2019年高考数学一轮复习课时分层训练1集合文北师大版_75
2019年高考数学一轮复习 课时分层训练55 坐标系 文 北师大版
2019年高考数学一轮复习 课时分层训练55 坐标系 文 北师大版1.在极坐标系中,求点⎝ ⎛⎭⎪⎫2,π6到直线ρsin ⎝⎛⎭⎪⎫θ-π6=1的距离.[解] 点⎝⎛⎭⎪⎫2,π6化为直角坐标为(3,1),3分直线ρsin ⎝ ⎛⎭⎪⎫θ-π6=1化为ρ⎝ ⎛⎭⎪⎫32sin θ-12cos θ=1, 得32y -12x =1, 即直线的方程为x -3y +2=0,6分 故点(3,1)到直线x -3y +2=0的距离d =|3-3×1+2|12+-32=1. 10分2.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π4=22. (1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标. [解] (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ, 2分圆O 的直角坐标方程为x 2+y 2=x +y , 即x 2+y 2-x -y =0,4分直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π4=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为y -x =1,即x -y +1=0.6分 (2)由⎩⎪⎨⎪⎧x 2+y 2-x -y =0,x -y +1=0,得⎩⎪⎨⎪⎧x =0,y =1,8分故直线l 与圆O 公共点的一个极坐标为⎝⎛⎭⎪⎫1,π2.10分3.(2017·邯郸调研)在极坐标系中,已知直线l 的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=1,圆C的圆心的极坐标是C ⎝⎛⎭⎪⎫1,π4,圆的半径为1.(1)求圆C 的极坐标方程; (2)求直线l 被圆C 所截得的弦长.[解] (1)设O 为极点,OD 为圆C 的直径,A (ρ,θ)为圆C 上的一个动点,则∠AOD =π4-θ或∠AOD =θ-π4,2分OA =OD cos ⎝⎛⎭⎪⎫π4-θ或OA =OD cos ⎝⎛⎭⎪⎫θ-π4, ∴圆C 的极坐标方程为ρ=2cos ⎝⎛⎭⎪⎫θ-π4.4分 (2)由ρsin ⎝ ⎛⎭⎪⎫θ+π4=1,得22ρ(sin θ+cos θ)=1,6分∴直线l 的直角坐标方程为x +y -2=0, 又圆心C 的直角坐标为⎝⎛⎭⎪⎫22,22,满足直线l 的方程, ∴直线l 过圆C 的圆心,8分 故直线被圆所截得的弦长为直径2.10分 4.(2015·全国卷Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.【导学号:00090370】[解] (1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0,2分联立⎩⎨⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎪⎫32,32. 4分(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α). 8分所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.10分5.(2018·太原模拟)在平面直角坐标系xOy中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数),曲线C 2的普通方程为x 216+y 24=1,以原点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求曲线C 1的普通方程和C 2的极坐标方程;(2)若A ,B 是曲线C 2上的两点,且OA ⊥OB ,求1|OA |2+1|OB |2的值.[解] (1)依题意,曲线C 1的普通方程为(x -1)2+y 2=1,即x 2-2x +y 2=0,2分曲线C 2的极坐标方程为ρ2cos 2θ+4ρ2sin 2θ=16(只要写出ρ,θ的关系式均可).4分(2)曲线C 2的极坐标方程为ρ2cos 2θ16+ρ2sin 2θ4=1,设A (ρ1,θ),B ⎝⎛⎭⎪⎫ρ2,θ+π2,代入C 2的极坐标方程得ρ21cos 2θ16+ρ21sin 2θ4=1,ρ22sin 2θ16+ρ22cos 2θ4=1, 6分故1ρ21+1ρ22=cos 2θ16+sin 2θ4+sin 2θ16+cos 2θ4=516, 9分 ∴1|OA |2+1|OB |2=516.10分6.(2018·大同模拟)在直角坐标系xOy中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2+cos αy =2+sin α(α为参数),直线C 2的方程为y =3x ,以O 为极点,以x 轴正半轴为极轴建立极坐标系. (1)求曲线C 1和直线C 2的极坐标方程;(2)若直线C 2与曲线C 1交于A ,B 两点,求1|OA |+1|OB |. 【导学号:00090371】[解] (1)曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2+cos αy =2+sin α(α为参数),直角坐标方程为(x -2)2+(y -2)2=1,即x 2+y 2-4x -4y +7=0,极坐标方程为ρ2-4ρcos θ-4ρsin θ+7=0.2分 直线C 2的方程为y =3x ,极坐标方程为tan θ=3; 4分 (2)直线C 2与曲线C 1联立,可得ρ2-(2+23)ρ+7=0,6分设A ,B 两点对应的极径分别为ρ1,ρ2,则ρ1+ρ2=2+23,ρ1ρ2=7,8分 ∴1|OA |+1|OB |=|ρ1+ρ2||ρ1ρ2|=2+237.10分。
2019年高考数学一轮复习课时分层训练1集合文北师大版_75
课时分层训练(一) 集合A组基础达标(建议用时:30分钟)一、选择题1.(2017·天津高考)设集合A={1,2,6},B={2,4},C={1,2,3,4},则(A∪B)∩C=( ) A.{2} B.{1,2,4}C.{1,2,4,6} D.{1,2,3,4,6}B[∵A∪B={1,2,6}∪{2,4}={1,2,4,6},∴(A∪B)∩C={1,2,4,6}∩{1,2,3,4}={1,2,4}.故选B.]2.(2017·山东高考)设集合M={x||x-1|<1},N={x|x<2},则M∩N=( ) A.(-1,1) B.(-1,2)C.(0,2) D.(1,2)C[∵M={x|0<x<2},N={x|x<2},∴M∩N={x|0<x<2}∩{x|x<2}={x|0<x<2}.故选C.]3.(2017·潍坊模拟)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为( )A.1 B.2C.3 D.4D[由x2-3x+2=0,得x=1或x=2,∴A={1,2}.由题意知B={1,2,3,4},∴满足条件的C可为{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个.]4.(2016·山东高考)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=( ) A.(-1,1) B.(0,1)C.(-1,+∞)D.(0,+∞)C[由已知得A={y|y>0},B={x|-1<x<1},则A∪B={x|x>-1}.] 5.(2017·衡水模拟)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=( ) 【导学号:00090002】A.{2,5} B.{3,6}C.{2,5,6} D.{2,3,5,6,8}A[由题意得∁U B={2,5,8},∴A∩∁U B={2,3,5,6}∩{2,5,8}={2,5}.]6.(2018·西安模拟)已知集合M={-1,0,1},N={x|x=ab,a,b∈M,且a≠b},则集合M 与集合N 的关系是( )A .M =NB .M ∩N =NC .M ∪N =ND .M ∩N =∅B [由题意知N ={-1,0},则M ∩N =N ,故选B.]7.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是( )A .1B .3C .7D .31B [具有伙伴关系的元素组是-1,12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2.] 二、填空题8.已知集合A ={x |x 2-2 017x +2 016<0},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是________.[2 016,+∞) [由x 2-2 017x +2 016<0,解得1<x <2 016,故A ={x |1<x <2 016},又B ={x |x <a },A ⊆B ,如图所示,可得a ≥2 016.]9.(2016·天津高考)已知集合A ={1,2,3,4},B ={y |y =3x -2,x ∈A },则A ∩B =________. {1,4} [因为集合B 中,x ∈A ,所以当x =1时,y =3-2=1;当x =2时,y =3×2-2=4;当x =3时,y =3×3-2=7;当x =4时,y =3×4-2=10.即B ={1,4,7,10}.又因为A ={1,2,3,4},所以A ∩B ={1,4}.]10.集合A ={x |x <0},B ={x |y =lg[x (x +1)]},若A -B ={x |x ∈A ,且x ∉B },则A -B =________.[-1,0) [由x (x +1)>0,得x <-1或x >0,∴B =(-∞,-1)∪(0,+∞),∴A -B =[-1,0).]B 组 能力提升(建议用时:15分钟)1.(2018·石家庄模拟)已知集合A={x|x∈Z,且32-x∈Z},则集合A中的元素个数为( ) A.2 B.3C.4 D.5C[∵32-x∈Z,∴2-x的取值有-3,-1,1,3,又∵x∈Z,∴x值分别为5,3,1,-1,故集合A中的元素个数为4.]2.(2017·郑州调研)设全集U=R,A={x|x2-2x≤0},B={y|y=cos x,x∈R},则图112中阴影部分表示的区间是( )图112A.[0,1]B.(-∞,-1]∪[2,+∞)C.[-1,2]D.(-∞,-1)∪(2,+∞)D[A={x|x2-2x≤0}=[0,2],B={y|y=cos x,x∈R}=[-1,1].图中阴影部分表示∁U(A∪B)=(-∞,-1)∪(2,+∞).]3.(2018·信阳模拟)已知集合A={(x,y)|y-x=0},B={(x,y)|x2+y2=1},C=A∩B,则C的子集的个数是________. 【导学号:00090003】2[曲线y=x与圆x2+y2=1只有一个交点,从而集合C中只有一个元素,则C的子集的个数有2个.]4.设集合A={x|x2-x-6<0},B={x|x-a≥0}.若存在实数a,使得A∩B={x|0≤x<3},则A∪B=________.{x|x>-2} [A={x|-2<x<3},B={x|x≥a}.如图,由A∩B={x|0≤x<3},得a=0,A∪B={x|x>-2}.]。
2019大一轮高考总复习文数北师大版课时作业提升1 集合
课时作业提升(一)集合A组夯实基础1.(2015·全国卷Ⅱ)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=()A.(-1,3)B.(-1,0)C.(0,2) D.(2,3)解析:选A将集合A与B在数轴上画出(如图).由图可知A∪B=(-1,3),故选A.2.(2018·南平一模)已知集合A={1,2,3,4},B={x|y=3-x},则A∩B=()A.{1,2} B.{1,2,3}C.{4,5} D.{3,4,5}解析:选B由3-x≥0得x≤3,则B={x|y=3-x}={x|x≤3},又集合A={1,2,3,4},则A∩B={1,2,3}.3.(2018·宁德一模)已知全集U={-2,0,1,2},集合A={x|x2-2x=0},则∁U A=() A.{-2,1} B.{-2,0,2}C.{0,2} D.{0,1}解析:选A根据题意,A={x|x2-2x=0}={0,2},又由全集U={-2,0,1,2},则∁U A ={-2,1}.4.若集合A={x|x2+3x-4<0},B={x|-2<x≤3},且M=A∩B,则有()A.(∁R B)⊆A B.M⊆AC.2∈M D.1∈M解析:选B集合A={x|x2+3x-4<0}={x|-4<x<1},集合B={x|-2<x≤3},则M =A∩B={x|-2<x<1},即有M⊆A.5.已知集合A={x||x-2|≤1},且A∩B=∅,则集合B可能是()A.{2,5} B.{x|x2≤1}C.(1,2) D.(-∞,-1)解析:选D∵集合A={x||x-2|≤1}=[1,3],由A∩B=∅,则B⊆(-∞,1)∪(3,+∞).6.若集合A={x|x≥0},且A∩B=B,则集合B可能是()A.{1,2} B.{x|x≤1}C.{-1,0,1} D.R解析:选A因为A∩B=B,所以B⊆A,因为{1,2}⊆A,故选A.7.集合A={x|-2≤x≤2},B={y|y=x,0≤x≤4},则下列关系正确的是()A .A ⊆∁RB B .B ⊆∁R AC .∁R A ⊆∁R BD .A ∪B =R解析:选C 依题意得B ={y |0≤y ≤2},因此B ⊆A ,∁R A ⊆∁R B ,选C .8.(2018·河南一模)已知集合A ={(x ,y )|y -x =0},B ={(x ,y )|x 2+y 2=1},C =A ∩B ,则C 的子集的个数是( )A .0B .1C . 2D .4解析:选C ∵集合A ={(x ,y )|y -x =0},B ={(x ,y )|x 2+y 2=1},∴C =A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎨⎧ y -x =0x 2+y 2=1=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫⎝ ⎛⎭⎪⎫-1+52,-1+52, ∴C 的子集的个数是21=2.9.(2018·邵阳模拟)已知集合A ={x |y =lg(x 2+4x -12)},B ={x |-3<x <4},则A ∩B =________.解析:集合A ={x |y =lg(x 2+4x -12)}={x |x 2+4x -12>0}={x |x <-6或x >2},B ={x |-3<x <4},则A ∩B ={x |2<x <4}=(2,4).答案:(2,4)10.已知集合A ={(0,1),(1,1),(-1,2)},B ={(x ,y )|x +y -1=0,x ,y ∈Z },则A ∩B =________________.解析:经验证,点(0,1),(-1,2)在直线x +y -1=0上.故A ∩B ={(0,1),(-1,2)}. 答案:{(0,1),(-1,2)}B 组 能力提升1.已知集合U ={1,2,3,4,5,6},集合A ={2,3},B ={2,4, 5},则图中阴影部分表示的集合是( )A .{2,4,6}B .{1,3,5}C .{2,6}D .{1,6}解析:选D 图中阴影部分表示的集合为∁U (A ∪B ).因为A ∪B ={2,3,4,5},U ={1,2,3,4,5,6},所以∁U (A ∪B )={1,6}.2.(2017·西安一模)已知集合M ={-1,0,1},N ={x |x =ab ,a ,b ∈M ,且a ≠b },则集合M 与集合N 的关系是( )A .M =NB .M ∩N =NC .M ∪N =ND .M ∩N =∅解析:选B 因为集合M ={-1,0,1},N ={x |x =ab ,a ,b ∈M ,且a ≠b },所以N ={-1,0},则集合M ∩N =N .故选B .3.(2018·清远一模)设集合A ={x |y =x -1},集合B ={x |2x -x 2>0},则(∁R A )∩B 等于( )A .(0,2)B .[1,2)C .(0,1)D .∅解析:选C 集合A ={x |y =x -1}={x |x -1≥0}={x |x ≥1},集合B ={x |2x -x 2>0}={x |x (x -2)<0}={x |0<x <2},则∁R A ={x |x <1},∴(∁R A )∩B ={x |0<x <1}=(0,1).故选C .4.设全集U =R ,集合A ={x |y =lg x },B ={-1,1},则下列结论中正确的是( ) A .A ∩B ={-1} B .(∁R A )∪B =(-∞,0) C .A ∪B =(0,+∞)D .(∁R A )∩B ={-1}解析:选D 由题意知,集合A ={x |x >0},则∁R A ={x |x ≤0}.又B ={-1,1},所以A ∩B ={1},(∁R A )∪B =(-∞,0]∪{1},A ∪B ={-1}∪(0,+∞),(∁R A )∩B ={-1}.5.(2018·湘潭模拟)已知全集U =R ,集合M ={x ||x |<1},N ={x |x =2y ,y ∈R },则集合∁U (M ∪N )等于( )A .(-∞,-1]B .(-1,2)C .(-∞,-1]∪[2,+∞)D .[2,+∞)解析:选A ∵M ={x ||x |<1}={x |-1<x <1},N ={x |x =2y ,y ∈R }={x |x >0},∴M ∪N ={x |x >-1}.又∵U =R ,∴∁U (M ∪N )=(-∞,-1].6.(2018·淮北模拟)已知全集U =R ,集合M ={x |x +2a ≥0},N ={x |log 2(x -1)<1},若集合M ∩(∁U N )={x |x =1或x ≥3},那么a 的取值为( )A .a =12B .a ≤12C .a =-12D .a ≥12解析:选C ∵log 2(x -1)<1,∴x -1>0且x -1<2,即1<x <3,则N ={x |1<x <3},∵U =R ,∴∁U N ={x |x ≤1或x ≥3},又∵M ={x |x +2a ≥0}={x |x ≥-2a },M ∩(∁U N )={x |x =1或x ≥3},∴-2a =1,得a =-12.故选C .7.已知集合A ={x |x 2-3x <0},B ={1,a },且A ∩B 有4个子集,则实数a 的取值范围是( )A .(0,3)B .(0,1)∪(1,3)C .(0,1)D .(-∞,1)∪(3,+∞)解析:选B 化简得A ={x |0<x <3},∵A ∩B 有4个子集,∴A ∩B 中有2个元素,∴a ∈A ,得0<a <3且a ≠1,故选B . 8.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },如果P ={x |log 2x <1},Q ={x ||x -2|<1},那么P -Q =( )A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3}解析:选B 由log 2x <1,得0<x <2,所以P ={x |0<x <2}.由|x -2|<1,得1<x <3,所以Q ={x |1<x <3}.由题意,得P -Q ={x |0<x ≤1}.9.(2018·潍坊检测)已知全集U =R ,集合A ={x |x 2-x -2=0},B ={x |mx +1=0},B ∩(∁U A )=∅,则m =________.解析:A ={-1,2},若B =∅,则m =0;若B ={-1},则m =1;若B ={2},则m =-12. 答案:0,1,-1210.已知全集U ={a 1,a 2,a 3,a 4},集合A 是全集U 的恰有两个元素的子集,且满足下列三个条件:①若a 1∈A ,则a 2∈A ;②若a 3∉A ,则a 2∉A ;③若a 3∈A ,则a 4∉A .则集合A =________.(用列举法表示)解析:假设a 1∈A ,则a 2∈A ,由若a 3∉A ,则a 2∉A 可知,a 3∈A ,故假设不成立;假设a 4∈A ,则a 3∉A ,a 2∉A ,a 1∉A ,故假设不成立.故集合A ={a 2,a 3}.答案:{a 2,a 3}。
推荐2019年高考数学一轮复习课时分层训练71坐标系理北师大版
课时分层训练(七十一) 坐标系1.若函数y =f (x )的图像在伸缩变换φ:⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 的作用下得到曲线的方程为y ′=3sin ⎝⎛⎭⎪⎫x ′+π6,求函数y =f (x )的最小正周期.[解] 由题意,把变换公式代入曲线方程y ′=3 sin ⎝ ⎛⎭⎪⎫x ′+π6得3y =3 sin ⎝ ⎛⎭⎪⎫2x +π6,整理得y =sin ⎝ ⎛⎭⎪⎫2x +π6,故f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6.所以y =f (x )的最小正周期为2π2=π.2.在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN的面积.[解] (1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0. (2)法一:将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2=2, 故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.法二:直线C 3的直角坐标方程为x -y =0,圆C 2的圆心C 2(1,2)到直线C 3的距离d =12=22,圆C 2的半径为1, 所以|MN |=2×12-⎝ ⎛⎭⎪⎫222=2,所以△C 2MN 的面积为12.3.(2018·合肥一检)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =3+3t(t 为参数).以坐标原点为极点,x 轴非负半轴为极轴的极坐标轴中,曲线C 的方程为sin θ-3ρ cos 2θ=0.(1)求曲线C 的直线坐标方程;(2)写出直线l 与曲线C 交点的一个极坐标. [解] (1)∵sin θ-3ρcos 2θ=0, ∴ρsin θ-3ρ2cos 2θ=0,即y -3x 2=0. (2)将⎩⎪⎨⎪⎧x =1+12t ,y =3+3t ,代入y -3x 2=0,得3+3t -3⎝ ⎛⎭⎪⎫1+12t 2=0,即t =0.从而交点坐标为(1,3).∴交点的一个极坐标为⎝⎛⎭⎪⎫2,π3.4.在直角坐标系xOy中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.【导学号:79140387】[解] (1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0,联立⎩⎨⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎪⎫32,32. (2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α). 所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.。
1.1.1 集合的概念与表示(北师大版2019必修第一册)分册训练解析版
1.1.1集合的概念与表示分层练习基础巩固一、单选题1.已知M 是由1,2,3三个元素构成的集合,则集合M 可表示为( ) A .{x |x =1} B .{x |x =2} C .{1,2} D .{1,2,3}【答案】D 【解析】 【分析】根据集合的知识确定正确选项. 【详解】由于集合M 是由1,2,3三个元素构成, 所以{}1,2,3M =. 故选:D2.下面给出的四类对象中,构成集合的是( ) A .某班视力较好的同学 B .长寿的人 C .π的近似值D .倒数等于它本身的数【答案】D 【解析】 【分析】根据集合的定义分析判断即可. 【详解】对于A ,视力较好不是一个明确的定义,故不能构成集合; 对于B ,长寿也不是一个明确的定义,故不能构成集合; 对于C ,π 的近似值没有明确近似到小数点后面几位, 不是明确的定义,故不能构成集合;对于D ,倒数等于自身的数很明确,只有1和-1,故可以构成集合; 故选:D.3.已知集合{}0,1A =,则集合{},B x y x A y A =-∈∈中元素的个数是( ) A .1个 B .2个 C .3个 D .4个【答案】C 【解析】 【分析】根据,x A x B ∈∈,所以x y -可取1,0,1-,即可得解. 【详解】由集合{}0,1A =,{},B x y x A y A =-∈∈, 根据,x A y B ∈∈, 所以1,0,1x y -=-, 所以B 中元素的个数是3. 故选:C4.已知集合()(){}110A x x x x =-+=,则A =( ) A . {}0,1 B . {}1,0-C .{}0,1,2D .{}1,0,1-【答案】D 【解析】 【分析】通过解方程进行求解即可. 【详解】因为(1)(1)00x x x x -+=⇒=,或1x =-,或1x =, 所以{}1,0,1A =-, 故选:D5.给出下列四个关系:π∈R , 0∉Q ,0.7∈N , 0∈∅,其中正确的关系个数为( ) A .4 B .3C .2D .1【答案】D 【解析】 【分析】根据自然数集、有理数集、空集的含义判断数与集合的关系. 【详解】∵R 表示实数集,Q 表示有理数集,N 表示自然数集,∅表示空集, ∴π∈R ,0∈Q ,0.7∉N ,0∉∅, ∴正确的个数为1 . 故选:D .6.已知{1}A x x m =∈-<Z ∣,若集合A 中恰好有5个元素,则实数m 的取值范围为( )A .4<m ≤5B .4≤m<5C .3≤m<4D .3<m ≤4【答案】D 【解析】 【分析】由已知求出集合A ,进一步得到m 的范围. 【详解】由题意可知{}1,0,1,2,3A =-,可得3<m ≤4. 故选:D 二、多选题7.给出下列说法,其中正确的有( ) A .中国的所有直辖市可以构成一个集合;B .高一(1)班较胖的同学可以构成一个集合;C .正偶数的全体可以构成一个集合;D .大于2 011且小于2 016的所有整数不能构成集合. 【答案】AC 【解析】 【分析】根据集合的确定性依次判断每个选项得到答案. 【详解】中国的所有直辖市可以构成一个集合,A 正确;高一(1)班较胖的同学不具有确定性,不能构成集合,B 错误; 正偶数的全体可以构成一个集合,C 正确;大于2 011且小于2 016的所有整数能构成集合,D 错误. 故选:AC.8.已知集合{}2|320A x ax x =-+=中有且只有一个元素,那么实数a 的取值可能是( )A .98B .1C .0D .23【答案】AC 【解析】 【分析】对a 进行分类讨论,结合A 有且只有一个元素求得a 的值. 【详解】当0a =时,{}2|3203A x x ⎧⎫=-+==⎨⎬⎩⎭,符合题意.当0a ≠时,9980,8a a ∆=-==,符合题意.故选:AC 三、填空题9.用符号∈或∉填空:3.1___N ,3.1___Z , 3.1____*N ,3.1____Q ,3.1___R . 【答案】 ∉ ∉ ∉ ∈ ∈ 【解析】 【分析】由元素与集合的关系求解即可 【详解】因为3.1不是自然数,也不是整数,也不是正整数,是有理数,也是实数, 所以有:3.1N ∉;3.1Z ∉;*3.1N ∉;3.1Q ∈;3.1R ∈. 故答案为:∉,∉,∉,∈,∈.10.设集合{}1A x xy xy =-,,,其中x ∈Z ,y Z ∈且0y ≠,若0A ∈,则A 中的元素之和为_____. 【答案】0 【解析】 【分析】根据元素与集合间的关系,列方程求解. 【详解】因为0A ∈,所以若0x =,则集合{}0,0,1A =-不成立.所以0x ≠. 若因为0y ≠,所以0xy ≠,所以必有0xy -1=,所以1xy =. 因为x ∈Z ,y Z ∈,所以1x y ==或1x y ==-. 若1x y ==,此时{}1,1,0A =不成立,舍去.若1x y ==-,则{}1,1,0A =-,成立.所以元素之和为1100-+=. 故答案为:0. 四、解答题11.设集合{}22,3,42A a a =++,集合{}20,7,42,2B a a a =+--,这里a 是某个正数,且7A ∈,求集合B . 【答案】B ={0,7,3,1}. 【解析】 【分析】解方程2427a a ++=即得解. 【详解】解:由题得2427a a ++=, 解得1a =或5a =-. 因为0a >,所以1a =. 当1a =时, B ={0,7,3,1}. 故集合B ={0,7,3,1}.12.判断下列各组对象能否构成集合.若能构成集合,指出是有限集还是无限集;若不能构成集合,试说明理由. (1)北京各区县的名称; (2)尾数是5的自然数;(3)我们班身高大于1.7m 的同学. 【答案】(1)能;有限集; (2)能;无限集; (3)能;有限集. 【解析】 【分析】根据集合的基本概念即得. (1)因为北京各区县的名称是确定的,故北京各区县的名称能构成集合;因为北京各区县是有限的,故该集合为有限集; (2)因为尾数是5的自然数是确定的,故尾数是5的自然数能构成集合;因为尾数是5的自然数是无限的,故该集合为无限集; (3)因为我们班身高大于1.7m 的同学是确定的,故我们班身高大于1.7m 的同学能构成集合;因为我们班身高大于1.7m 的同学是有限的,故该集合为有限集.培优提升一、单选题1.定义集合,A B 的一种运算:2{|,,}A B x x a b a A b B ⊗==-∈∈,若{}1,0A =-,{}1,2B =,则A B ⊗中的元素个数为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】根据集合的新定义确定集合中的元素. 【详解】因为2{|,,}A B x x a b a A b B ⊗==-∈∈,{}1,0A =-,{}1,2B =, 所以{0,1,2}A B ⊗=--, 故集合A B ⊗中的元素个数为3, 故选:C.2.若{}22,a a a ∈-,则a 的值为( )A .0B .2C .0或2D .2-【答案】A 【解析】 【分析】分别令2a =和2a a a =-,根据集合中元素的互异性可确定结果. 【详解】若2a =,则22a a -=,不符合集合元素的互异性;若2a a a =-,则0a =或2a =(舍),此时{}{}22,2,0a a -=,符合题意;综上所述:0a =. 故选:A.3.已知x ,y ,z 为非零实数,代数式||||||||x y z xyz x y z xyz +++的值所组成的集合是M ,则下列判断正确的是( ) A .4∈M B .2M ∈ C .0M ∉ D .4M -∉【答案】A 【解析】【分析】分别对x ,y ,z 的符号进行讨论,计算出集合M 的所有元素,再进行判断. 【详解】根据题意,分4种情况讨论;①、x y 、、z 全部为负数时,则xyz 也为负数,则4||||||||x y z xyz x y z xyz +++=-; ②、x y 、、z 中有一个为负数时,则xyz 为负数,则0||||||||x y z xyz x y z xyz +++=; ③、x y 、、z 中有两个为负数时,则xyz 为正数,则0||||||||x y z xyz x y z xyz +++=; ④、x y 、、z 全部为正数时,则xyz 也正数,则4||||||||x y z xyz x y z xyz +++=; 则{4,0,4}M =-;分析选项可得A 符合. 故选:A. 二、填空题4.集合12ZZ 3A x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭∣,的元素个数为_________. 【答案】12 【解析】 【分析】根据集合得表示可知:3x + 是12的因数,即可求解. 【详解】由12ZZ 3A x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭∣,可知,3x + 是12的因数,故31,2,3,4,6,12x +=±±±±±± ,进而可得x 可取0,1,3,9,1,2,4,5,6,7,9,15--------,故答案为:125.若集合{}2210A xax x =-+=∣有且只有一个元素,则a 的取值集合为__________. 【答案】{}0,1##{}1,0 【解析】 【分析】讨论集合A 中的条件2210ax x -+=属于一次方程还是二次方程即可求解. 【详解】①若0a =,则210x -+=,解得12x =,满足集合A 中只有一个元素,所以0a =符合题意;②若0a =/,则2210ax x -+=为二次方程,集合A 有且只有一个元素等价于2=(2)410a --⨯⨯=∆,解得1a =.故答案为:{}0,1. 三、解答题6.已知{}2|20,R M x ax x x =-+=∈.根据下列条件,求实数a 的值构成的集合.(1)当M =∅;(2)当M 是单元素集(只含有一个元素的集合); (3)当M 是两个元素的集合. 【答案】(1)1,8⎛⎫+∞ ⎪⎝⎭(2)1,08⎧⎫⎨⎬⎩⎭(3)1,08a a a ⎧⎫<≠⎨⎬⎩⎭【解析】 【分析】(1)由判别式小于0可得(方程为一元二次方程); (2)由二次项系数为0或一元二次方程的判别式为0柯得; (3)由方程为一元二次方程,且判别式大于0可得. (1)M =∅,180a ∆=-<,18a >,所以a 的范围是1(,)8+∞;(2)0a =时,{2}M =,满足题意,180a ∆=-=,18a =,此时{4}M =,满足题意,(3)由题意方程有两个不等实根,0a ≠且0∆>,解得18a <且0a ≠,所以a 的范围是1{|8a a <,0}a ≠.拓展创新1.已知集合2{,}A m m =,若1A ∈,则实数m 的值是__________ 【答案】1-【解析】 【分析】由1A ∈,分1m =,21m =两种情况讨论,结合集合中元素的互异性分析,即得解 【详解】 由题意,1A ∈(1)若1m =,则{1,1}A =,和集合中元素的互异性矛盾,不成立; (2)若21m =,则1m =±,由(1)1m ≠ 若1m =-,则{1,1}A =-,1A ∈,成立 故实数m 的值是1- 故答案为:1- 2.已知*k N ∈,记集合{1101100112222,1,,,,01}k k k k k k k A x x a a a a a a a a ---==⨯+⨯++⨯+⨯==或,例如{{}110102,1,01}2,3A x x a a a a ==+===或,….现有一款名称为“解数学题获取软件激活码”网络游戏,它的激活码为集合A 2的各元素之和,则该游戏的激活码为________. 【答案】22 【解析】 【分析】由已知得{22102104+2+,1,,0A x x a a a a a a ====或}1,由此求得集合{}24,5,6,7A =,故而可得答案. 【详解】解:由已知得{22102104+2+,1,,0A x x a a a a a a ====或}1, 所以当100a a ==时,41+0+04x =⨯=; 当1010a a ==,时,41+21+06x =⨯⨯=; 当1001a a ==,时,41+20+115x =⨯⨯⨯=, 当1011a a ==,时,41+21+117x =⨯⨯⨯=,所以{}24,5,6,7A =,该游戏的激活码为4+5+6+722=, 故答案为:22.3.已知集合{}0,2A =,()()(){}21110B x ax x x ax =---+=,用符号A 表示非空集合A中元素的个数,定义,,A B A BA B B A A B ⎧-≥=⎨-<⎩※,若1A B =※,则实数a 的所有可能取值构成集合P ,则P =______.(请用列举法表示) 【答案】{}0,1,2- 【解析】 【分析】由集合的新定义结合题意求出a 的值,再用列举法表示即可 【详解】∵2A =,1A B =※, ∴1B =或3B =, 当1B =时,0a =或1a =.当3B =时,()()()21110ax x x ax ---+=有3个解,所以210x ax -+=只有一个解不为1和1a, 则240a ∆=-=,解得2a =±,当2a =时,2210x x -+=,则此时1x =,不符合题意; 当2a =-时,2210x x ++=,则此时1x =-,符合题意; 所以2a =-,11,,12B ⎧⎫=--⎨⎬⎩⎭,故{}0,1,2P =-. 故答案为:{}0,1,2-.4.用()C A 表示非空集合A 中元素的个数:定义()(),()()*()(),()()C A C B C A C B A B C B C A C B C A -≥⎧=⎨->⎩,若{1,2}A =,{}22()(2)0,B x x ax x ax x R =+++=∈,且*1A B =,设实数a 的所有可能取值构成集合S ,S =__________; 【答案】{0,22,2}- 【解析】 【分析】根据新定义得出集合B 中元素个数,再由方程根的个数分析求解. 【详解】由已知()2C A =,而*1A B =,则()1C B =或3,试卷第11页,共11页 11显然22()(2)0x ax x ax +++=的一个解是0x =, 若()1C B =,则0a =,满足题意;若()3C B =,则0a ≠,方程已有两个根0x =和x a =-,220x ax ++=有两个相等的实根且不为0和a -,280a ∆=-=,22a =±22a =220x ax ++=的解为342x x ==- 22a =-220x ax ++=的解为342x x ==.均满足题意. 综上{0,2,22}S =-. 故答案为:{0,2,2}-.12 试卷第12页,共1页。
2019年高考数学一轮复习课时分层训练椭圆文北师大版
课时分层训练(四十五) 椭 圆A 组 基础达标 (建议用时:30分钟)一、选择题1.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为( ) A .4 B .3 C .2D .5A [由题意知,在△PF 1F 2中,|OM |=12|PF 2|=3,∴|PF 2|=6,∴|PF 1|=2a -|PF 2|=10-6=4.]2.已知椭圆的方程为2x 2+3y 2=m (m >0),则此椭圆的离心率为( )A .13B .33C .22D .12B [原方程化为x 2m 2+y 2m3=1(m >0),∴a 2=m2,b 2=m 3,则c 2=a 2-b 2=m6,则e 2=13,∴e =33.]3.(2018·衡水模拟)已知A (-1,0),B 是圆F :x 2-2x +y 2-11=0(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为( )【导学号:00090293】A .x 212+y 211=1 B .x 236-y 235=1 C .x 23-y 22=1D .x 23+y 22=1D [由题意得|PA |=|PB |,∴|PA |+|PF |=|PB |+|PF |=r =23>|AF |=2,∴点P 的轨迹是以A 、F 为焦点的椭圆,且a =3,c =1,∴b =2,∴动点P 的轨迹方程为x 23+y 22=1,故选D .]4.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,若P 为椭圆上的任意一点,则OP →·FP→的最大值为( ) A .2 B .3 C .6D .8C [由题意知,O (0,0),F (-1,0),设P (x ,y ),则OP →=(x ,y ),FP →=(x +1,y ),∴OP →·FP →=x (x +1)+y 2=x 2+y 2+x .又∵x 24+y 23=1,∴y 2=3-34x 2,∴OP →·FP →=14x 2+x +3=14(x +2)2+2.∵-2≤x ≤2,∴当x =2时,OP →·FP →有最大值6.]5.已知椭圆C :x 2a +y 2b =1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( ) A .x 23+y 22=1B .x 23+y 2=1C .x 212+y 28=1D .x 212+y 24=1 A [∵x 2a 2+y 2b 2=1(a >b >0)的离心率为33,∴c a =33.又∵过F 2的直线l 交椭圆于A ,B 两点,△AF 1B 的周长为43, ∴4a =43,∴a =3,∴b =2, ∴椭圆方程为x 23+y 22=1.]二、填空题6.已知椭圆的方程是x 2a 2+y 225=1(a >5),它的两个焦点分别为F 1,F 2,且|F 1F 2|=8,弦AB (椭圆上任意两点的线段)过点F 1,则△ABF 2的周长为__________. 441 [∵a >5,∴椭圆的焦点在x 轴上. ∵|F 1F 2|=8,∴c =4, ∴a 2=25+c 2=41,则a =41.由椭圆定义,|AF 1|+|AF 2|=|BF 2|+|BF 1|=2a , ∴△ABF 2的周长为4a =441.]7.(2017·湖南长沙一中月考)如图854,∠OFB =π6,△ABF 的面积为2-3,则以OA 为长半轴,OB 为短半轴,F 为一个焦点的椭圆方程为__________.【导学号:00090294】图854x 28+y 22=1 [设所求椭圆方程为x 2a 2+y 2b2=1(a >b >0),由题意可知,|OF |=c ,|OB |=b , ∴|BF |=A .∵∠OFB =π6,∴b c =33,a =2B .∴S △ABF =12·|AF |·|BO |=12(a -c )·b =12(2b -3b )b =2-3,解得b 2=2,则a =2b =2 2. ∴所求椭圆的方程为x 28+y 22=1.]8.(2018·赣州模拟)已知圆E :x 2+⎝ ⎛⎭⎪⎫y -122=94经过椭圆C :x 2a +y 2b =1(a >b >0)的左、右焦点F 1,F 2,与椭圆在第一象限的交点为A ,且F 1,E ,A 三点共线,则该椭圆的方程为________.x 24+y 22=1 [对于x 2+⎝ ⎛⎭⎪⎫y -122=94,当y =0时,x =±2, ∴F 1(-2,0),F 2(2,0),∵E 的坐标为⎝ ⎛⎭⎪⎫0,12,∴直线EF 1的方程为y -012-0=x +20+2,即y =24x +12,由⎩⎪⎨⎪⎧y =24x +12,x 2+⎝ ⎛⎭⎪⎫y -122=94得点A 的坐标为(2,1),则2a =|AF 1|+|AF 2|=4,∴a =2,∴b 2=2, ∴该椭圆的方程为x 24+y 22=1.]三、解答题9.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,其中左焦点为F (-2,0).(1)求椭圆C 的方程;(2)若直线y =x +m 与椭圆C 交于不同的两点A ,B ,且线段AB 的中点M 在圆x 2+y 2=1上,求m 的值.[解] (1)由题意,得⎩⎪⎨⎪⎧c a =22,c =2,a 2=b 2+c 2,解得⎩⎨⎧a =22,b =2.3分∴椭圆C 的方程为x 28+y 24=1.5分(2)设点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),线段AB 的中点为M (x 0,y 0),由⎩⎪⎨⎪⎧x 28+y 24=1,y =x +m ,消去y 得,3x 2+4mx +2m 2-8=0,Δ=96-8m 2>0,∴-23<m <2 3.8分∵x 0=x 1+x 22=-2m 3,∴y 0=x 0+m =m3.10分∵点M (x 0,y 0)在圆x 2+y 2=1上, ∴⎝ ⎛⎭⎪⎫-2m 32+⎝ ⎛⎭⎪⎫m 32=1,∴m =±355.12分10.设椭圆E 的方程为x 2a 2+y 2b2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足|BM |=2|MA |,直线OM 的斜率为510. (1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB .【导学号:00090295】[解] (1)由题设条件知,点M 的坐标为⎝ ⎛⎭⎪⎫23a ,13b , 2分又k OM =510,从而b 2a =510.进而a =5b ,c =a 2-b 2=2b ,故e =c a =255.5分(2)证明:由N 是AC 的中点知,点N 的坐标为⎝ ⎛⎭⎪⎫a2,-b 2,可得NM →=⎝ ⎛⎭⎪⎫a 6,5b 6.8分又AB →=(-a ,b ),从而有AB →·NM →=-16a 2+56b 2=16(5b 2-a 2). 10分由(1)的计算结果可知a 2=5b 2, 所以AB →·NM →=0,故MN ⊥AB .12分B 组 能力提升 (建议用时:15分钟)1.已知圆M :x 2+y 2+2mx -3=0(m <0)的半径为2,椭圆C :x 2a 2+y 23=1的左焦点为F (-c,0),若垂直于x 轴且经过F 点的直线l 与圆M 相切,则a 的值为( )A .34 B .1 C .2D .4C [圆M 的方程可化为(x +m )2+y 2=3+m 2, 则由题意得m 2+3=4,即m 2=1(m <0), ∴m =-1,则圆心M 的坐标为(1,0). 又直线l 过椭圆C 的左焦点,且垂直于x 轴, ∴直线l 的方程为x =-C . 又∵直线l 与圆M 相切, ∴c =1,∴a 2-3=1,∴a =2.]2.过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F 2,若13<k <12,则椭圆的离心率的取值范围是__________.⎝ ⎛⎭⎪⎫12,23 [如图所示,|AF 2|=a +c ,|BF 2|=a 2-c 2a,∴k =tan ∠BAF 2=|BF 2||AF 2|=a 2-c 2a a +c=a -ca=1-e . 又∵13<k <12,∴13<1-e <12,解得12<e <23.] 3.(2017·西安调研)如图855,椭圆E :x 2a 2+y 2b2=1(a >b >0)经过点A (0,-1),且离心率为22.图855(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.【导学号:00090296】[解] (1)由题设知ca =22,b =1, 结合a 2=b 2+c 2,解得a = 2. 3分 所以椭圆的方程为x 22+y 2=1.5分(2)证明:由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0. 7分由已知Δ>0,设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4kk -1+2k2,x 1x 2=2kk -1+2k2.9分从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝ ⎛⎭⎪⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k k -2k k -=2k -2(k -1)=2.所以直线AP 与AQ 的斜率之和为定值2. 12分。
2019年高考数学一轮复习课时分层训练数系的扩充与复数的引入理北师大版
课时分层训练(二十九) 数系的扩充与复数的引入A组基础达标一、选择题1.在复平面内,复数z=2i1-i对应的点的坐标为( ) A.(1,-1) B.(1,1) C.(-1,1) D.(-1,-1)C[因为z=2i1-i =2i(1+i)(1-i)(1+i)=-1+i,所以该复数在复平面内对应的点为(-1,1),故选C.]2.(2018·郑州第二次质量预测)已知复数f(n)=i n(n∈N+),则集合{z|z=f(n)}中元素的个数是( )A.4 B.3 C.2 D.无数A[集合{i,-1,-i,1}中有4个元素,故选A.]3.(2017·全国卷Ⅲ)设复数z满足(1+i)z=2i,则|z|=( )A.12B.22C. 2 D.2C[法一:由(1+i)z=2i得z=2i1+i=1+i,∴|z|= 2.故选C.法二:∵2i=(1+i)2,∴由(1+i)z=2i=(1+i)2,得z=1+i,∴|z|= 2.故选C.]4.(2017·全国卷Ⅰ)下列各式的运算结果为纯虚数的是( ) A.i(1+i)2B.i2(1-i)C.(1+i)2D.i(1+i)C[A项,i(1+i)2=i(1+2i+i2)=i×2i=-2,不是纯虚数.B项,i2(1-i)=-(1-i)=-1+i,不是纯虚数.C项,(1+i)2=1+2i+i2=2i,是纯虚数.D项,i(1+i)=i+i2=-1+i,不是纯虚数.故选C.]5.(2017·山东高考)已知a ∈R ,i 是虚数单位.若z =a +3i ,z ·z =4,则a =( )A .1或-1B .7或-7C .- 3D .3A [∵z ·z =4,∴|z |2=4,即|z |=2. ∵z =a +3i ,∴|z |=a 2+3,∴a 2+3=2, ∴a =±1.故选A.]6.若复数(1-i)(a +i)在复平面内对应的点在第二象限,则实数a 的取值范围是( )【导学号:79140163】A .(-∞,1)B .(-∞,-1)C .(1,+∞)D .(-1,+∞)B [∵复数(1-i)(a +i)=a +1+(1-a )i 在复平面内对应的点在第二象限,∴⎩⎪⎨⎪⎧a +1<0,1-a >0,∴a <-1.故选B.]7.已知复数z =1+2i 1-i,则1+z +z 2+…+z 2 019=( ) A .1+i B .1-i C .iD .0D [z =1+2i 1-i =1+2i(1+i)2=i ,∴1+z +z 2+…+z 2 019=1×(1-z 2 020)1-z =1-i 2 0201-i=1-i4×5051-i =0.]二、填空题8.(2017·北京高考改编)若复数(1-i)(a +i)在复平面内对应的点在第二象限,则实数a 的取值范围是________.(-∞,-1) [∵(1-i)(a +i)=a +i -a i -i 2=a +1+(1-a )i , 又∵复数(1-i)(a +i)在复平面内对应的点在第二象限,∴⎩⎪⎨⎪⎧a +1<0,1-a >0,解得a <-1.]9.复数|1+2i|+⎝ ⎛⎭⎪⎫1-3i 1+i 2=________.i [原式=12+(2)2+(1-3i)2(1+i)2=3+-2-23i2i=3+i -3=i.] 10.已知复数z =x +y i ,且|z -2|=3,则yx的最大值为________.【导学号:79140164】3 [∵|z -2|=(x -2)2+y 2=3, ∴(x -2)2+y 2=3. 由图可知⎝ ⎛⎭⎪⎫y xmax =31= 3.] B 组 能力提升11.设z 1,z 2是复数,则下列命题中的假.命题是( ) A .若|z 1-z 2|=0,则z 1=z 2 B .若z 1=z 2,则z 1=z 2C .若|z 1|=|z 2|,则z 1·z 1=z 2·z 2D .若|z 1|=|z 2|,则z 21=z 22D [A 中,|z 1-z 2|=0,则z 1=z 2,故z 1=z 2成立. B 中,z 1=z 2,则z 1=z 2成立.C 中,|z 1|=|z 2|,则|z 1|2=|z 2|2,即z 1·z 1=z 2·z 2,C 正确. D 不一定成立,如z 1=1+3i ,z 2=2,则|z 1|=2=|z 2|,但z 21=-2+23i ,z 22=4,z 21≠z 22.] 12.(2017·郑州二次质检)定义运算⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,则符合条件⎪⎪⎪⎪⎪⎪z 1+i -i 2i =0的复数z 对应的点在 ( ) A .第一象限 B .第二象限 C .第三象限D .第四象限B [由题意得z ×2i-(1+i)(-i)=0,所以z =(1+i)(-i)2i =-12-12i ,则z =-12+12i 在复平面内对应的点为⎝ ⎛⎭⎪⎫-12,12,位于第二象限,故选B.]13.(2018·重庆调研(二))已知i 为虚数单位,m ∈R ,若关于x 的方程x 2+(1-2i)·x +m -i =0有实数根,则m 的取值为( ) A .m ≤54B .m ≤-34C .m =14D .m =-12C [设t 为方程x 2+(1-2i)x +m -i =0的实数根,则t 2+(1-2i)t +m -i =0,即t 2+t +m -(1+2t )i =0,则⎩⎪⎨⎪⎧t 2+t +m =0,1+2t =0,解得t =-12,m =14,故选C.]14.复数z 1,z 2满足z 1=m +(4-m 2)i ,z 2=2cos θ+(λ+3sin θ)i(m ,λ,θ∈R ),并且z 1=z 2,则λ的取值范围是( ) A .[-1,1]B .⎣⎢⎡⎦⎥⎤-916,1C .⎣⎢⎡⎦⎥⎤-916,7 D .⎣⎢⎡⎦⎥⎤916,7 C [由复数相等的充要条件可得⎩⎪⎨⎪⎧m =2cos θ,4-m 2=λ+3sin θ,化简得4-4cos 2θ=λ+3sin θ,由此可得λ=-4cos 2θ-3sin θ+4=-4(1-sin 2θ)-3sin θ+4=4sin 2θ-3sin θ=4⎝ ⎛⎭⎪⎫sin θ-382-916,因为sin θ∈[-1,1],所以4sin 2θ-3sinθ∈⎣⎢⎡⎦⎥⎤-916,7.]15.给出下列命题:①若z ∈C ,则z 2≥0;②若a ,b ∈R ,且a >b ,则a +i >b +i ; ③若a ∈R ,则(a +1)i 是纯虚数;④若z =-i ,则z 3+1在复平面内对应的点位于第一象限. 其中正确的命题是________.(填上所有正确命题的序号)④ [由复数的概念及性质知,①错误;②错误;若a =-1,则a +1=0不满足纯虚数的条件,③错误;z 3+1=(-i)3+1=i +1,④正确.]16.已知复数z 1=cos 15°+sin 15°i 和复数z 2=cos 45°+sin 45°i,则z 1·z 2=________.【导学号:79140165】12+32i [z 1·z 2=(cos 15°+sin 15°i)(cos 45°+sin 45°i)=(cos 15°cos 45°-sin 15°sin 45°)+(sin 15°cos 45°+cos 15°sin 45°)i=cos 60°+sin 60°i=12+32i.]。
2019版高考数学一轮复习课时分层作业: 一 1.1集合 Word版含解析
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时分层作业一集合一、选择题(每小题5分,共35分)1.已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B= ( )A.{1}B.{4}C.{1,3}D.{1,4}【解析】选D.因为集合B中,x∈A,所以当x=1时,y=3-2=1;当x=2时,y=3×2-2=4;当x=3时,y=3×3-2=7;当x=4时,y=3×4-2=10.即B={1,4,7,10}.又因为A={1,2,3,4},所以A∩B={1,4}.2.(2017·北京高考)若集合A={x|-2<x<1},B={x|x<-1或x>3},则A ∩B= ( )A.{x|-2<x<-1}B.{x|-2<x<3}C.{x|-1<x<1}D.{x|1<x<3}【解析】选A.画出数轴如图所示,则A∩B={x|-2<x<-1}.3.设集合A={y|y=sinx,x∈R},B={y|y=3x,x∈A},则A∩B= ( )A. B.[1,3]C. D.[0,1]【解析】选 A.A={y|y=sin x,x∈R}={y|-1≤y≤1}.B={y|y=3x,x∈A}=,所以A∩B={y|-1≤y≤1}∩=.4.(2018·日照模拟)集合A={x|y=},B={y|y=log2x,x>0},则A∩B等于( )A.RB.∅C.[0,+∞)D.(0,+∞)【解析】选 C.A={x|y=}={x|x≥0},B={y|y=log2x,x>0}=R.故A∩B={x|x≥0}.5.已知全集U={1,2,3,4,5,6},集合A={2,3,5},集合B={1,3,4,6},则集合A∩U B= ( )A.{3}B.{2,5}C.{1,4,6}D.{2,3,5}【解析】选B.因为A={2,3,5},U B={2,5},所以A∩U B={2,5}.【变式备选】设集合A={x|x2≤4,x∈R},B={y|y=-x2,-1≤x≤2},则R(A ∩B)等于 ( )A.RB.(-∞,-2)∪(0,+∞)C.(-∞,-1)∪(2,+∞)D.∅【解析】选B.由x2≤4得-2≤x≤2,所以集合A={x|-2≤x≤2};由-1≤x≤2得-4≤-x2≤0,所以集合B={y|-4≤y≤0},所以A∩B={x|-2≤x ≤0},故R(A∩B)=(-∞,-2)∪(0,+∞).6.(2018·南昌模拟)已知集合M={x|x2-4x<0},N={x|m<x<5},若M∩N={x|3<x<n},则m+n等于( )A.9B.8C.7D.6【解析】选 C.由x2-4x<0得0<x<4,所以M={x|0<x<4}.又因为N={x|m<x<5},M∩N={x|3<x<n},所以m=3,n=4,m+n=7.7.(2018·西安模拟)设集合A={(x,y)|x+y=1},B={(x,y)|x-y=3},则满足M⊆(A∩B)的集合M的个数是( )A.0B.1C.2D.3【解析】选C.由题中集合可知,集合A表示直线x+y=1上的点,集合B表示直线x-y=3上的点,联立可得A∩B={(2,-1)},M为A∩B的子集,可知M可能为{(2,-1)},∅,所以满足M⊆(A∩B)的集合M 的个数是2.二、填空题(每小题5分,共15分)8.设集合A={3,m},B={3m,3},且A=B,则实数m的值是________. 【解析】由集合A={3,m}=B={3m,3},得3m=m,则m=0.答案:0【变式备选】已知集合A={3,a2},B={0,b,1-a},且A∩B={1},则A∪B=________.【解析】因为A∩B={1},所以a2=1,又因为1-a≠0,所以a=-1,b=1,即A={3,1},B={0,1,2},所以A∪B={0,1,2,3}.答案:{0,1,2,3}9.已知集合A={1,2,3,4},集合B={x|x≤a,a∈R},A∪B=(-∞,5],则a 的值是________.【解析】因为集合A={1,2,3,4},集合B={x|x≤a,a∈R},A∪B=(-∞,5],所以a=5.答案:510.(2018·襄阳模拟)已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},若B⊆A,则实数m的取值范围是________.【解析】当B=∅时,满足B⊆A,此时有m+1≥2m-1,即m≤2,当B≠∅时,要使B⊆A,则有解得2<m≤4.综上可得m≤4.答案:(-∞,4]【母题变式】本题中,是否存在实数m,使A⊆B?若存在,求实数m的取值范围;若不存在,请说明理由.【解析】由A⊆B,得即不等式组无解,故不存在实数m,使A⊆B.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B所含元素的个数为( )A.3B.6C.8D.10【解析】选D.当x=1时,y不存在;当x=2时,y=1;当x=3时,y=1,2;当x=4时,y=1,2,3;当x=5时,y=1,2,3,4;共有十个元素.2.(5分)集合A={-1,0,1,3},集合B={x|x2-x-2≤0,x∈N},全集U={x|(x-1)2≤16,x∈Z},则A∩(U B)= ( )A.{3}B.{-1,3}C.{-1,0,3}D.{-1,1,3}【解题指南】解不等式求出集合B和全集U,结合集合的补集及交集运算的定义,可得答案.【解析】选B.因为集合A={-1,0,1,3},集合B={x|x2-x-2≤0,x∈N}={0,1,2},全集U={x|(x-1)2≤16,x∈Z}={-3,-2,-1,0,1,2,3,4,5},所以U B={-3,-2,-1,3,4,5},所以A∩(U B)={-1,3}.3.(5分)已知全集U=R,集合A={x|x+a≥0,x∈R},B={x|x2-2x-8≤0}.若(U A)∩B=[-2,4],则实数a的取值范围是________.【解析】由A中的不等式解得x≥-a,即A=[-a,+∞).因为全集U=R,所以U A=(-∞,-a).由B中的不等式解得-2≤x≤4,即B=[-2,4],因为(U A)∩B=[-2,4],所以-a>4,即a<-4.答案:a<-44.(12分)已知集合A={x|-1<x≤3},B={x|m≤x<1+3m}.(1)当m=1时,求A∪B.(2)若B⊆R A,求实数m的取值范围.【解析】 (1)因为m=1时,B={x|1≤x<4},所以A∪B={x|-1<x<4}.(2)R A={x|x≤-1或x>3}.当B=∅时,即m≥1+3m时得m≤-,满足B⊆R A,当B≠∅时,要使B⊆R A成立,则或解得m>3.综上可知,实数m的取值范围是m>3或m≤-.5.(13分)设集合A=,B={x|x2-3mx+2m2-m-1<0}.(1)当x∈Z时,求A的非空真子集的个数.(2)若A⊇B,求实数m的取值范围.【解析】化简得集合A={x|-2≤x≤5},集合B={x|(x-m+1)(x-2m-1)<0}.(1)因为x∈Z,所以A={-2,-1,0,1,2,3,4,5},即A中含有8个元素,所以A的非空真子集个数为28-2=254.(2)①m=-2时,B=∅⊆A;②当m<-2时,(2m+1)-(m-1)=2+m<0,所以B=(2m+1,m-1),因此,要B⊆A,则只要⇒-≤m≤6,所以m的值不存在;③当m>-2时,B=(m-1,2m+1),因此,要B⊆A,则只要⇒-1≤m≤2.综上所述,知m的取值范围是{m|m=-2或-1≤m≤2}.关闭Word文档返回原板块。
2019年高考数学一轮复习课时分层训练50圆的方程理北师大版
2019年高考数学一轮复习课时分层训练50圆的方程理北师大版A 组 基础达标一、选择题1.经过点(1,0),且圆心是两直线x =1与x +y =2的交点的圆的方程为( )A .(x -1)2+y2=1B .(x -1)2+(y -1)2=1C .x2+(y -1)2=1D .(x -1)2+(y -1)2=2B [由得⎩⎪⎨⎪⎧ x =1,y =1,即所求圆的圆心坐标为(1,1),又由该圆过点(1,0),得其半径为1,故圆的方程为(x -1)2+(y -1)2=1.]2.方程y =表示的曲线是( )A .上半圆B .下半圆C .圆D .抛物线A [由方程可得x2+y2=1(y≥0),即此曲线为圆x2+y2=1的上半圆.]3.点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是( )A .(x -2)2+(y +1)2=1B .(x -2)2+(y +1)2=4C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1A [设圆上任一点的坐标为(x0,y0),则x +y =4,设点P 与圆上任一点连线的中点的坐标为(x ,y),则⇒⎩⎪⎨⎪⎧ x0=2x -4,y0=2y +2,代入x +y =4,得(x -2)2+(y +1)2=1,故选A.]4.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程是( )A .(x +1)2+y2=2B .(x +1)2+y2=8C .(x -1)2+y2=2D .(x -1)2+y2=8A [直线x -y +1=0与x 轴的交点(-1,0).根据题意,圆C 的圆心坐标为(-1,0).因为圆与直线x +y +3=0相切,所以半径为圆心到切线的距离,即r =d ==,则圆的方程为(x +1)2+y2=2.故选A.]5.(2017·重庆四校模拟)设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ|的最小值为( )【导学号:79140276】A .6B .4C .3D .2B [如图所示,圆心M(3,-1)与直线x =-3的最短距离为|MQ|=3-(-3)=6,又圆的半径为2,故所求最短距离为6-2=4.]二、填空题6.(2018·郑州第二次质量预测)以点M(2,0),N(0,4)为直径的圆的标准方程为________.(x -1)2+(y -2)2=5 [圆心是MN 的中点,即点(1,2),半径r=MN =,则以MN 为直径的圆的标准方程为(x -1)2+(y -2)2=5.]。
2019年高考数学一轮复习课时分层训练函数模型及其应用理北师大版
课时分层训练(十二) 函数模型及其应用A 组 基础达标一、选择题1.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( ) A .118元 B .105元 C .106元D .108元D [设进货价为a 元,由题意知132×(1-10%)-a =10%a ,解得a =108,故选D.] 2.在某个物理试验中,测量得变量x 和变量y 的几组数据,如下表:【导学号:79140068】则对x ,y A .y =2x B .y =x 2-1 C .y =2x -2D .y =log 2xD [根据x =0.50,y =-0.99,代入计算,可以排除A ;根据x =2.01,y =0.98,代入计算,可以排除B ,C ;将各数据代入函数y =log 2x ,可知满足题意.]3.一水池有两个进水口,一个出水口,每个水口的进、出水速度如图294甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.图294给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水,则一定正确的是( )A .①B .①②C .①③D .①②③A [由甲、乙两图知,进水速度是出水速度的12,所以0点到3点不出水,3点到4点也可能一个进水口进水,一个出水口出水,但总蓄水量降低,4点到6点也可能两个进水口进水,一个出水口出水,一定正确的是①.]4.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 m 3的,按每立方米m 元收费;用水超过10 m 3的,超过部分加倍收费.某职工某月缴水费16m 元,则该职工这个月实际用水为( ) A .13 m 3B .14 m 3C .18 m 3D .26 m 3A [设该职工用水x m 3时,缴纳的水费为y 元,由题意得y =⎩⎪⎨⎪⎧mx (0<x ≤10),10m +(x -10)·2m (x >10),则10m +(x -10)·2m =16m , 解得x =13.]5.设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正常数).公司决定从原有员工中分流x (0<x <100,x ∈N +)人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x %.若要保证产品A 的年产值不减少,则最多能分流的人数是( ) A .15 B .16 C .17D .18B [由题意,分流前每年创造的产值为100t (万元),分流x 人后,每年创造的产值为(100-x )(1+1.2x %)t (万元),则由⎩⎪⎨⎪⎧0<x <100,(100-x )(1+1.2x %)t ≥100t ,解得0<x ≤503.因为x ∈N +,所以x 的最大值为16.] 二、填空题6.西北某羊皮手套公司准备投入适当的广告费对其生产的产品进行促销.根据预算得羊皮手套的年利润L 万元与年广告费x 万元之间的函数解析式为L =512-⎝ ⎛⎭⎪⎫x 2+8x (x >0).则当年广告费投入________万元时,该公司的年利润最大.4 [L =512-⎝ ⎛⎭⎪⎫x 2+8x =432-12×⎝ ⎛⎭⎪⎫x -4x 2(x >0).当x -4x =0,即x =4时,L 取得最大值21.5.故当年广告费投入4万元时,该公司的年利润最大.]7.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求.(已知lg 2≈0.301 0,lg 3≈0.477 1)【导学号:79140069】8 [设过滤n 次才能达到市场要求,则2%⎝ ⎛⎭⎪⎫1-13n≤0.1%,即⎝ ⎛⎭⎪⎫23n≤120,所以n lg 23≤-1-lg 2,所以n ≥7.39,所以n =8.]8.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =ekx +b(e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时. 24 [由已知条件,得192=e b,∴b =ln 192.又∵48=e22k +b=e22k +ln 192=192e 22k=192(e 11k )2,∴e 11k=⎝ ⎛⎭⎪⎫4819212=⎝ ⎛⎭⎪⎫1412=12.设该食品在33 ℃的保鲜时间是t 小时,则t =e 33k +ln 192=192e 33k =192(e 11k )3=192×⎝ ⎛⎭⎪⎫123=24.]三、解答题9.某企业生产A ,B 两种产品,根据市场调查与预测,A 产品的利润与投资成正比,其关系如图295(1);B 产品的利润与投资的算术平方根成正比,其关系如图295(2).(注:利润和投资单位:万元)(1) (2)图295(1)分别将A ,B 两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18万元资金,并将全部投入A ,B 两种产品的生产. ①若平均投入生产两种产品,可获得多少利润?②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?[解] (1)f (x )=0.25x (x ≥0),g (x )=2x (x ≥0). (2)①由(1)得f (9)=2.25,g (9)=29=6, 所以总利润y =8.25万元.②设B 产品投入x 万元,A 产品投入(18-x )万元,该企业可获总利润为y 万元. 则y =14(18-x )+2x ,0≤x ≤18.令x =t ,t ∈[0,32],则y =14(-t 2+8t +18)=-14(t -4)2+172.所以当t =4时,y max =172=8.5,此时x =16,18-x =2.所以当A ,B 两种产品分别投入2万元、16万元时,可使该企业获得最大利润,约为8.5万元.10.国庆期间,某旅行社组团去风景区旅游,若每团人数在30人或30人以下,飞机票每张收费900元;若每团人数多于30人,则给予优惠:每多1人,机票每张减少10元,直到达到规定人数75人为止.每团乘飞机,旅行社需付给航空公司包机费15 000元.(1)写出飞机票的价格关于人数的函数; (2)每团人数为多少时,旅行社可获得最大利润? [解] (1)设旅行团人数为x ,由题得0<x ≤75(x ∈N +), 飞机票价格为y 元,则y =⎩⎪⎨⎪⎧900,0<x ≤30,900-10(x -30),30<x ≤75,即y =⎩⎪⎨⎪⎧900,0<x ≤30,1 200-10x ,30<x ≤75.(2)设旅行社获利S 元,则S =⎩⎪⎨⎪⎧900x -15 000,0<x ≤30,x (1 200-10x )-15 000,30<x ≤75,即S =⎩⎪⎨⎪⎧900x -15 000,0<x ≤30,-10(x -60)2+21 000,30<x ≤75.因为S =900x -15 000在区间(0,30]上为单调增函数, 故当x =30时,S 取最大值12 000元, 又S =-10(x -60)2+21 000在区间(30,75]上, 当x =60时,取得最大值21 000. 故当x =60时,旅行社可获得最大利润.B 组 能力提升11.将甲桶中的a L 水缓慢注入空桶乙中,t min 后甲桶中剩余的水量符合指数衰减曲线y =a e nt.假设过5 min 后甲桶和乙桶的水量相等,若再过m min 甲桶中的水只有a4 L ,则m的值为( )A .5B .8C .9D .10 A [∵5 min 后甲桶和乙桶的水量相等, ∴函数y =f (t )=a e nt 满足f (5)=a e 5n=12a ,可得n =15ln 12,∴f (t )=a ·⎝ ⎛⎭⎪⎫12t5,因此,当k min 后甲桶中的水只有a4L 时,f (k )=a ·⎝ ⎛⎭⎪⎫12k 5=14a ,即⎝ ⎛⎭⎪⎫12k5=14,∴k =10,由题可知m =k -5=5,故选A.]12.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3 000元时,这70套公寓能全租出去;当月租金每增加50元时(月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司共100元的日常维修等费用(租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为( ) A .3 000元 B .3 300 C .3 500元D .4 000元B [设利润为y 元,租金定为(3 000+50x )元(0≤x ≤70,x ∈N +), 则y =(3 000+50x )(70-x )-100(70-x ) =(2 900+50x )(70-x ) =50(58+x )(70-x )≤50⎝⎛⎭⎪⎫58+x +70-x 22,当且仅当58+x =70-x ,即x =6时,等号成立,故每套房月租金定为3 000+300=3 300(元)时,公司获得最大利润,故选B.]13.某厂有许多形状为直角梯形的铁皮边角料(如图296),为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图阴影部分)备用,则截取的矩形面积的最大值为________.图296180 [依题意知:20-x 20=y -824-8(0<x ≤20,8≤y <24),即x =54(24-y ),∴阴影部分的面积S =xy =54(24-y )·y =54(-y 2+24y )=-54(y -12)2+180(8≤y <24).∴当y =12时,S 取最大值180.]14.已知某物体的温度θ(单位:℃)随时间t (单位:min)的变化规律是θ=m ·2t+21-t(t ≥0且m >0).(1)如果m =2,求经过多长时间物体的温度为5 ℃; (2)若物体的温度总不低于2 ℃,求m 的取值范围.【导学号:79140070】[解] (1)若m =2,则θ=2·2t+21-t=2⎝⎛⎭⎪⎫2t +12t ,当θ=5时,2t+12t =52,令x=2t ,x ≥1,则x +1x =52,即2x 2-5x +2=0,解得x =2或x =12(舍去),当x =2时,t =1.故经过1 min ,物体的温度为5 ℃.(2)物体的温度总不低于2 ℃等价于对于任意的t ∈[0,+∞),θ≥2恒成立,即m ·2t+22t ≥2(t ≥0)恒成立,亦即m ≥2⎝ ⎛⎭⎪⎫12t -122t (t ≥0)恒成立.令y =12t ,则0<y ≤1,故对于任意的y ∈(0,1],m ≥2(y -y 2)恒成立,因为y -y 2=-⎝ ⎛⎭⎪⎫y -122+14≤14,所以m ≥12. 因此,当物体的温度总不低于2 ℃时,m 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞.。
2019高三数学理北师大版一轮课时分层训练1 集 合 Word版含解析
课时分层训练(一) 集合(对应学生用书第页)组基础达标一、选择题.(·全国卷Ⅲ)已知集合={(,)+=},={(,)=},则∩中元素的个数为( ) ....[集合表示以原点为圆心,半径为的圆上的所有点的集合,集合表示直线=上的所有点的集合.结合图形可知,直线与圆有两个交点,所以∩中元素的个数为.故选.].设集合={--<,∈},则集合的真子集个数为( )【导学号:】....[依题意,={(+)·(-)<,∈}={-<<,∈}={},因此集合的真子集个数为-=,故选.].(·重庆调研(二))已知集合={,},={},若⊆,则实数=( ) .-...[因为⊆,所以=或=,且≠,解得=-,故选.].(·长春模拟(二))若集合={},={},则满足∪=的集合的个数为( ) ....[由∪=得集合中必有元素,则={}或{}或{}或{},共个,故选.].已知全集=,={-,-},={-+=},则图--中阴影部分表示的集合为( )图--.{}.{-,-}.{-}.{-}[因为={},所以∩(∁)={-,-},故选.].(·南昌一模)已知全集=,集合={= },集合={=+},那么∩(∁)=( ) .∅.(].() .(,+∞)[因为=(,+∞),=[,+∞),所以∩(∁)=(),故选.].若∈,则∈,就称是伙伴关系集合,集合=的所有非空子集中具有伙伴关系的集合的个数是( )....[具有伙伴关系的元素组是-,,,所以具有伙伴关系的集合有个:{-},,.]二、填空题.(·江苏高考)已知集合={},={,+}.若∩={},则实数的值为.[∵∩={},={},∴∈且∉.若=,则+=,符合题意.又+≥≠,故=.].已知集合={-+>},且∉,则实数的取值范围是.【导学号:】(-∞,] [∵∉{-+>},∴∈{-+≤},即-+≤,∴≤.].已知={-+<},={<<},若⊆,则实数的取值范围是.[,+∞) [因为={-+<}={<<}⊆,所以≥.]组能力提升.(·辽宁五校模拟)已知集合={-->},={≥},∪=,则的取值范围是( ) . (-,+∞) .( ,+∞).(-∞,-] .(-∞,][集合={-->}={<-或>},={≥},若∪=,则≤-,即的取值范围。
【配套K12】2019年高考数学一轮复习学案+训练+课件(北师大版理科): 课时分层训练30 数列的
课时分层训练(三十) 数列的概念与简单表示法A 组 基础达标一、选择题1.下列数列中,既是递增数列又是无穷数列的是( )A .1,12,13,14,…B .-1,-2,-3,-4,…C .-1,-12,-14,-18,…D .1,2,3,…,nC [根据定义,属于无穷数列的是选项A ,B ,C ,属于递增数列的是选项C ,D ,故同时满足要求的是选项C.]2.(2017·安徽黄山二模)已知数列{a n }的前n 项和为S n ,且a 1=2,a n +1=S n +1(n ∈N +),则S 5=( ) A .31 B .42 C .37D .47D [∵a n +1=S n +1(n ∈N +),即S n +1-S n =S n +1(n ∈N +),∴S n +1+1=2(S n +1)(n ∈N +),∴数列{S n +1}为等比数列,其首项为3,公比为2.则S 5+1=3×24,解得S 5=47.故选D.]3.把3,6,10,15,21,…这些数叫作三角形数,这是因为以这些数目的点可以排成一个正三角形(如图511).图511则第6个三角形数是( )【导学号:79140168】A .27B .28C .29D .30B [由题图可知,第6个三角形数是1+2+3+4+5+6+7=28.] 4.已知a 1=1,a n =n (a n +1-a n )(n ∈N +),则数列{a n }的通项公式是( )A .2n -1B .⎝ ⎛⎭⎪⎫n +1n n -1C .n 2D .nD [∵a n =n (a n +1-a n ),∴a n +1a n =n +1n, ∴a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1 =nn -1·n -1n -2·n -2n -3·…·32·21·1=n .] 5.已知数列{a n }满足a 1=2,a n +1=1+a n1-a n(n ∈N +),则该数列的前 2 019项的乘积a 1·a 2·a 3·…·a 2 019=( )A.13 B .-13C .3D .-3C [由题意可得,a 2=1+a 11-a 1=-3,a 3=1+a 21-a 2=-12,a 4=1+a 31-a 3=13,a 5=1+a 41-a 4=2=a 1,∴数列{a n }是以4为周期的数列,而2 019=4×504+3,a 1a 2a 3a 4=1, ∴前2 019项的乘积为1504·a 1a 2a 3=3.] 二、填空题6.在数列-1,0,19,18,…,n -2n2,…中,0.08是它的第______项.10 [令n -2n2=0.08,得2n 2-25n +50=0, 则(2n -5)(n -10)=0,解得n =10或n =52(舍去).所以a 10=0.08.]7.(2017·河北唐山一模)设数列{a n }的前n 项和为S n ,且S n =a 1(4n -1)3,若a 4=32,则a 1=________.12 [∵S n =a 1(4n-1)3,a 4=32, ∴255a 13-63a 13=32,∴a 1=12.] 8.已知数列{a n }满足a 1=1,a n -an +1=na n a n +1(n ∈N +),则a n =__________.【导学号:79140169】2n -n +2 [由已知得,1a n +1-1a n =n ,所以1a n -1a n -1=n -1,1a n -1-1a n -2=n -2,…,1a 2-1a 1=1,所以1a n -1a 1=n (n -1)2,a 1=1,所以1a n=n 2-n +22,所以a n =2n 2-n +2.]三、解答题9.已知数列{a n }的前n 项和S n =2n +1-2.(1)求数列{a n }的通项公式;(2)设b n =a n +a n +1,求数列{b n }的通项公式. [解] (1)当n =1时,a 1=S 1=22-2=2; 当n ≥2时,a n =S n -S n -1=2n +1-2-(2n -2)=2n +1-2n =2n.因为a 1也适合此等式, 所以a n =2n(n ∈N +).(2)因为b n =a n +a n +1,且a n =2n,a n +1=2n +1,所以b n =2n+2n +1=3·2n.10.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N +).(1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式.[解] (1)由S n =12a 2n +12a n (n ∈N +),可得a 1=12a 21+12a 1,解得a 1=1; S 2=a 1+a 2=12a 22+12a 2,解得a 2=2;同理,a 3=3,a 4=4. (2)S n =12a 2n +12a n ,① 当n ≥2时,S n -1=12a 2n -1+12a n -1,②①-②得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0,所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }是首项为1, 公差为1的等差数列,故a n =n .B 组 能力提升11.(2017·郑州二次质量预测)设数列{a n }满足:a 1=1,a 2=3,且2na n =(n -1)a n -1+(n +1)a n +1,则a 20的值是( ) A.215B .225C.235D .245D [由2na n =(n -1)a n -1+(n +1)a n +1得na n -(n -1)a n -1=(n +1)a n +1-na n ,又因为1×a 1=1,2×a 2-1×a 1=5,所以数列{na n }是首项为1,公差为5的等差数列,则20a 20=1+19×5,解得a 20=245,故选D.]12.(2017·衡水中学检测)若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N +),则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9B [∵a 1=19,a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列, ∴a n =19+(n -1)×(-3)=22-3n . 设{a n }的前k 项和数值最大,则有⎩⎪⎨⎪⎧a k ≥0,a k +1≤0k ∈N +,∴⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)≤0,∴193≤k ≤223, ∵k ∈N +,∴k =7.∴满足条件的n 的值为7.]13.在一个数列中,如果任意n ∈N +,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫作等积数列,k 叫作这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.28 [依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.] 14.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N +,都有a n +1>a n ,求实数k 的取值范围.【导学号:79140170】[解] (1)由n 2-5n +4<0, 解得1<n <4.因为n ∈N +,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3.因为a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94,由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N +,所以-k 2<32,即得k >-3. 所以实数k 的取值范围为(-3,+∞).。
2019-2020【提分必做】高考数学一轮复习课时分层训练1集合文北师大版
课时分层训练(一) 集合A组基础达标(建议用时:30分钟)一、选择题1.(2017·天津高考)设集合A={1,2,6},B={2,4},C={1,2,3,4},则(A∪B)∩C=( ) A.{2} B.{1,2,4}C.{1,2,4,6} D.{1,2,3,4,6}B[∵A∪B={1,2,6}∪{2,4}={1,2,4,6},∴(A∪B)∩C={1,2,4,6}∩{1,2,3,4}={1,2,4}.故选B.]2.(2017·山东高考)设集合M={x||x-1|<1},N={x|x<2},则M∩N=( ) A.(-1,1) B.(-1,2)C.(0,2) D.(1,2)C[∵M={x|0<x<2},N={x|x<2},∴M∩N={x|0<x<2}∩{x|x<2}={x|0<x<2}.故选C.]3.(2017·潍坊模拟)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为( )A.1 B.2C.3 D.4D[由x2-3x+2=0,得x=1或x=2,∴A={1,2}.由题意知B={1,2,3,4},∴满足条件的C可为{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个.]4.(2016·山东高考)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=( ) A.(-1,1) B.(0,1)C.(-1,+∞)D.(0,+∞)C[由已知得A={y|y>0},B={x|-1<x<1},则A∪B={x|x>-1}.] 5.(2017·衡水模拟)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=( ) 【导学号:00090002】A.{2,5} B.{3,6}C.{2,5,6} D.{2,3,5,6,8}A[由题意得∁U B={2,5,8},∴A∩∁U B={2,3,5,6}∩{2,5,8}={2,5}.]6.(2018·西安模拟)已知集合M={-1,0,1},N={x|x=ab,a,b∈M,且a≠b},则集合M 与集合N 的关系是( )A .M =NB .M ∩N =NC .M ∪N =ND .M ∩N =∅B [由题意知N ={-1,0},则M ∩N =N ,故选B.]7.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是( )A .1B .3C .7D .31B [具有伙伴关系的元素组是-1,12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2.] 二、填空题8.已知集合A ={x |x 2-2 017x +2 016<0},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是________.[2 016,+∞) [由x 2-2 017x +2 016<0,解得1<x <2 016,故A ={x |1<x <2 016},又B ={x |x <a },A ⊆B ,如图所示,可得a ≥2 016.]9.(2016·天津高考)已知集合A ={1,2,3,4},B ={y |y =3x -2,x ∈A },则A ∩B =________. {1,4} [因为集合B 中,x ∈A ,所以当x =1时,y =3-2=1;当x =2时,y =3×2-2=4;当x =3时,y =3×3-2=7;当x =4时,y =3×4-2=10.即B ={1,4,7,10}.又因为A ={1,2,3,4},所以A ∩B ={1,4}.]10.集合A ={x |x <0},B ={x |y =lg[x (x +1)]},若A -B ={x |x ∈A ,且x ∉B },则A -B =________.[-1,0) [由x (x +1)>0,得x <-1或x >0,∴B =(-∞,-1)∪(0,+∞),∴A -B =[-1,0).]B 组 能力提升(建议用时:15分钟)1.(2018·石家庄模拟)已知集合A={x|x∈Z,且32-x∈Z},则集合A中的元素个数为( ) A.2 B.3C.4 D.5C[∵32-x∈Z,∴2-x的取值有-3,-1,1,3,又∵x∈Z,∴x值分别为5,3,1,-1,故集合A中的元素个数为4.]2.(2017·郑州调研)设全集U=R,A={x|x2-2x≤0},B={y|y=cos x,x∈R},则图112中阴影部分表示的区间是( )图112A.[0,1]B.(-∞,-1]∪[2,+∞)C.[-1,2]D.(-∞,-1)∪(2,+∞)D[A={x|x2-2x≤0}=[0,2],B={y|y=cos x,x∈R}=[-1,1].图中阴影部分表示∁U(A∪B)=(-∞,-1)∪(2,+∞).]3.(2018·信阳模拟)已知集合A={(x,y)|y-x=0},B={(x,y)|x2+y2=1},C=A∩B,则C的子集的个数是________. 【导学号:00090003】2[曲线y=x与圆x2+y2=1只有一个交点,从而集合C中只有一个元素,则C的子集的个数有2个.]4.设集合A={x|x2-x-6<0},B={x|x-a≥0}.若存在实数a,使得A∩B={x|0≤x<3},则A∪B=________.{x|x>-2} [A={x|-2<x<3},B={x|x≥a}.如图,由A∩B={x|0≤x<3},得a=0,A∪B={x|x>-2}.]。
2019年高考数学一轮复习课时分层训练参数方程文北师大版
课时分层训练(五十六) 参数方程1.(2017·全国卷Ⅰ)在直角坐标系xOy 中,曲线C的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为17,求A .【导学号:00090374】[解] (1)曲线C 的普通方程为x 29+y 2=1.1分 当a =-1时,直线l 的普通方程为x +4y -3=0.2分由⎩⎪⎨⎪⎧x +4y -3=0,x 29+y 2=1,解得⎩⎪⎨⎪⎧x =3,y =0或⎩⎪⎨⎪⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),⎝ ⎛⎭⎪⎫-2125,2425.4分(2)直线l 的普通方程为x +4y -a -4=0,故C 上的点(3cos θ,sin θ)到l 的距离为d =|3cos θ+4sin θ-a -4|17.5分当a ≥-4时,d 的最大值为a +917.由题设得a +917=17,所以a =8;7分当a <-4时,d 的最大值为-a +117. 由题设得-a +117=17,所以a =-16.9分 综上,a =8或a =-16.10分2.(2018·南昌模拟)已知曲线C 的极坐标方程是ρ=2,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =12t ,y =2+3t (t 为参数).(1)写出直线l 的普通方程与曲线C 的直角坐标方程;(2)设曲线C 经过伸缩变换⎩⎪⎨⎪⎧x ′=x ,y ′=12y 得到曲线C ′,过点F (3,0)作倾斜角为60°的直线交曲线C ′于A ,B 两点,求|FA |·|FB |. [解] (1)直线l 的普通方程为23x -y +2=0, 2分曲线C 的直角坐标方程为x 2+y 2=4.4分(2)∵⎩⎪⎨⎪⎧x ′=x ,y ′=12y ,∴C ′的直角坐标方程为x 24+y 2=1.5分易知直线AB 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数). 6分将直线AB 的参数方程代入曲线C ′:x 24+y 2=1,得134t 2+3t -1=0,则t 1·t 2=-413,8分 ∴|FA |·|FB |=|t 1·t 2|=413.10分3.(2016·全国卷Ⅱ)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.[解] (1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.4分(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0,于是ρ1+ρ2=-12cos α,ρ1ρ2=11. 8分|AB |=|ρ1-ρ2|=ρ1+ρ22-4ρ1ρ2=144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以l 的斜率为153或-153.10分4.(2018·长春模拟)在直角坐标系xOy 中,以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.[解] (1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).4分(2)设D (1+cos t ,sin t ),由(1)知C 是以C (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线CD 与l 的斜率相同,tan t =3,t =π3.8分故D 的直角坐标为⎝ ⎛⎭⎪⎫1+cos π3,sin π3, 即⎝ ⎛⎭⎪⎫32,32.10分 5.(2017·湖北七市三联)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =sin α+cos α,y =1+sin 2α(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=2,曲线C 2的极坐标方程为ρ=22a cos θ-3π4(a >0). (1)求直线l 与曲线C 1的交点的极坐标(ρ,θ)(ρ≥0,0≤θ<2π); (2)若直线l 与C 2相切,求a 的值.[解] (1)曲线C 1的普通方程为y =x 2,x ∈[-2,2],直线l 的直角坐标方程为x +y =2,联立⎩⎪⎨⎪⎧y =x 2,x +y =2,解得⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =-2,y =4(舍去).故直线l 与曲线C 1的交点的直角坐标为(1,1),其极坐标为⎝ ⎛⎭⎪⎫2,π4.4分(2)曲线C 2的直角坐标方程为x 2+y 2+2ax -2ay =0,即(x +a )2+(y -a )2=2a 2(a >0).8分由直线l 与C 2相切,得|-a +a -2|2=2a ,故a =1.10分6.(2017·福州质检)在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos α,y =sin α(α为参数),在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ-π4= 2.(1)求C 的普通方程和l 的倾斜角;(2)设点P (0,2),l 和C 交于A ,B 两点,求|PA |+|PB |.【导学号:00090375】[解] (1)由⎩⎪⎨⎪⎧x =3cos α,y =sin α消去参数α,得x 29+y 2=1,即C 的普通方程为x 29+y 2=1.2分由ρsin ⎝⎛⎭⎪⎫θ-π4=2,得ρsin θ-ρcos θ=2,(*) 将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入(*),化简得y =x +2,所以直线l 的倾斜角为π4.4分(2)由(1)知,点P (0,2)在直线l 上,可设直线l 的参数方程为⎩⎪⎨⎪⎧x =t cos π4,y =2+t sin π4(t为参数),即⎩⎪⎨⎪⎧x =22t ,y =2+22t (t 为参数),代入x 29+y 2=1并化简,得5t 2+182t +27=0,Δ=(182)2-4×5×27=108>0,8分设A ,B 两点对应的参数分别为t 1,t 2, 则t 1+t 2=-1825<0,t 1t 2=275>0,所以t 1<0,t 2<0,所以|PA |+|PB |=|t 1|+|t 2|=-(t 1+t 2)=1825.10分。
[推荐学习]2019年高考数学一轮复习学案+训练+课件(北师大版理科): 课时分层训练28 平面向量
课时分层训练(二十八) 平面向量的数量积与平面向量应用举例A 组 基础达标一、选择题1.在边长为1的等边△ABC 中,设BC →=a ,CA →=b ,AB →=c ,则a ·b +b ·c +c ·a =( )A .-32B .0 C.32D .3A [依题意有a ·b +b ·c +c ·a =⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫-12=-32.] 2.已知AB →=(2,1),点C (-1,0),D (4,5),则向量AB →在CD →方向上的投影为 ( )A .-322B .-3 5 C.322D .35C [因为点C (-1,0),D (4,5),所以CD =(5,5),又AB →=(2,1),所以向量AB →在CD →方向上的投影为|AB →|cos 〈AB →,CD →〉=AB →·CD →|CD →|=1552=322.]3.(2018·海口调研)若向量a =(2,-1),b =(3-x,2),c =(4,x )满足(6a -b )·c =8,则x 等于( )A .4B .5C .6D .7D [因为6a -b =(9+x ,-8),所以(6a -b )·c =36+4x -8x =8,解得x =7,故选D.]4.已知O 为坐标原点,向量OA →=(3sin α,cos α),OB →=(2sin α,5sin α-4cos α),α∈⎝⎛⎭⎪⎫3π2,2π,且OA →⊥OB →,则tan α的值为( ) 【导学号:79140158】A .-43B .-45C .45D .34A [由题意知6sin 2α+cos α·(5sin α-4cos α)=0,即6sin 2α+5sin αcos α-4cos 2α=0,上述等式两边同时除以cos 2α,得6tan 2α+5tan α-4=0,由于α∈⎝⎛⎭⎪⎫3π2,2π,则tan α<0,解得tan α=-43,故选A.]5.(2016·山东高考)已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13.若n ⊥(t m +n ),则实数t 的值为( ) A .4 B .-4 C.94D .-94B [∵n ⊥(t m +n ),∴n ·(t m +n )=0, 即t m ·n +|n |2=0,∴t |m ||n |cos 〈m ,n 〉+|n |2=0. 又4|m |=3|n |,∴t ×34|n |2×13+|n |2=0,解得t =-4.故选B.] 二、填空题6.(2016·全国卷Ⅰ)设向量a =(m,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________.-2 [∵|a +b |2=|a |2+|b |2+2a·b =|a |2+|b |2, ∴a·b =0.又a =(m,1),b =(1,2),∴m +2=0,∴m =-2.]7.(2018·合肥一检)若非零向量a ,b 满足|a |=1,|b |=2,且(a +b )⊥(3a -b ),则a 与b 夹角的余弦值为________.14[由(a +b )⊥(3a -b )可得(a +b )·(3a -b )=0,又|a |=1,|b |=2,则可得a·b =12,设a ,b 的夹角为θ,θ∈[0,π],则cos θ=a·b |a |·|b |=14.] 8.已知向量a =⎝ ⎛⎭⎪⎫-12,32,OA →=a -b ,OB →=a +b ,若△OAB 是以O 为直角顶点的等腰直角三角形,则△OAB 的面积为________.【导学号:79140159】1 [由题意得,|a |=1,又△OAB 是以O 为直角顶点的等腰直角三角形,所以OA →⊥OB →,|OA →|=|OB →|.由OA →⊥OB →得(a -b )·(a +b )=|a |2-|b |2=0,所以|a |=|b |, 由|OA →|=|OB →|得|a -b |=|a +b |,所以a·b =0. 所以|a +b |2=|a |2+|b |2=2,所以|OB →|=|OA →|=2,故S △OAB =12×2×2=1.]三、解答题9.已知|a |=4,|b |=8,a 与b 的夹角是120°.(1)计算:①|a +b |,②|4a -2b |; (2)当k 为何值时,(a +2b )⊥(k a -b ).[解] 由已知得,a ·b =4×8×⎝ ⎛⎭⎪⎫-12=-16. (1)①∵|a +b |2=a 2+2a ·b +b 2=16+2×(-16)+64=48,∴|a +b |=4 3. ②∵|4a -2b |2=16a 2-16a ·b +4b 2=16×16-16×(-16)+4×64=768, ∴|4a -2b |=16 3.(2)∵(a +2b )⊥(k a -b ),∴(a +2b )·(k a -b )=0, ∴k a 2+(2k -1)a ·b -2b 2=0,即16k -16(2k -1)-2×64=0,∴k =-7. 即k =-7时,a +2b 与k a -b 垂直.10.如图432,已知O 为坐标原点,向量OA →=(3cos x,3sin x ),OB →=(3cos x ,sin x ),OC→=(3,0),x ∈⎝⎛⎭⎪⎫0,π2.图432(1)求证:(OA →-OB →)⊥OC →;(2)若△ABC 是等腰三角形,求x 的值. [解] (1)证明:OA →-OB →=(0,2sin x ), ∴(OA →-OB →)·OC →=0×3+2sin x ×0=0, ∴(OA →-OB →)⊥OC →.(2)若△ABC 是等腰三角形,则AB =BC , ∴(2sin x )2=(3cos x -3)2+sin 2x , 整理得2cos 2x -3cos x =0, 解得cos x =0,或cos x =32.∵x ∈⎝⎛⎭⎪⎫0,π2,∴cos x =32,x =π6.B 组 能力提升11.(2018·广州综合测试(二))已知两点A (-1,1),B (3,5),点C 在曲线y =2x 2上运动,则AB →·AC →的最小值为( ) A .2 B .12 C .-2D .-12D [设C (x 0,2x 20),因为AB →=(4,4),AC →=(x 0+1,2x 20-1),所以AB →·AC →=8x 20+4x 0=8⎝⎛⎭⎪⎫x 0+142-12≥-12,即AB →·AC →的最小值为-12,故选D.] 12.(2017·全国卷Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA →·(PB →+PC →)的最小值是( ) A .-2 B .-32C .-43D .-1B [法一:(解析法)(1)建立坐标系如图(1)所示,则A ,B ,C 三点的坐标分别为A (0,3),B (-1,0),C (1,0).设P 点的坐标为(x ,y ),则PA →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y ),∴PA →·(PB →+PC →)=(-x ,3-y )·(-2x ,-2y )=2(x 2+y 2-3y )=2⎣⎢⎡⎦⎥⎤x 2+⎝⎛⎭⎪⎫y -322-34≥2×⎝ ⎛⎭⎪⎫-34=-32. 当且仅当x =0,y =32时,PA →·(PB →+PC →)取得最小值,最小值为-32. 故选B. 法二:(几何法)(2)如图(2)所示,PB →+PC →=2PD →(D 为BC 的中点),则PA →·(PB →+PC →)=2PA →·PD →. 要使PA →·PD →最小,则PA →与PD →方向相反,即点P 在线段AD 上,则(2PA →·PD →)min =-2|PA →||PD →|,问题转化为求|PA →||PD →|的最大值.又|PA →|+|PD →|=|AD →|=2×32=3,∴|PA →||PD →|≤⎝⎛⎭⎪⎫|PA →|+|PD →|22=⎝ ⎛⎭⎪⎫322=34, ∴[PA →·(PB →+PC →)]min =(2PA →·PD →)min =-2×34=-32.故选B.]13.(2017·山东高考)已知e 1,e 2是互相垂直的单位向量.若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________.33[由题意知|e 1|=|e 2|=1,e 1·e 2=0, |3e 1-e 2|=(3e 1-e 2)2=3e 21-23e 1·e 2+e 22=3-0+1=2. 同理|e 1+λe 2|=1+λ2.所以cos 60°=(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2||e 1+λe 2|=3e 21+(3λ-1)e 1·e 2-λe 2221+λ2=3-λ21+λ2=12, 解得λ=33.] 14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2a -c )BA →·BC →=cCB →·CA →.(1)求角B 的大小;(2)若|BA →-BC →|=6,求△ABC 面积的最大值.【导学号:79140160】[解] (1)由题意得(2a -c )cos B =b cos C .根据正弦定理得(2sin A -sin C )cos B =sin B cos C ,所以2sin A cos B =sin(C +B ),即2sin A cos B =sin A ,因为A ∈(0,π),所以sin A >0, 所以cos B =22,又B ∈(0,π),所以B =π4. (2)因为|BA →-BC →|=6,所以|CA →|=6,即b =6,根据余弦定理及基本不等式得6=a 2+c 2-2ac ≥2ac -2ac =(2-2)ac (当且仅当a =c 时取等号), 即ac ≤3(2+2),故△ABC 的面积S =12ac sin B ≤3(2+1)2,即△ABC 的面积的最大值为32+32.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时分层训练(一) 集合
A组基础达标
(建议用时:30分钟)
一、选择题
1.(2017·天津高考)设集合A={1,2,6},B={2,4},C={1,2,3,4},则(A∪B)∩C=( ) A.{2} B.{1,2,4}
C.{1,2,4,6} D.{1,2,3,4,6}
B[∵A∪B={1,2,6}∪{2,4}={1,2,4,6},
∴(A∪B)∩C={1,2,4,6}∩{1,2,3,4}={1,2,4}.
故选B.]
2.(2017·山东高考)设集合M={x||x-1|<1},N={x|x<2},则M∩N=( ) A.(-1,1) B.(-1,2)
C.(0,2) D.(1,2)
C[∵M={x|0<x<2},N={x|x<2},
∴M∩N={x|0<x<2}∩{x|x<2}={x|0<x<2}.故选C.]
3.(2017·潍坊模拟)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为( )
A.1 B.2
C.3 D.4
D[由x2-3x+2=0,得x=1或x=2,
∴A={1,2}.
由题意知B={1,2,3,4},∴满足条件的C可为{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个.]
4.(2016·山东高考)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=( ) A.(-1,1) B.(0,1)
C.(-1,+∞)D.(0,+∞)
C[由已知得A={y|y>0},B={x|-1<x<1},则A∪B={x|x>-1}.] 5.(2017·衡水模拟)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=( ) 【导学号:00090002】
A.{2,5} B.{3,6}
C.{2,5,6} D.{2,3,5,6,8}
A[由题意得∁U B={2,5,8},
∴A∩∁U B={2,3,5,6}∩{2,5,8}={2,5}.]
6.(2018·西安模拟)已知集合M={-1,0,1},N={x|x=ab,a,b∈M,且a≠b},则集合
M 与集合N 的关系是( )
A .M =N
B .M ∩N =N
C .M ∪N =N
D .M ∩N =∅
B [由题意知N ={-1,0},则M ∩N =N ,故选B.]
7.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭
⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是( )
A .1
B .3
C .7
D .31
B [具有伙伴关系的元素组是-1,12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭
⎬⎫12,2,⎩
⎨⎧⎭⎬⎫-1,12,2.] 二、填空题
8.已知集合A ={x |x 2
-2 017x +2 016<0},B ={x |x <a },若A ⊆B ,则实数a 的取值范围
是________.
[2 016,+∞) [由x 2-2 017x +2 016<0,解得1<x <2 016,
故A ={x |1<x <2 016},
又B ={x |x <a },A ⊆B ,如图所示,
可得a ≥2 016.]
9.(2016·天津高考)已知集合A ={1,2,3,4},B ={y |y =3x -2,x ∈A },则A ∩B =________. {1,4} [因为集合B 中,x ∈A ,所以当x =1时,y =3-2=1;
当x =2时,y =3×2-2=4;
当x =3时,y =3×3-2=7;
当x =4时,y =3×4-2=10.
即B ={1,4,7,10}.
又因为A ={1,2,3,4},所以A ∩B ={1,4}.]
10.集合A ={x |x <0},B ={x |y =lg[x (x +1)]},若A -B ={x |x ∈A ,且x ∉B },则A -B =
________.
[-1,0) [由x (x +1)>0,得x <-1或x >0,
∴B =(-∞,-1)∪(0,+∞),
∴A -B =[-1,0).]
B 组 能力提升
(建议用时:15分钟)
1.(2018·石家庄模拟)已知集合A={x|x∈Z,且3
2-x
∈Z},则集合A中的元素个数为( ) A.2 B.3
C.4 D.5
C[∵
3
2-x
∈Z,∴2-x的取值有-3,-1,1,3,
又∵x∈Z,∴x值分别为5,3,1,-1,
故集合A中的元素个数为4.]
2.(2017·郑州调研)设全集U=R,A={x|x2-2x≤0},B={y|y=cos x,x∈R},则图112中阴影部分表示的区间是( )
图112
A.[0,1]
B.(-∞,-1]∪[2,+∞)
C.[-1,2]
D.(-∞,-1)∪(2,+∞)
D[A={x|x2-2x≤0}=[0,2],B={y|y=cos x,x∈R}=[-1,1].
图中阴影部分表示∁U(A∪B)=(-∞,-1)∪(2,+∞).]
3.(2018·信阳模拟)已知集合A={(x,y)|y-x=0},B={(x,y)|x2+y2=1},C=A∩B,则C的子集的个数是________. 【导学号:00090003】
2[曲线y=x与圆x2+y2=1只有一个交点,从而集合C中只有一个元素,则C的子集的个数有2个.]
4.设集合A={x|x2-x-6<0},B={x|x-a≥0}.若存在实数a,使得A∩B={x|0≤x<3},则A∪B=________.
{x|x>-2} [A={x|-2<x<3},B={x|x≥a}.
如图,由A∩B={x|0≤x<3},得a=0,A∪B={x|x>-2}.]。