分式及分式方程测试题及答案
初中数学-分式与分式方程测试题(含答案)
初中数学-分式与分式方程测试题(含答案)初中数学-分式与分式方程测试题一、选择题1.分式﹣A.﹣2.在可变形为()B.C.﹣D.中,分式的个数是()A. 2B. 3C. 4D. 53.下列算式中,你认为错误的是()A.4.化简B.C.D.的结果为()D.A.﹣1 B. 1 C.5.分式方程﹣2=的解是()C. x=2D. x=﹣1A. x=±1B. x=﹣1+6.设m﹣n=mn,则A.的值是()B. 0C. 1D. -1的值为零,那么的值是()XXX.如果分式A.B.8.假如分式A.9.解方程A.C.的值为负数,则的x取值范围是()XXX.去分母得()B.D.的值是()10.若m+n﹣p=0,则A. -3B. -1C. 1D. 3二、填空题11.方程12.若分式方程的解为________.=a无解,则a的值为________13.若分式14.分式方程15.化简:16.17.计较:的值为零,则=________。
﹣=0的解是________.=________.________=________ .=3的解是正数,则m的取值范围是________.18.已知关于x的方程三、解答题19.解方程:20.解分式方程:..21.计较:(1)y(2x﹣y)+(x+y)2;(2)(y﹣1﹣22.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?)÷.参考谜底一、选择题DBBBDDCDCA二、填空题11.x=﹣112.1或﹣113.-314.1515.x+y16.a2-b²17.18.m>-6且m≠-4三、解答题19.解:2x=x﹣2+1,x=﹣1,经检验x=﹣1是原方程的解,则原方程的解是x=﹣120.解:去分母得:x(x+1)﹣x2+1=2,去括号得:x2+x ﹣x2+1=2,解得:x=1,经检修x=1是增根,分式方程无解21.解:(1)原式=2xy﹣y2+x2+2xy+y2=4xy+x2;(2)原式==.•=1+,22.解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.。
分式测试题及答案
分式测试题及答案一、选择题1. 下列哪个选项不是分式?A. \( \frac{1}{x} \)B. \( 3x + 2 \)C. \( \frac{x}{y} \)D. \( \frac{3}{2x} \)答案:B2. 分式 \( \frac{x^2 - 1}{x - 1} \) 可以化简为:A. \( x \)B. \( x + 1 \)C. \( x - 1 \)D. \( 1 \)答案:B3. 如果 \( \frac{a}{b} \) 是一个分式,且 \( a \) 和 \( b \) 都是正整数,那么 \( \frac{a}{b} \) 的值:A. 总是大于1B. 总是小于1C. 可以是任何实数D. 总是等于1答案:C二、填空题4. 分式 \( \frac{2x^2 - 3x}{x - 3} \) 的值为0的条件是_______ 。
答案:\( x = \frac{3}{2} \)5. 如果 \( \frac{1}{x} + \frac{2}{y} = 1 \),那么\( \frac{x}{y} + \frac{y}{x} \) 的值为 _______ 。
答案:3三、解答题6. 化简分式 \( \frac{3x^2 - 12x + 12}{x^2 - 4} \) 。
答案:首先分解分子和分母的因式,得到 \( \frac{3(x -2)^2}{(x - 2)(x + 2)} \),然后约去公共因子 \( (x - 2) \),得到 \( \frac{3(x - 2)}{x + 2} \)。
7. 解分式方程 \( \frac{1}{x} - \frac{1}{x + 1} = \frac{2}{x(x + 1)} \)。
答案:首先找到分母的最小公倍数,即 \( x(x + 1) \),然后将方程两边同乘以 \( x(x + 1) \) 以消除分母,得到 \( x + 1 - x = 2 \),解得 \( x = 3 \)。
北师大版八年级下册《第五章分式与分式方程》测试题(含答案)
第五章 分式与分式方程一、选择题(本大题共8小题,每小题3分,共24分)1.有下列各式:12(1-x ),4x π-3,x2-y22,1+a b ,5x2y ,其中分式共有( )A .2个B .3个C .4个D .5个2.下列各式中,正确的是( ) A.a +b ab =1+b b B.x +y x -y =x2-y2(x -y )2 C.x -3x2-9=1x -3 D.-x +y 2=-x +y 23.在分式15b2c -5a ,5(x -y )2y -x ,a2+b23(a +b ),4a2-b22a -b ,a -2b 2b -a 中,最简分式有( )A .1个B .2个C .3个D .4个4.解分式方程x 3+x -22+x =1时,去分母后可得到( )A .x (2+x )-2(3+x )=1B .x (2+x )-2=2+xC .x (2+x )-2(3+x )=(2+x )(3+x )D .x -2(3+x )=3+x5.化简⎝⎛⎭⎫x -2x -1x ÷⎝⎛⎭⎫1-1x 的结果是( ) A.1x B .x -1 C.x -1x D.xx -1 6.如果解关于x 的分式方程mx -2-2x2-x =1时出现增根,那么m 的值为( ) A .-2 B .2 C .4 D .-47.某工厂生产一种零件,计划在20天内完成.若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为( )A.20x +10x +4=15B.20x -10x +4=15C.20x +10x -4=15D.20x -10x -4=158.若关于x 的方程a x -1+1=x +ax +1的解为负数,且关于x 的不等式组⎩⎨⎧-12(x -a )>0,x -1≥2x +13无解,则所有满足条件的整数a 的值之和是( )A .5B .7C .9D .10二、填空题(本大题共6小题,每小题4分,共24分)9.若分式1x -5在实数范围内有意义,则x 的取值范围是________.10.计算:x2x +1-1x +1=________.11.化简:m2-4mn +4n2m2-4n2=________.12.某学校为了增强学生体质,准备购买一批体育器材,已知A 类器材比B 类器材的单价低10元,用150元购买A 类器材与用300元购买B 类器材的数量相同,则B 类器材的单价为________元/件.13.若关于x 的方程x +m m (x -1)=-45的解为x =-15,则m =________.14.若关于x 的分式方程2x +mx -3=3的解为正数,则m 的取值范围是________.三、解答题(本大题共6小题,共52分) 15.(10分)解下列方程: (1) xx -3-2=-33-x;(2)x x +3+2x2+3x =1.16.(6分)化简:9-a2a2+6a +9÷a2-3a a +3+1a .17.(8分)先化简,再求值:⎝⎛⎭⎫1+1a ·a2a2-1,其中a =3.18.(9分)已知关于x 的方程2xx -2+m x -2=3. (1)当m 取何值时,此方程的解为x =3? (2)当m 取何值时,此方程会产生增根?(3)当此方程的解是正数时,求m的取值范围.19.(9分)某校组织学生去9 km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.已知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少.20.(10分)某班到毕业时共节余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为母校购买纪念品,其余经费用于在毕业晚会上给50名同学每人购买一件文化衫或一本相册作为留念.已知每件文化衫的价格比每本相册贵9元,用175元购买文化衫和用130元购买相册的数量相等.(1)求每件文化衫和每本相册的价格分别为多少元;(2)有哪几种购买文化衫和相册的方案?1.[解析] A12(1-x),4x π-3,x2-y22的分母中均不含有字母,因此不是分式,是整式;1+a b,5x2y的分母中含有字母,因此是分式.故选A .2.[答案] B3.[解析] A 15b2c -5a =3b2c -a ;5(x -y )2y -x =5(y -x);4a2-b22a -b =(2a +b )(2a -b )2a -b=2a +b ;a -2b2b -a=-1.所以只有一个最简分式.故选A .4.[解析] C 在方程x 3+x -22+x=1的两边同乘最简公分母(3+x)(2+x),得x(2+x)-2(3+x)=(2+x)(3+x).故选C .5.[解析] B ⎝⎛⎭⎫x -2x -1x ÷⎝⎛⎭⎫1-1x =x2-2x +1x ÷x -1x =(x -1)2x ·x x -1=x -1.故选B . 6.[答案] D 7.[答案] A8.[解析] C a x -1+1=x +ax +1,方程两边同乘(x -1)(x +1),得a(x +1)+(x -1)(x +1)=(x -1)(x +a), 整理得x =1-2a , 由题意得1-2a <0,解得a >12.解不等式组⎩⎨⎧-12(x -a )>0,x -1≥2x +13,得4≤x <a.∵不等式组无解,∴a ≤4, 则12<a ≤4. ∵1-2a ≠±1, ∴a ≠0,a ≠1,∴所有满足条件的整数a 的值之和为2+3+4=9. 故选C .9.[答案] x ≠5 10.[答案] x -111.[答案] m -2nm +2n[解析] 原式=(m -2n )2(m +2n )(m -2n )=m -2nm +2n.12.[答案] 20[解析] 设B 类器材的单价为x 元/件,则A 类器材的单价是(x -10)元/件,由题意得150x -10=300x, 解得x =20.经检验,x =20是原方程的解. 即B 类器材的单价为20元/件. 故答案为:20. 13.[答案] 5[解析] 把x =-15代入方程即可求得m 的值.14.[答案] m >-9且m ≠-6[解析] 去分母,得2x +m =3x -9,解得x =m +9.由分式方程的解为正数,得到m +9>0,且m +9≠3,解得m >-9且m ≠-6.15.解:(1)方程两边同乘(x -3),得x -2(x -3)=3. 去括号,得x -2x +6=3. 移项、合并同类项,得x =3. 检验:当x =3时,x -3=0, ∴原分式方程无解.(2)方程两边同乘x(x +3),得 x 2+2=x 2+3x ,移项、合并同类项,得3x =2,解得x =23.经检验,x =23是原方程的解.16.[解析] 先算乘除,再算加减.解:原式=-(a +3)(a -3)(a +3)2·a +3a (a -3)+1a=-1a +1a=0. 17.解:原式=a +1a ·a2(a -1)(a +1)=aa -1.当a =3时,原式=32.18.解:(1)把x =3代入方程2x x -2+mx -2=3,得m =-3.(2)方程的增根为x =2,原方程去分母得2x +m =3x -6,将x =2代入,得m =-4.(3)原方程去分母得2x +m =3x -6,解得x =m +6.因为方程的解是正数,所以m +6>0,解得m >-6.因为x ≠2,所以m ≠-4.综上,m 的取值范围是m>-6且m ≠-4.19.[解析] 设自行车的速度为x km /h ,则公共汽车的速度为3xkm /h ,根据时间=路程÷速度结合乘公共汽车比骑自行车少用12h ,即可得出关于x 的分式方程,解之经检验即可得出结论.解:设自行车的速度为x km /h ,则公共汽车的速度为3x km /h .根据题意,得9x -93x =12,解得x =12.经检验,x =12是原分式方程的解, ∴3x =36.答:自行车的速度是12 km /h ,公共汽车的速度是36 km /h .20.解:(1)设每件文化衫的价格为x 元,则每本相册的价格为(x -9)元,由题意得175x=130x -9, 解得x =35.经检验,x =35是原分式方程的解, 则x -9=35-9=26(元).答:每件文化衫的价格为35元,每本相册的价格为26元.(2)设购买文化衫m 件,则购买相册(50-m)件.由题意得1800-300≤35m +26(50-m)≤1800-270,解得2229≤m ≤2559.共有3种购买方案:①购买文化衫23件,购买相册27件;②购买文化衫24件,购买相册26件;③购买文化衫25件,购买相册25件.。
100道分式试题及答案
100道分式试题及答案一、选择题1. 下列哪个选项是分式的加法运算的正确结果?A. \( \frac{1}{x} + \frac{1}{y} = \frac{1}{xy} \)B. \( \frac{1}{x} + \frac{1}{y} = \frac{x + y}{xy} \)C. \( \frac{1}{x} + \frac{1}{y} = \frac{y}{x} + \frac{x}{y} \)D. \( \frac{1}{x} + \frac{1}{y} = \frac{1}{x} - \frac{1}{y} \)答案: B(接下来的题目继续以类似格式出题,每个题目后都直接给出答案)二、填空题2. 若 \( \frac{a}{b} \) 与 \( \frac{c}{d} \) 最简分式相同,则\( ad = bc \),其中 \( a \)、\( b \)、\( c \)、\( d \) 都是非零实数。
请填空,使 \( \frac{3x^2}{4y} \) 与 \( \frac{6x}{y^2} \) 相等,\( x \) 和 \( y \) 的取值范围是:答案: \( x \neq 0 \) 且 \( y \neq 0 \)三、计算题3. 计算下列分式的和:\( \frac{2}{x} + \frac{3}{y} \)解答:首先找到两个分式的最小公倍数,即 \( xy \)。
然后进行通分: \( \frac{2y}{xy} + \frac{3x}{xy} = \frac{2y + 3x}{xy} \)四、化简题4. 化简下列分式:\( \frac{3x^2 - 5x}{x^2 - 9} \)解答:首先分解分子和分母的因式:\( \frac{3x(x - \frac{5}{3})}{(x + 3)(x - 3)} \) 然后约去公因式 \( x - 3 \)(假设 \( x \neq 3 \)):\( \frac{3x}{x + 3} \)五、解分式方程5. 解下列分式方程:\( \frac{1}{x} + \frac{1}{x - 1} = \frac{2}{x^2 - x} \)解答:首先将方程两边乘以 \( x(x - 1) \) 以消去分母:\( (x - 1) + x = 2 \)解得 \( x = \frac{3}{2} \),经检验,\( x = \frac{3}{2} \) 是原方程的解。
中考数学《分式及分式方程》计算题(附答案)
[键入文字]=+1..解方程:.解分式方程:15.(1)解方程:(2)解不等式组.16.解方程:.17.①解分式方程;②解不等式组.18.解方程:.19.(1)计算:|﹣2|+(+1)0﹣()﹣1+tan60°;(2)解分式方程:=+1.20.解方程:21.解方程:+=122.解方程:.23.解分式方程:24.解方程:25.解方程:26.解方程:+=127.解方程:28.解方程:29.解方程:30.解分式方程:.答案与评分标准一.解答题(共30小题)1.解方程:.考点:解分式方程。
专题:计算题。
分析:方程两边都乘以最简公分母y(y﹣1),得到关于y的一元一方程,然后求出方程的解,再把y的值代入最简公分母进行检验.解答:解:方程两边都乘以y(y﹣1),得2y2+y(y﹣1)=(y﹣1)(3y﹣1),2y2+y2﹣y=3y2﹣4y+1,3y=1,解得y=,检验:当y=时,y(y﹣1)=×(﹣1)=﹣≠0,∴y=是原方程的解,∴原方程的解为y=.点评:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.2.解关于的方程:.考点:解分式方程。
专题:计算题。
分析:观察可得最简公分母是(x+3)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x+3)(x﹣1),得x(x﹣1)=(x+3)(x﹣1)+2(x+3),整理,得5x+3=0,解得x=﹣.检验:把x=﹣代入(x+3)(x﹣1)≠0.∴原方程的解为:x=﹣.点评:本题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.3.解方程.考点:解分式方程。
专题:方程思想。
分析:观察可得最简公分母是(x+1)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:两边同时乘以(x+1)(x﹣2),得x(x﹣2)﹣(x+1)(x﹣2)=3.(3分)解这个方程,得x=﹣1.(7分)检验:x=﹣1时(x+1)(x﹣2)=0,x=﹣1不是原分式方程的解,∴原分式方程无解.(8分)点评:考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.4.解方程:=+1.考点:解分式方程。
分式及分式方程测试题及答案
第五章 分式与分式方程检测题(本试卷满分:100分,时间:60分钟)一、选择题(每小题3分,共30分)1.下列分式是最简分式的是( ) A.11m m -- B.3xy y xy - C.22x y x y -+ D.6132mm- 2.将分式2x x y+中的x 、y 的值同时扩大2倍,则分式的值( )A.扩大2倍B.缩小到原来的21C.保持不变D.无法确定 3.若分式112+-x x 的值为零,则的值为( )A.或B. C.D.4.对于下列说法,错误的个数是( ) ①是分式;②当1x ≠时,2111x x x -=+-成立;③当时,分式33x x +-的值是零;④11a b a a b ÷⨯=÷=;⑤2a a a x y x y +=+;⑥3232x x-⋅=-. A.6 B.5 C.4 D.3 5.计算2111111x x ⎛⎫⎛⎫+÷+ ⎪ ⎪--⎝⎭⎝⎭的结果是( ) A.1 B.C.1x x + D.1x x + 6.设一项工程的工程量为1,甲单独做需要天完成,乙单独做需要天完成,则甲、乙两人合做一天的工作量为( ) A.B.1a b + C.2a b + D.11a b+7.分式方程131x x x x +=--的解为( ) A.1x =B.1x =-C.3x =D.3x =-8.下列关于分式方程增根的说法正确的是( )A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根 9.某人生产一种零件,计划在天内完成,若每天多生产个,则天完成且还多生产个,问原计划每天生产多少个零件?设原计划每天生产个零件,列方程得( ) A.3010256x x -=+ B.3010256x x +=+ C.3025106x x =++ D.301025106x x +=-+10.某工程需要在规定日期内完成,如果甲工程队单独做,恰好如期完成; 如果乙工程队单独做,则超过规定日期3天,现在甲、乙两队合做2天,剩下的由乙队独做,恰好在规定日期完成,求规定日期.如果设规定日期为天,下面所列方程中错误的是( ) A.213x x x +=+ B.233x x =+ C.1122133x x x x -⎛⎫+⨯+=⎪++⎝⎭D.113x x x +=+ 二、填空题(每小题3分,共24分)11.若分式33x x --的值为零,则x = . 12.将下列分式约分:(1)258xx ;(2)22357mn nm - ;(3)22)()(a b b a -- .13.计算:2223362cab b c b a ÷= .14.已知,则222n m m n m n n m m ---++________.15.当=x ________时,分式13-x 无意义;当=x ______时,分式392--x x 的值为.16.若方程255x mx x =---有增根5x =,则m =_________. 17.为改善生态环境,防止水土流失,某村拟在荒坡地上种植960棵树, 由于青年团员的支持,每日比原计划多种20棵,结果提前4天完成任务,原计划每天种植多少棵树?设原计划每天种植棵树,根据题意可列方程__________________.18.在5月汛期,重庆某沿江村庄因洪水而沦为弧岛.当时洪水流速为10 km/h ,张师傅奉命用冲锋舟去救援,他发现沿洪水顺流以最大速度航行2 km 所用时间,与以最大速度逆流航行1.2 km 所用时间相等.请你计算出该冲锋舟在静水中的最大航速为 .三、解答题(共46分)19.(8分)计算与化简: (1)222x y y x ⋅; (2)22211444a a a a a --÷-+-;(3)22142a a a ---; (4)211a a a ---.20.(6分)先化简,再求值:222693b ab a ab a +--,其中8-=a ,21-=b .21.(6分)若x1y 1,求y xy x yxy x ---+2232的值.22.(6分)当x =3时,求2221122442x x x x x x⎛⎫-÷ ⎪--+-⎝⎭的值.23.(6分)已知2321302a b a b ⎛⎫-+++= ⎪⎝⎭,求代数式221b a a a a b a b a b ⎛⎫⎛⎫÷-⋅- ⎪ ⎪+--⎝⎭⎝⎭ 的值.24.(8分)解下列分式方程: (1)730100+=x x ; (2)132543297=-----xx x x .25.(6分)某人骑自行车比步行每小时快8 km ,坐汽车比骑自行车每小时快16 km ,此人从地出发,先步行4 km ,然后乘坐汽车10 km 就到达地,他又骑自行车从地返回地,结果往返所用的时间相等,求此人步行的速度.第五章 分式与分式方程检测题参考答案1.C 解析:()11111-=---=--m m m m ,故A 不是最简分式;x x xy x y xy y xy 313)1(3-=-=-,故B 不是最简分式;32613261-=-m m ,故D 不是最简分式;C 是最简分式. 2.A 解析:因为()()yx x y x x y x x y x x +⨯=+=+=+22222224222,所以分式的值扩大2倍.3.C 解析:若分式112+-x x 的值为零,则所以4.B 解析:不是分式,故①不正确;当1x ≠时,2111x x x -=+-成立,故②正确;当 时,分式33x x +-的分母,分式无意义,故③不正确;,故④不正确;,故⑤不正确;,故⑥不正确.5.C 解析:2111111x x ⎛⎫⎛⎫+÷+ ⎪ ⎪--⎝⎭⎝⎭.6.D 解析:因为一项工程,甲单独做需要天完成,乙单独做需要天完成,所以甲一天的工作量为,乙一天的工作量为,所以甲、乙两人合做一天的工作量为11a b+,故选D.7.D 解析:方程两边同时乘,得,化简得.经检验,是分式方程的解.8.D 解析:如果求出的根使原方程的一个分母的值是,那么这个根就是方程的增根. 9.B 解析:原计划生产个零件,若每天多生产个,则天共生产个零件,根据题意列分式方程,得3010256x x +=+,故选B. 10.A 解析:设总工程量为1,因为甲工程队单独去做,恰好能如期完成,所以甲的工作效率为;因为乙工程队单独去做,要超过规定日期3天,所以乙的工作效率为.由题意可知,1122133x x x x -⎛⎫+⨯+= ⎪++⎝⎭,整理,得213x x x +=+,所以312+-=x x x ,即233x x =+,所以A 、B 、C 选项均正确,选项D 不正确.11.解析:若分式33x x --的值为零,则所以.12.(1)83x (2)n m5- (3)1解析:(1)258x x 83x ;(2)22357mn n m -n m 5-;(3)22)()(a b b a --()()122=--b a b a .13. c b a 323 解析:.36262322223322233cb a abc b c b a c ab b c b a =⋅=÷ 14.79解析:因为,所以n m 34=, 所以()()()()()()()()n m n m m n m n m n m n n m n m n m m nm m n m n n m m -+--+++-+-=---++2222 ()()()().799734342222222==⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-+=-+-++-=n n n n n n n n m n m n n m n m m n mn mn m15.1 -3 解析:由得,所以当时,分式13-x 无意义; 由时,分式392--x x 的值为.16.5- 解析:方程两边都乘5x -,得()25x x m =--. ∵ 原方程有增根,∴ 最简公分母50x -=,解得5x =. 把5x =代入()25x x m =--,得50m =-,解得5m =-.17.420960960=+-x x解析:根据原计划完成任务的天数实际完成任务的天数,列方程即可,依题意可列方程为420960960=+-x x . 18.40 km/h 解析:设该冲锋舟在静水中的最大航速为 km/h ,则,解得.19.解:(1)原式2224x y .y x y•=• (2)原式()()()()()2221112a a a a a a +--⋅+--()()212a a a +=+-. (3)原式()()()()()()2222222222a a a a a a a a a a +---=-+-+-+=()()21222a a a a -=-++. (4)原式2111a a a +--=()()2111a a a a -+--=2211a a a -+-=11a -. 20.解:()().3336932222b a ab a b a a b ab a ab a -=--=+--当,时,原式.49162498212483==---=-b a a 21.解:因为x1y1所以所以().41422342)(322232=--=--+-=--+-=---+xy xy xy xy xy xy xy y x xy y x y xy x y xy x22.解:()222112222x x x xx ⎡⎤-÷⎢⎥---⎢⎥⎣⎦()()22221212222x x x x x x x --⋅-⋅-- 1224x x --224x --1122x x=-=--.当时,1123=-- 23.解:由已知,得210,330,2a b a b -+=⎧⎪⎨+=⎪⎩解得1,41.2a b ⎧=-⎪⎪⎨⎪=⎪⎩ ()()22[][]a a b a a b a b a b a b a b----÷⋅+--22b a b ab ab a b b a b a b--⋅⋅=-+-+.当14,12b =时,21114211442⎛⎫⎛⎫-⨯ ⎪ ⎪⎝⎭⎝⎭-=-+.24.解:(1)方程两边都乘,得.解这个一元一次方程,得.检验:把代入原方程,左边右边. 所以,是原方程的根.(2)方程两边都乘,得整理,得.解这个一元一次方程,得.检验:把代入原方程,左边右边. 所以,是原方程的根.25.解:设此人步行的速度是 km/h , 依题意可列方程814168104+=+++x x x ,解这个方程,得.检验可知,是这个方程的根.答:此人步行的速度为6 km/h.。
分式及方程综合测试卷(带答案)
初分式及方程综合测试卷(带答案)(满分100分60分钟完成)学生姓名:____________ 分数:____________一.选择题(共8小题,每题3分,共24分)1.(2014•广州)下列运算正确的是()A.5ab﹣ab=4 B.C.a6÷a2=a4D.(a2b)3=a5b3+=2.(2014•贺州)使分式有意义,则x的取值范围是()A.x≠1B.x=1 C.x≤1D.x≥13.(2014•毕节地区)若分式的值为零,则x的值为()A.0B.1C.﹣1 D.±14.(2014•南通)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x5.(2014•河东区一模)当x=1时,(x﹣2﹣)÷=()A.4B.3C.2D.16.(2014•台州)将分式方程1﹣=去分母,得到正确的整式方程是()A.1﹣2x=3 B.x﹣1﹣2x=3 C.1+2x=3 D.x﹣1+2x=37.(2014•安次区一模)对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()A.B.C.D.﹣8.(2014•龙东地区)已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2C.m≥2且m≠3D.m>2且m≠3二.填空题(共4小题,每题3分,共12分)9.(2014•白银)化简:=_________.10.(2014•台州)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果y n=_________(用含字母x和n的代数式表示).11.(2014•泰州)已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于_________.12.(2014•凉山州)关于x的方程=﹣1的解是正数,则a的取值范围是_________.三.解答题(共9小题,13-14每题4分,15-16每题5分,17-18每题8分,19-21每题10分,共64分)13.(2014•滨州)计算:•.14.(2014•泸州)计算(﹣)÷.15.(2014•仙桃)解方程:.16.(2014•宿迁)解方程:.17.(2014•大庆)已知非零实数a满足a2+1=3a,求的值.18.(2014•安顺)先化简,再求值:(x+1﹣)÷,其中x=2.19.(2014•云南)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?20.(2014•徐州)几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.21.甲、乙两名采购员同去一家饲料公司购买两次饲料.两次饲料的价格分别为m元/千克和n元/千克(m、n 都为正数,且m≠n),两名采购员的购货方式不同,其中甲每次购买800千克;乙每次用去800元,而不管购买多少饲料.(1)用含m、n的代数式表示甲、乙两名采购员两次购买饲料的平均单价各是多少?(2)若规定:谁两次购买饲料的平均单价低,谁的购货方式合算,请你判断甲、乙两名采购员购货方式哪个更合算?说明理由.分式方程的章末综合测试卷参考答案与试题解析一.选择题(共8小题)1.(2014•广州)下列运算正确的是()C.a6÷a2=a4D.(a2b)3=a5b3 A.5ab﹣ab=4 B.+=解答:解:A、原式=4ab,故A选项错误;B、原式=,故B选项错误;C、原式=a4,故C选项正确;D、原式=a6b3,故D选项错误.故选:C.2.(2014•贺州)使分式有意义,则x的取值范围是()A.x≠1B.x=1 C.x≤1D.x≥1解答:解:根据题意得:x﹣1≠0,解得:x≠1.故选:A.3.(2014•毕节地区)若分式的值为零,则x的值为()A.0B.1C.﹣1 D.±1解答:解:由x2﹣1=0,得x=±1.①当x=1时,x﹣1=0,∴x=1不合题意;②当x=﹣1时,x﹣1=﹣2≠0,∴x=﹣1时分式的值为0.故选:C.4.(2014•南通)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x解答:解:=﹣===x,故选:D.5.(2014•河东区一模)当x=1时,(x﹣2﹣)÷=()A.4B.3C.2D.1解答:解:(x﹣2﹣)÷=,当x=1时,原式==2.6.(2014•台州)将分式方程1﹣=去分母,得到正确的整式方程是()A.1﹣2x=3 B.x﹣1﹣2x=3 C.1+2x=3 D.x﹣1+2x=3解答:解:分式方程去分母得:x﹣1﹣2x=3,故选:B.7.(2014•安次区一模)对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()A.B.C.D.﹣解答:解:根据题意得:2⊗(2x﹣1)=﹣=1,去分母得:2﹣(2x﹣1)=4x﹣2,去括号得:2﹣2x+1=4x﹣2,移项合并得:6x=5,解得:x=,经检验是分式方程的解.故选A.8.(2014•龙东地区)已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2C.m≥2且m≠3D.m>2且m≠3解答:解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m=2且m≠3.故选:C二.填空题(共4小题)9.(2014•白银)化简:=x+2.解答:解:+=﹣==x+2.故答案为:x+2.10.(2014•台州)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果y n=(用含字母x和n的代数式表示).解答:解:将y1=代入得:y2==;将y2=代入得:y3==,依此类推,第n次运算的结果y n=.故答案为:.11.(2014•泰州)已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于﹣3.解答:解:∵a2+3ab+b2=0,∴a2+b2=﹣3ab,∴原式===﹣3.故答案为:﹣3.12.(2014•凉山州)关于x的方程=﹣1的解是正数,则a的取值范围是a>﹣1且a≠﹣.解答:解:=﹣1,解得x=,∵=﹣1的解是正数,∴x>0且x≠2,即0且≠2,解得a>﹣1且a≠﹣.故答案为:a>﹣1且a≠﹣.三.解答题(共9小题)13.(2014•滨州)计算:•.解答:解:•=•=x14.(2014•泸州)计算(﹣)÷.解答:解:原式=(﹣)•=(﹣)•(﹣),=﹣•,=﹣.15.(2014•仙桃)解方程:.解答:解:方程两边都乘3(x+1),得:3x﹣2x=3(x+1),解得:x=﹣,经检验x=﹣是方程的解,∴原方程的解为x=﹣.16.(2014•宿迁)解方程:.解答:解:方程两边同乘以x﹣2得:1=x﹣1﹣3(x﹣2)整理得出:2x=4,解得:x=2,检验:当x=2时,x﹣2=0,故x=2不是原方程的根,故此方程无解.17.(2014•大庆)已知非零实数a满足a2+1=3a,求的值.解答:解:∵a2+1=3a,即a+=3,∴两边平方得:(a+)2=a2++2=9,则a2+=7.18.(2014•安顺)先化简,再求值:(x+1﹣)÷,其中x=2.解答:解:原式=[﹣]•=•=•=﹣,当x=2时,原式=﹣=3.19.(2014•云南)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?解答:解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.20.(2014•徐州)几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.解答:解:设票价为x元,由题意得,=+2,解得:x=60,则小伙伴的人数为:=8.答:小伙伴们的人数为8人.21.甲、乙两名采购员同去一家饲料公司购买两次饲料.两次饲料的价格分别为m元/千克和n元/千克(m、n都为正数,且m≠n),两名采购员的购货方式不同,其中甲每次购买800千克;乙每次用去800元,而不管购买多少饲料.(1)用含m、n的代数式表示甲、乙两名采购员两次购买饲料的平均单价各是多少?(2)若规定:谁两次购买饲料的平均单价低,谁的购货方式合算,请你判断甲、乙两名采购员购货方式哪个更合算?说明理由.解答:解:(1)根据题意列得:甲采购员两次购买饲料的平均单价为=元/千克;乙采购员两次购买饲料的平均单价为=元/千克;(2)﹣==,∵(m﹣n)2≥0,2(m+n)>0,∴﹣≥0,即≥,则乙的购货方式合算.。
分式测试题及答案
分式测试题及答案一、选择题1. 分式的基本性质是()A. 分子分母同时乘以一个不为0的数,分式的值不变B. 分子分母同时除以一个不为0的数,分式的值不变C. 分子分母同时乘以或除以一个不为0的数,分式的值不变D. 以上都不对答案:C2. 已知分式\(\frac{a}{b}\),如果\(b=0\),则分式()A. 无意义B. 有意义C. 等于0D. 等于1答案:A3. 将分式\(\frac{3x^2}{2x^2-4x+2}\)化为最简形式,正确的是()A. \(\frac{3x}{2-x}\)B. \(\frac{3x}{x-1}\)C. \(\frac{3x}{2x-1}\)D. \(\frac{3x}{x-2}\)答案:B二、填空题1. 计算分式\(\frac{2}{x-1}+\frac{3}{x+1}\)的和,结果为______。
答案:\(\frac{5x+1}{x^2-1}\)2. 若分式\(\frac{2x-3}{x^2-4}\)有意义,则x不能等于______。
答案:±2三、计算题1. 计算并简化\(\frac{2x^2-4x+2}{x^2-9}\)。
答案:\(\frac{2(x-1)^2}{(x-3)(x+3)} = \frac{2}{x+3}\)(当\(x \neq 3\))2. 计算并简化\(\frac{1}{x-1} - \frac{1}{x+1} + \frac{2}{x^2-1}\)。
答案:\(\frac{2}{x^2-1}\)四、解答题1. 已知\(\frac{a}{b} = \frac{c}{d}\),求\(\frac{ad}{bc} = \)。
答案:12. 若\(\frac{2}{3} \leq \frac{a}{b} < 1\),求\(\frac{a}{b} +\frac{1}{a}\)的取值范围。
答案:\(\frac{5}{3} \leq \frac{a}{b} + \frac{1}{a} < 2\)五、证明题1. 证明:若\(\frac{a}{b} = \frac{c}{d}\),则\(\frac{a+c}{b+d} = \frac{a}{b}\)。
分式及分式方程练习题(附答案)
第十六章 分式单元复习一、选择题1.下列各式中,不是分式方程的是( )111..(1)1111.1.[(1)1]110232x A B x x x x x x xC D x x x -=-+=-+=--=+-2.如果分式2||55x x x -+的值为0,那么x 的值是( )A .0B .5C .-5D .±53.把分式22x yx y +-中的x ,y 都扩大2倍,则分式的值( )A .不变B .扩大2倍C .扩大4倍D .缩小2倍4.下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++----A .2个B .3个C .4个D .5个5.分式方程2114339x x x +=-+-的解是( )A .x=±2B .x=2C .x=-2D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为( )A .-13.55B - C .1 D .无法确定7.关于x 的方程233xkx x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为()A .3B .0C .±3D .无法确定8.使分式224x x +-等于0的x 值为( )A .2B .-2C .±2D .不存在9.下列各式中正确的是( )....a ba ba ba bA B a b a b a b a ba b a b a b a bC D a b a b a b b a-++--==-----++--+-+-==-+-+-10.下列计算结果正确的是( )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= __________ . 2.在比例式9:5=4:3x 中,x=_________________ .3.计算:1111b a b a a b a b++---=_________________ . 4.当x> __________时,分式213x--的值为正数. 5.计算:1111x x ++-=_______________ . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足_______________ . 7.已知x+1x =3,则x 2+21x = ________ . 8.已知分式212x x +-:当x= _ 时,分式没有意义;当x= _______时,分式的值为0;当x=-2时,分式的值为_______. 9.当a=____________时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是_____________.三、解答题1.计算题:2222444(1)(4);282a a a a a a a --+÷-+--222132(2)(1).441x x x x x x x --+÷+-+-2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12;(2)213(2)22x x x x x -÷-+-++,其中x=12.3.解方程:(1)1052112x x +--=2; (2)2233111x x x x +-=-+-.4.课堂上,李老师给大家出了这样一道题:当x=3,5-22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵2313111(1)(1)1x x x x x x x ---=----+- ①31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: ;若不正确,错误的原因是 ;(3)请你写出正确的解答过程.6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?第十六章 分式单元复习题及答案一、选择题1.下列各式中,不是分式方程的是(D )111..(1)1111.1.[(1)1]110232x A B x x x x x x x C D x x x-=-+=-+=--=+- 2.如果分式2||55x x x-+的值为0,那么x 的值是(B ) A .0 B .5 C .-5 D .±53.把分式22x y x y+-中的x ,y 都扩大2倍,则分式的值(A ) A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍4.下列分式中,最简分式有(C )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b-++-++---- A .2个 B .3个 C .4个 D .5个5.分式方程2114339x x x +=-+-的解是(B ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为(B ) A .-13.55B -C .1D .无法确定 7.关于x 的方程233x k x x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为(A ) A .3 B .0 C .±3 D .无法确定8.使分式224x x +-等于0的x 值为(D ) A .2 B .-2 C .±2 D .不存在9.下列各式中正确的是(C )....a b a b a b a bA B a ba b a b a b a ba ba b a b C D a b a b a b b a -++--==-----++--+-+-==-+-+- 10.下列计算结果正确的是(B )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷=二、填空题1.若分式||55y y--的值等于0,则y= -5 . 2.在比例式9:5=4:3x 中,x=2027. 3.1111b a b a a b a b++---的值是 2()a b ab + . 4.当x> 13 时,分式213x--的值为正数. 5.1111x x ++-= 221x - . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足 x ≠±1 . 7.已知x+1x =3,则x 2+21x= 7 . 8.已知分式212x x +-,当x= 2 时,分式没有意义;当x= -12 时,分式的值为0;当x=-2时,分式的值为 34 . 9.当a= -173 时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是 (a a m n +)h . 三、解答题1.计算题.2222222444(1)(4);28241(2)1.(2)(4)424a a a a a a a a a a a a a a --+÷-+----==-+--+解:原式 2222132(2)(1).441(1)(1)1(1)(2)1.(2)112x x x x x x x x x x x x x x x x --+÷+-+-+----==-+--解:原式 2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12; 解:原式=1111111122x x x x x x x x x x -+---÷==-----. 当x=-12时,原式=15. (2)213(2)22x x x x x -÷-+-++,其中x=12.解:原式=22(1)(2)(2)3121(2)(1)2211x x x x x x x x x x ---+++÷=-=-+-++--. 当x=12时,原式=43. 3.解方程.(1)1052112x x+--=2; 解:x=74. (2)2233111x x x x +-=-+-. 解:用(x+1)(x -1)同时乘以方程的两边得,2(x+1)-3(x -1)=x+3.解得 x=1.经检验,x=1是增根.所以原方程无解.4.课堂上,李老师给大家出了这样一道题:当x=3,5-22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.解:原式=2(1)1(1)(1)2(1)x x x x x -++--=12. 由于化简后的代数中不含字母x ,故不论x 取任何值,所求的代数式的值始终不变.所以当x=3,5-12. 5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.解:正确的应是:23111x x x ----=312(1)(1)(1)(1)1x x x x x x x -++=-+-++ 当x=2时,原式=23. 6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?解:设他第一次在购物中心买了x 盒,则他在一分利超市买了75x 盒. 由题意得:12.51475x x -=0.5 解得 x=5.经检验,x=5是原方程的根.答:他第一次在购物中心买了5盒饼干.。
分式运算练习题及答案
分式运算练习题及答案分式运算练习题及答案在数学学习过程中,分式运算是一个重要的内容。
它不仅涉及到分数的加减乘除,还包括分式的化简、分式方程的解法等等。
掌握好分式运算,对于解决实际问题以及进一步学习高等数学都具有重要意义。
下面给大家提供一些分式运算的练习题及答案,希望能够帮助大家巩固知识。
一、分式的加减乘除1. 计算:$\frac{3}{4} + \frac{2}{5}$解答:首先找到两个分数的公共分母,这里是20,然后分别乘以相应的倍数,得到$\frac{15}{20} + \frac{8}{20} = \frac{23}{20}$。
2. 计算:$\frac{5}{6} - \frac{1}{3}$解答:同样找到两个分数的公共分母,这里是6,然后分别乘以相应的倍数,得到$\frac{5}{6} - \frac{2}{6} = \frac{3}{6} = \frac{1}{2}$。
3. 计算:$\frac{2}{3} \times \frac{4}{5}$解答:将两个分数的分子相乘,分母相乘,得到$\frac{8}{15}$。
4. 计算:$\frac{3}{4} \div \frac{2}{5}$解答:将除法转化为乘法,即$\frac{3}{4} \times \frac{5}{2} = \frac{15}{8}$。
二、分式的化简1. 化简:$\frac{4x^2 - 9}{2x^2 - 3x - 2}$解答:将分子和分母进行因式分解,得到$\frac{(2x - 3)(2x + 3)}{(2x + 1)(x - 2)}$,然后约去相同的因子,得到$\frac{2x + 3}{2x + 1}$。
2. 化简:$\frac{2a^2 + 6a + 4}{a^2 + 5a + 6}$解答:同样进行因式分解,得到$\frac{2(a + 2)(a + 1)}{(a + 2)(a + 3)}$,然后约去相同的因子,得到$\frac{2(a + 1)}{a + 3}$。
分式与分式方程练习及答案
分式与分式方程练习及答案1.如果代数式√x+3x 有意义,则实数x 的取值范围是 ( )A .x ≥-3B .x ≠0C .x ≥-3且x ≠0D .x ≥32.如果将分式2x x+y 中的字母x 与y 的值分别扩大为原来的10倍,那么这个分式的值 ( )A .扩大为原来的10倍B .扩大为原来的20倍C .缩小为原来的110D .不改变 3.当分式62x -3的值为正整数时,整数x 的取值可能有 ( ) A .4个B .3个C .2个D .1个 4.计算x+1x -1x ,结果正确的是 ( )A .1B .xC .1xD .x+2x5.一项工作,甲单独完成需要a 天,乙单独完成需要b 天,如果甲、乙二人合作,那么每天的工作效率是 ( )A .a+bB .1+1C .1a+bD .ab a+b 6.已知1m -1n =1,则代数式2m -mn -2n m+2mn -n 的值为( ) A .3 B .1 C .-1D .-3 7.如果a -3b=0,那么代数式a -2ab -b 2a ÷a 2-b 2a 的值是 ( ) A .12 B .-12C .14D .1 8.已知分式满足条件“只含有字母x ,且当x=1时无意义”,请写出一个这样的分式: .9.化简a b -a +b a -b 的结果是 .10.化简:x 2-4x+4x 2+2x ÷4x+2-1= . 11.计算m+2-5m -2÷m -32m -4.12.已知:a 2+3a -2=0,求代数式a -3a 2-2a ÷a+2-5a -2的值.参考答案1.C2.D3.C4.A5.B6.D7.A8.1x -1(答案不唯一)9.-1 [解析] 本题考查了分式的加减法,掌握分式加减法的法则是解题的关键.原式=-a a -b +b a -b =-a+b a -b =-1,故答案为-1.10.2−x x [解析] x 2-4x+4x 2+2x ÷4x+2-1=(x -2)2x(x+2)·x+22−x =2−x x. 11.解:m+2-5m -2÷m -32m -4=(m+2)(m -2)-5m -2·2m -4m -3 =m 2-9m -2·2(m -2)m -3=(m -3)(m+3)m -2·2(m -2)m -3 =2m+6.12.解:原式=a -3a 2-2a ÷[(a+2)(a -2)a -2-5a -2] =a -3a 2-2a ÷a 2-4-5a -2=a -3a(a -2)·a -2(a+3)(a -3)=1a(a+3). ∵a 2+3a -2=0,∴a 2+3a=2,∴原式=1a 2+3a =12.分式方程1.关于x 的方程2x -1=1的解是( )A .x=4B .x=3C .x=2D .x=12.将分式方程1-2x x -1=3x -1去分母,得到正确的整式方程是 ( )A .1-2x=3B .x -1-2x=3C .1+2x=3D .x -1+2x=33.若x=3是分式方程a -2x -1x -2=0的根,则a 的值是 ( )A .5B .-5C .3D .-34.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相同,求甲每小时做中国结的个数.如果设甲每小时做x 个,那么可列方程为( )A .30x =45x+6B .30x =45x -6C .30x -6=45xD .30x+6=45x5.如果分式x -3x+1的值为0,那么x 的值是 .6.分式方程2x -3=32x的解为 . 7.若关于x 的方程ax+1x -2=-1的解是正数,则a 的取值范围是 . 8.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快50千米,提速后从北京到上海运行时间缩短了30分钟.已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x 千米/时,依题意,可列方程为 .9.解方程:x x -1-2x =1.10.解分式方程:1x -2+2=1+x 2−x .11. 2017年9月21日,我国自主研发的中国标准动车组“复兴号”正式上线运营,运营速度世界第一的桂冠,中国失而复得.现有甲、乙两列高铁列车在不同的时刻分别从北京出发开往上海.已知北京到上海的距离约1320千米,列车甲行驶的平均速度为列车乙行驶平均速度的43倍,全程运行时间比列车乙少1.5小时,求列车甲从北京到上海运行的时间.12.若关于x 的方程x -1=m 无解,则m= .13.设a ,b ,c ,d 为实数,现规定一种新的运算:|a b c d |=ad -bc.则满足等式|2x+123x+11|=1的x 的值为 .参考答案1.B2.B3.A4.A5.36.x=-97.a>-1且a ≠-128.1320x =1320x -50-30609.解:方程两边同乘x (x -1),得x 2-2(x -1)=x (x -1).去括号,得x 2-2x+2=x 2-x.移项,得-x+2=0.解得x=2.检验:当x=2时,x (x -1)≠0,所以x=2是原方程的解.10.解:方程两边同乘(x -2),得1+2(x -2)=-1-x.解得:x=23.检验:当x=23时,x -2≠0.所以,原分式方程的解为x=23.11.解:设列车甲从北京到上海运行的时间为x小时,则列车乙从北京到上海的运行时间为(x+1.5)小时.根据题意,得1320x =1320x+1.5×43,解得x=4.5,经检验,x=4.5是所列方程的解,且符合实际意义.答:列车甲从北京到上海运行的时间为4.5小时.12.-813.-5。
分式方程练习题及答案
分式方程练习题及答案一、填空题1. 将分式 $\frac{3}{4}$ 化为小数,计算结果保留两位小数。
解答:0.752. 若 $\frac{a}{3} = \frac{2}{5}$,求 $a$ 的值。
解答:$a = \frac{6}{5}$3. 已知 $\frac{x}{4} = \frac{5}{12}$,求 $x + 2$ 的值。
解答:$x + 2 = \frac{5}{3}$4. 若 $\frac{2}{x} = \frac{7}{16}$,求 $x$ 的值。
解答:$x = \frac{32}{7}$5. 解方程 $\frac{1}{2x} - \frac{3}{4} = \frac{1}{8}$,求 $x$ 的值。
解答:$x = \frac{5}{2}$二、选择题1. 若 $\frac{2}{3}x - 1 = \frac{5}{6}$,则 $x =$A. $-\frac{1}{4}$B. $\frac{1}{2}$C. $\frac{7}{9}$D.$\frac{9}{7}$解答:C. $\frac{7}{9}$2. 若 $x - \frac{2}{3} = \frac{x}{5}$,则 $x =$A. $-\frac{1}{4}$B. $\frac{3}{2}$C. $\frac{15}{17}$D.$\frac{5}{7}$解答:B. $\frac{3}{2}$3. 若 $\frac{x}{3} = \frac{2}{5x}$,则 $x =$A. $-2$B. $-\frac{1}{2}$C. $\frac{1}{2}$D. 2解答:D. 24. 若 $\frac{3}{2} - \frac{4}{x} = \frac{5}{6}$,则 $x =$A. $-\frac{8}{3}$B. $\frac{24}{15}$C. $\frac{35}{2}$D.$\frac{6}{5}$解答:B. $\frac{24}{15}$5. 若 $2 - \frac{3}{x} = \frac{1}{4}$,则 $x =$A. 4B. 5C. 6D. 8解答:C. 6三、解答题1. 解方程 $\frac{x}{4} + \frac{1}{3} = \frac{5}{6}$,求 $x$ 的值。
初中数学-《分式与分式方程》测试题含解析
初中数学-《分式与分式方程》测试题班级:___________ 姓名:___________ 得分:___________一.选择题:(每小题3分共36分) 1.在2a b -,x x 1+,5πx +,a ba b+-中,是分式的有( )A .1个B .2个C .3个D .4个2.每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为( ) A .y x my nx ++元 B .y x ny mx ++元 C .y x n m ++元 D .12x y m n ⎛⎫+ ⎪⎝⎭元3.当x =2时,下列分式中,值为零的是( ) A .2322+--x x x B .942--x x C .21-x D .12++x x4.下列分式是最简分式的是( ) A .11m m -- B .3xy y xy - C .22x y x y -+ D .6132mm -5.若34y x =,则x yx+的值为( ) A .1 B .47 C .54 D .746.计算⎪⎭⎫⎝⎛-÷-x x x x 11所得的正确结论是( ) A.11x - B.1 C. 11x + D.-1 7.a ÷b ×b 1÷c ×c 1÷d ×d1等于( )A .aB .222dc b a C .d a D .ab 2c 2d 28.计算22193m m m --+的结果为: ( ) A .13m + B .-13m - C .-13m + D .13m - 9.分式121x x +-的分子分母都加1,所得的分式22x x +的值比121x x +-( )A .减小了B .不变C .增大了D .不能确定 10.若241()w 1a 42a+⋅=--,则w=( ) A.a 2(a 2)+≠- B.a 2(a 2)-+≠ C.a 2(a 2)-≠ D.a 2(a 2)--≠- 11.关于x 的方式方程232x mx +=-的解是正数,则m 可能是( ) A .﹣4 B .﹣5 C .﹣6 D .﹣7 12.如果关于x 的方程2435x a x b++=的解不是负值,那么a 与b 的关系是( ) A . a >35b B . b≥35a C .5a≥3b D .5a=3b 二、填空题:(每小题3分共12分)13.化简:23410ab ba = .14.已知31=+a a ,则221a a +的值是 。
北师大版数学八年级下册第五章测试题及答案《分式与分式方程》
北师大版数学八年级下册第五章测试卷一、单选题1.在代数式ab a ,23a b ,-0.5xy +23y ,b ca c +-,12x x ---,1π中,是分式的有( ).A .1个B .2个C .3个D .4个2.下列各式从左到右变形正确的是A .1-2-2122x y x y x y x y =++ B .0.220.22a b a b a b a b ++=++C .-1-1--x x x y x y += D .--a b a ba b a b+=+ 3.计算11x x y--的结果是( ). A .()yx x y --B .2()x yx x y +-C .2()x yx x y --D .()yx x y -4.计算2623993m mm m m ⋅÷+--的结果为( ). A .21(3)m +B .21(3)m -+C .21(3)m -D .219m -+5.下列分式方程有解的是( ).A .210x x+=B .123x -=0 C .2111x x x x +=-- D .11x -=1 6.按下列程序计算,当a =-2时,最后输出的答案是().A .132- B .52-C .-1D .12-7.已知a ,b 为实数,且ab =1,设M =11a b a b +++,N =1111a b +++,则M ,N 的大小关系是( ). A .M >NB .M =NC .M <ND .无法确定8.某工程限期完成,甲队独做正好按期完成,乙队独做则要延期3天完成.现两队先合做2天,再由乙队独做,也正好按期完成.如果设规定的期限为x 天,那么根据题意可列出方程:①223x x ++=1;②1122()133x x x x -++=++;③213xx x +=+;④233x x =+.其中正确的个数为( ). A .1 B .2C .3D .4二、填空题9.当x______时,分式22x x -+有意义;当x_______时,分式22x x -+的值为零. 10.若关于x 的分式方程1133ax x -=++在实数范围内无解,则实数a =________.11.已知114a b+=,则3227a ab ba b ab -++-=______.12.某商店销售一种衬衫,四月份的营业额为5 000元,为扩大销售,五月份将每件衬衫按原价的8折销售,销售量比四月份增加了40件,营业额比四月份增加了600元,求四月份每件衬衫的售价.解决这个问题时,若设四月份的每件衬衫的售价为x 元,由题意可列方程为_______.三、解答题13.先化简22144(1)11x x x x -+-÷--,然后从-2≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.14.(1)解方程:23311x x x +---=0;(2)解方程:11322xx x-=---.15.我们把分子为1的分数叫做单位分数,如12,13,14,….任何一个单位分数都可以拆分成两个不同的单位分数的和,如12=13+16,13=14+112,14=15+120,….(1)根据对上述式子的观察,你会发现1115=+□○.请写出□,○所表示的数.(2)进一步思考,单位分数1n(n是不小于2的正整数)=11+△☆,请写出△,☆所表示的代数式,并加以验证.16.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l起跑,绕过点P 跑回到起跑线l(如图所示),途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,乙同学说:“我俩所用的全部时间的和为50秒,捡球过程不算在内时,甲的速度是我的1.2倍.”根据图文信息,请问哪位同学获胜?参考答案1.C 【解析】 【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式. 【详解】2a b 3,-0.5xy +2y 3,1π的分母中均不含有字母,因此它们是整式,而不是分式,ab a ,b ca c+-,1x 2x ---的分母中含有字母,因此是分式.故选C . 【点睛】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式,要注意圆周率π是常数字母. 2.A 【解析】A 原式=222222x yx y x y x y --=++,正确;B 原式=210102a ba b ++,错误;C 原式=1x x y ---,错误;D 显然错误.故选A 3.A111.()()()()x y x x y x x x y x x y x x y x x y x x y ----=-==------故选A 4.B 【解析】 【分析】首先把分式的分子或分母能分解因式的分解因式,再把除法变为乘法,然后约分后相乘即可. 【详解】原式=()m 3m 3+•()()63m 3m -+•m 32m -=-()21m 3+,故选:B . 【点睛】此题主要考查了分式的乘除法,分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分. 5.D 【解析】 【分析】分别按照解分式方程的步骤去分母,解整式方程可判断方程的解的情况. 【详解】A 、方程两边都乘以x 得:x 2+1=0,此整式方程无解,故原分式方程无解;B 、方程两边都乘以2x-3得:1=0,不成立,故方程无解;C 、方程两边都乘以x-1得:2x=x+1,解得x=1,而x=1时分母x-1=0,故原分式方程无解;D 、方程两边都乘以x-1得:x-1=1,解得x=2,当x=2时,分母x-1=1≠0,x=2是原分式方程的解; 故选:D . 【点睛】本题主要考查解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 6.D 【解析】根据题意列出关于m 的代数式,将a=-2代入计算即可求出值. 【详解】由题可知(a 3-a )÷a 2+1=a-1a +1, 当a=-2时,原式=-2-12-+1=12-. 故选:D . 【点睛】此题考查了代数式求值,根据题意列出正确的关系式是解本题的关键. 7.B 【解析】M -N =1a a ++1b b +-(11a ++11b +) =1a a ++1b b +-11a +-11b + =11a a -++11b b -+ =111111a b b a a b -++-+++()()()()=1111ab a b ab b a a b +--++--++()()=2211ab a b -++()()∵ab =1, ∴M -N =0, ∴M =N . 故选B.点睛:本题主要借助作差法将两个数比较大小问题转化为分式化简求值问题. 8.C 【解析】根据规定日期为x 天,则甲队完成任务需要x 天,乙队完成任务需要(x+3)天. 记该工程总量为“1”,根据题意,得:甲、乙的工作效率分别为1x 、13x +. 根据“甲乙合做的工作量+乙做的工作量=1”,由此可列方程:1122133x x x x -⎛⎫+⨯+= ⎪++⎝⎭.根据“甲的工作量+乙做的工作量=1”,可列方程:213xx x+=+.再根据题意得“乙2天做的工作量=甲3天做的工作量”,可列方程:233 x x=+.综上可知②③④方程均符合题意.故选C.点睛:此题考查了由实际问题抽象出分式方程,关键步骤在于找相等关系.当题中没有一些必须的量时,为了简便,应设其为1.本题要掌握好工作效率,工作总量和工作时间的等量关系.9.≠-2 =2【解析】【分析】分式有意义:分母不为零;分式的值为零时,分子为零,且分母不为零.【详解】当分母x+2≠0,即x≠-2时,分式x2x2-+有意义;当分子x-2=0,即x=2时,分式x2x2-+的值为零.故答案分别是:≠2;=2.【点睛】本题考查了分式有意义的条件和分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.10.1【解析】【分析】按照一般步骤解方程,用含a的代数式表示x,既然无解,所以x应该是能令最简公分母为0的值,代入即可解答a.【详解】原方程化为整式方程得:1-x-3=a,整理得x=-2-a,因为无解,所以x+3=0,即x=-3,所以a=-2+3=1. 故答案为:1 【点睛】分式方程无解的可能为:整式方程本身无解,但当整式方程的未知数的系数为一常数时,不存在整式方程无解;分式方程产生增根. 11.1 【解析】∵11a b +=4, ∴4b a ab+=,∴a+b=4ab, ∴-322-7a ab b a b ab ++=()32()7a b ab a b ab +-+-=4387ab ab ab ab --=ab ab=1 故答案为:1. 12.5?0006005?00080%x x+-=40 【解析】设四月份的每件衬衫的售价为x 元, 则五月份的每件衬衫的售价为80%x 元, 五月份的营业额为(5000+600)元,依据“销售量比四月份增加了40件”可得5000600500080%x x+-=40.故答案为:5000600500080%x x+-=40点睛: 解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程. 13.12x x +-,当x =0时,原式=12-(或:当x =-2时,原式=14). 【解析】 【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值代入进行计算即可. 【详解】 解:原式=21x x --×()()2x 1x 1(2)x +--=12x x +-.x满足﹣2≤x≤2且为整数,若使分式有意义,x只能取0,﹣2.当x=0时,原式=﹣12(或:当x=﹣2时,原式=14).【点睛】本题考查分式的化简求值,化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.14.(1)x=0;(2)原方程无解.【解析】【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)方程两边都乘(x+1)(x-1),得3(x+1)-(x+3)=0,3x+3-x-3=0,2x=0,x=0,检验:将x=0代入原方程,得左边=0=右边.所以x=0是原方程的解;(2)方程两边同乘(x-2),得1=-(1-x)-3(x-2),解这个方程,得x=2,检验:当x=2时,分母x-2=0,所以x=2是增根,原方程无解.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.(1) 6,30;(2)n+1,n(n+1)【解析】试题分析:(1)通过观察直接写出口,○所表示的数分别为:6 ,30 ;(2)通过前面几个式子找出规律,再对找出的规律验证即可. 试题解析: (1) 6 ,30 ;(2)n =2时, 111236=+=112123++⨯; n =3时,11133134=++⨯; n =4时,11144145=++⨯; ……1n =11n ++11n n +(). 所以□,△所表示的式子n +1, n (n +1). 验证:()()1111111n n n n n n n++==+++. 点睛:掌握分式的加法运算.16.乙同学获胜. 【解析】 【分析】应算出甲乙两人所用时间.等量关系为:(甲同学跑所用时间+6)+乙同学所用时间=50. 【详解】设乙同学的速度为x 米/秒,则甲同学的速度为1.2x 米/秒, 根据题意,得606061.2x x ⎛⎫++⎪⎝⎭=50,解得x =2.5, 经检验,x =2.5是原方程的解,且符合题意, 所以甲同学所用的时间为601.2x+6=26(秒), 乙同学所用的时间为60x=24(秒), 因为26>24, 所以乙同学获胜. 【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题涉及的公式是:路程=速度×时间.第11 页。
(典型题)初中数学八年级数学下册第五单元《分式与分式方程》测试题(包含答案解析)
①=②,故A正确;
B、当a取互为倒数的值时,即取m和 ,则 ,
当a取m时,① ,当a取 时,②
①=②,故B正确;
C、可举例判断,由 >1得,取a=2,3(2<3)
则 < ,
故C正确;
D、可举例判断,由 得,取a= , ( > )
,
故D错误;
故选:D.
【点睛】
本题考查了相反数的性质,倒数的性质,不等式的性质和代数式求值的知识,正确理解题意是解题的关键.
【详解】
25.计算题:
(1)因式分解: ;
(2)计算: ;
(3)解分式方程: ;
(4)先化简 ,然后从 , ,1,2中选择一个合适的整数作为 的值代入求值.
26.列分式方程解应用题:
2020年玉林市倡导市民积极参与垃圾分类,某小区购进A型和B型两种分类垃圾桶,购买A型垃圾桶花费了2500元,购买B型垃圾桶花费了2000元,且购买A型垃圾桶数量是购买B型垃圾桶数量的2倍,已知购买一个B型垃圾桶比购买一个A型垃圾桶多花30元,求购买一个A型垃圾桶、一个B型垃圾桶各需多少元?
9.B
解析:B
【分析】
最简分式的标准是分子、分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分;
【详解】
A、 ;
B、 的分子分母不能再进行约分,是最简分式;
C、 ;
D、 ;
故选:B.
【点睛】
本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题,在解题中一定要引起注意;.
A.1个B.2个C.3个D.4个
专题04 分式与分式方程-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)
专题04.分式与分式方程一、单选题1.(2021·河北中考真题)由1122c c +⎛⎫- ⎪+⎝⎭值的正负可以比较12c A c +=+与12的大小,下列正确的是( )A .当2c =-时,12A =B .当0c 时,12A ≠C .当2c <-时,12A > D .当0c <时,12A <【答案】C 【分析】先计算1122c c +⎛⎫- ⎪+⎝⎭的值,再根c 的正负判断1122c c +⎛⎫- ⎪+⎝⎭的正负,再判断A 与12的大小即可.【详解】解:11=224+2c cc c +-+,当2c =-时,20c +=,A 无意义,故A 选项错误,不符合题意; 当0c 时,04+2c c=,12A =,故B 选项错误,不符合题意; 当2c <-时,04+2c c>,12A >,故C 选项正确,符合题意; 当20c -<<时,04+2c c <,12A <;当2c <-时,04+2c c>,12A >,故D 选项错误,不符合题意; 故选:C .【点睛】本题考查了分式的运算和比较大小,解题关键是熟练运用分式运算法则进行计算,根据结果进行准确判断.2.(2021·湖南中考真题)为响应习近平总书记“坚决打赢关键核心技术攻坚战”的号召,某科研团队最近攻克了7nm 的光刻机难题,其中1nm 0.000000001m =,则7nm 用科学记数法表示为( ) A .80.710m ⨯ B .8710m -⨯C .80.710m -⨯D .9710m -⨯【答案】D【分析】由题意易得nm 0.000000007m 7=,然后根据科学记数法可直接进行求解. 【详解】解:由题意得:nm 0.000000007m 7=, ∴7nm 用科学记数法表示为9710m -⨯;故选D .【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键.3.(2021·四川眉山市·中考真题)化简221111a a a ⎛⎫+÷ ⎪--⎝⎭的结果是( ) A .1a + B .1a a+ C .1a a- D .21a a + 【答案】B【分析】小括号先通分合并,再将除法变乘法并因式分解即可约分化简. 【详解】解:原式()()()()221111111=11a a a a a aa a a a a a+-+--++⨯=⨯=--故答案是:B . 【点睛】本题考察分式的运算和化简、因式分解,属于基础题,难度不大.解题关键是掌握分式的运算法则.4.(2021·天津中考真题)计算33a ba b a b---的结果是( ) A .3 B .33a b +C .1D .6aa b- 【答案】A【分析】先根据分式的减法运算法则计算,再提取公因式3,最后约分化简即可. 【详解】原式33a b a b -=-,3()a b a b-=-3=.故选A . 【点睛】本题考查分式的减法.掌握分式的减法运算法则是解答本题你的关键. 5.(2021·山东临沂市·中考真题)计算11()()a b b a-÷-的结果是( )A .ab-B .a bC .b a-D .b a【答案】A【分析】根据分式的混合运算顺序和运算法则计算可得.【详解】解:11a b b a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=11ab ab b b a a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=11ab a b ab -⨯-=a b-故选A . 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 6.(2021·江西中考真题)计算11a a a+-的结果为( ) A .1 B .1- C .2a a+D .2a a- 【答案】A【分析】直接利用同分母分式的减法法则计算即可. 【详解】解:11111a a aa a a a++--===.故选:A . 【点睛】本题考查了同分母分式的减法,熟练掌握运算法则是解题的关键.7.(2021·江苏扬州市·中考真题)不论x 取何值,下列代数式的值不可能为0的是( ) A .1x + B .21x -C .11x + D .()21x +【答案】C【分析】分别找到各式为0时的x 值,即可判断.【详解】解:A 、当x =-1时,x +1=0,故不合题意;B 、当x =±1时,x 2-1=0,故不合题意; C 、分子是1,而1≠0,则11x +≠0,故符合题意;D 、当x =-1时,()210x +=,故不合题意;故选C . 【点睛】本题考查了分式的值为零的条件,代数式的值.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 8.(2021·湖北恩施土家族苗族自治州·中考真题)分式方程3111x x x +=--的解是( ) A .1x = B .2x =-C .34x =D .2x =【答案】D【分析】先去分母,然后再进行求解方程即可. 【详解】解:3111x x x +=-- 去分母:13x x +-=,∴2x =, 经检验:2x =是原方程的解;故选D .【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键. 9.(2021·湖南怀化市·中考真题)定义12a b a b ⊗=+,则方程342x ⊗=⊗的解为( ) A .15x =B .25x =C .35x =D .45x =【答案】B【分析】根据新定义,变形方程求解即可 【详解】∵12a b a b ⊗=+,∴342x ⊗=⊗变形为1123242x ⨯+=⨯+,解得25x = ,经检验25x =是原方程的根,故选B 【点睛】本题考查了新定义问题,根据新定义把方程转化一般的分式方程,并求解是解题的关键10.(2021·山东临沂市·中考真题)某工厂生产A 、B 两种型号的扫地机器人.B 型机器人比A 型机器人每小时的清扫面积多50%;清扫2100m 所用的时间A 型机器人比B 型机器人多用40分钟. 两种型号扫地机器人每小时分别清扫多少面积?若设A 型扫地机器人每小时清扫2m x ,根据题意可列方程为( ) A .10010020.53x x =+ B .10021000.53x x += C .10021003 1.5x x += D .10010021.53x x =+ 【答案】D【分析】根据清扫100m 2所用的时间A 型机器人比B 型机器人多用40分钟列出方程即可.【详解】解:设A 型扫地机器人每小时清扫x m 2,由题意可得:10010021.53x x =+,故选D . 【点睛】本题考查了分式方程的实际应用,解题的关键是读懂题意,找到等量关系. 11.(2021·四川成都市·中考真题)分式方程21133x x x-+=--的解为( ) A .2x = B .2x =-C .1x =D .1x =-【答案】A【分析】直接通分运算后,再去分母,将分式方程化为整式方程求解. 【详解】解:21133x x x -+=--,21133x x x --=--,2113x x --=-,213x x --=-,解得:2x =, 检验:当2x =时,32310x -=-=-≠,2x ∴=是分式方程的解,故选:A .【点睛】本题考查了解分式方程,解题的关键是:去分母化为整式方程求解,最后需要对解进行检验.12.(2021·重庆中考真题)若关于x 的一元一次不等式组()322225x x a x ⎧-≥+⎨-<-⎩的解集为6x ≥,且关于y 的分式方程238211y a y y y+-+=--的解是正整数,则所有满足条件的整数a 的值之和是( ) A .5 B .8C .12D .15【答案】B【分析】先计算不等式组的解集,根据“同大取大”原则,得到562a+<解得7a <,再解分式方程得到5=2a y +,根据分式方程的解是正整数,得到5a >-,且5a +是2的倍数,据此解得所有符合条件的整数a 的值,最后求和. 【详解】解:()322225x x a x ⎧-≥+⎨-<-⎩①②解不等式①得,6x ≥,解不等式②得,5+2ax >不等式组的解集为:6x ≥562a+∴<7a ∴< 解分式方程238211y a y y y +-+=--得238211y a y y y +--=--2(38)2(1)y a y y ∴+--=-整理得5=2a y +, 10,y -≠ 则51,2a +≠ 3,a ∴≠- 分式方程的解是正整数,502a +∴>5a ∴>-,且5a +是2的倍数,57a ∴-<<,且5a +是2的倍数,∴整数a 的值为-1, 1, 3, 5, 11358∴-+++=故选:B .【点睛】本题考查解含参数的一元一次不等式、解分式方程等知识,是重要考点,难度一般,掌握相关知识是解题关键.13.(2021·重庆中考真题)关于x 的分式方程331122ax x x x--+=--的解为正数,且使关于y 的一元一次不等式组32122y y y a-⎧≤-⎪⎨⎪+>⎩有解,则所有满足条件的整数a 的值之和是( )A .5-B .4-C .3-D .2-【答案】B【分析】先将分式方程化为整式方程,得到它的解为64x a =+,由它的解为正数,同时结合该分式方程有解即分母不为0,得到40a +>且43a +≠,再由该一元一次不等式组有解,又可以得到20a -<,综合以上结论即可求出a 的取值范围,即可得到其整数解,从而解决问题.【详解】解:331122ax x x x--+=--,两边同时乘以(2x -),3213ax x x -+-=-,()46a x +=, 由于该分式方程的解为正数,∴64x a =+,其中4043a a +>+≠,;∴4a >-,且1a ≠-;∵关于y 的元一次不等式组32122y y y a -⎧≤-⎪⎨⎪+>⎩①②有解,由①得:0y ≤;由②得:2y a >-;∴20a -<,∴2a <综上可得:42a -<<,且1a ≠-;∴满足条件的所有整数a 为:32,0,1--,;∴它们的和为4-;故选B . 【点睛】本题涉及到含字母参数的分式方程和含字母参数的一元一次不等式组等内容,考查了解分式方程和解一元一次不等式组等相关知识,要求学生能根据题干中的条件得到字母参数a 的限制不等式,求出a 的取值范围进而求解,本题对学生的分析能力有一定要求,属于较难的计算问题.14.(2020·辽宁朝阳市·中考真题)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买键球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x 名学生,依据题意列方程得( ) A .807250405x x ⨯=⨯+ B .807240505x x ⨯=⨯+ C .728040505x x ⨯=⨯- D .728050405x x⨯=⨯- 【答案】B【分析】根据“按零售价购买40个毽球与按批发价购买50个毽球付款相同”建立等量关系,分别找到零售价与批发价即可列出方程.【详解】设班级共有x 名学生,依据题意列方程得,807240505x x ⨯=⨯+故选:B . 【点睛】本题主要考查列分式方程,读懂题意找到等量关系是解题的关键.15.(2020·四川绵阳市·中考真题)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为( ) A .1.2小时 B .1.6小时C .1.8小时D .2小时【答案】C【分析】设乙驾车时长为x 小时,则甲驾车时长为(3﹣x )小时,根据两人对话可知:甲的速度为180xkm/h ,乙的速度为803x-km/h ,根据“各匀速行驶一半路程”列出方程求解即可. 【详解】解:设乙驾车时长为x 小时,则甲驾车时长为(3﹣x )小时, 根据两人对话可知:甲的速度为180xkm/h ,乙的速度为803x -km/h ,根据题意得:()1803803x xxx-=-,解得:x 1=1.8或x 2=9, 经检验:x 1=1.8或x 2=9是原方程的解,x 2=9不合题意,舍去,故答案为:C .【点睛】本题考查了分式方程的应用,解决本题的关键是正确理解题意,熟练掌握速度时间和路程之间的关系,找到题意中的等量关系.16.(2020·黑龙江鹤岗市·中考真题)已知关于x 的分式方程433x kx x-=--的解为非正数,则k 的取值范围是( ) A .12k ≤- B .12k -≥C .12k >-D .12k <-【答案】A【分析】表示出分式方程的解,由解为非正数得出关于k 的不等式,解出k 的范围即可.【详解】解:方程433x kx x-=--两边同时乘以(3)x -得:4(3)x x k --=-, ∴412x x k -+=-,∴312x k -=--,∴43kx =+,∵解为非正数,∴403k+≤,∴12k ≤-,故选:A .【点睛】本题考查了分式方程的解及解一元一次不等式,熟练掌握分式方程的解法和一元一次不等式的解法是解题的关键.17.(2020·湖北荆门市·中考真题)已知关于x 的分式方程2322(2)(3)x kx x x +=+--+的解满足41x -<<-,且k 为整数,则符合条件的所有k 值的乘积为( ) A .正数 B .负数C .零D .无法确定【答案】A【分析】先解出关于x 的分式方程得到x=63k-,代入41x -<<-求出k 的取值,即可得到k 的值,故可求解.【详解】关于x 的分式方程2322(2)(3)x k x x x +=+--+得x=217k -, ∵41x -<<-∴21471k --<<-解得-7<k <14 ∴整数k 为-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13, 又∵分式方程中x≠2且x≠-3∴k≠35且k≠0∴所有符合条件的k 中,含负整数6个,正整数13个,∴k 值的乘积为正数,故选A . 【点睛】此题主要考查分式方程与不等式综合,解题的关键是熟知分式方程的求解方法.18.(2020·四川广元市·中考真题)按照如图所示的流程,若输出的=6M -,则输入的m 为( )A .3B .1C .0D .-1【答案】C【分析】根据题目中的程序,利用分类讨论的方法可以分别求得m 的值,从而可以解答本题. 【详解】解:当m 2-2m≥0时,661m =--,解得m=0, 经检验,m=0是原方程的解,并且满足m 2-2m≥0,当m 2-2m <0时,m -3=-6,解得m=-3,不满足m 2-2m <0,舍去.故输入的m 为0.故选:C . 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.(2020·四川成都市·中考真题)已知2x =是分式方程311k x x x -+=-的解,那么实数k 的值为( ) A .3 B .4C .5D .6【答案】B【分析】将2x =代入原方程,即可求出k 值. 【详解】解:将2x =代入方程311k x x x -+=-中,得231221k +=--解得:4k = .故选:B . 【点睛】本题考查了方程解的概念.使方程左右两边相等的未知数的值就是方程的解.“有根必代”是这类题的解题通法.20.(2020·四川遂宁市·中考真题)关于x 的分式方程2mx -﹣32x-=1有增根,则m 的值( ) A .m =2 B .m =1C .m =3D .m =﹣3【答案】D【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可. 【详解】解:去分母得:m +3=x ﹣2,由分式方程有增根,得到x ﹣2=0,即x =2, 把x =2代入整式方程得:m +3=0,解得:m =﹣3,故选:D .【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值. 21.(2020·浙江金华市·中考真题)分式52x x +-的值是零,则x 的值为( ) A .5 B .5- C .2-D .2【答案】B【分析】利用分式值为零的条件可得50x +=,且20x -≠,再解即可. 【详解】解:由题意得:50x +=,且20x -≠,解得:5x =-,故选:B .【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.22.(2020·湖北孝感市·中考真题)已知1x =,1y =,那么代数式()32x xy x x y --的值是( )A .2BC .4D .【答案】D【分析】先按照分式四则混合运算法则化简原式,然后将x 、y 的值代入计算即可.【详解】解:()32x xy x x y --=()()()x x y x y x x y +--11D . 【点睛】本题考查了分式的化简求值,根据分式四则混合运算法则化简分式是解答本题的关键. 23.(2020·河北中考真题)若ab ,则下列分式化简正确的是( )A .22a ab b+=+B .22a a b b -=-C .22a a b b=D .1212aa b b = 【答案】D【分析】根据a≠b ,可以判断各个选项中的式子是否正确,从而可以解答本题. 【详解】∵a≠b ,∴22a a b b +≠+,选项A 错误;22a ab b-≠-,选项B 错误; 22a a b b ≠,选项C 错误;1212a ab b =,选项D 正确;故选:D . 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法. 24.(2020·贵州贵阳市·中考真题)当1x =时,下列分式没有意义的是( )A .1x x+B .1x x -C .1x x-D .1x x + 【答案】B【分析】由分式有意义的条件分母不能为零判断即可. 【详解】1xx -,当x=1时,分母为零,分式无意义.故选B. 【点睛】本题考查分式有意义的条件,关键在于牢记有意义条件. 25.(2019·河北中考真题)如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④【答案】B【分析】将所给分式的分母配方化简,再利用分式加减法化简,据x 为正整数,从所给图中可得正确答案.【详解】解∵2222(2)1(2)1441(2)1x x x x x x x ++-=-=+++++1111xx x -=++.又∵x 为正整数,∴121x x ≤+<1,故表示22(2)1441x x x x +-+++的值的点落在②.故选B . 【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.26.(2019·湖南娄底市·中考真题)2018年8月31日,华为正式发布了全新一代自研手机SoC 麒麟980,这款号称六项全球第一的芯片,随着华为Mate 20系列、荣耀Magic 2相继搭载上市,它的强劲性能、出色能效比、卓越智慧、顶尖通信能力,以及为手机用户带来的更强大、更丰富、更智慧的使用体用,再次被市场和消费者所认可.麒麟980是全球首颗()97110nm nm m -=手机芯片.7nm 用科学记数法表示为( ) A .8710m -⨯ B .9710m -⨯C .80.710m -⨯D .10710m -⨯【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】7nm 用科学记数法表示为9710m -⨯.故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.27.(2019·湖北孝感市·中考真题)已知二元一次方程组1249x y x y +=⎧⎨+=⎩,则22222x xy y x y -+-的值是( ) A .5- B .5C .6-D .6【答案】C【分析】解方程组求出x 、y 的值,对所求式子进行化简,然后把x 、y 的值代入进行计算即可. 【详解】1249x y x y +=⎧⎨+=⎩①②,2②-①×得,27y =,解得72y =,把72y =代入①得,712x +=,解得52x =-, ∴222222()()()x xy y x y x y x y x y -+-=-+-572261x y x y ---===-+,故选C. 【点睛】本题考查了解二元一次方程组,分式化简求值,正确掌握相关的解题方法是关键. 28.(2019·北京中考真题)如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3B .-1C .1D .3【答案】D【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值. 【详解】解:原式=()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭2()()()()m n m n m n m n m m n m m n ⎡⎤+-=+⋅+-⎢⎥--⎣⎦ 3()()3()()mm n m n m n m m n =⋅+-=+-1m n +=∴原式=3,故选D.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.29.(2019·四川中考真题)一辆货车送上山,并按原路下山.上山速度为a 千米/时,下山速度为b 千米/时.则货车上、下山的平均速度为( )千米/时. A .1()2a b + B .aba b+ C .2a bab+ D .2aba b+ 【答案】D【分析】平均速度=总路程÷总时间,设单程的路程为s ,表示出上山下山的总时间,把相关数值代入化简即可.【详解】解:设上山的路程为x 千米,则上山的时间x a 小时,下山的时间为xb小时, 则上、下山的平均速度22xabxxa b ab=++千米/时.故选D .【点睛】本题考查了列代数式以及分式的化简,得到平均速度的等量关系是解决本题的关键,得到总时间的代数式是解决本题的突破点.30.(2019·湖南益阳市·中考真题)解分式方程232112x x x+=--时,去分母化为一元一次方程,正确的是( ) A .x+2=3 B .x ﹣2=3 C .x ﹣2=3(2x ﹣1) D .x+2=3(2x ﹣1)【答案】C【分析】最简公分母是2x ﹣1,方程两边都乘以(2x ﹣1),即可把分式方程便可转化成一元一次方程. 【详解】方程两边都乘以(2x ﹣1),得x ﹣2=3(2x ﹣1),故选C .【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.31.(2019·广东中考真题)定义一种新运算:1an n n bn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mx dx --=-⎰,则m =( )A .-2B .25-C .2D .25【答案】B【分析】根据新定义运算得到一个分式方程,求解即可.【详解】根据题意得,5211m11(5)25m x dx m m m m---⎰-=-=-=-,则25m =-,经检验,25m =-是方程的解,故选B. 【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键. 二、填空题32.(2021·四川资阳市·中考真题)若210x x +-=,则33x x-=_________. 【答案】3【分析】先由210x x +-=可得21x x -=,再运用分式的减法计算33x x-,然后变形将21x x -=代入即可解答.【详解】解:∵210x x +-=∴21x x -=∴()2231333333x x x x x x x x---====.故填:3. 【点睛】本题主要考查了代数式的求值、分式的减法等知识点,灵活对等式进行变形成为解答本题的关键.33.(2021·四川南充市·中考真题)若3n m n m +=-,则2222m n n m+=_________ 【答案】174【分析】先根据3n m n m +=-得出m 与n 的关系式,代入2222m n n m+化简即可; 【详解】解:∵3n mn m+=-,∴()3n m n m +=-,∴2n m =, ∴22222222417+=44m n m m n m m m +=故答案为:174 【点睛】本题考查了分式的混合运算,得出2n m =是解决本题的关键.34.(2021·四川达州市·中考真题)若分式方程22411x a x ax x --+-=-+的解为整数,则整数a =___________. 【答案】±1【分析】直接移项后通分合并同类项,化简、用a 来表示x ,再根据解为整数来确定a 的值. 【详解】解:22411x a x a x x --+-=-+,22411x a x ax x --+-=-+ (2)(1)(2)(1)4(1)(1)x a x a x x x x -+---=-+整理得:2x a=若分式方程22411x a x ax x --+-=-+的解为整数, a 为整数,当1a =±时,解得:2x =±,经检验:10,10x x -≠+≠成立;当2a =±时,解得:1x =±,经检验:分母为0没有意义,故舍去; 综上:1a =±,故答案是:±1.【点睛】本题考查了分式方程,解题的关键是:化简分式方程,最终用a 来表示x ,再根据解为整数来确定a 的值,易错点,容易忽略对根的检验.35.(2021·湖南常德市·中考真题)分式方程1121(1)x x x x x ++=--的解为__________. 【答案】3x =【分析】直接利用通分,移项、去分母、求出x 后,再检验即可.【详解】解:1121(1)x x x x x ++=--通分得:212(1)(1)x x x x x x -+=--,移项得:()301x x x -=-, 30x ∴-=,解得:3x =,经检验,3x =时,(1)60x x -=≠,∴3x =是分式方程的解,故答案是:3x =. 【点睛】本题考查了对分式分式方程的求解,解题的关键是:熟悉通分,移项、去分母等运算步骤,易错点,容易忽略对根进行检验.36.(2021·湖南衡阳市·中考真题)“绿水青山就是金山银山”.某地为美化环境,计划种植树木6000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树__________棵. 【答案】500【分析】设原计划每天植树x 棵,则实际每天植树()125%x +,根据工作时间=工作总量÷工作效率,结合实际比原计划提前3天完成,准确列出关于x 的分式方程进行求解即可.【详解】解:设原计划每天植树x 棵,则实际每天植树()125%x +,6000600031.25x x-=,400x =,经检验,400x =是原方程的解, ∴实际每天植树400 1.25500⨯=棵,故答案是:500.【点睛】本题考查了分式方程的应用,解题的关键是:找准等量关系,准确列出分式方程. 37.(2021·四川凉山彝族自治州·中考真题)若关于x 的分式方程2311x mx x-=--的解为正数,则m 的取值范围是_________. 【答案】m >-3且m ≠-2【分析】先利用m 表示出x 的值,再由x 为正数求出m 的取值范围即可. 【详解】解:方程两边同时乘以x -1得,()231x x m --=-,解得3x m =+, ∵x 为正数,∴m +3>0,解得m >-3.∵x ≠1,∴m +3≠1,即m ≠-2. ∴m 的取值范围是m >-3且m ≠-2.故答案为:m >-3且m ≠-2.【点睛】本题考查的是分式方程的解,熟知求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解是解答此题的关键. 38.(2020·内蒙古呼和浩特市·中考真题)分式22x x -与282x x-的最简公分母是_______,方程228122-=--x x x x的解是____________. 【答案】()2x x - x=-4【分析】根据最简公分母的定义得出结果,再解分式方程,检验,得解. 【详解】解:∵()222x x x x -=-,∴分式22x x -与282x x -的最简公分母是()2x x -, 方程228122-=--x x x x,去分母得:()2282x x x -=-,去括号得:22282x x x -=-, 移项合并得:2280x x +-=,变形得:()()240x x -+=,解得:x=2或-4,∵当x=2时,()2x x -=0,当x=-4时,()2x x -≠0,∴x=2是增根,∴方程的解为:x=-4. 【点睛】本题考查了最简公分母和解分式方程,解题的关键是掌握分式方程的解法. 39.(2020·山东潍坊市·中考真题)若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为_____. 【答案】3【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m 的值.【详解】去分母得3x -(x -2)=m+3,当增根为x=2时,6=m+3 ∴m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值. 40.(2020·湖北黄冈市·中考真题)计算:221yx x y x y ⎛⎫÷- ⎪-+⎝⎭的结果是____________. 【答案】1x y- 【分析】先计算括号内分式的减法、将被除式分母因式分解,再将除法转化为乘法,最后约分即可得.【详解】解:221yx x y x y ⎛⎫÷- ⎪-+⎝⎭()()y x y x x y x y x y x y ⎛⎫+=÷- ⎪+-++⎝⎭()()y y x y x y x y=÷+-+()()yx y x y x y y +=⋅+-1x y=-,故答案为:1x y -. 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 41.(2020·山东滨州市·中考真题)观察下列各式:1234523101526,,,,,357911a a a a a =====, 根据其中的规律可得n a =________(用含n 的式子表示).【答案】()12121n n n ++-+【分析】观察发现,每一项都是一个分数,分母依次为3、5、7,…,那么第n 项的分母是2n+1;分子依次为2,3,10,15,26,…,变化规律为:奇数项的分子是n 2+1,偶数项的分子是n 2-1,即第n 项的分子是n 2+(-1)n+1;依此即可求解.【详解】解:由分析得21(1)21n n n a n ++-=+,故答案为:21(1)21n n n a n ++-=+ 【点睛】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.42.(2020·山东济宁市·中考真题)已知m+n=-3.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是____________. 【答案】1m n -+,13【分析】先计算括号内的,再将除法转化为乘法,最后将m+n=-3代入即可.【详解】解:原式=222m n m n mn m m ⎛⎫+---÷ ⎪⎝⎭=222m n m n mn m m ⎛⎫+---÷ ⎪⎝⎭=()2m n m n m m ⎡⎤++÷-⎢⎥⎢⎥⎣⎦=()2m n m m m n ⎡⎤+⨯-⎢⎥+⎢⎥⎣⎦=1m n -+,∵m+n=-3,代入,原式=13. 【点睛】本题考查了分式的化简求值,解题的关键是掌握分式的运算法则.43.(2019·江西中考真题)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A B C --横穿双向行驶车道,其中6AB BC ==米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB 时的速度.设小明通过AB 时的速度是x 米/秒,根据题意列方程得:_____________________.【答案】66111.2x x+= 【分析】设小明通过AB 时的速度是x 米/秒,根据题意列出分式方程解答即可. 【详解】解:设小明通过AB 时的速度是x 米/秒,可得:66111.2x x +=,故答案为66111.2x x+=, 【点睛】此题考查由实际问题抽象分式方程,关键是根据题意列出分式方程解答.三、解答题44.(2021·湖北随州市·中考真题)先化简,再求值:2141122x x x -⎛⎫+÷⎪++⎝⎭,其中1x =. 【答案】22x -,-2 【分析】(1)先把括号里通分合并,括号外的式子进行因式分解,再约分,将x=1代入计算即可. 【详解】解:原式()()()21221222x x x x x x ++=⋅=++-- 当1x =时,原式2212==-- 【点睛】本题考查了分式的化简求值,用到的知识是约分、分式的加减,熟练掌握法则是解题的关键.45.(2021·山东菏泽市·中考真题)先化简,再求值:22221244m n n m m n m mn n--+÷--+,其中m ,n 满足32m n =-. 【答案】3nm n+;-6. 【分析】先变除法为乘法,后因式分解,化简计算,后变形32nm =-代入求值即可【详解】∵22221244m n n m m n m mn n--+÷--+=2(2)12()()m n m n m n n m n m --+⨯--+=21m n n m --+=3n m n +, ∵32m n =-,∴32nm =-,∴原式=332nn n -+= -6. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的基本顺序,基本计算方法是解题的关键. 46.(2021·湖北宜昌市·中考真题)先化简,再求值:2211111x x x ÷--+-,从1,2,3这三个数中选择一个你认为适合的x 代入求值. 【答案】11x -,1或12【分析】先根据分式混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算即可. 【详解】解:原式21(1)(1)(1)1x x x x =⋅+--+-11x =-.∵x 2﹣1≠0,∴当2x =时,原式1=.或当3x =时,原式12=.(选择一种情况即可) 【点睛】本题考查了分式的化简求值,要了解使分式有意义的条件,熟练掌握分式的运算法则是解题的关键.47.(2021·四川达州市·中考真题)化简求值:231041244a a a a a --⎛⎫⎛⎫-÷ ⎪ ⎪--+⎝⎭⎝⎭,其中a 与2,3构成三角形的三边,且a 为整数. 【答案】24a -+,-2【分析】先根据分式的混合运算法则进行化简,再根据三角形三边关系确定a 的取值范围,把不合题意的a 的值舍去,最后代入求值即可求解.【详解】解:原式()22231024a a a a a ---+=⋅--()()224224a a a a ---=⋅--24a =-+; ∵2,3,a 为三角形的三边,∴3232a -<<+,∴15a <<,∵a 为整数,∴2a =,3或4,由原分式得20a -≠,40a -≠,∴2a ≠且4a ≠,∴3a =, ∴原式=242342a -+=-⨯+=-.【点睛】本题考查了分式的化简求值,正确进行分式的化简是解题关键,在把a 的值代入求值是要注意所求的a 的值保证原分式有意义.48.(2021·湖南株洲市·中考真题)先化简,再求值:2223142x x x x ⎛⎫⋅-- ⎪-+⎝⎭,其中2x =. 【答案】12x -+,2-【分析】先对分式进行化简,然后根据二次根式的运算进行求值即可.【详解】解:原式=()()223231222222x x x x x x x x x -⋅-=-=-+++-++,把2x =代入得:原式=2=-. 【点睛】本题主要考查分式的化简求值及二次根式的运算,熟练掌握分式的化简求值及二次根式的运算是解题的关键.49.(2021·四川成都市·中考真题)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中3=a . 【答案】13a +【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭2311(3)a a a a ++=⋅++13a =+,当3=a时,原式=== 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.50.(2021·四川资阳市·中考真题)先化简,再求值:222211111x x x x x x ⎛⎫++-÷ ⎪---⎝⎭,其中30x -=. 【答案】原式=13. 【分析】利用分式的混合运算法则进行化简,再将3x =代入原式,即可求解.【详解】解:原式=()()()22111111x x x x x x ⎡⎤+--⋅⎢⎥+--⎢⎥⎣⎦=211111x x x x x +-⎛⎫-⋅ ⎪--⎝⎭=211x x x x -⋅-=1x303x x -=∴= 将3x =代入原式,原式=13.【点睛】本题主要考查分式的混合运算.需要掌握分式的混合运算法则、完全平方公式、平方差公式、同分母分式相加减等相关知识.进行分式的混合运算时,要细心. 51.(2021·四川凉山彝族自治州·中考真题)已知112,1x y x y-=-=,求22x y xy -的值. 【答案】-4【分析】根据已知求出xy =-2,再将所求式子变形为()xy x y -,代入计算即可. 【详解】解:∵2x y -=,∴1121y x x y xy xy---===,∴2xy =-, ∴()()22224xy x x y xy y ==---⨯=-.【点睛】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.52.(2021·四川遂宁市·中考真题)先化简,再求值:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数. 【答案】32m m --;12【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用三角形三边的关系,求得m 的值,代入计算即可求出值.【详解】解:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭222(2)99(2)33m m m m m m ⎛⎫--÷+ ⎪---⎝⎭= 2223m m m m ÷--=2232m m m m-⋅-=32m m --=, ∵m 是已知两边分别为2和3的三角形的第三边长,∴3-2<m <3+2,即1<m <5, ∵m 为整数,∴m =2、3、4,又∵m ≠0、2、3∴m =4,∴原式=431422-=-. 【点睛】本题主要考查了分式的化简求值以及三角形三边的关系,解题的关键是掌握分式混合运算顺序和运算法则.53.(2021·江苏连云港市·中考真题)解方程:214111x x x +-=--. 【答案】无解。
初中数学分式与分式方程真题练习及答案解析
初中数学分式与分式方程真题练习一.选择题(共10小题)1.(2015•南昌)下列运算正确的是()A.(2a2)3=6a6B.﹣a2b2•3ab3=﹣3a2b5C.•=﹣1 D.+=﹣12.(2015•山西)化简﹣的结果是()A.B.C.D.3.(2015•台湾)将甲、乙、丙三个正分数化为最简分数后,其分子分别为6、15、10,其分母的最小公倍数为360.判断甲、乙、丙三数的大小关系为何?()A.乙>甲>丙B.乙>丙>甲C.甲>乙>丙D.甲>丙>乙4.(2015•厦门)2﹣3可以表示为()A. 22÷25B. 25÷22C. 22×25D.(﹣2)×(﹣2)×(﹣2)5.(2015•枣庄)关于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣16.(2015•齐齐哈尔)关于x的分式方程=有解,则字母a的取值范围是()A.a=5或a=0 B.a≠0C.a≠5D.a≠5且a≠07.(2015•荆州)若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1C.m>﹣1且m≠1D.m≥﹣1且m≠18.(2015•南宁)对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为()A. 1﹣B. 2﹣C. 1+或1﹣D. 1+或﹣19.(2015•营口)若关于x的分是方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=310.(2015•茂名)张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时经过这种零件x个,则下面列出的方程正确的是()A.=B.=C.=D.=二.填空题(共9小题)11.(2015•上海)如果分式有意义,那么x的取值范围是.12.(2015•常德)使分式的值为0,这时x=.13.(2015•梅州)若=+,对任意自然数n都成立,则a=,b;计算:m=+++…+=.14.(2015•黄冈)计算÷(1﹣)的结果是.15.(2015•安徽)已知实数a、b、c满足a+b=ab=c,有下列结论:①若c≠0,则+=1;②若a=3,则b+c=9;③若a=b=c,则abc=0;④若a、b、c中只有两个数相等,则a+b+c=8.其中正确的是(把所有正确结论的序号都选上).16.(2015•毕节市)关于x的方程x2﹣4x+3=0与=有一个解相同,则a=.17.(2015•黑龙江)关于x的分式方程﹣=0无解,则m=.18.(2015•湖北)分式方程﹣=0的解是.19.(2015•通辽)某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程.三.解答题(共10小题)20.(2015•宜昌)化简:+.21.(2015•南充)计算:(a+2﹣)•.22.(2015•重庆)计算:(1)y(2x﹣y)+(x+y)2;(2)(y﹣1﹣)÷.23.(2015•枣庄)先化简,再求值:(+2﹣x)÷,其中x满足x2﹣4x+3=0.24.(2015•烟台)先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.25.(2015•河南)先化简,再求值:÷(﹣),其中a=+1,b=﹣1.26.(2015•黔东南州)先化简,再求值:÷,其中m是方程x2+2x﹣3=0的根.27.(2015•哈尔滨)先化简,再求代数式:(﹣)÷的值,其中x=2+tan60°,y=4sin30°.28.(2015•广元)先化简:(﹣)÷,然后解答下列问题:(1)当x=3时,求原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?29.(2015•安顺)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?参考答案:一.选择题(共10小题)1.(2015•南昌)下列运算正确的是()A.(2a2)3=6a6B.﹣a2b2•3ab3=﹣3a2b5C.•=﹣1 D.+=﹣1考点:分式的乘除法;幂的乘方与积的乘方;单项式乘单项式;分式的加减法.专题:计算题.分析:A、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可做出判断;C、原式约分得到结果,即可做出判断;D、原式变形后,利用同分母分式的减法法则计算,约分即可得到结果.解答:解:A、原式=8a4,错误;B、原式=﹣3a3b5,错误;C、原式=a﹣1,错误;D、原式===﹣1,正确;故选D.点评:此题考查了分式的乘除法,幂的乘方与积的乘方,单项式乘单项式,以及分式的加减法,熟练掌握运算法则是解本题的关键.2.(2015•山西)化简﹣的结果是()A.B.C.D.考点:分式的加减法.专题:计算题.分析:原式第一项约分后,利用同分母分式的减法法则计算,即可得到结果.解答:解:原式=﹣=﹣==,故选A.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.3.(2015•台湾)将甲、乙、丙三个正分数化为最简分数后,其分子分别为6、15、10,其分母的最小公倍数为360.判断甲、乙、丙三数的大小关系为何?()A.乙>甲>丙B.乙>丙>甲C.甲>乙>丙D.甲>丙>乙考点:分式的混合运算.分析:首先把360分解质因数,可得360=2×2×2×3×3×5;然后根据甲乙丙化为最简分数后的分子分别为6、15、10,6=2×3,可得化简后的甲的分母中不含有因数2、3,只能为5,即化简后的甲为;再根据15=3×5,可得化简后的乙的分母中不含有因数3、5,只能为2,4或8;再根据10=2×5,可得化简后的丙的分母中不含有因数2、5,只能为3或9;最后根据化简后的三个数的分母的最小公倍数为360,甲的分母为5,可得乙、丙的最小公倍数是360÷5=72,再根据化简后的乙、丙两数的分母的取值情况分类讨论,判断出化简后的乙、丙两数的分母各是多少,进而求出化简后的甲乙丙各是多少,再根据分数大小比较的方法判断即可.解答:解:360=2×2×2×3×3×5;因为6=2×3,所以化简后的甲的分母中不含有因数2、3,只能为5,即化简后的甲为;因为15=3×5,所以化简后的乙的分母中不含有因数3、5,只能为2,4或8;因为10=2×5,所以化简后的丙的分母中不含有因数2、5,只能为3或9;因为化简后的三个数的分母的最小公倍数为360,甲的分母为5,所以乙、丙的最小公倍数是360÷5=72,(1)当乙的分母是2时,丙的分母是9时,乙、丙的最小公倍数是:2×9=18,它不满足乙、丙的最小公倍数是72;(2)当乙的分母是4时,丙的分母是9时,乙、丙的最小公倍数是:4×9=36,它不满足乙、丙的最小公倍数是72;所以乙的分母只能是8,丙的分母只能是9,此时乙、丙的最小公倍数是:8×9=72,所以化简后的乙是,丙是,因为,所以乙>甲>丙.故选:A.点评:(1)此题主要考查了最简分数的特征,以及几个数的最小公倍数的求法,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是分别求出化简后的甲、乙、丙的分母各是多少,进而求出化简后的甲乙丙各是多少.(2)此题还考查了分数大小比较的方法,要熟练掌握.4.(2015•厦门)2﹣3可以表示为()A. 22÷25B. 25÷22C. 22×25D.(﹣2)×(﹣2)×(﹣2)考点:负整数指数幂;有理数的乘方;同底数幂的乘法;同底数幂的除法.分析:根据负整数指数幂、同底数幂的除法,即可解答.解答:解:A、22÷25=22﹣5=2﹣3,故正确;B、25÷22=23,故错误;C、22×25=27,故错误;D、(﹣2)×(﹣2)×(﹣2)=(﹣2)3,故错误;故选:A.点评:本题考查了负整数指数幂、同底数幂的除法,解决本题的关键是熟记负整数指数幂、同底数幂的除法的法则.5.(2015•枣庄)关于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣1考点:分式方程的解.专题:计算题.分析:将分式方程化为整式方程,求得x的值然后根据解为正数,求得a的范围,但还应考虑分母x+1≠0即x≠﹣1.解答:解:分式方程去分母得:2x﹣a=x+1,解得:x=a+1,根据题意得:a+1>0且a+1+1≠0,解得:a>﹣1且a≠﹣2.即字母a的取值范围为a>﹣1.故选:B.点评:本题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为0.6.(2015•齐齐哈尔)关于x的分式方程=有解,则字母a的取值范围是()A.a=5或a=0 B.a≠0C.a≠5D.a≠5且a≠0考点:分式方程的解.分析:先解关于x的分式方程,求得x的值,然后再依据“关于x的分式方程=有解”,即x≠0且x≠2建立不等式即可求a的取值范围.解答:解:=,去分母得:5(x﹣2)=ax,去括号得:5x﹣10=ax,移项,合并同类项得:(5﹣a)x=10,∵关于x的分式方程=有解,∴5﹣a≠0,x≠0且x≠2,即a≠5,系数化为1得:x=,∴≠0且≠2,即a≠5,a≠0,综上所述:关于x的分式方程=有解,则字母a的取值范围是a≠5,a≠0,故选:D.点评:此题考查了求分式方程的解,由于我们的目的是求a的取值范围,根据方程的解列出关于a的不等式.另外,解答本题时,容易漏掉5﹣a≠0,这应引起同学们的足够重视.7.(2015•荆州)若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1C.m>﹣1且m≠1D.m≥﹣1且m≠1考点:分式方程的解.专题:计算题.分析:分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为0求出m的范围即可.解答:解:去分母得:m﹣1=2x﹣2,解得:x=,由题意得:≥0且≠1,解得:m≥﹣1且m≠1,故选D点评:此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.8.(2015•南宁)对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为()A. 1﹣B. 2﹣C. 1+或1﹣D. 1+或﹣1考点:解分式方程.专题:新定义.分析:根据x与﹣x的大小关系,取x与﹣x中的最大值化简所求方程,求出解即可.解答:解:当x<﹣x,即x<0时,所求方程变形得:﹣x=,去分母得:x2+2x+1=0,即x=﹣1;当x>﹣x,即x>0时,所求方程变形得:x=,即x2﹣2x=1,解得:x=1+或x=1﹣(舍去),经检验x=﹣1与x=1+都为分式方程的解.故选D.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9.(2015•营口)若关于x的分是方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=3考点:分式方程的增根.分析:方程两边都乘以最简公分母(x﹣3),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.解答:解:方程两边都乘以(x﹣3)得,2﹣x﹣m=2(x﹣3),∵分式方程有增根,∴x﹣3=0,解得x=2,∴2﹣3﹣m=2(3﹣3),解得m=﹣1.故选A.点评:本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.10.(2015•茂名)张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时经过这种零件x个,则下面列出的方程正确的是()A.=B.=C.=D.=考点:由实际问题抽象出分式方程.分析:根据每小时张三比李四多加工5个零件和张三每小时加工这种零件x个,可知李四每小时加工这种零件的个数,根据张三加工120个这种零件与李四加工100个这种零件所用时间相等,列出方程即可.解答:解:设张三每小时加工这种零件x个,则李四每小时加工这种零件(x﹣5)个,由题意得,=,故选B.点评:本题考查的是列分式方程解应用题,根据题意准确找出等量关系是解题的关键.二.填空题(共9小题)11.(2015•上海)如果分式有意义,那么x的取值范围是x≠﹣3.考点:分式有意义的条件.分析:根据分式有意义的条件是分母不为0,列出算式,计算得到答案.解答:解:由题意得,x+3≠0,即x≠﹣3,故答案为:x≠﹣3.点评:本题考查的是分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.12.(2015•常德)使分式的值为0,这时x=1.考点:分式的值为零的条件.专题:计算题.分析:让分子为0,分母不为0列式求值即可.解答:解:由题意得:,解得x=1,故答案为1.点评:考查分式值为0的条件;需考虑两方面的情况:分子为0,分母不为0.13.(2015•梅州)若=+,对任意自然数n都成立,则a=,b﹣;计算:m=+++…+=.考点:分式的加减法.专题:计算题.分析:已知等式右边通分并利用同分母分式的加法法则计算,根据题意确定出a与b 的值即可;原式利用拆项法变形,计算即可确定出m的值.解答:解:=+=,可得2n(a+b)+a﹣b=1,即,解得:a=,b=﹣;m=(1﹣+﹣+…+﹣)=(1﹣)=,故答案为:;﹣;.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.(2015•黄冈)计算÷(1﹣)的结果是.考点:分式的混合运算.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:原式=÷=•=,故答案为:.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.15.(2015•安徽)已知实数a、b、c满足a+b=ab=c,有下列结论:①若c≠0,则+=1;②若a=3,则b+c=9;③若a=b=c,则abc=0;④若a、b、c中只有两个数相等,则a+b+c=8.其中正确的是①③④(把所有正确结论的序号都选上).考点:分式的混合运算;解一元一次方程.分析:按照字母满足的条件,逐一分析计算得出答案,进一步比较得出结论即可.解答:解:①∵a+b=ab≠0,∴+=1,此选项正确;X k B 1 . c o m②∵a=3,则3+b=3b,b=,c=,∴b+c=+=6,此选项错误;③∵a=b=c,则2a=a2=a,∴a=0,abc=0,此选项正确;④∵a、b、c中只有两个数相等,不妨a=b,则2a=a2,a=0,或a=2,a=0不合题意,a=2,则b=2,c=4,∴a+b+c=8,此选项正确.其中正确的是①③④.故答案为:①③④.点评:此题考查分式的混合运算,一元一次方程的运用,灵活利用题目中的已知条件,选择正确的方法解决问题.16.(2015•毕节市)关于x的方程x2﹣4x+3=0与=有一个解相同,则a=1.考点:分式方程的解;解一元二次方程-因式分解法.分析:利用因式分解法求得关于x的方程x2﹣4x+3=0的解,然后分别将其代入关于x 的方程=,并求得a的值.解答:解:由关于x的方程x2﹣4x+3=0,得(x﹣1)(x﹣3)=0,∴x﹣1=0,或x﹣3=0,解得x1=1,x2=3;当x1=1时,分式方程=无意义;当x2=3时,=,解得a=1,经检验a=1是原方程的解.故答案为:1.点评:本题考查了一元二次方程的解、分式方程的解.解分式方程时,注意:分式的分母不为零.17.(2015•黑龙江)关于x的分式方程﹣=0无解,则m=0或﹣4.考点:分式方程的解.分析:分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.解答:解:方程去分母得:m﹣(x﹣2)=0,解得:x=2+m,∴当x=2时分母为0,方程无解,即2+m=2,∴m=0时方程无解.当m=﹣2时分母为0,方程无解,即2+m=﹣2,∴m=﹣4时方程无解.综上所述,m的值是0或﹣4.故答案为:0或﹣4.点评:本题考查了分式方程无解的条件,是需要识记的内容.18.(2015•湖北)分式方程﹣=0的解是15.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣5﹣10=0,解得:x=15,经检验x=15是分式方程的解.故答案为:15.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(2015•通辽)某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程﹣=15.考点:由实际问题抽象出分式方程.分析:设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,根据题意可得,实际比原计划少用15天完成任务,据此列方程即可.解答:解:设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,由题意得,﹣=15.故答案为:﹣=15.点评:本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.三.解答题(共10小题)20.(2015•宜昌)化简:+.考点:分式的加减法.分析:首先约分,然后根据同分母分式加减法法则,求出算式+的值是多少即可.解答:解:+====1.点评:此题主要考查了分式的加减法,要熟练掌握,解答此题的关键是要明确:(1)同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减.(2)异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减法.21.(2015•南充)计算:(a+2﹣)•.考点:分式的混合运算.分析:首先将括号里面通分运算,进而利用分式的性质化简求出即可.解答:解:(a+2﹣)•=[﹣]×=×=﹣2a﹣6.点评:此题主要考查了分式的混合运算,正确进行通分运算是解题关键.22.(2015•重庆)计算:(1)y(2x﹣y)+(x+y)2;(2)(y﹣1﹣)÷.考点:分式的混合运算;整式的混合运算.专题:计算题.分析:(1)原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:(1)原式=2xy﹣y2+x2+2xy+y2=4xy+x2;(2)原式=•=.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.23.(2015•枣庄)先化简,再求值:(+2﹣x)÷,其中x满足x2﹣4x+3=0.考点:分式的化简求值;解一元二次方程-因式分解法.分析:通分相加,因式分解后将除法转化为乘法,再将方程的解代入化简后的分式解答.解答:解:原式=÷=•=﹣,解方程x2﹣4x+3=0得,(x﹣1)(x﹣3)=0,x1=1,x2=3.当x=1时,原式无意义;当x=3时,原式=﹣=﹣.点评:本题综合考查了分式的混合运算及因式分解同时考查了一元二次方程的解法.在代入求值时,要使分式有意义.24.(2015•烟台)先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.解答:解:原式=÷=•=,当x=2时,原式=4.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.25.(2015•河南)先化简,再求值:÷(﹣),其中a=+1,b=﹣1.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a与b的值代入计算即可求出值.解答:解:原式=•=,当a=+1,b=﹣1时,原式=2.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.26.(2015•黔东南州)先化简,再求值:÷,其中m是方程x2+2x﹣3=0的根.考点:分式的化简求值;解一元二次方程-因式分解法.分析:首先根据运算顺序和分式的化简方法,化简÷,然后应用因数分解法解一元二次方程,求出m的值是多少;最后把求出的m的值代入化简后的算式,求出算式÷的值是多少即可.解答:解:÷==∵x2+2x﹣3=0,∴(x+3)(x﹣1)=0,解得x1=﹣3,x2=1,∵m是方程x2+2x﹣3=0的根,∴m1=﹣3,m2=1,∵m+3≠0,∴m≠﹣3,∴m=1,所以原式===点评:(1)此题主要考查了分式的化简求值问题,注意化简时不能跨度太大,而缺少必要的步骤.(2)此题还考查了解一元二次方程﹣因式分解法,要熟练掌握,解答此题的关键是要明确因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.27.(2015•哈尔滨)先化简,再求代数式:(﹣)÷的值,其中x=2+tan60°,y=4sin30°.考点:分式的化简求值;特殊角的三角函数值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x与y的值代入计算即可求出值.解答:解:原式=•=,当x=2+,y=4×=2时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.28.(2015•广元)先化简:(﹣)÷,然后解答下列问题:(1)当x=3时,求原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?考点:分式的化简求值.分析:(1)这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分子、分母先因式分解,约分后再做减法运算;做除法时要注意先把除法运算转化为乘法运算,然后约分化为最简形式,再将x=3代入计算即可;(2)如果=1,求出x=0,此时除式=0,原式无意义,从而得出原代数式的值不能等于﹣1.解答:解:(1)(﹣)÷=[﹣]•=(﹣)•=•=.当x=3时,原式==2;(2)如果=1,那么x+1=x﹣1,解得x=0,当x=0时,除式=0,原式无意义,故原代数式的值不能等于﹣1.点评:本题考查了分式的化简求值.解这类题的关键是利用分解因式的方法化简分式,熟练掌握运算顺序与运算法则是解题的关键.29.(2015•安顺)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?考点:分式方程的应用.专题:应用题.分析:设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.解答:解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.点评:本题考查了分式方程的应用.注意,分式方程需要验根,这是易错的地方.。
分式与分式方程单元测试题(带答案)
分式与分式方程单元测试题 (满分 150分 时间 120分钟)一、选择题(每小题3分,满分30分) 1.若分式x-32有意义,则x 的取值范围是………………………………………( )A .x ≠3B .x =3C .x <3D .x >32.当a 为任何实数时,下列分式中一定有意义的一个是………………………( )A .21aa +B .11+aC .112++a aD .112++a a 3.下列各分式中,最简分式是……………………………………………………( )A .()()y x y x +-8534B .y x x y +-22 C .2222xy y x y x ++ D .()222y x y x +- 4.若把分式2x y x y+-中的x 和y 都扩大3倍,那么分式的值……………………( )A .扩大3倍B .不变C .缩小3倍D .缩小6倍 5.分式方程313-=+-x mx x 有增根,则m 为……………………………………( )A .0B .1C .3D .66.若xy y x =+,则yx11+的值为…………………………………………………( )A .0B .1C .-1D .27.某农场开挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么求x 时所列方程正确的是………( ) A .448020480=--xx B .204480480=+-x xC .420480480=+-x xD .204804480=--xx8.下列各式:π8,11,5,21,7,322x x y x b a a -++中,分式有……………()A .1个B .2个C .3个D .4个9.下列各式的约分运算中,正确的是…………………………………………( )A .326x xx = B .b ac b c a =++ C .0=++b a b a D .1=++b a b a10.把分式2222-+-+-x x x x 化简的正确结果为……………………………………( )A .482--x xB .482+-x xC .482-x xD .48222-+x x二、填空题(每小题3分,满分24分) 1.当x = 3± 时,分式35-x 没有意义. 2.已知432z y x ==,则=+--+z y x z y x 232 43. 3.xyzx y xy 61,4,13-的最简公分母是 yz x 312 .4.分式392--x x 当x 3-= 时分式的值为零.5.若关于x 的分式方程3232-=--x m x x 有增根,则m 为 3± .6.已知2+x a 与2-x b 的和等于442-x x,则a = 2 ,b = 2 .7.要使15-x 与24-x 的值相等,则x = 6 .8.化简=-+-a b bb a a 1 . 三、解答题:(每题8分,共48分)1.22221106532xy x y y x ÷⋅ 2.mn nn m m m n n m -+-+--23.(22+--x x x x )24-÷x x 4.2232342⎪⎪⎭⎫ ⎝⎛÷⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-a b a b a b5.231341651222+-++--+-x x x x x x6.xx x x x x +-÷-+-2221112四、解方程:(每题8分,共32分)1.141-22-=x x2.13132=-+--xx x3.5221332-=-x xx4.71618151+++=+++x x x x五、应用题(每题8分,共16分)1.八年级(11)班的学生周末乘汽车到游览区游览,游览区距学校120km,一部分学生乘慢车先行,出发1h后,另一部分学生乘快车前往,结果他们同时到达游览区.已知快车的速度是慢车速度的1.5倍,求慢车的速度.2.某商店销售一种衬衫,4月份的营业额为5000元,为了扩大销售,在5月份将每件衬衫按原价的8折销售,销量比4月份增加了40件,营业额比4月份增加了600元,求4月份每件衬衫的售价.分式与分式方程单元测试题参考答案一、选择题(每小题3分,满分30分) 1-5 ADCBC 6-10 BCBDA二、填空题(每小题3分,满分24分)1.3±; 2.43; 3.yz x 312; 4.3-=; 5.3±. 6.2,2 . 7.6 8.1三、解答题:(每题8分,共48分)1..67102165323222yx y x x y y x =⋅⋅=解:原式2..22m n m m n n m n m m n n m n m m n n m -=-+--=-+----=解:原式 3..2142)2)(2(442)2)(2()2()2(+=-⋅-+=-⋅-+--+=x x x x x x x x x x x x x x 解:原式 4..4164642233ab b a a b a b =⋅⋅-=解:原式.)3)(1(1)3)(2)(1(2)3)(2)(1()3()2()1()2)(1(1)3)(1(1)3)(2(1--=----=----+---=--+-----=x x x x x x x x x x x x x x x x x x 解:原式5.6..1)1()1)(1()1(2x x x x x x x =-+⋅-+-=解:原式 四、解方程:(每题8分,共32分)1.解:方程两边同时乘以最简公分母12-x 得4)1(2=+x①解①得1=x经检验:1=x 为原分式方程的增根. 2.解:方程两边同乘以3-x 得312-=--x x①解①得2=x经检验:2=x 为原分式方程的解.3.解:原方程可化为整式方程)13(2)52(32-=-x x x解之得215=x 经检验:215=x 为原分式方程的解. 4.解:原方程可化为51617181+-+=+-+x x x x 整理后得)5)(6()6(5)7)(8()8(7+++-+=+++-+x x x x x x x x 即)5)(6(1)7)(8(1++-=++-x x x x 即)5)(6()7)(8(++=++x x x x即 3011561522++=++x x x x解之得213-=x经检验:213-=x 为原分式方程的解.五、应用题(每题8分,共16分)1.解:设慢车的速度为x km/h ,则快车的速度为x 5.1km/h.依题意可得分式方程 x x 5.11201120=-解之得40=x 经检验:40=x 为所列分式方程的解. 答:慢车的速度为40km/h 。
北师大版数学八年级下册第五章 分式与分式方程 达标测试卷(含答案)
第五章 分式与分式方程 达标测试卷 一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列代数式,是分式的是( ) A.3x 2π B.m +n m C.ab 25 D.52.【2022·天津】计算a +1a +2+1a +2的结果是( ) A .1 B .2a +2 C .a +2 D .a a +23.【2022·佛山禅城区期末】如果分式|m +4|m -4的值为0,那么m 的值为( ) A .不存在 B .±4 C .4 D .-44.运用分式的性质,下列计算正确的是( )A.-x +y 2=-x +y 2B.x -3x 2-9=1x -3C.x 2-2xy +y 2x -y =x -yD.xy x 2-xy =x x -y5.若将分式3m m +n 与4n 2(m -n )通分,则分式3m m +n的分子应变为( ) A .6m 2-6mn B .6m -6n C .2(m -n ) D .2(m -n )(m +n )6.若关于x 的分式方程3x +ax x +1=2-3x +1有增根x =-1,则2a -3的值为( ) A .2 B .3 C .4 D .67.【2022·德阳】关于x 的方程2x +a x -1=1的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a ≠0 C .a <-1 D .a <-1且a ≠-28.已知x 2-4x -3÷是一道分式化简题,其中一部分被墨水污染了,若只知道该题化简的结果为整式,则被墨水覆盖的部分不可能是( )A .x -3B .x -2C .x +3D .x +29.师徒两人做工艺品,已知徒弟每天比师傅少做6个,徒弟做48个所用的时间与师傅做72个所用的时间相同,则师傅每天做( )A .12个B .18个C .20个D .24个10.若关于x 的不等式组⎩⎪⎨⎪⎧x -3(x -2)>-2,a +x 2<x 有解,关于y 的分式方程ay -14-y +3y -4=-2有整数解,则符合条件的所有整数a 的和为( )A .0B .1C .2D .5二、填空题:本大题共5小题,每小题3分,共15分.11.分式m m 2-n 2和n 3m +3n的最简公分母为__________. 12.用换元法解分式方程x +1x -2x x +1=1时,如果设x x +1=y ,那么原方程可以化为关于y 的整式方程是________.13.【2022·成都】已知2a 2-7=2a ,则代数式⎝⎛⎭⎪⎫a -2a -1a ÷a -1a 2的值为________. 14.【2022·江西】甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x 人,则可列分式方程为________________.15.对于两个非零的实数a ,b ,规定a *b =3b -2a ,若5*(3x -1)=2,则x 的值为________.三、解答题(一):本大题共3小题,每小题8分,共24分.16.计算:(1)x 2x -3÷34x 2-9·12x +3; (2)⎝ ⎛⎭⎪⎫a -1+2a +1÷(a 2+1).17.解分式方程:(1)1-x x -2=12-x -2; (2)4x 2-9-x 3-x=1.18.已知x (x -1)-(x 2-y )=-6,求x 2+y 22-xy 的值.四、解答题(二):本大题共3小题,每小题9分,共27分.19.先化简,再求值:⎝ ⎛⎭⎪⎫x +2x -2+4x 2-4x +4÷x x -2,其中-1<x ≤2且x 为整数.请你选一个合适的x 值代入求值.20.【原创题】北京首条全封闭马拉松路线是冬奥公园的一大亮点,这条“特色最鲜明、体验最丰富、服务最专业”的42公里滨河马拉松路线,充分融合“永定河”“西山”“首钢工业”“冬奥”元素,构建畅通无阻的慢行绿道,具备“智慧跑”“滨水跑”“公园跑”“堤上跑”等多功能特色。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 分式与分式方程检测题(本试卷满分:100分,时间:60分钟)一、选择题(每小题3分,共30分)1.下列分式是最简分式的是( ) A.11m m -- B.3xy y xy - C.22x y x y -+ D.6132mm- 2.将分式2x x y+中的x 、y 的值同时扩大2倍,则分式的值( )A.扩大2倍B.缩小到原来的21C.保持不变D.无法确定 3.若分式112+-x x 的值为零,则的值为( )A.或B. C.D.4.对于下列说法,错误的个数是( ) ①是分式;②当1x ≠时,2111x x x -=+-成立;③当时,分式33x x +-的值是零;④11a b a a b ÷⨯=÷=;⑤2a a a x y x y +=+;⑥3232x x-⋅=-. A.6 B.5 C.4 D.3 5.计算2111111x x ⎛⎫⎛⎫+÷+ ⎪ ⎪--⎝⎭⎝⎭的结果是( ) A.1 B.C.1x x + D.1x x + 6.设一项工程的工程量为1,甲单独做需要天完成,乙单独做需要天完成,则甲、乙两人合做一天的工作量为( ) A.B.1a b + C.2a b + D.11a b+7.分式方程131x x x x +=--的解为( ) A.1x =B.1x =-C.3x =D.3x =-8.下列关于分式方程增根的说法正确的是( )A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根 9.某人生产一种零件,计划在天内完成,若每天多生产个,则天完成且还多生产个,问原计划每天生产多少个零件?设原计划每天生产个零件,列方程得( ) A.3010256x x -=+ B.3010256x x +=+ C.3025106x x =++ D.301025106x x +=-+10.某工程需要在规定日期内完成,如果甲工程队单独做,恰好如期完成; 如果乙工程队单独做,则超过规定日期3天,现在甲、乙两队合做2天,剩下的由乙队独做,恰好在规定日期完成,求规定日期.如果设规定日期为天,下面所列方程中错误的是( ) A.213x x x +=+ B.233x x =+ C.1122133x x x x -⎛⎫+⨯+=⎪++⎝⎭D.113x x x +=+ 二、填空题(每小题3分,共24分)11.若分式33x x --的值为零,则x = . 12.将下列分式约分:(1)258xx ;(2)22357mn nm - ;(3)22)()(a b b a -- .13.计算:2223362cab b c b a ÷= .14.已知,则222n m m n m n n m m ---++________.15.当=x ________时,分式13-x 无意义;当=x ______时,分式392--x x 的值为.16.若方程255x mx x =---有增根5x =,则m =_________. 17.为改善生态环境,防止水土流失,某村拟在荒坡地上种植960棵树, 由于青年团员的支持,每日比原计划多种20棵,结果提前4天完成任务,原计划每天种植多少棵树?设原计划每天种植棵树,根据题意可列方程__________________.18.在5月汛期,重庆某沿江村庄因洪水而沦为弧岛.当时洪水流速为10 km/h ,张师傅奉命用冲锋舟去救援,他发现沿洪水顺流以最大速度航行2 km 所用时间,与以最大速度逆流航行1.2 km 所用时间相等.请你计算出该冲锋舟在静水中的最大航速为 .三、解答题(共46分)19.(8分)计算与化简: (1)222x y y x ⋅; (2)22211444a a a a a --÷-+-;(3)22142a a a ---; (4)211a a a ---.20.(6分)先化简,再求值:222693b ab a ab a +--,其中8-=a ,21-=b .21.(6分)若x1y 1,求y xy x yxy x ---+2232的值.22.(6分)当x =3时,求2221122442x x x x x x⎛⎫-÷ ⎪--+-⎝⎭的值.23.(6分)已知2321302a b a b ⎛⎫-+++= ⎪⎝⎭,求代数式221b a a a a b a b a b ⎛⎫⎛⎫÷-⋅- ⎪ ⎪+--⎝⎭⎝⎭ 的值.24.(8分)解下列分式方程: (1)730100+=x x ; (2)132543297=-----xx x x .25.(6分)某人骑自行车比步行每小时快8 km ,坐汽车比骑自行车每小时快16 km ,此人从地出发,先步行4 km ,然后乘坐汽车10 km 就到达地,他又骑自行车从地返回地,结果往返所用的时间相等,求此人步行的速度.第五章 分式与分式方程检测题参考答案1.C 解析:()11111-=---=--m m m m ,故A 不是最简分式;x x xy x y xy y xy 313)1(3-=-=-,故B 不是最简分式;32613261-=-m m ,故D 不是最简分式;C 是最简分式. 2.A 解析:因为()()yx x y x x y x x y x x +⨯=+=+=+22222224222,所以分式的值扩大2倍.3.C 解析:若分式112+-x x 的值为零,则所以4.B 解析:不是分式,故①不正确;当1x ≠时,2111x x x -=+-成立,故②正确;当 时,分式33x x +-的分母,分式无意义,故③不正确;,故④不正确;,故⑤不正确;,故⑥不正确.5.C 解析:2111111x x ⎛⎫⎛⎫+÷+ ⎪ ⎪--⎝⎭⎝⎭.6.D 解析:因为一项工程,甲单独做需要天完成,乙单独做需要天完成,所以甲一天的工作量为,乙一天的工作量为,所以甲、乙两人合做一天的工作量为11a b+,故选D.7.D 解析:方程两边同时乘,得,化简得.经检验,是分式方程的解.8.D 解析:如果求出的根使原方程的一个分母的值是,那么这个根就是方程的增根. 9.B 解析:原计划生产个零件,若每天多生产个,则天共生产个零件,根据题意列分式方程,得3010256x x +=+,故选B. 10.A 解析:设总工程量为1,因为甲工程队单独去做,恰好能如期完成,所以甲的工作效率为;因为乙工程队单独去做,要超过规定日期3天,所以乙的工作效率为.由题意可知,1122133x x x x -⎛⎫+⨯+= ⎪++⎝⎭,整理,得213x x x +=+,所以312+-=x x x ,即233x x =+,所以A 、B 、C 选项均正确,选项D 不正确.11.解析:若分式33x x --的值为零,则所以.12.(1)83x (2)n m5- (3)1解析:(1)258x x 83x ;(2)22357mn n m -n m 5-;(3)22)()(a b b a --()()122=--b a b a .13. c b a 323 解析:.36262322223322233cb a abc b c b a c ab b c b a =⋅=÷ 14.79解析:因为,所以n m 34=, 所以()()()()()()()()n m n m m n m n m n m n n m n m n m m nm m n m n n m m -+--+++-+-=---++2222 ()()()().799734342222222==⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-+=-+-++-=n n n n n n n n m n m n n m n m m n mn mn m15.1 -3 解析:由得,所以当时,分式13-x 无意义; 由时,分式392--x x 的值为.16.5- 解析:方程两边都乘5x -,得()25x x m =--. ∵ 原方程有增根,∴ 最简公分母50x -=,解得5x =. 把5x =代入()25x x m =--,得50m =-,解得5m =-.17.420960960=+-x x解析:根据原计划完成任务的天数实际完成任务的天数,列方程即可,依题意可列方程为420960960=+-x x . 18.40 km/h 解析:设该冲锋舟在静水中的最大航速为 km/h ,则,解得.19.解:(1)原式2224x y .y x y•=• (2)原式()()()()()2221112a a a a a a +--⋅+--()()212a a a +=+-. (3)原式()()()()()()2222222222a a a a a a a a a a +---=-+-+-+=()()21222a a a a -=-++. (4)原式2111a a a +--=()()2111a a a a -+--=2211a a a -+-=11a -. 20.解:()().3336932222b a ab a b a a b ab a ab a -=--=+--当,时,原式.49162498212483==---=-b a a 21.解:因为x1y1所以所以().41422342)(322232=--=--+-=--+-=---+xy xy xy xy xy xy xy y x xy y x y xy x y xy x22.解:()222112222x x x xx ⎡⎤-÷⎢⎥---⎢⎥⎣⎦()()22221212222x x x x x x x --⋅-⋅-- 1224x x --224x --1122x x=-=--.当时,1123=-- 23.解:由已知,得210,330,2a b a b -+=⎧⎪⎨+=⎪⎩解得1,41.2a b ⎧=-⎪⎪⎨⎪=⎪⎩ ()()22[][]a a b a a b a b a b a b a b----÷⋅+--22b a b ab ab a b b a b a b--⋅⋅=-+-+.当14,12b =时,21114211442⎛⎫⎛⎫-⨯ ⎪ ⎪⎝⎭⎝⎭-=-+.24.解:(1)方程两边都乘,得.解这个一元一次方程,得.检验:把代入原方程,左边右边. 所以,是原方程的根.(2)方程两边都乘,得整理,得.解这个一元一次方程,得.检验:把代入原方程,左边右边. 所以,是原方程的根.25.解:设此人步行的速度是 km/h , 依题意可列方程814168104+=+++x x x ,解这个方程,得.检验可知,是这个方程的根.答:此人步行的速度为6 km/h.。