高三数学一轮复习 第二讲 数列求和及数列综合应用2.doc

合集下载

高考数学二轮复习数列求和及其综合应用

高考数学二轮复习数列求和及其综合应用

(2)在各项均为正数的数列{an}中,a1=1,a2n+1-2an+1an-3a2n=0,Sn 是数列 {an}的前 n 项和,若对 n∈N*,不等式 an(λ-2Sn)≤27 恒成立,则实数 λ 的 取值范围为_(-__∞__,__1_7_]_.
∵a2n+1-2an+1an-3a2n=0, ∴(an+1+an)(an+1-3an)=0, ∵an>0,∴an+1=3an,又a1=1, ∴数列{an}是首项为1,公比为3的等比数列, ∴an=3n-1, Sn=11--33n=32n-12, ∴不等式 an(λ-2Sn)≤27 即 λ≤2Sn+2a7n=3n+32n-71-1 对 n∈N*恒成立,
所以 2an1
2an
=4,
所以an+1-an=2,
所以数列{an}是公差为2的等差数列,
因为a2,a4,a7成等比数列,
所以 a24=a2a7,
所以(a1+6)2=(a1+2)(a1+12), 解得a1=6,
所以an=6+2(n-1)=2n+4, 因为Sn为数列{bn}的前n项和,且bn是1和Sn的等差中项, 所以Sn+1=2bn, 当n≥2时,有Sn-1+1=2bn-1, 两式相减得bn=2bn-2bn-1,即bn=2bn-1, 当n=1时,有S1+1=b1+1=2b1, 所以b1=1, 所以数列{bn}是首项为1,公比为2的等比数列,所以bn=2n-1,
考向3 错位相减法
例3 (2022·上饶模拟)从①b5-b4=18b2,②S5=b4-2,③log3bn+1-1= log3bn这三个条件中任选一个,补充在下面问题中,并解答. 已知数列{an}的前n项和为Sn,数列{bn}是正项等比数列,且2an=an+1+ an-1(n≥2),S3=b3=9,b4=a14,________. (1)求数列{an}和{bn}的通项公式; 注:如果选择多个条件分别解答,按第一个解答计分.

山东省济宁市高考数学一轮复习 第二讲 数列求和及数列的综合应用讲练 理 新人教A版

山东省济宁市高考数学一轮复习 第二讲 数列求和及数列的综合应用讲练 理 新人教A版

第二讲 数列求和及数列的综合应用一、公式法与分组求和法 1.公式法直接利用等差数列、等比数列的前n 项和公式求和 (1)等差数列的前n 项和公式:S n =n a 1+a n 2=na 1+n n -2d ;(2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1-q n1-q ,q ≠1.2.分组求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和而后相加减.二、错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法.三、裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.常用的拆项方法(1)1n n +k =1k ⎝ ⎛⎭⎪⎫1n -1n +k (2)1n +k +n =1k(n +k -n )(3)1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1(4)1n n +n +=12⎝ ⎛⎭⎪⎫1n n +-1n +n + 四、倒序相加法和并项求和法1.倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的.2.并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.基础自测1.等差数列{a n }的通项公式为a n =2n +1,其前n 项的和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( )A .120B .70C .75D .100【解析】 ∵S n =n +2n +2=n (n +2),∴S nn=n +2.∴数列⎩⎨⎧⎭⎬⎫S n n 前10项的和为:(1+2+…+10)+20=75.【答案】 C2.数列{a n }的通项公式是a n =1n +n +1,前n 项和为9,则n 等于( )A .9B .99C .10D .100【解析】 ∵a n =1n +n +1=n +1-n ,又a 1+a 2+…+a n=-(1-2+2-3+…+n -n +1) =n +1-1=9, ∴n =99. 【答案】 B3.若数列{a n }的通项公式是a n =(-1)n(3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12 D .-15【解析】 ∵a n =(-1)n(3n -2),∴a 1+a 2+…+a 10=(-1+4)+(-7+10)+…+(-25+28)=3×5=15. 【答案】 A4.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( )A.100101B.99101C.99100D.101100【解析】 设等差数列{a n }的首项为a 1,公差为d . ∵a 5=5,S 5=15,∴⎩⎪⎨⎪⎧a 1+4d =5,5a 1+-2d =15,∴⎩⎪⎨⎪⎧a 1=1,d =1,∴a n =a 1+(n -1)d =n .∴1a n a n +1=1n n +=1n -1n +1,∴数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为1-12+12-13+…+1100-1101=1-1101=100101.【答案】 A考点一 分组转化求和例 (2014山东) 在等差数列{}n a 中,已知公差2d =,2a 是1a 与4a 的等比中项. (I)求数列{}n a 的通项公式;(II )设(1)2n n n b a +=,记1234(1)n n n T b b b b b =-+-+-+-…,求n T .【解析】: (Ⅰ)由题意知:{}n a 为等差数列,设()d n a a n 11-+=,2a 为1a 与4a 的等比中项4122a a a ⨯=∴且01≠a ,即()()d a a d a 31121+=+, 2=d 解得:21=an n a n 22)1(2=⨯-+=∴.(Ⅱ)由 (Ⅰ)知:n a n 2=,)1(2)1(+==+n n a b n n n①当n 为偶数时:()()()()()()()()[]()()222222642222624221153431214332212nn n n n n n n n n n T n +=+⨯=++++⨯=⨯++⨯+⨯+⨯=++--+++-++-=+++⨯-⨯+⨯-= ②当n 为奇数时:()()()()()()()()[]()()()()[]()()()212122112211642212126242212153431214332212++-=----+⨯=+--++++⨯=+-⨯-++⨯+⨯+⨯=+-+---+++-++-=+-+⨯-⨯+⨯-=n n n n n n n n n n n n n n n n n n n T n综上:⎪⎪⎩⎪⎪⎨⎧+++-=为偶数为奇数,n n n n n n T n ,2221222跟踪练习 [2014·湖南卷] 已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2an +(-1)na n ,求数列{b n }的前2n 项和. 解:(1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .故数列{a n }的通项公式为a n =n .(2)由(1)知,b n =2n +(-1)n n .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+ (22))+(-1+2-3+4-…+2n ).记A =21+22+ (22),B =-1+2-3+4-…+2n ,则A =2(1-22n)1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2. 方法与技巧 分组转化法求和的常见类型若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数 的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.考点二 错位相减求和例 (2013山东)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1a 1+b 2a 2+…+b n a n =1-12n ,n ∈N *,求{b n }的前n 项和T n .解:本题主要考查等差数列的通项公式、错位相减法等知识,考查方程思想、转化思想和运算能力、推理论证能力.(1)设等差数列{a n }的首项为a 1,公差为d . 由S 4=4S 2,a 2n =2a n +1得⎩⎪⎨⎪⎧4a 1+6d =8a 1+4d ,a 1+n -d =2a 1+n -d +1,解得a 1=1,d =2. 因此a n =2n -1,n ∈N *.(2)由已知b 1a 1+b 2a 2+…+b n a n =1-12n ,n ∈N *,当n =1时,b 1a 1=12;当n ≥2时,b n a n =1-12n -⎝ ⎛⎭⎪⎫1-12n -1=12n ,所以b n a n =12n ,n ∈N *.由(1)知a n =2n -1,n ∈N *,所以b n =2n -12n ,n ∈N *.又T n =12+322+523+…+2n -12n ,12T n =122+323+…+2n -32n +2n -12n +1, 两式相减得12T n =12+⎝ ⎛⎭⎪⎫222+223+…+22n -2n -12n +1=32-12n -1-2n -12n +1, 所以T n =3-2n +32n .方法与技巧:1.错位相减只是实现求和的途径,其本质是相减后利用等比数列求和公式求和.在构造方程时,S n 的左右两边同乘以等比数列的公比.2.错位相减法的难点在于运算,为力求运算准确,要注意两式相减时幂指数相同的项要对齐,同时注意剩余的项.3.当{a n }为等差数列,{b n }为等比数列时,求数列{a n b n }的前n 项和,可用错位相减法. 跟踪练习 (2012·江西高考)已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .【解】 (1)当n =k ∈N +时,S n =-12n 2+kn 取最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,因此k =4,从而a n =S n -S n -1=92-n (n ≥2).又a 1=S 1=72,所以a n =92-n .(2)因为b n =9-2a n 2n =n2n -1,T n =b 1+b 2+…+b n =1+22+322+…+n -12n -2+n2n -1,所以T n =2T n -T n =2+1+12+…+12n -2-n2n -1=4-12n -2-n 2n -1=4-n +22n -1.考点三 裂项相消求和例 (2013·课标全国卷Ⅰ)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5. (1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和. 【思路点拨】 (1)结合等差数列的求和公式列出关于首项和公差的方程组求解;(2)裂项求和,但要注意裂项后的系数.【尝试解答】 (1)设{a n }的公差为d ,则S n =na 1+n n -2d .由已知可得⎩⎪⎨⎪⎧3a 1+3d =0,5a 1+10d =-5.解得⎩⎪⎨⎪⎧a 1=1 ,d =-1.故{a n }的通项公式为a n =2-n .(2)由(1)知1a 2n -1a 2n +1=1-2n -2n=12⎝ ⎛⎭⎪⎫12n -3-12n -1,从而数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和为 12⎝ ⎛⎭⎪⎫1-1-11+11-13+…+12n -3-12n -1=n1-2n.,方法与技巧 1.本例第(2)问在求解时,常因“裂项”错误,导致计算失误. 2.利用裂项相消法求和应注意以下两点(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项; (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2.跟踪练习 (2010山东)已知等差数列{a n }满足:a 3=7,a 5+a 7=26.{a n }的前n 项和为S n .(1)求a n 及S n ; (2)令b n =1a n -1(n ∈N *),求数列{b n }的前n 项和T n . 解:(1)设等差数列{a n }的首项为a 1,公差为d , 由于a 3=7,a 5+a 7=26, 所以a 1+2d =7,2a 1+10d =26, 解得a 1=3,d =2. 由于a n =a 1+(n -1)d ,S n =n a 1+a n2,所以a n =2n +1,S n =n (n +2). (2)因为a n =2n +1, 所以a 2n -1=4n (n +1), 因此b n =14nn +=14(1n -1n +1). 故T n =b 1+b 2+…+b n=14(1-12+12-13+…+1n -1n +1) =14(1-1n +1) =n n +,所以数列{b n }的前n 项和T n =n n +.考点四 数列与不等式的综合应用例 (2014·潍坊模拟)已知公比为q 的等比数列{a n }是递减数列,且满足a 1+a 2+a 3=139,a 1a 2a 3=127.(1)求数列{a n }的通项公式;(2)求数列{(2n -1)·a n }的前n 项和为T n ;(3)若b n =n 3n -1·a n +32(n ∈N *),证明:1b 1b 2+1b 2b 3+…+1b n b n +1≥435.【规范解答】 (1)由a 1a 2a 3=127及等比数列性质得a 32=127,即a 2=13,1分由a 1+a 2+a 3=139得a 1+a 3=109.由⎩⎪⎨⎪⎧a 2=13a 1+a 3=109得⎩⎪⎨⎪⎧a 1q =13a 1+a 1q 2=109,所以1+q 2q =103,即3q 2-10q +3=0,解得q =3,或q =13.3分因为{a n }是递减数列,故q =3舍去,∴q =13,由a 2=13,得a 1=1,故数列{a n }的通项公式为a n =13n -1(n ∈N *).4分(2)由(1)知(2n -1)·a n =2n -13n -1,所以T n =1+33+532+…+2n -13n -1,①13T n =13+332+533+…+2n -33n -1+2n -13n ②5分 ①-②得:23T n =1+23+232+233+…+23n -1-2n -13n=1+2⎝ ⎛⎭⎪⎫13+132+133+…+13n -1-2n -13n=1+2·13⎝ ⎛⎭⎪⎫1-13n -11-13-2n -13n =2-13n -1-2n -13n所以T n =3-n +13n -18分(3)因为b n =n 3n -1·a n +32(n ∈N *)=n +32=2n +32,9分所以1b 1b 2+1b 2b 3+…+1b n b n +1=25·27+27·29+…+22n +3·22n +5 =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫15-17+⎝ ⎛⎭⎪⎫17-19+…+⎝ ⎛⎭⎪⎫12n +3-12n +5 =2⎝ ⎛⎭⎪⎫15-12n +5,11分 因为n ≥1,15-12n +5≥15-17=235,所以1b 1b 2+1b 2b 3+…+1b n b n +1≥435.12分错误!跟踪练习 [2014·湖北卷] 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.解:(1)设数列{a n }的公差为d ,依题意知,2,2+d ,2+4d 成等比数列,故有(2+d )2=2(2+4d ),化简得d 2-4d =0,解得d =0或d =4, 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立.当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41.。

高三数学第一轮复习 —数列求和教案

高三数学第一轮复习 —数列求和教案
〔5〕 ;〔6〕 .
解:〔1〕

〔2〕∵ ,
∴ .
〔3〕∵


〔4〕 ,
当 时, … ,
当 时, … ,
… ,
两式相减得 … ,
∴ .
〔5〕∵ ,
∴原式 … … .
〔6〕设 ,
又∵ ,
∴ , .
例2.数列 的通项 ,求其前 项和 .
解:奇数项组成以 为首项,公差为12的等差数列,
偶数项组成以 为首项,公比为4的等比数列;
2.倒序相加、错位相减,分组求和、拆项求和Hale Waihona Puke 求和方法;〔二〕主要方法:
1.求数列的和注意方法的选取:关键是看数列的通项公式;
2.求和过程中注意分类讨论思想的运用;
3.转化思想的运用;
〔三〕例题分析:
例1.求以下数列的前 项和 :
〔1〕5,55,555,5555,…, ,…;〔2〕 ;
〔3〕 ;〔4〕 ;
芯衣州星海市涌泉学校一.课题:数列求和
二.教学目的:1.纯熟掌握等差数列与等比数列的求和公式;
2.能运用倒序相加、错位相减、拆项相消等重要的数学方法进展求和运算;
3.熟记一些常用的数列的和的公式.
三.教学重点:特殊数列求和的方法.
四.教学过程:
〔一〕主要知识:
1.等差数列与等比数列的求和公式的应用;
当 为奇数时,奇数项有 项,偶数项有 项,
∴ ,
当 为偶数时,奇数项和偶数项分别有 项,
∴ ,
所以, .
例3.〔高考A方案智能训练14题〕数列 的前 项和 ,数列 满足 ,假设 是等比数列,
〔1〕求 的值及通项 ;〔2〕求和 … .
〔解答见教师用书127页〕

高考数学(文)(新课标版)考前冲刺复习讲义:第2部分专题三第2讲 数列求和及其综合应用 Word版含答案

高考数学(文)(新课标版)考前冲刺复习讲义:第2部分专题三第2讲 数列求和及其综合应用 Word版含答案

第2讲数列求和及其综合应用错位相减法求和[学生用书P34]共研典例类题通法错位相减法适用于由一个等差数列和一个等比数列对应项的乘积构成的数列的求和,其依据是:c n =a n b n ,其中{a n }是公差为d 的等差数列,{b n }是公比为q (q ≠1)的等比数列,则qc n =qa n b n =a n b n +1,此时c n +1-qc n =(a n +1-a n )·b n +1=db n +1,这样就把对应相减的项变成了一个等比数列,从而达到求和的目的.(2016·高考山东卷)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n=b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n.求数列{c n }的前n 项和T n .【解】(1)由题意知当n ≥2时,a n =S n -S n -1=6n +5, 当n =1时,a 1=S 1=11,符合上式.所以a n =6n +5. 设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3,得⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d ,可解得b 1=4,d =3. 所以b n =3n +1.(2)由(1)知c n =(6n +6)n +1(3n +3)n=3(n +1)·2n +1. 又T n =c 1+c 2+…+c n ,所以T n =3×[2×22+3×23+…+(n +1)×2n +1], 2T n =3×[2×23+3×24+…+(n +1)×2n +2],两式作差,得-T n =3×[2×22+23+24+ (2)+1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+4(1-2n )1-2-(n +1)×2n +2=-3n ·2n +2, 所以T n =3n ·2n +2.应用错位相减法求和需注意的问题(1)错位相减法适用于求数列{a n ·b n }的前n 项和,其中{a n }为等差数列,{b n }为等比数列.(2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后所得部分,求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n =1,2进行验证. [跟踪训练](2016·兰州模拟)等差数列{a n }中,已知a n >0,a 1+a 2+a 3=15,且a 1+2,a 2+5,a 3+13构成等比数列{b n }的前三项.(1)求数列{a n },{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .[解] (1)设等差数列{a n }的公差为d ,则由已知得: a 1+a 2+a 3=3a 2=15,即a 2=5. 又(5-d +2)(5+d +13)=100, 解得d =2或d =-13(舍去),所以a 1=a 2-d =3,a n =a 1+(n -1)×d =2n +1. 又b 1=a 1+2=5,b 2=a 2+5=10,所以公比q =2, 所以b n =5×2n -1.(2)因为T n =5[3+5×2+7×22+…+(2n +1)×2n -1], 2T n =5[3×2+5×22+7×23+…+(2n +1)×2n ],两式相减得-T n =5[3+2×2+2×22+…+2×2n -1-(2n +1)×2n ]=5[(1-2n )2n -1], 则T n =5[(2n -1)2n +1].裂项相消法求和[学生用书P35]共研典例类题通法 1.常见的裂项类型 (1)1n (n +1)=1n -1n +1; (2)1n (n +k )=1k ⎝⎛⎭⎫1n -1n +k ;(3)1n 2-1=12⎝⎛⎭⎫1n -1-1n +1;(4)14n 2-1=12⎝⎛⎭⎫12n -1-12n +1;(5)n +1n (n -1)·2n =2n -(n -1)n (n -1)·2n =1(n -1)2n -1-1n ·2n. 2.裂项相消法求和的基本思想是把数列的通项公式a n 分拆成a n =b n +k -b n (k ≥1,k ∈N *)的形式,从而达到在求和时某些项相消的目的,在解题时要善于根据这个基本思想变换数列{a n }的通项公式,使之符合裂项相消的条件.(2016·海口调研测试)在等差数列{a n }中,公差d ≠0,a 1=7,且a 2,a 5,a 10成等比数列.(1)求数列{a n }的通项公式及其前n 项和S n ; (2)若b n =5a n ·a n +1,求数列{b n }的前n 项和T n .【解】(1)因为a 2,a 5,a 10成等比数列, 所以(7+d )(7+9d )=(7+4d )2, 又因为d ≠0,所以d =2,所以a n =2n +5,S n =(7+2n +5)n 2=n 2+6n .(2)由(1)可得b n =5(2n +5)(2n +7)=52⎝ ⎛⎭⎪⎫12n +5-12n +7, 所以T n =52⎝ ⎛⎭⎪⎫17-19+19-111+…+12n +5-12n +7=5n14n +49.裂项相消法的技巧在裂项时要注意把数列的通项分拆成的两项一定是某个数列中的相邻的两项,或者是等距离间隔的两项,只有这样才能实现逐项相消,只剩余有限的几项,从而求出其和.[跟踪训练](2016·石家庄模拟)已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100.(1)求数列{a n }的通项公式;(2)若b n =1a n a n +1,求数列{b n }的前n 项和.[解] (1)由已知得⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100, 解得⎩⎪⎨⎪⎧a 1=1,d =2.所以{a n }的通项公式为a n =1+2(n -1)=2n -1.(2)由(1)知,b n =1(2n -1)(2n +1)=12×⎝ ⎛⎭⎪⎫12n -1-12n +1,所以数列{b n }的前n 项和T n =12×⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫11-13+⎝⎛⎭⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =12×⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1.分组转化求和[学生用书P35]共研典例类题通法 分组转化求和的三种类型分组转化求和是把数列之和分为几组,每组中的各项是可以利用公式(或其他方法)求和的,求出各组之和即得整体之和,这类试题一般有如下三种类型:(1)数列是周期数列,先求出每个周期内的各项之和,然后把整体之和按照周期进行划分,再得出整体之和;(2)奇偶项分别有相同的特征的数列(如奇数项组成等差数列、偶数项组成等比数列),按照奇数项和偶数项分组求和;(3)通项中含有(-1)n 的数列,按照奇数项、偶数项分组,或者按照n 为奇数、偶数分类求和.(2016·呼和浩特模拟)在数列{a n }中,a 1=3,a n =2a n -1+(n -2)(n ≥2,n ∈N *). (1)证明:数列{a n +n }是等比数列,并求{a n }的通项公式; (2)求数列{a n }的前n 项和S n .【解】(1)因为a n +n =2[a n -1+(n -1)],a n +n ≠0, 所以{a n +n }是首项为4,公比为2的等比数列,所以a n +n =4×2n -1=2n +1. 所以a n =2n +1-n .(2)S n =(22+23+24+…+2n +1)-(1+2+3+…+n )=2n +2-n 2+n +82.分组求和的常见方法 (1)根据等差、等比数列分组. (2)根据正号、负号分组.(3)根据数列的周期性分组.[题组通关]1.已知数列{a n }的通项公式是a n =(-1)n -1(n +1),则a 1+a 2+a 3+…+a 2017=( )A .1009B .1010C .-1009D .-1010B [解析] 因为a n =(-1)n -1(n +1),所以a 1+a 2+a 3+…+a 2017=(2-3)+(4-5)+…+(2016-2017)+2018=1008×(-1)+2018=1010.2.设数列{a n }的前n 项和为S n (n ∈N *),数列{a 2n -1}是首项为1的等差数列,数列{a 2n }是首项为2的等比数列,且满足S 3=a 4,a 3+a 5=a 4+2.(1)求数列{a n }的通项公式; (2)求S 2n .[解] (1)设等差数列的公差为d ,等比数列的公比为q ,则a 1=1,a 2=2,a 3=1+d ,a 4=2q ,a 5=1+2d ,所以⎩⎪⎨⎪⎧4+d =2q ,(1+d )+(1+2d )=2+2q ,解得d =2,q =3.所以a n =⎩⎪⎨⎪⎧n ,n =2k -1,2·3n 2-1,n =2k ,(k ∈N *).(2)S 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=(1+3+5+…+2n -1)+(2×30+2×31+…+2×3n -1) =(1+2n -1)n 2+2(1-3n )1-3=n 2-1+3n .等差、等比数列的综合问题[学生用书P36]共研典例类题通法解决等差数列、等比数列的综合问题,要从两个数列的特征入手,理清它们的关系;数列与不等式、函数、方程的交汇问题,可以结合数列的单调性、最值求解.已知数列{a n }满足a 1=12,a n +1a n +1-1-1a n -1=0,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =a n +1a n -1,数列{b n }的前n 项和为S n ,证明:S n <34.【解】(1)由已知a n +1a n +1-1-1a n -1=0,n ∈N *,得(a n +1-1)+1a n +1-1-1a n -1=0,即1+1a n +1-1-1a n -1=0,亦即1a n +1-1-1a n -1=-1(常数).所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n -1是以1a 1-1=-2为首项, -1为公差的等差数列.可得1a n -1=-2+(n -1)×(-1)=-(n +1),所以a n =nn +1.(2)证明:因为b n =a n +1a n -1=(n +1)2n (n +2)-1=1n (n +2)=12⎝⎛⎭⎪⎫1n -1n +2,所以S n =b 1+b 2+…+b n=12⎝⎛⎭⎫1-13+12⎝⎛⎭⎫12-14+12⎝⎛⎭⎫13-15+…+12⎝ ⎛⎭⎪⎫1n -1-1n +1+12⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2<12×⎝⎛⎭⎫1+12=34.解决数列综合问题的方法(1)等差数列与等比数列交汇的问题,常用“基本量法”求解,但有时灵活地运用性质,可使运算简便.(2)数列的项或前n 项和可以看作关于n 的函数,然后利用函数的性质求解数列问题.(3)数列中的恒成立问题可以通过分离参数,通过求数列的值域求解. [跟踪训练](2016·武汉模拟)已知S n 是公差不为0的等差数列{a n }的前n 项和,S 1,S 2,S 4成等比数列,且a 3=-52.(1)求数列{a n }的通项公式;(2)设b n =1(2n +1)a n ,求数列{b n }的前n 项和T n .[解] (1)设{a n }的公差为d (d ≠0), 因为S 1,S 2,S 4成等比数列,所以S 22=S 1S 4,即(2a 1+d )2=a 1(4a 1+6d ),化简得d 2=2a 1d .因为d ≠0,所以d =2a 1.① 因为a 3=-52,所以a 1+2d =-52.②联立①②,解得⎩⎪⎨⎪⎧a 1=-12d =-1,所以a n =-12+(n -1)×(-1)=-n +12.(2)因为b n =1(2n +1)a n =1(2n +1)⎝⎛⎭⎫-n +12=-2(2n +1)(2n -1)=12n +1-12n -1,所以T n =⎝⎛⎭⎫13-1+⎝⎛⎭⎫15-13+⎝⎛⎭⎫17-15+…+⎝ ⎛⎭⎪⎫12n +1-12n -1=-1+12n +1=-2n 2n +1. 课时作业[学生用书P120(独立成册)]1.设各项均为正数的等差数列{a n }的前n 项和为S n ,且a 4a 8=32,则S 11的最小值为( ) A .22 2B .442C .22D .44B [解析] 因为数列{a n }为各项均为正数的等差数列,所以a 4+a 8≥2a 4a 8=82,S 11=(a 1+a 11)×112=112(a 4+a 8)≥112×82=442,故S 11的最小值为442,当且仅当a 4=a 8=42时取等号.2.已知在数列{a n }中,a 1=-60,a n +1=a n +3,则|a 1|+|a 2|+|a 3|+…+|a 30|等于( ) A .445 B .765 C .1080D .3105B [解析] 因为a n +1=a n +3,所以a n +1-a n =3. 所以{a n }是以-60为首项,3为公差的等差数列. 所以a n =-60+3(n -1)=3n -63. 令a n ≤0,得n ≤21. 所以前20项都为负值. 所以|a 1|+|a 2|+|a 3|+…+|a 30| =-(a 1+a 2+…+a 20)+a 21+…+a 30 =-2S 20+S 30.因为S n =a 1+a n 2n =-123+3n 2×n ,所以|a 1|+|a 2|+|a 3|+…+|a 30|=765.3.已知数列{a n }满足a 1=1,a 2=3,a n +1a n -1=a n (n ≥2),则数列{a n }的前40项和S 40等于( )A .20B .40C .60D .80C [解析] 由a n +1=a na n -1(n ≥2),a 1=1,a 2=3,可得a 3=3,a 4=1,a 5=13,a 6=13,a 7=1,a 8=3,…,这是一个周期为6的数列,一个周期内的6项之和为263,又40=6×6+4,所以S 40=6×263+1+3+3+1=60.4.(2016·郑州模拟)设等比数列{a n }的各项均为正数,且a 1=12,a 24=4a 2a 8,若1b n=log 2a 1+log 2a 2+…+log 2a n ,则数列{b n }的前10项和为( )A .-2011B.2011C .-95D.95A [解析] 设等比数列{a n }的公比为q ,因为a 24=4a 2a 8,所以(a 1q 3)2=4a 1q ·a 1q 7,即4q 2=1,所以q =12或q =-12(舍),所以a n =⎝⎛⎭⎫12n =2-n ,所以log 2a n =log 22-n =-n ,所以1b n =-(1+2+3+…+n )=-n (1+n )2,所以b n =-2n (1+n )=-2⎝ ⎛⎭⎪⎫1n -1n +1,所以数列{b n }的前10项和为-2⎣⎡⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13⎦⎤+…+⎝⎛⎭⎫110-111=-2·⎝⎛⎭⎫1-111=-2011. 5.设b n =a n (a n +1)(a n +1+1)(其中a n =2n -1),数列{b n }的前n 项和为T n ,则T 5=( )A.3133B.3233C.3166D.1633C [解析] 由题意得,b n =2n -1(2n -1+1)(2n +1)=12n -1+1-12n +1,所以T n =⎝ ⎛⎭⎪⎫120+1-121+1+⎝ ⎛⎭⎪⎫121+1-122+1+…+ ⎝ ⎛⎭⎪⎫12n -1+1-12n +1=12-12n +1,所以T 5=12-133=3166.6.已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )>f (x )g ′(x ),且f (x )=a x g (x )(a>0,且a ≠1),f (1)g (1)+f (-1)g (-1)=52.若数列⎩⎨⎧⎭⎬⎫f (n )g (n )的前n 项和大于62,则n 的最小值为( )A .8B .7C .6D .9C [解析] 由⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )g 2(x )>0,知f (x )g (x )在R 上是增函数,即f (x )g (x )=a x 为增函数,所以a >1.又因为a +1a =52,所以a =2或a =12(舍).数列⎩⎨⎧⎭⎬⎫f (n )g (n )的前n 项和S n =21+22+…+2n =2(1-2n)1-2=2n +1-2>62.即2n >32,所以n >5.7.(2016·海口调研测试)设数列{a n }的前n 项和为S n ,且a 1=1,a n +a n +1=12n (n =1,2,3,…),则S 2n +3=________.[解析] 依题意得S 2n +3=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2n +2+a 2n +3)=1+14+116+…+14n +1=1-14n +21-14=43⎝ ⎛⎭⎪⎫1-14n +2. [答案]43⎝⎛⎭⎫1-14n +28.若等比数列的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为________.[解析] 设等比数列的首项为a 1,公比为q ,则第2,3,4项分别为a 1q ,a 1q 2,a 1q 3,依题意得a 1+a 1q +a 1q 2+a 1q 3=9,a 1·a 1q ·a 1q 2·a 1q 3=814⇒a 21q 3=92,两式相除得a 1+a 1q +a 1q 2+a 1q 3a 21q 3=1a 1+1a 1q +1a 1q 2+1a 1q3=2. [答案]29.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 2017=________.[解析] 因为a n +a n +1=12(n ∈N *),所以a 1=12-a 2=12-2,a 2=2,a 3=12-2,a 4=2,…,故a 2n =2,a 2n -1=12-2,所以S 2017=1009a 1+1008a 2=1009×⎝⎛⎭⎫12-2+1008×2=10052. [答案]1005210.已知数列{a n }中,a 1=1,a 2=2,设S n 为数列{a n }的前n 项和,对于任意的n >1,n ∈N *,S n +1+S n -1=2(S n +1)都成立,则S 10=________.[解析]因为⎩⎪⎨⎪⎧S n +1+S n -1=2S n +2,S n +2+S n =2S n +1+2,所以a n +2+a n =2a n +1,所以数列{a n }从第二项开始为等差数列,当n =2时,S 3+S 1=2S 2+2,所以a 3=a 2+2=4,所以S 10=1+2+4+6+…+18=1+9(2+18)2=91. [答案]9111.(2016·东北四市联考)已知数列{a n }满足a 1=511,a 6=-12,且数列{a n }的每一项加上1后成为等比数列.(1)求a n ;(2)令b n =|log 2(a n +1)|,求数列{b n }的前n 项和T n .[解] (1)由题意数列{a n +1}是等比数列,设公比为q ,a 1+1=512,a 6+1=12=512×q 5, 解得q =14. 则数列{a n +1}是以512为首项,14为公比的等比数列, 所以a n +1=211-2n ,a n =211-2n -1.(2)由(1)知b n =|11-2n |,当n ≤5时,T n =10n -n 2,当n ≥6时,T n =n 2-10n +50,所以T n =⎩⎪⎨⎪⎧10n -n 2,n ≤5n 2-10n +50,n ≥6. 12.(2016·哈尔滨模拟)已知数列{a n }是等比数列,a 2=4,a 3+2是a 2和a 4的等差中项.(1)求数列{a n }的通项公式;(2)设b n =2log 2a n -1,求数列{a n b n }的前n 项和T n .[解] (1)设数列{a n }的公比为q ,因为a 2=4,所以a 3=4q ,a 4=4q 2.因为a 3+2是a 2和a 4的等差中项,所以2(a 3+2)=a 2+a 4.即2(4q +2)=4+4q 2,化简得q 2-2q =0.因为公比q ≠0,所以q =2.所以a n =a 2q n -2=4×2n -2=2n (n ∈N *).(2)因为a n =2n ,所以b n =2log 2a n -1=2n -1,所以a n b n =(2n -1)2n ,则T n =1×2+3×22+5×23+…+(2n -3)2n -1+(2n -1)2n ,①2T n =1×22+3×23+5×24+…+(2n -3)2n +(2n -1)·2n +1,②由①-②得,-T n =2+2×22+2×23+…+2×2n -(2n -1)2n +1=2+2×4(1-2n -1)1-2-(2n -1)2n +1 =-6-(2n -3)2n +1,所以T n =6+(2n -3)2n +1.13.数列{a n }满足a n +1=a n 2a n +1,a 1=1. (1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列; (2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n ,并证明1S 1+1S 2+…+1S n >n n +1. [解] (1)证明:因为a n +1=a n 2a n +1,所以1a n +1=2a n +1a n ,化简得1a n +1=2+1a n , 即1a n +1-1a n =2,故数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列. (2)由(1)知1a n =2n -1,所以S n =n (1+2n -1)2=n 2. 1S 1+1S 2+…+1S n =112+122+…+1n 2>11×2+12×3+…+1n (n +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1. 14.(选做题)已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π)的图象经过点⎝⎛⎭⎫π12,-2,⎝⎛⎭⎫7π12,2,且在区间⎝⎛⎭⎫π12,7π12上为单调函数. (1)求ω,φ的值;(2)设a n =nf ⎝⎛⎭⎫n π3(n ∈N *),求数列{a n }的前30项和S 30. [解] (1)由题可得ωπ12+φ=2k π-π2,k ∈Z ,7ωπ12+φ=2k π+π2,k ∈Z , 解得ω=2,φ=2k π-2π3,k ∈Z , 因为|φ|<π,所以φ=-2π3. (2)因为a n =2n sin ⎝ ⎛⎭⎪⎫2n π3-2π3(n ∈N *),数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2sin ⎝ ⎛⎭⎪⎫2n π3-2π3(n ∈N *)的周期为3,前三项依次为0,3,-3,所以a 3n -2+a 3n -1+a 3n =(3n -2)×0+(3n -1)×3+3n ×(-3)=-3(n ∈N *), 所以S 30=(a 1+a 2+a 3)+…+(a 28+a 29+a 30)=-10 3.。

高中数学课件-第一部分 专题二 第二讲 递推公式、数列求和及综合应用

高中数学课件-第一部分  专题二  第二讲 递推公式、数列求和及综合应用

专题二
第二讲 递推公式、数列求和及综合应用
活用•经典结论 主观题•专项练 客观题·专项练
题型·综合练
专题•限时训练-13-
类型一
类型二
类型三
[感悟方法]
1.已知 Sn 求 an 的步骤 (1)求出 a1. (2)利用 an=Sn-Sn-1(n≥2)便可求出当 n≥2 时 an 的表达式. (3)对 n=1 时的结果进行检验,看是否符合 n≥2 时 an 的表达 式,如果符合,则可以把数列的通项公式整合;如果不符合,
专题二
第二讲 递推公式、数列求和及综合应用
活用•经典结论
主观题•专项练 客观题·专项练
题型·综合练
专题•限时训练-3-
4.常用的拆项公式(其中 n∈N*) (1)nn1+1=n1-n+1 1; (2)nn1+k= 1kn1-n+1 k; (3)2n-112n+1=122n1-1-2n1+1;
专题二
专题二
类型一
第二讲 递推公式、数列求和及综合应用
活用•经典结论 主观题•专项练 客观题·专项练
题型·综合练
专题•限时训练-9-
类型二
类型三
正确写出通项公式(用 n≥2,要验证 n=1)得 1 分
写出 bn 并正确裂项得 2 分 若 bn 正确,裂项不正确扣 1 分
正确写出求和公式得 2 分
正确写出结论(无论是否合并)得 2 分
所以 an=2n2-1(n≥2).(4 分)
又由题设可得 a1=2,符合上式,
从而{an}的通项公式为 an=2n2-1.(6 分)
专题二
类型一
第二讲 递推公式、数列求和及综合应用
活用•经典结论 主观题•专项练 客观题·专项练

高考数学一轮总复习数列与级数的求和公式推导与应用

高考数学一轮总复习数列与级数的求和公式推导与应用

高考数学一轮总复习数列与级数的求和公式推导与应用高考数学一轮总复习:数列与级数的求和公式推导与应用数列与级数是高中数学中的重要内容,也是高考数学考试中常见的考点之一。

在高考中,理解、掌握数列与级数的求和公式的推导与应用是解题的关键。

本文将重点介绍数列与级数的求和公式的推导方法,并结合实际应用问题进行解析。

一、数列的求和公式推导1.1 等差数列的求和公式对于等差数列{an},其中a1为首项,d为公差,n为项数,其前n项和Sn可以用下式表示:Sn = (a1 + an) * n / 2推导过程如下:首先,将数列{an}逆序相加并累加两式,得到:2Sn = (a1 + an) + (a2 + a{n-1}) + (a3 + a{n-2}) + ... + (an + a1)由于等差数列的关系式为an = a1 + (n-1)d,则上式可以简化为:2Sn = (a1 + a1 + (n-1)d) + (a1 + d + a1 + (n-2)d) + (a1 + 2d + a1 + (n-3)d) + ... + (a1 + a1 + (n-1)d)化简后得:2Sn = n(a1 + an)最终得到等差数列的求和公式:Sn = (a1 + an) * n / 21.2 等比数列的求和公式对于等比数列{an},其中a1为首项,q为公比,n为项数,其前n 项和Sn可以用下式表示:Sn = a1 * (1 - q^n) / (1 - q)推导过程如下:首先,将Sn与qSn相减得:Sn - qSn = a1 * (1 - q^n) - a1 * q * (1 - q^(n-1))化简后得:Sn(1 - q) = a1(1 - q^n)由于等比数列的关系式为an = a1 * q^(n-1),则上式可以简化为:Sn(1 - q) = an最终得到等比数列的求和公式:Sn = a1 * (1 - q^n) / (1 - q)二、数列求和公式的应用2.1 应用一:计算等差数列的前n项和假设某等差数列的首项为a1,公差为d,共有n项。

数学(理)高考一轮复习 第1部分 专题3---第2讲数列求和及综合应用

数学(理)高考一轮复习  第1部分  专题3---第2讲数列求和及综合应用
+ + =3k 1-6-(2k-1)·3k 1 - - + +
山 东 金 太 阳 书 业 有
=2(1-k)·3 -
k+1
-6

+ - ∴Sk=(k-1)·3k 1+3.
又 1+3+…+(2k-1)=k , + + - =
+ ∴Tk=(k-1)·3k 1+3-k2(k∈N*,k≤2 007). - - ∈ ≤ . +
2
限 公 司
菜 单
隐 藏
数学( 高考新课标专题复习 · 数学(理)
考点主 干架构
考向聚 焦拓展
高效课 时作业
山 东 金 太 阳 书 业 有 限 公 司
菜 单
隐 藏
数学( 高考新课标专题复习 · 数学(理)
考点主 干架构
考向聚 焦拓展
高效课 时作业
3.设数列{an},{bn}满足 1=b1=6,a2=b2=4,a3=b3=3,且数 .设数列 , 满足a , , , 满足 是等差数列, 是等比数列, 列{an+1-an}(n∈N*)是等差数列,{bn-2}是等比数列,求{an}和{bn} ∈ 是等差数列 是等比数列 和 + 的通项公式. 的通项公式. 解析:由已知a =-2, =-1, 解析:由已知 2-a1=- ,a3-a2=- , d=- -(-2)=1, =-1- - = , =- ∴an+1-an=(a2-a1)+(n-1)d + - + =-2+(n-1)×1=n-3, =- + - × = - , 即an-an-1=n-4(n≥2). - . - 故an-an-1=n-4, - , - an-1-an-2=(n-1)-4, - - , - - … a3-a2=3-4, - , a2-a1=2-4. -
山 东 金 太 阳 书 业 有 限 公 司

高三数学第一轮复习《数列求和》讲义

高三数学第一轮复习《数列求和》讲义
=3+2× -(2n+1)3n
=3n-(2n+1)3n=-2n·3n.
∴Tn=n·3n.
③.在等差数列 中, ,前 项和 满足条件 ,
(Ⅰ)求数列 的通项公式;
(Ⅱ)记 ,求数列 的前 项和 。
解:(Ⅰ)设等差数列 的公差为 ,由 得: ,所以 ,即 ,所以 。
(Ⅱ)由 ,得 。所以 ,
当 时, ;
例题分析:
题型一 分组转化求和
例1 求和:(1)Sn= + + + +…+ ;
(2)Sn= 2+ 2+…+ 2.
解 (1)由于an= =n+ ,
∴Sn= + + +…+
=(1+2+3+…+n)+
= + = - +1.
(2)当x=±1时,Sn=4n.当x≠±1时,
Sn= 2+ 2+…+ 2= + +…+
∴Sn=3+2×32+3×33+…+n·3n,③
∴3Sn=32+2×33+3×34+…+n·3n+1.④
④-③得2Sn=n·3n+1-(3+32+33+…+3n),即2Sn=n·3n+1- ,
∴Sn= + .
变式训练2①已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n∈N*).
(1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;
,
故 ( )
(2)
两式相减得

数列求和练习(1)
1.数列 的通项公式是 ,若它的前 项和为10,则其项数 为
A.11 B.99 C.120 D.121
解: ,则由 ,得 ,选C
2.数列 的通项是 , ,则数列 的的前 项和为
A. B. C. D.
解: ,则
,选A
3.已知数列 的前 项和为 ,则 的值是

超实用高考数学重难点专题复习:专题五 数列 第二讲 数列求和及综合应用

超实用高考数学重难点专题复习:专题五 数列  第二讲  数列求和及综合应用

2Tn=3 [2 23+3 24++(n+1) 2n+2 ] ,两式做差得:
Tn=3 [2 22+23+24++2n+1-(n+1) 2n+2 ]


4 1 2n
3 4
n 1 2n 2 3n 2n 2
, an 2 (n 1) 2 2n
a1 2
(2)由(1)得:Sn
所以
Tn
n a1 an
1
1


S1 S2
2


n(2 2n)
n(n 1)
2
1
1
1
1




Sn 1 Sn 1 2 2 3
1 1 1 1 1
1
(4)累乘法:数列递推关系形如an+1=g(n)an,其中数列{g(n)}前n项
可求积,此数列求通项公式一般采用累乘法(叠乘法).

(5)构造法:①递推关系形如an+1=pan+q(p,q为常数)可化为an+1+
−1


=p(an+
)(p≠1)的形式,利用{an+
}是以p为公比的等比数列求
−1
2
n

4
4
4
4




(n 1)2 1 2 2 3 3 4
1
1 1
1 1
4[(1 ) ( ) ( )
2
2 3
3 4

1
1
1
)4
(
)] 4(1
n

1
n n 1
4

第2部分 专题2 第2讲数列求和及其综合应用-2021届高三高考数学二轮复习课件

第2部分 专题2 第2讲数列求和及其综合应用-2021届高三高考数学二轮复习课件

最小值;若不存在,请说明理由.
【解析】 (1)当n=1时,a1=S1,由S1=1-12a1,得a1=23. 当n≥2时,Sn=1-12an,Sn-1=1-21an-1, 所以an=Sn-Sn-1=1-12an-1-12an-1=12an-1-21an, 所以an=13an-1,所以{an}是以32为首项,31为公比的等比数列, 所以Sn=2311--1313n=1-13n.
(3)(2020·湖南师大附中第二次月考)在公差大于0的等差数列{an} 中,2a7-a13=1,且a1,a3-1,a6+5成等比数列,则数列{(-1)n-1an} 的前21项和为__2_1__.
【解析】 (1)设等差数列{an}的公差为d, ∵a9=12a12+6,a2=4,∴12=a1+5d,又a1+d=4, 解得a1=d=2,∴Sn=2n+nn- 2 1×2=n(n+1). ∴S1n=nn1+1=1n-n+1 1. 则数列S1n的前10项和=1-12+12-13+…+110-111=1-111=1110.
(2)存在. 由(1)可知,bn=-log3(1-Sn+1) =-log31-1-13n+1=-log313n+1 =n+1, 所以bnb1n+1=n+11n+2=n+1 1-n+1 2,
(2)设bn=n·2n+n, 所以Tn=b1+b2+b3+…+bn=(2+2×22+3×23+…+n·2n)+(1+2 +3+…+n), 令T=2+2×22+3×23+…+n·2n, 则2T=22+2×23+3×24+…+n·2n+1, 两式相减,得 -T=2+22+23+…+2n-n·2n+1=211--22n-n·2n+1,
【解析】 (1)由题意,aa12+a3=a4=a1a94,=8,
解得a1=1,a4=8或a1=8,a4=1; 而等比数列{an}递增,所以a1=1,a4=8,

2020年高考数学(理)总复习:数列的求和及综合应用(解析版)

2020年高考数学(理)总复习:数列的求和及综合应用(解析版)

2020年高考数学(理)总复习:数列的求和及综合应用题型一 数列求和 【题型要点】(1)分组求和法:分组求和法是解决通项公式可以写成c n =a n +b n 形式的数列求和问题的方法,其中{a n }与{b n }是等差(比)数列或一些可以直接求和的数列.(2)裂项相消法:将数列的通项分成两个代数式子的差,即a n =f (n +1)-f (n )的形式,然后通过累加抵消中间若干项的求和方法.形如1+n n a a c(其中{a n }是各项均不为0的等差数列,c 为常数)的数列等.(3)错位相减法:形如{a n ·b n }(其中{a n }为等差数列,{b n }为等比数列)的数列求和,一般分三步:①巧拆分;②构差式;③求和.(4)倒序求和法:距首尾两端等距离的两项和相等,可以用此法,一般步骤:①求通项公式;②定和值;③倒序相加;④求和;⑤回顾反思.(5)并项求和法:先将某些项放在一起求和,然后再求S n .(6)归纳猜想法:通过对S 1,S 2,S 3,…的计算进行归纳分析,寻求规律,猜想出S n ,然后用数学归纳法给出证明.【例1】已知各项为正数的等比数列{a n }的前n 项和为S n ,数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),若S 3=b 5+1,b 4是a 2和a 4的等比中项. (1)求数列{a n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .【解析】 (1)∵数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),∴b 5=6,b 4=4,设各项为正数的等比数列{a n }的公比为q ,q >0, ∵S 3=b 5+1=7,∴a 1+a 1q +a 1q 2=7,① ∵b 4是a 2和a 4的等比中项,∴a 2·a 4=a 23=16,解得a 3=a 1q 2=4,②由①②得3q 2-4q -4=0,解得q =2,或q =-23(舍),∴a 1=1,a n =2n -1.(2)当n 为偶数时,T n =(1+1)·20+2·2+(3+1)·22+4·23+(5+1)·24+…+[[(n -1)+1]·2n-2+n ·2n -1=(20+2·2+3·22+4·23+…+n ·2n -1)+(20+22+…+2n -2),设H n =20+2·2+3·22+4·23+…+n ·2n -1,①2H n =2+2·22+3·23+4·24+…+n ·2n ,② ①-②,得-H n =20+2+22+23+…+2n -1-n ·2n=1-2n 1-2-n ·2n =(1-n )·2n -1,∴H n =(n -1)·2n +1,∴T n =(n -1)·2n+1+1-4·2n 1-4=⎪⎭⎫ ⎝⎛-32n ·2n +23.当n 为奇数,且n ≥3时,T n =T n -1+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-35n ·2n -1+23+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-322n ·2n -1+23,经检验,T 1=2符合上式, ∴T n =⎪⎪⎩⎪⎪⎨⎧+⋅⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛--为偶数为奇数n n n n n n ,32232,3223221【反思总结】(1)错位相减法适用于求数列{a n ·b n }的前n 项和,其中{a n }为等差数列,{b n }为等比数列. (2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后所得部分,求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n =1,2进行验证.题组训练一 数列求和已知等比数列{a n }的前n 项和为S n ,且6S n =3n +1+a (a ∈N *).(1)求a 的值及数列{a n }的通项公式;(2)设b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2,求{b n }的前n 项和T n .【解析】 (1)∵等比数列{a n }满足6S n =3n +1+a (a ∈N *),n =1时,6a 1=9+a ;n ≥2时,6a n =6(S n -S n -1)=3n +1+a -(3n +a )=2×3n .∴a n =3n -1,n =1时也成立,∴1×6=9+a ,解得a =-3,∴a n =3n -1.(2)b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2=(-1)n -1(2n 2+2n +1)n 2(n +1)2=(-1)n -1()⎥⎦⎤⎢⎣⎡++22111n n当n 为奇数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1+1(n +1)2; 当n 为偶数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1-1(n +1)2. 综上,T n =1+(-1)n-11(n +1)2. 题型二 数列与函数的综合问题 【题型要点】数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题; (2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.【例2】已知数列{a n }的前n 项和为S n ,且S n =2n 2+2n . (1)求数列{a n }的通项公式;(2)若点(b n ,a n )在函数y =log 2x 的图象上,求数列{b n }的前n 项和T n . 【解】 (1)当n ≥2时,a n =S n -S n -1=2n 2+2n -[2(n -1)2+2(n -1)]=4n , 当n =1时,a 1=S 1=4=4×1, ∴数列{a n }的通项公式为a n =4n .(2)由点{b n ,a n }在函数y =log 2x 的图象上得a n =log 2b n ,且a n =4n ,∴b n =2an =24n =16n ,故数列{b n }是以16为首项,公比为16的等比数列.T n =16(1-16n )1-16=16n +1-1615.题组训练二 数列与函数的综合问题已知二次函数f (x )=ax 2+bx 的图象过点(-4n,0),且f ′(0)=2n (n ∈N *). (1)求f (x )的解析式;(2)若数列{a n }满足1a n +1=f ′⎪⎪⎭⎫ ⎝⎛na 1,且a 1=4,求数列{a n }的通项公式. 【解】 (1)由f ′(x )=2ax +b ,f ′(0)=2n ,得b =2n ,又f (x )的图象过点(-4n,0),所以16n 2a -4nb =0,解得a =12.所以f (x )=12x 2+2nx (n ∈N *).(2)由(1)知f ′(x )=x +2n (n ∈N *), 所以1a n +1=1a n +2n ,即1a n +1-1a n=2n .所以1a n -1a n -1=2(n -1), 1a n -1-1a n -2=2(n -2),…1a 2-1a 1=2,以上各式相加得1a n -14=n 2-n ,所以a n =1n 2-n +14,即a n =4(2n -1)2(n ∈N *). 题型三 数列与不等式的综合问题 【题型要点】(1)以数列为背景的不等式恒成立问题,多与数列求和相联系,最后利用数列或数列对应函数的单调性求解.(2)以数列为背景的不等式证明问题,多与数列求和有关,常利用放缩法或单调性法证明.(3)当已知数列关系时,需要知道其范围时,可借助数列的单调性,即比较相邻两项的大小即可.【例3】设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点(记为a n ),且0<a n -12<13n⎪⎭⎫ ⎝⎛32.(1)【解】 方法一 由题设f n ′(x )=1+2x +…+nx n -1,所以f n ′(2)=1+2×2+…+(n -1)2n -2+n ·2n -1,①则2f n ′(2)=2+2×22+…+(n -1)2n -1+n ·2n ,②由①-②得,-f n ′(2)=1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n =(1-n )2n -1, 所以f n ′(2)=(n -1)2n +1.方法二 当x ≠1时,f n (x )=x -x n +11-x-1,则f n ′(x )=[1-(n +1)x n ](1-x )+(x -x n +1)(1-x )2,可得f n ′(2)=-[1-(n +1)2n ]+2-2n +1(1-2)2=(n -1)2n +1.(2)[证明] 因为f n (0)=-1<0,f n ⎪⎭⎫ ⎝⎛32=32132132-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n-1=1-2×n ⎪⎭⎫ ⎝⎛32≥1-2×232⎪⎭⎫ ⎝⎛>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内至少存在一个零点,又f ′n (x )=1+2x +…+nx n -1>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内单调递增,因此f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点a n ,由于f n (x )=x -x n +11-x -1,所以0=f n (a n )=a n -a n +1n1-a n-1,由此可得a n =12+12a n +1n >12,故12<a n <23,所以0<a n -12=12a n +1n <12×132+⎪⎭⎫ ⎝⎛n =13n⎪⎭⎫ ⎝⎛32. 题组训练三 数列与不等式的综合问题1.已知等比数列{a n }满足a n +1+a n =10·4n -1(n ∈N *),数列{b n }的前n 项和为S n ,且b n =log 2a n .(1)求b n ,S n ;(2)设c n =b n +12,证明:c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *).【解】 (1)解 由题意知a 2+a 1=10,a 2+a 3=40,设{a n }的公比为q ,则a 2+a 3a 1+a 2=q (a 1+a 2)a 1+a 2=4,∴q =4.则a 1+a 2=a 1+4a 1=10,解得a 1=2,∴a n =2·4n -1=22n -1.∴b n =log 222n -1=2n -1.∴S n =n (b 1+b n )2=n (1+2n -1)2=n 2.(2)证明 法一∵c n =b n +12=2n -1+12=n ,∴S n +1=(n +1)2.要证明c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1,即证1×2+2×3+…+n ×(n +1)<12(n +1)2,①当n =1时,1×2<12×(1+1)2=2成立.②假设当n =k (k ∈N *)时不等式成立, 即1×2+2×3+…+k ×(k +1)<12(k +1)2,则当n =k +1(k ∈N *)时,要证1×2+2×3+…+k ×(k +1)+(k +1)(k +2)<12(k +2)2,即证(k +1)(k +2)<12(k +2)2-12(k +1)2,即(k +1)(k +2)<k +32,两边平方得k 2+3k +2<k 2+3k +94显然成立,∴当n =k +1(k ∈N *)时,不等式成立. 综上,不等式成立.法二 ∵c n =b n +12=2n -1+12=n ,S n +1=(n +1)2,由基本不等式可知n (n +1)≤n +n +12=n +12,故1×2<1+12,2×3<2+12,…,n (n +1)≤n +12,∴1×2+2×3+3×4+…+n (n +1)<(1+2+3+…+n )+n 2=n 2+2n 2<n 2+2n +12=(n +1)22,即不等式c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *)成立.2.已知数列{a n }满足a 1=1,a n +1=a n 1+a 2n,n ∈N *,记S n ,T n 分别是数列{a n },{a 2n }的前n 项和.证明:当n ∈N *时,(1)a n +1<a n ; (2)T n =1a 2n +1-2n -1;(3)2n -1<S n <2n .【证明】 (1)由a 1=1及a n +1=a n1+a 2n 知,a n >0,故a n +1-a n =a n 1+a 2n -a n =-a 3n1+a 2n <0, ∴a n +1<a n ,n ∈N *. (2)由1a n +1=1a n +a n ,得1a 2n +1=1a 2n +a 2n +2,从而1a 2n +1=1a 2n +a 2n +2=1a 2n -1+a 2n -1+a 2n +2×2=…=1a 21+a 21+a 22+…+a 2n +2n ,又∵a 1=1,∴T n =1a 2n +1-2n -1,n ∈N *. (3)由(2)知,a n +1=1T n +2n +1,由T n ≥a 21=1,得a n +1≤12n +2,∴当n ≥2时,a n ≤12n =22n <2n +n -1=2(n -n -1),由此S n <a 1+2[(2-1)+(3-2)+…+(n -n -1)]=1+2(n -1)<2n ,n ≥2,又∵a 1=1,∴S n <2n .另一方面,由a n =1a n +1-1a n ,得S n =1a n +1-1a 1≥2n +2-1>2n -1.综上,2n -1<S n <2n .【专题训练】1.已知数列{a n }的前n 项和为S n ,且a 2=8, S n =a n +12-n -1.(1)求数列{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫2×3na n a n +1的前n 项和T n .【解】 (1)因为S n =a n +12-n -1,故当n =1时,a 1=a 22-1-1=2;当n ≥2时,2S n =a n +1-2n -2,2S n -1=a n -2(n -1)-2,两式相减可得a n +1=3a n +2; 经检验,当n =1时也满足a n +1=3a n +2,故a n +1+1=3(a n +1),故数列{a n +1}是以3为首项,3为公比的等比数列,故a n +1=3n ,即a n =3n -1.(2)由(1)可知,2×3n a n a n +1=2×3n(3n -1)(3n +1-1) =13n-1-13n +1-1, 故T n =131-1-132-1+132-1-133-1+…+13n -1-13n +1-1=12-13n +1-1.2.已知数列{a n }的前n 项和为S n ,a 1=2,a n +1=S n +2. (1)求数列{a n }的通项公式;(2)已知b n =log 2a n ,求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .【解析】 (1)∵a n +1=S n +2,∴当n ≥2时,a n =S n -1+2,两式相减得,a n +1-a n =S n -S n -1=a n ,则a n +1=2a n ,所以a n +1a n =2(n ≥2),∵a 1=2,∴a 2=S 1+2=4,满足a 2a 1=2,∴数列{a n }是以2为公比、首项为2的等比数列,则a n =2·2n -1=2n ;(2)由(1)得,b n =log 2a n =log 22n =n , ∴1b n b n +1=1n (n +1)=1n -1n +1, ∴T n =⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =1-1n +1=n n +1. 3.已知正项数列{a n }的前n 项和为S n ,且a 1=2,4S n =a n ·a n +1,n ∈N *. (1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a 2n 的前n 项和为T n ,求证:n 4n +4<T n <12.【解析】 (1)∵4S n =a n ·a n +1,n ∈N *, ∴4a 1=a 1·a 2,又a 1=2,∴a 2=4.当n ≥2时,4S n -1=a n -1·a n ,得4a n =a n ·a n +1-a n -1·a n .由题意知a n ≠0,∴a n +1-a n -1=4. ①当n =2k +1,k ∈N *时,a 2k +2-a 2k =4,即a 2,a 4,…,a 2k 是首项为4,公差为4的等差数列, ∴a 2k =4+(k -1)×4=4k =2×2k ; ②当n =2k ,k ∈N *时,a 2k +1-a 2k -1=4,即a 1,a 3,…,a 2k -1是首项为2,公差为4的等差数列, ∴a 2k -1=2+(k -1)×4=4k -2=2(2k -1). 综上可知,a n =2n ,n ∈N *.(2)证明:∵1a 2n =14n 2>14n (n +1)=14⎪⎭⎫ ⎝⎛+-111n n ,∴T n =1a 21+1a 22+…+1a 2n>14⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =141-1n +1=n 4n +4. 又∵1a 2n =14n 2<14n 2-1=1(2n -1)(2n +1)=12⎪⎭⎫ ⎝⎛+--121121n n ,∴T n =1a 21+1a 22+…+1a 2n <12⎪⎭⎫ ⎝⎛+--+-+-+-12112171515131311n n =12⎪⎭⎫ ⎝⎛+-1211n <12. 即得n 4n +4<T n <12.4.已知数列{a n }与{b n }的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =2(b n +1-b n )恒成立.(1)若A n =n 2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1<13成立,求正实数b 1的取值范围;(3)若a 1=2,b n =2n ,是否存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由. 【解】 (1)因为A n =n 2,所以a n =⎩⎪⎨⎪⎧1,n =1,n 2-(n -1)2,n ≥2, 即a n =2n -1,故b n +1-b n =12(a n +1-a n )=1,所以数列{b n }是以2为首项,1为公差的等差数列,所以B n =n ·2+12·n ·(n -1)·1=12n 2+32n . (2)依题意B n +1-B n =2(b n +1-b n ),即b n +1=2(b n +1-b n ),即b n +1b n=2, 所以数列{b n }是以b 1为首项,2为公比的等比数列,所以a n =B n =1-2n1-2×b 1=b 1(2n -1), 所以b n +1a n a n +1=2nb 1(2n -1)·(2n +1-1), 因为b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+1211211n n 所以b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+12112111n ,所以1b 1⎪⎭⎫ ⎝⎛---+12112111n <13恒成立,即b 1>3⎪⎭⎫ ⎝⎛--+12111n ,所以b 1≥3.(3)由a n +1-a n =2(b n +1-b n )得:a n +1-a n =2n +1,所以当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n +2n -1+…+23+22+2=2n +1-2, 当n =1时,上式也成立,所以A n =2n +2-4-2n , 又B n =2n +1-2,所以A n B n =2n +2-4-2n 2n +1-2=2-n 2n -1, 假设存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t 成等差数列,等价于121-1,s 2s -1,t 2t -1成等差数列, 即2s 2s-1=121-1+t 2t -1,即2s 2s -1=1+t 2t -1,因为1+t 2t -1>1,所以2s 2s -1>1,即2s <2s +1,令h (s )=2s -2s -1(s ≥2,s ∈N *),则h (s +1)-h (s )=2s -2>0所以h (s )递增, 若s ≥3,则h (s )≥h (3)=1>0,不满足2s <2s +1,所以s =2,代入2s 2s -1=121-1+t 2t -1得2t -3t -1=0(t ≥3),当t =3时,显然不符合要求; 当t ≥4时,令φ(t )=2t -3t -1(t ≥4,t ∈N *),则同理可证φ(t )递增,所以φ(t )≥φ(4)=3>0,所以不符合要求.所以,不存在正整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列.。

高三数学第一轮复习:等比数列、数列求和人教版

高三数学第一轮复习:等比数列、数列求和人教版

高三数学第一轮复习:等比数列、数列求和人教版【本讲教育信息】一. 教学内容:等比数列、数列求和二. 重点、难点:1. 理解等比数列的有关概念;掌握等比数列的通项公式和前n 项和公式,并能运用这些知识解决一些简单的实际问题。

2. 通过观察数列通项公式的特点选择合适的方法,求数列的前n 项和。

【典型例题】[例1] 在等比数列}{n a 中,128,66121==+-n n a a a a ,126=n S ,求n 和q 。

解:因}{n a 是等比数列,故128112==-n n a a a a ,结合661=+n a a ,可知n a a 、1是方程0128662=+-x x 的两根,解方程,得64,221==x x故21=a ,64=n a 或2,641==n a a 当64,21==n a a 时,12611=--=qqa a S n n ,得2=q又因为64=n a ,6411=-n qa ,故n 6=当641=a ,2=n a 时,1261264,12611=--=--=q q q q a a S n n 得21=q又因为6,2,211===-n q a a n n综上所述,6=n ,公比2=q 或21[例2] 已知数列}{n a 为等差数列,公差0≠d ,}{n a 的部分项组成下列数列:n k k k a a a ,,,21 ,恰为等比数列,其中11=k ,17,532==k k ,求++++ 321k k k n k解:设}{n a 的首项为1a ∵321k k k a a a 、、成等比数列 ∴)16()4(1121d a a d a +=+得d a 21=,312==k k a a q∵d k a a n k n )1(1-+=,又113-⋅=n k a a n ∴1321-⋅=-n n k∴n k k k n n -+++=+++-)331(21211331312--=---⨯=n n n n[例3] 设}{n a 为等差数列,}{n b 为等比数列,111==b a ,342b a a =+,342a b b =,分别求出}{n a ,}{n b 的前10项的和1010,T S 。

高三数学一轮复习备考数列的求和说课

高三数学一轮复习备考数列的求和说课

高三数学一轮复习备考数列的求和说课高三数学一轮复习备考中,数列的求和是一个重要的考点。

在本文中,我将对数列的求和进行深入解析,包括常见的等差数列和等比数列的求和公式,以及一些应用题的解题方法。

首先,让我们来回顾一下数列的概念。

数列是由一系列按照一定规律排列的数所组成的集合。

数列的每一项称为数列的项,用ai表示,其中i表示项的位置。

数列中的规律可以用一个通项公式来表示。

对于等差数列来说,通项公式为an=a1+(n-1)d,其中a1为首项,d为公差;而对于等比数列来说,通项公式为an=a1*r^(n-1),其中a1为首项,r为公比。

接下来,我们来看一下等差数列的求和公式。

对于等差数列来说,其求和公式是非常有用的。

设等差数列的首项为a1,公差为d,前n项和为Sn。

那么等差数列的求和公式可以表示为Sn=n/2*(a1+an),其中an表示等差数列的第n项。

在使用等差数列的求和公式时,需要明确几个关键的概念。

首先,当n为奇数时,a1和an为等差数列中间的一项;当n为偶数时,a1和an分别为等差数列的相邻两项,此时中间没有项。

其次,等差数列的前n项和与等差数列的倒序前n项和相等。

例如,对于等差数列1,3,5,7,9来说,其首项为1,公差为2。

我们可以使用等差数列的求和公式来计算前3项的和。

根据公式,n=3,所以Sn=3/2*(1+5)=9。

除了等差数列外,我们还有等比数列的求和公式。

对于等比数列来说,其求和公式也是非常重要的。

设等比数列的首项为a1,公比为r,前n项和为Sn。

等比数列的求和公式可以表示为Sn=a1*(1-r^n)/(1-r),其中r不等于1。

在使用等比数列的求和公式时,需要注意一些特殊情况。

当公比|r|小于1时,等比数列的前n项和随着n的增加而趋近于一个常数,即Sn的极限存在;当公比|r|大于1时,等比数列的前n项和随着n的增加呈无穷趋近于正无穷或负无穷;当公比|r|等于1时,等比数列不存在有限的前n项和,但存在极限。

高考数学一轮复习数列求和

高考数学一轮复习数列求和

解:(1)因为 an=2n,所以 a1=2,a2=4, 当 n=1 时,由题设可得 a1b1=2-21-1, 即 2b1=12,所以 b1=14; 当 n=2 时,由题设可得 a2b1+a1b2=22-22-1, 即 1+2b2=2,所以 b2=12. 当 n≥2 时,由题设可得 2nb1+2n-1b2+…+22bn-1+2bn=2n-n2-1, ①
a1+6d=9, [解] (1)设公差为 d,由 S4=18,a7=9,即4a1+4×42-1d=18,
解得ad1==13,, 所以 an=a1+(n-1)d=n+2.
(2)由 an=log2(bn+1),即 log2(bn+1)=n+2,所以 bn+1=2n+2,即
bn=2n+2-1,所以bn2bnn+1=2n+2-12n2n+3-1=142n+12-1-2n+13-1,所以
[典例] (2023·石家庄二中模拟)已知公差不为 0 的等差数列{an}中,
a2=3 且 a1,a2,a5 成等比数列.
(1)求数列{an}的通项公式; (2)求数列{3nan}的前 n 项和 Tn.
[解题微点] (1)根据等差数列的通项公式和等比中项可求出结果;
切入点 (2)根据错位相减法可求出结果
2n-1b1+2n-2b2+…+2bn-1=2n-1-n-2 1-1,此式两边同乘以 2,得 2nb1+2n-1b2+…+22bn-1=2n-n-1, ②
由①-②得 2bn=n2,即 bn=n4. 又由上可知,b1=14也适合上式, 故数列{bn}的通项公式为 bn=n4(n∈N *).
(2)由(1)知,cn=16×nn-n+112n =16×n2+n+11-2nn,则 c1+c2+…+cn =16×222-21+233-222+…+n2+n+11-2nn =16×n2+n+11-2.

高三数学一轮复习——数列求和及数列的综合应用

高三数学一轮复习——数列求和及数列的综合应用

高三数学一轮复习——数列求和及数列的综合应用考试要求 1.熟练掌握等差、等比数列的前n 项和公式;2.掌握非等差数列、非等比数列求和的几种常见方法;3.了解数列是一种特殊的函数;4.能在具体问题情境中,发现等差、等比关系,并解决相应的问题.知 识 梳 理1.特殊数列的求和公式(1)等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . (2)等比数列的前n 项和公式:S n =⎩⎨⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1. 2.数列求和的几种常用方法(1)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解.(4)倒序相加法如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.3.数列应用题常见模型(1)等差模型:如果后一个量比前一个量增加(或减少)的是同一个固定值,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是同一个固定的非零常数,该模型是等比模型,这个固定的数就是公比.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,应考虑a n 与a n +1(或者相邻三项等)之间的递推关系,或者S n 与S n +1(或者相邻三项等)之间的递推关系.[微点提醒]1.1+2+3+4+…+n =n (n +1)2. 2.12+22+…+n 2=n (n +1)(2n +1)6. 3.裂项求和常用的三种变形(1)1n (n +1)=1n -1n +1. (2)1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1. (3)1n +n +1=n +1-n .基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”) (1)若数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( ) (2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( ) (3)求S n =a +2a 2+3a 3+…+na n 时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )(4)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n -12.( )解析 (3)要分a =0或a =1或a ≠0且a ≠1讨论求解.答案(1)√(2)√(3)×(4)√2.(必修5P47B4改编)数列{a n}中,a n=1n(n+1),若{a n}的前n项和为2 0192 020,则项数n为()A.2 018B.2 019C.2 020D.2 021解析a n=1n(n+1)=1n-1n+1,S n=1-12+12-13+…+1n-1n+1=1-1n+1=nn+1=2 0192 020,所以n=2019.答案 B3.(必修5P56例1改编)等比数列{a n}中,若a1=27,a9=1243,q>0,S n是其前n 项和,则S6=________.解析由a1=27,a9=1243知,1243=27·q8,又由q>0,解得q=13,所以S6=27⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎪⎫1361-13=3649.答案36494.(2018·东北三省四校二模)已知数列{a n}满足a n+1-a n=2,a1=-5,则|a1|+|a2|+…+|a6|=()A.9B.15C.18D.30解析由题意知{a n}是以2为公差的等差数列,又a1=-5,所以|a1|+|a2|+…+|a6|=|-5|+|-3|+|-1|+1+3+5=5+3+1+1+3+5=18.答案 C5.(2019·北京朝阳区质检)已知数列{a n},{b n}的前n项和分别为S n,T n,b n-a n=2n+1,且S n+T n=2n+1+n2-2,则2T n=________________.。

专题2数列的求和课件——高三数学一轮复习

专题2数列的求和课件——高三数学一轮复习
n( n k ) k n n k
1
1
1 1
1
3. 2

(

)
4n 1 (2n 1)(2n 1) 2 2n 1 2n 1
题型四 裂项相消法
4.
1
n 1 n
n n 1
1
1
5.
( n k n)
n nk k
1
6. log a (1 ) log a (n 1) log a n(a 0且a 1)
a14=b4.
(1)求{an}的通项公式; an=2n-1
bn=3n-1
(2)设cn=an+bn,求数列{cn}的前n项和Sn.

由题意知cn=an+bn=(2n-1)+3n-1,
则数列{cn}的前n项和为Sn=[1+3+…+(2n-1)]+(1+3+9+…+3n-1)
n1+2n-1 1-3n 2 3n-1
1
1
1
1
(

)] =
.
2n 1 2 n 3
6 4n 6
题型四 裂项相消法
练2
[2021·惠州市高三调研考试试题]记Sn为等差数列{an}的前n项和,
若a4+a5=20,S6=48.
(1)求数列{an}的通项公式;
1
1
(2)设bn=
,Tn为数列{bn}的前n项和,证明Tn< .
+1
3S n 1 (2)1 (2) 2 (2) n 1 n (2) n
n
1
(3
n

1)(

2)
1 (2) n
=
n (2) n . 所以 S n

数列求和课件高三数学一轮复习(完整版)

数列求和课件高三数学一轮复习(完整版)

考点一 分组(并项)法求和
【点拨】分组求和法就是对一类既不是(或不明显是)等差数列,也不 是(或不明显是)等比数列的数列,若将这类数列适当拆开,分为几个 等差、等比数列或常见的数列,然后分别求和,最后将其合并的方法.
考点二 裂项相消法求和
考点三 倒序相加法求和
考点四 错位相减法求和
祝你学业有成
2024年5月3日星期五9时47分29秒
6.4 数列求和
【常用结论】
1.判断下列命题是否正确,正确的在括号内画“√”,错误的著,程大位著,共17卷,书中有这样一个 问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到 其关,要见次日行里数,请公仔细算相还.”大致意思是:有一个人要到距离 出发地378里的地方,第一天健步行走,从第二天起因脚痛每天走的路程为 _____.

高三一轮复习专题:数列通项公式与求和方法总结(精编文档).doc

高三一轮复习专题:数列通项公式与求和方法总结(精编文档).doc

【最新整理,下载后即可编辑】专题一:数列通项公式的求法详解(八种方法)关键是找出各项与项数n 的关系.) 4项,写出它的一个通项公式: (1)9,99,999,9999,…(2) ,17164,1093,542,211(3) ,52,21,32,1(4) ,54,43,32,21-- 答案:(1)110-=nn a(2);122++=n n n a n(3);12+=n a n (4)1)1(1+⋅-=+n n a n n .公式法1:特殊数列例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),(1)求数列{ a n }和{ b n }的通项公式;答案:a n =a 1+(n -1)d = 2(n -1); b n =b ·q n -1=4·(-2)n -1例3. 等差数列{}n a 是递减数列,且432a a a ⋅⋅=48,432a a a ++=12,则数列的通项公式是( )(A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n (D)例 4. 已知等比数列{}n a 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n n a a b ,求数列{}n b 的通项公式.简析:由题意,321++++=n n n a a b ,又{}n a 是等比数列,公比为q ∴q a a a a b b n n n n n n =++=+++++21321,故数列{}n b 是等比数列,易得)1()1(1+=⋅+=-q q q q q b n n n .点评:当数列为等差或等比数列时,可直接利用等差或等比数列的通项公式,只需求首项及公差公比. 公式法2: 知n s 利用公式 ⎩⎨⎧≥-==-2,1,11n S S n s a n n n .例5:已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式.(1)13-+=n n S n .(2)12-=n s n答案:(1)n a =3232+-n n ,(2)⎩⎨⎧≥-==)2(12)1(0n n n a n 点评:先分n=1和2≥n 两种情况,然后验证能否统一.【型如)(1n f a a n n +=+的地退关系递推关系】a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ② 若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;③若f(n)是关于n 的二次函数,累加后可分组求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和各式相加得 例5:已知数列6,9,14,21,30,…求此数列的一个通项. .答案:)(52N n n a n ∈+=例6. 若在数列{}n a 中,31=a ,n n n a a 21+=+,求通项n a .答案:n a =12+n例7.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式. 答案:a n12-=【 形如1+n a =f (n)·n a 型】(1)当f(n)为常数,即:q a a nn =+1(其中q 是不为0的常数),此时数列为等比数列,n a =11-⋅n q a .(2)当f(n)为n 的函数时,用累乘法.例8:在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式. 例9: 已知数列{}n a 中,311=a ,前n 项和n S 与n a 的关系是 n n a n n S )12(-=,试求通项公式n a . .答案:.)12(12(1-+=n n a n思考题1:已知1,111->-+=+a n na a n n ,求数列{a n }的通项公式.分析:原式化为 ),1(11+=++n n a n a 若令1+=n n a b ,则问题进一步转化为n n nb b =+1形式,累积得解.构造1:【形如0(,1≠+=+c d ca a n n ,其中a a =1)型】 (1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法如下:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得)0(,1≠-=c c dλ,所以:)1(11-+=-+-c d a c c d a n n ,即⎭⎬⎫⎩⎨⎧-+1c d a n 构成以11-+c d a 为首项,以c 为公比的等比数列.例10:已知数}{n a 的递推关系为121+=+n n a a ,且11=a 求通项na .答案:12-=n n a构造2:相邻项的差为特殊数列例11:在数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求na .提示:变为)(31112n n n n a a a a --=-+++.构造3:倒数为特殊数列【形如sra pa a n n n +=--11】 例12: 已知数列{n a }中11=a 且11+=+n nn a a a (N n ∈),,求数列的通项公式. 答案nb a n 11==}{n c 的各项是一个等差数列与一个等比数列对应项的和,若c 1=2,c 2=4,c 3=7,c 4=12,求通项公式c n解析:设1)1(-+-+=n n bq d n a c 建立方程组,解得.点评:用待定系数法解题时,常先假定通项公式或前n 项和公式为某一多项式,一般地,若数列}{n a 为等差数列:则c bn a n +=,cn bn s n +=2(b 、c为常数),若数列}{a 为等比数列,则1-=n n Aq a ,)1,0(≠≠-=q Aq A Aq s n n .:(1)数列{n a }满足01=a ,且)1(2121-=++++-n a a a a n n ,求数列{a n }的通项公式. 解析:由题得 )1(2121-=++++-n a a a a n n ① 2≥n 时, )2(2121-=+++-n a a a n ②由①、②得⎩⎨⎧≥==2,21,0n n a n .(2)数列{n a }满足11=a ,且2121n a a a a nn =⋅⋅- ,求数列{a n }的通项公式(3)已知数列}{n a 中,,2121,211+==+n n a a a 求通项n a . 八、【讨论法-了解】(1)若d a a n n =++1(d 为常数),则数列{n a }为“等和数列”,它是一个周期数列,周期为其通项分为奇数项和偶数项来讨论. (2)形如)(1n f a a n n =⋅+型①若p a a n n =⋅+1(p 为常数),则数列{n a }为“等积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论;②若f(n)为n 的函数(非常数)时,可通过逐差法得)1(1-=⋅-n f a a n n ,两式相除后,分奇偶项来分求通项.例15: 数列{n a }满足01=a ,21=++n n a a ,求数列{a n }的通项公式. 专题二:数列求和方法详解(六种方法)1、等差数列求和公式:d n n na a a n a a n a a n S n n n n 2)1(2)(2)(2)(123121-+==+=+=+=-- 2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn [例1]已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 答案xx x s n n --=1)1([例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.答案n =8时,1)(max =n f n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①(1≠x )解析:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积:设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=…②①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:nn n x n xx x S x )12(1121)1(1----⋅+=--.∴21)1()1()12()12(x x x n x n S n n n -+++--=+.试一试1:求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.答案: 124-+-=n n n Sn 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +,然后再除以2得解.[例4] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值 .答案S =44.5当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.一般分两步:①找通向项公式②由通项公式确定如何分组; [例5] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 答案2)13(11n n a a a s n n -+--=-.试一试1 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和 .简析:由于与n kka =-=⋅⋅⋅⨯=⋅⋅⋅)110(9199999111111个、分别求和. . 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项及分母有理化)如:(1))()1(n f n f a n -+= ; (2)11++=n n a n =n n -+1;(3)n n n n tan )1tan()1cos(cos 1sin -+=+;4)111)1(1+-=+=n n n n a n(5))121121(211)12)(12()2(2+--+=+-=n n n n n a n . [例6] 求数列⋅⋅⋅++⋅⋅⋅++,21,,421,311n n 的前n 项和. [例7] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.试一试1:已知数列{a n }:)3)(1(8++=n n a n ,求前n 项和. 试一试2:1003211321121111+++++++++++ ..方法简介:针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例8] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.答案 0[例9] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.(周期数列)[例10] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值; 答案 10。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二讲 数列求和及数列综合应用一、选择题1.若等比数列{a n }的前n 项和S n ,且S 10=18,S 4,则S 40等于 ( ) A.803 B.763 C.793 D.823解析:根据分析易知:∵S 10=18,S 10=6,∴S 30-S ,S 40-S 30=23,∴S 40=803,故选A.答案:A2.数列{a n }的通项公式a n =1n +n +1,若{a n }的前n 项和为24,则n 为( )A .25B .576C .624D .625 解析:a n =1n +n +1=-(n -n +1),前n 项和S n =-[(1-2)+(2-3)+…+(n -n +1)]=n +1-1=24,故n =624.选C. 答案:C3.(·大连模拟)设S n 为数列{a n }的前n 项之和,若不等式a 2n +S 2n n2≥λa 21对任何等差数列{a n }及任何正整数n 恒成立,则λ的最大值为 ( ) A .0 B.15 C.12D .1解析:a 1=0时,不等式恒成立,当a 1≠0时,λ≤a 2n a 21+S2n n 2a21,将a n =a 1+(n -1)d ,S n =na 1+n n -d2代入上式,并化简得:λ≤54⎣⎢⎡⎦⎥⎤n -d a 1+652+15, ∴λ≤15,∴λmax=15. 答案:B4.已知数列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈N *),则a ( ) A .0 B .- 3 C. 3 D.32解析:∵a 1=0,a n +1=a n -33a n +1, ∴a 2=-3,a 3=3,a 4=0,…. 从而知3为最小正周期, 从而a 3×6+2=a 2=- 3. 答案:B5.(·广东)已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n(n ≥3),则当n ≥1 时,log 2a 1+log 2a 3+…+log 2a 2n -1= ( ) A .(n -1)2B .n 2C .(n +1)2D .n (2n -1) 解析:∵a 5·a 2n -5=22n=a 2n ,a n >0, ∴a n =2n,∴log 2a 1+log 2a 3+…+log 2a 2n -1=log 2(a 1a 3…a n -1)=log 221+3+…+(2n -1)=log 22n 2=n 2.故选B. 答案:B 二、填空题6.设数列{a n }的前n 项和为S n ,S n =a 1n-2(n ∈N *),且a 4=54,则a 1=________.解析:由于S n =a 1n-2(n ∈N *),则a 4=S 4-S 3=a 1-2-a 1-2=27a 1,且a 4=54,则a 1=2.答案:27.设等差数列{a n }的前n 项和为S n ,若a 5=5a 3,则S 9S 5=________. 解析:设等差数列的公差为d ,首项为a 1, 则由a 5=5a 3知a 1=-32d ,∴S 9S 5=a 1+4da 1+2d=9.答案:98.设等差数列{a n }的前n 项和为S n ,若S 4≥10,S 5≤15,则a 4的最大值为________. 解析:设等差数列的首项为a 1,公差为d , 则S 4=4a 1+6d ≥10,即2a 1+3d ≥5,S 5=5a 1+10d ≤15,即a 1+2d ≤3.又a 4=a 1+3d ,因此求a 4的最值可转化为在线性约束条件⎩⎪⎨⎪⎧2a 1+3d ≥5,a 1+2d ≤3限制之下的线性目标函数的最值问题,作出可行域如图,可知在当a 4=a 1+3d ,经 过点A (1,1)时有最大值4. 答案:49.(·福建)五位同学围成一圈依序循环报数,规定:①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所 报出的数都是前两位同学所报出的数之和;②若报出的数为3的倍数,则报该数的同学需拍手一次.已知甲同学第一个报数,当五位同学依序循环报到第100个数时,甲同学拍手的总 次数为________.解析:1,1,2,3,5,8,13,21,…该数列被3除所得的余数构成的数列为1,1,2,0,2,2, 1,0,…所得新数列中每4个数出现一个0,而又有5名同学,因而甲同学报的数为3的倍 数的间隔为以甲同学报的数为3的倍数的数依次是第16,36,56,76,96次,共5 个数,故答案为5. 答案:5 三、解答题10.(·济南模拟)已知等比数列{a n }的前n 项和为S n =k ·2n+m ,k ≠0,且a 1=3.(1)求数列{a n }的通项公式;(2)设b n =na n,求数列{b n }的前n 项和T n .解:(1)方法一:依题意有⎝ ⎛3=2k +m ,3+a 2=4k +m ,3+a 2+a 3=8k +m .①解得a 2=2k ,a 3=4k ,∴公比为q =a 3a 2=2,a 23=2k3=2,k =3,代入①得m =-3,∴a n =3·2n -1.方法二:n ≥2时,a n =S n -S n -1=2n -1·k .由a 1=3得k =3,∴a n =3·2n -1,又a 1=2k +m =3,∴m =-3. (2)b n =n a n =n 3·2n -1,T n =13⎝ ⎛⎭⎪⎫1+22+322+…+n 2n -1, ② 12T n =13⎝ ⎛⎭⎪⎫12+222+ …+n -12n -1+n 2n , ③②-③得12T n =13⎝ ⎛⎭⎪⎫1+12+222+…+12n -1-n 2n ,T n=23⎣⎢⎡⎦⎥⎤1·⎝ ⎛⎭⎪⎫1-12n1-12-n 2n=43⎝ ⎛⎭⎪⎫1-12n-n2n +1.11.(·浙江五校联考)已知数列{a n }的前n 项和是S n ,且S n +12a n =1.(1)求数列{a n }的通项公式;(2)设b n =log 3(1-S n +1),求适合方程1b 1b 2+1b 2b 3+…+1b n b n +1=2551的n 的值. 解:当n =1时,a 1=S 1,由S 1+12a 1=1,得a 1=23.当n ≥2时,∵S n =1-12a n ,S n -1=1-12a n -1,∴S n -S n -1=12(a n -1-a n ),即a n =12(a n -1-a n ),∴a n =13a n -1.∴{a n }是以23为首项,13为公比的等比数列,故a n =23·⎝ ⎛⎭⎪⎫13n -1=2·⎝ ⎛⎭⎪⎫13n.(2)∵1-S n =12a n =⎝ ⎛⎭⎪⎫13n,b n =log 3(1-S n +1)=log 3⎝ ⎛⎭⎪⎫13n +1=-n -1,∴1b n b n +1=1n +1n +2=1n +1-1n +2, ∴1b 1b 2+1b 2b 3+…+1b n b n +1=⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=12-1n +2. 解方程12-1n +2=2551,得n =100.12.已知函数f (x )=x +3x +1(x ≠-1),设数列{a n }满足a 1=1,a n +1=f (a n ),数列{b n }满足 b n =|a n -3|,S n =b 1+b 2+…+b n (n ∈N *).(1)用数学归纳法证明:b n ≤3-n2n -1;(2)证明:S n <233.证明:(1)当x ≥0时,f (x )=1+2x +1>1. 因为a 1=1,所以a n ≥1(n ∈N *). 下面用数学归纳法证明不等式b n ≤3-n2n -1.①当n =1时,b 1=3-1,不等式成立. ②假设当n =k 时,不等式成立,即b k ≤3-k2k -1,那么b k +1=|a k +1-3|=3-a k -3|1+a k ≤3-12b k ≤3-k +12k .所以,当n =k +1时,不等式也成立. 根据①和②,可知不等式对任意n ∈N *都成立. (2)由(1)知b n ≤3-n2n -1.所以S n =b 1+b 2+…+b n ≤(3-1)+3-22+…+3-n2n -1=(3-1)·1-⎝⎛⎭⎪⎫3-12n1-3-12<(3-1)·11-3-12=23 3. 故对任意n ∈N *,S n <233.。

相关文档
最新文档