《用因式分解法解一元二次方程》PPT课件2 (共18张PPT)
合集下载
北师大版初中九年级上册数学课件 《用因式分解法解一元二次方程》一元二次方程PPT课件
x1
100 , 49
x2 0
探究
10x 4.9x2 0
如果a·b=0,那么 a=0或b=0。
因式分解
x 10 4.9x 0
两个因式乘积为0,说明什么 降次,化为两个一次方程
x 0 或 10 4.9x 0
解两个一次方程,得出原方程的根
x1 0,
x2
100 49
2.04
这种解法是不是很简单?
(2)3x(x 2) 5(x 2)
(3)x2-4=0 (4)(3x+1)2-5=0
(1)2x2-4x+2=0 解:因式分解,得 2 (x-1) =0
x-1=0 或 2x-1=0
∴x1= x2=1
分解因式的方法有那些? (1)提取公因式法: am+bm+cm=m(a+b+c). (2)公式法: a2-b2=(a+b)(a-b), a2±2ab+b2=(a±b)2.
(2) 3x(x 2) 5(x 2)
解:移项,得 3x(x 2) 5(x 2) 0
因式分解,得 (x 2) (3x 5) 0
x+2=0 或 3x-5=0
∴x1=-2,
5
x2=
3
(3)x2-4=0
解:因式分解,得 (x+2) (x-2) =0
x+2=0 或 x-2=0
∴x1=-2, x2=2
ax2+bx+c=0(a≠0).
2.b2-4ac≥0.
x b
b2 2a
4ac
.b2
4ac
0
.
1.用因式分解法的条件是:方程左边能够 分解,而右边等于零; 2.理论依据是:如果两个因式的积等于零 那么至少有一个因式等于零. 因式分解法解一元二次方程的一般步骤:
《用因式分解法解一元二次方程》一元二次方程精品 课件
⑴ 5x2-3 2 x=0 (运用因式分解法)
⑵ 3x2-2=0
(运用直接开平方法)
⑶ x2-4x=6
(运用配方法)
⑷ 2x2-x-3=0
(运用公式法)
⑸ 2x2+7x-7=0 (运用公式法)
② 公式法虽然是万能的,对任何一元二次方程都适用, 但不一定是最简单的,因此在解方程时我们首先考虑能 否应用“直接开平方法”、“因式分解法”等简单方法, 若不行,再考虑公式法(适当也可考虑配方法)
2、公式法虽然是万能的,对任何一元二次方程都适用,但不一 定 是最简单的,因此在解方程时我们首先考虑能否应用“直接
开平方法”、“因式分解法”等简单方法,若不行,再考虑公式 法(适当也可考虑配方法)
3、方程中有括号时,应先用整体思想考虑有没有简单方法,若看 不出合适的方法时,则把它去括号并整理为一般形式再选取合理 的方法。
例3.解下列方程 :
(1)x(x 2) x 2 0;
(2)5x2 2x 1 x2 2x 3 .
4
4
可以试用 多种方法解 本例中的两
个方程 .
分解因式法解一元二次方程的步骤是: 1.将方程右边等于0; 2. 将方程左边因式分解为A×B; 3. 根据“ab=0,则a=0或b=0”,转化为两个一元一次方程. 4. 分别解这两个一元一次方程,它们的根就是原方程的根.
2)(3x-4)²=(4x-3)²
3) 4y=1-3y² 2
选用适当的方法解一元二次方程
1.解一元二次方程的方法有:
①因式分解法 ②直接开平方法 ③公式法 ④配方法
(方程一边是0,另一边整式容易因式分解)
((
)2=C C≥0 )
(化方程为一般式)
(二次项系数为1,而一次项系为偶数)
4用因式分解法解一元二次方程PPT课件(北师大版)
b≥0时有解,b<0时 无解.
二次项系数若不为1,必 须先把系数化为1,再进 行配方.
公式法 ax2+bx+c=0(a≠0)
b2-4ac≥0时,方程有解;b24ac<0时,方程无解.先化 为一般情势后,再用公式 法求解.
因式分解法
方程的一边为0,另 一边可分解成两个 一次因式的积.
方程的一边必须是0,另一 边可用任何方法分解因 式.
解:(1)原方程可变形为5x2-4x=0,
即x(5x-4)=0,
∴x=0或5x-4=0,
∴ x1
=
0,x 2
=
4 5
.
(2)x(x-2)=x-2. 解:原方程可变形为x(x-2)-(x-2)=0,
即(x-2)(x-1)=0,
∴x-2=0或x-1=0, ∴x1=2,x2=1.
解下列方程. (1)x2-4=0; (2)(x+1)2-25=0.
检测反馈
1.一元二次方程(x-1)(x-2)=0可化为一元一 次方程: (x-1)=0 或 (x-2)=0 ,方
程的根是 x=1 或 x=2 .
解析:(x-1)(x-2)=0可化为一元一次方程:x-1=0或 x-2=0,求得方程的根为x1=1,x2=2.
2.方程3x2=0的根是 x1=x2=0 ,方程(y-2)2=0的 根是 y1=y2=,2方程(x+1)2=4(x+1)的根 是 x1=-1,x2=3 .
3.解方程x(x+1)=2时,要先把方程化 为 x2+x-2=0 ,再选择适当的方法求解.方程 的两根为x1= 1 ,x2= -2 .
4.用因式分解法解下列方程. (1)x2+16x=0; 解:(1)原方程可变形为x(x+16)=0,
二次项系数若不为1,必 须先把系数化为1,再进 行配方.
公式法 ax2+bx+c=0(a≠0)
b2-4ac≥0时,方程有解;b24ac<0时,方程无解.先化 为一般情势后,再用公式 法求解.
因式分解法
方程的一边为0,另 一边可分解成两个 一次因式的积.
方程的一边必须是0,另一 边可用任何方法分解因 式.
解:(1)原方程可变形为5x2-4x=0,
即x(5x-4)=0,
∴x=0或5x-4=0,
∴ x1
=
0,x 2
=
4 5
.
(2)x(x-2)=x-2. 解:原方程可变形为x(x-2)-(x-2)=0,
即(x-2)(x-1)=0,
∴x-2=0或x-1=0, ∴x1=2,x2=1.
解下列方程. (1)x2-4=0; (2)(x+1)2-25=0.
检测反馈
1.一元二次方程(x-1)(x-2)=0可化为一元一 次方程: (x-1)=0 或 (x-2)=0 ,方
程的根是 x=1 或 x=2 .
解析:(x-1)(x-2)=0可化为一元一次方程:x-1=0或 x-2=0,求得方程的根为x1=1,x2=2.
2.方程3x2=0的根是 x1=x2=0 ,方程(y-2)2=0的 根是 y1=y2=,2方程(x+1)2=4(x+1)的根 是 x1=-1,x2=3 .
3.解方程x(x+1)=2时,要先把方程化 为 x2+x-2=0 ,再选择适当的方法求解.方程 的两根为x1= 1 ,x2= -2 .
4.用因式分解法解下列方程. (1)x2+16x=0; 解:(1)原方程可变形为x(x+16)=0,
北师大版初中九年级上册数学课件-《用因式分解法求解一元二次方程》一元二次方程PPT教学课件精选全文
(2x+1)(2x-1)=0. 于是得
2x+1=0,或2x-1=0,
x1
1 2
,
x2
1 2
Hale Waihona Puke 知2-讲总结知2-讲
1. 采用因式分解法解一元二次方程的技巧为: 2. 右化零,左分解,两因式,各求解. 3. 2. 用因式分解法解一元二次方程时,不能将“或” 4. 写成“且”,因为降次后两个一元一次方程并 5. 没有同时成立,只要其中之一成立了就可以了
知2-讲
原来的一元二次函 数转化成了两个一 元一次方程.
(来自教材)
例3解下列方程:
(1)x(x-2)+x-2=0;
(2)
5x2 2x 1 x2 2x 3 .
4
4
解:(1)因式分解,得
(x-2)(x+1)=0.
于是得
x-2=0,或x+1=0,
x1=2,x2=-1.
知2-讲
(2)移项、合并同类项,得 4x2-1=0. 因式分解,得
例2解下列方程:
(1)5x2=4x; (2)x(x-2)=x-2.
解:(1)原方程可变形为
5x2-4x=0,
x(5x-4)=0.
x=0,或5x-4=0.
∴x1=0,x2=
4.
5 (2)原方程可变形为
x(x-2)-(x-2)=0,
(x-2)(x-1)=0.
x-2=0,或x-1=0.
∴x1=2,x2=1.
将此方程化为3x(x-2)=0,从而得到两个一元一次方程 3x=0或x-2=0,进而得到原方程的解为x1=0,x2=2. 这种解法体现的数学思想是( ) A.转化思想B.函数思想 C.数形结合思想D.公理化思想
2 用因式分解法解方程,下列过程正确的是( )
《解一元二次方程因式分解法》ppt
24.2 解一元二次方程 因式分解法
9.(4分)方程 ( 2-1)x=(1- 2)x2
的较简单的解法是( A ) A.因式分解法 B.公式法 C.配方法 D.直接开平方法 【易错盘点】
【例】解方程:y- 3=4y( 3-y). 【错解】方程两边都除以(y- 3)得 -4y=1,解得 y=-1
4
【错因分析】第一步变形不属于同解变形,方程两边都除以(y- 3)时,没有考虑
9、忘掉失败,不过要牢记失败中的教 训。 10、如果敌人让你生气,那说明你还 没有胜 他的把 握。
11、一百次心动不如一次行动。 12、天下之事常成于困约,而败于奢 靡。 13、人生短短数十载,最要紧是证明 自己, 不是讨 好他人 。 14、世上并没有用来鼓励工作努力的 赏赐, 所有的 赏赐都 只是被 用来奖 励工作 成果的 。 15、只要我们能梦想的,我们就能实 现。 16、只要站起来比倒下去多一次就是 成功。 17、诚心诚意,诚字的另一半就是成 功。 18、我终于累了,好累,好累,于是 我便爱 上了寂 静。 19、只有收获,才能检验耕耘的意义 ;只有 贡献, 方可衡 量人生 的价值 。
58、当你快乐时,你要想,这快乐不 是永恒 的。当 你痛苦 时,你 要想, 这痛苦 也不是 永恒的 。 59、抱最大的希望,为最大的努力, 做最坏 的打算 。 60、成功的关键在于相信自己有成功 的能力 。
61、你既然期望辉煌伟大的一生,那 么就应 该从今 天起, 以毫不 动摇的 决心和 坚定不 移的信 念,凭 自己的 智慧和 毅力, 去创造 你和人 类的快 乐。 62、能够岿然不动,坚持正见,度过 难关的 人是不 多的。 ——雨 果一种 耗费精 神的情 绪,后 悔造物 之前, 必先造 人。 43、富人靠资本赚钱,穷人靠知识致 富。 44、顾客后还有顾客,服务的开始才 是销售 的开始 。
初中数学北师大版九年级上册《用因式分解法解一元二次方程》课件
(x + m) (x + n)=0
解法选择基本思路
1.一般地,当一元二次方程一次项系数为0时(ax2+c=0), 应选用直接开平方法; 2.若常数项为0( ax2+bx=0),应选用因式分解法; 3.若一次项系数和常数项都不为0 (ax2+bx+c=0),先化为一 般式,看一边的整式是否容易因式分解,若容易,宜选用因 式分解法,不然选用公式法; 4.不过当二次项系数是1,且一次项系数是偶数时,用配方法 也较简单.
所以用因式分解法解答较快.
另一边是常数,可直接开平方法.
解:化简 (3x -5) (x + 5) = 0. 解:开平方,得
即 3x - 5 = 0 或 x + 5 = 0.
5x + 1 = ±1.
x1
5 3
, x2
5.
解得, x 1= 0 , x2 =
(3)x2 - 12x = 4 ;
(4)3x2 = 4x + 1;
∴ 2x + 3 = 0 或 2x - 1 = 0.
x1
-
3 2
, x2
1. 2
∴ 3x + 1 = 0 或 x + 5 = 0.
x1
-
1 3
, x2
5.
二 灵活选用方法解方程
例2 用适当的方法解方程: (1)3x(x + 5)= 5(x + 5); (2)(5x + 1)2 = 1;
分析:该式左右两边可以提取公因式, 分析:方程一边以平方情势出现,
5
x1= 2 , x2= - 3.
4
x1= 2 , x2= .
1
3
解法选择基本思路
1.一般地,当一元二次方程一次项系数为0时(ax2+c=0), 应选用直接开平方法; 2.若常数项为0( ax2+bx=0),应选用因式分解法; 3.若一次项系数和常数项都不为0 (ax2+bx+c=0),先化为一 般式,看一边的整式是否容易因式分解,若容易,宜选用因 式分解法,不然选用公式法; 4.不过当二次项系数是1,且一次项系数是偶数时,用配方法 也较简单.
所以用因式分解法解答较快.
另一边是常数,可直接开平方法.
解:化简 (3x -5) (x + 5) = 0. 解:开平方,得
即 3x - 5 = 0 或 x + 5 = 0.
5x + 1 = ±1.
x1
5 3
, x2
5.
解得, x 1= 0 , x2 =
(3)x2 - 12x = 4 ;
(4)3x2 = 4x + 1;
∴ 2x + 3 = 0 或 2x - 1 = 0.
x1
-
3 2
, x2
1. 2
∴ 3x + 1 = 0 或 x + 5 = 0.
x1
-
1 3
, x2
5.
二 灵活选用方法解方程
例2 用适当的方法解方程: (1)3x(x + 5)= 5(x + 5); (2)(5x + 1)2 = 1;
分析:该式左右两边可以提取公因式, 分析:方程一边以平方情势出现,
5
x1= 2 , x2= - 3.
4
x1= 2 , x2= .
1
3
用因式分解法求解一元二次方程课件19张北师大版九年级上册数学
等式两边加4,得x2+4x+4=6,
由完全平方公式得(x+2)2=6,
∴x+2= 或x+2=- ,
所以原方程的解为x1=-2+ ,x2=-2- .
合作探究
(2)移项,得(x-2)2-3(x-2)=0,
提取公因式,得(x-2)(x-5)=0,
则x-2=0或x-5=0,
解得x1=2,x2=5.
把解一元二次方程变为解两个 一
元 一
次方程的情势,
从而求得方程的解.我们把这种解一元二次方程的方法称为
解因式法 .
分
预习导学
2.分解因式法解一元二次方程的一般步骤:
(1)移项:把方程的右边变为
(2)化积:把方程的左边分解为
0
;
两
个一次因式的积;
(3)转化:令两个一次因式分别为0,把方程转化为两个
元
方法归纳交流 因式分解法是把一元二次方程转化为两个
一元一次方程,再求解即可.逆向思维,我们可以构造两个一元
一次方程,把两个一元一次方程相乘,得到一元二次方程.
合作探究
2.三角形两边长分别为3和6,第三边是方程x2-6x+8=0的
解,则这个三角形的周长是( B )
A.11
B.13
C.11或13
D.不能确定
合作探究
1.方程3x(x+1)=3x+3的解为( D )
A.x=1
B.x=-1
C.x1=0,x2=-1
D.x1=1,x2=-1
2.用指定方法解下列方程:
(1)x2+4x-2=0(配方法);
(2)(x-2)2=3(x-2)(因式分解法);
(3)2x2-4x-1=0(公式法).
合作探究
解:(1)原方程可化为x2+4x=2,
由完全平方公式得(x+2)2=6,
∴x+2= 或x+2=- ,
所以原方程的解为x1=-2+ ,x2=-2- .
合作探究
(2)移项,得(x-2)2-3(x-2)=0,
提取公因式,得(x-2)(x-5)=0,
则x-2=0或x-5=0,
解得x1=2,x2=5.
把解一元二次方程变为解两个 一
元 一
次方程的情势,
从而求得方程的解.我们把这种解一元二次方程的方法称为
解因式法 .
分
预习导学
2.分解因式法解一元二次方程的一般步骤:
(1)移项:把方程的右边变为
(2)化积:把方程的左边分解为
0
;
两
个一次因式的积;
(3)转化:令两个一次因式分别为0,把方程转化为两个
元
方法归纳交流 因式分解法是把一元二次方程转化为两个
一元一次方程,再求解即可.逆向思维,我们可以构造两个一元
一次方程,把两个一元一次方程相乘,得到一元二次方程.
合作探究
2.三角形两边长分别为3和6,第三边是方程x2-6x+8=0的
解,则这个三角形的周长是( B )
A.11
B.13
C.11或13
D.不能确定
合作探究
1.方程3x(x+1)=3x+3的解为( D )
A.x=1
B.x=-1
C.x1=0,x2=-1
D.x1=1,x2=-1
2.用指定方法解下列方程:
(1)x2+4x-2=0(配方法);
(2)(x-2)2=3(x-2)(因式分解法);
(3)2x2-4x-1=0(公式法).
合作探究
解:(1)原方程可化为x2+4x=2,
2.4 用因式分解法求解一元二次方程 课件(共16张PPT) 数学北师版九年级上册
B
3.填空:(1)方程(x+2)(x-4)=0的根为: ;(2)方程4x(2x+1)=3(2x+1)的根为: .4. 当x= 时,代数式(2x-1)2和x2的值相等.
或1
如果a·b= 0,那么 a=0 或 b=0即“如果两个因式的积等于零,那么至少有一个因式等于零.”
适用范围和依据:当一元二次方程为一般形式,方程一边为0,而另一边易于分解成两个一次因式的乘积时,可以用这种方法求解.分解因式法解一元二次方程的根据是:若a·b=0,则a=0或b=0
这种通过因式分解,将一个一元二次方程转化为两个一元一次方程来求解的方法叫做因式分解法.
例1 解下列方程(1) 5x2 = 4x
解:(1) 原方程可变形为 5x2 - 4x = 0,x(5x - 4) = 0. x = 0,或 5x - 4 = 0.x1 = 0,x2 = .
(2) x(x - 2) = x - 2
解:(2) 原方程可变形为 x(x - 2) - (x - 2) = 0,(x - 2)(x - 1) = 0. x - 2 = 0,或 x - 1 = 0.x1 = 2,x2 = 1.
同学们再见!
授课老师:
时间:2024年9月15日
5.解下列方程
解:(1)(x+1)(x-1)-2(x+1)=0, (x+1)(x-1-2)=0, (x+1)(x-3)=0, x+1=0或x-3=0, 解得x1=-1,x2=3.
(2)原方程可化为(x+3)2-(1-2x)2=0,(x+3+1-2x)(x+3-1+2x)=0,即-x+4=0或3x+2=0, 解得x1=4,x2=.
方程 x2 = 3x 两边 同时约去x, 得 x = 3 . 所以这个数是3.
3.填空:(1)方程(x+2)(x-4)=0的根为: ;(2)方程4x(2x+1)=3(2x+1)的根为: .4. 当x= 时,代数式(2x-1)2和x2的值相等.
或1
如果a·b= 0,那么 a=0 或 b=0即“如果两个因式的积等于零,那么至少有一个因式等于零.”
适用范围和依据:当一元二次方程为一般形式,方程一边为0,而另一边易于分解成两个一次因式的乘积时,可以用这种方法求解.分解因式法解一元二次方程的根据是:若a·b=0,则a=0或b=0
这种通过因式分解,将一个一元二次方程转化为两个一元一次方程来求解的方法叫做因式分解法.
例1 解下列方程(1) 5x2 = 4x
解:(1) 原方程可变形为 5x2 - 4x = 0,x(5x - 4) = 0. x = 0,或 5x - 4 = 0.x1 = 0,x2 = .
(2) x(x - 2) = x - 2
解:(2) 原方程可变形为 x(x - 2) - (x - 2) = 0,(x - 2)(x - 1) = 0. x - 2 = 0,或 x - 1 = 0.x1 = 2,x2 = 1.
同学们再见!
授课老师:
时间:2024年9月15日
5.解下列方程
解:(1)(x+1)(x-1)-2(x+1)=0, (x+1)(x-1-2)=0, (x+1)(x-3)=0, x+1=0或x-3=0, 解得x1=-1,x2=3.
(2)原方程可化为(x+3)2-(1-2x)2=0,(x+3+1-2x)(x+3-1+2x)=0,即-x+4=0或3x+2=0, 解得x1=4,x2=.
方程 x2 = 3x 两边 同时约去x, 得 x = 3 . 所以这个数是3.
《用因式分解法求解一元二次方程》PPT课件
解:令 x2-x=y,则原方程可化为 y2-4y-12=0, 即(y+2)(y-6)=0. 所以 y+2=0 或 y-6=0,解得 y1=-2,y2=6. 当 y=-2 时,x2-x=-2,即 x2-x+2=0,此方程无实数解; 当 y=6 时,x2-x=6,即(x+2)(x-3)=0, 解得 x1=-2,x2=3. 所以原方程的解为 x1=-2,x2=3.
②(x-2)2+x2=5;
③(x-2)(x-4)=4; ④x2-3x-1=0;
⑤x2- 2x+14=0; ⑥x2+3x=0. (1)直接开平方法:___①_____;(2)配方法:__②___③___;
(3)公式法:__④__⑤____;
(4)因式分解法:___⑥_______.
11.解方程 2(x-1)2=3x-3,最适当的方法是( D )
x+2=1,x-2=5,得方程的根为 x1=-1,x2=7;乙同学 说:应把方程右边化为 0,得 x2-9=0,再分解因式,即
(x+3)(x-3)=0,得方程的根为 x1=-3,x2=3.对于甲、乙
两名同学的说法,下列判断正确的是A( )
A.甲错误,乙正确
B.甲正确,乙错误
C.甲、乙都正确
D.甲、乙都错误
15.(2018·玉林)已知关于 x 的一元二次方程 x2-2x-k-2=0 有 两个不相等的实数根.
(1)求 k 的取值范围; 解:根据题意得 Δ=(-2)2-4(-k-2)>0,解得 k>-3.
15.(2018·玉林)已知关于 x 的一元二次方程 x2-2x-k-2=0 有 两个不相等的实数根.
(2)配方法(3)公式法 15 见习题
(4)因式分解法
16 见习题
10 (1)① (2)②③
初中数学北师大版九年级上册《用因式分解法解一元二次方程》课件
(1)对于一元二次方程(x - p)(x - q)=0,那么它的两个实数根分
别为p,q. (2)对于已知一元二次方程的两个实数根为p,q,那么这个一元二次方程 可以写成(x - p)(x - q )=0的形式.
解下列方程:
(1)(2x + 3)2 = 4 (2x + 3) ;
(2)(x - 2) 2 =
有 2x + 11 = 0 或 2x - 11= 0,
( x-1 )( x-1 ) = 0. 有 x - 1 = 0 或 x - 1 = 0,
11 11 x1 2 , x2 2 .
x1=x2=1.
4.把小圆形场地的半径增加5m得到大圆形场地,场地面积增 加了一倍,求小圆形场地的半径.
解:设小圆形场地的半径为r, 根据题意 ( r + 5 )2×π=2r2π.
小颖,小明,小亮都设这个数为x,根据题意得,可得方程 x2 = 3x
小颖的思路:
小明的思路:
由方程 x2 = 3x ,得
x2 - 3x = 0
因此 x 3 9 2
x1 = 0, x2 = 3. 所以这个数是0或3.
方程 x2 = 3x 两边 同时约去x, 得 x=3. 所以这个数是3.
小亮的思路:
(2x
+
3)
2 .
解:(2x + 3)2 - 4 (2x + 3) =0 , 解:(x - 2)2 - (2x + 3) 2 =0,
(2x + 3) (2x + 3 - 4) = 0, ( x -2+ 2x+ 3) (x -2 - 2x - 3)=0,
(2x + 3) (2x - 1) = 0.
人教版九年级数学上册《因式分解法解一元二次方程》PPT
提示: 1.用分解因式法的条件是:方程左边易于分解,而右 边等于零; 2.关键是熟练掌握因式分解的知识; 3.理论依旧是“如果两个因式的积等于零,那么至 少有一个因式等于零.”
分解因式的方法有那些?
(1)提取公因式法:
(2)公式法:
a2-b2=(a+b)(a-b), a2±2ab+b2=(a±b)2.
3. 解两个一元一次方程。
1、用因式分解法解下列方程
(1)(4x 2)2 x(2x 1)
(2)(3x 1)2 5 0;
(3)(2x 3)2 3(2x 3)
(4)2(x 3)2 x2 9.
例题2
☞
用因式分解法解方程:
(1)x2+6x-7=0
(3)2x2 x 3 0
(1)解:(x 1)(x 7) 0 解:原方程可变形为
x 1 0或x 7 0
(x+1)(2x-3)=0
x1 1, x2 7
x+1=0或2x-3=0
(2)(x 1)2 3 x 1 2 0;
∴
x1=-1
,x2=
3 2
1
1
x1 0; x2 1.
2
-3
用因式分解法解一元二次方程
(1)x2-3x-10=0
(2)(x+3)(x-1)=5
(3)3x x 1 2 2x (4)3y2 y 14=0
小颖,小明,小亮都设这个数为x,根据题意得 x2 3x.
小颖是这样解的: 解 : x2 3x 0.
b2 4ac (3)2 410 9.
x 3 9 . 2
这个数是0或3.
小颖做得对吗?
小明是这样解的:
解 : 方程x2 3x两 边都同时约去x, 得.
分解因式的方法有那些?
(1)提取公因式法:
(2)公式法:
a2-b2=(a+b)(a-b), a2±2ab+b2=(a±b)2.
3. 解两个一元一次方程。
1、用因式分解法解下列方程
(1)(4x 2)2 x(2x 1)
(2)(3x 1)2 5 0;
(3)(2x 3)2 3(2x 3)
(4)2(x 3)2 x2 9.
例题2
☞
用因式分解法解方程:
(1)x2+6x-7=0
(3)2x2 x 3 0
(1)解:(x 1)(x 7) 0 解:原方程可变形为
x 1 0或x 7 0
(x+1)(2x-3)=0
x1 1, x2 7
x+1=0或2x-3=0
(2)(x 1)2 3 x 1 2 0;
∴
x1=-1
,x2=
3 2
1
1
x1 0; x2 1.
2
-3
用因式分解法解一元二次方程
(1)x2-3x-10=0
(2)(x+3)(x-1)=5
(3)3x x 1 2 2x (4)3y2 y 14=0
小颖,小明,小亮都设这个数为x,根据题意得 x2 3x.
小颖是这样解的: 解 : x2 3x 0.
b2 4ac (3)2 410 9.
x 3 9 . 2
这个数是0或3.
小颖做得对吗?
小明是这样解的:
解 : 方程x2 3x两 边都同时约去x, 得.
2 解一元二次方程 因式分解法PPT课件(人教版)
15.先阅读下列材料,然后解决后面的问题: 材料:因为二次三项式x2+(a+b)x+ab=(x+a)(x+b),所以方程 x2+(a+b)x+ab=0可以这样解:∵(x+a)(x+b)=0,∴x+a=0或x +b=0,∴x1=-a,x2=-b. 问题: (1)用因式分解法解方程x2-kx-16=0时,得到的两根均为整数, 则k的值可以为_____-__1_5_,__-__6_,__0_,__6_,__1_5____; (2)已知实数x满足(x2-x)2-4(x2-x)-12=0,则代数式x2-x+1 的值为__7__.
解:x1=3+ 5,x2=3- 5
(3)x2-4=3x-6; 解:x1=1,x2=2
(4)(x+5)2+x2=25. 解:x1=-5,x2=0
13.一跳水运动员从10 m高台上跳下,他离水面的高度h(单位: m)与所用时间t(单位:s)的关系是h=-5(t-2)(t+1),那么运动员从 起跳到入水所用的时间是多少?
九年级上册人教版数学
第二十一章 一元二次方程
21.2 解一元二次方程
21.2.3 因一边可以分解成两个一次因式 的乘积时,通常将一元二次方程化为__两__个__一__次__因__式____的乘积等于0 的情势,再使这两个一次因式分别等于0,从而实现降次,这种解法 叫做____因__式__分__解_____法.
体,设x+1=y,则原方程可化为y2-5y+6=0,解得y1=2,y2=3. 当y=2时,即x+1=2,解得x=1;当y=3时,即x+1=3,解得x=
2,所以原方程的解为x1=1,x2=2.利用这种方法求方程(2x-1)2- 4(2x-1)+3=0的解为( C )
A.x1=1,x2=3 B.x1=-1,x2=-3 C.x1=1,x2=2 D.x1=0,x2=-1
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 ②(2a-3) =(a-2)(3a-4)
③
2y
2=3y
2 ④x +7x+12=0
⑤t(t+3)=28
2 2 ⑥(4x-3) =(x+3)
(7 ) x ( 3 2 ) x 6 0
2
x 3 x(3 2 x) x(3x 1) (8) 3 2 3
2
小
结:
1.用因式分解法解一元二次方程的步骤: 1o方程右边化为 零 。 2o将方程左边分解成两个一次因式 的乘 积。 3o至少 有一个 因式为零,得到两个一元 一次方程。 4o两个 一元一次方程的解 就是原方程的解 2.解一元二次方程的方法: 直接开平方法 配方法 公式法 因式分解法
挫折的名言 1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅 2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅 3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。 战胜挫折的名言 1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬 2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋 4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德 激励自己的座右铭 1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。 2、 要有梦想,即使遥远。 3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。 4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。 工作座右铭 1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》 2、 反省不是去后悔,是为前进铺路。 3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。 4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。 国学经典名句 1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离) 2、人而无仪,不死何为。 (诗经风相鼠) 3、言者无罪,闻者足戒。 (诗经大序) 4、他山之石,可以攻玉。 (诗经小雅鹤鸣) 5、投我以桃,报之以李。 (诗经大雅抑) 6、天作孽,犹可违,自作孽,不可活。(尚书) 7、满招损,谦受益。 (尚书大禹谟) 青春座右铭 1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。 3、不在打击面前退缩,不在困难面前屈服,不在挫折面前低头,不在失败面前却步。勇敢前进! 4、当你能飞的时候就不要放弃飞。 5、当你能梦的时候就不要放弃梦。 激励向上人生格言 1、实现自己既定的目标,必须能耐得住寂寞单干。 2、世界会向那些有目标和远见的人让路。 3、为了不让生活留下遗憾和后悔,我们应该尽可能抓住一切改变生活的机会。 4、无论你觉得自己多么的不幸,永远有人比你更加不幸。 5、无论你觉得自己多么的了不起,也永远有人比你更强。 6、打击与挫败是成功的踏脚石,而不是绊脚石。 激励自己的名言 1、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 2、销售是从被别人拒绝开始的。 3、好咖啡要和朋友一起品尝,好机会也要和朋友一起分享。 4、生命之灯因热情而点燃,生命之舟因拼搏而前行。 5、拥有梦想只是一种智力,实现梦想才是一种能力。 6、有识有胆,有胆有识,知识与胆量是互相促进的。 7、体育锻炼可以(有时可以迅速)使人乐观(科学实验证明)。 8、勤奋,机会,乐观是成功的三要素。(注意:传统观念认为勤奋和机会是成功的要素,但是经过统计学和成功人士的分析得出,乐观是成功的第三要素) 9、自信是人格的核心。 103x( x 2) 5( x 2) 2 (3)(3x 1) 5 0
(1)3x( x 2) 5( x 2)
解:移项,得 3x( x 2) 5( x 2) 0
( x 2) (3x 5) 0
x+2=0或3x-5=0 5 ∴ x1=-2 , x2= 3
重 点 难 点
重点: 用因式分解法解一元二次方程 难点: 正确理解AB=0〈=〉A=0或B=0 ( A、B表示两个因式)
自 学 检 测 题
1、 什么样的一元二次方程可以 用因式分解法来解? 2、用因式分解法解一元二次方 程,其关键是什么? 3、用因式分解法解一元二次方 程的理论依据是什么? 4、用因式分解法解一元二方程, 必须要先化成一般形式吗?
解题步骤演示
例 (x+3)(x-1)=5 解:原方程可变形为 方程右边化为零 x2+2x-8 =0 (x-2)(x+4)=0 左边分解成两个 一次因式 的乘积 至少有一个一次因式为零 得到两个一元一次方程 x-2=0或 x+4=0 ∴ x1=2 ,x2=-4 两个一元一次方程的解 就是原方程的解
快速回答:下列各方程的根分 别是多少?
(1) x( x 2) 0
x1 0, x2 2
2 1 (3)(3x 2)( 2 x 1) 0 x1 , x2 3 2 2 (4) x x x1 0, x2 1
(2)( y 2)( y 3) 0 y1 2, y2 3
下面的解法正确吗?如果不正确, 错误在哪?
例1、解下列方程 1、x2-3x-10=0
2、(x+3)(x-1)=5
解:原方程可变形为 解:原方程可变形为 (x-5)(x+2)=0 x2+2x-8=0 x-5=0或x+2=0 (x-2)(x+4)=0 x-2=0或x+4=0 ∴ x1=5 ,x2=-2 ∴ x1=2 ,x2=-4
例2、解下列方程
简记歌诀: 右化零 左分解
两因式
各求解
解题框架图
解:原方程可变形为: =0
( 一次因式A )( 一次因式B )=0
一次因式A
=0或 一次因式B =0
∴ x 1= A解 , x 2= A解
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
解方程 ( x 5)( x 2) 18 解: 原方程化为 ( x 5)( x 2) 3 6 由x 5 3,得x 8; 由x 2 6,得x 4. 原方程的解为x1 8或x2 4.
(
)
1.用因式分解法解下列方程:
①(x-5)(x+2)=18
2、(3x+1)2-5=0 解:原方程可变形为
(3x+1+ 5 )(3x+1-
5)=0
=0 5
3x+1+ 5 =0或3x+1-
1 5 1 5 ∴ x1= , x2= 3 3
用因式分解法解一元二次方程的步骤
1o方程右边化为 零 。 2o将方程左边分解成两个 一次因式 的 乘积。 3o至少 有一个 因式为零,得到两个 一元一次方程。 4o两个 一元一次方程的解 就是原方 程的解。
用因式分解法解
一元二次方程
复习引入: 1、已学过的一元二次方程解 法有哪些? 2、请用已学过的方法解方程 2 x - 4=0
2 x -4=0
解:原方程可变形为
(x+2)(x-2)=0 X+2=0 或 x-2=0 ∴ x1=-2 ,x2=2
X2-4= (x+2)(x-2)
AB=0A=0或B=0
教 1、熟练掌握用因式分解法解一 学 元二次方程。 目 2、通过因式分解法解一元二次 标 方程的学习,树立转化的思想。
③
2y
2=3y
2 ④x +7x+12=0
⑤t(t+3)=28
2 2 ⑥(4x-3) =(x+3)
(7 ) x ( 3 2 ) x 6 0
2
x 3 x(3 2 x) x(3x 1) (8) 3 2 3
2
小
结:
1.用因式分解法解一元二次方程的步骤: 1o方程右边化为 零 。 2o将方程左边分解成两个一次因式 的乘 积。 3o至少 有一个 因式为零,得到两个一元 一次方程。 4o两个 一元一次方程的解 就是原方程的解 2.解一元二次方程的方法: 直接开平方法 配方法 公式法 因式分解法
挫折的名言 1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅 2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅 3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。 战胜挫折的名言 1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬 2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋 4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德 激励自己的座右铭 1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。 2、 要有梦想,即使遥远。 3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。 4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。 工作座右铭 1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》 2、 反省不是去后悔,是为前进铺路。 3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。 4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。 国学经典名句 1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离) 2、人而无仪,不死何为。 (诗经风相鼠) 3、言者无罪,闻者足戒。 (诗经大序) 4、他山之石,可以攻玉。 (诗经小雅鹤鸣) 5、投我以桃,报之以李。 (诗经大雅抑) 6、天作孽,犹可违,自作孽,不可活。(尚书) 7、满招损,谦受益。 (尚书大禹谟) 青春座右铭 1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。 3、不在打击面前退缩,不在困难面前屈服,不在挫折面前低头,不在失败面前却步。勇敢前进! 4、当你能飞的时候就不要放弃飞。 5、当你能梦的时候就不要放弃梦。 激励向上人生格言 1、实现自己既定的目标,必须能耐得住寂寞单干。 2、世界会向那些有目标和远见的人让路。 3、为了不让生活留下遗憾和后悔,我们应该尽可能抓住一切改变生活的机会。 4、无论你觉得自己多么的不幸,永远有人比你更加不幸。 5、无论你觉得自己多么的了不起,也永远有人比你更强。 6、打击与挫败是成功的踏脚石,而不是绊脚石。 激励自己的名言 1、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 2、销售是从被别人拒绝开始的。 3、好咖啡要和朋友一起品尝,好机会也要和朋友一起分享。 4、生命之灯因热情而点燃,生命之舟因拼搏而前行。 5、拥有梦想只是一种智力,实现梦想才是一种能力。 6、有识有胆,有胆有识,知识与胆量是互相促进的。 7、体育锻炼可以(有时可以迅速)使人乐观(科学实验证明)。 8、勤奋,机会,乐观是成功的三要素。(注意:传统观念认为勤奋和机会是成功的要素,但是经过统计学和成功人士的分析得出,乐观是成功的第三要素) 9、自信是人格的核心。 103x( x 2) 5( x 2) 2 (3)(3x 1) 5 0
(1)3x( x 2) 5( x 2)
解:移项,得 3x( x 2) 5( x 2) 0
( x 2) (3x 5) 0
x+2=0或3x-5=0 5 ∴ x1=-2 , x2= 3
重 点 难 点
重点: 用因式分解法解一元二次方程 难点: 正确理解AB=0〈=〉A=0或B=0 ( A、B表示两个因式)
自 学 检 测 题
1、 什么样的一元二次方程可以 用因式分解法来解? 2、用因式分解法解一元二次方 程,其关键是什么? 3、用因式分解法解一元二次方 程的理论依据是什么? 4、用因式分解法解一元二方程, 必须要先化成一般形式吗?
解题步骤演示
例 (x+3)(x-1)=5 解:原方程可变形为 方程右边化为零 x2+2x-8 =0 (x-2)(x+4)=0 左边分解成两个 一次因式 的乘积 至少有一个一次因式为零 得到两个一元一次方程 x-2=0或 x+4=0 ∴ x1=2 ,x2=-4 两个一元一次方程的解 就是原方程的解
快速回答:下列各方程的根分 别是多少?
(1) x( x 2) 0
x1 0, x2 2
2 1 (3)(3x 2)( 2 x 1) 0 x1 , x2 3 2 2 (4) x x x1 0, x2 1
(2)( y 2)( y 3) 0 y1 2, y2 3
下面的解法正确吗?如果不正确, 错误在哪?
例1、解下列方程 1、x2-3x-10=0
2、(x+3)(x-1)=5
解:原方程可变形为 解:原方程可变形为 (x-5)(x+2)=0 x2+2x-8=0 x-5=0或x+2=0 (x-2)(x+4)=0 x-2=0或x+4=0 ∴ x1=5 ,x2=-2 ∴ x1=2 ,x2=-4
例2、解下列方程
简记歌诀: 右化零 左分解
两因式
各求解
解题框架图
解:原方程可变形为: =0
( 一次因式A )( 一次因式B )=0
一次因式A
=0或 一次因式B =0
∴ x 1= A解 , x 2= A解
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
解方程 ( x 5)( x 2) 18 解: 原方程化为 ( x 5)( x 2) 3 6 由x 5 3,得x 8; 由x 2 6,得x 4. 原方程的解为x1 8或x2 4.
(
)
1.用因式分解法解下列方程:
①(x-5)(x+2)=18
2、(3x+1)2-5=0 解:原方程可变形为
(3x+1+ 5 )(3x+1-
5)=0
=0 5
3x+1+ 5 =0或3x+1-
1 5 1 5 ∴ x1= , x2= 3 3
用因式分解法解一元二次方程的步骤
1o方程右边化为 零 。 2o将方程左边分解成两个 一次因式 的 乘积。 3o至少 有一个 因式为零,得到两个 一元一次方程。 4o两个 一元一次方程的解 就是原方 程的解。
用因式分解法解
一元二次方程
复习引入: 1、已学过的一元二次方程解 法有哪些? 2、请用已学过的方法解方程 2 x - 4=0
2 x -4=0
解:原方程可变形为
(x+2)(x-2)=0 X+2=0 或 x-2=0 ∴ x1=-2 ,x2=2
X2-4= (x+2)(x-2)
AB=0A=0或B=0
教 1、熟练掌握用因式分解法解一 学 元二次方程。 目 2、通过因式分解法解一元二次 标 方程的学习,树立转化的思想。