空客公司向国航交付首架A350飞机碳纤维复合材料占比高达53%

合集下载

航模3505电机参数

航模3505电机参数

航模3505电机参数全文共四篇示例,供读者参考第一篇示例:航模3505电机是一种常见的直流无刷电机,广泛应用于航模飞行器的动力系统。

它具有高效率、低噪音、稳定性好等特点,因此备受模型飞行爱好者的青睐。

下面我们将详细介绍航模3505电机的参数及其性能特点。

首先,我们来看一下航模3505电机的基本参数。

该电机的直径为35mm,长度为05mm,轴径为3mm,重量约为50克。

工作电压范围为2-4S锂电池,推荐使用3S电池,额定电压为11.1V。

电机的空载转速约为1500-12000转/分钟,最大功率可达150W,最大电流为15A,电机内阻为0.11Ω。

航模3505电机的性能特点主要包括以下几个方面:1.高效率:航模3505电机采用无刷电机设计,具有高效率和低能耗的特点。

在相同功率下,比传统有刷电机更省电,运行更稳定。

2.低噪音:由于航模3505电机采用了无刷电机技术,相对于有刷电机来说噪音更低,工作时几乎没有嗡嗡声,能够更好地保护用户的听力。

3.稳定性好:航模3505电机采用了高品质的材料和先进的生产工艺,具有出色的稳定性和耐用性。

在长时间高速运转也不易受损,寿命较长。

4.适配性强:电机的设计尺寸紧凑,重量轻,适用于多种航模飞行器,如固定翼飞机、直升机、四旋翼等,灵活方便。

5.易安装:航模3505电机安装简便,只需将电机与飞行控制器连接,加装适当的电调和螺旋桨即可投入使用。

对于初学者和DIY爱好者来说,是一个理想的选择。

总的来说,航模3505电机作为一种高性能、多功能的直流无刷电机,适用于各种模型飞行器的动力系统,具有较好的可靠性和稳定性,是模型飞行爱好者的首选之一。

希望以上介绍能够帮助大家更深入了解航模3505电机的参数及性能特点,选择适合自己的电机,享受飞行的乐趣。

第二篇示例:【航模3505电机参数】航模3505电机是一款性能稳定、品质可靠的无刷直流电机,广泛用于遥控模型飞机、无人机和车辆等领域。

本文将详细介绍航模3505电机的参数及特点。

世界上最大的飞机能坐多少人?

世界上最大的飞机能坐多少人?

世界上最⼤的飞机能坐多少⼈?中国最⼤的飞机:A350宽体系列飞机远程双发宽体系列飞机,载客⼈数为250⼈⾄375⼈,可根据需要灵活调节客舱布局。

1985年6⽉,空客第⼀架A310-200飞机进⼊中国市场。

10年间,空客在中国⼤陆的现役飞机数量增长了10倍,⽬前它在中国⼤陆的现役飞机总数超过了300架。

世界最⼤的飞机——安225。

该机机⾝长84⽶,翼展88.4⽶,⾼18.2⽶,相当于5层楼⾼,最⼤载重量250吨,最⼤起飞重量620吨,可⼀次搭载16个集装箱或80辆轿车,也可在机舱外背负⼀座长70⽶、直径10⽶的精馏塔或⼀架“暴风⾬”号航天飞机。

前苏联在上世纪60年代制造的迄今为⽌最⼤的直升飞机Mil V-12,是⼀架不寻常的测试直升机,两翼分别带有⼀个螺旋桨,每个直径达到35m,当它们旋转起来,螺旋桨可触碰的死亡地带长达67m,这个宽度超过了波⾳747。

它的最⼤起飞重量达到105吨!是个不折不扣的怪物。

它的各项超级参数都被写进了国际航空协会的记录和吉尼斯世界纪录的书中。

世界上只⽣产过2架V-12,因为它的⾝躯过于庞⼤,机动性很差,且操作不便,所以没有量产。

⽬前,这两架的其中⼀架陈列在俄罗斯的Monino航空博物馆,另⼀架据说停在莫斯科的Mil⼯⼚内。

A380是⽬前世界上最⼤的客机。

A380分为客机和货机两种,A380-800为双层客机,可载555⼈及持续飞⾏14800公⾥;⽽A380-800F则为货机,可载150吨货物及持续飞⾏10400公⾥。

空客A380全长78⽶,是A320的两倍,翼展总长为80⽶,总重量为583吨。

它有两种机型,⼩型的有效载荷为85吨,可搭载555⼈,⼤型的有效载荷为95吨,可搭载625⼈。

A380机舱⽐通常客机宽43%,乘客活动空间增加48%。

A380客机还可以从基线机型衍⽣出加长型、缩短型和延程型机型,最多可载客1000多⼈。

中国最⼤的飞机:A350宽体系列飞机远程双发宽体系列飞机,载客⼈数为250⼈⾄375⼈,可根据需要灵活调节客舱布局。

Ameco为国航首架A350全力保驾护航

Ameco为国航首架A350全力保驾护航

Ameco为国航首架A350全力保驾护航作者:姚冉雒莎来源:《航空维修与工程》2018年第08期8月9日5时30分,国航首架空中客车A3 50-900飞机抵达首都国际机场,标志着国航成为中国大陆首家运营空客A350系列飞机的航空公司。

北京飞机维修工程有限公司( Ameco)作为国航机队的维护运行保障单位,肩负着国航空客A350机队维护运行的重任。

为了确保国航第一架空客A3 50-900飞机安全、可靠和高效地投入运营,自2016年7月起,Ameco启动空客A350-900飞机引进维护和运行保障工作。

历经25个月的充分准备,Ameco已全面建成空客A3 50-900飞机维护能力。

精心布局全新维护方案2016 2018年,为引进国航空客A350飞机,确保新飞机顺利投入运行,Ameco成立了以首席运营官(航线业务)为组长的领导小组、运行管理部总经理为组长的工作小组,国航选型办公室、电子化运行办公室,Ameco华北航线中心、西南航线中心、上海分公司、运行管理部、工程部、航空安全与质量管理部、航材与采购部、航空技术培训部各司其职,共同配合,与国航各部门一起,推进空客A350新飞机的运行准备工作。

为此,Ameco制定了详细的工作计划,内容涵盖飞机引进、保障能力、工程管理、电子化运行、航材、培训、生产组织协调7个领域,各部门扎实细致地协调配合,从“人、机、料、法、环”各方面做好准备工作,为首架空客A350飞机的顺利引进奠定了坚实的基础。

在保障能力方面,Ameco已完成深圳、昆明、三亚、海口、石家庄、鄂尔多斯等国内外站的维修协议签署,米兰、法兰克福、巴黎、伦敦、慕尼黑等国际外站协议正在签署中。

驻外机务代表培训、外站其他维修资源准备都将按照国航商委确定的航班运行机构进行有针对性的准备。

在培训方面,Ameco组织完成了四期共计49人次的空客A350原厂机型培训以及9人次的发动机试车原厂课程培训。

目前,Ameco航空技术培训部已开展两期48人次空客A350机型国内培训。

联想手机A350使用说明书

联想手机A350使用说明书

欢迎您使用联想产品。

在第一次安装和使用本产品之前,请您务必仔细阅读随机配送的所有资料,这会有助于您更好地使用本产品。

如果您未按本手册的说明及要求操作本产品,或因错误理解等原因误操作本产品,联想移动通信科技有限公司将不对由此而导致的任何损失承担责任,但联想专业维修人员错误安装或操作过程中引起的损失除外。

联想移动通信科技有限公司已经对本手册进行了严格仔细的校勘和核对,但我们不能保证本手册完全没有任何错误和疏漏。

联想移动通信科技有限公司致力于不断改进产品功能、提高服务质量,因此保留对本手册中所描述的任何产品和软件程序以及本手册的内容进行更改而不预先另行通知的权利。

本手册的用途在于帮助您正确地使用联想产品,并不代表对本产品的软硬件配置的任何说明。

有关产品配置情况,请查阅与本产品相关合约(若有),或咨询向您出售产品的销售商。

本手册中的图片仅供参考,如果有个别图片与产品实物不符,请以产品实物为准。

本手册中介绍的许多网络功能是由网络服务商提供的特殊服务,能否使用这些网络功能取决于给您提供服务的网络服务商。

本手册内容受著作权法律法规保护,未经联想移动通信科技有限公司事先书面授权,您不得以任何方式复制、抄录本手册,或将本手册以任何形式在任何有线或无线网络中进行传输,或将本手册翻译成任何文字。

“联想”和“lenovo”是联想(北京)有限公司所有并授权联想移动通信科技有限公司使用的注册商标或商标。

本手册内所述的其他名称与产品可能是联想或其他公司的注册商标或商标。

如果您在使用过程中发现本产品的实际情况与本手册有不一致之处,或您想得到最新的信息,或您有任何问题或想法,请垂询或登陆:售前咨询电话:800-810-8888阳光服务电话:400-818-8818联想移动网站:目录第1章安全和维护---------------------------------------------------------------------6第2章使用前---------------------------------------------------------------------------9 2.1各部分的名称和说明 (9)2.2电池 (10)2.2.1 电池的拆卸和安装 (10)2.2.2 电池的充电 (11)2.3连接网络 (12)2.3.1 SIM卡 (12)2.3.2 SIM卡的插入和取出 (12)2.3.3 存储卡的插入和取出 (13)2.3.4 开关手机 (13)2.3.5 手机解锁 (14)2.3.6 SIM卡解锁 (14)2.3.7 连接到网络 (15)第3章快速使用指南----------------------------------------------------------------16 3.1特色功能 (16)3.2拨打电话 (17)3.2.1 拨打国内电话 (18)3.2.2 拨打固定电话分机 (18)3.2.3 拨打国际电话 (18)3.2.4 拨打列表中电话 (19)3.3紧急呼叫 (19)3.4接听电话 (19)3.5结束通话 (20)3.6通话选项 (20)第4章功能菜单----------------------------------------------------------------------22 4.1功能菜单结构 (22)4.2联想空间 (24)4.3通话中心 (24)4.3.1 未接电话 (24)4.3.2 已拨电话 (25)4.3.3 已接电话 (25)4.3.6 通话计费 (25)4.3.7 短信计数器 (26)4.3.8 GPRS流量 (26)4.3.9 一般通话设置 (26)4.4互联网 (28)4.4.1 STK* (28)4.4.2 WAP (28)4.4.3 帐号资料 (31)4.5我的文档 (31)4.6信息服务 (33)4.6.1 短信息 (33)4.6.2 彩信 (36)4.6.3 聊天室 (41)4.6.4 语音信箱 (41)4.6.5 小区广播 (41)4.7手机设置 (42)4.7.1 触屏校准 (42)4.7.2 系统设置 (42)4.7.3 网络设置 (44)4.7.4 安全设置 (45)4.7.5 恢复出厂设置 (47)4.8情景模式 (47)4.9电话簿 (48)4.10双卡设置 (50)4.11娱乐多媒体 (50)4.11.1 音乐播放器 (50)4.11.2 照相机 (51)4.11.3 相册 (52)4.11.4 摄像机 (52)4.11.5 视频播放器 (53)4.11.6 录音 (53)4.11.7 收音机 (54)4.12游戏 (55)4.12.1 游戏 (55)4.12.2 移动股市 (56)4.13工具 (56)4.13.1 蓝牙 (56)4.13.2 电子书 (57)4.13.3 闹钟 (58)4.13.4 日历 (58)4.13.5 日程表 (59)4.13.6 计算器 (59)4.13.7 世界时间 (60)4.13.8 秒表 (60)4.13.9 联想手机服务 (60)4.13.10 语音识别帮助菜单 (60)第5章输入法-------------------------------------------------------------------------61 5.1概述 (61)5.2键盘定义 (61)5.3输入法说明 (61)5.3.1 智能拼音输入法 (61)5.3.2 笔画输入法 (62)5.3.3 英文输入法 (63)5.3.4 数字输入法 (64)5.3.5 手写输入法 (65)第6章常见问题----------------------------------------------------------------------66第7章名词解释----------------------------------------------------------------------68第8章技术参数----------------------------------------------------------------------70第1章安全和维护使用手机时,请遵循以下注意事项。

法国航空A350空中客机介绍

法国航空A350空中客机介绍

法国航空A350空中客机介绍法国航空A350空中客机(Airbus A350)A350是欧洲空中客车工业公司正在研制中的双发远程宽体客机,尚未正式投入生产和运营。

A350是在空客A330的基础上进行改进的,主要是为了增加航程和降低运营成本,同时也是为了与全新设计的。

[1]功能配置350的基本技术参数:翼展:61.1米机长: 59.0米高度:17.02米最大起飞总重:245000千克最大载油量:139100升动力装置:两台GEnx 或Trent 1700型涡扇发动机巡航速度:0.86马赫货舱容积:19.7立方米载客量:253客舱布局:最大航程:16300公里产品特色空客A350XWB宽体飞机系列是空客全新中远程飞机系列,由三款(A350-800、A350-900和A350-1000)尺寸不同的客机机型组成,在典型三级客舱布局下,载客量介于270人至350人之间,可以让航空公司进一步丰富航线网络并为其带来可观收益。

A350XWB宽体飞机为中型宽体飞机市场带来了新的燃油效率标准,与现有同级别飞机相比,A350XWB宽体飞机的燃油效率提高25%,排放减少25%。

截至5月底,A350XWB宽体飞机已经获得33家客户的613架确认订单。

发展历史A350项目发起2004年4月,空中客车公司的竞争对手波音宣布启动全新的双发远程客机B7E7项目(现称为B787),B787的各项指标直接超越了空客330系列,空客最初从安全角度考虑,认为四台发动机的远程飞机更有市场,对787计划不予回应。

随着B787获得到全球客户的青龙,订单数不断上升,空客决定改变初衷,针对B787开发对应竞争机型,在成功的A330基础上采用新发动机,重新设计机翼,开发改进型的A330同B787项目竞争,并对新机型命名为A350。

旧设计(A350)2006年5月之前,计划中的A350为一款衍生自A330设计的250-300座位双引擎广体客机,此计划早在2004年12月已被外界提及。

空客飞机的参数

空客飞机的参数

空中客车公司中客车公司(Airbus,又称空中巴士),是欧洲一家飞机制造公司,1970年于法国成立。

其创立的公司来自国家包括有德国、法国、西班牙与英国。

空中客车公司由欧洲两个最大的军火供应制造商欧洲航空防务航天公司(80%股份)和英宇航系统公司(20%股份)共同拥有。

主要机型有:A300、A310、A318、A319、A320、A321、A330、A340、A350、A3801、A300空中客车A300是欧洲空中客车工业公司(Airbus Industries)设计生产的一种中短程宽体客机,空中客车A310和空中客车A300-600构成了空客非常著名的宽体姊妹系列,在共通性、经济性和可靠性方面为运营商提供了一个无可匹敌的完美组合。

性能数据总长度:54,10m高度:16,54m翼展:44,84m机身直径:5.64m客舱长度:40,70m客舱最大宽度:5,28m典型两级座舱布局:266人全经济布局载客:298人货舱容积:1520立方米巡航速度:0.82马赫经济巡航速度[KM/小时]:875经济巡航高度[M]:94502、A310空中客车A310是欧洲空中客车工业公司为与波音767竞争在空中客车A300基础上研制的200座级中短程双通道宽体客机。

机身缩短,设计了新的机翼,采用双人机组。

典型两级座舱布局,标准载客量220人。

1978年7月开始研制,1982年4月3日首架原型机首飞。

1983年3月11目获得法国和德国两国型号合格证,1983年3月29日开始交付使用。

A300和A310之间有良好的互操作性。

A310是空中客车发展的开始。

A300和A310的市场表现保证了空中客车公司与波音公司的主要竞争对手地位,A310有为德国空军改造的军用运输改型。

至停产时一共生产了260架。

性能数据A310-300翼展:43.89米机长:46.66米典型两级座舱布局:220人空机重:80.8吨最大商载:26.7吨最大起飞总重:150吨最大燃油量:61070升最大可用燃油(标准):49.8吨动力装置:两台涡扇发动机可选发动机型号:通用电气公司CF6-80系列CF6-80C2A2普拉特-惠特尼公司4000系列PW4152或PW4156A3、A318A318是百座级客机,是空中客车A320家族里面最小的成员,也叫“迷你空中巴士”,在开发阶段时使用代号是“A319M5”,A318其实是由空中客车A319直接衍生出来的,是A319缩短型。

空中客车A350_创新技术打造的全新双发远程飞机

空中客车A350_创新技术打造的全新双发远程飞机

2005 年 10 月 6 日在全球正式发起。目 重量为 245 吨,航程为 13900 千米。
A350 飞 机 继 续 保 持 了 空 客 系 列
前,A350 飞机已经获得了全球 的 同 时 ,使 性 能 获 得
户 164 架飞机订单。
飞机性能全面提升
了全方位的提升。
环境。
新型遄达 1700 发动机。燃油消耗比现在
使用的发动机低 15%。与竞争机型相比, 面向未来的驾驶舱
创新、灵活的机组休息舱
A350 的运营成本更低,可以为航空公司
空中客车 A350 飞机的驾驶舱与空
A350 还创新性地设计了飞行员和
带来更大的收益。
中客车其他机型相比,已经实现了充分 乘务人员休息舱。乘务人员休息舱设在
根据计划,A350 飞机将在 2006 年
空 中 客 车 A350 是 一 款 全 新 的 飞
! 重量更轻
初完成设计,2009 年下半年完成首飞。 机,它采用的先进材料占到整体结构的
A350 飞机引进了许多新技术和材
A350-800 飞 机 于 2010 年 上 半 年 投 入 60%,其中,铝锂合金占 21%,复合材料 料,如新 一 代 复 合 材 料 尾 翼 、新 一 代 钛
运营,A350-900 飞机于 2010 年下半年 占 39%。另外,钢材占 14%,铝 合 金 占 合金挂架、复合材料中央翼盒以及铝锂
投入运营。
11%,钛 合 金 9%,其 他 材 料 占 6%。 此 合金地板横梁等等,使得 A350 飞机的
外 ,A350 飞 机 还 拥 有 全 新 的 现 代 化 客 重量减轻了 8 吨。
以 装 载 6 个 货 盘 、8 个 LD3 集 装 箱 和 的创新技术,同时引进了大量的创新技 横向驾驶舱舷窗;对发动机和机翼的交

Aircraft Description Document Standard Practiceof Engine

Aircraft Description Document Standard Practiceof Engine

70 Standard Practices - Engines70-00 GeneralFor the definition of interchangeability, please refer to Chapter 20.To promote good design practice and reduced maintenance burden, whenpossible all components should be designed such that they cannot be fittedincorrectly.70-01 InterchangeabilityThe following components are interchangeable:•Removable power plant assembly•Nose cowl•Fan cowl doors•Thrust reverser cowls•Exhaust nozzle assembly•Access doors/panels.71 Power plantThe A350 XWB is a Family of twin engine aircraft.A high level of integration between powerplant systems and aircraft has beenachieved to ensure optimum performance.71-00 GeneralThe aircraft has two main power plants, one installed under each wing on apylon.Each power plant can be lowered for removal from its pylon.The A350 XWB is offered with the Rolls Royce Trent XWB engines.The A350 XWB power plant comprises:•the engine turbo-machinery and controls•engine accessories (Engine Build-up Unit (EBU))•the nacelle (air intake, fan cowls, thrust reverser, exhaust system andaccessories).Power plant boroscope inspections can be performed without removal ofmajor components.Each engine is controlled by one Full Authority Digital Engine Control(FADEC).7171-10 NacelleThe nacelle comprises the following assemblies:•air intake•fan cowling•thrust reverser; please refer to Section 78-31•exhaust system; please refer to Section 78-20.Air intakeThe air intake incorporates the latest generation technologies for drag andacoustic reduction. The laminar flow contouring provides improved perfor-mance, and the reduced acoustics levels are achieved by a 360 degreesacoustic liner.Fan cowlsThe fan cowls are designed for maintainability: a power door opening systemis available to assist in opening the cowls. The cowls have access doors forfan case-mounted components to minimize servicing and maintenance tasktime.7272 Engine72-00 GeneralGeneralThe aircraft will be equipped with two high-bypass Rolls Royce Trent XWB engines. Thrust ratingsA summary of the engine thrust ratings is shown below, (max takeoff, sea level static, ISA+15°C levels):Thrust ratings for A350-800Two additional thrust ratings are offered for hot and high operations and/or increased Maximum T akeoff Weight (MTOW); please refer to Section 03-20.These thrust ratings are:•79,000lbf flat rated nominal thrust at ISA+15°C •79,000lbf flat rated nominal thrust at ISA+21.6°C.The A350 XWB is equipped with two Rolls-Royce Trent XWB engines.This engine will incorporate the most advanced technologies to provide the best aircraft performance, maintainability, and low environmental impact.Model Engine type Nominal thrust A350-800Trent XWB-7575,000lbf A350-900Trent XWB-8484,000lbf A350-1000Trent XWB-9393,000lbfOptionModel Supplier Status Weight (kg)MWE/OWE/APLPrice (US $)Trent XWB-7979,000lbf flat rated nominal thrust at ISA+15°CA350-800Rolls RoyceSFETBDTBDTrent XWB-79B79,000lbf flat rated nomina l thrust at ISA+21.6°CA350-800Rolls Royce SFE TBD TBD72GeneralTrent XWB engine product strategy provides a single engine type for all A350XWB variants.The initial engine configuration will be optimized around the 75,000 to 84,000lbf thrust requirement of the A350-800 & A350-900.Technology insertion and fan optimization will be performed to meet the93,000 lbf thrust requirement of the A350-1000.Rolls Royce Trent XWB architectureFanLo w noise, lo w h ub-tipratio, s w ept titani u m fanHigh press u re shaft po w er offtake Pne u matic ca b in b leed system Fan case mo u ntedCombustorOptimized emissionlo w ering com bu stortechnologyTurbineLatest materialsand man u fact u ringtechnologiesCompressorLatest aero standardsand materials, incl u dingb lisk technology73 73 Engine Fuel and Control73-00 GeneralThe entire engine fuel distribution system downstream of the engine inlet con-nection is integral with the engine and is supplied by the engine manufacturer.73-20 ControllingEach engine is provided with one Full Authority Digital Engine Control(FADEC) to provide command and monitor functions for:•gas generator control•engine limit protection•power management•ignition control•cockpit indications and warnings•manual and automatic engine starting•oil and fuel heat management•engine condition parameter acquisition (partially).Each FADEC interfaces electrically with the sensors of the correspondingengine. The FADEC receives signals from the appropriate throttle controllever and other selected aircraft data sources and transmits engine data tothe cockpit.Each FADEC incorporates Built-in Test Equipment (BITE) functions to identifyfaults. The BITE information are transmitted to the aircraft Onboard Mainte-nance System (OMS).Each FADEC incorporates fault identification, isolation and accommodationlogics which permits the FADEC to continue engine control and power man-agement with no loss in performance or operational capability for any singlemalfunction.The FADEC provides maximum thrust corresponding to takeoff and Go-Around ratings for a fully forward position of the throttle control levers. Thereare discrete throttle control lever positions for maximum continuous, maxi-mum climb, and idle thrust.The use of reduced thrust for take-off is possible. Assumed temperature forFlexible T akeOff is selected from the cockpit.73The FADEC provides command and limit signals of engine thrust controlparameter to drive the power management indications. These signals are fedto the flight management system for use by the autothrust function.A de-rated takeoff facility and a de-rated climb facility are provided. For both,selection and de-selection are made from the cockpit.Each FADEC has a software downloading capability from the cockpit.Engine controlThe Trent XWB engine incorporates the latest health monitoring system gen-eration, to provide operators with an advanced diagnostic capability to mini-mize unscheduled maintenance. Flexibility of the health monitoring systemwill allow a continuous enhancement of its capability during the whole aircraftlife.73-31 Fuel flow indicatingIndication of fuel flow rate and fuel used is provided for each engine.74 Ignition74-00 GeneralEach engine is equipped with a dual ignition system.The engine ignition system is used for ground and in-flight starting and forcontinuous operation as required. Ignition control for both functions isachieved via the Full Authority Digital Engine Control (FADEC) system.74-30 SwitchingIgnition control for each engine is integrated with the starter and engine con-trol to allow automatic sequencing.In order to maximize igniter’s life, the system alternates igniters between suc-cessive engine ground starts.Each engine is equipped with an automatic flame-out protection.75 Air75-00 GeneralThe engine air system is part of the engine and is supplied by the enginemanufacturer.75-20 CoolingA nacelle cooling and ventilating system automatically provides the airflowrequired for cooling engine and nacelle accessories and associated structure.76 Engine Controls76-10 Power controlForward thrust of each engine is controlled by a throttle control lever mountedon the center pedestal in the cockpit.Thrust reverser control is by means of a separate lever for each engine.In the event of inadvertent movement of the thrust reverser the affectedengine automatically returns to idle power.76-12 Engine master controlEngine fuel shutoff, providing rapid shut down of the engines by the simulta-neous closure of the LP and HP valves, is controlled by switches (one perengine) installed on the center pedestal.Should a fire warning occur the appropriate switch will be identified by anearby warning light.76-20 Emergency shutdownActuation of the fire controls closes the associated LP valves.77 Engine Indicating77-00 GeneralIndications for each engine are displayed on the Control and Display System(CDS) as follows.Permanent indications are:•target and actual Airbus Cockpit Universal Thrust parameter•relevant shaft speed•turbine gas temperature.Indications displayed automatically or on manual selection are:•other shaft speeds•fuel flow and fuel used•oil temperature•oil pressure•oil quantity•vibration levels (all rotors)•nacelle temperature•starter air valve position and ignitors (during start only).Warnings are provided for the following:•exceeding engine limits•propulsion system malfunction•dispatch criteria.The thrust limit modes, including the assumed temperature for flexible take-off, are displayed in the cockpit.78 ExhaustThe A350 XWB features the latest electrical Thrust Reverser Actuation Sys-tem (TRAS).The exhaust system is designed to optimize aerodynamics and acoustic per-formance.78-20 Exhaust systemThe exhaust system consists of a primary nozzle and a centerbody plug.They are fabricated mainly from titanium, with weight reduction scalloping onthe forward edge of the centerbody plug.78-30 Thrust reverserThe engine thrust reverser consists primarily of a lightweight inner fixed struc-ture providing optimized aerodynamics and acoustic performance, and anouter translating sleeve.The translating sleeve assembly forms the aerodynamic surface (fan ductouter wall), from the fan case exit to the fan nozzle exit. It also forms theexternal aerodynamic surface from the fan cowls to the fan nozzle exit.The thrust reversers are of the cascade type. The fan exhaust stream isreversed by the cascades and blocker doors, which form part of the translat-ing sleeve actuated by an electrical Thrust Reverser Actuation System(TRAS).A Power Door Opening System is used to assist thrust reverser cowl opening.The thrust reverser latching system is designed so that the remote latchesclose only when the hooks are engaged.7878-31 Thrust reverser control and indicatingThrust reverser actuation is monitored and controlled by the Propulsion Con-trol System (PCS) following thrust reverser lever control command. The FullAuthority Digital Engine Control (FADEC) limits application of thrust toapproximately idle until the reverser is in the reverse thrust position.Means are provided to prevent the application of reverse thrust in flight.Means are provided to latch and secure a thrust reverser in the stowed posi-tion.Indication in the cockpit is provided when the thrust reversers are inhibited.78-35 Thrust reverser opening mechanismMeans are provided to permit actuation of the thrust reversers without engineoperation, for maintenance purposes.Means are provided to power the TRAS from outside the cockpit in order todeploy the thrust reverser for ground maintenance operations, in securedconditions.79 79 Oil79-00 GeneralThe propulsion system has an independent integral oil system that is able toprovide the appropriate quantity of oil, at the temperature necessary for con-tinuous propulsion system operation, for all achievable conditions within thepropulsion system operating envelope.A common lubricating oil type is approved for the engine, starter, electricalgenerator and the Auxiliary Power Unit (APU).Means are provided for gravity filling.It is possible to visually check, and replenish the engine oil level without open-ing the fan cowl door.Magnetic chip detectors are installed in the lubrication system.。

带你参观国航A350新飞机

带你参观国航A350新飞机

带你参观国航A350新飞机今天凌晨5时55分,⼀架全新的空客A350客机在北京⾸都国际机场缓缓降落。

这是中国国际航空股份有限公司(以下简称“国航”)引进的⾸架空客A350飞机抵京的场⾯,国航也因此成为中国⼤陆⾸家运营该系列机型的航空公司。

8⽉14⽇,这架飞机将⾸航北京-上海航线。

作为接机组成员,环环成为了国航A350客机的第⼀批搭乘者。

据环环了解,A350系列飞机是世界上最先进、最⾼效的宽体飞机。

这次国航引进的A350-900型飞机,标准航程可以达到15000公⾥,远程飞⾏性能⼗分突出。

另外,它的很多设计细节也⼗分⼈性化。

听了这些,是不是更好奇了?A350飞机机舱内部什么样?飞⾏体验好不好?且听环环慢慢道来。

等了近8年⾸先,容环环卖个关⼦。

早在2010年11⽉18⽇,国航就斥资25.3亿美元,豪⽓购⼊10架空客A350飞机。

可问题来了,为什么要等8年才能喜提飞机,难道造⼀架飞机要⽤8年?环环先给⼤家看⼀张资料图。

原来,作为飞机制造业两⼤巨头之⼀,空客公司⼿⾥的订单太多啦!截⽌到2018年7⽉,飞机订单数量共有18807架之多,⽬前已经交付7464架,仍有11343架在排队等待总装。

所以说,这8年我们都在排队!好饭不怕晚。

据环环了解,⼀架A350飞机从开始总装到试飞到交付使⽤,⼤概需要4个⽉时间。

这⼀次,环环还作为接机组媒体成员,参观了空客A350总装线。

作为航空领域的“⼩⽩”,环环⼀直以为飞机卖的是成品……参加了这次活动才知道,买飞机和买汽车⼀个道理,空客就是5S店,选了机型,⾥⾯的布局、配置随便你挑。

国航A350飞机这次选⽤的,是三级客舱布局——公务舱32个、超级经济舱24个、经济舱256个座位。

铺垫完毕,最惊喜的时刻来啦,环环要为⼤家揭晓A350的⾥⾯究竟是什么样⼦啦!客舱什么样交付当天⼀⼤早,天还没完全亮,环环就从酒店出发,乘⼤巴车前往位于法国第四⼤城市图卢兹的空客交付中⼼。

是滴,不要怀疑。

富士 FinePix A345 A350数码相机 说明书

富士 FinePix A345 A350数码相机 说明书

1234
56
准备工作
相机使用方法
高级功能
软件安装
设置
查看图像
FinePix A345/FinePix A350。

用户手册
富士数码相机
富士数码相机
模式切换开关
拍摄模式(15页)
电影模式(45页)
回放模式(21页)三脚架安装孔
010-0009单幅画面
删除 OK?
执行取消
N
21
AF 框
AF 框
取景器
12 N
N
21
N
21
变焦指示条
取消移动
取消
“”
ƧƑƔ
Ƒƒ
N
21
裁剪
变焦指示条
移动
执行取消裁剪
执行取消
将显示关于本软件的用户许可协议。

仔细阅读该协议,如果同意协议的条款,点击[同意]按钮。

”。

系统公司出品的Acrobat Reader软件。

如果您已经安装了该
安装完成”的信息对话框。

单击退出按钮并关闭。

安装程序的用户账户,可在系统参数的账户对话框中确认该用户账户。

出现“协议”对话框。

仔细阅读该协议,如果同意协议的条款,点击[同意]按钮。

Windows Macintosh
可移动磁盘未标盘
1出现“现在可安全移去相机”信息时,请点击[确
定]按钮,断开相机连接。

的软件FinePixViewer>
删除驱动程序>。

深扒空客A350,带你认识不一样的大型远程宽体客机

深扒空客A350,带你认识不一样的大型远程宽体客机

深扒空客A350,带你认识不一样的大型远程宽体客机今天,小编带你认识不一样的A350。

8月9日,中国国际航空股份有限公司首架空客A350系列飞机抵京。

经过近10个小时的飞行之后,内陆第一架A350已经于8月9日凌晨5时25分成功降落在北京首都国际机场。

这架属于中国国航的飞机在经过短暂的休整之后将会于8月14日首航京沪航线,国航也因此成为该机型在内陆的第一个运营商。

考虑远程航线飞行运力准备要求,前三架A350飞机将主要投放到北京-成都、北京-上海、北京-广州等国内干线上。

10月底,国航第四架A350交付后,将开始执飞国际航线,首条航线为北京-米兰。

12月开始执飞上海-法兰克福航线,2019年1月开始执飞上海-米兰航线。

A350是欧洲航空工业巨头空中客车集团斥巨资打造的一款大型远程宽体客机,是未来参与远程航线竞争的主力产品。

空中客车A350XWB系列飞机包括3种不同机型,分别是A350-800, A350-900和A350-1000。

无论哪一种机型的A350XWB飞机,其航程都可覆盖全球各个角落。

在典型三级客舱布局下,A350-800飞机可以搭载276名乘客,A350-900和A350-1000则分别可搭载315和369名乘客。

首架空客A350-1000,2016年在法国图卢兹开始总装。

A350-1000是空客最新一代远程宽体飞机A350XWB系列的最大家族成员。

A350-1000的机身长度接近74米,是目前空客在产全新宽体飞机家族(A330、A350XWB和A380)中机身最长的。

A350-1000采用由罗伊斯公司生产的遄达XWB-97发动机,该发动机是迄今为止空客飞机采用过的动力最为强劲的一款发动机。

A350-1000在典型三级客舱布局下可非常舒适地搭载366名乘客,航程达8000海里,空客共获得10家客户的181架A350-1000订单。

A350的制造掠影。

机身的制造:除了机头部分采用金属材料,大部分机身结构采用树脂基复合材料。

BackBeat FIT 350系列耳机使用说明书

BackBeat FIT 350系列耳机使用说明书

BackBeat FIT 350-Serie BedienungsanleitungInhaltHeadset-Überblick3Sicherheit geht vor!3App installieren4Paaren5Paarung5Paarungsmodus5Laden und Anpassen6Laden6Schnellladefunktion6Anpassung6Tragen des Headsets7Grundlagen8Ein- oder ausschalten8Lautstärke einstellen8Musik und mehr8Erneut verbinden8Annehmen und Beenden von Anrufen8Wahlwiederholung8Headset stummschalten8Merkmale des Headsets9Sprachassistent9Anrufe von einem zweiten Gerät annehmen9Sprachansagen9DeepSleep-Modus9Support10Anschluss für das Ladegerät Lautstärke Ausschalten Lauter Titel vor Stummschalten Wiedergabe/Pause Siri, Google Now ™Sprachassistent Bluetooth ®-Paarung Anruf annehmen oder beenden Leiser Titel zurück Bitte lesen Sie die Sicherheitsbestimmungen mit wichtigen Informationen zu Sicherheit,Aufladung, Akku und gesetzlichen Bestimmungen, bevor Sie das Headset in Betrieb nehmen.Headset-ÜberblickSicherheit geht vor!App installierenSchöpfen Sie das Potenzial Ihres Headsets mit unserer kostenlosen App BackBeat für iOS/Android™ voll aus.Mit dieser App haben Sie die folgenden Möglichkeiten:•Funktionen ein-/ausschalten•Find MyHeadset•Anzeigen des BenutzerhandbuchsFür eine optimale Nutzung sollten Sie die BackBeat-App auf allen Geräten installieren, die mitdem Headset gepaart sind.Beim erstmaligen Einschalten Ihres Headset wird der Paarungsprozess eingeleitet.1Schalten Sie das Headset ein, indem Sie die Mitteltaste drücken, bis Sie …Pairing“ (Paaren) hörenund die LED 2® und suchen Sie darüber nach neuen Geräten.•iPhone > Einstellungen > Bluetooth > Ein*•Android > Einstellungen > Bluetooth > Ein > Scan*HINWEIS *Menü kann je nach Gerät unterschiedlich aufgebaut sein.3Wählen Sie …PLT BBFIT350-Serie “.Geben Sie wenn nötig viermal die Null (0000) als Passkey ein oder akzeptieren Sie die Verbindung.Nach erfolgreicher Paarung hören Sie …Pairing successful“ (Paarung erfolgreich) und die Leuchtanzeige hört auf zu blinken.Sie können Ihr Headset auf zwei Arten in den Paarungsmodus versetzen. Folgende Möglichkeitenstehen zur Auswahl:•Halten Sie bei eingeschaltetem Headset die Tasten für die Lautstärkeregelung (+) bzw. (-) gedrückt,bis Sie …Paarung“ hören.•Halten Sie bei ausgeschaltetem Headset die Mitteltaste gedrückt, bis Sie …Paarung“ hören.HINWEIS Sie können bis zu 2 Geräte mit Ihrem Headset paaren.PaarenPaarungPaarungsmodusDie Klappe über dem Ladeanschluss befindet sich auf der linken Seite der Inline-Steuerung.Öffnen Sie sie mit Ihrem Fingernagel. Laden Sie für optimale Leistung Ihren Akku vor der Nutzung vollständig auf.Es dauert bis zu 2 Stunden, bis die Kopfhörer bei vollständig entladenem Akku komplett geladen sind. Beim Laden ist die Leuchtanzeige rot. Wenn der Ladevorgang abgeschlossen ist, schaltet sich die Leuchtanzeige den Sie Ihr Headset 15 Minuten lang auf und genießen Sie eine volle Stunde Musik.Für eine optimale Klangqualität ist ein guter Sitz im Gehörgang wichtig. Probieren Sie die dreiOhrstöpsel in unterschiedlichen Größen an, um herauszufinden, welche Ihnen am besten passen.Eventuell sind auch unterschiedlich große Ohrstöpsel für jedes Ohr für Sie optimal. Die Kerbe aufdem rechten Ohrstöpsel ist größer als die auf dem linken.1Testen Stecken Sie die Ohrhörer in die Ohren und stellen Sie sicher, dass der Stabilisierungsbügelsicher im Ohr sitzt und einen stabilen Sitz gewährleistet.2Abnehmen des Ohrstöpsels Ziehen Sie den Ohrstöpsel zum Abnehmen mit ein wenig Kraft heraus.3Austauschen des Ohrstöpsels Drücken Sie den Ohrstöpsel auf die Spitze des Ohrhörers mit der Markierung …L“ oder …R“. Achten Sie dabei darauf, dass die Kerbe auf dem Ohrstöpsel auf dieerhabene Kunststoffkerbe an der Spitze des Ohrhörers ausgerichtet ist.Laden und AnpassenLadenSchnellladefunktionAnpassung4Reinigen der Ohrstöpsel Reinigen Sie die Ohrstöpsel bei Bedarf mit einem alkoholhaltigen Tuch oder einem in Isopropylalkohol getränkten Wattestäbchen.Es gibt zwei Möglichkeiten, Ihr Headset mit dem Kleiderclip zu stabilisieren.•Anbringen Legen Sie die Schnur des Headsets um Ihren Nacken und befestigen Sie den Clip anIhrer Kleidung.•KürzenSichern Sie das überschüssige Kabel mit dem Clip.Tragen des HeadsetsUm das Gerät einzuschalten, halten Sie die Mitteltaste 2 Sekunden lang gedrückt, bis Sie …Einschalten“ hören. Um das Gerät auszuschalten, halten Sie die Mitteltaste 4 Sekunden lang gedrückt, bis Sie …Ausschalten“ hören.Drücken Sie die Lautstärketaste nach oben (+) oder unten (–).Hören Sie Musik, Podcasts, Navigationshinweise und andere Audio-Streams über Ihr Headset.HINWEIS Funktionen können je nach Anwendung variieren.Audio wiedergeben oder anhalten Tippen Sie auf die Mitteltaste.Zum nächsten Titel springen Halten Sie die Lautstärketaste (+) 2 Sekunden lang gedrückt.Vorherigen Titel abspielen Drücken Sie die Taste zum Verringern der Lautstärke, bis Sie den Bestätigungston zum erneuten Starten des aktuellen Titels hören. Drücken Sie die Taste zweimal, (jedes Mal drücken, bis der Bestätigungston erklingt) um zum nächsten Titel zu springen.Wenn Ihr Headset die Bluetooth-Verbindung zu Ihrem Telefon verliert, versucht es automatisch,die Verbindung wiederherzustellen.Wenn Ihr Headset die Verbindung nicht wiederherstellen kann, tippen Sie einmal auf eine beliebige Taste oder stellen Sie die Verbindung manuell über das Bluetooth-Menü des Telefons her. Wenn Ihr Headset sich länger als 90 Minuten außer Reichweite befindet, wird der DeepSleep-Modus aktiviert.Drücken Sie die Mitteltaste .Tippen Sie zweimal auf die Mitteltaste , um die zuletzt angerufene Nummer zu wählen.Drücken Sie während eines Gesprächs die Taste zum Erhöhen oder Verringern der Lautstärke, bisSie die Ansage …mute on“ (Stummschaltung ein) oder …mute off“ (Stummschaltung aus) hören. Bei eingeschalteter Stummschaltung ertönt alle 15 Minuten eine Erinnerung.GrundlagenEin- oder ausschaltenLautstärke einstellenMusik und mehrErneut verbindenAnnehmen und Beenden von AnrufenWahlwiederholungHeadset stummschaltenSiri, Google Now ™, Cortana : Halten Sie die Mitteltaste 2 Sekunden lang gedrückt, bis Sie den Ton hören. Warten Sie auf die Sprachansage zur Aktivierung von Sprachwahl, Suche oder anderen Smartphone-Sprachsteuerungsoptionen.Sie können ganz einfach Anrufe von zwei Geräten annehmen.Beim Telefonieren werden Sie durch einen Klingelton von Ihrem zweiten gepaarten Gerät auf den eingehenden Anruf aufmerksam gemacht.Um einen zweiten Anruf von einem anderen Gerät anzunehmen, drücken Sie einmal die Mitteltaste, um das aktive Gespräch zu beenden, und ein zweites Mal, um den neuen Anruf entgegenzunehmen. Wenn Sie den zweiten Anruf nicht annehmen möchten, wird dieser auf Voicemail umgeleitet.Ihr Headset informiert Sie über Statusänderungen. z. B.:…Power on“ (Eingeschaltet)…Pairing successful” (Paarung erfolgreich)…Mit Telefon 1 verbunden“…No phone is connected“ (Kein Telefon verbunden)…Mute on” (Stummschaltung ein)Wenn Ihre Kopfhörer eingeschaltet sind, jedoch 90 Minuten außer Reichweite des Telefons waren,wechselt Ihr Headset automatisch in den DeepSleep-Modus, um die Akkulaufzeit zu verlängern.Sobald Sie sich wieder in Reichweite Ihres Telefons befinden, drücken Sie die Mitteltaste , um den DeepSleep-Modus zu verlassen.Merkmale des HeadsetsSprachassistentAnrufe von einem zweiten Gerät annehmenSprachansagenDeepSleep-ModusSupportBENÖTIGEN SIE WEITERE HILFE?plantronics.de/supportPlantronics, Inc.Plantronics B.V.345 Encinal Street Santa Cruz, CA 95060 United States Scorpius 171 2132 LR Hoofddorp Netherlands© 2018Plantronics, Inc. Bluetooth ist eine eingetragene Marke von Bluetooth SIG, Inc. und jede Verwendung von Plantronics, Inc. findet unter Lizenz statt. Apple und Siri sind eingetragene Marken von Apple, Inc. in den USA und anderen Ländern. Alle weiteren Marken sind Eigentum ihrer jeweiligen Rechtehalter.Patente angemeldet.213118-04 (12.18)。

A350 XWB update- Smart manufacturing

A350 XWB update- Smart manufacturing

A350 XWB update: Smart manufacturingSpirit AeroSystems actualizes Airbus’ intelligent design for the A350’s center fuselage and front wing spar in Kinston, N.C.Author: Ginger GardinerShare on facebook Share on twitter Share on email Share on print More Sharing Services ?Posted on: 9/1/2011High-Performance CompositesClick Image to EnlargeAirbus A350-900Assembly of the first Airbus A350 XWB, an A350-900, is underway. Major fuselage and wing components will flow from Spirit AeroS ystems’ Kinston, N.C. plant to Europe, toward final assembly in Toulouse, France, near the end of next year. Source: AirbusA350 Fuselage DemoThis panelized A350 fuselage section, at 18m/59-ft long and more than 6m/19.7 ft in diameter was the second eve r made, and closely reflects the A350 XWB fuselage’s final design. Although it was constructed of 12 panels, the panels used in production sections will run the length of the barrel. Source: AirbusElectroimpact S-15This Electroimpact (Mukilteo, Wash.) S-15 dual-head automated fiber placement (AFP) machine will form the panels for the A350’s center fuselage (Section 15) at Wichita, Kan.-based Spirit AeroSystem’s plant in Kinston, N.C. Source: Spirit AeroSystemsWing skin productionThe A350 wingskin is tape layed in one piece on a massive tool, using an automated tape layer (ATL) built by MTorres (Torres de Elorz, Spain). Source: MTorresA350 Fuselage assemblyAirbus A350 VWB Fuselage Production & Assembly DiagramA350 Wing assemblyA350 XWB Wing Production & Assembly DiagramSpar DemonstratorThis early version of the A350 wing’s inner spar was produced using a TORRESLAYUP AFP system, built by MTorres (Torres de Elorz, Spain). Source: GKN AerospaceThe long wait is nearly at an end.Final assembly of the first Airbus (Toulouse, France) A350 XWB midsize passenger jet, an A350-900, is expected to begin by the end of this year and be completed by the fourth quarter of 2012, in time for its scheduled first flight. Assembly of its major fuselage and wing components is now underway. The forward and center sections will ship from the Airbus facility in Saint-Nazaire, France, and the rear fuselage will come from the Airbus plant in Hamburg, Germany. For each aircraft produced, the new final-assembly line in Toulouse will receive the three sections of the fuselage already equipped with wiring harnesses, hydraulics and cabin systems, such as air conditioning. The plane’s wings will be assembled by Airbus in Broughton, U.K., and equipped at its Bremen, Germany, plant before they are sent to Toulouse (see pp. 58-59).The center fuselage (denoted section 15 by Airbus) is the longest of the three, at 65 ft/20m. Section 15 is built up from six sizeable(相当大的) composite panels made by Spirit AeroSystems (Wichita, Kan.). Manufactured at Spirit’s 682,000-ft2/63,360m2 facility, which opened last July in the U.S. (Kinston, N.C.), these components exemplify (例证)a distinct design approach adopted by Airbus in pursuit of not only the weight and performance benefits of composites, but also ways to address potential issues, such as lack of electrical conductivity,without increased cost (see “Panelized option attested early on,” under "Editor's Picks," at top right).Also part of Spirit Kinston’s scope of work for the A350 are the three-piece, all-composite 102-ft/31.2m front spars for the wings.The three-part forward spar aids in assembly at the Airbus Broughton wing plant and avoids bottlenecks(l ike those experienced in the A380 and Boeing 787 programs), which will help maximize monthly production.For the center fuselage and front wing spar, Spirit’s “intelligent design” also incorporates “smart manufacturing” rge components are built up from simpler, more easily manufactured subcomponents that are also easier to repair and maintain.Smart manufacturing concepts also inspired many features of Spirit’s Kinston plant, including a physical layout that improves workflow and the latest automated fiber placement technology to increase productivity.Spirit has specifically designed the Kinston facility for growth and easy adaptability to new technologies. The plant is laid out around a central transportation aisle, fromwhich cleanrooms, autoclaves and paint booths emanate(幅射出). The layout speeds component flow through the plant. This configuration also permits plant supervisors to add extra processing modules, as necessary, to relieve bottlenecks. And it will accommodate new processes in the future. The ability to adapt to the changing production needs of its customer, Airbus, is a key focus for Spirit. The 574 orders currently on the Airbus books for the A350 XWB “is a large number of planes,” points out Dan Wheeler, a Spirit VP and the general manager of the Kinston facility. He adds, “We have set up production here to be able to meet Airbus’ schedule as production ramps up.”Intelligent design: FuselageA notable characteristic of the A350 design is that the main fuselage comprises three long sections.The forward and aft sections are each made from four large composite panels (crown, keel and two sides). But the center fuselage adds two lateral junction panels that help connect the fuselage to the wings.Section panels are attached to a combination of composite and metal frames. By contrast, the 787’s fuse lage uses four shorter, one-piece composite barrels. Airbus opted (选择)for large fuselage panels, instead of unitized complete fuselage barrel sections, because they can be tailored in terms of their laminate sequence and thickness according to the different loads borne by each part of the airframe.This reportedly enables a fuselage optimized for performance and weight. The use of fewer, longer sections also means fewer joints that are said to be better placed for load and weight optimization.This design is expected to avoid the fit issues Boeing had when it joined the first 787 barrels made with totally different tooling approaches, and it facilitates manufacture and assembly via easier parts handling, less complex and lighter tooling, and less expensive a nd faster section production.Because the fuselage sections’ carbon fiber composites do not conduct electricity as well as aluminum alloy structures,the current from a lightning strike will seek any metal paths available, such as fasteners.For this reason, both the 787 and the A350 make strategic use of metal parts.Selections were made based on the parts’ ability to provide necessary structural reinforcement in some highly loaded regions while facilitating an electrical return path for the internal electrical systems and equipment. All of the A350’s metal parts— including aluminum seat rails and a mix of aluminum, aluminum/lithium alloy and titanium for lower frames and passenger cabin structural floor grid beams —do double duty. Each part has a structural function,and it also forms part of the overall electrical structure network (ESN) within the aircraft.The A350’s composite panels incorporate an outer copper mesh to manage the direct effects of lightning,and they work with the ESN to maintain the Faraday cage principle, channeling the electrical current around the fuselage harmlessly rather than letting it pass through to damage fasteners and operational structures.Thismultifunctionality avoids added structure associated with dedicated ESN components and the resulting weight penalty that would offset the light-weighting advantage of a CFRP fuselage. As a result, the six assembled sections of the center fuselage, at 64.6 ft/19.7m long and 22 ft/6.7m in diameter, will weigh a mere 9,000 lb/4,082 kg.Intelligent design: WingThe A350 wing design also benefits from topology optimization, afinite-element-based analysis that determines the most efficient material layout for a structure (see “Topology optimization,” under "Editor's Picks"). This techn ique was used, and its benefits were proven, for a variety of structures that make up the A380 wing, including the leading-edge stiffening ribs. For the A350, topology optimization was employed earlier and more extensively as Airbus sought higher performance within a more efficient design process with less cost.In addition to the all-composite front spar(翼梁), advanced composite materials enable passive and active load-control mechanisms that improve the A350 wing aerodynamic and structural performance. Passive adaptivity is achieved using aeroelastic tailoring, a design technique for aerodynamic surfaces in which strength and stiffness are matched with the likely aerodynamic loads that may be imposed on them. The A350 composite wing also takes advantage of maneuver load alleviation (MLA), which provides active load control. MLA is a system for reducing wing bending moment load during aircraft maneuvers. The digital flight control system automatically adjusts the control surface deflections along the span of the wing to optimize and evenly manage the loads, from the wing root all the way to the wingtip. Another aspect of this design is variable camber. The A350 will be the first Airbus aircraft capable of this function, which will rely on a wing flap system that allows for differential inner and outer flap settings. A gearbox and motor are mounted between the outer and inner flap, enabling differential control of each flap’s angle after they have been retracted. The center-of-lift position also can be changed for load management. For example, the inner flap can be set slightly down, shifting the center of lift inboard for heavy weight situations. It is also possible to move both flaps together up or down a small amount, which improves wing performance by tuning the peak-lift-over-drag ratio. During cruise, the flap functions will be controlled automatically by the flight control system computers, which continuously sense data from the flight management system.The overall result is an extremely efficient wing that produces more lift with less weight and is capable of advanced load handling performance that also helps to reduce the aircraft’s fuel burn.Manufacturing: Center fuselageSection 15 is not only the largest fuselage section, but also the most comp lex. Four of its panels have constant-contour surfaces,but because it is adjacent to the wing, the two lateral junction panels (see dark blue parts in “Center Fuselage Section 15,” on p.59) have both convex and concave curvatures, which provide an aerodynamic fairing and structural connection to the all-composite wingbox.The manufacture of section 15 begins with an ElectroImpact (Mukilteo, Wash.) S-15 dual-head automated fiber placement (AFP) machine that was specifically designed for these large structures. ElectroImpact engineered the S-15 to perform on-the-fly feeding and cutting and fully bidirectional layup over ramped, complex surfaces within customer placement tolerances and with full operator control over the feed rate at speeds up to 2,000 inches/min (50.8m/min). Necessary for the large fuselage panels, the high speed was achieved by re-engineering the guillotine-type cutting system and optimizing the feed, tow path and creel and machine-control systems.The machine lays up Hexply M-21E carbon fiber/toughened epoxy prepreg from Hexcel (Stamford, Conn.) onto a male Invar tool. (The first section 15 crown panel was completed in November 2010.) All of section 15’s panels incorporate integrated CFRP stringers, which are produced using a cantilever-type AFP machine built for high-speed 2-D lamination by MTorres (Torres de Elorz, Spain). The stringers then are placed onto the composite panel layups and cocured under vacuum in one of two 80-ft/24.4m long by 22-ft/6.7m diameter autoclaves. (The first has been installed; the second will be added as production increases.)An automated TORRESMILL router removes the window and door cutouts from the large side panels. MTorres also supplied Spirit’s two 5m/16.4-ft tall columnar ultrasonic (UT) inspection machines, each with a separate array of UT scanners, to achieve simultaneous inspection of inner and outer skins for each fuselage panel. After inspection, the finished composite panels are attached to the fuselage frames. Most of the frames are composite, but a few are aluminum to support the ESN. Additionally, the door surrounds are titanium. The frames and surrounds are attached with automated equipment.After they are completed, the Section 15 panels will be nested into a 70-ft/21m container. They will be transported by road to Morehead City, N.C., or another port in that state, and then by ship to the Spirit AeroSystems facility in Saint-Nazaire, which is located near Airbus’ Aerolia facility in northwest France. Spirit’s 60,000-ft2/5,574m2 plant in Saint-Nazaire is an assembly-only facility (officially opened July 23, 2010 and operational later that year) where the three upper shell panels are joined together with the forward and aft passenger floor. The remaining three panels are shipped loose and installed by Airbus Saint-Nazaire on the section 15 unit. Afterwards, the section will be mated with the center wingbox, which will arrivefrom Airbus Nantes (located 50 miles/80 km to the east), and equipped with piping and other systems. Then the center fuselage/wingbox unit will ship by air to Toulouse for final aircraft assembly.Producing forward wing sparsThe A350’s forward wing spar, a 102-ft/31.2m long structure, is the largest spar Spirit has ever made, and it is Spirit’s first all-composite spar. The structure comprises three parts from root to tip: a 7m/23-ft long inner spar, a 12.7m/42-ft long middle spar and an 11.5m/38-ft long outer spar.The spar parts are made with up to 100 plies of CFRP, tapering from a width of 6 ft/1.8m at the root of the inner spar to, roughly, a width of 1 ft/3.3m at the tip of the outer spar.MTorres has been a key partner in developing Spirit’s spar production capability. Two of the company’s TORRESFIBERLAYUP AFP systems were specially designed to provide greater flexibility and productivity than would be available with either conventional gantry or column-type machines. Reportedly, these AFP systems are capable of layup rates as high as 2,360 inches/min (60m/min), an order of magnitude greater than previously possible and key to making the spar production process in Kinston economically viable. MTorres has delivered similar equipment to GKN Aerospace’s (Redditch, Worchester, U.K.) new facility near Filton, U.K., for production of the A350’s rear wing spar. These machines were developed to achieve the tight U-shaped geometry along the spar components’ edges — where many issues arise when 45°material is applied over 90° corners. The machine heads also deliver the higher temperature and greater compaction pressure required to successfully process the relatively low-viscosity Hexply material —the same M-21E toughened epoxy prepreg that is used to layup the fuselage panels. Each of the MTorres machines can lay two spars simultaneously on 15m/49-ft Invar mandrels, which are then transferred to the autoclave for curing.The cured spar components are checked for quality, using an automated gantry-based TORRESONIC UT inspection machine, measuring 15m/49.2 ft long and 2m/6.6 ft wide. MTorres built the frame and attached a commercially available robot by Kuka Roboter GmbH (Augsburg, Germany), with electronics supplied by Tecnatom SA (Madrid, Spain). The finished spar sections are shipped to Spirit’s Prestwick, Scotland, facility, where they are joined together, mated with the fixed leading edge and other fixtures, then delivered as a complete leading edge assembly to Airbus’ Broughton facility for final assembly with the A350 wing. The first complete outer spar was shipped Dec. 10, 2010.Side BarTopology optimizationAs one of the pioneers in the use of topology optimization in aircraft design, Toulouse, France-based Airbus used OptiStruct software by Altair Engineering (Troy, Mich.) for design optimization on the A350 XWB to support weight reduction, including the fuselage tail (Section 19), wingbox and wing flap support structure. Common results include 30 percent weight reduction, 30 percent improved performance (e.g., stiffness, strength) and 50 percent cost savings. A-E-S Europe GmbH (Hanover, Germany), a computer-aided engineering (CAE) firm that specializes in simulation and structural optimization, describes topology optimization as a finite element analysis (FEA) algorithm that evolves the optimal lightweight shape for a structural design, similar to what nature does in bones, trees, and bird wings, for example, but in a week vs. hundreds of years. The company’s Web site gives the example of a 5-MW wind turbine for which the manufacturer needed to significantly reduce, within a tight time line, both bedplate and gearbox mass without increasing structural stress or reducing stiffness. A-E-S Europe used topology optimization to derive a completely new shape within one week. The result cut the mass of the two components by 35 percent without increasing the maximum stresses. This was accomplished by removing dead mass (mass where it does not support functionality), adding mass to the structure along key load paths and realizing a homogeneous stress distribution, that is, stress distributed uniformly throughout the structure without peak stress points.For Airbus, topology optimization is just one of many computer-aided optimization techniques that have been employed in the aircraft design process —and employed ever earlier —to reduce time and cost. In fact, these techniques have become absolutely necessary to successfully optimize the increasingly large and complex composite structures of modern aircraft. For example, one of the optimization models for the A350 wingbox had to consider up to 3,000 different design variables, including ply thicknesses, fiber orientations and stringer cross-sections, as well as 300,000 constraints, such as skin buckling, column buckling, material strength and manufacturing parameters. Sizing optimization for the A350 composite forward fuselage required that Airbus engineers address 14,000 design variables (e.g., skin layup, stringer geometry and layup, etc.) and more than 1 million constraints. This forced the team to break the structural optimization model down into smaller components to reduce the variables and, thus, successfully size the components for initial design.Side BarPanelized option attested early onAlthough it was developed independently by Airbus (Toulouse, France), this approach to constructing the A350 XWB’s fuselage secti ons —the use of large composite panels attached to frames —is comparable to the optimal design conclusion reached by the Advanced Technology Composite Aircraft Structures (A TCAS) program back in the late 1990s. ATCAS was part of the National Aeronautics and Space Admin.’s (NASA) Advanced Composites Technology (ACT) initiative in the U.S. Under the ACT mandate, the development of an all-composite commercial transport aircraft was split between two parallel programs: McDonnell Douglas Aerospace Co. (Long Beach, Calif.) was tasked with the design and development of a full-scale all-composite wing, and the ATCAS program, conducted by Boeing Commercial Airplanes (Seattle, Wash.), was to do the same for a composite fuselage. According to publicly released reports in 1997 and 1998 by ATCA S’s technical leader Peter Smith and principal investigator/structural engineer Dr. Larry Ilcewicz (currently the Federal Aviation Admin.’s national resource specialist for advanced composite materials) each area of a composite fuselage (crown, sides and keel) presents unique structural design challenges. The crown panel is primarily governed by tension loading, the sides are dominated by shear and pressure load redistribution around windows and doors, and the keel is subject to complex loading dominated by axial compression and load redistribution from the keel beam. The reports also note that the panel-and-frame approach reduces panel assembly costs because it requires fewer longitudinal splices and leverages the size efficiencies of automated fiber placement (AFP) manufacturing while maintaining design flexibility within each uniquely loaded area.。

A350培训版

A350培训版

标 准 配 置:电池两块、旅充一个耳机一个、数据线一条、手写笔一支、 4G T-Flash卡、车载支架、车载充电器
更更更更更
内部资料,未经许可不得外传。
我有真本领
A350 VS A320 升级看得见
内部资料,未经许可不得外传。
内部资料,未经许可不得外传。
内部资料,未经许可不得外传。
A350,您的睿智之选!
内部资料,未经许可不得外传。
我有真本领-我有真本领--四大卖点 --四大卖点
1 2 3 4
经典延续—跑车外观/黑色水晶翻盖 时尚好用—轨迹球 能听会说—语音王 出行无忧—生活导航
内部资料,未经许可不得外传。
经典跑车外观,黑色透明翻盖
传承语音王系列源自顶级跑车的设计灵感,简 约的线条中融汇了经典的跑车灵魂,让您一见 钟情,爱不释手。 晶莹剔透的黑色透明翻盖设计,匠心独具。彰 显俊雅、高贵的男人气质,极具动感的跑车表 盘,流光溢彩,充满了速度和力量!
内部资料,未经许可不得外传。
金立独有—生活导航
有什么特别之处?
内部资料,未经许可不得外传。
快速到达目的地
缩短行车时间
金立生活导航
减少能源消耗
系统能够让您
您将不再迟到
保障行车安全
摄像头提醒
衣食住行,吃喝玩乐,通通搞定!
内部资料,未经许可不得外传。
生活导航—A-GPS
A-GPS导航
利用GPRS网络辅助GPS更快的获得定位信息。 A-GPS通过网络辅助定位,定位时间更快、定 位更精准、信号更稳定、搜索面更广。
尊贵自显,成功在握!
金立语音王A350惊艳上市
深圳市金立通信设备有限公司 IMC 培训服务部 2010.12.22 2010-12-29

机场代码

机场代码

ZSCG CZX 常州/奔牛ZHSS SHS 沙市ZBOW BAV 包头ZPLJ LJG 丽江/三义ZBLA HLD 海拉尔/东山ZBYN TYN 太原/武宿ZUGH GHN 广汉ZSQZ JJN 泉州/晋江ZLYA ENY 延安/二十里铺VVTS SGN 胡志明/新山一ZKPY FNJ 平壤ZGLG LLF 永州/零陵VRMM MLE 马累国际机场RPLI LAO 拉瓦格/菲律宾ZSXZ XUZ 徐州/观音UHHH KHV 哈巴罗夫斯克/诺维ZSPL PNJ 蓬莱/沙河口ZSLQ HYN 黄岩/路桥ZBCZ CIH 长治/王村ZYHB HRB 哈尔滨/太平ZWWW URC 乌鲁木齐/地窝堡ZYTX SHE 沈阳/桃仙VABB BOM 穆拜VIDP DEL 英迪拉甘地ZGMX MXZ 梅县/长岗岌ZSFY FUG 阜阳ZYCY CHG 朝阳/朝阳ZYCC CGQ 长春/龙嘉UHWW VVO 海参威ZBPE *51 北京飞行情报区ZSYT YNT 烟台/莱山ZWKC KCA 库车ROAH OKA 那霸ZLHW 22* 兰州飞行情报区RJTD TYO 东京市RJOO OSA 大阪/国际机场RJCC SPK 扎幌/新千岁RKTU CJJ 清州ZBDT DAT 大同/倍加皂ZGUH *74 珠海/九州ZGBH BHY 北海/福成RJFM KMI 宫崎ZYAS AOG 鞍山ZUZH PZI 攀枝花/保安营YPPH PER 珀斯ZHNY NNY 南阳/姜营ZHXF XFN 襄樊/刘集ZHYC YIH 宜昌/三峡RJOA HIJ 广岛/日本UHSS UUS 南萨哈林斯克OIII THR 梅赫拉巴德YSSY SYD 悉尼YPDN DRW 达尔文ZLYL UYN 榆林/榆阳ZYJZ JNZ 锦州ZYJM JMU 佳木斯ZWAT AAT 阿勒泰ZGWZ WUZ 梧州/长州岛ZGZJ ZHA 湛江ZSWF WEF 潍坊ZWTN HTN 和田ZYQQ NDG 齐齐哈尔/三家子ZSSL 29* 上海/龙华ZSQD TAO 青岛/流亭UNNT OVB 新西伯利亚VHHH HKG 香港/赤邋角ZSHC HGH 杭州/萧山RKPC CJU 济州FIMP MRU 西沃古尔拉姆古兰爵士国际机场ZUJZ JZH 九寨/黄龙RJGG NGO 名古屋中部/日本ZLHZ HZG 汉中ZBSH SHP 秦皇岛/山海关ZBSJ SJW 石家庄/正定ZSAQ AQG 安庆/大龙山ZPZT ZAT 昭通ZYMD MDG 牡丹江/海浪ZLXN XNN 西宁/曹家堡ZUKD KGT 康定ZWCM IQM 且末ZUUU CTU 成都/双流ZWYN YIN 伊宁VTCC CNX 清迈ZHLY LYA 洛阳/北郊RJAA NRT 东京/成田ZLIC INC 银川/河东ZSJG JNG 济宁/嘉祥KPAE PAE 佩恩机场KOAK OAK 大都会/奥克兰EGGW LTN 伦敦VCBI CMB 班达拉奈克RJFT KMJ 熊本PGSN SPN 塞班ZULZ LZO 泸州/蓝田ZUWX WXN 万州/五桥UHNN NIK 尼古拉耶夫斯克ZSDY DOY 东营WRRR *44 巴哩岛国际机场ZBYC YCU 运城/张孝OPRN ISB 伊斯兰堡/杰克拉拉WAAA UPG 哈萨努丁WIHH HLP 雅加达/哈利姆珀达纳库苏马RKTN TAE 大邱国际机场ZSBZ 25* 滨州/大高ZUNP HZH 黎平ZGCJ HJJ 怀化/芷江ZSCN KHN 南昌/昌北UIAA HTA 赤塔/卡拉达ZUBD BPX 昌都/邦达ZGSD ZUH 珠海/三灶RJFK KOJ 鹿尔岛/日本WMKJ JHB 新山ZSGS JGS 吉安/井冈山ZSLO LCX 连城/冠豸山VVDN DAD 岘港国际机场WSJC *5* 新加坡飞行情报区ZHES ENH 恩施/许家坪ZGDY DYG 张家界/荷花ZLAK AKA 安康/五里铺ZYJL JIL 吉林/二台子VECC CCU 加尔各答VEGT GAU 高哈蒂ZUYI ACX 兴义VTUW KOP 那空拍侬(西)WBGB BTU 民都鲁WBGS SBW 泗乌UUWW VKO 莫斯科/伏努科沃VTSF NST 洛坤UIII IKT 伊尔库茨克/伊尔库茨克ZMUB ULN 乌兰巴托ZUYB YBP 宜宾/菜坝ZXHW XHW 星海湾ZUAS AVA 安顺/黄果树ZUCK CKG 重庆/江北ZSTX TXN 黄山/屯溪ZWTC TCG 塔城WMKA AOR 苏丹阿卜杜尔哈利姆WBKL LBU 纳闽岛马来西亚/纳闽岛WMKN TGG 苏丹马赫穆德WBKK BKI 哥打基纳巴卢RJNK KMQ 小松RJDG *28 福冈区域管制中心RJJJ *29 福冈飞行情报区OAKN KDH 坎大哈WBKS SDK 山打根WMKC KBR 苏丹尼马帕拉WMKE KTE 居萘RCNN TNN 台南RCSS TSA 台北/松山VTBB *39 曼谷情报区ZWUQ 4*1 乌鲁木齐飞行情报区ZYSH 4*5 沈阳飞行情报区WSSS SIN 新加坡/樟宜ZWML WML 马兰OKBK KWI 科威特国际机场RJOT TAK 高松RJSN KIJ 新泻/日本VOBG BLR 帮加罗尔/帮加罗尔CYVR YVR 温哥华ZWFY FYN 可可托海ZWKL KRL 库尔勒ZJSA 2*1 三亚飞行情报区KBOS BOS 波士顿/罗甘将军ZGHY HNY 衡阳RCYU HUN 花莲RJTQ MYE 三宅岛RKNY YNY 杨口国际机场WMKI IPH 苏丹阿扎兰肖WMKL LGK 普劳凌家卫国际机场WPDL DIL 帝力国际机场VTSB URT 素叻他尼VTSE CJM 春蓬RKSO OSN 乌山WBGG KCH 古晋,马来西亚/古晋VLLB LPQ 琅勃拉邦USSS SVX 叶卡捷琳堡/措尔索沃LETO TOJ 马德里/托雷洪VIJP JAI 斋浦尔VTSG KBV 甲米VTSS HDY 合艾国际机场VTUD UTH 乌隆ZGLD *73 罗定RCKU CYI 嘉义ZSBB BFU 蚌埠UTAA ASB 阿什哈巴德/土库曼斯坦VEGY GAY 格雅/印度ZYMH MHN 漠河/古莲VYYY RGN 仰光/缅甸VYBG MMR 巴甘/缅甸ZHSQ *80 商丘OAKB KBL 喀布尔RKJK KUV 群山RKJY RSU 丽水RKPS HIN 泗川RKSM SSN 新川里RKTY YEC 醴泉RPMZ ZAM 三宝颜国际机场VDPP PNH 金边国际机场VLPS PKZ 巴色VTCH HGN 夜丰颂RCMT MFK 北岗VYMD MDL 曼德勒WPEC BCH 巴考ZBUH WUA 乌海VTUK KKC 孔敬ZGZU *8* 广州飞行情报区ZSNJ NKG 南京/禄口ZBTL TGO 通辽ULLI LED 圣彼得堡/普尔科夫VTUV ROI 黎逸VTUO BFV 武里南ZBMZ NZH 满洲里/西郊ZSSZ SZV 光福RJBB KIX 大阪/关西VDSR REP 暹粒/吴哥/柬埔寨UAAA ALA 阿拉木图WSSL XSP 新加坡/实里达VVVV *4* 河内情报区WADD DPS 登巴萨VTBS BKK 素旺那浦ZGHA HHA 长沙/黄花ZGBS AEB 田阳ZBNY Z19 北京/南苑ZWNL NLT 新源/那拉提ZSLG LYG 连云港/白塔埠ZSWY WUS 武夷山ZYDD DDG 丹东/浪头ZPDL DLU 大理/荒草坝VOMM MAA 金奈VTUU UBP 乌汶VTCT CEI 清莱/班杜国际机场RCKW HCN 恒春RJEO OIR 奥尻ZBTJ TSN 天津/滨海ZSAM XMN 厦门/高崎ZSJN TNA 济南/遥墙ZSFZ FOC 福州/长乐ZSZS HSN 舟山/普陀山ZSJD JDZ 景德镇/罗家ZSGZ KOW 赣州/新黄金LCLK LCA XXXZGOW SWA 揭阳/潮汕ZLJQ JGN 嘉峪关ZGSZ SZX 深圳/宝安ZGNN NNG 南宁/吴圩ZBCF CIF 赤峰/玉龙ZJSY SYX 三亚/凤凰ZGCD CGD 常德/桃花源ZSYW YIW 义乌ZGKL KWL 桂林/两江ZSNT NTG 南通/兴东ZUNC NAO 南充/高坪ZSJU JUZ 衢州ZHWH *81 武汉飞行情报区ZSWH WEH 威海/大水泊ZUXC XIC 西昌/青山ZSJJ JIU 九江/庐山ZSLY LYI 临沂/沭埠岭RJNA NKM 名古屋/日本ZBPS *54 平朔/安太堡RJBH HIW 关岛西ZUSN **1 遂宁RPLB SFS 苏比克湾ZWSH KHG 喀什VTBD DMK 曼谷/泰国RKPK PUS 釜山/金海ZSSS SHA 上海/虹桥ZUNZ LZY 林芝/米林ZYSF 4*3 绥芬河/阜宁ZPWS WNH 文山/普者黑ZGGG CAN 广州/白云ZLLL ZGC 兰州/中川WMKK KUL 吉隆坡/色邦KHPN HPN 纽约/怀特普莱恩斯RKNN KAG 江陵RPLL MNL 尼诺.阿基诺ZSHA 27* 上海飞行情报区UIUU UUD 乌兰乌德/穆希诺RJFF FUK 福冈/日本RJTT HND 东京/羽田PKMJ MAJ 马绍尔UDYZ EVN 埃里温UBBB BAK 巴库/比纳/阿塞拜疆RKJJ KWJ 光州RKJM MPK 木浦RKNW WJU 原州RKTH KPO 浦项RPMD DVO 班戈国际机场RPVM CEB 麦克坦国际机场VLVT VTE 瓦岱国际机场RCFN *27 台东/丰年WBMU MZV 暮卢,马来西亚VTUI SNO 班凯VTUQ NAK 呵叻VMMC MFM 澳门VTBU UTP 罗勇/班乌塔保ZSYN YNZ 盐城/南洋RJFU NGS 长崎/日本ZSWX WUX 无锡/硕放KBFI BFI 西雅图波音基地/金镇UHBB BQS 海兰泡/俄罗斯YBBN BNE 布里斯班YMML MEL 墨尔本/国际机场RKPU USN 蔚山ZBHD HDG 邯郸PHNL HNL 火奴鲁鲁EGQL ADX 苏格兰RKRR *33 仁川飞行情报区OMDB DXB 迪拜PANC ANC 安克雷奇OPKC KHI 夸德阿扎姆国际机场WARJ JOG 日惹WIDD BTH 杭纳迪姆/巴淡ZLDX DXN 酒泉/鼎新WSAP QPG 巴耶利巴RJSS SDJ 仙台/日本ZUGY KWE 贵阳/龙洞堡PGUM GUM 关岛WMFC *42 吉隆坡飞行情报区VHHK *38 香港飞行情报区WMKP PEN 槟榔屿/国际机场VECF *37 加尔各达飞行情报区VVNB HAN 内拜WBGJ LMN 林梦WBKD LDU 拿笃VTCN NNT 难府WMSA SZB 吉隆坡/梳邦UUEE MOW 莫斯科/谢列梅切沃ZYYL YLN 依兰RCKH KHH 高雄/小港WBKW TWU 斗湖,马来西亚/斗湖WBGR MYY 米里,马来西亚/米里RJCH HKD 函馆WMKD KUA 昆坦WBSB BWN 文莱国际机场OISS SYZ 设拉子/国际机场ZBDS DSN 鄂尔多斯/伊金霍洛VTSP HKT 普吉/普吉ZPKM 24* 昆明飞行情报区ZSTN 3*7 张庄ZYCH CNI 长海/大长山岛RJTG *30 东京区域管制中心ZULP LIA 梁平KPHL PHL 费城PTRO ROR 帕劳RJEC AKJ 旭川RCTP TPE 台北/桃园中正WMKM MKZ 马六甲VTPP PHS 彭世洛VTSC NAW 那拉提瓦WBAK BRN 诗里亚UEEE YKS 雅库茨克/俄罗斯UELL NER 涅里乌格里DAAG ALG 阿尔及尔/胡阿里。

astm a350

astm a350

ASTM A350ASTM A350 is a specification for carbon and low-alloy steel forged or rolled flanges, forged fittings, and valves for low-temperature service. This specification covers several grades of carbon and low-alloy steel designed to operate at low temperatures, down to -50°F (-45°C). The purpose of ASTM A350 is to provide standards for materials that can withstand the harsh conditions of low-temperature environments.Scope and ApplicabilityASTM A350 covers a range of carbon and low-alloy steel materials that are suitable for use in low-temperature service. The specification includes several grades, namely:1.Grade LF1 - Carbon steel flanges, forged fittings, and valves suitablefor temperatures as low as -50°F (-45°C).2.Grade LF2 - Carbon steel flanges, forged fittings, and valves suitablefor temperatures as low as -20°F (-29°C).3.Grade LF3 - Carbon steel flanges, forged fittings, and valves suitablefor temperatures as low as -150°F (-101°C).4.Grade LF5 - Carbon steel flanges, forged fittings, and valves suitablefor temperatures as low as -50°F (-45°C).The choice of the appropriate grade depends on the required minimum temperature and the desired mechanical properties of the material.Chemical CompositionASTM A350 specifies the chemical composition requirements for each grade of carbon and low-alloy steel. The composition must conform to the specified limits of carbon, manganese, phosphorus, sulfur, silicon, nickel, chromium, molybdenum, copper, vanadium, and aluminum. This ensures that the material has the necessary chemical elements to provide the desired mechanical properties and corrosion resistance.Mechanical PropertiesThe mechanical properties of ASTM A350 materials are specified in terms of tensile strength, yield strength, and elongation. These properties are determined through tensile testing of specimens taken from the materials. The specified minimum values for each property vary depending on the grade of steel, and they must be met to ensure the material’s suitability for low-temperature service.Heat TreatmentHeat treatment is an important process in the manufacturing of ASTM A350 materials. It helps to improve the mechanical properties and to relieve the stress induced during the forging or rolling processes. The heat treatment process involves heating the material to a specific temperature, holding it at that temperature for a certain period, and then cooling it in a controlled manner.Manufacturing ProcessASTM A350 materials are typically manufactured through either forging or rolling processes. Forging involves the application of pressure to shape the material into the desired form, while rolling involves passing the material through a series of rollers to achieve the desired shape and dimensions. Both processes require careful control and monitoring to ensure that the final product meets the specifications of ASTM A350.Testing and InspectionTo ensure the quality and reliability of ASTM A350 materials, various testing and inspection procedures are carried out. These include visual inspections, dimensional checks, mechanical testing, and non-destructive testing. Visual and dimensional inspections are performed to check for any visible defects or dimensional deviations. Mechanical testing involves conducting tension, hardness, and impact tests to determ ine the material’s mechanical properties. Non-destructive testing, such as ultrasonic testing and radiographic examination, is used to detect any internal defects or flaws.ApplicationsASTM A350 materials find application in various industries where low-temperature service is required. Some common applications include:•Oil and gas pipelines in cold environments•Cryogenic storage tanks•Refrigeration systems and equipment•Chemical processing plants•Power generation facilities•Marine structures and equipmentThe use of ASTM A350 materials ensures the integrity and safety of these applications in low-temperature environments.ConclusionASTM A350 is a valuable specification for carbon and low-alloy steel materials used in low-temperature service. It provides standards for the chemicalcomposition, mechanical properties, heat treatment, manufacturing, testing, and inspection of these materials. By following the requirements of ASTM A350, manufacturers can ensure the reliability and suitability of their products for use in low-temperature applications.。

【技术】浅谈整体成型工艺

【技术】浅谈整体成型工艺

【技术】浅谈整体成型工艺行业A350是迄今为止被认为复合材料用量占全机结构重量比例最大的一种客机,其复合材料结构重量占全机结构重量52%,超过了波音787复合材料结构重量比例的50%。

由于复合材料构件都比较大,质量要求更加严格,在设备上、工艺流程上也带来了许多新的要求,本文即对该飞机的复合材料大型构件的制造进行阐述。

机身的复合材料构件制造A350的机身如图1所示,机头段(11~12段)和机身前段(13~14段),联接后称为前机身;15段为机身中段,又称中机身;16~18段为含压力框的整段,合称机身后段,其与桶形后罩(19段)联接后称为后机身。

机身直径为5.89m,在A350-900上,3段分别长13m (13~14段)、20m(15段)和15m(16~18段)。

其中,机身中段(15段)如图2所示。

1 中机身中机身,由6个复合材料板件、地板和隔框等构件构成。

该板件由Spirit AeroSystems 制造ElectroImpact公司为Spirit公司设计制造了专用于A350机身板件铺放的双头自动纤维铺放机,该机不但可完成铺放,而且可执行切割动作,能够完全双向铺倾斜且复杂的表面,进给速度达50.8m/min。

大型机身壁板铺丝速度要求高,该机床通过新的设计实现了切割,优化进给、丝束路径等的需要。

机床在殷纳钢阳模上铺Hexply M-21E碳纤维/ Hexcel增韧环氧预浸料。

所有的15段壁板包含有整体的CFRP桁条,该桁条是采用悬臂类AFP机床制造的二维夹层件(采用MTorres桁条铺设设备铺设)。

桁条铺设后放在复合材料壁板槽内,在热压罐(长为24.4m、宽为6.7m)中进行共固化。

MTorres公司还为Spirit公司提供2台高5m、长15m的Torresonic UT柱形超声检测设备,该设备上装有Kuka Roboter GMBH(Ausburg德国)的机器人装置,可同时检测机身壁板的内外蒙皮。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新材料产业 NO.09 2018 91
8.indd 91
2018/9/4 9:39:55
除了通讯功能外,这些纤维还可能这种纤维可用于制造测量脉搏或血氧水 平的腕带、以及可以监测愈合过程的绷带等。预计未来几年智能纤维的发展将会 遵循类似“摩尔定律”的规律,实现更多的功能,在生物、医疗、军事等领域具有重 要的应用价值。因此,这项工作得到了美国陆军研究实验室、美国陆军研究办公 室以及美国国防部研究工程助理部长的支持,目前国防部正探索将这项技术用 于士兵制服的制造。(北方科技信息研究所)
据悉,国航共计订购了 10架A350系列客机,今年将会引进 6架,明年再接收 4 架。根据计划,A350系列飞机新增运力将主要执飞上海到欧洲的国际航线(。新华网)
天津大学成功研制出会发光的隐形墨水
据报道,日前,天津大学材料学院封伟团队国内首次制备出氟氮双掺杂碳量 子点(F N C D s),并基于此造出了可以隐形且具有自保护超长室温磷光性能的神 奇墨水。 “了无痕迹”的墨水可以加密信息,还能超长发光,这种谍战大片里经常 出现的隐形墨水如今变成了现实,而且功能更强大。
新型沸石分子筛 催化开发成功
据报道,8月 25日,南京工业大学 对外宣布,该校材料化学工程国家重 点实验室王军教授、周瑜副教授和新 加坡国立大学颜宁教授合作,开发出 可高效绿色直接制备酚类化合物的沸 石分子筛催化剂,解决了酚类化合物 传统制备工艺高能耗、高污染、收率低 等问题。
课题组研发的这种高活性催化 剂在芳环羟基化反应中具有极高效 率,有望实现苯酚等酚类化合物的工 业化规模生产,显示出重要的潜在工 业 应 用 前 景。同 时,这 种 催 化 剂 的 创 新制备方法还具有广泛的普适性,能 够进一步构筑出含有不同金属(如含 铁、铜、锰等元素)的沸石分子筛,制备 出高效的多相催化剂,有望实现其他 种类化学品的绿色生产。
酚类化合物(如苯酚和甲酚等)是 一类用途广泛、用量巨大的化学品,可 用于制备杀虫剂、农药、塑料、染料、药 物、聚合物等等。但这些酚类化合物的 工业生产往往是高能耗和高污染的 过程,而且传统生产工艺存在过度氧 化、反应步骤繁琐、收率低、副产物多等 问题。为解决上述问题,课题组自主开 发了沸石分子筛催化剂,并采用双氧水
NEWS 资 讯
通信链路,在鱼缸外将音乐以光脉冲的形式发送到光纤,然后光纤将光脉冲转换 为电脉冲信号,又通过扬声器转换成音乐,实现了通讯功能。
为了验证其用于服装制造的可行性,研究人员将采用这种纤维制成的织物 洗涤了 10次,织物依然能够保持良好的光电性能。研究人员还开发出可提高其产 量和可靠性的工艺,同时联合纺织企业开发出将这些纤维大规模编织成织物的 技术,以确保这种纤维可以大规模生产。该项目负责人表示,首批采用该技术生 产的商业化产品最早将于明年面世,该技术有望制成首个织物通讯系统。
据介绍,发光隐形材料,特别是室温磷光材料,因具有长发光寿命和独特的单 线态—三线态跃迁等优异特征,能起到非常显著的加密效果,是光子加密信息的 重要载体,在信息安全领域应用广泛,也是热门科研领域之一,具有非常高的经济 价值和应用前景,而隐形墨水就是发光隐形材料氟化碳领域的下游具体产品。
目前已报道的绝大多数基于碳量子点的室温磷光材料,需将碳量子点嵌入 到基质中才能获得室温磷光发射现象,且产品发光仅有几十毫秒。封伟团队此次 制备的室温磷光碳量子点,无需考虑基质辅助的氧隔离层就可以实现室温下自 发磷光,时间长度达到 1.21s,外界刺激还可以直接作用于裸露的碳量子点,有利 于设计具有外界刺激响应性的磷光传感器。实验中,研究人员用氟氮双掺杂碳量 子点的水分散液制成的墨水,通过普通的商业喷墨打印机,将预先设计的复杂图
空客公司向国航交付首架 A350 飞机 碳纤维复合材料占比高达 53%
据报道,中国国际航空股份有限公司首架空客A350系列飞机 8月 9日飞抵北 京首都国际机场,并计划于 8月 14日首航北京-上海航线。
据介绍,此次交付的空客A350系列飞机标准航程可达 15 000k m,能适应地 区性航线和超远距离航线,具有很高的运行灵活性。同时该系列飞机碳纤维复合 材料占比达到 53%,复合材料、钛合金和新一代铝合金等先进材料应用占到机体 的 70%,有效减轻了机身质量。
案、文字等加密信息打印在滤纸上,其 干燥后在紫外灯下发射出强烈的固态 蓝色荧光,移去紫外灯后会发射出自 我保护绿色磷光,实现了时间维度和 空间维度的信息双安全保护。
这 一 研 究 成 果,未 来 有 望 应 用 于信息记录读取、防伪和隐写术等领 域。同时,这种双元素共掺杂技术也为 室温磷光隐形材料的设计和应用提供 了新的思路。(科技日报)
相关文档
最新文档