经过顶点),,分别是双曲线的左,右焦点,的内切圆圆心为,过作,垂足为,下列结论正确的是( )A.在定直线上B .为定值C .为定值D .为定值8.已知数列的前项和为,,数列的前项和为,,则下列选项正确的是( )A.B.C.D.9. 在一次机器人比赛中,有供选择的型机器人和型机器人若干,从中选择一个机器人参加比赛,型机器人被选中的概率为,若型机器人比型机器人多4个,则型机器人的个数为______.10. 已知,方程的实根个数为__________.11. 已知函数,则的值为 .12. 已知函数f (x)=,则关于x 的不等式f (x 2)>f (3-2x )的解集是_______________.13.已知函数的部分图象如图所示.河南省郑州市2021-2022学年高三上学期第一次质量预测理科数学试题(2)河南省郑州市2021-2022学年高三上学期第一次质量预测理科数学试题(2)(1)求的解析式;(2)若对x∈R恒成立,求m的取值范围.14. 在锐角三角形中,角,,的对边分别为,,;.(1)求角的大小;(2)在锐角三角形中,角,,的对边分别为,,,若,,,求三角形的内角平分线的长.15. 在正项等比数列中,已知,.(1)求数列的通项公式;(2)令,求数列的前100项和.16. 已知函数.(Ⅰ)试用“五点法”画出函数在区间的简图;(Ⅱ)指出该函数的图象可由的图象经过怎样的平移和伸缩变换得到?。
河南省郑州市2021届高三一模理科数学试题(含答案解析)
2021年高中毕业年级第一次质量预测理科数学试题卷注意事项:1 .答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2 .回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如 需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写 在本试卷上无效.3 .考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有 一项是符合题目要求的.1 .已知集合 A = QI |z|V2}, 8={ - 2, — 1,0,1,2},则4[13 =A. {-1,0}B. {0,1}C. {-1,0,1) D, {-2,-1,0,1,2} 2 .设第数z 满足告=3则|司=A. iB. -iC. 1D.V2 3 .巳知P 为抛物线《:丁 = 2";(立>0)上一点,点P 到C 的焦点的距离为9,到y 轴的距因为6,则p= A. 3B. 6C.9D. 12 4 .设为单位向量,且|o-b|=l ,则1。
+ 2"=A. 3 B,V3 C.7 D.V7 5 .调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼 状图、90后从事互联网行业岗位分布条形图,则下列所有正确结论的编号是注:90后指1990年及以后出生,80后指1980-1989年之间出生,8。
前指1979年及以 前出生.90后从事互联网行业岗位分布图 17%涧 12.3% I 9.8% ①互联网行业从业人员中从事技术和运营岗位的人数占总人数的三成以上 ②互联网行业中从事技术岗位的人数超过总人数的20% ③互联网行业中从事运营岗位的人数90后比80前多④互联网行业中从事技术岗位的人数90后比80后多A.①②③B.①②④C.①③④D.②③④6.5% 其他H 1.6%80 前技术运营碳区设计产品蹂S6.《周髀算经》中有这样一个问题:从冬至日起,依次为小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种,这十二个节气,其日影长依次成等差数列,若冬至、立春、春分日影长之和为31. 5尺,前九个节气日影长之和为85. 5尺,则谷雨日影长为A. 2.5B. 3.5C.4.5D.5.57.函数,=筌片的图像大致为A.3 B,5 C. 15 D. 209.若直线,与曲线kG和圆/+/=看都相切,则z的方程为A. %—2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.在空间中,a、b、c是三条不同的直线, 、 是两个不同的平面,则下列命题中的真命题是( )
A.若 , ,则
B.若 , , ,则
C.若 , , ,则
D.若 , ,则
9.抛物线 上的一点 到焦点的距离为1,则点 的纵坐标是()
A. B. C. D.
10.甲、乙、丙、丁四位同学站成一排照相,则甲.乙两人中至少有一人站在两端的概率为()
3.等比数列 中, , ,则 与 的等比中项是
A. B.4C. D.
4.罗德岛太阳神巨像是古代世界七大奇迹之一.它是希腊太阳神赫利俄斯的青铜铸像,高约33米.如图所示,太阳神赫利俄斯手中所持的几何体(含火焰)近似是一个底面相同的倒立的两个圆锥,正方向投影过去,其平面几何图形形状为一个角为60°,边长为2的菱形.现在其中一个圆锥中放置一个球体,使得球与母线、底面相切,则该球球的表面积为()
故选:B.
【点睛】
本题考查圆锥的性质,考查球的表面积,考查数学文化,解题关键是弄懂题意,从题中抽象出对应的数学知识.
5.A
【分析】
用诱导公式化为同名函数,同时 的系数不变,然后再由平移变换得结论.
【详解】
,
∴只要把 的图像向右平移 个单位即得.
故选:A.
【点睛】
本题考查三角函数图象变换,解题时应用诱导公式化函数为同名函数(不改变自变量 的系数),然后再由平移变换求得结论.也可以对各选项进行代入验证.
A. B.
C. D.
11.已知双曲线 的渐近线与圆 相切,则该双曲线的离心率等于()
A. B. C. D.
12.若函数f(x)=alnx(a∈R)与函数g(x) 在公共点处有共同的切线,则实数a的值为()
A.4B. C. D.e
二、填空题
1Hale Waihona Puke .已知函数 为奇函数,若 ,则 .
14.已知实数, 满足约束条件 ,则 的最大值_______.
【详解】
解:设 与 的等比中项是 .
由等比数列 的性质可得 , .
与 的等比中项 .
故选: .
【点睛】
本题考查了等比中项的求法,属于基础题.
4.B
【分析】
题意说明圆锥的轴截面是边长为2的正三解形,此圆锥的内切球的半径就是三角形内切圆半径,由此可得.
【详解】
据题意圆锥的轴截面是边长为2的正三解形,正三角形内切圆半径为 ,即为圆锥内切球半径,球表面积为 .
15.在棱长为3的正方体 中,点 , 分别是棱 , 的中点,过 , , 三点作正方体的截面,将截面多边形向平面 作投影,则投影图形的面积为______.
三、双空题
16.设数列 满足 , ,且 ,若 表示不超过x的最大整数,①求 _______;②则 ___________.
四、解答题
17.如图,在菱形 中, , ,对角线 与 交于点 ,点 , 分别在 , 上,满足 , 交 于点 .将 沿 折到 的位置, .
22.在平面直角坐标系 中,已知直线 的参数方程为 ( 为参数).在以坐标原点 为极点, 轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线 的极坐标方程是 .
(1)求直线 的普通方程与曲线 的直角坐标方程;
(2)设点 .若直 与曲线 相交于两点 ,求 的值.
23.已知 .
(1)求使得 的 的取值集合 ;
6.C
【分析】
根据程序框图,模拟计算即可求解.
【详解】
第一次执行程序, ,
第二次执行程序, ,
第三次执行程序, ,
由以上可知,第3个输出的数为5,
(1)试验时从甲、乙,丙三种鱼苗中各取一尾,记自然成活的尾数为 ,求 的分布列和数学期望;
(2)试验后发现乙种鱼苗较好,扶贫工作组决定购买 尾乙种鱼苗进行大面积养殖,为提高鱼苗的成活率,工作组采取增氧措施,该措施实施对能够自然成活的鱼苗不产生影响.使不能自然成活的鱼苗的成活率提高了50%.若每尾乙种鱼苗最终成活后可获利10元,不成活则亏损2元,且扶贫工作组的扶贫目标是获利不低于37.6万元,问需至少购买多少尾乙种鱼苗?
河南省郑州市名校联考2021届新高三第一次调研考试数学(理科)试题卷
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.若集合 , ,则 ( )
A. B. C. D.
2.已知 是关于 的方程 ( )的一个根,则
A. B. C. D.
20.已知函数 ,在 处的切线与直线 垂直,函数 .
(Ⅰ)求实数 的值;
(Ⅱ)设 ,是函数 的两个极值点,若 ,求 的最小值.
21.已知椭圆方程为 .
(1)设椭圆的左右焦点分别为 、 ,点 在椭圆上运动,求 的值;
(2)设直线 和圆 相切,和椭圆交于 、 两点, 为原点,线段 、 分别和圆 交于 、 两点,设 、 的面积分别为 、 ,求 的取值范围.
(2)求证:对任意实数 , ,当 时, 恒成立.
参考答案
1.C
【分析】
先求出集合 ,再求 .
【详解】
由 得 或 .
所以 ,又
所以
故选:C
【点睛】
本题考查解二次方程和集合的交集,属于基础题.
2.A
【解析】
实系数的一元二次方程虚根成对(互为共轭复数),所以 为方程两根, ,选A.
3.A
【分析】
利用等比数列 的性质可得 ,即可得出.
(Ⅰ)证明: ;
(Ⅱ)求 与平面 所成的角的正弦值.
18.如图,考虑点 , , , ,从这个图出发.
(1)推导公式: ;
(2)利用(1)的结果证明: ,并计算 的值.
19.为实现有效利用扶贫资金,增加贫困村民的收入,扶贫工作组结合某贫困村水质优良的特点,决定利用扶贫资金从外地购买甲、乙、丙三种鱼苗在鱼塘中进行养殖试验,试验后选择其中一种进行大面积养殖,已知鱼苗甲的自然成活率为0.8.鱼苗乙,丙的自然成活率均为0.9,且甲、乙、丙三种鱼苗是否成活相互独立.
A. B. C. D.
5.要得到函数 的图像,只需将函数 的图像()
A.向右平移 个单位B.向右平移 个单位
C.向左平移 个单位D.向左平移 个单位
6.按照程序框图(如图)执行,第3个输出的数是()
A.3B.4C.5D.6
7.总体由编号为01,02,...,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()