三视图-展开图
小学六年级立体图形三视图及展开图
立体图形三视图及展开图一、知识点(一)三视图在观察物体的时候,我们往往可以从不同的角度进行观察,角度不同,看到的风景就会不同。
比如:我们可以从正面看、上面看、左面看,看到的图形分别称为正视图、俯视图和左视图,并且容易发现:正面看和后面看,上面看和下面看,左面看和右面看得到的图形是相同的。
对于较复杂的立体图形,通过三视图法往往可以很方便地计算出表面积(二)正方体的展开图展开后由上、下、左、右、前、后六个正方形面组成,这六个正方形面的面积都相等,我们采用不同的剪开方法,共可以得到下面(三)长方体的展开图:观察上图可以发现,长方体的展开图由6个长方形组成,相对面的面积相等,即S上=S下=长×宽,S左=S右=宽×高,S前=S后=长×高。
(四)判断图形折叠后能否围成长方体或正方体的方法判断一个图形折叠后能否围成正方体或长方体,首先,要依据它们各自展开图的特点判断;其次,可以运用空间想象或实际操作进一步判断。
二、题型(一)展开图与对立面【例1.1】水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如下图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面。
则“祝”、“你”、“前”分别表示正方体的________________________。
【答案】后面、上面、左面【解析】易知“你”、“程”相对,“前”、“锦”相对,“祝”、“似”相对,因此“祝”、“你”、“前”分别表示正方体的后面、上面、左面。
【例1.2】一个数学玩具的包装盒是正方体,其表面展开图如下。
现在每方格内都填上相应的数字。
已知将这个表面展开图沿虚线折成正方体后,相对面的两数之和为“3”,则填在A、B、C内的三个数字依次是___________。
【答案】3、1、2【解析】面上的数是“0”,与“B”相对的面上的数是“2”,与“C"相对的面上的数是“1”。
2020年中考数学必考考点专题27三视图与展开图(含解析)
专题13 三视图与展开图1.视图:当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。
2.物体的三视图特指主视图、俯视图、左视图。
(1)主视图:从物体的前面向后面投射所得的视图称主视图,能反映物体的前面形状。
(2)俯视图:从物体的上面向下面投射所得的视图称俯视图,能反映物体的上面形状。
(3)左视图:从物体的左面向右面投射所得的视图称左视图,能反映物体的左面形状,有时也叫做侧视图。
物体的三视图实际上是物体在三个不同方向的正投影.正投影面上的正投影就是主视图,水平投影面上的正投影就是俯视图,侧投影面上的正投影就是左视图在画三视图时,三个三视图不要随意乱放,应做到俯视图在主视图的下方,左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等。
3.展开图:平面图形有三角形、四边形、圆等.立体图形有棱柱、棱锥、圆柱、圆锥、球等.把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形。
【例题1】(2019•四川省达州市)如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【答案】B【解析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.从左面看可得到从左到右分别是3,1个正方形.专题知识回顾专题典型题考法及解析【例题2】(2019•甘肃)已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为.【答案】(18+2)cm2.【解析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.该几何体是一个三棱柱,底面等边三角形边长为2cm,高为cm,三棱柱的高为3,所以,其表面积为3×2×3+2×=18+2(cm2).【例题3】(2019•江苏连云港)一个几何体的侧面展开图如图所示,则该几何体的底面是()A. B. C. D.【答案】B【解析】根据几何体的侧面展开图可知该几何体为四棱锥,所以它的底面是四边形.由题意可知,该几何体为四棱锥,所以它的底面是四边形.专题典型训练题一、选择题1.(2019广东深圳)下列哪个图形是正方体的展开图()A.B. C.D.【答案】B【解析】立体图形的展开图B中图形符合“一四一”模型,是正方体的展开图.故选B.2.(2019•山东省济宁市)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是()A.B.C.D.【答案】B.【解析】考点是几何体的展开图。
三视图与表面展开图.
【典例 1】 (2016· 长沙)如图 287 是由六个相同的小立方 体搭成的几何体,则这个几何体的主视图是 ( )
图 287
A.
B.
C.
D.
【解析】 从正面看第一层是三个小正方形,第二层左边 一个小正方形,第三层左边一个小正方形.
【答案】 B
【类题演练 1】 如图 288 所示的几何体,它的左视图与 俯视图都正确的是 ( )
的正方形纸片按虚线裁剪后,恰好围成底面是正六边 形的棱柱,则这个六棱柱的侧面积为____cm2.
图 2812 【解析】 ∵将一张边长为 6 cm 的正方形纸片按虚线裁剪 后,恰好围成一个底面是正六边形的棱柱, ∴这个正六边形的底面边长为 1 cm. 易得棱柱的侧面展开图是长为 6 cm,宽为(6-2 3)cm 的 矩形,
图 281 3.判断简单物体的三视图,能根据三视图描述基本几何 体或实物原型. 4.直棱柱、圆锥的侧面展开图分别是矩形和扇形,能根 据展开图判断和制作立体模型.
1.(2016· 台州)如图 282 所示的几何体的俯视图是(
)
图 282
A.
【答案】
B.
D
C.
D.
2.(2016· 河北)如图 283①和②中所有的正方形都全等, 将图①中的正方形放在图②中的①②③④的某一位 置,所组成的图形不能围成立方体的是 ( ) A.① B.② C.③ D.④
根据物体的三视图求几何体的侧面积、表面积、体积 等,关键是由三视图想象出几何体的形状,把所给的数据 标注到立体图形中,从而找到解题方法.
【典例 3】 (2016· 泰安)如图 2811 是一圆 锥的左视图,根据图中所标数据,该圆 锥侧面展开图的扇形圆心角的度数为 ( ) A.90° B.120° C.135° D.150°
初中数学精品课件: 三视图与表面展开图
A. 国 C. 中
【答案】 B
图 33-4
B. 的 D. 梦
5.(2019·淄博)下列几何体中,其主视图、左视图和俯视图完
全相同的是
()
A.
B
C.
D.
【答案】 D
题型一 判断物体的三视图
三视图是分别从正面、左面、上面三个方向看同一个物体 所得到的平面图形,判断三视图时应注意尺寸的大小,即三个 视图的特征:主视图体现物体的长和高,左视图体现物体的宽 和高,俯视图体现物体的长和宽.
【典例 2】 (2018·青岛)一个由 16 个完全相同的小立方
体搭成的几何体,其最下面一层摆放了 9 个小立方体,
它的主视图和左视图如图 33-7 所示,则这个几何体的
搭法共有
种.
图 33-7
【解析】 这个几何体的搭法共有 10 种,如解图所示.
【答案】 10
(典例 2 解)
【类题演练 2】 如图 33-8 所示的三视图所对应的几何体是 ( )
图 33-9
A. 25π
B. 24π
C. 20π
D. 15π
【解析】 由主视图可知圆锥的底面直径为 8,
∴底面半径 r=4.
由左视图可知圆锥的高为 3,
∴母线长 l= 32+42=5,
∴S 圆锥侧=πrl=20π.
【答案】 C
【类题演练 3】 (2019·甘肃)已知某几何体的三视图如图 33-10 所示,其
的小立方体搭成,下列说法正确的是
()
A. 主视图的面积为 4
B. 左视图的面积为 4
C. 俯视图的面积为 3
D. 三种视图的面积都为 4
【答案】 A
图 33-18
4.若一个几何体的三视图如图 33-19 所示,则该几何 ( ) A. 直三棱柱 B. 长方体 C. 圆锥 D. 立方体
三视图和展开图的认识
三视图和展开图的认识1.定义:三视图是指一个物体在三个不同方向上的投影,包括正视图、俯视图和侧视图。
2.作用:通过三视图可以全面了解物体的形状和结构,是工程制图和建筑设计中必不可少的一部分。
3.绘制方法:(1)正视图:物体正面朝向观察者,投影在水平面上。
(2)俯视图:物体上方朝向观察者,投影在垂直于水平面的竖直面上。
(3)侧视图:物体左侧或右侧朝向观察者,投影在垂直于水平面和俯视图所在平面的斜面上。
4.定义:展开图是将一个立体图形展开成平面图形,以便于观察和计算。
(1)矩形展开图:最常见的展开图类型,适用于各种矩形容器、包装盒等。
(2)圆形展开图:适用于圆形或近似圆形的物体,如圆筒、圆盘等。
(3)三角形展开图:适用于三角形的物体,如三角尺、三角形的包装盒等。
(4)其他多边形展开图:适用于各种多边形的物体,如六边形、八边形等。
5.绘制方法:(1)矩形展开图:将立体图形的侧面沿着高展开,得到一个长方形或正方形。
(2)圆形展开图:将立体图形的侧面沿着直径展开,得到一个扇形。
(3)三角形展开图:将立体图形的侧面沿着高展开,得到一个三角形。
(4)其他多边形展开图:根据立体图形的形状和结构,选择合适的方法将其展开。
三、三视图与展开图的相互关系1.展开图可以转化为三视图:通过观察展开图,可以确定物体的正视图、俯视图和侧视图。
2.三视图可以转化为展开图:根据三视图,可以绘制出物体的展开图。
3.展开图中的信息可用于三视图的绘制:展开图中的边长、角度等信息可以用于确定三视图中的尺寸和形状。
四、实际应用1.工程制图:在建筑设计、机械设计等领域,三视图和展开图是表达物体形状和结构的重要手段。
2.制造业:在制造过程中,通过三视图和展开图可以方便地切割、加工和组装物体。
3.教育:在三视图和展开图的教学中,有助于培养学生的空间想象能力和逻辑思维能力。
4.日常生活中:展开图在包装、折叠等方面有广泛应用,如纸箱、衣物等。
五、注意事项1.准确绘制:在绘制三视图和展开图时,要注意尺寸、形状和位置的准确性。
2020年中考数学必考34个考点专题27:三视图与展开图
专题13 三视图与展开图1.视图:当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。
2.物体的三视图特指主视图、俯视图、左视图。
(1)主视图:从物体的前面向后面投射所得的视图称主视图,能反映物体的前面形状。
(2)俯视图:从物体的上面向下面投射所得的视图称俯视图,能反映物体的上面形状。
(3)左视图:从物体的左面向右面投射所得的视图称左视图,能反映物体的左面形状,有时也叫做侧视图。
物体的三视图实际上是物体在三个不同方向的正投影.正投影面上的正投影就是主视图,水平投影面上的正投影就是俯视图,侧投影面上的正投影就是左视图在画三视图时,三个三视图不要随意乱放,应做到俯视图在主视图的下方,左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等。
3.展开图:平面图形有三角形、四边形、圆等.立体图形有棱柱、棱锥、圆柱、圆锥、球等.把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形。
【例题1】(2019•四川省达州市)如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【答案】B【解析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.从左面看可得到从左到右分别是3,1个正方形.专题知识回顾专题典型题考法及解析【例题2】(2019•甘肃)已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为.【答案】(18+2)cm2.【解析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.该几何体是一个三棱柱,底面等边三角形边长为2cm,高为cm,三棱柱的高为3,所以,其表面积为3×2×3+2×=18+2(cm2).【例题3】(2019•江苏连云港)一个几何体的侧面展开图如图所示,则该几何体的底面是()A.B.C.D.【答案】B【解析】根据几何体的侧面展开图可知该几何体为四棱锥,所以它的底面是四边形.由题意可知,该几何体为四棱锥,所以它的底面是四边形.一、选择题1.(2019广东深圳)下列哪个图形是正方体的展开图()A.B.C.D.【答案】B【解析】立体图形的展开图B中图形符合“一四一”模型,是正方体的展开图.故选B.2.(2019•山东省济宁市)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是()A.B.C.D.【答案】B.【解析】考点是几何体的展开图。
第7讲 三视图与平面展开图
五年级寒假A版课件
三视图与平面展 开图
数学教研组 编写
知识要点: 还记得我们之前学过的观察物体吗?
从左面看
从正面看
从上面看
正视图
俯视图
左视图
知识要点:
想一想,怎么样用4个同样的小正方 体,摆出的正视图是 的图形。
知识要点:
如果再增加1个同样的小正方体,要保 证从正面看到的形状不变,你可以怎 样摆?
例题4
(1)下面的四个展开图中,( D )是下图所示的正方体的展开 图.
C AB
ABC
C
B
A
C A
B
C
B
A
例题4
(2)在下图所示的正方体的三个面上,分别画了不同的圆,下 面的4个图中,是这个正方体展开图的有( A ).
A.1个 B.2个 C.3个 D.4个
练习4
下图表示正方体的展开图,将它折叠成正方体,可能的图形是 ( ).
A
B
C
D
选讲题
※ 下图是由一些大小相同的小正方体组成的简单几何体的主视图 和俯视图.
(1)请你画出这个几何体的一种左视图Байду номын сангаас (2)若组成这个几何体的小正方体的块数为n,请你写出n的 所有可能值.
(1)略(2)n=8、9、10、11
主视图
俯视图
A
B
C
D
小热身
2. 由四个相同的小正方体搭建了一个积木,它的三视图如图所示,则 这个积木可能是( A ).
A
B
C
D
例题1
下图中的几何体是由若干个完全相同的小正方体搭成的,请你分 别画出它的正视图、左视图和俯视图.
略
练习1
九年级数学下册第3章三视图与表面展开图3-1投影课件(浙教版)
主视图 俯视图
左视图 A
主视图 俯视图
左视图 C
主视图 左视图
B 俯视图
主视图 俯视图
左视图 D
例4.一个圆锥如图,底面直径为8 cm,高6 cm, 按1:4比例画 出它的三视图.
主视图
左视图
俯视图
圆柱、圆锥和球的三种视图如下表所示:
几何体
主视图
左视图
俯视图
例2、如图,一个蒙古包上部的圆锥部分和下部的圆柱部分 的高都是2 m,底面直径为3 m,请以1:200的比例画出它的 三视图.
(3)平行投影
(4)中心投影
例2:确定下图灯泡所在的位置.
O
解:过一根木杆的顶端及其影子的顶端画一条直线,再过 另一根木杆的顶端及其影子的顶端画一条直线,两线相交 于点O,点O就是灯泡的位置.
小组讨论:如图,平行投影和中心投影有什么区别
平 行
和联系呢?
投
影
和
中
心
区别
联系
投 影
平行投影
投影线互相平行, 形成平行投影
在一个长、宽、高 分别为3米,2米,2米的长方体房间 内,一蜘蛛在一面的中间,离天花板0.1米处(A点),苍蝇 在对面墙的中间,离地面0.1米处(B点),试问:蜘蛛去捉苍蝇 需要爬行的最短距离是多少?
A
B
将立方体沿某些棱剪开后铺平,且六个面连在一起, 这样的图形叫立方体的表面展开图。
有不 不同 同的 的剪 展法 开就 图会 。
8、如图,粗线表示嵌在玻璃正方体内的一根铁丝,请
画出该正方体的三视图:
主视图
左视图
俯视图 与同伴交流你的看法和具体做法.
小结:三视图的画法
(1)先画主视图,在主视图正下方画出俯视图,注意与主 视图“长对正”,在主视图正右方画出左视图,注意与 主视图“高平齐”,与俯视图“宽相等”.
第28课 三视图与表面展开图
【纠错】 选项 A,B,D 折叠后都可以围成立方体;而 选项 C 折叠后上面一行的两个面无法折起来.故选 C.
★名师指津 当遇到立方体表面展开图问题时,我们应熟 练掌握立方体表面展开图的特点.立方体的表面展开 图中不含有田字形,解题时最好从相对面入手,这样 其他的面也就随之确定了.
易错点2 视图中看到的与看不到的轮廓线的表示
按时完成课后强化训练28,全面提升自我!
单击此处进入课后强化训练28
语文
小魔方站作品 盗版必究
谢谢您下载使用!
更多精彩内容,微信扫描二维码获取 扫描二维码获取更多资源
附赠 中高考状元学习方法
前言
高考状元是一个特殊的群体,在许多 人的眼中,他们就如浩瀚宇宙里璀璨夺目 的星星那样遥不可及。但实际上他们和我 们每一个同学都一样平凡而普通,但他们 有是不平凡不普通的,他们的不平凡之处 就是在学习方面有一些独到的个性,又有 着一些共性,而这些对在校的同学尤其是 将参加高考的同学都有一定的借鉴意义。
高考总分:711分 毕业学校:北京八中 语文139分 数学140分 英语141分 理综291分 报考高校: 北京大学光华管理学院
北京市理科状元杨蕙心
班主任 孙烨:杨蕙心是一个目标高远 的学生,而且具有很好的学习品质。学 习效率高是杨蕙心的一大特点,一般同 学两三个小时才能完成的作业,她一个 小时就能完成。杨蕙心分析问题的能力 很强,这一点在平常的考试中可以体现。 每当杨蕙心在某科考试中出现了问题, 她能很快找到问题的原因,并马上拿出 解决办法。
七年级数学《三视图、展开图》
4-1-2 立体图形的三视图和展开图
审核:初一数学组
学习目标:1.从不同方向观察一个物体,体会其观察结果的不一样性.
2.能画出从不同方向看一些基本几何体或其简单组合得到的平面图形.
3.初步建立空间观念.
学习重点:识别并会画出从不同方向看简单几何体所得到的平面图形.
学习难点:识别并会画出从不同方向看简单组合体所得到的平面图形.
一、自主学习
阅读课本P117~118页
1.观察你身边的一个物体,试着从不同的角度去看它,你看到的形状是一样的吗?
2.下面这几个几何体,试着从不同角度去看看,你得到了怎样的几何图形?
【老师提示】:我们从不同的方向观察同一个物体时,可能看到不同的图形.为了能完整确切地表达物体的形状和大小,必须从多方面观察物体.
在几何中,我们通常选择从正面、从左面、从上面三个方向来观察物体.通过这样的观察,就能把一个立体图形用几个平面图形来描述.
3.分别正面、左面、上面再来观察上面的三个几何体,把观察的结果与同学交流.
二、合作探究:
1.分别从正面、左面、上面三个方向观察下面的几何体,把观察到的图形画出来.(1)从正面看从左面看从上面看
(2)从正面看从左面看从上面看
从正面看从左面看从上面看
2.【老师提示】对于一些立体图形的问题,常把它们转化为平面图形来研究和处理.先独立完成,后小组交流:
(1)猜想并试着画出下列几何图形的展开图
(2)如图是一个小正方体,试着画出它的平面展开图.
三、学习小结:
四、作业:P121习题4.1第4、9、10、13题.。
第26讲 三视图与展开图
第26讲三视图与展开图1.三视图2.立体图形的展开与折叠1.(2017·衢州)如图是由四个相同的小立方体搭成的几何体,它的主视图是( )第1题图第2题图2.(2017·丽水)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同3.(2017·宁波)如图所示的几何体的俯视图为()4.(2017·金华)一个几何体的三视图如图所示,这个几何体是()A.球B.圆柱C.圆锥D.立方体【问题】如图,下列四个几何体是水平放置.(1)这四个几何体中,主视图与其他三个不相同的是________;(2)图(1)的直三棱柱,底面是边长为2的正三角形,高为4,则此直三棱柱的侧面展开图的面积________;(3)图(2)的圆柱,底面半径为2,高为4,则此圆柱左视图的面积________;(4)通过(1)(2)(3)的解答,请你联想三视图和立体图形展开图的相关知识、方法.【归纳】通过开放式问题,归纳、疏理简单几何体的三视图、展开图.类型一判断(画)几何体的三视图例1下列几何体中,俯视图相同的是()A.①②B.①③C.②③D.②④【解后感悟】掌握从不同方向看物体的方法和画几何体三视图的要求,通过仔细观察、比较、分析,可选出正确答案.1.(1)(2016·湖州)由六个相同的立方体搭成的几何体如图所示,则它的主视图是()(2)(2017·黔西南州)下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个(3)(2017·台州)如图所示的工件是由两个长方体构成的组合体,则它的主视图是()类型二由三视图判断原几何体的形状例2(2016·黄石)某几何体的主视图和左视图如图所示,则该几何体可能是()A.长方体B.圆锥C.圆柱D.球【解后感悟】由三视图确定几何体,往往需要把三个视图组合起来、空间想象综合考虑;掌握常见几何体的三视图是解题的关键.2.(1)(2015·桂林)下列四个物体的俯视图与如图给出视图一致的是()(2)(2017·嘉兴模拟)如图是某个几何体的三视图,该几何体是()A.长方体B.正方体C.圆柱D.三棱柱(3)(2015·随州)如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是cm3.类型三立体图形的展开与折叠例3如图给定的是纸盒的外表面,下面能由它折叠而成的是()【解后感悟】常见几何体的展开与折叠:①棱柱的平面展开图是由两个相同的多边形和一些长方形组成,按棱柱表面不同的棱剪开,可能得到不同组合方式的平面展开图,特别关注正方体的表面展开图;②圆柱的平面展开图是由两个相同的圆形和一个长方形组成的;③圆锥的平面展开图是由一个圆形和一个扇形组成的.3.(1)(2017·漳州模拟)如图是一个长方体包装盒,则它的平面展开图是()(2)(2015·广州)如图是一个几何体的三视图,则该几何体的展开图可以是()(3)如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B在围成的正方体上的距离是()A.0 B.1 C. 2 D.3(4)(2016·十堰)如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.103cm D.202cm类型四几何体的综合运用例4学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:(1)当桌子上放有x(个)碟子时,请写出此时碟子的高度(用含x的式子表示);(2)分别从三个方向上看,其三视图如上图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.【解后感悟】从问题中获取信息(读表),找出碟子个数与碟子高度之间的关系式是解此题的关键.4.(1)(2017·湖州)如图是按1∶10的比例画出的一个几何体的三视图,则该几何体的侧面积是()A.200cm2B.600cm2C.100πcm2D.200πcm2(2)如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为cm.【课本改变题】教材母题--浙教版九下第76页例题如图是某几何体的三视图,则该几何体的体积是()A.18 3 B.54 3 C.108 3 D.216 3 【方法与对策】由三视图求原几何体的体积,正确恢复原几何体是解决问题的关键.这类题是中考热点题型,平时学习中也要注意平面图形和空间图形的转化.【分不清三视图中的实线与虚线】一个空心的圆柱如图所示,那么它的主视图是()参考答案第26讲三视图与展开图【考题体验】1.D 2.B 3.D 4.B【知识引擎】【解析】(1)图(1)的主视图为长方形;图(2)的主视图为长方形;图(3)的主视图为长方形;图(4)的主视图为三角形.故主视图与其他三个不相同的是图(4).(2)侧面展开图是矩形,侧面积为6×4=24.(3)左视图的面积为4×4=16.(4)画三视图,根据三视图描述简单几何体,直棱柱,圆锥侧面展开图等【例题精析】例1②③的俯视图都是圆,有圆心,故选C.例2∵如图所示几何体的主视图和左视图分别是长方形和圆,∴该几何体可能是圆柱体.故选C.例3B例4(1)2+1.5(x-1)=(1.5x+0.5)cm(2)由三视图可知共有12个碟子,∴叠成一摞的高度=1.5×12+0.5=18.5(cm).【变式拓展】1.(1)A(2)D(3)A 2.(1)C(2)D(3)24 3.(1)A(2)A(3)B(4)D 4.(1)D(2)20 【热点题型】【分析与解】由三视图可看出:该几何体是一个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6×34×62×2=108 3.故选C.【错误警示】A。
专题27 三视图与展开图(解析版)
专题13 三视图与展开图1.视图:当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。
2.物体的三视图特指主视图、俯视图、左视图。
(1)主视图:从物体的前面向后面投射所得的视图称主视图,能反映物体的前面形状。
(2)俯视图:从物体的上面向下面投射所得的视图称俯视图,能反映物体的上面形状。
(3)左视图:从物体的左面向右面投射所得的视图称左视图,能反映物体的左面形状,有时也叫做侧视图。
物体的三视图实际上是物体在三个不同方向的正投影.正投影面上的正投影就是主视图,水平投影面上的正投影就是俯视图,侧投影面上的正投影就是左视图在画三视图时,三个三视图不要随意乱放,应做到俯视图在主视图的下方,左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等。
3.展开图:平面图形有三角形、四边形、圆等.立体图形有棱柱、棱锥、圆柱、圆锥、球等.把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形。
【例题1】(2019•四川省达州市)如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【答案】B【解析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.从左面看可得到从左到右分别是3,1个正方形.专题知识回顾专题典型题考法及解析【例题2】(2019•甘肃)已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为.【答案】(18+2)cm2.【解析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.该几何体是一个三棱柱,底面等边三角形边长为2cm,高为cm,三棱柱的高为3,所以,其表面积为3×2×3+2×=18+2(cm2).【例题3】(2019•江苏连云港)一个几何体的侧面展开图如图所示,则该几何体的底面是()A.B.C.D.【答案】B【解析】根据几何体的侧面展开图可知该几何体为四棱锥,所以它的底面是四边形.由题意可知,该几何体为四棱锥,所以它的底面是四边形.专题典型训练题一、选择题1.(2019广东深圳)下列哪个图形是正方体的展开图()A. B.C.D.【答案】B【解析】立体图形的展开图B中图形符合“一四一”模型,是正方体的展开图.故选B.2.(2019•山东省济宁市)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是()A.B.C.D.【答案】B.【解析】考点是几何体的展开图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三视图,展开图
(1)下面几何的主视图是( )
(2)下面形状的四张纸板,按图中线经过折叠可以围成一下直三棱柱的是( )
(3)由4个相同的小立方块搭成的几何体如图所示,它的左视图是()
(4)在生活和生产实践中,我们经常需要运用三视图来描述物体的形状和大小。
小亮在观察左边的热水瓶时,得到的左视图是()
(5)下列四个几何体中,主视图、左视图、俯视图都是圆的几何体是( ) A.正方体B.圆锥C.球D.圆柱
(6)下图的几何体是由三个同样大小的立方体搭成的,其左视图为()
(7)如图1,骰子是一个质量均匀的小正方体,它的六个面上分别刻
有1~6 个点.,小明仔细观察骰子,发现任意相对两面的点数和都相
等. 这枚骰子向上的一面的点数是5,它的对面的点数是()
A. 1
B. 2
C. 3
D. 6
(8)图2是由几个相同的小正方体搭成的一个几何体,它的俯视图是()
(9)将如右图所示的绕直角边旋转一周,所得几何体的主视图是()
(10)下面的三视图所对应的物体是()
(11)如图所示的几何体的左视图是()
(12)用若干个大小相同,棱长为1的小正方体搭成一个几何体模型,其三视图如图所示,则搭成这个几何体模型所用的小正方体的个数是( ) ;
(A)4 (B)5 (C)6 (D)7
(13)如图,这个几何体的主视图是()
(14)若一个几何体的主视图、左视图、俯视图分别是三角形、三角形、圆,则这个几何体可能是()
A.球B.圆柱C.圆锥D.棱锥
(15)某几何体的三种视图如右图所示,则该几何体可能
是()
A.圆锥体B.球体C.长方体D.圆柱体
(16)图1是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是()
(17)下图中所示的几何体的主视图是()
(18)下列简单几何体的主视图是()
(19)下面左图所示的几何体的俯视图是()
(20)有一实物如图,那么它的主视图是()
(21)如图①是一些大小相同的小正方体组成的几何体,其主视图如图②所示,则其俯视图是()
(22)下列图形中,不是正方形的表面展开图的是()
(23)如图是由4个大小相同的正方体搭成的几何体,其主视图是()
(24)左下图是由若干个小正方形所搭成的几何体及从上面看这个几何体所看到的图形,那么从左边看这个几何体时, 所看到的几何图形是( )
(25)如图是每个面上都有一个汉字的正方体的一种展开图,那
么在正方体的表面,与“迎”相对的面上的汉字是()
A、文
B、明
C、奥
D、运
(26)由四个相同的小正方体堆成的物体如图所示,它的俯视图是()
(27)(08莆田市)如图,茶杯的主视图是()
(28)由大小相同的正方体木块堆成的几何体的三视图如右图
所示,则该几何体中正方体木块的个数是()
A. 6个
B. 5个
C. 4个
D. 3个
(29)如图是由相同小正方体组成的立体图形,它的左视图为()
(30)一个几何体的三视图如图所示,这个几何体是()
A.棱柱B.圆柱C.圆锥D.球
(31)在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来.如图所示,则这堆正方体货箱共有()
A.9箱B.10箱C.11箱D.12箱
(32)某几何体的三视图如图所示,则它是()
A.球体B.圆柱C.棱锥D.圆锥
(33)如图1,圆柱的左视图是()
(34)一几何体的三视图如右,这个几何体是()
A.圆锥
B.圆柱
C. 三棱锥
D. 三棱柱
(35)如图5,是一个由若干个相同的小正方体组成的几何体的三
视图,则组成这个几何体的小正方体的个数是( )
(36)如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是()
A.长方体B.圆柱体C.球体D.三棱柱
(37)右图是某一几何体的三视图,则这个几何体是()。
(A)圆柱体(B)圆锥体
(C)正方体(D)球体
(38)右边物体的左视图是()
(39)如图,下列选项中不是正六棱柱三视图的是()
(40)下面形状的四张纸板,按图中线经过折叠可以围成一下直三棱柱的是( )
(41)下图的几何体是由三个同样大小的立方体搭成的,其左视图为()
(42)如图,是由6个相同的小立方块搭成的几何体,那么这个几何体的俯视图是()
(43)右图是由四个相同的小立方体组成的立体图形,它的左视图是()
(44)下列各图中,不是正方体展开图的是()
(45)下面四个图形中,是三棱柱的平面展开图的是()
(46)一个正方体的面共有()
A.1个B.2个C.4个D.6个
(47)如图,该图形经过折叠可以围成一个正方体形,折好以
后,与“静”字相对的字是 .
(48)展览厅内要用相同的正方体木块搭成
一个三视图如右图的展台,则此展台共需这
样的正方体块.
(49)下面是一些立体图形的三视图(如图),•请在括号内填上立体图形的名称.
(50)如图4-3-26,下列图形都是几何体的平面展开图,你能说出这些几何体的名称吗?
(51)如图,从不同方向看下面左图中的物体,右图中三个平面图形分别是从哪个方向看到的?
(52)马小虎准备制作一个封闭的正方体盒子,他先用5•个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的每个图形上再接一个正方形,•使新拼接成的图形经过折叠能成为一个封闭的正方体盒子.(注:添加的正方形用阴影表示)。