平行四边形性质和判定习题精选A3版(详解答案)

合集下载

平行四边形的性质与判定(含答案)

平行四边形的性质与判定(含答案)
12.如图,以 的顶点 为圆心,以 长为半径画弧;再以顶点 为圆心,以 长为半径画弧,两弧交于点 ;连接 、 .若 ,则 的大小为度.
13.如图所示,平行四边形 的周长为 , , 相交于点 , 交 于点 ,则 的周长是.
14.如图,四边形 中, , 是 上一点,连接 并延长交 延长线于点 ,请你只添加一个条件:使得四边形 为平行四边形.
(1)求证: ;
(2)求证: .
19.已知四边形 是平行四边形(如图),把 沿对角线 翻折 得到 .
(1)利用尺规作出 .(要求保留作图痕迹,不写作法);
(2)设 与 交于点 ,求证: .
20.如图, , 是平行四边形 对角线 上的点, .请你想一想: 与 有怎样的位置关系和数量关系?并对你的猜想加以证明.
A. B.
C. D.
2.平行四边形的对角线一定具有的性质是( )
A.相等B.互相平分
C.互相垂直D.互相垂直且相等
3.如右图,将一张直角三角形纸片 沿中位线 剪开后,在平面上将 绕着 的中点 逆时针旋转 ,点 到了点 的位置,则四边形 是
A.平行四边形B.矩形C.菱形D.正方形
4.下列命题中,真命题的个数有
15.平行四边形相邻两边长之比为 ,它的周长为 ,则这个平行四边形较长的边长为 .
16.如图.在平行四边形 中,点 , 分别在边 , 上.请添加一个条件使四边形 是平行四边形(只填一个即可).
三、解答题(共6小题;共52分)
17.如图,平行四边形 中,点 , 分别在 , 上,且 ,求证: .
18.如图,四边形 是平行四边形, , 是对角线 上的点, .
第二部分
11.
12.
13.
14. (答案不唯一)

专题04 平行四边形的性质和判定(解析版)

专题04 平行四边形的性质和判定(解析版)

专题04 平行四边形的性质和判定姓名:___________考号:___________分数:___________(考试时间:100分钟 满分:120分)一、 选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知四边形ABCD ,AC 与BD 相交于点O ,如果给出条件AB ∥CD ,那么还不能判定四边形ABCD 为平行四边形,以下四种说法正确的是( )①如果再加上条件BC =AD ,那么四边形ABCD 一定是平行四边形;②如果再加上条件∠BAD =∠BCD ,那么四边形ABCD 一定是平行四边形;③如果再加上条件AO =CO ,那么四边形ABCD 一定是平行四边形;④如果再加上条件∠DBA =∠CAB ,那么四边形ABCD 一定是平行四边形.A .①④B .①③④C .②③D .②③④【答案】C【分析】根据已知,结合平行四边形的判定,逐一判断即可.【解析】解:①也可能是等腰梯形.②可得AD ∥BC ,故正确.③可判定△ABO ≌△CDO ,就有AB =CD ,故可判定为平行四边形,正确.④也可能是等腰梯形.故选:C .【点睛】本题主要考查了平行四边形的判定,准确分析判断是解题的关键.2.如图,在ABCD 中,3AB =,4=AD ,60ABC ∠=︒,过BC 的中点E 作EF AB ⊥,垂足为点F ,与DC 的延长线相交于点H ,则DEF 的面积是( )A .63B .3C .3D .623+【答案】C【分析】 根据平行四边形的性质得到AB =CD =3,AD =BC =4,求出BE 、BF 、EF ,根据相似得出CH =1,EH 3,根据三角形的面积公式求△DFH 的面积,即可求出答案.【解析】解:∵四边形ABCD 是平行四边形,∴AD =BC =4,AB ∥CD ,AB =CD =3,∵E 为BC 中点,∴BE =CE =2,∵∠B =60°,EF ⊥AB ,∴∠FEB =30°,∴BF =1,由勾股定理得:EF 3∵AB ∥CD ,∴∠B =∠ECH ,在△BFE 和△CHE 中,B ECH BE CE BEF CEH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BFE ≌△CHE (ASA ),∴EF =EH 3,CH =BF =1,∴DH=4,∵S △DHF =12DH •FH =43∴S △DEF =12S △DHF =23, 故选:C .【点睛】本题主要考查对平行四边形的性质,平行线的性质,勾股定理,含30度角的直角三角形,三角形的面积,三角形的内角和定理等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.3.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC 于E ,AB =3,AC =2,BD =4,则AE 的长为( )A 3B .32C 21D 221 【答案】D【分析】由勾股定理的逆定理可判定△BAO 是直角三角形,所以平行四边形ABCD 的面积即可求出.【解析】解:∵AC =2,BD =4,四边形ABCD 是平行四边形, ∴AO =12AC =1,BO =12BD =2, ∵AB 3∴AB 2+AO 2=BO 2,∴∠BAC =90°,∵在Rt △BAC 中,BC ()2222327AB AC +=+=S △BAC =12×AB ×AC =12×BC ×AE , 3×27AE ,∴AE=2217,故选:D.【点睛】本题考查了勾股定理的逆定理和平行四边形的性质,能得出△BAC是直角三角形是解此题的关键.4.如图,□ABCD中,对角线AC、BD相交于O,过点O作OE⊥AC交AD于E,若AE=4,DE=3,AB=5,则AC的长为()A.2B.2C.2D.522【答案】B【分析】根据平行四边形的性质和垂直平分线的性质得到CE=AE=4,用勾股定理逆定理证明∠CED=90°,得到△AEC是等腰直角三角形,最后求出AC的长.【解析】解:连接CE,∵四边形ABCD是平行四边形,∴AO=CO,CD=AB=5∵OE⊥AC,∴OE垂直平分AC,∴CE=AE=4,∵DE=3,∴CE2+DE2=42+32=52=CD2,∴∠CED=90°,∴∠AEC=90°,∴△AEC是等腰直角三角形,∴AC2=2故选:B.【点睛】本题考查平行四边形的性质,垂直平分线的性质,勾股定理逆定理和等腰直角三角形的性质,解题的关键是熟练掌握这些性质定理进行求解.5.如图,四边形ABCD中,AB∥CD,BC∥AD,点E、F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.∠1=∠2 B.BF=DE C.AE=CF D.∠AED=∠CFB【答案】C【分析】利用平行四边形的判定与性质以及全等三角形的判定分别得出选项A、B、D正确,选项C不正确,即可得出结论.【解析】解:∵AB∥CD,BC∥AD,∴四边形ABCD是平行四边形,∠ABE=∠CDF,∴AB=CD,当添加∠1=∠2时,由ASA判定△ABE≌△CDF,∴选项A正确;当添加BF=DE时,BE=DF,由SAS判定△ABE≌△CDF,∴选项B正确;当添加AE=CF时,由SSA不能判定△ABE≌△CDF,∴选项C不正确;当∠AED=∠CFB时,由AAS判定∠AED=∠CFB,∴选项D正确;故选:C.本题考查了平行四边形的判定与性质、全等三角形的判定等知识,熟练掌握全等三角形的判定方法是解题的关键.6.如图,▱ABCD 的对角线AC ,BD 相交于点O ,且AC +BD =18,CD =6,则△ABO 的周长是( )A .10B .15C .20D .22【答案】B【分析】 直接利用平行四边形的性质得出AO=CO ,BO=DO ,DC=AB=6,再利用已知求出AO+BO 的长,进而得出答案.【解析】∵四边形ABCD 是平行四边形,∴AO=CO ,BO=DO ,DC=AB=6,∵AC+BD=18,∴AO+BO=9,∴△ABO 的周长是:AO+BO+ AB =15.故选:B .【点睛】本题主要考查了平行四边形的性质,正确得出AO+BO 的值是解题关键.7.如图,在ABCD 中,点,E F 分别在边BC AD ,上.若从下列条件中只选择一个添加到图中的条件中:①//AE CF ;②AE CF =;③BE DF =;④BAE DCF ∠=∠.那么不能使四边形AECF 是平行四边形的条件相应序号是( )A .①B .②C .③D .④【答案】B利用平行四边形的性质,依据平行四边形的判定方法,即可得出不能使四边形AECF是平行四边形的条件.【解析】解:①∵四边形ABCD平行四边形,∴AD//BC,∴AF//EC,∵AE∥CF,∴四边形AECF是平行四边形;②∵AE=CF不能得出四边形AECF是平行四边形,∴条件②符合题意;③∵四边形ABCD平行四边形,∴AD=BC,AD∥BC,又∵BE=DF,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.④∵四边形ABCD是平行四边形,∴∠B=∠D,∵∠BAE=∠DCF,∴∠AEB=∠CFD.∵AD∥BC,∴∠AEB=∠EAD.∴∠CFD=∠EAD.∴AE∥CF.∵AF∥CE,∴四边形AECF是平行四边形.综上所述,不能使四边形AECF是平行四边形的条件有1个.故选:B.【点睛】本题考查了平行四边形的性质定理和判定定理,以及平行线的判定定理;熟记平行四边形的判定方法是解决问题的关键.8.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=100°,则∠DAE的度数为()A.20°B.25°C.30°D.35°【答案】A【分析】由▱ABCD与▱DCFE的周长相等,可得到AD=DE即△ADE是等腰三角形,再由且∠BAD=60°,∠F=100°,即可求出∠DAE的度数.【解析】∵▱ABCD与▱DCFE的周长相等,且CD=CD,∴AD=DE,∵∠DAE=∠DEA,∵∠BAD=60°,∠F=100°,∴∠ADC=120°,∠CDE═∠F=100°,∴∠ADE=360°﹣120°﹣100°=140°,∴∠DAE=(180°﹣140°)÷2=20°,故选A.【点睛】本题考查了平行四边形的性质:平行四边形的对边相等、平行四边形的对角相等以及邻角互补和等腰三角形的判定和性质、三角形的内角和定理.9.如图,△ACE是以□ABCD的对角线AC为边的等边三角形,点C与点E关于x轴对称.若E点的坐标是(7,-33),则D点的坐标是( )A.(4,0) B.(92,0) C.(5,0) D.(112,0)【答案】C【解析】解:如图,∵点C与点E关于x轴对称,E点的坐标是(7,3,∴C的坐标为(7,3,∴CH3CE3∵△ACE是以▱ABCD的对角线AC为边的等边三角形,∴AC3∴AH=9,∵OH=7,∴AO=DH=2,∴OD=5,∴D 点的坐标是(5,0),故答案为(5,0).【点睛】本题考查了平行四边形的性质、等边三角形的性质、点关于x 轴对称的特点以及勾股定理的运用. 10.如图,P 为□ABCD 对角线BD 上一点,△ABP 的面积为S 1,△CBP 的面积为S 2,则S 1和S 2的关系为 ( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .无法判断【答案】B【解析】 分析:根据平行四边形的性质可得点A 、C 到BD 的距离相等,再根据等底等高的三角形的面积相等.解析:∵在□ABCD 中,点A 、C 到BD 的距离相等,设为h.∴S 1= S △ABP =12BP h ,S 2= S △CPB =1 2BP h . ∴S 1=S 2,故选B.点睛:本题主要考查的平行四边形的性质,关键在于理解等底等高的三角形的面积相等的性质. 11.如图,ABCD 中,点E 在边BC 上,以AE 为折痕,将ABE △向上翻折,点B 正好落在CD 上的点F 处,若FCE △的周长为7,FDA △的周长为21,则FD 的长为( )A .5B .6C .7D .8 【答案】C【分析】由题意易得AB=AF ,FE=BE ,然后根据三角形的周长及线段的等量关系进行求解即可.【解析】解:由题意得:AB=AF ,FE=BE ,四边形ABCD 是平行四边形,∴BC=AD ,AB=DC=AF ,FCE △的周长为7,FDA △的周长为21,∴FE+EC+FC=7,AD+AF+DF=21,∴BC+FC=7,AF=DC=DF+FC ,∴7-FC+DF+FC+DF=21∴DF=7.故选C .【点睛】本题主要考查折叠的性质及平行四边形的性质,熟练掌握平息四边形及折叠的性质是解题的关键. 12.如图,在ABC 中,BD 平分ABC ∠,AF BD ⊥于点E ,交BC 于点F ,点G 是AC 的中点,若10BC =,7AB =,则EG 的长为( ).A .1.5B .2C .2.5D .3.5【答案】A【分析】 根据BD 平分ABC ∠,AF BD ⊥于点E ,得到AEB FEB △≌△,从而得AE EF =,AB FB =;结合题意,计算得FC 的值;再根据点G 是AC 的中点,通过EG 是ABC 的中位线的性质,即可完成解题.【解析】∵BD 平分ABC ∠,AF BD ⊥于点E∴90AEB FEB ∠=∠=,ABE FBE ∠=∠∵BE BE =∴AEB FEB △≌△∴AE EF =,AB FB =∵10BC =,7AB =∴3FC BC FB BC AB =-=-=∵点G 是AC 的中点∴EG 是ABC 的中位线 ∴1 1.52EG FC == 故选:A .二、填空题(本大题共6小题,每小题3分,共18分)13.已知ABCD □的周长为56,自顶点A 作AE DC ⊥于点E ,AF BC ⊥于点F ,若6AE =,8AF =,则CE CF -=_________________.【答案】4+4-【分析】先画出符合条件的两种情况的图形,再分别求解.【解析】解:∵平行四边形ABCD 的周长为56,∴BC+CD=28,∴BC=28-CD ,∵AE ⊥DC ,AF ⊥BC ,∴BC·AF=DC·AE ,∴8(28-DC )=6DC ,解得:DC=16,∴BC=12,∴AD=BC=12,AB=DC=16,在△ABF 中,BF==在△AED 中,=如图,CE=CD-DE=16-CF=BC-BF=12-∴CE-CF=4+23;如图,CE=CD+DE=16+63,CF=BC+BF=12+83,∴CE-CF=4-23,故答案为:4+23或4-23.【点睛】本题考查了平行四边形的性质,面积法,关键是正确画出图形,题目比较好,但是有一定的难度. 14.如图,▱ABCD 的面积为32,E ,F 分别为AB 、AD 的中点,则CEF △的面积为_____.【答案】12【分析】将三角形CEF △的面积分割为平行四边形ABCD 的面积减去AEF 、DEC 和BEC △的面积,利用面积比与底(高)比来解决.【解析】解:连接AC 、DE 、BD ,如图:∵E 为AB 中点,∴11=824BCE ABC ABCD S S S ==△△平行四边形,同理可得:=8CDF S △,∵F 为AD 中点, ∴111==4248AEF AED ABD ABCD S S S S ==△△△平行四边形, ∴=3288412CEF BCE CDF AEF ABCD S S S S S ---=---=△△△△平行四边形;故答案为:12.【点睛】本题考查了平行四边形的性质及三角形的面积等知识;熟练掌握平行四边形的性质是解题关键. 15.如图,在平行四边形ABCD 中,过点C 的直线CE ⊥AB ,垂足为E ,若∠BAD =127°,则∠BCE =____.【答案】37°【分析】由平行四边形的性质得出∠B+∠BAD=180°,可得∠B 的度数,由直角三角形的两上锐角互余得出∠BCE=90°-∠B 即可.【解析】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠B+∠BAD=180°,∵∠BAD=127°∴∠B=53°,∵CE ⊥AB ,∴∠E=90°,∴∠BCE=90°-∠B=90°-53°=37°,故答案为:37°.【点睛】本题考查了平行四边形的性质、直角三角形两锐角互余.熟练掌握平行四边形的性质,求出∠B 的度数是解决问题的关键.16.如图,AC 是ABCD 的对角线,点E 在AC 上,AD AE BE ==,102D =︒,则BAC ∠的度数是______.【答案】26︒【分析】由四边形ABCD 是平行四边形,得到∠ABC=∠D=102°,再AD=AE=BE ,得出∠EAB=∠EBA ,∠BEC=∠BCA ,继而得到∠ACB=2∠BAC ,再根据∠BAC+∠ACB=3∠BAC=180°-∠ABC 求解即可. 【解析】解:∵四边形ABCD 是平行四边形,∴AD=BC , ∠ABC=∠D=102°,∵AD=AE=BE ,∴BC=AE=BE ,∴∠EAB=∠EBA ,∠BEC=∠BCA ,∵∠BEC=∠EAB +∠EBA=2∠EAB ,∴∠ACB=2∠BAC ,∴∠BAC+∠ACB=3∠BAC=180°-∠ABC=180°-102°=78°,∴3∠BAC=78°,即∠BAC=26°,故答案为:26°.【点睛】本题考查平行四边形的性质、三角形外角的性质、等腰三角形的性质,解题的关键是综合运用相关知识.17.如图,在Rt ABC △中,90A ︒∠=,2AB =,点D 是BC 边的中点,点E 在AC 边上,若45DEC ︒∠=,那么DE 的长是__________.【答案】2【分析】过D作DF⊥AC于F,得到AB∥DF,求得AF=CF,根据三角形中位线定理得到DF=12AB=1,根据等腰直角三角形的性质即可得到结论.【解析】解:过D作DF⊥AC于F,∴∠DFC=∠A=90°,∴AB∥DF,∵点D是BC边的中点,∴BD=DC,∴AF=CF,∴DF=12AB=1,∵∠DEC=45°,∴△DEF是等腰直角三角形,∴DE=2DF=2,故答案为:2.【点睛】本题考查了三角形的中位线定理,平行线的判定和性质,等腰直角三角形的性质,正确的作出辅助线构造等腰直角三角形是解题的关键.18.如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=8,EF=1,则BC长为__________.【答案】15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB ,得出AF=AB=8,同理可得DE=DC=8,再由EF 的长,即可求出BC 的长.【解析】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,DC=AB=8,AD=BC ,∴∠AFB=∠FBC ,∵BF 平分∠ABC ,∴∠ABF=∠FBC ,则∠ABF=∠AFB ,∴AF=AB=8,同理可证:DE=DC=8,∵EF=AF+DE-AD=1,即8+8-AD=1,解得:AD=15;故答案为:15.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.在ABCD 中,E 、F 在BD 上,且BE DF =,点G 、H 分别在AD 、BC 上,且AG CH =,GH 与BD 交于点O ,(1)求证:EG HF =.(2)求证://EG HF .【答案】(1)见解析;(2)见解析【分析】(1)证明△DOG ≌△BOH ,得到GO=HO ,DO=BO ,从而说明四边形EGFH 是平行四边形,可得结论;(2)根据(1)中结论可直接说明.【解析】解:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠ADB=∠CBD ,∵AG=CH ,∴DG=BH ,又∠DOG=∠BOH ,∴△DOG ≌△BOH (AAS ),∴GO=HO ,DO=BO ,∵BE=DF ,∴EO=FO ,∴四边形EGFH 是平行四边形,∴EG=HF ;(2)∵四边形EGFH 是平行四边形,∴EG ∥HF .【点睛】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.20.如图,在四边形ABCD 中//AD BC ,5cm AD =,9cm BC =,M 是CD 的中点,P 是BC 边上的一动点(P 与B ,C 不重合),连接PM 并延长交AD 的延长线于Q .(1)试说明不管点P在何位置,四边形PCQD始终是平行四边形.(2)当点P在点B,C之间运动到什么位置时,四边形ABPQ是平行四边形?并说明理由.【答案】(1)见解析;(2)PC=2时【分析】(1)由“ASA”可证△PCM≌△QDM,可得DQ=PC,即可得结论;(2)得出P在B、C之间运动的位置,根据一组对边平行且相等的四边形是平行四边形得出结论.【解析】解:(1)∵AD∥BC,∴∠QDM=∠PCM,∵M是CD的中点,∴DM=CM,∵∠DMQ=∠CMP,DM=CM,∠QDM=∠PCM,∴△PCM≌△QDM(ASA).∴DQ=PC,∵AD∥BC,∴四边形PCQD是平行四边形,∴不管点P在何位置,四边形PCQD始终是平行四边形;(2)当四边形ABPQ是平行四边形时,PB=AQ,∵BC-CP=AD+QD,∴9-CP=5+CP,∴CP=(9-5)÷2=2.∴当PC=2时,四边形ABPQ是平行四边形.【点睛】本题考查了平行四边形的判定和性质,全等三角形判定和性质,熟练掌握平行四边形的性质和判定方法是解题的关键.21.如图,将ABCD的AD边延长至点E,使得12DE AD,连结CE,F是BC边的中点,连结FD.(1)求证:四边形CEDF 是平行四边形;(2)若3AB =,4=AD ,60A ︒∠=,求CE 的长.【答案】(1)见解析;(27【分析】(1)利用平行四边形的性质得出AD =BC ,AD ∥BC ,进而利用已知得出DE =FC ,DE ∥FC ,进而得出答案;(2)首先过点D 作DN ⊥BC 于点N ,再利用平行四边形的性质结合勾股定理得出DF 的长,进而得出答案.【解析】解:(1)证明:∵四边形ABCD 是平行四边形,∴//AD BC ,AD BC =,∴//DE FC .∵F 是BC 的中点, ∴1122FC BC AD ==, ∵12DE AD =, ∴FC DE =,∴四边形CEDF 是平行四边形;(2)过点D 作DN ⊥BC 于点N ,如图:则∠DNC=90°,∵四边形ABCD 是平行四边形,∠A=60°,∴CD=AB=3,BC=AD=4,∠BCD=∠A=60°,∠CDN=30°,∵F 是BC 边的中点,∴FC=12BC=2,NC=12DC=32,22CD CN -332∴FN=FC-NC=12, ∴DF=EC=22DN FN +=7.【点睛】此题主要考查了平行四边形的判定与性质以及勾股定理等知识,熟练应用平行四边形的判定方法是解题关键. 22.如图,已知ABC 是等边三角形,点D 在BC 边上,ADF 是以AD 为边的等边三角形,过点F 作BC 的平行线交线段AC 于点E ,连接BF ,求证:(1)AFB ADC ≅;(2)四边形BCEF 是平行四边形.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)先根据等边三角形的性质可得,,60AF AD AB AC FAD BAC ==∠=∠=︒,再根据角的和差可得FAB DAC ∠=∠,然后根据三角形全等的判定定理即可得证;(2)先根据全等三角形的性质可得60ABF C ∠=∠=︒,从而可得ABF BAC ∠=∠,再根据平行线的判定可得//BF AC ,然后根据平行四边形的判定即可得证.【解析】(1)∵ABC 和ADF 都是等边三角形,∴,,60AF AD AB AC FAD BAC C ==∠=∠=∠=︒,FAD BAD BAC BAD ∴∠-∠=∠-∠,即FAB DAC ∠=∠,在AFB △和ADC 中,AF AD FAB DAC AB AC =⎧⎪∠=∠⎨⎪=⎩,∴()AFB ADC SAS ≅;(2)∵AFB ADC ≅,∴60ABF C ∠=∠=︒,又∵60BAC ∠=︒,∴ABF BAC ∠=∠,∴//BF AC ,又∵//BC EF ,∴四边形BCEF 是平行四边形.【点睛】本题考查了等边三角形的性质、三角形全等的判定定理与性质、平行四边形的判定等知识点,熟练掌握各判定定理与性质是解题关键.23.如图,在ABCD 中,AP 、BP 分别是DAB ∠和CBA ∠的角平分线,已知5AD =.(1)求线段AB 的长;(2)延长AP ,交BC 的延长线于点Q .①请在答卷上补全图形;②若6BP =,求ABQ △的周长.【答案】(1)10;(2)①见解析;②36【分析】(1)依据平行线的性质以及角平分线的定义即可得到DP =AD =5,CP =BC =5,进而得出AB 的长;(2)①根据题意画出图形;②依据平行线的性质以及角平分线的定义即可得到AB =QB ,再根据BP 平分∠ABQ ,即可得出BP ⊥AQ ,AP =QP ,依据勾股定理得出AP 的长,进而得到△ABQ 的周长.【解析】解:(1)∵在□ABCD中,AD=5,∴BC=5,∵AB∥CD,∴∠BAP=∠DPA,∵AP平分∠BAD,∴∠BAP=∠DAP,∴∠DAP=∠DPA,∴DP=AD=5,同理可得,CP=BC=5,∴CD=10,∴AB=10;(2)①如图所示:②∵AD∥BQ,∴∠Q=∠DAP,又∵∠DAP=∠BAP,∴∠Q=∠BAP,∴AB=QB=10,又∵BP平分∠ABQ,∴BP⊥AQ,AP=QP,∴Rt△ABP中,22AB BP=8,∴AQ=16,∴△ABQ的周长为:16+10+10=36.【点睛】本题主要考查了平行四边形的性质以及勾股定理的运用,解题时注意:平行四边形的对边平行,对边相等.24.如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AC BC =.(1)如图1,过B 作BE AC ⊥于E ,若8AC =,5BE =,求OE 的长;(2)如图2,若45BDC ∠=︒,过点C 作CF CD ⊥交BD 于点F ,过点B 作BG BC ⊥且BG BC =,连接AG .求证:2AG OF =.【答案】(139-4;(2)见解析.【分析】(1)由勾股定理可求CE 的长,由平行四边形的性质可得CO 的长,即可求OE 的长;(2)延长CF 交AB 于点H ,由“SAS”可证△ABG ≌△FCB ,可得AG=BF ,由等腰三角形的性质可得AB=CD=2BH ,再证明三角形BFH 为等腰直角三角形,从而得出BF=2BH ①;在Rt △CDF 中,得出222BH ,继而得出2BH ②,结合①②可得出结论. 【解析】(1)解:∵BC=AC=8,BE=5,BE AC ⊥,∴22642539BC BE -=-=∵四边形ABCD 是平行四边形,∴AO=CO=4,∴39;(2)证明:如图,延长CF 交AB 于点H ,∵CF⊥CD,∠BDC=45°,∴∠BDC=∠DFC=45°,∴∠FBC+∠FCB=45°,CF=CD,∵BC⊥BG,∠ABD=∠BDC=45°,∴∠GBA+∠FBC=45°,∴∠ABG=∠BCF,且AB=CD=CF,BC=BG,∴△ABG≌△FCB(SAS),∴AG=BF.∵∠ABG+∠ABC=90°,∴∠BCF+∠ABC=90°,∴CH⊥AB,又AC=BC,∴BH=AH,∴AB=CD=2BH.∵AB∥CD,∴∠ABF=∠CDB=45°,∴∠HBF=∠BFH=45°,∴BH=FH,∴2BH①.在Rt△CDF中,CD=CF,∴222BH,∴222BH,∴BO=12BD=322BH,∴OF=BO-BF=22BH②,∴由①②得,BF=2OF,∴AG=2OF.【点睛】本题考查了平行四边形的性质,全等三角形判定和性质,等腰三角形的判定与性质,勾股定理以及平行线的性质等知识点,正确作出辅助线,综合运用基本性质进行推理是解题的关键.。

平行四边形的性质与判定经典例题练习

平行四边形的性质与判定经典例题练习

平行四边形的性质与判定经典例题练习一、平行四边形的性质1. 定义:平行四边形是一种具有两对对边平行的四边形。

定义:平行四边形是一种具有两对对边平行的四边形。

2. 性质1:平行四边形的对边相等。

性质1:平行四边形的对边相等。

3. 性质2:平行四边形的对角线相等。

性质2:平行四边形的对角线相等。

4. 性质3:平行四边形的内角和为180度(即任意两个相邻内角之和为180度)。

性质3:平行四边形的内角和为180度(即任意两个相邻内角之和为180度)。

5. 性质4:平行四边形的两组对边分别互相平行并且相互等长。

性质4:平行四边形的两组对边分别互相平行并且相互等长。

二、平行四边形的判定1. 判定方法1:若一个四边形的对边分别平行且相等,则它是一个平行四边形。

判定方法1:若一个四边形的对边分别平行且相等,则它是一个平行四边形。

2. 判定方法2:若一个四边形的对角线互相相等,则它是一个平行四边形。

判定方法2:若一个四边形的对角线互相相等,则它是一个平行四边形。

三、经典例题练1. 例题1:已知四边形ABCD,AB = BC,且AD与BC互相平行,证明四边形ABCD是平行四边形。

例题1:已知四边形ABCD,AB = BC,且AD与BC互相平行,证明四边形ABCD是平行四边形。

2. 例题2:已知四边形EFGH,EF = GH,且EG与FH互相垂直,证明四边形EFGH是平行四边形。

例题2:已知四边形EFGH,EF = GH,且EG与FH互相垂直,证明四边形EFGH是平行四边形。

3. 例题3:判定以下四边形是否为平行四边形:(a)四边形ABCD,AB = CD,且AD与BC互相垂直;(b)四边形PQRS,PQ = SR,且PS与QR互相平行。

例题3:判定以下四边形是否为平行四边形:(a)四边形ABCD,AB = CD,且AD与BC互相垂直;(b)四边形PQRS,PQ = SR,且PS与QR互相平行。

- (a)根据对边平行和相等的判定方法,若AB = CD且AD与BC互相垂直,则四边形ABCD是平行四边形。

(完整版)平行四边形的性质习题(有答案)

(完整版)平行四边形的性质习题(有答案)

平行四边形的性质测试题一、选择题(每题 3 分共 30 分)1.下边的性质中,平行四边形不必定具备的是()A.对角互补B.邻角互补C.对角相等D.内角和为 360°2.在中,∠ A:∠ B:∠ C:∠ D 的值能够是()A .1:2:3:4B .1:2:1:2C .1:1:2:2 D.1: 2:2:13.平行四边形的对角线和它的边能够构成全等三角形()A.3对B.4 对 C .5对D. 6 对A D 4.以下图,在中,对角线 AC、BD交于点 O,?以下式子中一O 定建立的是()B CA.AC⊥ BD B . OA=OC C. AC=BD D .AO=OD5.以下图,在中, AD=5,AB=3,AE均分∠ BAD交BC A D边于点 E,则线段 BE、 EC的长度分别为()BE C A .2和3 B.3和2 C .4和1 D .1和46.的两条对角线订交于点 O,已知 AB=8cm,BC=6cm,△AOB的周长是 18cm,那么△ AOD的周长是()A .14cmB .15cmC .16cmD .17cm7.平行四边形的一边等于14,它的对角线可能的取值是()A .8cm和 16cmB .10cm和 16cmC . 12cm和 16cmD . 20cm和 22cm 8.如图,在中,以下各式不必定正确的选项是()A.∠ 1+∠ 2=180° B .∠ 2+∠ 3=180C.∠ 3+∠ 4=180°D.∠ 2+∠4=180°9.如图,在中,∠ ACD=70°,AE⊥ BD于点E,则∠ ABE等于()A、20°B、25° C 、 30° D 、35°10.如图,在△ MBN中, BM=6,点 A、C、D 分别在 MB、NB、MN上,四边形 ABCD为平行四边形,∠NDC=∠ MDA,那么的周长是()二、填空题(每题 3 分共 18 分)11.在中,∠ A:∠ B=4:5,则∠ C=______.12.在中, AB:BC=1:2,周长为 18cm,则 AB=______cm,AD=_______cm.13.在中,∠A=30°,则∠ B=______,∠C=______,∠D=________.14.如图,已知:点 O是的对角线的交点, ?AC=?48mm,?BD=18mm,AD=16mm,那么△ OBC的周长等于 _______mm.15.如图,在中,E、F是对角线BD上两点,要使△ ADF≌△ CBE,还需增添一个条件是 ________.16.如图,在中,EF∥ AD,MN∥ AB,那么图中共有_______?个平行四边形.三、解答题17.已知:如图,在中,E、F是对角线AC?上的两点,AE=CF.BE与DF的大小有什么关系,并说明原因。

平行四边形性质及判定练习题及答案

平行四边形性质及判定练习题及答案

平行四边形性质及判定练习题及答案1、如下图,在中,分别是边的中点,已知,则的长为()A.3 B.4 C.5 D.62、如图,在平行四边形ABCD中,AE⊥BC,垂足为E,AF⊥CD,垂足为F,若AE:AF=2 :3,平行四边形ABCD的周长为40,则AB的长为( )A.12 B.9 C.8 D.6 3、如图,在△ABC中,E,D,F分别是AB,BC,CA的中点,AB=6,AC=4,则四边形AEDF•的周长是()A.10 B.20 C.30 D.404、下列四个命题:(1)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形.其中正确的命题个数有()A. 4个 B.3个 C.2个 D. 1个5、如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是()A.1cm<OA<4cm B.2cm<OA<8cm C.2cm<OA<5cm D.3cm<OA<8cm6、如图,在▱ABCD中,BD为对角线,E、F分别是AD、BD的中点,连接EF.若EF=3,则CD的长为()A.3 B.6 C.8 D.127、如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4 B.3 C.2.5 D.28、如图,□ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3 cm,则AB的长为( )A.3 cm B.6 cm C.9 cm D.12 cm9、如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论不正确的是()10、A.DC∥AB B.OA=OC C.AD=BC D.DB平分∠ADC10、如图,将ABCD沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B为( )A. 124° B.114° C. 104° D.6611、在四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,A D∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中,一定能判定四边形ABCD是平行四边形的条件共有。

平行四边形的性质与判定(练习)

平行四边形的性质与判定(练习)

E DCBA 平行四边形的性质与判定(练习)【知识点】:1. 平行四边形的定义:2.平行四边形性质:⑴边: ;⑵角: ; ⑶对角线: ;(3)对称性:___________________________. 3.平行四边形判定:边:①___________________ ___②_____________ ___________③ ; 角: ; 对角线: ; 【基础训练】一.填空题 (3分×10 = 30分)1.在□ABCD 中,如果∠A +∠C =120°,那么∠B = °.2.已知平行四边形的周长为56㎝,两邻边之比为3:1,则四边形较长的边长为 . 3.已知□ABCD 中,AB = 6,BC 、AB 边上的高分别为6、4,则BC 边长为 . 4.已知□ABCD 中,∠A =60°,AB = 4㎝,AD = 6㎝,则□ABCD 的面积为 . 5.已知□ABCD 中,若∠B 的2倍与∠A 的补角的和为90°,则∠B = 度.6.已知□ABCD 的周长为20cm ,对角线相交于点O ,且△BOC 的周长比△AOB 的周长多2cm ,则AB = cm .7.如图1,已知□ABCD 中,AE =CF ,则图中有 对全等三角形.8.如图2,已知□ABCD 中,BC =12,AB =10,AE ⊥BC 于点E ,且AE =8,则AB 与CD 两边之间的距离为 .9.如图3,已知□ABCD 中,AB =6,AD =8,AE 平分∠BAD 交BC 于E ,则EC = .图1 图2 图310.在四边形ABCD 中,AB =CD ,要使这个四边形成为平行四边形,则可添加的一个条件可以是 . 二.选择题 (3分×6 = 18分)E DCB A1.平行四边形是 ( )(A )轴对称图形 (B )既是轴对称图形,又是中心对称图形 (C )中心对称图形 (D )既不是轴对称图形,也不是中心对称图形2.用两个全等的三角形(三边互不相等)拼成不同的四边形,其中不同的平行四边形的个数是 ( ) (A )1个 (B )2个 (C )3 个 (D )4个 3.下列条件中,能判断四边形是平行四边形的条件是( ) (A )一组对边平行 (B )四条边相等 (C )一组对边平行,另一组对边相等 (D )两条对角线相等4.已知□ABCD 的周长为40cm ,△ABC 的周长为25cm ,则对角线AC 长为( ) (A )5cm (B )15cm (C )6cm (D )16cm 5.如图4,已知四边形ABCD 和CEFG 都是平行四边形, 则下列等式中正确的是( )(A )∠1+∠8=1800(B )∠1+∠5=180° (C )∠4+∠6=180° (D )∠2+∠8=180°6.已知P 为□ABCD 的边AB 上的任一点,则△PCD 与 图4□ABCD 的面积的比S △PCD :S □ABCD 为( )(A )1:2 (B )1:3 (C )1:4 (D )不能确定 三、几何证明1.已知:如图,D 、F 分别是ΔABC 的边BC 、AC 的中点,点E 在线段DF 的延长线上,FE =DF 。

(2021年整理)平行四边形的判定习题精选(附答案)

(2021年整理)平行四边形的判定习题精选(附答案)

平行四边形的判定习题精选(附答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(平行四边形的判定习题精选(附答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为平行四边形的判定习题精选(附答案)的全部内容。

行四边形的判定习题精选一、你能填对吗1.用边长分别为2cm,3cm,4cm的两个全等三角形拼成四边形,共能拼成_________个四边形,______________个为平行四边形。

2.在四边形ABCD中,若AB=CD,再添加一个条件为__________,就可以判定四边形ABCD为平行四边形.3.延长△ABC的中线AD至E,使DE=AD,连接BE,CE,则AB_________CE,AC_________BE。

4.若四边形ABCD中,AC,BD相交于点O,要判定它为平行四边形,从角的关系看应满足___________,从对角线的关系看应满足_______________.5.已知E、F、G、H分别为ABCD各边的中点,则四边形EFGH为_______________.二、选一选6.能识别四边形ABCD是平行四边形的题设是()A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC D.AB=AD,CB=CD 7.点A,B,C,D在同一平面内,从①AB∥CD,②AB=CD,③BC∥AD,④BC=AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有( )A.3种 B.4种 C.5种 D.6种8.下列结论正确的是( )A.对角线相等且一组对角相等的四边形是平行四边形B.一边长为5cm,两条对角线长分别是4cm和6cm的四边形是平行四边形C.一组对边平行且一组对角相等的四边形是平行四边形D.对角线相等的四边形是平行四边形9.不能判定四边形ABCD是平行四边形的条件是()A.AB=CD,AD=BC B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD∥BC10.如图19-1-26,在ABCD中,E,F分别在BC,AD上,若想使四边形AFCE为平行四边形,须添加一个条件,这个条件可以是( ).①AF=CF;②AE=CF;③∠BAE=∠FCD;④∠BEA=∠FCE。

专题 平行四边形的性质和判定(解析版)

专题 平行四边形的性质和判定(解析版)

八年级下册数学《第十八章平行四边形》专题平行四边形的性质与判定【例题1】如图,在平行四边形ABCD中,CE平分∠BCD,交AB于点E,AE=3,EB=5,ED=4.则CE的长是( )A.B.C.D.【分析】由平行四边形的性质和角平分线的性质可证BE =BC =5,由勾股定理的逆定理可求∠AED =90°,由勾股定理可求CE 的长.【解答】解:∵AE =3,EB =5,∴AB =8,∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD =BC ,AB =CD =8,∴∠DCE =∠BCE ,∠AED =∠EDC ,∵CE 平分∠BCD ,∴∠DCE =∠BCE ,∴∠BCE =∠BEC ,∴BE =BC =5,∴AD =5,∵AD 2=25=16+9=DE 2+AE 2,∴∠AED =90°,∴∠AED =∠EDC =90°,∴CE =故选:D .【点评】本题考查了平行四边形的性质,角平分线的性质,勾股定理及勾股定理的逆定理,证明∠AED =90°是解题的关键.【变式1-1】如图,在平行四边形ABCD 中,AB =5,AD =7,AE 平分∠BAD 交BC 于点E ,作DG ⊥AE 于点G 并延长交BC 于点F ,则线段EF 的长为( )A .2B .52C .3D .【分析】据平行四边形的性质证明∠DAE =∠BEA ,∠ADF =∠CFD ,进而证明∠BAE =∠BEA 得到BE =BA=5,∠CDF=∠CFD得到CF=CD=5,由此即可得到答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,CD=AB=6,BC=AD=7,∴∠BAD+∠ADC=180°,∠DAE=∠BEA,∠ADF=∠CFD,∵AG⊥DG,∴∠AGD=90°,∴∠DAE+∠ADF=90°,∴∠BAE+∠CDF=∠BAD+∠ADC﹣∠DAE﹣∠ADF=90°,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∵∠BEA+∠CFD=90°,∴BE=BA=5,∠CDF=∠CFD,∴CE=BC﹣BE=2,CF=CD=5,∴EF=CF﹣CE=3,故选:C.【点评】本题主要考查了平行四边形的性质,等腰三角形的性质与判定,证明BE=BA=5,CF=CD=5是解题的关键.【变式1-2】如图,在▱ABCD中,O为对角线AC与BD的交点,AC⊥AB,E为AD的中点,并且OF ⊥BC,∠D=53°,则∠FOE的度数是( )A.143°B.127°C.53°D.37°【分析】先由等角的余角相等证明∠FOC=∠D=53°,再根据三角形的中位线定理证明OE∥CD,则∠COE=180°﹣∠ACD=90°,即可求得∠FOE=143°,于是得到问题的答案.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠CAD=∠OCF,∵AC⊥AB,OF⊥BC,∴∠ACD=∠CAB=∠OFC=90°,∵∠D+∠CAD=90°,∠FOC+∠OCF=90°,∴∠FOC=∠D=53°,∵O为对角线AC与BD的交点,∴O为AC的中点,∵E为AD的中点,∴OE∥CD,∴∠COE=180°﹣∠ACD=180°﹣90°=90°,∴∠FOE=∠FOC+∠COE=53°+90°=143°,故选:A.【点评】此题重点考查平行四边形的性质、平行线的性质、等角的余角相等、直角三角形的两个锐角互余、三角形的中位线定理等知识,证明OE∥CD是解题的关键.【变式1-3】如图,将平行四边形OABC放置在平面直角坐标系xOy中,O为坐标原点,若点C的坐标是(1,3),点A的坐标是(5,0),则点B的坐标是( )A.(5,3)B.(4,3)C.(6,3)D.(8,1)【分析】由平行四边形的性质可得BC∥OA,BC=OA=5,即可求解.【解答】解:∵点A的坐标是(5,0),∴OA=5,∵四边形OABC是平行四边形,∴BC∥OA,BC=OA=5,∵点C的坐标是(1,3),∴点B坐标为(6,3),故选:C.【点评】本题考查了平行四边形的性质,坐标与图形性质,掌握平行四边形的性质是解题的关键.【变式1-4】如图,在平行四边形ABCD中P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是( )A.18B.24C.23D.14【分析】根据平行四边形性质得出AD∥CB,AB∥CD,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB中求出∠APB=90°,由勾股定理求出BP,证出AD=DP=5,BC=PC=5,得出DC=10=AB,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB+∠PBA=12(∠DAB+∠CBA)=90°,在△APB中,∠APB=180°﹣(∠PAB+∠PBA)=90°;∵AP平分∠DAB,∴∠DAP=∠PAB,∵AB∥CD,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP是等腰三角形,∴AD=DP=5,同理:PC=CB=5,即AB=DC=DP+PC=10,在Rt△APB中,AB=10,AP=8,∴BP=6,∴△APB的周长=6+8+10=24;故选:B.【点评】本题考查了平行四边形性质,平行线性质,等腰三角形的性质和判定,三角形的内角和定理,勾股定理等知识点的综合运用.【变式1-5】如图,在平行四边形ABCD中,∠B=60°,AE平分∠BAD交BC于点E,若∠AED=80°,则∠ACE的度数是( )A.30°B.35°C.40°D.45°【分析】证△ABE是等边三角形,得AB=AE,再证△BAC≌△AED中(SAS),得∠BAC=∠AED=80°,即可求解.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠ADC=60°,AD∥BC,∴∠BAD=180°﹣∠B=180°﹣60°=120°,∵AE平分∠BAD,∴∠BAE=∠DAE=12∠BAD=60°,∴∠B=∠DAE,△ABE是等边三角形,∴AB=AE,∠AEB=∠BAE=60°,在△BAC和△AED中,AB=EA∠B=∠DAEBC=AD,∴△BAC≌△AED(SAS),∴∠BAC=∠AED=80°,∴∠EAC=∠BAC﹣∠BAE=80°﹣60°=20°,∴∠ACE=∠AEB﹣∠EAC=60°﹣20°=40°.故选:C.【点评】本题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质等知识;熟练掌握平行四边形的性质,证明△BAC≌△AED是解题的关键.【变式1-6】▱ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是( )A.3≤AB≤4B.2<AB<14C.1<AB<7D.1≤AB≤7【分析】根据平行四边形对角线互相平分可得AO=4,BO=3,再根据三角形的三边关系可得4﹣3<AB<4+3,再解即可.【解答】解:∵四边形ABCD是平行四边形,∴AO=12AC,BO=12BD,∵AC=8,BD=6,∴AO=4,BO=3,∴4﹣3<AB<4+3,解得1<AB<7.故选:C.【点评】此题主要考查了三角形的三边关系以及平行四边形的性质,关键是掌握“平行四边形的对角线互相平分”的性质.【变式1-7】在平行四边形ABCD中,∠A的角平分线把边BC分成长度为4和5的两条线段,则平行四边形ABCD的周长为( )A.13或14B.26或28C.13D.无法确定【分析】设∠A的平分线交BC于点E,可证明AB=EB,再分两种情况讨论,一是EB=5,EC=4,则AB =EB=5,BC=EB+EC=9;二是EB=4,EC=5时,则AB=EB=4,BC=EB+EC=9,分别求出平行四边形ABCD的周长即可.【解答】解:设∠A的平分线交BC于点E,∵四边形ABCD是平行四边形,∴BC∥AD,∴∠BEA=∠DAE,∵∠BAE=∠DAE,∴∠BEA=∠BAE,∴AB=EB,当EB=5,EC=4时,如图1,则AB=EB=5,BC=EB+EC=9,∴2AB+2BC=2×5+2×9=28;当EB=4,EC=5时,如图2,则AB=EB=4,BC=EB+EC=9,∴2AB+2BC=2×4+2×9=26,∴平行四边形ABCD的周长为26或28,故选:B.【点评】此题重点考查平行四边形的性质、平行线的性质、等腰三角形的判定等知识,熟练掌握平行四边形的性质和等腰三角形的判定是解题的关键.【变式1-8】如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别相交于点E、F,连接EC.(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求▱ABCD的周长.【分析】根据平行四边形的性质得出OD=OB,DC∥AB,推出∠FDO=∠EBO,证出△DFO≌△BEO即可;(2)由平行四边形的性质得出AB=CD,AD=BC,OA=OC,由线段垂直平分线的性质得出AE=CE,由已知条件得出BC+AB=10,即可得出▱ABCD的周长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OD=OB,DC∥AB,∴∠FDO=∠EBO,在△DFO和△BEO中,∠FDO=∠EBOOD=OB∠FOD=∠EOB,∴△DFO≌△BEO(ASA),∴OE=OF.(2)解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,∵EF⊥AC,∴AE=CE,∵△BEC的周长是10,∴BC+BE+CE=BC+BE+AE=BC+AB=10,∴▱ABCD的周长=2(BC+AB)=20.【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定、线段垂直平分线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.【例题2】(2022•南京模拟)如图,在平行四边形ABCD 中,E ,F 是对角线AC 上的两点,且AE =EF =FC .(1)求证:DE ∥BF ;(2)若BE ⊥BC ,DE =6,求对角线AC 的长.【分析】(1)根据平行四边形的性质得出AD =BC ,AD ∥BC ,AB =CD ,∠BAC =∠DCA ,利用全等三角形的判定和性质得出∠AFB =∠CED ,再由平行线的判定即可证明;(2)根据(1)中全等三角形的性质得出DE =BF =6,再根据直角三角形斜边上的中线等于斜边的一半得出BF =CF =EF =6,即可得出结果.【解答】(1)证明:∵四边形ABCD 为平行四边形,∴AD =BC ,AD ∥BC ,AB =CD ,∴∠BAC =∠DCA ,∵AE =FC ,∴AE +EF =FC +EF ,即AF =EC ,∴△ABF ≌△CDE (SAS ),∴∠AFB =∠CED ,∴DE ∥BF ;(2)解:由(1)得△ABF ≌△CDE ,∴DE =BF =6,∵BE ⊥BC ,CF =EF ,∴点F 为△BEC 的中点,∴BF =CF =EF =6,∵CF =EF =AE,∴AC=18.【点评】此题主要考查平行四边形的性质,全等三角形的判定和性质,直角三角形斜边上的中线的性质等,理解题意,综合运用这些知识点是解题关键.【变式2-1】(2022春•西吉县校级月考)如图.已知四边形ABCD是平行四边形,BE⊥AC,DF⊥AC,求证:BE=DF.【分析】证两条线段所在的两个三角形全等.根据“AAS”可证△ABE≌△CDF或△ADF≌△CBE.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠BAC=∠DCA.∵BE⊥AC于E,DF⊥AC于F,∴∠AEB=∠DFC=90°.在△ABE和△CDF中,∠DFC=∠BEA∠FCD=∠EAB,AB=CD∴△ABE≌△CDF(AAS),∴BE=DF.【点评】此题考查了平行四边形的性质和全等三角形的判定及性质,熟练掌握“平行四边形的对边平行且相等”是解题关键.【变式2-2】(2022•泉山区校级三模)已知,如图,在平行四边形ABCD中,点E、F分别在AB、CD的延长线上,BE=DF,连接EF,分别交BC、AD于G、H.求证:EG=FH.【分析】根据平行四边形的性质和全等三角形的判定和性质定理即可得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∠ABC=∠CDA,∴∠EBG=∠FDH,∠E=∠F,在△BEG与△DFH中,∠E=∠FBE=DF,∠EBG=∠FDH∴△BEG≌△DFH(ASA),∴EG=FH.【点评】本题考查了平行四边形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.【变式2-3】(2022秋•北碚区校级期末)如图,平行四边形ABCD中,CB=2AB,∠DCB的平分线交BA 的延长线于点F.(1)求证:DE=AE;(2)若∠DAF=70°,求∠BEA的度数.【分析】(1)根据平行四边形的性质证明A为BF的中点,然后证明△DEC≌△AEF(AAS),进而得出结论;(2)由平行四边形的对边平行证出∠CBF=∠DAF=70°,∠BEA=∠EBC,由等腰三角形的性质得出∠CBE=∠ABE,即可得出答案.【解答】(1)证明:∵CE是∠DCB的平分线,∴∠DCE=∠BCF,∵四边形ABCD是平行四边形,∴AB∥CD,AB=DC,∴∠DCE=∠CFB,∴∠BCF=∠CFB,∴BC=BF,∵BC=2AB,∴BF=2AB,∴A为BF的中点,∴AB=AF,∴AB=DC=AF,在△DEC和△AEF中,∠DCE=∠F∠DEC=∠AEFDC=AF,∴△DEC≌△AEF(AAS),∴DE=AE;(2)解:∵四边形ABCD是平行四边形,∴DA∥CB,∴∠CBF=∠DAF=70°,∠BEA=∠EBC,∵△DEC≌△AEF,∴CE=EF,∵BC=BF,∴∠EBC=∠FBE=12∠CBF=35°,∴∠BEA=35°.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰三角形的性质等知识;熟练掌握平行四边形的性质和等腰三角形的性质,证明三角形全等是解题的关键.【变式2-4】(2022秋•道里区校级月考)在平行四边形ABCD中,点E在CD边上,点F在AB边上,连接AE、CF、DF、BE,∠DAE=∠BCF.(1)如图1,求证:DE=BF;(2)如图2,设AE交DF于点G,BE交CF于点H,连接GH,若E是CD边的中点,在不添加任何辅助线的情况下,请直接写出图中以G为顶点并且与△EHC全等的所有三角形.【分析】(1)由平行四边形的性质得出AB∥CD,∠ADE=∠CBF,AD=BC,由ASA证明△ADE≌△CBF,得出DE=BF;(2)由中点的定义得出DE=CE,由平行四边形的判定方法即可得出平行四边形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∠ADE=∠CBF,AD=BC,在△ADE和△CBF中,∠ADE=∠CBFAD=BC,∠DAE=∠BCF∴△ADE≌△CBF(ASA),∴DE=BF;(2)解:∵E是CD的中点,∴DE=CE,∴以GH为边的平行四边形有平行四边形GHFA、平行四边形GHBF、平行四边形GHED、平行四边形GHCE.【点评】本题考查了平行四边形的性质与判定、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等得出DE=BF是解决问题(1)的关键.【变式2-5】(2021春•九龙坡区校级期中)在▱ABCD中,∠ABC=45°,过A作AE⊥CD于E,连接BE,延长EA至F,使CE=AF,连接DF.(1)求证:DF=BE;(2)若DF=AD=ADEB的周长.【分析】(1)由已知证得AB=EF,DE=AE,根据全等三角形的判定证得△FDE≌△BEA,根据全等三角形的性质可得结论;(2)由勾股定理得求得DE=3,EF=5,由(1)知,AB=EF,BE=DF,即可求得结论.【解答】(1)证明:∵AE⊥CD,∴∠FED=90°,∵四边形ABCD是平行四边形,∠ABC=45°,AB=DC,∴∠BAE=∠FED=90°,∠ADE=∠ABC=45°,∴AE=DE,∵CE=AF,∴AB=EF,△FDE和△BEA中,DE=AE∠FED=∠BAE EF=AB,∴△FDE≌△BEA(SAS),∴DF=BE;(2)在Rt△ADE中,AE=DE,AD=由勾股定理得:DE=3,在Rt△FDE中,DE=3,DF=∴EF=5,由(1)知,AB=EF=5,BE=DF∴四边形ADEB的周长为:AD+DE+BE+AB=35=【点评】本题主要考查了平行四边形的性质,全等三角形的判定和性质,勾股定理,证得AB=EF,DE=AE,是解决问题的关键.【变式2-6】(2022春•济南期中)如图,将▱ABCD的边BC延长到点E,使BE=CD,连接AE交CD 于点F.(1)求证:AE平分∠BAD;(2)已知BC=CE=3,EF=4,FG⊥AB,求FG的长.【分析】(1)利用平行四边形的性质得AB=CD,AD∥BE,再证明∠BAE=∠E得到AB=BE,然后利用等边对等角等知识证得结论即可;(2)根据平行四边形的性质得到AD=BC,AD∥BE,求得∠D=∠DCE,∠DAF=∠FEC,根据全等三角形的性质得到AF=EF=4,根据勾股定理得到BF=到结论.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AB=CD,AD∥BE,∴∠DAE=∠E,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠E,∴AB=BE,∴∠BAE=∠E,∴∠BAE=∠DAE,∴AE平分∠BAD;(2)解:由BE=CD,AB=CD,∴△ABE为等腰三角形,∴AB=BE=6,∵四边形ABCD为平行四边形,∴AD=BC,AD∥BE,∴∠D=∠DCE,∠DAF=∠FEC,∵BC =CE =3,∴AD =CE ,∴△ADF ≌△ECF (ASA ),∴AF =EF =4,∴BF ⊥AE ,∵AB =BE =6,∴BF==∵S △ABF =12AB •FG =12AF •BF ,∴FG =故FG【点评】本题考查了平行四边形的性质,全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理,熟练掌握平行四边形的性质是解题的关键.【例题3】如图,平行四边形ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A.CE=AF B.BE=DF C.∠DAF=∠BCE D.AF∥CE 【分析】由平行四边形的性质或全等三角形的性质进行逐一判断即可.【解答】解:若CE=AF,则无法判断OE=OE,故A选项符合题意;如图,连接AC,∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵BE=DF,∴EO=FO,∴四边形AECF是平行四边形,故选项B不符合题意;∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,AD∥BC,∴∠ADF=∠CBE,在△ADF和△CBE中,∠ADF=∠CBEAD=BC,∠DAF=∠BCE∴△ADF≌△CBE(ASA),∴BE=DF,∴EO=FO,∴四边形AECF是平行四边形,故选项C不符合题意;∵AF∥CE,∴∠AFB=∠CED,∴∠AFD=∠CEB,在△ADF和△CBE中,∠ADF=∠CBE∠AFD=∠CEB,AD=BC∴△ADF≌△CBE(AAS),∴BE=DF,∴EO=FO,∴四边形AECF是平行四边形,故选项D不符合题意;故选:A.【点评】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,掌握平行四边形的判定方法是解题的关键.【变式3-1】在下列条件中,能够判定一个四边形是平行四边形的有( )①一组对边平行,另一组对边相等②一组对边平行,一条对角线平分另一条对角线③一组对边平行,一组对角相等④一组对角相等,一条对角线平分另一条对角线A.1个B.2个C.3个D.4个【分析】根据平行四边形的判定方法以及全等三角形的判定方法一一判断即可.【解答】解:①错误.这个四边形有可能是等腰梯形;②正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形;③错误.不满足三角形全等的条件,无法证明相等的一组对边平行;④正确.可以利用三角形全等证明平行的一组对边相等且平行.故是平行四边形.故选:B.【点评】本题考查平行四边形的判定、全等三角形的判定和性质等知识,解题的关键是记住全等三角形的判定方法以及平行四边形的判定方法,属于中考常考题型.【变式3-2】下列条件能判定四边形ABCD是平行四边形的是( )A.∠A=∠B,∠C=∠D B.AB=AD,BC=CDC.AB=CD,AD=BC D.AB∥CD,AD=BC【分析】根据平行四边形的判定方法分别对各个选项进行判断即可.【解答】解:A、由∠A=∠B,∠C=∠D,不能判定四边形ABCD是平行四边形,故本选项不符合题意;B、由AB=AD,BC=CD,不能判定四边形ABCD是平行四边形,故本选项不符合题意;C、由AB=CD,AD=BC,能判定四边形ABCD是平行四边形,故本选项符合题意;D、由AB∥CD,AD=BC,不能判定四边形ABCD是平行四边形,故本选项不符合题意;故选:C.【点评】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.【变式3-3】四边形ABCD中,对角线AC,BD交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB∥CD,∠BAD=∠BCD;③AO=CO,BO=DO;④AB∥CD,AD=BC.一定能判定四边形ABCD 是平行四边形的条件有( )A.1组B.2组C.3组D.4组【分析】根据平行四边形的5个判断定理:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形,即可作出判断.【解答】解:①根据平行四边形的判定定理:两组对边分别平行的四边形是平行四边形,可知①能判断这个四边形是平行四边形;②根据平行四边形的判定定理:一组对边平行,一组对角相等的四边形可得是平行四边形,可知②能判断这个四边形是平行四边形;③根据平行四边形的判定定理:两条对角线互相平分的四边形是平行四边形,可知③能判断这个四边形是平行四边形;④根据平行四边形的判定定理:一组对边平行,一组对边相等的四边形不一定是平行四边形,还可能是等腰梯形,可知④不能判断这个四边形是平行四边形;故给出下列四组条件中,①②③能判断这个四边形是平行四边形.故选:C.【点评】此题主要考查了平行四边形的判定定理,解题关键是准确无误的掌握平行四边形的判定定理.【变式3-4】如图,在△ABC中,D,F分别是AB,AC上的点,且DF∥BC.点E是射线DF上一点,若再添加下列其中一个条件后,不能判定四边形DBCE为平行四边形的是( )A.∠ADE=∠E B.∠B=∠E C.DE=BC D.BD=CE【分析】由平行四边形的判定分别对各个选项进行判断即可.【解答】解:A、∵∠ADE=∠E,∴AB∥CE,又∵DF∥BC,∴四边形DBCE为平行四边形;故选项A不符合题意;B、∵DF∥BC,∴∠ADE=∠B,∵∠B=∠E,∴∠ADE=∠E,∴AB∥CE,∴四边形DBCE为平行四边形;故选项B不符合题意;C、∵DF∥BC,∴DE∥BC,又∵DE=BC,∴四边形DBCE为平行四边形;故选项C不符合题意;D、由DF∥BC,BD=CE,不能判定四边形DBCE为平行四边形;故选项D符合题意;故选:D.【点评】本题考查了平行四边形的判定、平行线的判定与性质等知识;熟练掌握平行四边形的判定是解题的关键.【变式3-5】如图,在△ABC中,点D,E分别是AB,BC边的中点,点F在DE的延长线上.添加一个条件,使得四边形ADFC为平行四边形,则这个条件可以是( )A .∠B =∠F B .DE =EFC .AC =CFD .AD =CF【分析】利用三角形中位线定理得到DE ∥AC ,DE =12AC ,结合平行四边形的判定定理对各个选项进行判断即可.【解答】解:∵D ,E 分别是AB ,BC 的中点,∴DE 是△ABC 的中位线,∴DE ∥AC ,DE =12AC ,A 、当∠B =∠F ,不能判定AD ∥CF ,即不能判定四边形ADFC 为平行四边形,故本选项不符合题意;B 、∵DE =EF ,∴DE =12DF ,∴AC =DF ,∵AC ∥DF ,∴四边形ADFC 为平行四边形,故本选项符合题意;C 、根据AC =CF ,不能判定AC =DF ,即不能判定四边形ADFC 为平行四边形,故本选项不符合题意;D 、∵AD =CF ,AD =BD ,∴BD =CF ,由BD =CF ,∠BED =∠CEF ,BE =CE ,不能判定△BED ≌△CEF ,不能判定CF ∥AB ,即不能判定四边形ADFC 为平行四边形,故本选项不符合题意;故选:B .【点评】本题考查了平行四边形的判定、三角形的中位线定理以及平行线的判定等知识;熟练掌握平行四边形的判定和三角形中位线定理是解题的关键.【变式3-6】如图,在▱ABCD 中,E ,F 分别是边AD ,BC 上的点,连接AF ,CE ,只需添加一个条件即可证明四边形AFCE 是平行四边形,这个条件可以是 (写出一个即可).【分析】根据▱ABCD的性质得到AD∥BC,然后由“对边相等且平行的四边形是平行四边形”添加条件即可.【解答】解:如图,在▱ABCD中,AD∥BC,则AE∥FC.当添加AE=FC时,根据“对边相等且平行的四边形是平行四边形”可以判定四边形AFCE是平行四边形,故答案是:AE=FC(答案不唯一).【点评】此题考查了平行四边形的性质与判定.解题过程中注意平行四边形的判定与平行四边形的性质的综合运用.【变式3-7】平行四边形ABCD中,E、F是对角线BD上不同的两点,写出一个能使四边形AECF一定为平行四边形的条件 .(用题目中的已知字母表示)【分析】在平行四边形ABCD中,OA=OC,OB=OD,要使四边形AECF为平行四边,只需证明OE=OF.【解答】解:连接AC交BD于点O,如图:在平行四边形ABCD中,OA=OC,OB=OD,∵AE∥CF,∴∠OAE=∠OCF,∵∠AOE=∠COF,AO=CO,∴△AOE≌COF(ASA),∴OE=OF,∴四边形AECF为平行四边形;故答案为:AE∥CF.【点评】本题考查了平行四边形的判定与性质、全等三角形的判定与性质等知识,熟练掌握平行四边形的性质,证明OE=OF是解题的关键.【例题4】(2021•江华县一模)如图,△ABC 为等边三角形,D 、F 分别为BC 、AB 上的点,且CD =BF ,以AD 为边作等边△ADE .(1)求证:△ACD ≌△CBF ;(2)点D 在线段BC 上何处时,四边形CDEF 是平行四边形且∠DEF =30°.【分析】(1)在△ACD 和△CBF 中,根据已知条件有两边和一夹角对应相等,可根据边角边来证明全等.(2)当∠DEF =30°,即为∠DCF =30°,在△BCF 中,∠CFB =90°,即F 为AB 的中点,又因为△ACD ≌△CBF ,所以点D 为BC 的中点.【解答】证明:(1)由△ABC 为等边三角形,AC =BC ,∠FBC =∠DCA ,在△ACD 和△CBF 中,AC =BC ∠DCA =∠FBC CD =BF,所以△ACD ≌△CBF (SAS );(2)当D 在线段BC 上的中点时,四边形CDEF 为平行四边形,且角DEF =30度按上述条件作图,连接BE,在△AEB和△ADC中,AB=AC,∠EAB+∠BAD=∠DAC+∠BAD=60°,即∠EAB=∠DAC,AE=AD,∴△AEB≌△ADC(SAS),又∵△ACD≌△CBF,∴△AEB≌△ADC≌△CFB,∴EB=FB,∠EBA=∠ABC=60°,∴△EFB为正三角形,∴EF=FB=CD,∠EFB=60°,又∵∠ABC=60°,∴∠EFB=∠ABC=60°,∴EF∥BC,而CD在BC上,∴EF平行且相等于CD,∴四边形CDEF为平行四边形,∵D在线段BC上的中点,∴F在线段AB上的中点,∴∠FCD=12×60°=30°则∠DEF=∠FCD=30°.【点评】本题考查了平行四边形的判定和三角形全等的知识,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.【变式4-1】如图,点B、C、E、F在同一直线上,BE=CF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)四边形ABED是平行四边形.【分析】(1)根据BC=EF求出BC=EF,根据垂直定义得出∠ACB=∠DFE=90°,再根据全等三角形的判定定理SAS推出即可;(2)根据全等三角形的性质得出AB=DE,∠ABC=∠DEF,根据平行线的判定得出AB∥DE,再根据平行四边形的判定定理推出即可.【解答】证明:(1)∵BE=CF,∴BE﹣CE=CF﹣CE,即BC=EF,又∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,在△ABC和△DEF中,AC=DF∠ACB=∠F,BC=EF∴△ABC≌△DEF(SAS);(2)由(1)知△ABC≌△DEF,∴AB=DE,∠ABC=∠DEF,∴AB∥DE,∴四边形ABED是平行四边形.【点评】本题考查了全等三角形的判定定理和性质定理,平行线的判定,平行四边形的判定等知识点,能熟记有一组对边平行且相等的四边形是平行四边形是解此题的关键.【变式4-2】如图所示,△ABC中,D是BC边上中点,AE是∠BAC的平分线,CE⊥AE,EF∥BC交AB于点F,求证:四边形BDEF是平行四边形.【分析】延长CE交AB于M,证两三角形全等,推出E为CM中点,根据三角形中位线推出DE∥AB,根据平行四边形的判定推出即可.【解答】证明:延长CE交AB于M,∵AE⊥CE,∴∠AEC=∠AEM=90°,∵AE是∠BAC的平分线,∴∠MAE=∠CAE,在△MAE和△CAE中,∠AEM=∠AECAE=AE,∠MAE=∠CAE∴△MAE≌△CAE(ASA),∴CE=EM,∵D为BC中点,∴DE∥AB,∵EF∥BC,∴四边形BDEF是平行四边形.【点评】本题考查了全等三角形的性质和判定,三角形的中位线,平行四边形的判定的应用,注意:有两组对边分别平行的四边形是平行四边形.【变式4-3】(2021秋•海阳市期末)如图,在△ABC中,AD是BC边的中线,F是AC上一点,且满足2AF=CF,连接BF与AD相交于点E.若G为线段BF上一动点,试分析当点G在何位置时,四边形AFDG为平行四边形?【分析】证DG是△BCF的中位线,得DG∥CF,2DG=CF,则DG∥AF,再证DG=AF,即可得出四边形AFDG为平行四边形.【解答】解:点G为线段BF的中点时,四边形AFDG为平行四边形,理由如下:∵AD是BC边的中线,∴BD=CD,∵点G为线段BF的中点,∴DG是△BCF的中位线,∴DG∥CF,2DG=CF,∴DG∥AF,∵2AF=CF,∴DG=AF,∴四边形AFDG为平行四边形.【点评】本题考查了平行四边形的判定以及三角形中位线定理等知识,熟练掌握平行四边形的判定,证明DG为△BCF的中位线是解题的关键.【变式4-4】(2022春•顺义区校级月考)如图,四边形ABCD中,BD垂直平分AC,垂足为点F、E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC.(1)求证:四边形ABDE是平行四边形;(2)如果DA平分∠BDE,AB=3,AD=4,求AC的长.【分析】(1)分别证明AB∥ED,AE∥BD,得出结论;(2)利用勾股定理求出BH AF,即可得出结论.【解答】(1)证明:∵∠ADE=∠BAD,∴AB∥ED,∵AE⊥AC,∴∠EAC=90°,∵BD垂直平分AC,∴∠BFA=90°,∴∠EAC=∠BFA,∴AE∥BD,∴四边形ABDE是平行四边形,(2)解:∵DA平分∠BDE,∴∠ADE=∠ADB,∵∠ADE=∠BAD,∴∠ADB=∠BAD,∴BA=BD,∵AB=3,∴BD=3过B作BH⊥AD,∴AH=HD=12AD=2,∴BH=∵BD垂直平分AC,则AF=FC,∵S△ABD =12DA⋅BH=12DB⋅AF,∴AF =DA⋅BH DB∴AC 【点评】本题考查平行四边形的判定以及利用勾股定理解直角三角形,利用等积法求高是解决问题的关键.【变式4-5】(2021春•西安期末)如图,在△AFC 中,∠FAC =45°,FE ⊥AC 于点E ,在EF 上取一点B ,连接AB 、BC ,使得AB =FC ,过点A 作AD ⊥AF ,且AD =BC ,连接CD ,求证:四边形ABCD 是平行四边形.【分析】证Rt △AEB ≌Rt △FEC (HL ),得BE =CE ,则∠CBE =∠BCE =45°,再证出∠BCE =∠CAD ,得BC ∥AD ,即可证出四边形ABCD 是平行四边形;【解答】证明:∵FE ⊥AC ,∴∠FEA =∠FEC =90°,∵∠FAC =45°,∴△AEF 是等腰直角三角形,∴AE =EF ,∠AFE =∠FAE =45°,在Rt △AEB 和Rt △FEC 中,AB =FC AE =FE ,∴Rt △AEB ≌Rt △FEC (HL ),∴BE =CE ,∴∠CBE =∠BCE =45°,∵AD ⊥AF ,∴∠FAD =90°,∴∠CAD =90°﹣45°=45°,∴∠BCE=∠CAD,∴BC∥AD,又∵BC=AD,∴四边形ABCD是平行四边形.【点评】本题考查了平行四边形的判定、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;熟练掌握平行四边形的判定,证明Rt△AEB≌Rt△FEC是解题的关键.【变式4-6】(2022春•礼泉县期末)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)求证:△AEF≌△BAC;(2)四边形ADFE是平行四边形吗?请说明理由.【分析】(1)由含30°角的直角三角形的性质得AB=2BC,再由等边三角形的性质得AB=AE,AB=2AF,则AF=BC,由HL即可得出结论;(2)由等边三角形的性质得∠DAC=60°,AC=AD,再证EF∥AD,然后由全等三角形的性质得EF=AC,则EF=AD,即可得出结论.【解答】(1)证明:∵Rt△ABC中,∠BAC=30°,∴AB=2BC,∵△ABE是等边三角形,EF⊥AB,∴AB=AE,AB=2AF,∴AF=BC,在Rt△AFE和Rt△BCA中,AE=BAAF=BC,∴Rt△AEF≌Rt△BAC(HL);(2)解:四边形ADFE是平行四边形,理由如下:∵△ACD是等边三角形,∴∠DAC =60°,AC =AD ,∴∠DAB =∠DAC +∠BAC =90°,∴AD ⊥AB ,又∵EF ⊥AB ,∴EF ∥AD ,由(1)得:△AEF ≌△BAC ,∴EF =AC ,∴EF =AD ,∴四边形ADFE 是平行四边形.【点评】本题考查了平行四边形的判定、全等三角形的判定与性质、等边三角形的性质、平行线的判定等知识;熟练掌握平行四边形的判定,证明Rt △AEF ≌Rt △BAC 是解题的关键.【例题5】如图,在▱ABCD 中,要在对角线BD 上找两点E 、F ,使A 、E 、C 、F 四点构成平行四边形,现有①,②,③,④四种方案,①只需要满足BE =DF ;②只需要满足AE ⊥BD ,CF ⊥BD ;③只需要满足AE ,CF 分别平分∠BAD ,∠BCD ,④只需要满足AE =CF .则对四种方案判断正确的是( )A .①②③B .①③④C .①②④D .②③④【分析】只要证明△ABE ≌△CDF ,即可解决问题.【解答】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∠BAD =∠BCD ,∴∠ABE =∠CDF ,①在△ABE 和△CDF 中,AB =CD ∠ABE =∠CDF BE =DF,。

平行四边形的性质与判定,附练习题含答案

平行四边形的性质与判定,附练习题含答案

平行四边形的性质与判定(讲义)一、知识梳理1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.2.平行四边形的性质边:平行四边形的对边相等;角:平行四边形的对角相等;对角线:平行四边形的对角线互相平分.3.平行四边形的判定两组对边分别相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形对角线:两组对角分别相等的四边形是平行四边形.对角线互相平分的四边形是平行四边形4.夹在平行线之间的平行线段相等.例:已知:如图,在□ABCD中,E,F分别为AD,BC的中点.求证:四边形BFDE是平行四边形.【思路分析】①读题标注:②梳理思路:要证四边形BFDE是平行四边形,根据题目中已有的条件选择判定定理:一组对边平行且相等的四边形是平行四边形.在□ABCD中:AD∥BC,且AD=BC,根据条件E,F分别为AD,BC的中点,得ED=12AD,BF=12BC,从而可以得到ED=BF.又因为AD∥BC,即ED∥BF,所以四边形BFDE是平行四边形.【过程书写】证明:如图,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵E,F分别为AD,BC的中点,∴ED=12AD,BF=12BC,∴ED=BF,∴四边形BFDE是平行四边形.FE DCBAFE DCBA二、练习题1. 已知□ABCD 的周长是100,且AB :BC =4:1,则AB 的长为______________.2. 如图,在□ABCD 中,∠DAB 的平分线AE 交CD 于点E ,若AB =5,BC =3,则EC 的长为( ) A .1B .1.5C .2D .33. 在□ABCD 中,∠A :∠B :∠C :∠D 的值可以是( )A .1:2:3:4B .1:2:2:1C .1:1:2:2D .2:1:2:14. 在□ABCD 中,对角线AC ,BD 相交于点O ,若△ABO 的周长为15,AB =6,则AC +BD =____________.5. 在周长为20cm 的□ABCD 中,AB <AD ,AC ,BD 相交于点O ,OE ⊥BD ,交线段AD 于点E ,连接BE ,则△ABE 的周长为_______.6. 如图,四边形ABCD 是平行四边形,已知AD =12,AB =13,BD ⊥AD ,求BC ,CD ,OB 的长以及□ABCD 的面积.7. 如图,已知四边形ABDE 是平行四边形,延长BD 至点C ,使AC=AB ,连接AD ,CE .(1)求证:△BAD ≌△ACE ;(2)若∠B =30°,∠ADC =45°,BD =10,求□ABDE 的面积.8. 下列说法:①如果一个四边形任意相邻的两个内角都互补,那么这个四边形是平行四边形; ②一组对边平行,另一组对边相等的四边形是平行四边形;③如果AC ,BD 是四边形ABCD 的对角线,且AC 平分BD ,那么四边形ABCD 是平行四边形;BCED AABCD O A BCD E④一组对边平行,一组对角相等的四边形是平行四边形. 其中正确的有( ) A .1个B .2个C .3个D .4个9. 已知四边形ABCD 是平行四边形,下列选项中,按照所给条件得到的四边形EFGH 不一定是平行四边形的是( )A .EF ⊥BC ,GH ⊥ADB .E ,F ,G ,H 分别是□ABCD 各边的中点C .AF ,BH ,CH ,DF 分别是D .EG ,FH 是过□ABCD□ABCD 各内角的角平分线 对角线交点的两条线段10. 如图,AB ∥CD ,AB =CD ,点E ,F 在BC 上,且BE =CF .试证明:以A ,F ,D ,E 为顶点的四边形是平行四边形.11. 上的两点,12. 如图,在□ABCD 中,点E ,F 分别在CD ,AB 的延长线上,且AE =AD ,CF =CB .求证:四边形AFCE 是平行四边形.13. 在□ABCD 中,若∠A :∠B =5:4,则∠C 的度数为( )A .80°B .120°C .100°D .110°H A CD E FGBHA CDE FG BFH A CDEG BHE FGA CDBABCDEF OABC DEF14. 在□ABCD 中,∠A :∠B :∠C :∠D 的值可以是( )A .1:2:3:4B .1:2:2:1C .1:1:2:2D .2:1:2:1 15. 若□ABCD 的周长为40,△ABC 的周长为25,则对角线AC 的长为( )A .5B .15C .6D .1616. 已知平行四边形的一边长为10,则其两条对角线的长可能是( )A .3,8B .20,30C .6,8D .8,1217. 已知四边形ABCD 的对角线相交于点O ,以下条件能判定四边形ABCD 为平行四边形的是( )A .AB ∥CD ,BC =ADB .AB ∥CD ,AO =COC .AB ∥CD ,∠DAC =∠CAB D .AB =CD ,∠B =∠C18. 如图,在平行四边形ABCD 中,EF ∥AD ,HN ∥AB ,则图中的平行四边形共有( )A .12个B .9个C .7个D .5个19. 已知平行四边形的周长为56,两邻边长之比为3:1,则这个平行四边形较长的边长为____________.20. 在□ABCD 中,已知AB ,BC ,CD 三条边的长度分别为3x +,4x -,16,则这个平行四边形的周长为___________.21. 如图,在□ABCD 中,CE ⊥AB 于点E ,CF ⊥AD 于点F .若∠B =60°,则∠ECF =___________.22. 若□ABCD 的周长为22,AC ,BD 相交于点O ,△AOD 的周长比△AOB 的周长小3,则AD =_________,AB =_________.F ED C B A N HFEDC B A参考答案1.402.C3.D4.185.10cm6.BC=12,CD=13,OB52=,□ABCD的面积为607.(1)证明(2)50+8.B9.A10.提示:证明△ABE≌△DCF11.提示:方法①,证明△AED≌△CFB,得到DE=BF,∠AED=∠CFB,则∠DEC=∠BF A,所以DE∥BF,进而可证明四边形EBFD是平行四边形方法②,连接BD,利用对角线互相平分可以证得四边形EBFD是平行四边形12.提示:证明△EAD≌△FCB13.C14.D15.A16.B17.B18.B19.2120.5021.60°22.4,7。

湘教版八年级数学下册平行四边形及其性质和判定练习(含答案)

湘教版八年级数学下册平行四边形及其性质和判定练习(含答案)

平行四边形及其性质和判定练习【课内四基达标】1.判断题(1)一组对边平行,另一组对边相等的四边形是平行四边形.( )(2)两组对角分别相等的四边形是平行四边形.( )(3)在平行四边形中,一定有两个锐角、两个钝角.( )(4)平行四边形的一条对角线把平行四边形分成两个全等的三角形.( )(5)平行四边形对角线交点到四边距离相等.( )(6)平行四边形的对边、对角、对角线的长都相等;( )(7)平行四边形对角线的交点到一组对边的距离相等;( )(8)夹在二平行线间的线段都相等;( )(9)夹在二平行线间的线段若相等,则这二条线段互相平行;( )(10)过△ABC 的三个顶点,分别作对边的平行线,得到△A ′B ′C ′,那么△ABC 的三条高分别是△A ′B ′C ′三边的垂直平分线.( )2.选择题(1)以不共线的三个点为顶点的平行四边形有( )A.1个B.2个C.3个D.4个(2)一个平行四边形的两条对角线把它分成的全等三角形的对数是( )A.2B.4C.6D.8(3)E 、F 分别是ABCD 的边AB 、DC 中点,DE 、BF 交AC 于M 、N ,则( )A.AM=MEB.AM=DFC.AM=NCD.AM ⊥MD(4)在ABCD 中若∠A >∠B ,则∠A 的补角与∠B 的余角之和( )A.小于90°B.等于90°C.大于90°D.不能确定(5)从等腰三角形底边上任意一点分别作两腰的平行线与两腰所围成的平行四边形的周长等于三角形( )A.周长B.周长的一半C.腰长D.两腰长的和(6)已知平行四边形两条邻边的长分别是6厘米和4厘米,它们的夹角是60°,则它的面积是( ) A.123cm 2 B.73cm 2 C.63cm 2 D.43cm 2(7)以不在一直线上的三点作平行四边形的三个顶点,则可作出平行四边形( )A.1个B.2个C.3个D.4个(8)平行四边形的一条对角线与一边垂直,且此对角线为另一边的一半,则此平行四边形两邻角之比为( )A.1∶2B.1∶3C.1∶4D.1∶5(9)如下图所示,平行四边形ABCD 和平行四边形EAFC 的顶点D 、E 、F 、B 在一条直线上,则下列关系中正确的是( )A.DE >BFB.DE=BFC.DE <BFD.DE=EF=BF(10) 平行四边形ABCD 的面积等于1,A 1、A 2为AD 的三等分点,作A 1B 1∥AB 交BC 于B 1,作A 2B 2∥AB 交BC 于B 2,则顶点分别在AB 、A 1B 1、A 2B 2、CD 上滑动的凸四边形的最大面积是( ) A.21 B.31 C.32 D.433.填空题(1)由平行四边形的一个顶点在形内向两边引垂线,二垂线夹角为65°,则这个平行四边形各内角的度数分别为________(2)在ABCD中,∠A的补角与∠B的和等于210°,则∠A=________,∠B=________,∠C=________,∠D=________(3)在平行四边形ABCD中,AB∶BC=1∶2,∠D=30°,AE⊥BC于E,AE=3cm,则AB=________cm.这个平行四边形的周长是________cm.(4)平行四边形周长是40cm,二邻边的比为3∶2,则四条边长分别是________(5)在平行四边形ABCD中,两邻边AB、AD的比是1∶2,M是大边AD的中点,则∠BMC 的度数是________(6)平行四边形的周长为50厘米,那么它两邻边之和是______cm,每条对角线的长不能超过______cm.(7) 平行四边形ABCD中,周长为50厘米,AB=15cm,∠A=30°,则此平行四边形的面积为______cm2.(8) 平行四边形ABCD的周长为50厘米,对角线交于O点,△AOB的周长比△BOC的周长大5厘米,则AB、BC的长分别是______、______.(9)有五条平行的直线,每相邻两条的距离相等,有一条直线和这组平行线相交成30°角,它介于相邻两条平行线之间的线段长是10厘米,则这一组平行线最外面两条之间的距离是______厘米.(10)已知平行四边形周长为68厘米,被两条对角线分成两个不同的三角形的周长的和等于82厘米,两条对角线的长度比为2∶1,则两条对角线的长分别为______厘米,______厘米.4.解答题(1)如下图,已知平行四边形ABCD,E为AD上的点,且AE=AB,BE和CD的延长线交于F,且∠BFC=40°,求平行四边形ABCD各内角的度数.(2)已知平行四边形一组邻角的比是2∶3,求它的四个内角的度数.(3) 平行四边形ABCD中,M为AD的中点,BM平分∠ABC,如果∠A=120°,MC=3,求ABCD的周长.5.如图,在平行四边形ABCD中,BC=2AB,M为AD的中点,CE⊥AB,垂足为E,求证:∠DME=3∠AEM.6.如下图所示,ABCD是平行四边形,以AD、BC为边在形外作等边三角形ADE和CBF,连结BD、EF,且它们相交于O,求证:EO=FO,DO=BO.7.已知:平行四边形ABCD中,AD=2AB,延长AB到F,使BF=AB,延长BA到E使AE=AB,求证:CE⊥DF8.如图所示,已知平行四边形ABCD,直线FH与AB、CD相交,过A、B、C、D向FH作垂线,垂足为E、H、G、F,求证:AE-DF=CG-BH9.平行四边形ABCD中,E为DC中点,延长BE与AD的延长线交于F,求证:E为BF中点,D为AF的中点.10.等腰△ABC中,AB=AC,D为BC上任一点,DE∥CA交AB于E,DF∥BA交AC于F,求证:DE+DF=AC.11.如图所示,∠EDA是平行四边形ABCD的外角,DF平分∠EDA与BA延长线交于F,FD 延长线与BC延长线交于G.求证:BF=BG.12.如图所示,平行四边形ABCD中,作AF⊥BC于F,交BD于E,若DE=2AB.求证:∠ABD=2∠EBC.13.如图所示,平行四边形ABCD中,以BC、CD为边向内作等边三角形BCE和CDF.求证:△AEF为等边三角形.14.如图所示,在△ABC中,BD平分∠B,DE∥BC交AB于E,EF∥AC交BC于F,求证:BE=FC15.如图所示,平行四边形ABCD中,E是AB的中点,F是CD中点,分别延长BA和DC 到G、H,使AG=CH,连结GF、EH,求证:GF∥EH16.如图所示,平行四边形ABCD中,E、F分别在AD、BC上,且AE=CF,AF与BE相交于G,CE与DF相交于H.求证:EF与GH互相平分17.在四边形ABCD中,AB∥DC,对角线AC、BD交于O,EF过O交AB于E,交DC于F,且OE=OF,求证:四边形ABCD是平行四边形.18.如图所示,已知△ABC,分别以AB、BC、AC为边向BC同侧作等边三角形ABE、BCD、ACF.求证:DEAF为平行四边形.【能力素质提高】1.用两个全等的三角形按不同方法拼成四边形,在这些四边形中,平行四边形最多有( )A.3个B.4个C.6个D.8个2.如图,平行四边形ABCD中,M为AD中点,BM平分∠ABC,则( )A.CM可能垂直ADB.AC可能等于CDC.CM不可能垂直ADD.CM可能平分∠ACD3.如下图,已知在平行四边形ABCD中,∠A、∠D的平分线交于E点,AE和DC相交于G,DE与AD相交于F,求证:AD=DG=GF=FA.4.已知:如下图,在四边形ABCD中,AB=DC,AE⊥BD,CF⊥BD,垂足分别是E、F,AE=CF,求证:四边形ABCD是平行四边形.5.点O是平行四边形ABCD的对角线的交点,△AOB的面积为7cm2,求平行四边形ABCD 的面积.6.已知平行四边形两邻边长分别为8cm和4cm,它们的夹角为60°,求其面积.7.求证:连接平行四边形对边中点的线段,将对角线二等分.8.从平行四边形的一个锐角的顶点作两条高,如果这两条高的夹角是130°,求平行四边形的各角.9.已知:如图,平行四边形ABCD中,AB=2BC,E为AB中点,DF⊥BC,垂足F.求证:∠AED=∠EFB.【渗透拓展创新】1.如图,画纸中间的空洞好比天河,大鸭子与空洞右面的小鸭子隔离开了,你能不能把画纸剪成六块,重新拼成一张不带空洞的完整的正方形画纸,让大鸭子与小鸭子并肩相会.2.求证:平行四边形对角线的平方和等于两邻边平方和的两倍.3.(1)如果平行四边形的四个内角的平分线能围成一个四边形,求证这个四边形是平行四边形.(2)上述问题中的“如果……能围成一个四边形”,是否表明存在不能围成四边形的情形?请说明理由.4.有两个村庄A和B位于一条河的两岸,假定河岸是两条平行的直线,现在要在河上架一座与河岸垂直的桥PQ,问桥应架在何处,才能使从A到B总的路程最短.【中考真题演练】1.(河南省中考题)已知:如图,平行四边形ABCD中,对角线AC的平行线MN分别交DA、DC延长线于点M、N,交AB、BC于点P、Q.求证:MQ=NP.2.(黄冈市中考题)如图所示,平行四边形ABCD中,G、H是对角线BD上两点,且DG=BH,DF=BE.求证:四边形EHFG是平行四边形.3.(江西省中考题)已知:如图,平行四边形ABCD中,AE⊥BC,CF⊥BD,垂足分别为E、F,G、H分别是AD、BC的中点,GH交BD于点O.求证:GH与EF互相平分.参考答案 【课内四基达标】1.(1)√ (2)× (3)× (4)√ (5)× (6)× (7)√ (8)× (9)√ (10)×2.(1)C (2)B (3)C (4)B (5)D (6)A (7)C (8)D (9)B (10)C3.(1)115°或 65° (2)75°,105°,75°,105°(3)6 (4)12,12,8,8(5)90° (6)25 25 (7)75 (8)15cm ;10cm (9)20 (10)16和324.(1)80°,100°,80°,100° (2)72°,108°,72°,108° (3)△ABM 为等腰三角形,AB=AM ,△MDC 为等边三角形,故AB=3,AD=6,周长为185.提示:取BC 中点F ,连接MF 、MC ,证MF ∥AB ,四边形MFCD 是菱形6.△EDO ≌△FBO7.证∠FEC =∠ECB ;∠AFD =∠ADF8.作DM ⊥AE 于M ,BN ⊥CG 于N ,再证Rt △ADM ≌Rt △CBN9.证△BCE ≌△FDE10.△EBD 和△FDC 为等腰三角形11.略12.取ED 中点M ,连AM ,则AM=21ED=AB13.证△EAB ≌△AFD14.证△BED 为等腰三角形15.则FH 平行且等于GE ,则FGEH 为平行四边形16.证EGFH 为平行四边形17.△EOB ≌△FOD18.△ABC ≌△EBD 、ED=AF △ABC ≌△FDC DF=AE【能力素质提高】1.A2.C3.提示:∠EAD+∠EDA=21(∠A+∠D)=90°4.略5.28cm 26.1637.略8.50°,130°,50°,130°9.延长CB 、DE 交于点M.证∠EFB =∠M =∠ADE =∠AED【渗透拓展创新】1.如图2.提示:过平行四边形的一个顶点作它的高,利用勾股定理3.(1)证对边平行 (2)存在,当这个平行四边形是菱形或正方形时,对角的平分线即其对角线,则这四个内角的平分线交于一点,不能围成四边形.4.从A作河岸的垂线,并在垂线上取AC线段使其长等于河宽,连结BC,与接近B的河岸相交于Q0点,在Q0点作P0Q0⊥河岸,交对岸于P0,则P0Q0是造桥的最佳位置.【中考真题演练】1.证APNC是平行四边形,得AP=CN.证△AMP≌△CQN,得MP=QN,则MQ=NP2.提示:证明GF平行且等于EH,利用△DFG≌△BEH,从而GF=EH,且∠DGF=∠BFE,推出∠FGH=∠EHG.3.提示:连结GF、EH、HF、FG.。

(完整版)平行四边形的判定练习题(含答案)

(完整版)平行四边形的判定练习题(含答案)

平行四边形的判定及中位线知能点1 平行四边形的判定方法1.能够判定四边形ABCD是平行四边形的题设是().A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=CD,AD=BC D.AB=AD,CB=CD2.具备下列条件的四边形中,不能确定是平行四边形的为().A.相邻的角互补 B.两组对角分别相等C.一组对边平行,另一组对边相等 D.对角线交点是两对角线中点3.如下左图所示,四边形ABCD的对角线AC和BD相交于点O,下列判断正确的是().A.若AO=OC,则ABCD是平行四边形;B.若AC=BD,则ABCD是平行四边形;C.若AO=BO,CO=DO,则ABCD是平行四边形;D.若AO=OC,BO=OD,则ABCD是平行四边形4.如上右图所示,对四边形ABCD是平行四边形的下列判断,正确的打“∨”,错误的打“×”.(1)因为AD∥BC,AB=CD,所以ABCD是平行四边形.()(2)因为AB∥CD,AD=BC,所以ABCD是平行四边形.()(3)因为AD∥BC,AD=BC,所以ABCD是平行四边形.()(4)因为AB∥CD,AD∥BC,所以ABCD是平行四边形.()(5)因为AB=CD,AD=BC,所以ABCD是平行四边形.()(6)因为AD=CD,AB=AC,所以ABCD是平行四边形.()5.已知AD∥BC,要使四边形ABCD为平行四边形,需要增加条件________.6.如图所示,∠1=∠2,∠3=∠4,问四边形ABCD是不是平行四边形.7.如图所示,在四边形ABCD中,AB=CD,BC=AD,E,F为对角线AC上的点,且AE=CF,求证:BE=DF.8.如图所示,D为△ABC的边AB上一点,DF交AC于点E,且AE=CE,FC∥AB.求证:CD=AF.9.如图所示,已知四边形ABCD是平行四边形,在AB的延长线上截取BE=•AB,BF=BD,连接CE,DF,相交于点M.求证:CD=CM.10.如图所示,在四边形ABCD中,DC∥AB,以AD,AC为边作□ACED,延长DC•交EB于F,求证:EF=FB.知能点2 三角形的中位□线11.如图所示,已知E为□ABCD中DC边的延长线上的一点,且CE=DC,连接AE,分别交BC,BD于点F,G,连接AC交BD于点O,连接OF,求证:AB=2OF.12.如图所示,在ABCD中,EF∥AB且交BC于点E,交AD于点F,连接AE,BF•交于点M,连接CF,DE交于点N,求证:MN∥AD且MN=12 AD.13.如图所示,DE是△ABC的中位线,BC=8,则DE=_______.14.如图所示,在□ABCD中,对角线AC,BD交于点O,OE∥BC交CD•于E,•若OE=3cm,则AD的长为(). A.3cm B.6cm C.9cm D.12cm15.如图所示,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,AD的中点,•则四边形EFGH是平行四边形吗?为什么?16.如图所示,在△ABC中,AC=6cm,BC=8cm,AB=10cm,D,E,F分别是AB,BC,CA的中点,求△DEF的面积.规律方法应用17.如图所示,A,B两点被池塘隔开,在A,B外选一点C,连接AC和BC,•并分别找出AC和BC的中点M,N,如果测得MN=20m,那么A,B两点间的距离是多少?18.如图所示,在□ABCD中,AB=2AD,∠A=60°,E,F分别为AB,CD的中点,EF=1cm,那么对角线BD 的长度是多少?你是怎样得到的?19.如图所示,在△AB C中,E为AB的中点,CD平分∠ACB,AD⊥CD于点D.•试说明:(1)DE∥BC.(2)DE=12(BC-AC).开放探索创新20.如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AD•于E,EF∥BC交AC于F,那么AE与CF相等吗?请验证你的结论.中考真题实战21.(长沙)如下左图所示,在四边形ABCD中,AB∥CD,要使四边形ABCD•为平行四边形,则应添加的条件是________.(添加一个即可)22.(呼和浩特)如上右图所示,已知E,F,G,H是四边形ABCD各边的中点,•则S四边形EFGH:S四边形ABCD的值是_________.23.(南京)已知如图19-1-55所示,在Y ABCD中,E,F分别是AB,CD的中点.求证:(1) △AFD≌△CEB.(2)四边形AECF是平行四边形.答案:1.C 2.C 3.D4.(1)× (2)× (3)∨ (4)∨ (5)∨ (6)× 5.AD=BC或AB∥CD6.解:∵∠1=∠2,∴AD∥BC.又∵∠3=∠4,∴AB∥CD.∴四边形ABCD是平行四边形.7.证明:∵AB=CD,BC=AD,∴四边形ABCD是平行四边形.∴AB∥CD,∴∠BAE=∠DCF.又∵AE=CE,∴△ABE≌△CDF(SAS),∴BE=EF.8.证明:∵FC∥AB,∴∠DAC=∠ACF,∠ADF=∠DFC.又∵AE=CE,∴△ADE≌△CF E(AAS),∴DE=EF.∵AE=CE,∴四边形ADCF为平行四边形.∴CD=AF.9.证明:∵四边形ABCD是平行四边形.∴AB//DC.又∵BE=AB,∴BE//DC,∴四边形BDCE是平行四边形.∵DC∥BF,∴∠CDF=∠F.同理,∠BDM=∠DMC.∵BD=BF,∴∠BDF=∠F.∴∠CDF=∠CMD,∴CD=CM.10.证明:过点B作BG∥AD,交DC的延长线于G,连接EG.∵DC∥AB,∴ABGD是平行四边形,∴BG// AD.在□ACED中,AD//CE,∴CE//BG.∴四边形BCEG为平行四边形,∴EF=FB.11.证明:∵四边形ABCD是平行四边形,∴AB//CD,AD=BC.∵CE=CD,∴AB//CE,∴四边形ABEC为平行四边形.∴BF=FC,∴OF//12AB,即AB=2OF.12.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC.又∵EF∥AB,∴EF∥CD.∴四边形ABEF,ECDF均为平行四边形.又∵M,N分别为Y ABEF和Y ECDF对角线的交点.∴M为AE的中点,N为DE的中点,即MN为△AED的中位线.∴MN∥AD且MN=12 AD.13.4 14.B15.解:EFGH是平行四边形,连接AC,在△ABC中,∵EF是中位线,∴EF//12 AC.同理,GH//12 AC.∴EF//GH,∴四边形EFGH为平行四边形. 16.解:∵EF,DE,DF是△ABC的中位线,∴EF=12AB,DE=12AC,DF=12BC.又∵AB=10cm,BC=8cm,AC=6cm,∴EF=5cm,DE=3cm,DF=4cm,而32+42=25=52,即DE2+DF2=EF2.∴△EDF为直角三角形.∴S△EDF=12DE·DF=12×3×4=6(cm2).17.解:∵M,N分别是AC,BC的中点.∴MN是△ABC的中位线,∴MN=12 AB.∴AB=2MN=2×20=40(m).故A,B两点间的距离是40m.18.解:连接DE.∵四边形ABCD是平行四边形,∴AB//CD.∵DF=12CD,AE=12AB,∴DF//AE.∴四边形ADFE是平行四边形.∴EF=AD=1cm.∵AB=2AD,∴AB=2cm.∵AB=2AD,∴AB=2AE,∴AD=AE.∴∠1=∠4.∵∠A=60°,∠1+∠4+∠A=180°,∴∠1=∠A=∠4=60°.∴△ADE是等边三角形,∴DE=AE.∵AE=BE,∴DE=BE,∴∠2=∠3.∵∠1=∠2+∠3,∠1=60°,∴∠2=∠3=30°.∴∠ADB=∠3+∠4=90°.222221AB AD-=-3cm). 19.解:延长AD交BC于F.(1)∵AD⊥CD,∴∠ADC=∠FDC=90°.∵CD平分∠ACB,∴∠ACD=∠FCD.在△ACD与△FCD中,∠ADC=∠FDC,DC=DC,∠ACD=∠FCD.∴△ACD≌△FCD,∴AC=FC,AD=DF.又∵E为AB的中点,∴DE∥BF,即DE∥BC.(2)由(1)知AC=FC,DE=12 BF.∴DE=12(BC-FC)=12(BC-AC).20.解:AE=CF.理由:过E作EG∥CF交BC于G,∴∠3=∠C.∵∠BAC=90°,AD⊥BC,∴∠ABC+∠C=90°,∠ABD+∠BAD=90°.∴∠C=∠BAD,∴∠3=∠BAD.又∵∠1=∠2,BE=BE,∴△ABE≌△GBE(AAS),∴AE=GE.∵EF∥BC,EG∥CF,∴四边形EGCF是平行四边形,∴GE=CF,∴AE=CF.21.答案不唯一,如AB=CD或AD∥BC.22.1 223.解:(1)在□ABCD中,AD=CB,AB=CD,∠D=∠B.∵E,F分别为AB,CD的中点,∴DF=12CD,BE=12AB,∴DF=BE,∴△AFD≌△CEB.(2)在□ABCD中,AB=CD,AB∥CD.由(1)得BE=DF,∴AE=CE,∴四边形AECF是平行四边形.。

平行四边形的性质和判定(人教版)(含答案)

平行四边形的性质和判定(人教版)(含答案)

学生做题前请先回答以下问题问题1:平行四边形的定义是什么?问题2:平行四边形是轴对称图形吗?是中心对称图形吗?问题3:平行四边形有哪些性质?问题4:平行四边形的判定定理有哪些?以下是问题及答案,请对比参考:问题1:平行四边形的定义是什么?答:两组对边分别平行的四边形叫做平行四边形.问题2:平行四边形是轴对称图形吗?是中心对称图形吗?答:平行四边形不是轴对称图形;是中心对称图形,且对称中心是对角线的交点.问题3:平行四边形有哪些性质?答:平行四边形是中心对称图形;平行四边形对边相等,对角相等;平行四边形对角线互相平分.问题4:平行四边形的判定定理有哪些?答:边:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;角:两组对角分别相等的四边形是平行四边形;对角线:对角线互相平分的四边形是平行四边形.平行四边形的性质和判定(人教版)一、单选题(共13道,每道7分)1.已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有( )A.6种B.5种C.4种D.3种答案:C解题思路:试题难度:三颗星知识点:平行四边形的判定2.如图,点A是直线外一点,在上取两点B,C,分别以A,C为圆心,BC,AB长为半径画弧,两弧交于点D,分别连接AB,AD,CD,则四边形ABCD是平行四边形的判定定理是( )A.一组对边平行且相等的四边形是平行四边形B.两组对边分别平行的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对角分别相等的四边形是平行四边形答案:C解题思路:试题难度:三颗星知识点:平行四边形的判定3.在四边形ABCD中,AC与BD相交于点O,如果只给出条件“AB∥CD”,还不能判定四边形ABCD为平行四边形.下列条件:①BC=AD;②∠BAD=∠BCD;③OA=OC;④∠ABD=∠CAB.其中可以使四边形ABCD为平行四边形的有( )A.①或②B.①或③或④C.②或③D.②或③或④答案:C解题思路:试题难度:三颗星知识点:平行四边形的判定4.在平行四边形ABCD中,∠B=110°,则∠DAC+∠DCA=( )A.110°B.30°C.50°D.70°答案:D解题思路:试题难度:三颗星知识点:平行四边形的性质5.在平行四边形ABCD中,若有三条边的长度分别为(x-2)cm,(x+3)cm,8cm,则平行四边形ABCD的周长是( )A.22cmB.42cmC.11cm或21cmD.22cm或42cm答案:D解题思路:试题难度:三颗星知识点:平行四边形的性质6.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥DC的延长线于点F,且∠EAF=40°,则∠B=( )A.40°B.50°C.70°D.65°答案:A解题思路:试题难度:三颗星知识点:平行四边形的性质7.平行四边形ABCD对角线AC,BD交于点O,已知平行四边形周长为40,△BOC的周长比△AOB的周长多10,则AB长为( )A.20B.15C.10D.5答案:D解题思路:试题难度:三颗星知识点:平行四边形的性质8.如图,平行四边形ABCD的对角线AC,BD相交于O,EF过点O与AD,BC分别相交于E,F,若AB=4,BC=5,OE=1.5,那么四边形EFCD的周长为( )A.16B.14C.12D.10答案:C解题思路:试题难度:三颗星知识点:平行四边形的性质9.如图,在平行四边形ABCD中,BE平分∠ABC交AD于点E,CF平分∠BCD交AD于点F.那么下列结论错误的是( )A.AB=AEB.DC=AEC.AF=EFD.AF=ED答案:C解题思路:试题难度:三颗星知识点:平行四边形的性质10.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC 交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为( )A. B.C.4D.8答案:B解题思路:试题难度:三颗星知识点:平行四边形的性质11.刘师傅给用户加工平行四边形零件.如图所示,他要检查这个零件是否为平行四边形,用下列方法不能检查的是( )A.AB=CD,AD=CBB.AO=CO,AD∥BCC.∠ABC=∠ADC,AD∥BCD.∠ABD=∠ADB,∠BAO=∠DCO答案:D解题思路:试题难度:三颗星知识点:平行四边形的判定12.四边形ABCD中,AD=12,OD=OB=5,AC=26,∠ADB=90°,则四边形ABCD的面积为( )A.120B.60C.240D.130答案:A解题思路:试题难度:三颗星知识点:平行四边形的判定13.如图,在平面直角坐标系xOy中,四边形OABC的顶点A在x轴上;∠COA=∠B=60°,且CB∥OA,若A的坐标为(8,0),OC长为6,则点B的坐标是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:平行四边形的判定。

第03讲 平行四边形的性质和判定(知识解读+达标检测)(解析版)

第03讲 平行四边形的性质和判定(知识解读+达标检测)(解析版)

第03讲平行四边形的性质和判定【题型1 根据平行四边形的性质求边长】【题型2根据平行四边形的性质求角度】【题型3根据平行四边形的性质求周长】【题型4 平行四边形的判定】【题型5 平行四边形的判定与全三角形综合】【题型6 平行四边形的性质与判定综合】考点1:平行四边形的性质1.边的性质:两组对边分别平行且相等,如下图:AD∥BC,AD=BC,AB∥CD,AB=CD;2.角的性质:两组对角分别相等,如图:∠A=∠C,∠B=∠D3.对角线的性质:对角线互相平分。

如图:AO=CO,BO=DO【题型1 根据平行四边形的性质求边长】【典例1】(2023秋•龙口市期末)如图,平行四边形ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=8,AC=12,则BD的长是( )A.16B.18C.20D.22【答案】C【解答】解:∵四边形ABCD是平行四边形,AC=12,∴OB=OD,OA=OC=AC=6,∵AB⊥AC,由勾股定理得:OB===10,∴BD=2OB=20.故选:C.【变1-1】(2023春•历下区校级期中)如图,在平行四边形ABCD中,∠A的平分线AE交CD于E,AB=8,BC=6,则EC等于( )A.1B.1.5C.2D.3【答案】C【解答】解:∵四边形ABCD为平行四边形,∴CD=AB=8,AD=BC=6.CD∥AB,∵∠DAB的平分线AE交CD于E,∴∠DAE=∠BAE,∵CD∥AB,∴∠AED=∠BAE,∴∠DAE=∠AED.∴ED=AD=6,∴EC=CD﹣ED=8﹣6=2.故选:C.【变式1-2】(2022秋•牟平区期末)如图,在平行四边形ABCD中,∠ABC的平分线交AD 于点E,∠BCD的平分线交AD于点F,若AB=4,AD=5,则EF的长度( )A.1B.2C.3D.4【答案】C【解答】解:∵平行四边形ABCD,∴∠DFC=∠FCB,又CF平分∠BCD,∴∠DCF=∠FCB,∴∠DFC=∠DCF,∴DF=DC,同理可证:AE=AB,∵AB=4,AD=BC=5,∴2AB﹣BC=AE+FD﹣BC=EF=3.故选:C.【变式1-3】(2022秋•安化县期末)如图,F是平行四边形ABCD对角线BE上的点,若BF:FD=1:3,AD=12,则EC的长为( )A.6B.7C.8D.9【答案】C【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=12,∵BF:FD=1:3,∴EB:AD=BF:FD,∴EB:12=1:3,∴EB=4,∴EC=BC﹣EB=12﹣4=8.故选:C.【题型2根据平行四边形的性质求角度】【典例2】(2023春•环翠区期末)如图,将一副三角板在平行四边形ABCD中作如下摆放,设∠1=30°,那么∠2=( )A.55°B.60°C.65°D.75°【答案】D【解答】解:延长EH交AB于N,∵△EFH是等腰直角三角形,∴∠FHE=45°,∴∠NHB=∠FHE=45°,∵∠1=30°,∴∠HNB=180°﹣∠1﹣∠NHB=105°,∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2+∠HNB=180°,∴∠2=75°,故选:D.【变式2-1】(2023秋•二道区校级期末)如图,在▭ABCD中,∠A+∠C=80°,则∠D=( )A.80°B.40°C.70°D.140°【答案】D【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,AB∥CD,∴∠A+∠D=180°,∵∠A+∠C=80°,∴∠A=∠C=40°,∴∠D=180°﹣∠A=140°,故选:D.【变式2-2】(2023春•北安市校级期中)如图,平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=155°,则∠A的度数为( )A.155°B.130°C.125°D.110°【答案】B【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠ABC的平分线交AD于E,∠BED=155°,∴∠ABE=∠CBE=∠AEB=180°﹣∠BED=25°,∴∠A=180°﹣∠ABE﹣∠AEB=130°.故选:B.【变式2-3】(2023•巴东县模拟)四边形ABCD是平行四边形,∠ABC=70°,BE平分∠ABC交AD于点E,DF∥BE交BC于点F,则∠CDF的度数为( )A.55°B.50°C.40°D.35°【答案】D【解答】解:∵∠ABC=70°,BE平分∠ABC,∴∠CBE=∠ABC=35°,∵四边形ABCD是平行四边形,∴∠ADC=∠ABC=70°,AD∥BC,∴∠AEB=∠CBE=35°,∵DF∥BE,∴∠EDF=∠AEB=35°,∴∠CDF=∠ADC﹣∠EDF=70°﹣35°=35°,故选:D.【题型3根据平行四边形的性质求周长】【典例3】(2023春•光明区校级期中)如图,在平行四边形ABCD中,AE平分∠BAD交BC于E,BE=4,EC=3,则平行四边形ABCD的周长为( )cm.A.11B.18C.20D.22【答案】D【解答】解:∵四边形ABCD是平行四边形,∴AD与BC平行,AD=BC,AB=CD,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BA=BE=4,∵BC=BE+EC=4+3=7=AD,∴平行四边形ABCD的周长为2×(7+4)=22(cm),故选:D.【变式3-1】(2023春•东港区校级期中)在平行四边形ABCD中,∠A的角平分线把边BC 分成长度为4和5的两条线段,则平行四边形ABCD的周长为( )A.13或14B.26或28C.13D.无法确定【答案】B【解答】解:设∠A的平分线交BC于点E,∵四边形ABCD是平行四边形,∴BC∥AD,∴∠BEA=∠DAE,∵∠BAE=∠DAE,∴∠BEA=∠BAE,∴AB=EB,当EB=5,EC=4时,如图1,则AB=EB=5,BC=EB+EC=9,∴2AB+2BC=2×5+2×9=28;当EB=4,EC=5时,如图2,则AB=EB=4,BC=EB+EC=9,∴2AB+2BC=2×4+2×9=26,∴平行四边形ABCD的周长为26或28,故选:B.【变式3-2】(2023春•沙坪坝区期中)如图,在▱ABCD中,对角线AC、BD交于点O,周长为18,过点O作OE⊥AC交AD于点E,连结CE,则△CDE的周长为( )A.18B.9C.6D.3【答案】B【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵▱ABCD周长为18,∴AD+CD=9,∵OE⊥AC,OA=OC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+AE+DE=AD+CD=9.故选:B.【变式3-3】(2023秋•南关区校级期末)如图,在▱ABCD中,AD=10,对角线AC与BD 相交于点O,AC+BD=24,则△BOC的周长为 22 .【答案】22.【解答】解:∵四边形ABCD是平行四边形,∴AO=OC=AC,BO=OD=BD,AD=BC=10,∵AC+BD=24,∴OC+BO=12,∴△BOC的周长=OC+OB+BC=12+10=22.故答案为:22考点2:平行四边形的判定1.与边有关的判定:(1)两组对边分别平行的四边形是平行四边形(2)两组对边分别相等的四边形是平行四边形2.与角有关的判定:两组对角分别相等的四边形是平行四边形3.与对角线有关的判定:对角线互相平分的四边形是平行四边形【题型4 平行四边形的判定】【典例4】(2023秋•朝阳区校级期末)如图,四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )A.AB∥DC,AD∥BC B.AB∥DC,AD=BCC.AO=CO,BO=DO D.AB=DC,AD=BC【答案】B【解答】解:A、AB∥DC,AD∥BC可利用两组对边分别平行的四边形是平行四边形判定这个四边形是平行四边形,故此选项不合题意;B、AB∥DC,AD=BC不能判定这个四边形是平行四边形,故此选项符合题意;C、AO=CO,BO=DO可利用对角线互相平分的四边形是平行四边形判定这个四边形是平行四边形,故此选项不合题意;D、AB=DC,AD=BC可利用两组对边分别相等的四边形是平行四边形判定这个四边形是平行四边形,故此选项不合题意;故选:B.【变式4-1】(2022秋•泰山区期末)下列条件中,能判定四边形是平行四边形的是( )A.一组对边相等,另一组对边平行B.一组对边平行,一组对角互补C.一组对角相等,一组邻角互补D.一组对角互补,另一组对角相等【答案】C【解答】解:A、一组对边相等,另一组对边平行,也有可能是等腰梯形B、一组对边平行,一组对角互补,也有可能是等腰梯形C、一组对角相等,一组邻角互补可得到两组对角分别相等,所以是平行四边形D、一组对角互补,另一组对角相等,可能是含两个直角的一般四边形.故选:C.【变式4-2】(2023春•台山市校级期中)在四边形ABCD中,AB∥DC,要使四边形ABCD 成为平行四边形,还需添加的条件是( )A.∠A+∠C=180°B.∠B+∠D=180°C.∠A+∠D=180°D.∠A+∠B=180°【答案】D【解答】解:选项A,B中的两对角是对角关系,不能推出AD∥BC,选项C只能推出AB∥DC,选项D中两角是同旁内角,∵∠A+∠B=180°,∴AD∥BC,又∵AB∥DC,∴四边形ABCD为平行四边形,故选:D.【变式4-3】(2023•中牟县校级开学)小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )A.①②B.①④C.②④D.②③【答案】C【解答】解:∵只有②④两块碎玻璃的角的两边互相平行,且中间部分相连,角的两边的延长线的交点就是平行四边形的另两个顶点,∴带②④两块碎玻璃,就可以确定原来平行四边形玻璃的大小,能在商店配到一块与原来相同的平行四边形玻璃,故选:C.【题型5 平行四边形的判定与全三角形综合】【典例5】(2022秋•周村区期末)已知,如图,在▱ABCD中,点E、F分别在AD、BC上,且∠BAF=∠DCE.求证:(1)△ABF≌△CDE.(2)四边形AECF是平行四边形.【答案】(1)见解析过程;(2)见解析过程.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,AD=BC,在△ABF和△CDE中,,∴△ABF≌△CDE(ASA);(2)∵△ABF≌△CDE,∴AF=CE,BF=DE,∴AE=CF,∴四边形AECF是平行四边形.【变式5-1】(2023春•惠城区期末)如图,在▱ABCD中,点E,F在对角线BD上,且BE =DF.求证:(1)AE=CF;(2)四边形AECF是平行四边形.【答案】(1)见解答;(2)见解答.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠ABE=∠CDF.在△ABE和△CDF中,,∴△ABE≌△DCF(SAS).∴AE=CF.(2)∵△ABE≌△DCF,∴∠AEB=∠CFD,∴∠AEF=∠CFE,∴AE∥CF,∵AE=CF,∴四边形AECF是平行四边形.【变式5-2】(2023春•鱼台县期中)如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F.求证:(1)AE=CF;(2)四边形AECF是平行四边形.【答案】见试题解答内容【解答】证明:(1)∵四边形ABCD是平行四边形.∴AD∥BC,AD=BC.∴∠ADE=∠CBF.∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°.∵在△ADE与△CBF中,∴△ADE≌△CBF(AAS),∴AE=CF.(2)∵AE⊥BD,CF⊥BD,∴∠AEF=∠CFE=90°.∴AE∥CF.又∵AE=CF,∴四边形AECF是平行四边形.【变式5-3】(2023•新疆模拟)如图,在▱ABCD中,点E,F在对角线BD上,且BF=DE.证明:(1)△ABE≌△CDF;(2)四边形AECF是平行四边形.【答案】(1)见解答;(2)见解答.【解答】证明:(1)∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∵BF=DE,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)由(1)可知,△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴180°﹣∠AEB=180°﹣∠CFD,即∠AEF=∠CFE,∴AE∥CF,∵AE=CF,AE∥CF,∴四边形AECF是平行四边形.【题型6 平行四边形的性质与判定综合】【典例6】(2023春•温州月考)如图,在▱ABCD中,点E在AB上,点F在CD上,且AE =CF.(1)求证:四边形DEBF是平行四边形;(2)若DE为∠ADC的角平分线,且AD=6,EB=4,求▱ABCD的周长.【答案】(1)见解析;(2)32.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴DF∥BE,∵AE=CF,∴BE=DF,∴四边形DEBF是平行四边形;(2)解:∵DE为∠ADC的角平分线,∴∠ADE=∠CDE,∵CD∥AB,∴∠AED=∠CDE,∴∠ADE=∠AED,∴AE=AD=6,∵BE=4,∴AB=AE+BE=10,∴▱ABCD的周长=2(AD+AB)=2(6+10)=32.【变式6-1】(2023春•成都期末)如图,在▱ABCD中,点E,F在对角线AC上,且AF=CE,连接BE,DE,BF,DF.(1)求证:四边形BEDF是平行四边形;(2)若∠BAC=80°,AB=AF,DC=DF,求∠EBF的度数.【答案】(1)证明过程见解答;(2)30°.【解答】(1)证明:在▱ABCD中,AB=CD,AB∥CD,∴∠BAF=∠DCE,在△ABF和△CDE中,,∴△ABF≌△CDE(SAS),∴BF=DE,∠DEF=∠BFA,∴ED∥BF,∴四边形BEDF是平行四边形;(2)解:∵四边形BEDF是平行四边形,∴BE=DF,∵AB=DC=DF,∴AB=BE,∴∠BEA=∠BAC=80°,∴∠ABE=180°﹣2×80°=20°,∵AB=AF,∴∠ABF=∠AFB=(180°﹣80°)=50°,∴∠EBF=∠ABF﹣∠ABE=50°﹣20°=30°.【变式6-2】(2023秋•锦江区校级期末)如图,点E、F是平行四边形ABCD对角线AC上两点,BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AC=8,BC=6,∠ACB=30°,求平行四边形ABCD的面积.【答案】(1)证明见解答过程;(2)24.【解答】(1)证明:平行四边形ABCD中,AD∥BC,AD=BC,∴∠ACB=∠CAD,又∵BE∥DF,∴∠BEC=∠DFA,在△BEC和△DFA中,,∴△BEC≌△DFA(AAS),∴BE=DF,又BE∥DF,∴四边形BEDF是平行四边形;(2)解:过A点作AG⊥BC,交CB的延长线于G,在Rt△AGC中,AC=8,∠ACB=30°,∴AG=4,∵BC=6,∴平行四边形ABCD的面积=BC•AG=4×6=24.【变式6-3】(2023春•和县校级期末)如图,BD是四边形ABCD的对角线,∠ADB=∠CBD,AD=BC,过点A作AE∥BD交C的延长于E.(1)求证:四边形ABDE是平行四边形;(2)过点E作EF⊥BC交BC的延长线于点F,连接DF,若,求DF的长.【答案】(1)见解析;(2)2.【解答】(1)证明:∵∠ADB=∠CBD,∴AD∥BC,∴∠ADE=∠BCD.∵AD=BC,∴四边形ABCD是平行四边形,∴AB∥CE,AB=CD,∵AE∥BD,∴∠EAD=∠BDA,∴∠EAD=∠DBC,在△EAD和△DBC中,,∴△EAD≌△DBC(ASA),∴DE=CD,∵AB=DE.∴四边形ABDE是平行四边形;(2)∵DE=CD=AB,∴FD是CE的中线,∵EF⊥BC,∴DF=CE==2.考点3:三角形的中位线三角形中位线:在△ABC 中,D,E 分别是A C,AC 的中点,连接DE.像DE 这样,连接三角形_两边中点的线段叫做三角形的中位线.B中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的二分之一。

(完整版)平行四边形的判定练习及答案

(完整版)平行四边形的判定练习及答案

诘你添加一个适当的条 A.1: 2 :B.2 : 2 :C.2 : 3 : 平行四边形的判定二、课中强化(10分钟训 练)1•如图3,在 匚ABCD 中,对角线F 满足F 列哪个条件时,四边形AC 、BD 相交于点0,E 、F 是对角线AC 上的两点,当E 、 DEBF 不一定是平行四边形( A.AE=CFC.Z ADE=/CBFB.DE=BF D. / AED= / CFB 2•如图 4,AB\|DC, DC=EF=10 , DE=CF=8,则图中的平行四边形有由分别是 ___________________3.如图5,E 、F 是平行四边形ABCD 对角线BD 上的两点,'使四边形AECF 是平行四边形.4.如图6,AD=BC,要使四边形ABCD 是平行四边形,还需补充的一个条件是: __________三、课后巩固(30分钟训练)1 •以不在同一直线上的三个点为顶点作 平行四边形最多能作() A.4个 B.3个 C.2个 D.1个2. 下面给出了四边形ABCD 中/A 、/ B 、/ C 、/ D 的度数之比,其中能判定四边形ABCD 是平行四边形的是()3. 九根火柴棒排成如右图形状 ,图中 __个平行四边形,你判断的根据是 __________________4. 已知四边形ABCD 的对角线AC 、BD 相交于点O,给出下列5个条件:①AB // CD ; OA=OC ; ③AB=CD :④/ BAD= / DCB ; ® AD // BC.(1)从以上5个条件中任意选取2个条件,能推出四边形ABCD 是平行四边形的有(用序图4图5 图6⑵对由以上5个条件中任意选取2个条件,不能推出四边形ABCD 是平行匹边形的,请选取一种 情形举出反例说明 •5•若三条线段的长分别为 平行四边形?20 cm,14 cm,16 cm,以其中两条为对角线 ,另一条为一边,是否可以画 6•如图,E 、F 是四边形ABCD 的对角线AC 上的两点,AF=CE , DF=BE , DF// BE.求证:(】)△AFD ©A CEB;(2)四边形ABCD 是平行四边形.17•如图,已知DC // AB ,且DC= —AB, E 为AB 的中点• 2⑴求证:△ AED EBC ;(2)观察图形,在不添加辅助线的情况下,除厶 EBC 夕卜,请再写出两个与厶AED 的面积相等 的三角形(直接写出结果,不要求证明): __________________________________8•如图,已知二1ABCD中DE丄AC,BF丄AC,证明四边形DEBF为平行四边形9•如图,已知■ ABCD中,E、F分别是AB、CD的中点•求证:(1) △ AFD ©A CEB;⑵四边形AECF是平行四边形•二、课中强化(10分钟训练)1懈析:当E、F满足AE=CF时,由平行四边形的对角线相等知OB=OD,OA=OC ,故OE=OF.可知四边形DEBF是平行四边形•当E、F满足/ ADE= / CBF 时,因为AD // BC,所以/ DAE= / BCF.又AD=BC,可证出厶ADE OA CBF,所以DE=BF,/ DEA= / BFC.故/ DEF= / BFE.因此DE// BF,可知四边形DEBF是平行四边形•类似地可说明D也可以•答案:B2•解析:因为ABWDC,根据一组对边平行且相等的四边形是平行四边形可判定四边形ABCD是平行四边形;DC=EF , DE=CF,根据两组对边分别相等的四边形是平行四边形可判定四边形CDEF是平行四边形•答案:四边形ABCD,四边形CDEF —组对边平行且相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形3•解析:根据平行四边形的定义和判定方法可填BE=DF ; Z BAE= / CDF^-答案:BE=DF或ZBAE=ZCDF等任何一个均可4•解析:根据平行四边形的判定定理,知可填(DAD// BC,② AB=CD,③ ZA+ZB=180。

平行四边形的性质与判定练习题

平行四边形的性质与判定练习题

平行四边形的性质与判定练习题
平行四边形的性质
平行四边形是指具有以下性质的四边形:
- 两对对边分别相等;
- 两对对边分别平行;
- 两对对角线分别相等。

平行四边形的判定方法
平行四边形可以通过以下方法进行判定:
方法一:边长判定法
若一个四边形的两对对边分别相等,则该四边形为平行四边形。

方法二:角度判断法
若一个四边形的两对对角线所代表的角度相等,则该四边形为
平行四边形。

方法三:结合边长与角度判断法
若一个四边形的两对对边分别平行且两对对角线所代表的角度相等,则该四边形为平行四边形。

练题
1. 判定下列四边形是否为平行四边形:
正方形 ABCD,其中 AB = BC = CD = DA
矩形 EFGH,其中 EF = FG = GH = HE
菱形 IJKL,其中 IJ = JK = KL = LI
梯形 MNOP,其中 MN ∥ OP
平行四边形 QRST,其中 QR ∥ TS
2. 对于练题1中的每个四边形,判断其是否满足平行四边形的判定方法。

3. 写出一个例子,展示一种方法可以判定一个四边形是平行四边形的。

请按照题目要求回答练习题,并在回答中使用适当的数学符号和推理步骤。

(完整版)平行四边形的性质及判定典型例题

(完整版)平行四边形的性质及判定典型例题

平行四边形的性质及判定 (典型例题)1.平行四边形及其性质例1如图,O 是卜二・ABCD 对角线的交点.△ OBC 的周长为59, BD=38 , AC=24,贝卩AD= __ 若厶OBC 与厶OAB 的周长之差为 15,贝y AB=QABCD 的周长= _____ .AC ,可得BC ,再由平行四边形对边相等知 AD=BC ,由平行四 边形的对角线互相平分,可知△ OBC 与厶OAB 的周长之差就为BC 与AB 之差,可得AB ,进而可得」ABCD 的周长.解 EBCD 中0A 二= OB = OD = |E D (平行四边形的对角线互相平分)•••△ OBC 的周长=0B + 0C +EC分析: 根据平行四边形对角线互相平先 所OC =1=19 + 12 + BC=59••• BC=28—ABCD 中,•BC=AD(平行四边形对边相等)•AD=28△ OBC的周长-△ OAB的周长=(OB + OC + BC)-(OB + OA+AB)=BC-AB=15•AB=13•••二ABCD的周长=AB + BC + CD + AD=2(AB + BC)=2(13 + 28)=82说明:本题条件中的△ OBC占厶OAB的周长之差为15”,用符号语言表示出来后,便容易发现其实质,即BC与AB之差是15 .例2判断题(1) 两条对边平行的四边形叫做平行四边形. ()(2) 平行四边形的两角相等.()(3) 平行四边形的两条对角线相等.()(4) 平行四边形的两条对角线互相平分. ()(5) 两条平行线中,一条直线上任一点到另一条直线的垂线段叫做两条平行线的距离.()(6) 平行四边形的邻角互补.()分析:根据平行四边形的定义和性质判断.解:(1) 错两组对边分别平行的四边形叫做平行四边形”是两组对边,而不是两条对边.如图四边形ABCD,两条对边AD // BC .显然四边形ABCD 不是平行四边形.(2) 错平行四边形的性定理1,“平行四边形的对角相等.”对角是指四边形中设有公共边的两个角,也就是相对的两个角.(3) 错平行四边形的性质定理3,“平行四边形的对角线互相平分.”一般地不相等.(矩形的两条对角线相等).(4) 对根据平行四边形的性质定理 3 可判断是正确的.(5) 错线段图形,而距离是指线段的长度,是正值正确的说法是:两条平行线中,一条直线上任一点到另一条直线的垂线段的长度叫做这两条平行线的距离.(6) 对由定义知道,平行四边形的对边平行,根据平行线的性质可知.平行四边形的邻角互补.例3 .如图1,在二ABCD中,E、F是AC上的两点.且AE=CF .求证:ED // BF .分析:欲址DE // BF,只需/ DEC二/ AFB,转证=/ ABF CDF, 因卜二,ABCD,则有AB丄CD,从而有/ BAC= / CDA .再由AF=CF 得AF=CE .满足了三角形全等的条件.证明:v AE=CFAE+EF二CF+EF••• AF=CE在二ABCD中AB // CD(平行四边形的对边平行)• / BAC= / DCA(两直线平行内错角相等)AB=CD(平行四边形的对边也相等)•••△ ABF刍乂 CDE(SAS)•••/ AFB= / DCE• ED // BF(内错角相等两直线平行)说明:解决平行四边形问题的基本思想是化为三角形问题不处理.例4如图已知在△ ABC中DE // BC // FG,若BD=AF、求证; DE + FG=BC .分析1:要证DE + FG=DC由于它们是平行线,由平行四边形定义和性质.考虑将DE平移列BC上为此,过E(或D)作EH // AB(或DM // AC),得至U DE=BH、只需证HC=FG ,因AF=BD=EH , / CEH=/ A. / AGF = Z C所以△ AFG幻/ EHC .此方法称为截长法.分析2:过C点作CK // AB交DE的延长线于K,只需证FG=EK , 转证△ AFG CKE .过E作EH // AB交于Hv DE // BC•••四边形DBHE是平行四边形(平行四边形定义)••• DB=EHDE=BH(平行四边形对边也相等)又BD=AF• AF=EHv BC // FGAGF= / C(两直线平行同位角相等)同理 / A= / CEH• △ AFG EHC(AAS)••• FG=HC••• BC二BH+HC二DE二FG.过C作CK // AB交DE的延长线于K.v DE // BC•四边形DBCK是平行四边形(平行四边形定义)•CK=BD DK=BC(平行四边形对边相等)又BD=AF•AF=CKv CK // AB• / A= / ECK(两直线平行内错角相等)v BC // FG•••/ AGF二/ AED(两直线平行同位角相等)又/ CEK二/ AED(对顶角相等)•••/ AGF= / CEK•••△ AFG S' CKE(AAS)FG=EKDE+EK=BC• DE+FG=BC例 5 如图I—ABCD 中,/ ABC=3 /A,点 E 在CD 上,CE=1 , EF丄CD交CB延长线于F,若AD=1,求BF的长.u --- ---------- r分析:根据平行四边形对角相等,邻角互补,可得/ C= / F=45°进而由勾股定理求出CF ,再根据平行四边形对边相等,得BF的长.解:在二ABCD 中,AD // BC•••/ A +/ ABC=180 (两直线平行同旁内角互补)vZ ABC=3 / A•••/ A=45 ,Z ABC=135•••Z C= Z A=45 (平行四边形的对角相等)•EF 丄CD•Z F=45°(直角三角形两锐角互余)•EF=CE=1在RtAOEF中,CF = JCE之》EF金=(勾股定理)v AD=BC=1二BF = CF”EC = Q[例6如图1,‘ ■ ABCD中,对角线AC长为10cm , Z CAB=30 , AB长为6cm,求一ABCD的面积.解:过点C作CH丄AB,交AB的延长线于点H .(图2)vZ CAB=30-■.CH 二丄= 1 X10=52 2••• S—ABCD = AB-CH = 6X5=30(cm2)答:二ABCD的面积为30cm2 .说明:由于二=底>高,题设中已知AB的长,须求出与底AB 相应的高,由于本题条件的制约,不便于求出过点D的高,故选择过点C 作高.例7如图,E、F分别在’・ABCD的边CD、BC上,且EF //求证:S△ ACE二S △ ABF分析:运用平行四形的性质,利用三角形全等,将其转化为等底同高的三角形.证明:将EF向两边延长分别交AD、AB的延长线于G、H.二ABCD DE // AB•••/ DEG= / BHF(两直线平行同位角相等)/ GDE= / DAB(同上)AD // BC•••/ DAB= / FBH(同上):丄 GDE= / FBHv DE // BH , DB // EH•四边形BHED是平行四边形V DE二BH(平行四边形对边相等)GDE 刍乂 FBH(ASA)••• S△ GDE=S △ FBH(全等三角形面积相等).GE=FH(全等三角形对应边相等).S△ ACE=S △ AFH(等底同高的三角形面积相等).S △ ADE = S △ ABF说明:平行四边形的面积等于它的底和高的积.即S二二a・ha .a 可以是平行四边形的任何一边,h必须是a边与其对边的距离.即对应的高,为了区别,可以把高记成ha,表明它所对应的底是a.例8如图,在二ABCD中,BE平分/ B交CD于点E, DF 平分/ D交AB于点F,求证BF=DE .分析EF二DE (目标)十BEDP 为口DF"d叫西3 ]1=Z 3 r Z 1=Z 2f t"S亠彩姑皤彩B口ABCD证明:T四边形ABCD是平行四边形二DE // FB,/ ABC= / ADC(平行四边形的对边也平行对角相等)•••/仁/ 3(两直线平行内错角相等)而Z]=^Z ADC,Z2=|ZABC•••/ 2= / 3• DF // BE(同位角相等两条直线平行)•四边形BEDF为平行四边形(平行四边形定义)• BF=DE .(平行四边形的对边相等)说明:此例也可通过△ ADF CBE来证明,但不如上面的方法简捷.例9如图,CD的Rt△ ABC斜边AB上的高,AE平分/ BAC 交CD于E, EF // AB,交BC于点F,求证CE=BF .分析作EG // BC,交AB于G,易得EG=BF .再由基本图, 可得EG=EC ,从而得出结论.过E点作EG // BC交AB于G点.v EF // AB••• EG=BFv CD为Rt△ ABC斜边AB上的高•/ BAC + / B=90°.Z BAC + / ACD = 90°•/ B= Z ACD•Z ACD=Z EGAv AE 平分Z BAC•Z 1= Z 2又AE=AE•△ AGE ACE(AAS)•CE=EG•CE=BF .说明:(1)在上述证法中,“平移”起着把条件集中的作用.(2)本题也可以设法平移AE .(连F点作FG // AE,交AB于G)例10如图,已知I —ABCD的周长为32cm , AB : BC=5 : 3, AE 丄BC 于E, AF 丄DC 于F,/ EAF=2 / C,求AE 和AF 的长.分析:从化简条件开始①由二ABCD的周长及两邻边的比,不难得到平行四边形的边长.口虹CD 的周长=321 fAB=10AB : BC-5 : 3 p |BC=6②/ EAF=2 / C告诉我们什么?AF i FC1 ZFAE^ZC=180°] oAE 1 EAF-2 Z C j討c=6°这样,立即可以看ADF、△ AEB都是有一个锐角为30°的直角三角形.于是有= = = 3再由勾股定理求出解:——ABCD的周长为32cm即AB+BC+CD+DA=32v AB=CD BC=DA(平行四边形的对边相等)/.AB + BC = - X32 = 16 2又AB : BC=5 : 35+3BC= —X3 = 65+3/ EAF+ / AFC+ / C+ / CEA=360 (四边形内角和等于360°v AE 丄BC / AEC=90AF 丄DC / AFC=90•••/ EAF+ / C=180/ EAF=2 / CT AB // CD(平行四边形的对边平行)•••/ ABE二/ C=60 (两直线平行同位角相等)同理/ ADF=60SRiAABE 中,ZBAE = 30* BE = |AB = 5£—■Al = ja =E^ = 5^3 (cm)在RtAADF中,ZDAF = 30° DF= ^AP = |B C=3■f-j d—iAF - 7A D3 -I>F a = M Ccm)说明:化简条件,化简结论,总之,题目中哪一部分最复杂就从化简那一部分开始,这是一种常用的解题策略,我们把这种解题策略称为:从最复杂的地方开始.它虽简单,却很有效.2 .平行四边形的判定例1填空题(1)如图1,四边形ABCD与四边形BEFC都是平行四边形,则四边形AEFD是—,理由是(2)如图2, D、E分别在△ ABC的边AB、AC上,DE=EF , AE=EC , DE // BC贝卩四边形ADCF是__,理由是__ ,四边形BCFD 是—,理由是—分析:判定一个四边形是平行四边形的方法较多,要从已知条件出发,具体问题具体分析:(1)根据平行四边形的性质可得AD平行且等于BC,BC平行且等于EF,从而得AD平行且等于EF,由判定定理4可得.(2)由AE=EC , DE=EF,由判定定理3可得四边形ADCF是平行四边形,从而得AD // CF即BD // CF,再由条件,可得四边形BCFD是平行四边形.解:(1)平行四边形,一组对边平行且相等的四边形是平行四边形(2)平行四边形,对角线互相平分的四边形是平行四边形,平行四边形,两组对边分别平行的四边形是平行四边形.说明:平行四边形的定义(两组对边分别平行的四边形叫做平行 四边形,既是平行四边形的一个性质,又是平行四边形的一个判定 方法.例 2 女口图,四边形 ABCD 中,AB=CD . / ADB 二 /CBD=90 .求 证:四边形ABCD 是平行四边形.分析:判定一个四边形是平行四边形,有三类五个判定方法, 这三类也是按边、角和对角线分类,具体的五个方法如下表:CIID 从对角钱看一(5 )对角线互相平分 因此必须根据已知条件与图形结构特点,选择判定方法.证法一:v AB=CD . Z ADB= / CBD=90 , BD=DB .••• Rt △ ABD 坐 Rt △ CDB .「( 1)两组对边分别平存C I )从边看 —(2)两组对边分别相等_(3)-组对边平行且相尊 (1)从边看 (II )从角看 (4)两组对角分别相等 的四边形绘平行四边形•••/ ABD= / CDB,/ A= / C.•/ ABD+ / CBD= / CDB+ / ADB即 / ABC= / CDA .•四边形ABCD 是平行四边形(两组对角分别相等的四边形是平行四边形).证法二:vZ ADB= / CBD=90 , AB=CD、BD=DB .•Rt△ ABD 坐Rt△ CDB .•Z ABD=Z CDB.•AB //CD.(内错角相等两直线平行)•四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形).证法三:由证法一知,Rt △ ABD幻Rt △ CDB .••• DA=BC又T AB二CD•四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形)说明:证明一个四边形是平行四边形,往往有多种证题思路,我们必须注意分析,通过比较,选择最简捷的证题思路.本题三种证法中,证法二与证法三比较简捷,本题还可用定义来证明.例3如图,‘「ABCD中,E、G、F、H分别是四条边上的点, 且AE=CF , BG=DH,求证:EF与GH互相平分.分析:只须证明EGFH为平行四边形.证明:连结EG 、GF、FH 、HE.T四边形ABCD是平行四边形•••/ A= / C, AD=CB .T BG=DH•AH=CG又AE=CF•△ AEH CFG(SAS)•HE=GF同理可得EG=FH•四边形EGFH 是平行四边形(两组对边分别相等的四边形是平行四边形)•EF 与GH 互相平分(平行四边形的对角线互相平分).说明:平行四边形的性质,判定的综合运用是解决有关线段和角问题基本方法.例4如图,二ABCD中,AE丄BD于E, CF丄BD于F.求证:四边形AECF是平行四边形.分析:由平行四边形的性质,可得△ ABE CDF••• AE= CF进而可得四边形AECF是平行四边形.证明:口ABCD中,AB屯CD(平行四边形的对边平行,对边相等)•/ ABD= / CDB(两直线平行内错角相等)AE 丄BD、CF 丄BD•AE // CF / AEB= / CFD=90•△ ABE CDF(AAS)•AE=CF•四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形)说明:平行四边形的定义,既是平行四边形的一个性质,又是平行四边形的一个判定方法.例5如图,二ABCD中,E、F分别在AD、BC上,且AE=CF , AF、BE相交于G, CE、DF相交于H求证:EF与GH互相平分分析:欲证EF与GH互相平分,只需四边形EGFH为平行四边形,利用已知条件可知四边形AFCE、四边形EBFD都为平行四边形,所以可得AF // EC , BE // DF,从而四边形GEHF为平行四边形.证明:」ABCD中,AD丄BC(平行四边形对边平行且相等)v AE=CF /. DE=BFT四边形AFCE、四边形BFDE是平行四边形(一组对边平行且相等的四边形是平形四边形)二AF // CE , BE // DF(平行四边形对边平行)•••四边形EGFH是平行四边形(两组对边分别平行的四边形是平行四边形)••• GH与EF互相平分(平行四边形的对角线互相平分)说明:平行四边形问题,并不都是以求证某一个四边形为平行四边形的形式出现的.往往更多的是求证线段的相等、角的相等、直线的平行、线段的互相平分等等.要灵活地根据题中已知条件,以及定义、定理等.先判定某一四边形为平行四边形,然后再应用平行四边形的性质加以证明.例6如图,已知—ABCD中,EF在BD上,且BE=DF ,点G、H 在AD、CB上,且有AG=CH , GH与BD交于点0,求证EG丄HF分析:证EF 、GH 互相平分二GEHF 为平行四边形.证明:连 BG 、DH 、GF 、EHT ABCD 为平行四边形.••• AD 垒 BC又 AG=HC• DG 丄 BH•四边形BGDH 为平行四边形(一组对边平行且相等的四边形是平行四边形)• HO = GO , DO=BO (平行四边形的对角线互相平分) 又 BE=DF•OE=OF•四边形GEHF为平行四边形(对角线互相平分的四边形是平行四边形)••• EG丄HF.(平行四边形的对边平行相等)说明:由于条件BE=DF涉及到对角线BD,所以考虑用对角线互相平分来证明例7如图,——ABCD中,AE丄BD于E, CF丄BD于F, G、H分别为AD、BC的中点,求证:EF和GH互相平分.分析:连结EH , HF、FG、GE,只须证明EHFG为平行四边证法一:连结EH , HF、FG、GEv AE丄BD , G是AD中点.-■.GE=C J D =^AD2/ GED二 / GDE同理可得HF =HB =^EC,Z HFE =Z HEFV四边形ABCD是平行四边形••• AD 岂BC,/ GDE= / HBF••• GE=HF,/ GED= / HFB•GE // HF•四边形GEHF为平行四边形(一组对边平行且相等的四边形是平行四边形)•EF和GH互相平分.(平行四边形对角线互相平分)证法二:容易证明厶ABE CDF• BE=DFT四边形ABCD为平行四边形••• AD 些BCT G、H分别为AD、BC的中点•DG 丄BH•四边形BHDG为平行四边形(一组对边平行且相等的四边形是平行四边形)•BD和GH互相平分(平行四边形对角线互相平分)•OG=OH , OB=OD又BE=DF•OE=OF•EF和GH互相平分.例8如图,已知线段a、b与/ a,求作:—ABCD ,使/ ABC二/ a, AB=a , BC=b ,分析:已知两边与夹角,可先确定△ ABC,根据判定定理2(两组对边分别相等的四边形是平行四边形),再确定点D,从而平行四边形可作出.作法:(1) 作/ EBF二/ a,⑵在BE、BF上分别截取BA=a , BC=b ,⑶分别为A、C为圆心,b, a为半径作弧,两弧交于点D, 二四边形ABCD为所求.*证明:由作法可知AB=CD = aBC=AD=b二四边形ABCD 为平行四边形(两组对边分别相等的四边形为平 行四边形)且/ ABC 二 / a, AB=a , BC=b- ABCD 为所求说明:常见的平行四边形作图有以下几种:(1) 已知两邻边(AB 、BC)和夹角(/ B).(2) 已知一边(BC)和两条对角线(AC , BD).(3) 已知一边(BC)和这条边与两条对角线的夹角 (如/ DBC ,Z ACB).⑷已知一边(CD)和一个内角(/ ABC)以及过这个角的顶点的一条对角线(BD ,且BD > CD)求作平行四边形(如图)完成这些作图的关键点,都在于先作出一个三角形,然后再完成平行四边形的作图,体现了把平行四边形的问题化归为三角形问题的思想方法.。

平行四边形性质及判定练习题及答案

平行四边形性质及判定练习题及答案

平行四边形性质及判定练习题及答案1、已知平行四边形ABCD中,AE⊥BC,AF⊥CD,E,F分别是BC,CD的中点,则2、已知平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是多少?3、已知平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,求AB的长。

4、下列哪些命题是正确的:(1)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形。

5、已知平行四边形ABCD中,AB=6,AC=4,E,D,F 分别是AB,BC,CA的中点,求四边形AEDF的周长。

6、已知平行四边形ABCD的对角线AC、BD相交于点O,下列哪个结论不正确:(A)DC∥AB;(B)OA=OC;(C)AD=BC;(D)DB平分∠ADC。

7、已知平行四边形ABCD中,AB=4,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,求BC的长。

8、已知平行四边形ABCD中,BD为对角线,E、F分别是AD、BD的中点,连接EF,若EF=3,则CD的长为多少?9、已知平行四边形ABCD中,对角线AC、BD相交于点O,点E是BC的中点,OE=3,求AB的长。

10、已知平行四边形ABCD中,AB=8,AD=5,E,F分别是AB,AD的中点,连接EF,求四边形CDEF的周长。

11、已知平行四边形ABCD中,AB=6,BC=8,对角线AC,BD相交于点O,OE=3,求AD的长。

12、已知平行四边形ABCD中,AB=5,BC=7,对角线AC,BD相交于点O,点E是BC的中点,求AE的长。

13、已知平行四边形ABCD中,AB=4,BC=6,BC边上的高AE=2,求DC边上的高AF的长度。

14、在平行四边形ABCD中,AB=2cm,BC=3cm,∠B、∠C的平分线分别交AD于F、E,求EF的长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形性质和判定综合习题精选姓名:1.(2011•资阳)如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状2.(2011•昭通)如图所示,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.3.(2011•徐州)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.4.(2011•铜仁地区)已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.5.(2011•泸州)如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.6.(2010•恩施州)如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形.7.(2009•永州)如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.8.(2009•来宾)在▱ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形.9.(2006•黄冈)如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.10.(2006•巴中)已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?11.(2002•三明)如图:已知D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分.12.已知:如图,在平行四边形ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.13.如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H有在同一条直线上.求证:EF和GH互相平分.14.如图:▱ABCD中,MN∥AC,试说明MQ=NP.15.已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.16.如图,已知在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)17.如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.求证:AF=CE;18.如图平行四边形ABCD中,∠ABC=60°,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,垂足为点F,DF=2(1)求证:D是EC中点;(2)求FC的长.19.(2010•厦门)如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.20.(2010•滨州)如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.请判断四边形EFGH的形状?并说明为什么;21.如图,以△ABC的三边为边,在BC的同侧分别作三个等边三角形即△ABD、△BCE、△ACF,那么,四边形AFED是否为平行四边形?如果是,请证明之,如果不是,请说明理由.22.如图所示.▱ABCD中,AF平分∠BAD交BC于F,DE⊥AF交CB于E.求证:BE=CF.23.如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm 的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;24.已知平行四边形的三个顶点的坐标分别为O(0,0)、A(2,0)、B(1,1),则第四个顶点C的坐标是多少?25.已知平行四边形ABCD的周长为36cm,过D作AB,BC边上的高DE、DF ,且cm ,,求平行四边形ABCD的面积.26.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣3,),B(﹣2,3),C(2,3),点D在第一象限.(1)求D点的坐标;(2)将平行四边形ABCD 先向右平移个单位长度,再向下平移个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?(3)求平行四边形ABCD与四边形A1B1C1D1重叠部分的面积?答案与评分标准一.解答题(共30小题)1.(2011•资阳)如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).考点:平行四边形的判定与性质;全等三角形的判定与性质。

分析:(1)根据平行四边形的性质和已知条件证明△ABE≌△CDF即可得到BE=DF;(2)根据平行四边形的判定方法:有一组对边平行且相等的四边形为平行四边形判定四边形MENF的形状.解答:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∵AE⊥BD于E,CF⊥BD于F,∴∠AEB=∠CFD=90°,∴△ABE≌△CDF(A.A.S.),∴BE=DF;(2)四边形MENF是平行四边形.证明:有(1)可知:BE=DF,∵四边形ABCD为平行四边行,∴AD∥BC,∴∠MDB=MBD,∵DM=BN,∴△DNF≌△BNE,∴NE=MF,∠MFD=∠NEB,∴∠MFE=∠NEF,∴MF∥NE,∴四边形MENF是平行四边形.点评:本题考查了平行四边形的性质以及平行四边形的判定和全等三角形的判定以及全等三角形的性质.2.(2011•昭通)如图所示,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.考点:平行四边形的判定与性质;全等三角形的判定与性质。

专题:证明题。

分析:平行四边形的对角线互相平分,对角线互相平分的四边形是平行四边形.解答:证明:∵四边形AECF是平行四边形∴OE=OF,OA=OC,AE∥CF,∴∠DFO=∠BEO,∠FDO=∠EBO,∴△FDO≌△EBO,∴OD=OB,∵OA=OC,∴四边形ABCD是平行四边形.点评:本题考查平行四边形的性质定理和判定定理,以及全等三角形的判定和性质.3.(2011•徐州)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;考点:平行四边形的判定与性质;全等三角形的判定与性质。

专题:证明题。

分析:(1)由BF=DE,可得BE=CF,由AE⊥BD,CF⊥BD,可得∠AEB=∠CFD=90°,又由AB=CD,在直角三角形中利用HL即可证得:△ABE≌△CDF;(2)由△ABE≌△CDF,即可得∠ABE=∠CDF,根据内错角相等,两直线平行,即可得AB∥CD,又由AB=CD,根据有一组对边平行且相等的四边形是平行四边形,即即可证得四边形ABCD是平行四边形,则可得AO=CO.解答:证明:(1)∵BF=DE,∴BF﹣EF=DE﹣EF,即BE=DE,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵AB=CD,∴Rt△ABE≌Rt△CDF(HL);(2)∵△ABE≌△CDF,∴∠ABE=∠CDF,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形,∴AO=CO.点评:此题考查了全等三角形的判定与性质与平行四边形的判定与性质.此题难度不大,解题的关键是要注意数形结合思想的应用.4.(2011•铜仁地区)已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.考点:平行四边形的判定与性质;三角形中位线定理。

专题:证明题。

分析:由DE、DF是△ABC的中位线,根据三角形中位线的性质,即可求得四边形AEDF是平行四边形,又∠BAC=90°,则可证得平行四边形AEDF是矩形,根据矩形的对角线相等即可得EF=AD.解答:证明:∵DE,DF是△ABC的中位线,∴DE∥AB,DF∥AC,∴四边形AEDF是平行四边形,又∵∠BAC=90°,∴平行四边形AEDF是矩形,∴EF=AD.点评:此题考查了三角形中位线的性质,平行四边形的判定与矩形的判定与性质.此题综合性较强,但难度不大,解题的关键是注意数形结合思想的应用.5.(2011•泸州)如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.考点:平行四边形的判定与性质。

专题:探究型。

分析:根据CE∥AB,DE交AC于点O,且OA=OC,求证△ADO≌△ECO,然后求证四边形ADCE是平行四边形,即可得出结论.解答:解:猜想线段CD与线段AE的大小关系和位置关系是:平行且相等.∴∠DAO=∠ECO,∵OA=OC,∴△ADO≌△ECO,∴AD=CE,∴四边形ADCE是平行四边形,∴CD AE.点评:此题主要考查了平行四边形的判定与性质等知识点的理解和掌握,解答此题的关键是求证△ADO≌△ECO,然后可得证四边形ADCE是平行四边形,即可得出结论.6.(2010•恩施州)如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形.考点:平行四边形的判定与性质;全等三角形的判定与性质。

专题:证明题。

分析:平行四边形的判定方法有多种,选择哪一种解答应先分析题目中给的哪一方面的条件多些,本题所给的条件为M、N分别是DE、BF的中点,根据条件在图形中的位置,可选择利用“一组对边平行且相等的四边形为平行四边形”来解决.解答:证明:由平行四边形可知,AD=CB,∠DAE=∠FCB,又∵AE=CF,∴△DAE≌△BCF,∴DE=BF,∠AED=∠CFB又∵M、N分别是DE、BF的中点,∴ME=NF又由AB∥DC,得∠AED=∠EDC∴∠EDC=∠BFC,∴ME∥NF∴四边形MFNE为平行四边形.点评:平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.7.(2009•永州)如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.考点:平行四边形的判定与性质。

相关文档
最新文档