不等式的概念和性质

合集下载

不等式的基本性质与基本不等式

不等式的基本性质与基本不等式
不等式的基本性质与基本不等 式

CONTENCT

• 不等式的基本性质 • 基本不等式的概念 • 基本不等式的应用 • 不等式的解法 • 不等式的扩展知识
01
不等式的基本性质
传递性
总结词
如果a>b且b>c,则a>c。
详细描述
这是不等式的基本性质之一,即如果两个数之间存在一个大于关系,并且它们 之间还有另一个数存在大于关系,那么这两个数之间也存在大于关系。
在解决实际问题中的应用
80%
优化问题
基本不等式可以用于解决各种优 化问题,例如在资源分配、生产 计划、运输问题等方面。
100%
最大最小值问题
基本不等式可以用于求函数的最 大值和最小值,例如在求函数的 极值、最值等方面。
80%
经济问题
基本不等式在经济问题中也有广 泛应用,例如在分析市场供需、 投资组合等方面。
在数学竞赛中的应用
代数竞赛
在代数竞赛中,基本不等式是 重要的解题工具之一,例如在 解决代数不等式、代数方程等 问题时。
几何竞赛
在几何竞赛中,基本不等式也 是重要的解题工具之一,例如 在解决几何不等式、几何证明 等问题时。
组合数学竞赛
在组合数学竞赛中,基本不等 式也有着广泛的应用,例如在 解决组合不等式、组合计数等 问题时。
不等式的代数意义
代数解释
不等式是数学中一种重要的代数结构, 它反映了变量之间的相对大小关系。
代数意义应用
通过代数运算可以解决各种不等式问 题,例如求解不等式、证明不等式、 比较大小等。不等式的应用领域 Nhomakorabea数学领域
不等式在数学中有着广泛的应用,如数 学分析、线性代数、概率论等领域。

不等式的性质、解不等式

不等式的性质、解不等式

不等式的基本性质、解不等式【基础知识】一、不等式的概念及基本性质注意:①不等式的基本性质,没有减法和除法。

如果遇到减法和除法,可以转化乘加法 和乘法,如:求a b -的范围可以转化成求()a b +-的范围,求a b 的范围可以转化成求1a b⨯的范围。

②方程和不等式的两边不能随便乘除,必须先研究这个数的性质,再乘除。

三、分式不等式和高次不等式 1、分式不等式的解法 把分式不等式通过移项、通分、因式分解等化成()0()f xg x ≥的形式→化成不等式组()0()()0g x f x g x ≠⎧⎨≥⎩→解不等式组得解集。

温馨提示:解分式不等式一定要考虑定义域。

2、高次整式不等式的解法(序轴标根法)先把高次不等式分解因式化成123()()()()0n x a x a x a x a ---->的形式(x 的系数必须为正)→标记方程的实根(注意空心和实心之分)→穿针引线,从右往左,从上往下穿(奇穿偶不穿)→写出不等式的解集。

实际上,序轴标根法适用于所有的整式不等式,根据它可以很快地写出整式不等式的解集。

四、绝对值不等式 1、解绝对值不等式 方法一:公式法 解只含有一个绝对值形如()ax b c +><的不等式,一般直接用公式x a x a x a >⇔><-或 x a a x a <⇔-<<,注意集合的关系和集合的运算,集合的运算主要利用数轴。

方法二:零点讨论法 解含有两个绝对值形如()x a x b c +++><的不等式,常用零点讨论法和数形结合法。

注意小分类求交大综合求并。

方法三:平方法 如果绝对值的不等式的两边都是非负数,如:3x >,可以用平方法。

2、绝对值三角不等式a b a b a b -≤±≤+绝对值三角不等式的运用主要体现在直接利用绝对值三角不等式证明不等式和求函数的最值。

【例题精讲】例1 已知不等式 的解集为 ,求 、 的值。

不等式的性质与解法

不等式的性质与解法

不等式的性质与解法在数学中,不等式是表示两个数或者表达式之间大小关系的一种数学陈述。

与等式不同,不等式可以包含大于、小于、大于等于或小于等于等关系符号。

本文将探讨不等式的性质与解法,并提供一些解决不等式的方法。

一、不等式的基本性质不等式具有以下基本性质:1. 传递性:对于任意的实数a、b、c,如果a < b而b < c,则有a < c。

同理,如果a > b而b > c,则有a > c。

2. 加减性:对于任意的实数a、b和c,如果a < b,则有a + c < b + c。

同理,如果a > b,则有a + c > b + c。

这意味着在不等式两边同时加上或减去一个相同的数,不等式的大小关系不会改变。

3. 乘除性:对于任意的正数a、b和c,如果a < b,则有ac < bc。

同理,如果a > b,则有ac > bc。

但是,如果a、b和c中存在一个负数,则不等式的大小关系会反转。

例如,如果a < b且c < 0,则ac > bc。

4. 对称性:如果a > b,则有-b > -a;如果a < b,则有-b < -a。

即不等式两边同时取相反数,不等式的大小关系会反转。

二、不等式的解法方法解决不等式的方法因不等式的形式而异。

下面介绍几种常见的解不等式的方法:1. 图解法:对于一元一次不等式,可以将其图形表示在数轴上,通过观察图形确定不等式的解集。

例如,对于不等式x + 2 > 0,可以将x轴上大于-2的部分作为不等式的解集。

2. 实数集合法:根据不等式的形式,考察变量可能取值的范围,从实数集合中选取满足条件的子集作为不等式的解集。

例如,对于不等式2x - 5 ≤ 3x + 1,可以将变量x的取值范围限定在满足2x - 5 ≤ 3x + 1的实数范围内。

3. 分类讨论法:对于复杂的不等式,可以将其分解为简单的不等式,并对每个分段进行讨论。

不等式的定义与性质

不等式的定义与性质

不等式的定义与性质不等式是数学中常见的一种关系表达式,用来表示两个数、变量或数与变量之间的大小关系。

在代数学和几何学中,不等式具有重要的作用,而理解不等式的定义与性质对于解决各种数学问题至关重要。

一、不等式的定义在数学中,不等式是指通过不等号(<,>,≤,≥)来表示两个数或表达式之间的大小关系。

一个基本的不等式方程形式为:a > b,其中a和b是两个数或表达式。

不等式的表示方式可以分为两种形式:严格不等式和非严格不等式。

严格不等式使用大于号(>)或小于号(<)来表示,表示不等式两边的值不相等;非严格不等式使用大于等于号(≥)或小于等于号(≤)来表示,表示不等式两边的值可以相等。

二、不等式的性质1. 反身性质:对于任意实数a,a≥a或a≤a是成立的,即任何数与自身相等或小于等于自身。

2. 传递性质:如果a>b且b>c,则a>c。

也就是说,如果一个数大于另一个数,而这个数又大于另一个数,那么第一个数一定大于最后一个数。

3. 相加性质:对于任意实数a,b和c,如果a>b,则a+c>b+c。

也就是说,对不等式两边同时加上相同的数,不等式的大小关系保持不变。

4. 相乘性质:对于任意实数a,b和c,如果a>b且c>0,则ac>bc。

也就是说,如果一个数大于另一个数,而且还与一个正数相乘,那么乘积的大小关系保持不变。

以上性质在解决不等式问题时经常会使用,可以帮助我们推导和证明不等式的结果。

三、解不等式的方法解不等式是求解满足给定条件的变量范围。

常用的解不等式的方法包括移项法、分段法和因式法等。

1. 移项法:将含有未知数的项移到一边,常用于解一元一次不等式。

例如,对于不等式3x+5>7,我们可以通过将5移到不等式的右边,得到3x>2,再将不等式两边同时除以3,得到x>2/3。

2. 分段法:将不等式根据不同的条件范围进行分段,进而分别求解不等式。

不等式知识点总结

不等式知识点总结

不等式知识点总结不等式是数学中的一个重要概念,它在解决各种数学问题和实际生活中的优化问题中都有着广泛的应用。

下面我们来对不等式的相关知识点进行一个全面的总结。

一、不等式的定义用不等号(大于>、小于<、大于等于≥、小于等于≤)连接两个数或代数表达式的式子,叫做不等式。

例如:3x + 2 > 5 ,y 1 ≤ 4 等都是不等式。

二、不等式的基本性质1、对称性:如果 a > b ,那么 b < a ;如果 a < b ,那么 b > a 。

例如:若 5 > 3 ,则 3 < 5 。

2、传递性:如果 a > b 且 b > c ,那么 a > c ;如果 a < b 且 b< c ,那么 a < c 。

比如:已知 7 > 5 ,5 > 3 ,则 7 > 3 ;若 2 < 4 ,4 < 6 ,则 2< 6 。

3、加法性质:如果 a > b ,那么 a + c > b + c ;如果 a < b ,那么 a + c < b + c 。

例如:因为 8 > 5 ,所以 8 + 2 > 5 + 2 ,即 10 > 7 。

4、乘法性质:如果 a > b 且 c > 0 ,那么 ac > bc ;如果 a < b 且 c > 0 ,那么ac < bc 。

如果 a > b 且 c < 0 ,那么 ac < bc ;如果 a < b 且 c < 0 ,那么ac > bc 。

例如:若 3 > 1 ,且 2 > 0 ,则 3×2 > 1×2 ,即 6 > 2 ;若 3 > 1 ,但-2 < 0 ,则 3×(-2) < 1×(-2) ,即-6 <-2 。

三、一元一次不等式1、定义:含有一个未知数,且未知数的次数是 1 的不等式叫做一元一次不等式。

例如:2x 5 > 0 。

2、解法:去分母(若有分母)。

去括号。

移项:将含有未知数的项移到一边,常数项移到另一边。

合并同类项。

系数化为 1 :注意当系数为负数时,不等号方向要改变。

不等式与不等式的性质

不等式与不等式的性质
培养学生逻辑思维和推理能力
学习不等式与不等式的性质,有助于培养学生的逻辑思维和推理能力 ,对于提高学生的数学素养具有积极意义。
不等式与不等式性质的教学与学习建议
掌握基础概念
对于初学者来说,首先需要掌握不等式的基本概念和性 质,例如不等式的定义、不等式的性质、不等式的证明 等。
实践应用
通过解决实际问题,加深对不等式性质的理解。例如, 通过解决实际生活中的一些不等关系问题,可以帮助学 生更好地理解不等式的应用。
系统梳理
对于已经掌握了一定基础的学生,可以系统梳理不等式 与不等式的性质,形成知识网络,以便更好地理解和应 用。
不等式与不等式性质的未来发展与挑战
深入研究不等式性质
目前,对于一些复杂的不等式和不等式组,其性质的探究仍然是一个开放的问题。未来, 可以进一步深入研究不等式的各种性质以及它们之间的相互关系。
探索不等式在其他领域的应用
随着科学技术的发展,未来可以进一步探索不等式在其他领域的应用,例如在人工智能、 大数据分析、金融等领域。
发展不等式教学方法
针对不同学生的特点和需求,未来可以进一步发展和创新不等式的教学方法,以便更好地 满足学生的学习需求和提高教学效果。
THANK YOU.
总结词
不等式的对称性是指当两个不等式的变量互换时,不等式不改变方向。
详细描述
设x和y是不等式中的两个变量,如果x>y时,不等式成立,那么当y>x时,不 等式依然成立。这是由于不等式的性质决定的,因为不等式在变量互换时不 改变方向。
不等式的性质2:传递性
总结词
不等式的传递性是指当两个不等式同时成立时,它们的和、差、积也满足不等关 系。
化学反应
在化学反应中,反应物的浓度和温度等因素对反应速率有着重要的影响。不等式可以用来 建立反应速率与这些因素之间的关系,为化学反应的研究和控制提供依据。

不等式的性质和解法

不等式的性质和解法

不等式的性质和解法一、不等式的性质1.不等式的定义:表示两个数之间的大小关系,用“>”、“<”、“≥”、“≤”等符号表示。

2.不等式的基本性质:(1)传递性:如果a>b且b>c,那么a>c。

(2)同向相加:如果a>b且c>d,那么a+c>b+d。

(3)同向相减:如果a>b,那么a-c>b-c。

(4)乘除性质:如果a>b且c>0,那么ac>bc;如果a>b且c<0,那么ac<bc。

二、不等式的解法1.解不等式的基本步骤:(1)去分母:将不等式两边同乘以分母的最小正整数,使分母消失。

(2)去括号:将不等式两边同乘以括号内的正数,或者将不等式两边同除以括号内的负数,使括号内的符号改变。

(3)移项:将不等式中的常数项移到一边,将含有未知数的项移到另一边。

(4)合并同类项:将不等式两边同类项合并。

(5)化简:将不等式化简到最简形式。

2.解一元一次不等式:(1)ax+b>c(a≠0):移项得ax>c-b,再除以a得x>(c-b)/a。

(2)ax+b≤c(a≠0):移项得ax≤c-b,再除以a得x≤(c-b)/a。

3.解一元二次不等式:(1)ax2+bx+c>0(a>0):先求出方程ax2+bx+c=0的解,然后根据a的符号确定不等式的解集。

(2)ax2+bx+c≤0(a>0):先求出方程ax2+bx+c=0的解,然后根据a的符号确定不等式的解集。

4.不等式的组:(1)解不等式组的步骤:先解每个不等式,再根据不等式的解集确定不等式组的解集。

(2)不等式组解集的表示方法:用区间表示,例如:[x1, x2]。

三、不等式的应用1.实际问题中的不等式:例如,距离、温度、速度等问题。

2.不等式在生活中的应用:例如,购物、制定计划、比较大小等问题。

3.不等式在其他学科中的应用:例如,在物理学中描述物体的运动状态,在经济学中描述市场的供求关系等。

不等式及其性质

不等式及其性质

不等式及其性质【学习目标】1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系.2. 理解不等式的基本性质,并会简单应用.【要点梳理】要点一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)五种不等号的读法及其意义:符号读法意义“≠”读作“不等于”它说明两个量之间的关系是不相等的,但不能确定哪个大,哪个小“<”读作“小于”表示左边的量比右边的量小“>”读作“大于”表示左边的量比右边的量大“≤”读作“小于等于”即“不大于”,表示左边的量不大于右边的量“≥”读作“大于等于”即“不小于”,表示左边的量不小于右边的量(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.要点二、不等式的基本性质不等式的基本性质1:不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).不等式的基本性质4:如果a>b,那么b<a.不等式的基本性质5:如果a>b,b>c,那么a>c.要点诠释:对不等式的基本性质的理解应注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变.【典型例题】类型一、不等式的概念1.(2015春•辽阳校级期中)贵阳市今年5月份的最高气温为27℃,最低气温为18℃,已知某一天的气温为t℃,则下面表示气温之间的不等关系正确的是()A.18<t<27 B.18≤t<27 C.18<t≤27 D.18≤t≤27举一反三:【变式】aa 的值一定是().A.大于零B.小于零C.不大于零D. 不小于零2.下列叙述:①a是非负数则a≥0;②“a2减去10不大于2”可表示为a2-10<2;③“x的倒数超过10”可表示为1x>10;④“a,b两数的平方和为正数”可表示为a2+b2>0.其中正确的个数是().A.1个B.2个C.3个D. 4个3.有数颗等重的糖果和数个大、小砝码,其中大砝码皆为5克、小砝码皆为1克,且下图是将糖果与砝码放在等臂天平上的两种情形,判断下列正确的情形是( ).举一反三:【变式】设“▲”、“●”、“■”分别表示三种不同的物体,现用天平秤两次,情况如图所示,那么▲、●、■这三种物体按质量从大到小排列应为( ).A .■、●、▲B .▲、■、●C .■、▲、●D .●、▲、■类型二、不等式的基本性质4.判断以下各题的结论是否正确(对的打“√”,错的打“×”). (1)若 b-3a <0,则b <3a ; (2)如果-5x >20,那么x >-4;(3)若a >b ,则 ac 2>bc 2;(4)若ac 2>bc 2,则a >b ;(5)若a >b ,则 a (c 2+1)>b (c 2+1). (6)若a >b >0,则1a <1b.5.如果a >b ,c <0,那么下列不等式成立的是( ). A .a+c >b+c B .c-a >c-b C .ac >bc D .a b c c>举一反三: 【变式】(2015•乐山)下列说法不一定成立的是( ) A .若a >b ,则a+c >b+c B .若a+c >b+c ,则a >bC .若a >b ,则ac 2>bc 2D .若ac 2>bc 2,则a >b6.下面四个命题:(1)22ac bc >,则a b >;(2)a b >,则ac bc >;(3)若a b >,则1ba<;(4)若0a >,则b a b -<.其中正确的个数是( ). A. 1个 B.2个 C. 3个 D. 4个7. (2015春•十堰期末)若2a+b=12,其中a≥0,b≥0,又P=3a+2b.试确定P的最小值和最大值.8.若关于x、y的二元一次方程组3133x y ax y+=+⎧⎨+=⎩的解满足x+y<2,则a的取值范围是________.举一反三:【变式1】(2015春•沙河市期末)若关于x的不等式(1﹣a)x>3可化为,则a 的取值范围是.【变式2】a、b是有理数,下列各式中成立的是( ).A.若a>b,则a2>b2; B.若a2>b2,则a>bC.若a≠b,则|a|≠|b| D.若|a|≠|b|,则a≠b【基础练习】一、选择题1. (2015春•陕西校级期末)下列式子:①﹣2<0;②2x+3y <0;③x=3;④x+y 中,是不等式的个数有( )A .1个B .2个C .3个D .4个 2.下列不等式表示正确的是( ).A .a 不是负数表示为a >0B .x 不大于5可表示为x >5C .x 与1的和是非负数可表示为x+1>0D .m >n ,n >4,则m >43.式子“①x+y=1;②x >y ;③x+2y ;④x-y ≥1;⑤x <0”属于不等式的有( ) A .2个 B .3个 C .4个 D .5个 4.已知a <b ,则下列不等式一定成立的是( )A .a+3>b+3B .2a >2bC .-a <-bD .a-b <05.若图示的两架天平都保持平衡,则对a 、b 、c 三种物体的重量判断正确的是( ).A.a >cB.a <cC.a <bD.b <c 6.下列变形中,错误的是( ).A .若3a+5>2,则3a >2-5B .若213x ->,则23x <- C .若115x -<,则x >-5 D .若1115x >,则511x >二、填空题7.用“>”或“<”填空:(1)-10.8________10.4; (2)327-________2(2)--;(3)15-________16- ; (4)32________8; (5)(-2)3________3|2|- ; (6) -1.11________119-; (7)当a >0,b_____0 时,ab <0 ; (8) 当a >0,12-a_____0. 8.用不等式表示下列各语句所描述的不等关系: (1)a 的绝对值与它本身的差是非负数________; (2)x 与-5的差不大于2________;(3)a 与3的差大于a 与a 的积________; (4)x 与2的平方差是—个负数________. 9.(2015春•玉田县期末)如果a <b .那么3﹣2a 3﹣2b .(用不等号连接)10.假设a >b ,请用“>”或“<”填空(1)a-1________b-1; (2)2a______2b ;(3)12a -_______12b -; (4)a+l________b+1.11.已知a >b ,且c ≠0,用“>”或“<”填空. (1)2a________a+b (2)2a c _______2bc (3)c-a_______c-b (4)-a|c|_______-b|c|12. k 的值大于-1且不大于3,则用不等式表示 k 的取值范围是_______.(使用形如a ≤x ≤b 的类似式子填空.)三、解答题 13.我们知道不等式的两边加(或减)同一个数(或式子)不等号的方向不变.不等式组是否也具有类似的性质?请完成下列填空(填“>”或“<”),探索归纳得到一般的关系式: (1)已知5321>⎧⎨>⎩可得5+2______3+1,已知3512->-⎧⎨->-⎩可得-5-2_____-3-1; 已知2314-<⎧⎨<⎩可得-2+1_____3+4,…,一般地,如果a bc d >⎧⎨>⎩,那么a+c____b+d .(2)应用不等式的性质证明上述关系式.14. (2015春•睢宁县校级月考)用等号或不等号填空: (1)比较2x 与x 2+1的大小:当x=2时,2x x 2+1当x=1时,2x x 2+1当x=﹣1时,2x x 2+1(2)任选取几个x 的值,计算并比较2x 与x 2+1的大小;15.已知x <y ,比较下列各对数的大小. (1)8x-3和8y-3; (2)516x -+和516y -+; (3) x-2和y-1.【提高练习】一、选择题1.下列不等式中,一定成立的有( ).①5>-2;②21a >;③x+3>2;④a +1≥1;⑤22(1)(1)0a b ++>. A .4个 B .3个 C .2个 D .1个2. 若a+b >0,且b <0,则a ,b ,-a ,-b 的大小关系为( ).A .-a <-b <b <aB .-a <b <-b <aC .-a <b <a <-bD .b <-a <-b <a 3.(2015•怀化)下列不等式变形正确的是( ) A .由a >b 得ac >bc B .由a >b 得﹣2a >﹣2b C .由a >b 得﹣a <﹣b D .由a >b 得a ﹣2<b ﹣24.若0<x <1,则x ,1x,x 2的大小关系是( ). A .21x x x << B .21x x x << C .21x x x << D .21x x x<<5.已知a 、b 、c 、d 都是正实数,且a b <cd,给出下列四个不等式:①a c a b c d <++;②c a c d a b <++;③d b c d a b <++;④b da b c d<++ 其中不等式正确的是( ).A. ①③ B .①④ C .②④ D .②③ 6.如果a >b ,那么下列不等式一定成立的是( ).A .a+c >b-cB .a-c <b-cC .11a b< D .-a <-b 二、填空题 7.(2015春•盐城校级期中)给出下列表达式:①a (b+c )=ab+ac ;②﹣2<0;③x ≠5;④2a >b+1;⑤x 2﹣2xy+y 2;⑥2x ﹣3>6,其中不等式的个数是 . 8.(1)若22a b c c <,则a_________b ; (2)若m <0,ma <mb ,则a_________b .9.已知2|312|(2)0x x y m -+--=,若y <0,则m________.10.已知关于x 的方程3x-(2a-3)=5x+(3a+6)的解是负数,则a 的取值范围是________.11.下列结论:①若a >b ,则ac 2>bc 2;②若ac >bc ,则a >b ;③若a >b ,且c =d ,则ac >bd ;④若ac 2>bc 2,则a >b ,其中正确的有_________.(填序号)12.如果不等式3x-m ≤0的正整数解有且只有3个,那么m 的取值范围是________.三、解答题13.(2015.保定期末)用适当的符号表示下列关系:(1)x的与x的2倍的和是非正数;(2)一枚炮弹的杀伤半径不小于300米;(3)三件上衣与四条长裤的总价钱不高于268元;(4)明天下雨的可能性不小于70%;(5)小明的身体不比小刚轻.14.已知-2<a<3,化简|a-3|-|3a+6|+4(a-1).15.根据等式和不等式的基本性质,我们可以得到比较两数大小的方法.若A-B>0,则A >B;若A-B=0,则A=B;若A-B<0,则A<B.这种比较大小的方法称为“作差法比较大小”,请运用这种方法尝试解决下列问题.(1)比较3a2-2b+1与5+3a2-2b+b2的大小;(2)比较a+b与a-b的大小;(3)比较3a+2b与2a+3b的大小.【答案与解析】 一、选择题 1.【答案】B . 2. 【答案】D ;【解析】a 不是负数应表示为a ≥0,故A 错误; x 不大于5应表示为x ≤5,故B 错误; x 与1的和是非负数应表示为x+1≥0,故C 错误;故D 正确. 3.【答案】B. 4.【答案】D ;【解析】从不等式a <b 入手,由不等式的性质1,不等式a <b 的两边都加上3后,不等号的方向不变,得a+3<b+3,故选项A 不成立;由不等式的性质2,不等式a <b 的两边都乘以2后,不等号的方向不变,得2a <2b ,故选项B 不成立;由不等式的性质3,不等式a <b 的两边都乘以-1后,不等号的方向改变,得-a >-b ,故选项C 也不成立;由不等式的性质1,不等式a <b 的两边都减去b 后,不等号的方向不变,得a-b <0.故应选D . 5.【答案】A. 6.【答案】B ;【解析】B 错误,应改为:213x ->,两边同除以23-,可得:32x <-. 二、填空题7.【答案】 (1)< (2)< (3)> (4)> (5)< (6) > (7)< (8)<; 【解析】根据大小进行判断.8.【答案】 (1)|a|-a ≥0 (2)x-(-5)≤2 (3)23a a -> (4)2220x -<;9.【答案】>.【解析】∵a <b ,两边同乘﹣2得:﹣2a >﹣2b ,不等式两边同加3得:3﹣2a >3﹣2b. 10.【答案】(1)> (2)> (3)< (4) >; 11.【答案】 (1)> (2)> (3)< (4)<; 【解析】利用不等式的性质进行判断. 12.【答案】-1<k ≤3. 三、解答题 13.【解析】 解:(1)由题意得,5+2>3+1;-5-2<-3-1;-2+1<3+4;a+c >b+d ; (2)令c=d+1,则可得a+d >b+d ,a+d+1>b+d , ∴a+c >b+d . 14.【解析】解:(1)比较2x 与x 2+1的大小:当x=2时,2x <x 2+1当x=1时,2x=x 2+1当x=﹣1时,2x <x 2+1, 故答案为:<,=,<;(2)当x=3时,2x <x 2+1,当x=﹣2时,2x <x 2+1.15.【解析】解: (1)∵ x <y ∴ 8x <8y , ∴ 8x-3<8y-3.(2)∵ x <y ,∴ 55y 66x ->-, ∴ 551166x y -+>-+.(3)∵ x <y ,∴ x-2<y-2,而y-2<y-1,∴ x-2<y-1.【答案与解析】 一、选择题 1. 【答案】B ;【解析】一定成立的是:①④⑤; 2. 【答案】B. 3.【答案】C .【解析】∵a >b ,∴①c >0时,ac >bc ;②c=0时,ac=bc ;③c <0时,ac <bc , ∴选项A 不正确;∵a >b ,∴﹣2a <﹣2b ,∴选项B 不正确;∵a >b ,∴﹣a <﹣b , ∴选项C 正确;∵a >b ,∴a ﹣2>b ﹣2,∴选项D 不正确. 4. 【答案】C ;【解析】∵0<x <1,∴ x 2≤x ≤1x. 5.【答案】A ; 【解析】∵a b <cd,a 、b 、c 、d 都是正实数, ∴ad <bc ,∴ac+ad <ac+bc ,即a (c+d )<c (a+b ),∴a ca b c d <++,所以①正确,②不正确; ∵a b <cd,a 、b 、c 、d 都是正实数, ∴ad <bc ,∴bd+ad <bd+bc ,即d (a+b )<b (d+c ), ∴d bc d a b<++,所以③正确,④不正确. 故选A . 6.【答案】D ; 二、填空题 7.【答案】4.8. 【答案】(1)<, (2)>;【解析】(1)两边同乘以2c (20c ≠);(2)两边同除以(0)m m <. 9. 【答案】>8;【解析】由已知可得:x =4,y =2x-m =8-m <0,所以m >8.10.【答案】35a >-; 11.【答案】④ .12.【答案】9≤m <12;【解析】3x-m ≤0,x ≤3m ,3≤3m <4,∴ 9≤m <12. 三、解答题13.【解析】解:(1)x+2x ≤0;(2)设炮弹的杀伤半径为r ,则应有r ≥300;(3)设每件上衣为a 元,每条长裤是b 元,应有3a+4b ≤268;(4)用P 表示明天下雨的可能性,则有P ≥70%;(5)设小明的体重为a 千克,小刚的体重为b 千克,则应有a≥b .14.【解析】解: ∵ -2<a <3,∴ a-3<0.当3a+6≥0,即a ≥-2时,3a+6就为非负数.又∵ -2<a <3,3a+6≥0.∴ 原式=-(a-3)-(3a+6)+4a-4=-715.【解析】解:(1)222232153240a b a b b b -+--+-=--<.∴ 222321532a b a b b -+<+-+.(2)a+b-(a-b)=a+b-a+b =2b ,当b >0时,a+b-(a-b)=2b >0,a+b >a-b ;当b =0时,a+b-(a-b)=2b =0,a+b=a-b ;当b <0时,a+b-(a-b)=2b <0,a+b <a-b .(3)3a+2b-(2a+3b)=a-b 当a >b 时,3a+2b >2a+3b ;当a =b 时,3a+2b =2a+3b ;当a <b ,3a+2b <2a+3b .。

不等式

不等式

(一)不等式的概念作为表达同类量之间的大小关系的一种数学形式,不等式必须在定义了大小关系的有序集合上研究.由于复数域没有定义大小,所以不等式中的数或字母表示的数都是实数.1.不等式用符号>或<联结两个解析式所成的式子,称为不等式.不等号>或<叫做严格不等号,≥或≤叫做非严格不等号(相应的不等式分别叫做严格不等式和非严格不等式).例如b a ≥表示“b a >或b a =有一个成立,”因此1≥0或1≤1都是真的.另外,日常还使用一种只肯定不等关系但不区分孰大孰小的不等号,即“≠”.下面主要讨论严格不等式的性质.常如下定义不等式: 形如),,,(),,,(z y x g z y x f ∨(2-1)的式子,称为关于变数z y x ,,, 的不等式(符号“∨”表示不等号“>”,“<”中的任一个).在(2-1)式中,),,,(),,,(z y x g z y x f 与定义域的交集,叫做不等式(2-1)的定义域.在不等式(2-1)的定义域中,能使不等式成立的数值组,叫做不等式(2-1)的解,不等式(2-1)解的全体组成的集合,叫做不等式(2-1)的解集.求出不等式解集的过程,叫做解不等式.如果不等式(2-1)的定义域中一切值组都使不等式(2-1)成立,那么不等式(2-1)叫做绝对不等式.如果不等式(2-1)的定义域中一切值组都使不等式(2-1)不成立,那么不等式(2-1)叫做矛盾不等式.如果不等式(2-1)的定义域中一些值组使不等式(2-1)成立,而另一些值组使不等式(2-1)不成立,那么不等式(2-1)叫做条件不等式.在不等式(2-1)中,如果),,,(),,,(z y x g z y x f 和都是代数式,那么就叫它代数不等式;如果),,,(),,,(z y x g z y x f 和中至少有一个为超越式,那么就叫它超越不等式. 在代数不等式(2-1)中,如果),,,(),,,(z y x g z y x f 和都是有理式,那么就叫它有理不等式;如果),,,(),,,(z y x g z y x f 和至少有一个为无理式,那么就叫它无理不等式.在有理不等式(2-1)中,如果),,,(),,,(z y x g z y x f 和都是整式不等式,那么就叫它整式不等式;如果),,,(),,,(z y x g z y x f 和至少有一个是分式,那么就叫它分式不等式.2.不等式组含有未知数z y x ,,, 的几个不等式所组成的一组不等式⎝⎛∨∨∨),,,(),,,(),,,(),,,(),,,(),,,(2211z y x g z y x f z y x g z y x f z y x g z y x f k k(2-2)称为不等式组.不等式组(2-2)中,),,2,1)(,,,(),,,(k i z y x g z y x f i i =定义域的交集,叫做不等式组(2-2)的定义域.不等式组(2-2)中,各个不等式的解集的交,叫做不等式组(2-2)的解集.求出不等式组的解集的过程,叫做解不等式组.(二)不等式的性质实数的三条运算比较性质: ①0>-⇔>b a b a ②0<-⇔<b a b a ③0=-⇔=b a b a为不等式性质的证明提供了依据.不等式有如下10条性质.(1)对逆性如b a >,则a b <;反之如a b <,则b a >.(2)传递性 若,,c b b a >>则c a >. (3)加法单调性若b a >,则c b c a +>+.(4)乘法单调性若0,>>c b a ,则bc ac >;若0,<>c b a 则bc ac <.(5)相加法则若,,d c b a >>则d b c a +>+.(6)相减法则若d c b a >≥,,则d b c a ->-.(7)相乘法则若0,0>>>>d c b a ,则bd ac >.(8)相除法则若d c b a <<>≥0,0,则db c a >. (9)乘方法则+∈R b a ,,若b a >,整数1>n ,则n n b a >.(10)开方法则+∈R b a ,,若b a >,整数1>n ,则n n b a >.注意 性质(1),(3),(4),(9)和(10)是可逆的,因此这些性质可以用于证明不等式,也可用作解不等式.其余各条作为解不等式的依据,可以用于证明不等式(当不需可逆推理时).(三)不等式的证明方法 1.比较法比较法是直接求出所证不等式两边的差或商,然后推演结论的方法.欲证B A >(或B A <),可以直接将差式B A -与0比较大小;或者+∈R B A ,时,直接将商式BA与1比较大小.在什么情况下用比较法较好呢?一般地,当移项后容易分解成因式或配成完全平方时,可考虑用比较法;或当不等式两边都是乘积结构(或可化成乘积结构,成虽为商式结构,但分子、分母都可化为乘积结构)时,可考虑比较法;另外,能化成便于放大或缩小的商式,也可考虑用比较法.例1 设b a ,为不等的实数,求证)(46224224b a ab b b a a +>++证明 因为=++-+=+-++222222224224)2()(4)()(46ab b a ab b a b a ab b b a a=-+222)2(ab b a )(0)(4b a b a ≠>-所以)(46224224b a ab b b a a +>++例2 若0>>>c b a ,求证b a ac c b c b a c b a c b a +++>222证明 考虑用商式.因为=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛>+++c a a c b c c b a b b a b a a c c b cb a ac a c c b c b b a b a c b a c b a 222 1>⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛---ca cb ba c a cb b a所以b a ac c b c b a c b a c b a +++>2222.综合法综合法是“由因导果”,即从已知条件出发,依据不等式的性质、函数性质或熟知的基本不等式,逐步推导出要证明的不等式.常利用不等式的性质或借助于现成的不等式.因此,掌握的不等式越多,应用这种方法就越方便.例3 试证:若0,,>∀c b a ,则有abc b a c a c b c b a 6)()()(222222≥+++++证明方法1 因为0)(2≥-b a ,所以ab b a 2)(22≥+.又0>c ,所以abc b a c 2)(22≥+同理有 abc a c b abc c b a 2)(,2)(2222≥+≥+ 由相同加法则,三式相加即得结论. 方法2 欲证不等式等价于6≥⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+a b b a c a a c b c c b 因为2,2,2≥+≥+≥+abb ac a a c b c c b ,三式相加,即得结论. 说明 将所要证不等式分成几个同向不等式,然后将各式相加或相乘,这是证明不等式的常用手法.3.分析法分析法是“执因索果”,即从所要证明的结论出发,步步推求使不等式能成立的充分条件(或充分必要条件),直至归结到已知条件或已知成立的结论为止.例4 已知1,≥∈n N n ,求证⎪⎭⎫⎝⎛+++≥⎪⎭⎫ ⎝⎛-+++++n n n n 21412111215131111 (1)证明 欲证不等式(1),只需证⎪⎭⎫ ⎝⎛++++≥⎪⎭⎫ ⎝⎛-++++n n n n 214121)1(12151311(2)(2)式左边即⎪⎭⎫ ⎝⎛-+++++121513122n n n n (3)(2)式右边即=⎪⎭⎫ ⎝⎛+++++++n n n 214121214121 ⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++++n n n n 21412141212(4)比较(3)与(4)式,显然nn 2161411215131+++≥-+++ . 可知要证(2)式成立,只需证nn 2141212+++≥ (5)当1=n 时,(5)式成立;若k n =时,(5)式成立.则1+=k n 时22121412121221+++++≥+=+k k k k )1(21214121+++++=k k 即(5)式成立,结论得证.应用分析法的基本思路是“要C成立,只要B成立即可;要B成立,只要A成立…”,一直追溯到已知条件或已知的不等式为止.用形式符号表示出来,就是“ ←←←C B A ”.如果分析的每一步都是充分必要的,即“B A ⇔”则更好.应该强调的是,分析的思想和分析的方法是研究一切问题的一个基本方法.无论是数学,自然科学,还是经济学或社会科学,多半是以分析为先导.没有中肯的分析,就不会有正确的综合.所以在数学教育中培养学生分析问题的能力是有意义的.4.数学归纳法数学归纳法是由皮亚诺公理派生出来的一个重要数学方法.它对于等式或不等式的证明同样是有效的.主要用于与自然数n 有关的不等式命题.例5 求证对于任意的自然数n ,有121212654321+<-∙∙n n n 证明方法1 当n =1时,有3121<,不等式成立. 假设n =k 时,不等式为真,那么当n =k +1时,有221222121212212212654321++=++∙+<++∙-∙∙k k k k k k k k k 又)32)(12(3212212++⇔+<++k k k k k2)22()32)(12(22+<++⇔+<k k k k末式成立,故原不等式对1+=k n 成立.结论得证.方法2 构造数列 记122765432,212654321+∙∙=-∙∙=n n b n n a n n 显然),2,1( =<n b a n n1212+=<n b a a n n n所以121+<n a n 即得结论121212654321+<-∙∙n n n 说明 这个不等式的左边有明显的特点,不等式右式成平方根的形式.5.反证法前面几种方法都是直接证法,而反证法是一种间接证法,其中包括归谬法和穷举法. 反证法从否定所要证的结论入手,假设结论的否定为真,那么由此所引出的结论与已知条件或已知公理、定理、定义域性质之一相矛盾,或自相矛盾,因而结论的否定不成立,故原结论是真实的.当给定不等式不便于用直接法证明时,或其自身是一种否定式命题时,可考虑用反证法.例6 设+∈R z y x ,,,且1sin sin sin 222=++z y x ,求证2π>++z y x 证明 假如2π≤++z y x(1)则有220ππ≤-≤+<z y x因为正弦函数在区间⎪⎭⎫⎝⎛2,0π上是增函数,所以 z z y x cos )2sin()sin(=-≤+π(2)(2)式两边均为正数,两边平方,有x y y x x y y x cos sin cos sin 2cos sin cos sin 2222++y x z z 2222sin sin sin 1cos +=-=≤整理得0)cos(sin sin ≤+y x y x(3)但是,由(1)式可知⎪⎭⎫⎝⎛∈+2,0,,πy x y x ,表明(3)式不可能成立. 因此2π>++z y x6.换元法换元法是根据不等式的结构特征,选择适当的变量代换,从而化繁为简,化难为易,化未知为已知,或实现某种转化,达到证明的目的.换元法有时称为变换法.例7 设1=++z y x ,试证31222≥++z y x 证明 当31===z y x 时,不等式中的等号成立.于是引进参数v u ,,作变换: ⎪⎪⎪⎩⎪⎪⎪⎨⎧--=+=+=v u z v y u x 313131实际上这是平面1=++z y x 的一个参数表示形式.代入不等式的右端,得到=⎪⎭⎫⎝⎛--+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=++222222313131v u v u z y x3131)(222≥++++v u v u 7.放缩法放缩法又称传递法,它是根据不等式的传递性,将所求证的不等式的一边适当地放大或缩小,使不等关系变得明朗化,从而证得不等式成立.这是不等思维的一个显著特征,其依据是实数集R的阿基米德性质.放缩法的具体做法要依据原不等式的结构来确定.例如,对于和式,采用将某些项代之以较大(或较小)的数,以得到一个较大(或较小)的和;或者用舍去一个或几个正项的办法,以得到较小的和.对于分式,则采取缩小(或放大)分母或者放大(或缩小)分子的办法来增值(或减值).总之,放缩法使用的是不等量代换,这与换元法使用等量代换有着明显的区别.例8 设),,2,1(0n i a i =>,求证123212321322121)()()(a a a a a a a a a a a a a n n <++++++++++ 证明左边+++++++<))(()(3212132112a a a a a a a a a a=++++++++-))((3211321n n na a a a a a a a a++⎪⎪⎭⎫ ⎝⎛++-++⎪⎪⎭⎫ ⎝⎛+- 321212111111a a a a a a a a=⎪⎪⎭⎫ ⎝⎛+++-+++-n n a a a a a a 21121111211111a a a a a n <+++- 说明 用放缩法证明不等式时,以下式子很有用: (1))1(111)1(11)1(11112>--=-<<+=+-n nn n n n n n n n (2)1121111-+<<++=-+n n n n n n n)1(1>--=n n n(3))1(212)1(≥+<+<n n n n n (4))(211N n n n n n ∈++<+ 不等式的证明方法还有构造法、判别式法、排序法、调整法、凸函数法以及微积分法等,这里不再一一列举.(四)解不等式1.同解不等式若两个不等式的解集相等,则称这两个不等式为同解不等式. 对于同解不等式,有以下重要结论:(1)不等式)()(x g x f >与不等式)()(x g x f <同解.(2)如果对于不等式)()(x g x f >定义域中的一切值)(x h 都有意义,则不等式)()()()(x h x g x h x f +>+与)()(x g x f >同解.(3)如果对于不等式)()(x g x f >定义域中的一切值都有0)(>x h ,则不等式)()()()(x h x g x h x f >与)()(x g x f >同解;如果0)(<x h ,则不等式)()()()(x h x g x h x f <与)()(x g x f >同解.(4)不等式)()(x g x f >在其定义域中的某个子集上恒有0)()(>>x g x f ,则原不等式)()(x g x f >与)()(x g x f n n >在这个子集上同解,其中1,≥∈n n N .(5)不等式)()(x g x f >在其定义域中的某个子集上恒有0)()(>>x g x f ,则不等式n nx g x f )()(>在这个子集上与原不等式)()(x g x f >同解,其中1,≥∈n n N .(6)不等式0)()(>x g x f 与下面两个不等式组同解:⎩⎨⎧<<⎩⎨⎧>>0)(0)(0)(0)(x g x f x g x f (7) 不等式0)()(<x g x f 与下面两个不等式组同解:⎩⎨⎧><⎩⎨⎧<>0)(0)(0)(0)(x g x f x g x f (8) 不等式0)()(>x g x f 与下面两个不等式组同解: ⎩⎨⎧<<⎩⎨⎧>>0)(0)(0)(0)(x g x f x g x f (9) 不等式0)()(<x g x f 与下面两个不等式组同解: ⎩⎨⎧><⎩⎨⎧<>0)(0)(0)(0)(x g x f x g x f (10) 不等式)()(x g x f <与不等式组)()()(x g x f x g <<-或⎩⎨⎧-><)()()()(x g x f x g x f同解;不等式)()(x g x f >与不等式组⎩⎨⎧-<>)()()()(x g x f x g x f 同解.2.不等式的解法 (1)一元一次不等式任何一元一次不等式都可以经过恒等变形整理成b ax > (2-3)的形式.不等式(2-3)的解集,视a 而定.若0>a 解集为}{a b x x >;若0<a ,解集为}{abx x <;若0=a ,不等式b ax >变成为b x >0,它不是一元一次不等式.此时如果0>b ,则b x >0无解;如果b x b ><0,0是绝对不等式,解集为),(+∞-∞.(2)一元一次不等式组解不等式组,首先要分别求出组内每个不等式的解集,然后求它们的交集.求交集时,可先在数轴上画出每个不等式的解集,然后根据重合部分找出它们的交集.设一元一次不等式组⎩⎨⎧>>dcx bax (2-4)中每个不等式都有解,则归纳为下列四种情形之一;⎩⎨⎧>>βαx x ⎩⎨⎧<<βαx x ⎩⎨⎧<>βαx x ⎩⎨⎧><βαx x 假设βα<,则以上四组的解集依次是:βααβ<<<>x x x空解(无解)(3)一元二次不等式任何一个一元二次不等式都可经过恒等变形整理成)0(02≠∨++a c bx ax(2-5)的形式,两边同除以非0实数a ,即可归纳成下面两种情形之一:第一种情形:02>++q px x①如果042<-=∆q p ,不等式①的解集为),(+∞-∞;如果042=-=∆q p ,不等式①的解集为}2{p x x ≠; 如果042>-=∆q p ,则02=++q px x 有两个实根21,x x ,设21x x <,那么不等式①的解集为}{21x x x x x ><或.第二种情形:02<++q px x②如果042≤-=∆q p ,不等式②无解;如果042>-=∆q p ,不等式②的解集为}{21x x x x <<,其中21,x x 是02=++q px x 的两个根.(4)一元二次不等式组一元二次不等式组可经过恒等变形整理成⎩⎨⎧∨++∨++0022221121c x b x a c x b x a的形式.其中21a a 和至少有一个不为0.这时可分别求出不等式(2-6)①和(2-6)②的解集.然后求出这两个解集的交集,即为原不等式的解.(5)一元高次不等式一元高次不等式的标准形式是)0(0)(0111≠∨++++=--n n n n n a a x a x a x a x f(2-7)其中),,1,0(n i a i =∈R .当3≥n 时,不等式(2-7)称为一元高次不等式.由高等代数知道,在实数域上多项式f (x )总可以分解成一次因式或既约二次因式的乘积,所以f (x )总可以表成)()()(21x f x f a x f n =.其中)(1x f 是f (x )中所有首项系数为1的一次因式的乘积,)(2x f 是所有首项系数为1的二次既约因式的乘积.由于首项系数为1的二次既约因式恒为正值,所以当0>n a 时,不等式f (x )>0或0)(1>x f 同解;当0<n a 时,不等式0)(>x f 与0)(1<x f 同解.0)(1∨x f 的解法有以下两种情形:第一种情形 当)(1x f 中没有重因式时,按以下步骤求解: 第一步,将)(1x f 表示成0)())(()(211∨---=k x x x x x x x f的形式,其中x i 是)(1x f 的零点,并有k x x x <<< 21.第二步,将)(1x f 的各个零点k x x x ,,,21 在数轴上标出,从而将数轴划分为k +1个子(2-6)① ②区间.从最右一个子区间),(+∞k x 开始,向左在各个子区间上依次相间地标出“+”,“-”标志.第三步,所有“+”的子区间(开区间)的并集,就是0)(1>x f 的解集;所有“-”的子区间(开区间)的并集,就是0)(1<x f 的解集.第二种情形 当)(1x f 中有重因式时,可将奇次重因式改为一次单因式,并将偶次重因式弃去,这样就可以按照没有重因式的情形处理.但是应将所得解集去掉偶次重因式的零点.这种解法叫做“零点分区法”.当用此法求解0)(1≥x f 或0)(1≤x f 时,要将开区间改为闭区间;同时,在弃去偶次重因式后,不必去掉偶次重因式的零点.(6)一元分式不等式一元分式不等式的一般形式为0)()(∨x g x f (2-8)由同解不等式的重要结论(7)可知,解不等式(2-8)只需解不等式0)()(∨x g x f . (7)无理不等式一元无理不等式的一般形式为0)(∨x f(2-9)其中f (x )是x 的无理函数.解无理不等式的基本方法是:利用同解不等式的重要结论(4),将所给无理不等式转化为与它同解的有理不等式组.解无理不等式常按如下步骤进行: 第一步,求出f (x )的定义域.第二步,解无理方程f (x )=0,即求出f (x )的零点[或判断f (x )没有零点].零点由小到大依次为k x x x ,,,21 ,将它们在数轴上标出,从而将定义域划分为k +1个子区间.第三步,在各个子区间内各任取一值α,使得0)(>αf [或0)(<αf ]的α所在的区间就是不等式0)(>x f [或0)(<x f ]解的区间.在解无理不等式的过程中,经常会因为在不等式的两边实施乘方运算而出现增根,所以必须检查所得解是否超出原不等式的定义域.另外,有些不等式的一边允许取负值,忽略这一点可能导致失解.(8)绝对值不等式绝对值号内含有未知元(或变元)的不等式称为含绝对值的不等式,简称绝对值不等式.解绝对值不等式的关键是去掉绝对值符号,使其转化为普通不等式.其主要依据是绝对值的定义和同解不等式的重要结论(10).(9)初等超越不等式指数不等式)1,0()(≠>∨a a ba x f若0≤b ,则不等式b ax f >)(为绝对不等式;不等式b a x f <)(无解.若0>b ,则当1>a 时,b x f a log )(>;当10<<a 时b x f a log )(<.指数不等式的常用解法:先将不等式两边化为同底的幂,然后区分1>a 和10<<a 两种情形,据此比较它们的指数.对数不等式)1,0(log ≠>∨a a bx a对数不等式的常用解法:先将不等式两边化为同底的对数,然后区分1>a 和10<<a 两种情形,据此比较它们的真数.解题时应注意不等式的定义域.三角不等式 含有变元(未知元)的三角函数不等式称为三角不等式. 解三角不等式一般都要归结到最简单三角不等式,形如)(tan ,cos ,sin R ∈∨∨∨a a x a x a x的不等式,叫做最简三角不等式.解最简三角不等式,可先在所给三角函数的一个周期内求出其特解,然后加上该函数的最小周期的整数倍,即为它的一般解.对于可以用初等方法求解的三角不等式,通常使用变量代换、因式分解等方法化繁为简,归结为最简三角不等式。

初中数学知识点必备:不等式

初中数学知识点必备:不等式

初中数学知识点必备:不等式学校数学学问点:不等式1用小于号或大于号表示大小关系的式子,叫做不等式(inequality)。

使不等式成立的未知数的值叫做不等式的解。

能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集(solution set)。

含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。

不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变。

不等式两边乘(或除以)同一个正数,不等号的`方向不变。

不等式两边乘(或除以)同一个负数,不等号的方向转变。

三角形中任意两边之差小于第三边。

三角形中任意两边之和大于第三边。

不等式(组)1、不等式:用不等号(“”、“≤”、“”、“≥”、“≠”)表示不等关系的式子。

2、不等式的基本性质:(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变。

(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向转变。

3、不等式的解:能使不等式成立的未知数的值,叫做不等式的解。

4、不等式的解集:一个含有未知数的不等式的全部解,组成这个不等式的解集。

提示大家:解不等式指的是求不等式解集的过程叫做解不等式。

学校数学学问点:不等式21.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.留意:一般说二元一次方程有很多个解.2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.留意:一般说二元一次方程组只有解(即公共解).4.二元一次方程组的解法:(1)代入消元法;(2)加减消元法;(3)留意:推断如何解简洁是关键。

5.一次方程组的应用:(1)对于一个应用题设出的未知数越多,列方程组可能简单一些,但解方程组可能比较麻烦,反之则难列易解(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系。

不等式性质及运算规律

不等式性质及运算规律

不等式性质及运算规律不等式是数学中常见的一种表示符号,它描述了数值之间的关系。

对于不等式,我们需要了解其性质和运算规律,才能正确地应用和解决问题。

本文将对不等式的性质和运算规律进行探讨,帮助读者更好地理解和运用不等式。

一、不等式的性质1. 传递性:如果a > b,并且b > c,则有a > c。

这是不等式的传递性质,可以用来推导多个不等式的关系。

2. 反对称性:如果a > b,并且b > a,则有a = b。

这是不等式的反对称性质,表示如果两个数的大小关系相反,那么它们一定相等。

3. 保号性:如果a > b,并且c > 0,则有ac > bc。

这是不等式的保号性质,表示不等式两边同乘一个正数,不等号的方向不变。

4. 倒置性:如果a > b,则有-b > -a。

这是不等式的倒置性质,表示不等式两边同时取相反数,不等号的方向发生改变。

5. 乘法性:如果a > b,并且c > 0,则有ac > bc,如果c < 0,则有ac < bc。

这是不等式的乘法性质,表示不等式两边同乘一个正数或负数,不等号的方向发生改变。

二、不等式的运算规律1. 加减法:对于不等式,两边同时加上(或减去)一个数,不等号的方向不发生改变。

例如,如果a > b,则有a + c > b + c。

2. 乘法:如果a > b,并且c > 0,则有ac > bc,如果c < 0,则有ac < bc。

这是不等式的乘法性质,可以应用到不等式的乘法运算中。

3. 除法:对于不等式,两边同时除以一个正数时,不等号的方向不发生改变。

例如,如果a > b,并且c > 0,则有a/c > b/c。

4. 倒数性:如果a > b,并且a和b都是正数,则有1/a < 1/b。

这是不等式的倒数性质,表示不等式两边同时取倒数,不等号的方向发生改变。

高考数学总复习 不等式的概念与性质

高考数学总复习 不等式的概念与性质

高考数学总复习 不等式的概念与性质一.不等式的概念:1、 不等式的意义:a>b ⇔a-b>0;a=b ⇔a-b=0;a<b ⇔a-b<0.2、 同向不等式:如果两个不等式中,每一个的左边都大于(或小于)右边,则这两个不等式称为同向不等式。

3、 异向不等式:如果两个不等式中,一个是左边大于右边,一个是左边小于右边,则这两个不等式称为异向不等式。

二、不等式的性质:(1)反对称性:若a>b,则b<a ;若b<a,则a>b.(2) 传递性:若a>b,b>c,则a>c.(3)同加原理:若a>b,则a+c>b+c.(4)同向相加原理:若a>b,c>d,则a+c>b+d.(5)同乘原理:若a>b,c>0,则ac>bc ;若a>b,c<0,则ac<bc.(6)同向相乘原理:若a>b>0,c>d>0,则ac>bd.(7)乘方原理:若a>b>0,则a n >b n .(8)开方原理:若a>b>0,则n n b a >.(9)倒数原理:若a>b>0,则b a 11<;若b<a<0,则ba 11<. 注意:(1)不等式的性质是解(证)不等式的基础,对任意两实数a,b,有:a>b ⇔a-b>0;a=b ⇔a-b=0;a<b ⇔a-b<0.这既是比较大小的理论依据,也是学习不等式的基础。

(2)对于不等式的性质,关键是正确理解和运用,要弄清每一个性质的条件和结论,注意条件的加强和减弱、条件与结论之间的相互联系。

(3)不等式的性质应用于证明不等式,往往是从条件推出结论的变换关系,而解不等式则要求等价变形。

不等式概念及性质知识点详解与练习

不等式概念及性质知识点详解与练习

不等式的概念及性质知识点详解及练习一、不等式的概念及列不等式不等式⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧→→≤≥≠→→表示出不等关系列出代数式设未知数步骤列不等式””、“”、“”、“”、““不等号概念πφ 1、不等式的概念及其分类(1)定义:用“>”、“﹤”、“≠”、“≥”及“≤”等不等号把代数式连接起来,表示不等关系的式子。

a-b>0a>b, a-b=0a=b, a-b<0a<b 。

(2)分类:①矛盾不等式:不等式只是表示了某种不等关系,它表示的关系可能在任何条件下都不成立,这样的不等式叫矛盾不等式;如2>3,x 2﹤0②绝对不等式:它表示的关系可能在任何条件下都成立,这样的不等式叫绝对不等式; ③条件不等式:在一定条件下才能成立的不等式叫条件不等式。

(3)不等号的类型:①“≠”读作“不等于”,它说明两个量之间关系是不等的,但不能明确两个量谁大谁小; ②“>”读作“大于”,它表示左边的数比右边的数大;③“﹤”读作“小于”, 它表示左边的数比右边的数小;④“≥”读作“大于或等于”, 它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”, 它表示左边的数不大于右边的数;注意:要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。

(4)常见不等式基本语言的含义:①若x >0,则x 是正数;②若x ﹤0,则x 是负数;③若x ≥0,则x 是非负数;④若x ≤0,则x 是非正数;⑤若x-y >0,则x 大于y ;⑥若x-y ﹤0,则x 小于y ;⑦若x-y ≥0,则x 不小于y ;⑧若x-y ≤0,则x 不大于y ;⑨若xy >0(或yx >0),则x ,y 同号;⑩若xy ﹤0(或yx ﹤0),则x ,y 异号; (5)等式与不等式的关系:等式与不等式都用来表示现实中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。

不等式的基本概念与性质

不等式的基本概念与性质

不等式的基本概念与性质不等式是数学中一种重要的关系表达式,描述了两个或多个数之间的大小关系。

不等式与等式不同,它表示两个数之间的大小关系,可以是大于、小于、大于等于、小于等于等。

一、不等式的基本概念1. 不等式符号不等式符号是表示数之间大小关系的符号,常见的不等式符号有以下几种:- 小于号:<,表示小于的关系,如a < b表示a小于b。

- 大于号:>,表示大于的关系,如a > b表示a大于b。

- 小于等于号:≤,表示小于等于的关系,如a ≤ b表示a小于等于b。

- 大于等于号:≥,表示大于等于的关系,如a ≥ b表示a大于等于b。

- 不等号:≠,表示不等的关系,如a ≠ b表示a不等于b。

2. 不等式的解集不等式的解集是满足不等式条件的数值范围。

解集可以表示为一个区间或多个不等式的交集或并集。

例如,不等式x > 3的解集可以表示为(3, +∞),表示 x 的取值范围大于3,不包括3本身。

3. 不等式的性质- 不等式的传递性:如果 a < b 且 b < c,那么有 a < c,这是不等式的传递性质。

例如,如果 x < y 且 y < z,则可以推断出 x < z。

- 不等式的加法性:如果 a < b,那么有 a + c < b + c,其中 c 是任意实数。

例如,如果 x < y,则可以推断出 x + 1 < y + 1。

- 不等式的乘法性:如果 a < b 且 c > 0,那么有 ac < bc,其中 c 是正实数;如果 a < b 且 c < 0,那么有 ac > bc,其中 c 是负实数。

例如,如果 x < y 且 z > 0,则可以推断出 xz < yz。

- 不等式的取反性:如果 a < b,则有 -a > -b。

例如,如果 x < y,则可以推断出 -x > -y。

不等式的基本概念与性质

不等式的基本概念与性质

不等式的基本概念与性质不等式是数学中常见的一种关系表示形式,用于描述数值的大小关系。

与等式不同的是,不等式中的符号表示的是不等关系,包括大于(>)、小于(<)、大于等于(≥)和小于等于(≤)等。

一、基本概念1. 不等式的定义:不等式是数学中一种描述数值大小关系的表达式,由一个或多个代数式组成,用不等号连接。

例如:a > b、x + y ≤ 102. 不等式的解:满足不等式的数值范围即为不等式的解。

与等式一样,不等式的解也可以是一个数、一组数或数的区间。

例如:不等式 x > 3 的解为 x > 3,不等式2x ≤ 10 的解为0 ≤ x ≤ 53. 不等式中的常见符号:不等式中常见的符号有大于(>)、小于(<)、大于等于(≥)、小于等于(≤)。

符号的意义如下:- 大于(>):表示左侧的数大于右侧的数。

- 小于(<):表示左侧的数小于右侧的数。

- 大于等于(≥):表示左侧的数大于或等于右侧的数。

- 小于等于(≤):表示左侧的数小于或等于右侧的数。

二、不等式的性质1. 加减法性质:对不等式两侧同时加减一个数,不等式的大小关系保持不变。

例如:若 a > b,则 a + c > b + c,a - c > b - c(其中 c 为任意实数)2. 乘法性质:对不等式两侧同时乘以一个正数,不等式的大小关系保持不变;对不等式两侧同时乘以一个负数,则不等式的大小关系反转。

例如:若 a > b,则 ac > bc(其中 c > 0);若 a > b,则 ac < bc(其中 c < 0)3. 不等式的翻转:不等式两边同时取负号,则不等式的大小关系发生翻转。

例如:若 a > b,则 -a < -b4. 绝对值不等式性质:- 若 |a| < c,则 -c < a < c- 若 |a| > c,则 a < -c 或 a > c5. 平方不等式性质:- 若 a > b(a、b 非负数),则 a^2 > b^2- 若 a < b(a、b 非负数),则 a^2 < b^26. 合并与分离不等式:两个不等式通过“且”或“或”连接,可以合并成一个不等式;一个复合不等式可以分离成两个不等式。

高中数学不等式知识点

高中数学不等式知识点

不等式知识点归纳:一、不等式的概念与性质1、实数的大小顺序与运算性质之间的关系:0>-⇔>b a b a 0<-⇔<b a b a 0=-⇔=b a b a 2、不等式的性质:(1)a b b a <⇔> , a b b a >⇔< (反对称性) (2)c a c b b a >⇒>>, ,c a c b b a <⇒<<, (传递性) (3)c b c a b a +>+⇒>,故b c a c b a ->⇒>+ (移项法则) 推论:d b c a d c b a +>+⇒>>, (同向不等式相加) (4)bc ac c b a >⇒>>0,,bc ac c b a <⇒<>0, 推论1:bd ac d c b a >⇒>>>>0,0 推论2:n n b a b a >⇒>>0 推论3:n n b a b a >⇒>>0不等式的性质是解、证不等式的基础,对于这些性质,关键是正确理解和熟练运用,要弄清每一个条件和结论,学会对不等式进行条件的放宽和加强。

3、常用的基本不等式和重要的不等式(1)0,0,2≥≥∈a a R a 当且仅当”取“==,0a (2)ab b a R b a 2,,22≥+∈则 (3)+∈R b a ,,则ab b a 2≥+(4)222)2(2b a b a +≤+4、最值定理:设,0,x y x y >+≥由(1)如积P y x P xy 2(有最小值定值),则积+=(2)如积22()有最大值(定值),则积S xy S y x =+即:积定和最小,和定积最大。

运用最值定理求最值的三要素:一正二定三相等 5、均值不等式:两个正数的均值不等式:ab ba ≥+2三个正数的均值不等是:33abc c b a ≥++n 个正数的均值不等式:nn n a a a na a a 2121≥+++6、四种均值的关系:两个正数b a 、的调和平均数、几何平均数、算术平均数、均方根之间的关系是2211222b a b a ab b a +≤+≤≤+ 小结:在不等式的性质中,要特别注意下面4点:1、不等式的传递性:若a>b,b>c, 则a>c,这是放缩法的依据,在运用传递性时,要注意不等式的方向,否则易产生这样的错误:为证明a>c,选择中间量b,在证出a>b,c>b,后,就误认为能得到a>c 。

不等式基本概念与性质

不等式基本概念与性质

不等式基本概念与性质不等式是数学中重要的概念之一,用于描述数值关系的符号不等于号(≠),不等式(<、≤、>、≥)用于表示两个数之间的大小关系。

在学习不等式的过程中,我们需要了解不等式的基本概念与性质,以及如何利用它们解决实际问题。

本文将介绍不等式的基本概念与性质,并举例说明其应用。

一、不等式的基本概念1. 不等式的定义:不等式是数的比较关系的代数表达式,其形式为x>y或x<y,其中x和y为实数。

2. 不等式的解集:不等式的解集是满足给定不等式的实数的集合。

解集可以是有限集、无限集或空集。

3. 不等式的等价变形:通过对不等式进行等价变形可以得到与原不等式等价的不等式。

常用的等价变形包括加减法、乘除法、平方等。

二、不等式的性质1. 不等性质的传递性:对于任意实数a、b和c,如果a>b且b>c,则有a>c。

2. 加法性质:对于任意实数a、b和c,如果a>b,则a+c>b+c。

3. 减法性质:对于任意实数a、b和c,如果a>b,则a-c>b-c。

4. 乘法性质:对于任意实数a、b和c,如果a>b,c>0,则ac>bc;如果a>b,c<0,则ac<bc。

5. 除法性质:对于任意实数a、b和c,如果a>b,c>0,则a/c>b/c;如果a>b,c<0,则a/c<b/c。

三、不等式的应用1. 不等式的解集:通过对不等式进行等价变形,可以确定不等式的解集。

解集的求解可以通过图像法、试数法或推理法等多种方法。

2. 推论的应用:通过对不等式的性质进行推导,可以解决实际问题。

例如,利用不等式性质可以证明两个物体的质量或长度的关系,解决优化问题等。

例题一:已知不等式3x+2>7,求解x的范围。

解:将不等式进行等价变形,得到3x>7-2,即3x>5。

再将不等式两边都除以3,得到x>5/3。

高中数学不等式知识点

高中数学不等式知识点

高中数学不等式知识点不等式知识点归纳:一、不等式的概念与性质1、实数的大小顺序与运算性质之间的关系:0>-⇔>b a b a 0<-⇔<b a b a 0=-⇔=b a b a 2、不等式的性质:(1)a b b a <⇔> , a b b a >⇔< (反对称性) (2)c a c b b a >⇒>>, ,c a c b b a <⇒<<, (传递性) (3)c b c a b a +>+⇒>,故b c a c b a ->⇒>+ (移项法则) 推论:d b c a d c b a +>+⇒>>, (同向不等式相加) (4)bc ac c b a >⇒>>0,,bc ac c b a <⇒<>0, 推论1:bd ac d c b a >⇒>>>>0,0 推论2:n n b a b a >⇒>>0 推论3:n n b a b a >⇒>>0不等式的性质是解、证不等式的基础,对于这些性质,关键是正确理解和熟练运用,要弄清每一个条件和结论,学会对不等式进行条件的放宽和加强。

3、常用的基本不等式和重要的不等式(1)0,0,2≥≥∈a a R a 当且仅当”取“==,0a (2)ab b a R b a 2,,22≥+∈则 (3)+∈R b a ,,则ab b a 2≥+(4)222)2(2b a b a +≤+4、最值定理:设,0,x y x y >+≥由(1)如积P y x P xy 2(有最小值定值),则积+=(2)如积22()有最大值(定值),则积S xy S y x =+即:积定和最小,和定积最大。

运用最值定理求最值的三要素:一正二定三相等 5、均值不等式:证法一:(比较法)a b b a R b a -=∴=+∈1,1,,()()2222259224()22a b a b a b ∴+++-=+++- 2222911(1)4222()0222a a a a a =+-+-=-+=-≥即()()2252222≥+++b a (当且仅当21==b a 时,取等号)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
, 7.设 a,b c 均为正数,且 2 log 1 a
a
b
b
2
c A.b a c B.
a b C. b a c
2
,1 log 2 c 2
c
D. b c a
,1 log 1 b .则 2 2
8.设 1 m 3,2 n 4 ,则 m n 的取值范围是
1、理解不等式的性质及其证明。
2、掌握两个(不扩展到三个)正数的算术平均数不小于 它们的几何平均数的定理,并会简单的应用。
3、掌握分析法、综合法、比较法证明简单的不等式。 4、掌握简单不等式的解法。 5、理解不等式
│a│-│b│≤│a+b│≤│a│+│b│
6、在应用题中应用不等式的性质求最值一类的题目越 来越成为高考的重点,应引起大家的注意,同时要加 强不等式和其它重点知识的综合训练
2.(2003北京) 设a,b,c,d R且a>b,c>d且下列结论中正确的是 ( A)a c b d ( B)a c b d (C )ac bd ( D) a b d c
3.(2007湖北)对任意实数a,b,c,给出下列命题:
①“ac=bc”是“a=b”充要条件; ②“a+5是无理数”是“a是无理数”的充要 条
整体思想的应用
能 解:∵ ∴由①+②得 1 ≤ x ≤ 2 2 ≤ x y ≤ 1②
1 1 ≤ y x ≤ 2 ③, ∴由①+③得 ≤ y ≤ 2 ∵由②得 2 7 13 ≤ 3x y ≤ ∴ 2 2
因为不等式的性质很多只是 “”成立,并没有
(当且仅当a = b R 时取“=”号)
0≤ x y ≤2 例二:已知 x,y 满足 2 ≤ x y ≤ 1 试求 3x y 的取值范围.

变:(85页例四)
能力·思维·方法
解:∵ 3x y = 2( x y ) ( x y ) 又∵ 0 ≤ 2( x y ) ≤ 4 , 2 ≤ x y ≤ 1 ∴ 2 ≤ 3 x y ≤ 5 ∴ x 3 y 的取值范围是 2,5
,
m n
的取值范围是 . m ( 9. b 克糖水中有 a 克糖(b a 0) , 若再加入 克糖 m 0) , 则糖水更甜了,试根据这个事实写出一个不等式
m 3 m n 6 10. 是 成立的( n3 mn 9
.

(A)充分不必要条件 (C)充要条件
性质9:
1 1 若ab 0,则 与 的关系? a b
基础练习: 1.判断下列命题是否正确: (1) a b, c b a c ( × ) (2) a b c a c b ( √) a b ac 2 bc 2 (3) (× ) (4) a b, c d ac bd ( × ) a b (5) 2 2 a b (√) c c a2 b2 a b (6) (× ) a b a2 b2 (7) (× ) a b a2 b2 (8) ( ) (9)
• 要点·疑点·考点 • 课前热身 (基础自测) • 能力·思维·方法 • 延伸·拓展 • 小结·巩固训练
要点·疑点·考点
1.不等式的概念
2.两个实数大小比较: 3.不等式的性质是证明不等式和解不等式的理论基础, 通过本节复习,要求理解不等式的性质,会讨论有关 不等式命题的充分性和必要性,正确判断命题的真假. 注:1)这一结论虽很简单,但却是我们推导或证明不等式 的基础. 2)大多数的性质的推出仅是单向的,并不是充要的。
③“a>b”是“a2>b2”的充分条件;④“a<5”是“a<3”的必要条件. 其中真命题的个数是( )A.1 B.2 C.3 D.4
2 4. (安微) 设 a 1 且m log a (a 1) , log a (a 1) p log a (2a) , n 则 m,n,p 的大小关系为( ) m m n A. m p B. n p C. p n p m n D.

5.(全国卷Ⅱ )下列四个数中最大的是( ) A.ln 2 B.ln 2 C. (ln 2 ln(ln 2) D. 2)
a 6.(上海 ) 设 ,b 是非零实数,若 b,则下列不等式成立() a
1 1 b a 2 ab2 B. 2 2 C. a b D. 2 A. a ab a b a b
(B)必要不充分条件 (D)既不充分也不必要条件
a b a2 b2
; ; .
(10) a b 0, c d 0 c d
√ ( ) × b a
(
×)
能力·思维·方法
基础自测4:作差之前先取特殊数得到z y x
例一:(85页例三)
a 2 b 2 ≥ a b ≥ ab ≥ 2 2 2 11 a b
“”成立,即只符合充分性,不具备必要性.求取值范围 要求是 “充分必要的”因此在解决这类问题时尽量少用 加减法.
巩固练习:
1.(2000年全国) 1 ab 若a b 1, P lg a lg b , Q (lg a lg b), R lg( ),则 2 2 (A)R<P<Q(B)P<Q<R(C)Q<P<R(D)R<P<Q(A)P<R<Q
相关文档
最新文档