机械制造基础-铸造工艺
机械制造基础工程材料铸造
机械制造基础工程材料铸造1. 概述铸造是一种常见的制造工艺,用于生产各种复杂形状的零件。
在机械制造行业中,铸造被广泛应用于生产各种机床、汽车、航空航天和电子设备等零部件。
铸造工艺可以制造各种不同材料的零件,其中,工程材料在机械制造中扮演着重要的角色。
2. 工程材料的分类在铸造中,常见的工程材料包括铁、钢、铜、铝等。
这些工程材料具有不同的特性和用途,可以满足不同行业的需求。
•铁: 铁是一种常见的工程材料,具有优良的机械性能和导热性能。
铁可以进一步细分为生铁和钢铁,其在机械制造中广泛应用于制造车床、机床床身等零件。
•钢: 钢是一种由铁和碳组成的合金,具有优异的强度和韧性。
钢在机械制造中经常用于制造齿轮、轴承和弹簧等零部件。
•铜: 铜具有良好的导电性和导热性,因此在电子设备和通信领域有广泛的应用。
铜在铸造中常用于制造导线、电缆和散热器等零件。
•铝: 铝是一种轻质金属,具有良好的可塑性和耐腐蚀性。
铝材常用于制造汽车发动机缸盖、飞机零件以及各种物体的外壳。
3. 铸造工艺铸造是一种将熔化金属或合金注入到模具中,冷却后得到所需形状的工艺。
在铸造过程中,主要包括模具制备、熔炼、浇注和冷却四个步骤。
•模具制备: 模具是铸造过程中最关键的工具。
模具可以制成各种形状,以便在铸造过程中得到所需的零件。
模具制备的材料一般为石膏、砂状物或金属材料。
•熔炼: 熔炼是将金属或合金加热至其熔点以上的操作。
常见的熔炼设备包括电炉、感应炉和火焰炉等。
在熔炼过程中,根据所需材料的不同,可以添加适量的合金元素以改善材料的性能。
•浇注: 浇注是将熔化的金属或合金倒入模具中的操作。
在浇注过程中,需要控制好浇注温度和速度,以确保熔化的金属或合金填充整个模具。
•冷却: 冷却是指将浇注后的熔化金属或合金冷却至室温的过程。
冷却速度会影响材料的结晶形态和性能。
通常,通过在冷却过程中控制冷却速度,可以获得所需的材料性能。
4. 铸造材料的性能测试铸造材料的性能测试是保证产品质量和性能的重要环节。
机械制造基础(02-1毛坯的成形)
金属毛坯的成形(典型模锻件)
金属毛坯的成形(锤上锻模)
金属毛坯的成形(零件的模锻过程)
金属毛坯的成形(冲压)
冲压:使板料经分离或成形而得到制件的加工方法。 特点: 1.操作简便,易于实现机械化和自动化,生产率高,成本 低。 2.冲压件精度高,表面质量好,互换性好,可直接使用。 3.冲压件质量轻,强度、刚度高,有利于减轻结构重量。 4.模具制造复杂,周期长、成本高。 5.对板材有要求,应具有良好的塑性,厚度小于8mm。
锻压加工:是利用金属的塑性变形以得到一定形状的制件 并可提高或改善制件力学性能或物理性能的加工方法,它 是锻造和冲压的总称。
金属毛坯的成形(锻造)
锻造:在加压设备及工(模)具的作用,使坯料或铸锭产 生局部或全部的塑性变形,以获得一定几何尺寸、形状和 质量的锻件的加工方法。 锻造的特点: 1.锻造能提高材料的致密度,细化晶粒,改善偏析,流线 合理分布,因此锻件的力学性能较高。 2.锻造难于锻出形状复杂,尤其是复杂内腔的锻件。
锻造分类:自由锻、模锻、胎模锻。
金属毛坯的成形(自由锻)
自由锻:只用简单的通用性锻造工具,或在锻造设备的 上下砧之间直接使坯料变形而获得锻件的锻造方法。
特点: 1.可以加工各种大小的锻件,对于大型锻件,自由锻是 唯一的生产方法。 2.生产准备时间短。 3.生产率低,劳动强度大。 4.锻件形状简单,精度低,加工余量大,适用于单件小 批量生产。
金属毛坯的成形(冲模)
冲模的分类: 1.简单模 2.连续模
3.复合模
金属毛坯的成形(焊接)
焊接:通过加热或加压或两者并用,并且用或不用填充 材料,使焊件达到原子间结合的一种加工方法。
特点: 1.加工范围广,可加工大型构件和复杂构件,以及良好 的密封性构件。 2.经济性好。 3.加热冷却不均匀,造成焊件接头处的组织性能不均匀, 并且焊件易产生内应力和变形。
机械制造基础(第二版)第9章 z铸造锻压与焊接
机械制造基础
第九章 铸造、锻压和焊接
9-2 锻压
9-2 锻压
锻压是一种借助工具或模具在冲击或压力作用下,对金 属坯料施加外力,使其产生塑性变形,改变尺寸、形状及性 能,用以制造机械零件或零件毛坯的成形加工方法,锻压叉 称作锻造或冲压。
砂型铸造的基本工艺过程如图9-6所示。主要工序有制 造模样和芯盒、备制型砂和芯砂、造型、造芯、合型、浇注、 落砂清理和检验等。其中造型(芯)是砂型铸造最基本的工序, 按紧实型砂和起模方法不同,造型方法可分为手工造型和机 器造型两种。
9-1 铸造
9-1 铸造
1.手工造型 手工造剂操作灵活,工装简单,但劳动强度大,生产率低,
(1)应尽量使铸件位于同一铸型内
不合理
合理
9-1 铸造
(2)尽量减少分型面
9-1 铸造
(3)尽量使分型面平直
9-1 铸造
(4)尽量使型腔和主要型芯位于下砂箱
不合理
合理
9-1 铸造
(二)确定铸造主要工艺参数 铸造工艺参数是指铸造工艺设计时需要确定的某些数据。 主要指加工余量、起模斜度、铸造收缩率、型芯头尺寸、 铸造圆角等。这些工艺参数不仅和浇注位置及模样有关, 还与造芯、下芯及合型的工艺过程有关。 在铸造过程中,为了便于制作模样和简化造型操作,一 般在确定工艺参数前要根据零件的形状特征简化铸件结构。 例如零件上的小凸台、小凹槽、小孔等可以不铸出,留待 以后切削加工。在单件小批生产条件下铸件的孔径小于30 mm、凸台高度和凹槽深度小于10 mm时,可以不铸出。 1.加工余量 在铸件工艺设计时预先增加而在机加工中再切去的金属层厚 度,称为加工余量。根据GB/T 11350—1989《铸件机械 加工余量》的规定,确定加工余量之前,需先确定铸件的尺 寸公差等级和加工余量等级。
机械制造基础 第一篇 铸造成形 第二讲 砂型铸造
24
• 4、型芯头:是指型芯端头的延伸部分主 要用于定位和固定砂芯
25
5、最小铸出孔及槽 ① 大孔应铸出 ② 小孔不铸 ③ 零件图中不要求加工的孔、槽,无论 大小均要铸出
26
ห้องสมุดไป่ตู้
14
选择浇注位置的原则:
1、铸件的重要面应朝下或位于侧面
15
2、铸件的大平面应朝下
16
3、铸件面积较大的薄壁部分朝下或侧立
油盘
17
4、铸件厚壁部位朝上或侧立
18
二、铸型分型面的选择:
分型面:是指两半铸型互相接触的表面 • 1、尽量使铸件的全部或大部分置于同一 砂型中 • 2、尽量减少分型面的数量 • 3、分型面尽量选用平直面 • 4、尽量减少型芯和活块的数量 • 5、尽量使型腔及主要型芯位于下型
19
分模面
20
• 说明:
• 一、铸件分型面的选择与浇注位置有密切的 关系。先定浇注位置再选分型面;确定浇注 位置时考虑分型面,确定分型面时尽可能与 浇注位置一致。 • 二、浇注位置和分型面的选择原则,有时相 互矛盾,我们应抓住主要矛盾,以优先保证 铸件质量为主,再考虑简化造型工艺,而对 于质量要求一般的铸件,则以简化造型工艺 为主,再选择浇注位置
4
• 3、型、芯砂应具备的性能:
(通常由硅砂、粘土或粘结材料和水按 一定比例混制而成)
(1)强 度 (2)耐火性 (3)透气性 (4)退让性
5
§1–2–1 造型与造芯方法
• 制造砂型的工艺过程称为造型,通常分 为手工造型和机器造型两大类 一、手工造型:(见P15表1.5) 用手工完成填砂、紧实和起模 • 1、按砂箱特征分: (1)两箱造型 (2)三箱造型 (3)脱箱造型 (4)地坑造型
机械制造基础
机械制造基础铸造.锻压.焊接复习资料铸造一、概念1、铸造:铸造是将熔融金属浇注、压射或吸入铸型型腔,冷却凝固后获得一定形状和性能的零件或毛坯的金属成形工艺。
2、合金的流动性:是指液态合金本身的流动能力。
3、比热容:是单位质量物体改变单位温度时吸收或释放的能量。
4、液体收缩:指液态金属由浇注温度冷却到凝固开始温度(液相线温度)之间的收缩。
5、凝固收缩:指从凝固开始温度到凝固终了温度(固相线温度)之间的收缩。
6、固态收缩:指合金从凝固终了温度冷却到室温之间的收缩。
7、缩孔:在铸件凝固过程中,由于合金的液态收缩和凝固收缩,使铸件的最后凝固部位出现孔洞,面积较大而集中的孔洞称为缩孔。
8、缩松:在铸件凝固过程中,由于合金的液态收缩和凝固收缩,使铸件的最后凝固部位出现孔洞,细小而分散的孔洞称为缩松。
9、顺序凝固原则:顺序凝固原则就是在铸件上可能出现缩孔的厚大部位通过安放冒口等工艺措施,使铸件远离冒口的部位先凝固,然后是靠近冒口的部位凝固,最后才是冒口本身凝固。
10、热应力:温度改变时,物体由于外在约束以及内部各部分之间的相互约束,使其不能完全自由胀缩而产生的应力。
11、机械应力:铸件收缩受到铸型、型芯及浇注系统的机械阻碍而产生的应力。
12、热裂:是在凝固后期高温下形成的,主要是由于收缩受到机械阻碍作用而产生的。
13、冷裂:是在较低温度下形成的,常出现在铸件受拉伸部位,特别是有应力集中的地方。
二、填空题。
1、在液态金属成形的过程中,液态金属的充型及收缩是影响成形工艺及铸件质量的两个最基本的因素。
2、铸造组织的晶粒比较粗大,内部常有缩孔、缩松、气孔、砂眼等组织缺陷。
3、液态金属注入铸型以后,从浇注温度冷却到室温要经历液态收缩、凝固收缩和固态收缩三个互相联系的收缩阶段。
4、热裂是在凝固后期高温下形成的,主要是由于收缩收到机械阻碍作用而产生的。
5、冷裂是在较低温度下形成的,常出现在铸件受拉伸部位,特别是有应力集中的地方。
机械制造基础铸造第二章
机械制造基础
第二章 铸造成型
§2-1.2
金属与合金的铸造性能
液态合金的充型能力
—— 液态 合金充满铸型型 腔,获得形状完 整、轮廓清晰铸 件的能力。 充型能力不足容易出现浇 不足、冷隔缺陷,尤其对 于薄壁铸件
机械制造基础
第二章 铸造成型
影响充型能力的因素:
1. 合金的流动性 ——液态合金本身的流动能力。
(1). 流动性的测试 螺旋形试样法
机械制造基础
第二章 铸造成型
(2). 影响流动性的因素:
合金的种类:
灰口铸铁、硅黄铜流动性最好, 铸钢的流动性最差。 灰口铸铁:l 1000 mm 硅黄铜: l 1000 mm 铸钢: l 200 mm
机械制造基础
第二章 铸造成型
(2)机器造型
指用机器完成全部或至少完成紧砂 操作的造型工序。 1)特点: ①提高了生产率,铸件尺寸精度较高; ②节约金属,降低成本; ③改善了劳动条件; ④设备投资较大。 2)应用:成批、大量生产各类铸件。
机械制造基础
第二章 铸造成型
3)机器造型方法 ①震压造型: 先震击紧实,再用较低的比压(0.15 -0.4MPa )压实。 紧实效果好,噪音大,生产率不够高。 ②微震压实造型: 对型砂压实的同时进行微震。 紧实度高、均匀,生产率高,噪音仍较大。
要预热后再浇注合金液。
(3). 铸型的排气能力,流动阻力,充型能 力,所以铸型要留出气口。
机械制造基础
第二章 铸造成型
2.1.2.2 铸件的收缩 ① 液态收缩阶段
② 凝固收缩阶段 ③ 固态收缩阶段
T ① ② ③
机械制造基础(金属工艺学) 第二章 铸造
第2章 铸造
01 铸造工艺基础 02 合金铸件的生产工艺 03 砂型铸造 04 特种铸造 05 铸件结构设计
第2章 铸造
铸造工艺特点 1)适合制造形状复杂的毛坯
第2章 铸造
铸造工艺特点 2)毛坯大小不受限制
第2章 铸造
铸造工艺特点 3)材料不受限制(能熔化的金属) 4)生产成本低(原材料来源广泛) 5)应用广泛(历史最久的金属成型方法,40%~80%)
2.3.2 浇注位置和分型面的选择—浇注位置 1)铸件的重要加工面应朝下或位于侧面
2.3 砂型铸造
2.3.2 浇注位置和分型面的选择—浇注位置 2)铸件宽大平面应朝下
2.3 砂型铸造
2.3.2 浇注位置和分型面的选择—浇注位置 3)面积较大的薄壁部分应置于铸型下部
2.3 砂型铸造
2.3.2 浇注位置和分型面的选择—分型面 分型面:铸型组元之间的结合面或分界面。 分型面影响: 1)铸件质量; 2)生产工序的难易; 3)切削加工的工作量。
2.2.1 铸铁件生产 2)球墨铸铁 由于石墨成球状,它对基体的缩减和割裂作用减至最低限度,球墨
铸铁具有比灰铸铁高的多的力学性能,塑韧性大大提高。
2.2 合金铸件的生产工艺
2.2.1 铸铁件生产 2)球墨铸铁
球墨铸铁的牌号、 性能及用途 QTXXX-X
2.2 合金铸件的生产工艺
2.2.1 铸铁件生产 3)可锻铸铁 将白口铸铁件经长时间的高温石墨化退火,使白口铸铁中的渗碳体
04 特种铸造 05 铸件结构设计
2.3 砂型铸造
铸造工艺
砂型铸造
特种铸造
手工造型 机器造型 金属型铸造 熔模铸造
压力铸造 低压铸造
陶瓷型铸造 离心铸造
2.3 砂型铸造
机械制造基础 第1章-03特种铸造
离心铸造主要用于大批生产铸铁管、气缸套、铜套、双金属 轴承、无缝钢来自毛坯、造纸机滚筒、细薄成形铸件等。
§1-3 特种铸造 五、熔模铸造
1.熔模铸造的工艺过程 将液态金属浇入由蜡模熔失后形成的中空型壳中,从而获得精密 铸件的方法,称为熔模铸造或失蜡铸造。
§1-3 特种铸造 二、压力铸造
将液态金属高速压人铸型,使其在压力下结晶而获得铸件的方法 1. 压力铸造工艺过程
压型必须用合金工具钢来制造,并要进行严格的热处理。压型工 作时应保持120~280度的工作温度,并定期喷刷涂料。
§1-3 特种铸造 2.压力铸造的特点及应用范围
(1)生产率高,生产过程易于机械化和自动化。
低熔点合金铸件。
三、挤压铸造
挤压铸造也称“液态模锻”,是对进入 挤压模内的液态金属施加较高的机械压 力,使其凝固成为铸件的铸造方法。
1. 挤压铸造的工艺过程
挤压铸造
挤压铸造与压力铸造的主要区别是:
挤压铸造 压力铸造
充型速度(m/s ) 凝固过程
0.1~0.4 15~100
压力下结晶并产生 塑性变形
② 原材料价贵,铸件成本高。
主要用来生产形状复杂、精度要求较高或难以切削加工的小型 合金铸件。在航空、船舶、汽车、机床、仪表、刀具和兵器等行 业得到了广泛应用。
§1-3 特种铸造 六、消失模铸造
用泡沫塑料模样造 型后,不取出模样、 直接浇注,使模样气 化消失而形成铸件的 方法,称为消失模铸 造。
1. 负压消失模铸 造工艺过程
机械制造技术基础
第1章 铸造工艺
华中科技大学机械学院
机械制造技术基础
第1章 铸造工艺
机械制造2-3 砂型铸造
32
2.3.1 造型方法的选择
2. 机器造型
(1)机器造型紧砂方式 抛砂式。用抛砂方法同时完成填砂和紧实铸型。机器结构
简单,但制造成本较高,生产率较高,能量消耗少,型砂紧实 较均匀。
射砂式。用射砂方法同时完成填砂和紧实铸型。生产率高,
型砂紧实度高而均匀。机器结构简单,噪音低,不用砂箱(用 活动砂箱),但垂直分型,下芯困难。
31
2.3.1 造型方法的选择
2. 机器造型
(1)机器造型紧砂方式 震压式。在震击后加压,紧实铸型。机器成本低,结构
简单,生产率较高,但噪声大。型砂紧实度较均匀。
微震压实式。在微震的同时加压紧实铸型。生产率较
高,但机器易损坏。与前者的区别:频率高、振幅小。
高压式。用较高的比压来压实铸型。生产率高,噪音小,
25
2.3.1 造型方法的选择
1. 手工造型
(3)手工造型常用方法 (详见P23 表2-5) 按模样特征分类 整模造型:适用于分型面为最大截面且位于一端的铸件,
采用整体模,两砂箱,分型面为平面,操作简单。
分模造型:适用于最大截面在中部的铸件,采用定位销定
位的分开模,分型面多是平面,操作较简单。
活块造型:适用于带有妨碍起模的凸台或凹槽的铸件,操
造型机展示视频(0:30)
30
2.3.1 造型方法的选择
2. 机器造型
(1)机器造型紧砂方式 压实式。用较低的比压(铸型单位面积上所受压力)压实
铸型。机器结构简单,噪声较小,生产率较高。但铸型上紧 下松,容易掉砂,很少单独使用。
震实式。靠造型机的震击来紧实铸型。机器结构简单,
制造成本低。但噪声大,生产率低,对厂房基础要求高,劳 动繁重。铸型上松下紧,也很少单独使用。
机械制造基础-第2章铸造
浇口 冒口
SHANGHAI UNIVERSITY
上海大学机自学院
顶冒口
侧冒口 方案1 (2冒口)
冷铁 方案2 (1冒口、1冷铁)
SHANGHAI UNIVERSITY上海大学机自源自院四、铸造应力、变形和裂纹
★1.铸造应力
①铸件壁厚不均匀,造成冷速不一致,收缩有先有 产 后、有大有小,引起相互阻碍→热应力 生 ②铸型或型芯阻碍铸件自由收缩→收缩应力 (机械应力) 原 因 ③某些合金在铸造过程中由于发生相变而引起的体积 膨胀或收缩,产生相互阻碍→相变应力 *收缩应力是临时的(清砂后消失),而热应力将残留在 铸件内部,称为残余应力,这种应力会在铸件放置过程 中或受到切削加工时通过变形得到部分释放,但不会完 全消除,只有通过去应力退火或自然时效才能消除。
上海大学机自学院
一、熔模铸造
1.铸型特征:薄壳砂型 2.铸件材料:各种合金,尤其是高熔点合金 A.不需分型和取模→形状复杂件 B.铸型精确光洁→精密铸件 3.生产特点 C.蜡模强度不高→中小型件 D.工艺过程繁琐→生产率低 4.应用范围:各种合金、各种批量的形状复杂 铸件的精密铸造。如大模数齿轮 滚刀、叶片、麻花钻等。
SHANGHAI UNIVERSITY
上海大学机自学院 例1:将有残余应力的圆柱体铸件进行如下加工, 会如何变形? 车外圆 钻孔 刨去一侧 - ++ ++ ++ ++ ++ -
缩短
伸长
弯曲
SHANGHAI UNIVERSITY
上海大学机自学院 例2:下图铸造T形梁内有残余应力,经时效或 去应力退火后将会如何变形?
+ + + + + + + + - - - - - - - - - -
机械制造基础第十章铸造习题解答
第十章铸造习题解答10-1 试述铸造生产的特点,并举例说明其应用情况。
答:铸造生产的特点有:①铸造能生产形状复杂,特别是内腔复杂的毛坯。
例如机床床身、内燃机缸体和缸盖、涡轮叫叶片、阀体等。
②铸造的适应性广。
铸造既可用于单件生产,也可用于成批或大量生产;铸件的轮廓尺寸可从几毫米至几十米,重量可从几克到几百吨;工业中常用的金属材料都可用铸造方法成形。
③铸造成本低。
铸造所用的原材料来源广泛,价格低廉,还可利用废旧的金属材料,一般不需要价格昂贵的设备。
④铸件的力学性能不及锻件,一般不宜用作承受较大交变、冲击载荷的零件。
⑤铸件的质量不稳定,易出现废品。
⑥铸造生产的环境条件差等。
10-2 型砂由哪些材料组成?试述型砂的主要性能及其对铸件质量的影响。
答:型砂由原砂、粘结剂和附加物组成。
型砂的主要性能有:①耐火度。
型砂的耐火度好,铸件不易产生粘砂缺陷。
②强度。
若强度不足,铸件易产生形状和砂眼等缺陷。
③透气性。
透气性差,浇注时产生的气体不易排出,会使铸件产生气孔缺陷。
④可塑性。
可塑性好,造型时能准确地复制出模样的轮廓,铸件质量好。
⑤退让性。
退让性不好,易使铸件收缩时受阻而产生内应力,引起铸件变形和开裂。
10-3 试列表分析比较整模造型、分模造型、挖砂造型、活块造型和刮板造型的特点和应用情况。
答:列表进行比较:10-4 试结合一个实际零件用示意图说明其手工造型方法和过程。
答:以双联齿轮毛坯手工造型为例,手工造型过程如下:①造下砂型——②造上砂型——③开外浇口、扎通气孔——④起出模样——⑤合型——⑥浇注铁水——⑦带浇口铸件。
10-5 典型浇注系统由哪几个部分组成?各部分有何作用?答:典型浇注系统由浇口杯、直浇道、横浇道和内浇道组成。
浇口杯的作用是将来自浇包的金属引入直浇道,缓和冲击分离熔渣。
直浇道为一圆锥形垂直通道,其高度使金属液产生一定的静压力,以控制金属液流入铸型的速度和提高充型能力。
横浇道分配金属液进入内浇道,并起挡渣的作用,它的断面一般为梯形,并设在内浇道之上,使得上浮的熔渣不致流入型腔。
《机械制造基础》试题及答案应会铸造答案
《机械制造基础》第二章铸造加工一、填空题1、影响合金充型能力的因素很多,其中主要有、铸型的充填条件及浇注条件三个方面。
2、设计铸件时,凡垂直于分型面的非加工面应设计__斜度3、液态合金本身的流动能力,称为流动性。
4、铸件各部分的壁厚差异过大时,在厚壁处易产生_缩孔_缺陷,铸件结构不合理,砂型和型芯退让性差易产生_裂纹_缺陷。
5.铸件在固态收缩阶段若收缩受阻,便在铸件内部产生内应力。
这种内应力是铸件产生__________和__________的主要原因6.铸件各部分的壁厚差异过大时,在厚壁处易产生__________缺陷,在薄壁与厚壁的连接处因冷却速度不一致易产生__________缺陷。
7.当铸件壁厚不均时,凝固成形后的铸件易在壁厚处产生_______应力。
8.在各种铸造方法中,适应性最广的是___________,生产率最高的是___________,易于获得较高精度和表面质量的是___________,对合金流动性要求不高的是___________。
9. 铸件的浇注位置是指铸件在_____ 时在______中所处的位置。
它对铸件的______影响很大。
10. 合金的铸造性能有_充型能力____、和__收缩性____等。
影响它们的因素有_______、_______、_________等。
10. 液态收缩和凝固收缩是产生__缩孔____和___缩松____的原因; 固态收缩是铸件产生___变形___、__应力____和___裂纹__的原因。
13. 为了防止铸件变形, 再进行铸件结构设计时, 应力求壁厚_______, 形状________。
14. 当铸件收缩受阻时, 就可能发生______、_______等缺陷; 因此如轮形铸件的轮辐应设计为____数或做成__________形状。
15. 在铸件设计中,铸件垂直于分型面的侧壁应给出________,铸件壁的转角及壁间联接处均应考虑_______, 壁厚不仅要防止______, 而且要防止_____, 以防止_________________。
《机械制造基础》试题及答案 第02篇 铸造(答案)
《机械制造基础》第二篇铸造加工一、填空题1、影响合金充型能力的因素很多,其中主要有化学成分、铸型的充填条件及浇注条件三个方面。
2、在铸件内部或表面有大小不等的光滑孔洞的铸件缺陷被称为气孔。
3、液态合金本身的流动能力,称为流动性。
4、铸件各部分的壁厚差异过大时,在厚壁处易产生_缩孔_缺陷,铸件结构不合理,砂型和型芯退让性差易产生_裂纹_缺陷。
5、影响铸铁石墨化的主要因素是化学成分和冷却速度。
6、铸造内应力是产生变形和裂纹的基本原因。
7、控制铸件凝固过程采取的工艺原则是同时凝固和顺序凝固。
8、铸铁按照断口形貌可以分为白口铸铁、灰口铸铁、麻口铸铁等三大类。
9、在铸造生产中所用的造型材料是由砂、_粘结剂_、水和__各种附加物_所组成的。
10、在铸造生产中,金属液进行变质处理的目的是获得_细晶粒。
11、可锻铸铁的组织为钢基体加_团絮状石墨。
12、按模型特征分,常用的手工造型方法主要有整模造型、分模造型、假箱造型、活块造型、刮板造型、挖砂造型。
13、型芯砂应满足的基本性能要求是足够的强度、耐火性、透气性、退让性、溃散性。
14、浇注系统一般由四部分组成,即浇口杯、直浇道、横浇道、内浇道。
二、选择题1、在铸造生产中,流动性较好的铸造合金( A )。
A.结晶温度范围较小;B.结晶温度范围较大;C.结晶温度较高;D.结晶温度较低;2、在下列合金中,流动性最差的合金是( B )。
A.灰铸铁B.铸钢C.铜合金D.铝合金3、浇注温度过高,会使铸件( D )的可能性增加。
A.产生变形;B.产生冷隔;C.浇不足;D.产生缩孔;4、合金的流动性差,可能使铸件产生的缺陷是( C )。
A、粘砂;B、偏析;C、冷隔;D、裂纹;5、碳的质量分数为4.30%的铁碳合金具有良好的( B )。
A.可锻性;B.铸造性;C.焊接性;D.热处理性6、型砂中水分过多,会造成铸件产生( A )。
A.气孔;B.缩孔;C.砂眼;D.热裂;7、型砂的耐火性差会造成铸件产生( B )。
《金属工艺学》工程材料及机械制造基础(铸造)
4) 铸件结构: 壁太薄、大水平面,流动困难
§2 铸件的凝固与收缩Freezing and Shrinkage
液态收缩和凝固收缩得不到补偿,将产生缩孔或缩松
1. 铸件的三种凝固方式 the wideness of paste zone
P36 图2-3 (a)逐层凝固 Freezing layer by layer (c)糊状凝固 Paste freezing (b)中间凝固 Middle freezing
2. 铸造合金的收缩 Shrinkage of the Casting Alloys
合金从浇注、凝固、直至冷却到室温,其体积和尺寸缩减 现象(p36)
液态收缩liquid Contraction 体收缩
凝固收缩freezing contraction 体收缩
固态收缩solid contraction 线收缩
Especially for the production of articles with
complicate shape and structure
铸
例如:机箱、阀体、汽缸等
造
各种材料
的
广泛
Suit for almost all kinds of alloy
特
wide-ranging 大小:g~t
白口铸铁→高温退火→石墨呈团絮状 成分:低碳、低硅;2.4~2.8%C,0.4~1.4%Si 适用范围:中压阀门
形状复杂的薄壁小件:大件容易产生麻口 受一定冲击的零件 大批量生产: 单件成本高 牌号KTH300-06
第二篇 铸造 Foundry
什么叫铸造 Casting? (p33) The production of shaped articles by pouring molten metal into the mould
机械制造基础-铸造过程仿真技术PPT课件
铸造模拟软件简介
铸造模拟软件可以对铸件形成过程中流场、温度场进 行模拟,并且能够对铸造过程中产生的缺陷(如浇不足, 冷隔,缩孔缩松缺陷)进行预测,从而对铸造过程所涉及 的工艺参数工艺方案等做出评价和优化,达到降低铸造废 品率,节省材料和劳动力,最大可能在降低成本,以及大 幅度在缩短铸造工艺定型周期。
材料科学与工程学院
机械制造基础 铸造过程仿真技术
铸造凝固过程仿真模拟研究室
1
内容介绍
(1)铸造工艺设计; (2)铸造模拟软件简介; (3)铸造CAD/CAE集成; (4)铸造模拟技术发展趋势; (5)实例应用; (6)凝固微观组织模拟研究
2
铸造模拟技术发展趋势
(1)由宏观模拟向微观模拟发展 可以预测组织、结构、性能,从而调整生产工艺,生产出理
6
软件组成及功能
3.软件产品系列
· 砂型重力铸造CAE · 砂型低压铸造CAE · 金属型重力铸造CAE · 金属型低压铸造CAE · 熔模精密铸造CAE · 压力铸造CAE .差压铸造CAE .消失模铸造CAE
7
软件组成及功能
铸造模拟软件
前处理
模拟计算
后处理
模型 建立
网格剖分 充型模拟 凝固模拟 应力模拟
想的凝固组织,达到优良的综合力学性能。 (2)单一分散向耦合集成方向发展
流场、温度场、应力/应变场、组织场等之间的耦合,以真实 模拟复杂的实际热加工过程。 (3)共性、通用向专用、特性方向发展
**解决特种热加工工艺模拟及工艺优化问题: 压铸、低压铸造、金属型铸造、实型铸造、连续铸造等特种铸造。
**解决铸件的缺陷消除问题
10
二铸造工艺方法的选择
• 综合分析该铸件,选择用砂型铸造,由于该铸 件为大型铸件,结构复杂。外型采用Z2520II 型造型机,一箱一件,水玻璃砂;手工制芯, 一箱一件 过桥浇注。
机械制造2-1 铸造工艺基础知识
10
2.1
铸造的工艺基础知识
• 2.1.1 液态合金的充型 合金流动性的定义
流动性是指液态(熔融)金属的流动能力。 它是影响液态金属充型能力的主要因素之一, 也是合金的主要铸造性能之一。
11
2.1
铸造的工艺基础知识
• 2.1.1 液态合金的充型 合金流动性的测量方法
常用浇注标准螺旋形试样的方法进行测定。 螺旋形试样的长度越长,则液态合金的流动性越好。 常用合金的螺旋形试样的长度数值见P11表2-1。
22
充型能力的影响因素
主要影响因素:铸型条件和浇注条件 2.浇注条件:
浇注条件又与浇注系统结构、浇注温度和充型压力有关。 (2)浇注温度: 浇注温度越高,合金保持液态的时 间越长,金属液粘度降低,杂质容 易上浮或溶解,故合金流动性好, 充型能力强。但浇注温度过高,液 态合金收缩增大,吸收气体多,氧 化严重,流动性反而会下降。因此 在保证流动性的前提下,浇注温度 应尽可能低一些。
25
砂型铸造的充型压力由 直浇道的静压力产生。
2.1
铸造的工艺基础知识
• 2.1.2 铸件的凝固与收缩
浇入铸型型腔的液态金属在冷凝过程中,如果其 液态收缩和凝固收缩得不到补充,铸件将产生缩孔 或缩松等铸造缺陷。因此,必须合理地控制铸件的 凝固过程。 1. 铸件的凝固方式 铸件的凝固: 液态合金转变为固态铸件的过程称为铸件的凝固。
阶段的收缩。用体收缩率表示。合金的结晶温度范围越大, 体收缩率也越大。液态收缩和凝固收缩时金属液体积缩小, 是形成缩孔和缩松的基本原因。
a)
a) 合金状态图
b)
c)
b) 一定温度范围合金 c) 共晶合金
图2-6 铸造合金收缩过程示意图