19.2 三角形全等的判定(边角边)
《全等三角形的判定――边角边》说课稿
《全等三角形的判定――边角边》说课稿海南省海口市金盘实验学校龙清炉一、说教材1、教材的地位及作用说课内容:华东师大版实验教科书《数学》八年级(下)第十九章第二节《全等三角形的判定》中第二个课时——《全等三角形的判定―――边角边》.图形的全等是图形相似的一种特例,是今后学习图形相似的基础.本节课的内容是以前各章中数学说理与逻辑推理的继续,是理性思维的一次飞跃.因此,本节课的知识在初中数学中有着举足轻重的地位和作用.2、教学目标:(1)知识目标:①掌握“边角边”内容及运用“边角边”证明两个三角形全等.②在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.(2)技能目标:经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.(3)情感目标:通过探究三角形全等的条件的活动,培养学生合作交流的意识和大胆猜想,乐于探索的良好品质以及发现问题的能力.3、教学重难点:重点:探究发现三角形全等的条件—边角边,并能运用边角边的判定方法证明两个三角形全等.难点:(1)构造三角形全等,解决实际问题;(2)“两边及其中一边的对应角相等的两个三角形是否全等”的辨析.二、说教法本节课主要是“边角边”这一基本规律的发现及应用,因此在课题教学中我将尽量为学生提供动手操作、合作探究的时间.引导学生自主探究,合作交流.在探究过程中渗透分类讨论和转化的数学思想,让学生自得知识,自寻方法,自觅规律,自悟原理.另外,课前让学生准备直尺、圆规、剪刀、卡纸等教学用具,同时我还在教学中充分利用现代信息技术,通过直观教学,有效的营造了学生探究问题的情境.三、说学法新课标的精神是要改进学生学习方式,让学生经历“做数学”的过程,注重与生活实际紧密联系。
根据教学内容特点,以及新课标的要求,学生主要采用“探究式和应用式”的学习方法.四、说教学程序(一) 创设情境,引入新课在生活中我们经常可以看到工人师傅把两根钢条的中点连在一起,做成一个测量工件内槽宽的工具(卡钳).如图,要测量工具内槽宽,只要测量什么?为什么?[设计意图] 多媒体演示生活中与全等三角形相关的生活实例,有效地营造了学生研究问题的情境,从而激发学生的学习兴趣,为本节课的学习做了很好的铺垫.(二) 探索归纳,发现规律(三) 探索归纳,发现规律-----理清思路、明确方向探索归纳、发现规律 借助图形 探究规律 回到引例 解决问题活动1:探究同一个三角形中两边一角的位置关系.提问:三角形中的两条边与这个三角形中的一角有哪几种位置关系?(两边及其夹角)(两边及其中一边的对角)(四)探索归纳,发现规律-----借助图形、探究规律活动2:已知两条线段和一个角,以这两条线段为边,以这个角为这两条边的夹角,画一个三角形.(1)(2)步骤:1、画一线段AB,使它等于4cm;2、画∠MAB=45°;3、在射线AM上截取AC=3cm;4、连结BC.△ABC即为所求.把你画的三角形剪下来与其他同学所画的三角形相比较,它们全等吗?[设计意图] 让学生动手画图、独立思考、合作探究,得出边角边可判定三角形三全都的初步结论,锻炼了学生动手操作、分析归纳与解决问题能力.用运动变换方法给同学们演示(flash演示).[设计意图] 此环节是本节课的中心环节,用运动变换的方法证实全等三角形“边角边”判定方法,通过学生操作感知、教师引导探究,学生尝试总结概括,媒体辅助攻破难点,成功地实现了由具体形象向抽象思维的过渡,使本节课的重难点得到突破.提问由此你得出什么结论?具备什么样的条件两个三角形一定全等? 由此可得到判定三角形全等的一种简便方法:如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等,简写成“S.A.S.”或(边角边).条件:两个三角形有两边及其夹角分别对应相等. 结论:这两个三角形全等.∵ AB=DE ,∠B=∠BC=EF ,∴ △ABC ≌△注意:在书写过程中注意对应点写在对应的位置上.(五) 探索归纳,发现规律-----借助图形、探究规律填一填1、如图1,AC =DF , BC =EF ,(请补充一个条件)________,使△ABC ≌△DEF ;2、如图2, BC =BD ,∠ABC =∠ABD 图中全等的三角形是_______≌ _______.3、在下列推理中填写需要补充的条件,使结论成立:证明:在△AOB 和△DOC 中∵ AO=DO (已知)______=________ ( )BO=CO (已知)∴△AOB≌△DOC()[设计意图] 设计不同系列的图形变换类型的题目,包括旋转变换和翻折变换,让学生在学习中总结,在练习中提高,在应用中让不同的学生得到不同的发展.题目由学生独立分析解答,运用课件验证学生的结论,使学生体验到成功的喜悦.(六)探索归纳,发现规律----回到引例、解决问题已知:△ABO,A'、B'分别在AO、BO的延长线上,且OA=OA',OB= OB'. 求证:AB=AB'.分析:要证AB=AB'△ABO≌△A'B'O'S A S证两线段(或是两角)相等可以通过证明它们所在的三角形全等.[设计意图] 通过联系生活中的实际问题,引导学生学会用数学的眼光,从数学的角度发现问题、解释生活、阐释现象,进而应用所学解决问题.(七) 掌握运用,强化训练----解析例题例1 如图,在△ABC 中,AB =AC ,AD 平分∠BAC ,求证:△ABD ≌△ACD . 证明: ∵ AD 平分∠BAC ,∴ ∠BAD =∠CAD .在△ABD 与△ACD 中 ,∵AB =AC ,∠BAD =∠CAD , AD =AD ,∴△ABD≌△ACD (S.A.S.).提问:由△ABD 与△ACD 全等,还能证得∠B=∠C,即证得等腰三角形两个底角相等这条定理,你还能证得那些结论?例题推广① 例1 如图,在△ABC 中,AB =AC ,AD 平分∠BAC ,求证:∠B =∠C . 证明: ∵ AD 平分∠BAC ,∴ ∠BAD =∠CAD .在△ABD 与△ACD 中 ,∵ AB =AC ,∠BAD =∠CAD ,AD =AD ,∴△ABD ≌△ACD (S.A.S.).∴∠B =∠C (全等三角形对应角相等)若题目的已知条件不变,你还能证得哪些结论?② 例1 如图,在△ABC 中,AB =AC ,AD 平分∠BAC ,求证:BD=CD. ③ 例1 如图,在△ABC 中,AB =AC ,AD 平分∠BAC ,求证:AD ⊥BC.[设计意图] 通过例题变换,培养学生思维发散能力,达到了目标要求,并培养应用意识和解决问题能力.(八)掌握运用,强化训练----学以致用1、如图,AD∥BC,AD=CB,AE=CF .求证: △AFD≌△CEB .2、如图2,两车从路段AB的一端A出发,分别向东,向西行进相同的距离,到达C、D两地,此时C、D到B的距离相等吗?为什么?[设计意图] “学数学而不练,犹如入宝山而空返”(华罗庚语). 放手练习,学生通过充分思考,合作探究,自己动手书写证明过程,做到知识内化,培养学生应用新知和解决问题能力.(九)掌握运用,强化训练----操作验证活动3:(角不夹在两边的中间,形成两边一对角 .)请同学们动手画一画,并与小组讨论一下这种情况一定能判定两个三角形全等吗?课件演示(ppt)结论:两边及其一边所对的角相等,两个三角形不一定全等.[设计意图] 通过让学生动手画和直观的多媒体演示,引导学生深入思考,得出两边及其一边所对的角相等,两个三角形不一定全等.(十)归纳小结,提高认识----学习小结(1)知识层面:三角形全等的条件----边角边;(2)方法层面:①证明两线段(或是两角)相等可转化为证明它们所在的三角形全等;②构造三角形全等,解决实际问题.;(3)学习反思:本节课主要重视学生的动手实践的过程,让学生在参与过程中进一步充分理解判定方法的合理性,然后结合相关的例题和练习巩固对知识的应用.(十一) 归纳小结,提高认识----布置作业必做题:课本 P79 习题19.2 第2题,学习指导P45选做题:如图,在等腰梯形ABCD 中,AD ∥BC, ∠C=600,AD=CD.E 、F 分别在AD 、CD 上,DE=CF,AF 、BE 交于点P.求∠BPF 的度数.[设计意图] 采取分层式作业,即面向全体学生,同时也关注到了学生的个体差异,让学有余力的学生在能力上可以有进一步的提升.(十二) 归纳小结,提高认识----板书设计[设计意图] 通过清楚明了、简单有序的板书,辅助知识的呈现与回顾. 三角形全等的判定方法(1)由此可得到判定三角形全等的一种简便方法:如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等,简写成“S.A.S.”或(边角边).ABCEFD 例题: 在△ABC 和△ DEF 中 ,∵ AB=DE , 证明:∠B=∠E ,BC=EF ,∴ △ABC ≌△DEF (S.A.S.) .投影五、教学评价本节课通过信息技术的有效运用,将图形间的变化联系生动、形象、直观地展示给学生,为课堂教学提供了丰富的感知和表象,为学生实现由具体感知到抽象思维的飞跃架设了桥梁,不仅充分调动起学生的积极性,更化解了本节课的难点,使学生更顺利地掌握重点,让学生经历了真正的学数学用数学的过程.。
全等三角形的判定条件及边角边
D
C
B
E
3.已知:如图△ABC 和△AED 中, AB=AC,AD=AE,且∠CAB= ∠EAD
求证:CE=BD
A
E D
B
C
2、如图:如果AB=A’B’ , 那么△ABC≌△A’B’C’吗?
小结:有一组对应相等的元素,这两个三角形不全等
两组呢?
两组对应相等的元素,想一想,会有几种可能的 情况?
两角;两边;一角一边
按照下面的条件,用刻度尺或量角器画三角形,并和周围 的同学比较一下,所画的图形是否全等.
(1) 三角形的两个内角分别为30°和70°;
还需_________
6.如图,D是BC中点,AD⊥BC那么
下列说法错误的是( )
A.△ABD ≌△ACD
B. ∠B= ∠ C
A
C.AD是△ABC的顶角平分线
D. △ABC是等边三角形
B
D
C
1.已知:点M是等腰梯形ABCD 底边AB的中点.
证明:△AMD ≌△BMC
D
C
A
M
B
2.已知:如图AB=AE,C、D 分别是AE、AB的中点。
对应角是∠AOB与______,∠OBA与_________, ∠BAO与___________.
(第 1 题)
全等三角形的对应边相等,对应角相等。
反之?
能否再减少一些条件?
对两个三角形来说,六组元素(三条边、三个角)中 至少要有几组元素分别对应相等,两个三角形才会 全等呢?
试一试:
1、如图:如果∠A=∠A’,那么 △ABC≌△A’B’C’吗?
这就说明这两个三角形全等.
S.A.S的证明:
19.2.2三角形全等的判定__边角边
步骤: 步骤: 1、画一线段AB,使它等于 、画一线段 使它等于10cm ; 使它等于 2、画∠ BAM= 45° ; 、 ° 3、以B为圆心 6cm长为半径画弧 、 为圆心, 长为半径画弧, 为圆心 长为半径画弧 于点C 交AM于点 和D; 于点 ; 4、连结CB(DB), △ABC和△ABD 、连结 和 即为所求. 即为所求.
在△ABD与△ACD中, 与 中 AB=AC(已知) = 已知) 图 19.2.4 (已证) ∠BAD=∠CAD = AD=AD (公共边) =
∵
∴ ABD≌△ACD( 归纳: △ABD≌△ACD(S.A.S.) 归纳:判定两条线段相等或两个角相等可以 通过从它们所在的两个三角形全等而得到。 通过从它们所在的两个三角形全等而得到。 ) ∴∠B=∠C BD=CD(全等三角形的性质) = 全等三角形的性质
答:
(1)全等 (1)全等
(2)全等 (2)全等
2.已知:点M是等腰梯形ABCD底边AB的中点, 求证: △AMD≌△BMC. 证明: ∵ 点M是等腰梯形ABCD底边AB的中点 ∴ AD=BC (等腰梯形的两腰相等) ∠A=∠B(等腰梯形的同一底边的两内角相等) AM=BM (线段中点的定义) 在△ADM和△BCM中 AD=BC (已证) ∠A=∠B (已证) AM=BM (已证) ∴△AMD≌△BMC (S.A.S)
D A
边: 则须使得 边:
AB=CB(已知) AB=CB(已知) 已知 BD=BD(公共边) ?
C
角: ∠ABD= ∠CBD(已知) ∠CBD(已知) 已知
2: 已知:如图, AB=CB ,∠ ABD=
∠ CBD ,△ ABD 和△ CBD 全等吗? 解: 在△ ABD 和△ CBD中
19.2.3_全等三角形的判定-角边角和角角边
两角一边呢
如果两个三角形有两个角、一条边分别 对应相等,那么这两个三角形能全等吗?
全等
全等
图 19.2.6
问题:某人把一块三角形的玻璃打碎成了三 块,现在要到玻璃店去配一块完全一样的玻 璃,你认为他应该带哪块?
如图19.2.7,已知两个角和一条线段,以这 两个角为内角,以这条线段为这两个角的夹边, 画一个三角形.
例 3. 如图,AB∥FC, D 是 AB 上一点, DF 交 AC 于点 E , DE=FE,分别延长FD和CB交于点G. 求证:AD=CF
例 6. 如图,四边形 ABCD 中, E 点在 AD 上,其中∠ BAE = ∠BCE=∠ACD=90°,且BC=CE.请完整说明为何△ABC与 △DEC全等的理由.
已知:如图,要得到△ABC≌ △ABD,已经隐含 AB=AB 根据所给的判定方法,在下 有条件是_________ 列横线上写出还需要的两个条件 (1) AC=AD ∠CAB= ∠DAB (SAS)
( 2 ) BC=BD ∠CBA= ∠DBA (SAS)
C A
B
D
当两个三角形的两条边及其夹角分别对应相等时, 两个三角形一定全等.(SAS) 而当两个三角形的两条边及其中一边的对角分别对应 相等时,两个三角形未必一定全等.(SSA)
∠A=∠B (ASA) (ASA)
∠AEC=∠BFD ∠C=∠D ( 3) CE=DF, ( 4)∠ C= ∠D,AC=BD ∠A=∠B A
C
(ASA)
F
E B
D
AOC 与BOD 全等吗? 如图,O是AB的中点, A =B, 为什么?
C
两角和夹边 对应相等
A
O
B
在
AOC 和BOD
三角形全等的判定(含例题)
1.判定两个三角形全等的基本事实:边边边(SSS)(1)基本事实:三边分别相等的两个三角形全等,简写成“__________”或“SSS”.(2)这个基本事实告诉我们:当三角形的三边确定后,其形状、大小也随之确定.这也是三角形具有稳定性的原因.2.判定两个三角形全等的基本事实:边角边(SAS)(1)基本事实:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“__________”.(2)此方法包含“边”和“角”两种元素,必须是两边夹一角才行,而不是两边及一边对角分别相等,一定要注意元素的“对应”关系.【注意】(1)此方法是证明两个三角形全等最常用的方法之一,应用时,可以从图形上直接观察到三个对应元素必须符合“两边夹角”,即“SAS”,不要误认为有两边一角就能判定两个三角形全等.(2)在书写时也要按照“边→角→边”的顺序排列条件,必须牢记“边边角”不能作为判定两个三角形全等的条件.3.判定两个三角形全等的基本事实:角边角(ASA)(1)基本事实:两角和它们的夹边分别相等的两个三角形全等,简写成“角边角”或“__________”.(2)用“ASA”来判定两个三角形全等,一定要证明这两个三角形有两个角以及这两个角的夹边分别相等,证明时要加强对夹边的认识.4.判定两个三角形全等的基本事实:角角边(AAS)(1)基本事实:两角和其中一个角的对边分别相等的两个三角形全等,简写成“角角边”或“__________”.(2)这一结论很容易由“ASA”推得,将这一结论与“ASA”结合起来,即可得出:两个三角形如果具备两角和一条边对应相等,就可判定其全等.5.直角三角形全等的判定方法:斜边、直角边(HL)(1)基本事实:斜边和一条直角边分别相等的两个直角三角形全等,简写成“斜边、直角边”或“________”.(2)“HL ”定理是直角三角形所独有的,对于一般三角形不成立. 【归纳】判定两个三角形全等常用的思路方法如下: HL SAS SSS AAS SAS ASA AAS ASA AAS ⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎪⎩一直角边一斜边—已知两边找夹角—找另一边—边为角的对边—找任一角—找夹角的另一边—已知一边一角边为角的邻边找夹边的另一角—找边的对角—找夹边—已知两角找任一角的对边—K 知识参考答案:1.(1)边边边2.(1)SAS 3.(1)ASA4.(1)AAS5.(1)HLK —重点 三角形全等的判定K —难点 三角形全等的判定和性质的综合运用 K —易错三角形全等的判定一、用边边边(SSS )证明三角形全等明确要证明全等的两个三角形,在书写两个三角形全等时,“≌”左边三角形的三边与“≌”右边三角形的三边的前后顺序要保持一致.【例1】如图,ABC △中,AB AC =,EB EC =,则由“SSS ”可判定A .ABD △≌ACD △B .ABE △≌ACE △△D.以上答案都不对C.BDE△≌CDE【答案】B二、用边角边(SAS)证明三角形全等此方法包含“边”和“角”两种元素,必须是两边夹一角才行,而不是两边及一边对角分别相等,一定要注意元素的“对应”关系.【例2】如图,AB=AC,添加下列条件,能用SAS判断△ABE≌△ACD的是A.∠B=∠C B.∠AEB=∠ADC C.AE=AD D.BE=DC【答案】C【解析】∵AB=AC(已知),∠A=∠A(公共角),∴只需要AE=AD,∴△ABE≌△ACD,故选C.三、用角边角、角角边(ASA、AAS)证明三角形全等1.不能说“有两角和一边分别相等的两个三角形全等”,这是因为:假设这条边是两角的夹边,则根据角边角可知正确;假设一个三角形的一边是两角的夹边,而与另一个三角形相等的边是其中一等角的对边,则两个三角形不一定全等.2.有三个角对应相等的两个三角形不一定全等.【例3】如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长,就得出AB的长,判定△EDC≌△ABC的理由是A.SSS B.SASC.SAA D.ASA【答案】D【解析】∵BF⊥AB,DE⊥BD,∴∠ABC=∠BDE.又∵CD=BC,∠ACB=∠DCE,∴△EDC≌△ABC(ASA).故选D.【例4】如图,已知点B、C、F、E在同一直线上,∠A=∠D,BF=EC,AB∥DE,若∠1=80°,求∠BFD 的度数.四、用斜边、直角边(HL)证明直角三角形全等1.当证明两个直角三角形全等时,若不适合应用“HL”,也可考虑用“SAS”“ASA”或“AAS”来证明.2.在用一般方法证明时,因为两个直角三角形中已具备一对直角相等的条件,故只需找另外两个条件即可,在实际证明中可根据条件灵活选用不同的方法.【例5】如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌△Rt△DCF,则还需要添加一个条件是A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC【答案】D五、全等三角形的判定和性质的综合寻找解决问题的思路方法可以从求证的结论出发,结合已知条件,逐步寻求解决问题所需要的条件.同时要注意对图形本身隐含条件的挖掘,如对顶角、公共角、公共边等.【例6】如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为A.50°B.30°C.80°D.100°【答案】B【解析】∵OA=OC,OD=OB,∠AOD=∠COB,∴△AOD≌△COB(SAS),∴∠D=∠B=30°.故选B.【例7】如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.【解析】∵∠CAB=∠DBA,∠CBD=∠DAC,∴∠DAB=∠CBA.在△ADB与△BCA中,CAB DBA AB ABDAB CBA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADB≌△BCA(ASA),∴BC=AD.。
三角形全等的判定条件及边角边
B'
边-角-边
边-边-角
探究1
边-角-边
剪一个三角形,使它的两边分别为10cm、6cm,且 这两边的夹角为450.把你剪出来的三角形与同桌所剪的 三角形进行比较,你发现了什么?
6cm 10cm 45°
M C
步骤: 45° 1、画一线段AB,使它等于10cm; B A 10cm 2、画∠MAB=45°; 请同学们画一画, 3、在射线AM上截取AC=6cm; 同桌在比一比,你 4、连结BC. 有什么发现? △ABC即为所求.
A
C
E
解: 在△DCE和△ACB中 B ∵ DC=AC ∠DCE=∠ACB EC=BC D ∴△DCE≌△ACB(S.A.S) ∴DE=AB
寡妇与母鸡
有个寡妇养着一只母鸡,母鸡每天 下一个蛋。她以为多给鸡喂些大麦, 就会每天下两个蛋。于是,她就每天 这样喂,结果母鸡长得越来越肥,每 天连一个蛋也不下了。 这故事说明,有些人因为贪婪, 想得到更多的利益,结果连现有的都 失掉了„„
不一定全等
◆有一边一角对应相等的两个三角形
3.画一个三角形,使它的一条边为3cm,一个内角为30° (1)一边和这边的邻角对应相等
3cm (2)一边和这边的对角对应相等
45°
30° 3cm
30°
30° 3cm
不一定全等
3cm
探索三:
两个三角形有三组对应相等的元素,有几种情况?这 两个三角形会全等吗?
可能情况:
有三条边对应相等的两个三角形
有三个角对应相等的两个三角形
有两边一角对应相等的两个三角形
有两角一边对应相等的两个三角形
◆有两边一角对应相等的两个三角形
如果已知两个三角形有两边一角对应 相等时,应分为几种情形讨论?
华师大版八下19.2全等三角形的判定6课时
19.2 全等三角形的判定(1) 【教学目标】1.经历探索三角形全等条件的过程,体会如何探索研究问题.培养学生合作的精神,让学生体验分类的思想;2.使学生懂得如何提出问题,分类讨论,并为以后研究提出问题.【重点难点】1.难点:培养学生探索问题能力;2.重点:掌握探索问题的方法.【教学过程】 一、复习1.请一位同学叙述上一节所学的知识.2.如图,△A BC ≌△AEC ,30B ∠=︒,85ACB ∠=︒,求出△AE C 各内角的度数.3.你是如何来判定两个三角形全等的从学生的回答中,提出:我们能不能找到一些较为简便的方法用来判定三角形的全等呢?有没有类似于相似三角形的判定方法呢?回想一下,相似三角形有哪些判定方法?本节开始,我们就一起来研究,探讨§19.2全等三角形的判定.二、新授要画一个三角形与老师在黑板上画的三角形ABC 全等,需要几个与边或角的大小有关的条件呢?一个条件、两个条件、三个条件……1.做一做(1)只给一个条件:一条边6BC cm =,大家画出三角形,小组交流画的三角形全等吗?一个角30B ∠=︒,大家画出三角形,小组交流画的三角形全等吗?(2)给出两个条件画三角形时,有几种可能的情况?这两个三角形一定会全等吗?分别按照下面条件,用刻度尺或量角器画三角形,并和周围的同学比较一下,所画的图形是否全等.①三角形的一个内角为60°,一条边为3 cm ;② 三角形的两个内角分别为30°和70°;③ 三角形的两条边分别为3 cm 和5 cm 你们在画图和同学比较过程中,你能得出什么结论?学生各抒己见后,教师归纳:你们一定会发现,如果只知道两个三角形有一个或两个对应相等的部分(边或角),那么这两个三角形不一定全等(甚至形状都不相同).2.议一议 如果给出三个条件画三角形,你能说出有哪几种可能的情况? (有四种可能:三条边、三个角、两边一角和两角一边)对于按以上每一种可能画得三角形是否全等,以后我们一起分别逐个探讨研究,现在我们先一起来完成以下几个练习.三、巩固练习1.如图,点O 是平行四边形ABCD 的对角线的交点,△AOB 绕O 旋转180º,可以与△___________重合,这说明△AOB ≌△___________.这两个三角形的对应边是AO 与__________,OB 与__________,BA 与__________;对应角是∠AOB 与________,∠OB A 与_________,∠BAO 与___________.2.如图,△ABC 是等腰三角形,AD 是底边上的高,△ABD 和△ACD 全等吗?试根据等腰三角形的有关知识说明理由D C B A(第2题)四、小结 让学生谈收获、体会、疑惑后,教师总结:本节通过画图实践可得,对于两个三角形的三条对应边、三个对应角中,只有满足其中一个条件或两个条件相等,两个三角形不一定全等.至于满足其中的三个条件相等的情况如何呢? 五、作业1.如图,△AOD ≌△BOC ,写出其中相等的角.2.如图,△ABC ≌△'''A B C ,25C ∠=︒,6BC cm =,4AC cm =3.如图,△ABC ≌△DEF ,且A 和D ,B 和E 是对应顶点,则相等的边有 ,相等的角有 .4.已知△ADC ≌△C BA ,且12∠=∠,写出相等的边、角.5.如图,△ACD ≌△ECB ,A 、C 、B 在一条直线上,且A 和E 是一对对应顶点,如果130BCE ∠=︒,那么将△ACD 围绕C 点顺时针旋转多少度与△ECB 重合.19.2 全等三角形的判定(2)【教学目标】1.使学生掌握SAS 的内容,会运用SAS 来判定两个三角形全等;2.通过判定全等三角形的判定的学习,使学生初步认识事物之间的因果关系与相互制约关系,学习分析事物本质的方法;3.经历如何总结出全等三角形判定方法,体会如何探讨、实践、总结,培养学生的合作能力.【重点难点】1.难点:三角形全等的判定:SAS ;2.重点:对全等三角形的判定的理解和运用.【教学过程】一、复习1.什么叫全等图形?什么叫做全等三角形? (能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形).2.将全等的△ABC 与△DEF 重合,再沿BC 方向将△DEF 推移如图位置,问线段AD 与BE 数量关系怎样?BC 与EF 位置关系怎样?为什么?[ AD BE =,BC ∥EF∵ △ABC ≌△DEF∴ AB DE =∴ AB DB DE DB -=-∴ AD BE =又∵ △ABC ≌△DEF∴ ABC DEF ∠=∠∴ BC ∥EF ]3.已知:如图,AB AD =,AC AE =,BC DE =,30EAC ∠=︒,求DAB ∠的大小.[AB AD =,AC AE =,BC DE =∴ △ACB ≌△AED ∴ CAB EAD ∠=∠∴ CAB EAB EAD EAB ∠-∠=∠-∠∴ CAE DAB ∠=∠ F E D C B A EDC BA∴30DAB ∠=︒]二、新授1.引入;上一节课,我们已经知道两个三角形满足三个条件的三条边对应相等和三个角对应相等的情况.情况如何呢?(三条边对应相等两个三角形;三个角对应相等的两个三角形不一定全等)如果两个三角形有两条边和一个角分别对应相等,这两个三角形会全等吗?-------这就是本节课我们要探讨的课题.2.问题1:如果已知一个三角形的两边及一角,那么有几种可能的情况呢? (应该有两种情况:一种是角夹在两条边的中间,形成两边夹一角;另一情况是角不夹在两边的中间,形成两边一对角.) 每一种情况下得到的三角形都全等吗?3.做一做(1)如果“两边及一角”条件中的角是两边的夹角,比如三角形两条边分别为3cm 和4cm ,它们的夹角为45︒,你能画出这个三角形吗?你画的与同伴画的一定全等吗?换两条线段和一个角试试,你发现了什么? 同学们各抒己见后总结:发现对于已知的两条线段和一个角,以该角为夹角,所画的三角形都是全等的.这就是判别三角形全等的另外一种简便的方法: 如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等.简写成“边角边”或简记为( 你能用相似三角形的判定法来解释这种“SAS ”判定三角形全等的方法吗? (一个角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,夹这个角的两边对应相等,这两个三角形的形状、大小都相同,即为全等三角形)(2)如果“两边及一角”条件中的角是其中一边的对角,比如两条边分别为4cm 和4.5cm ,长度为4cm 的边所对的角为60︒,情况会怎样呢? 请画出这个三角形,把你画的三角形与其他同学画的三角形进行比较,由此你发现了什么?(两边及其中一边的对角对应相等,两个三角形不一定全等.)4.范例 如图,△ABC 中,AB =AC ,AD 平分∠BAC ,试说明△ABD ≌△ACD .解 已知 AB =AC ,∠BAD =∠CAD ,又AD 为公共边,由(,可知△ABD ≌△ACD 三、巩固练习四、小结学生谈收获、体会、疑惑后,进一步总结本节学习了三角形全等的判定的另一种SAS ,而两边及其中一边的对角对应相等的两个三角形不一定全等,注意观察图形的特征,找出是否具备满足两个三角形全等的条件.五、作业19.2全等三角形的判定(3)【教学目标】:1.使学生理解ASA 的内容,能运用ASA 全等判定法来判定三角形全等进而说明线段D CB A或角相等;2.通过画图、实验、发现、应用的过程教学,树立学生知识源于实践用于实践的观念.使学生体会探索发现问题的过程.经历自己探索出AAS 的三角形全等判定及其应用.【重点难点】:1.难点:三角形全等的判定法ASA 和AAS 及应用;2.重点:利用三角形全等的判定法,间接说明角相等或线段相等.【重点难点】:剪刀、卡纸.【教学过程】:一、复习1.什么叫做全等三角形,如何判定两个三角形全等? (能够完全重合的两个三角形叫做全等三角形.判定两个三角形全等的方法有:SSS ;SAS ).2.叙述SSS 、SAS 的内容.3.已知:如图,''AB A B =,''BC B C =,请问再加上什么条件下,△ABC ≌△'''A B C ,并说明理由.(''AC A C =,根据SSS ;'B B ∠=∠,根据SAS ).二、新授1.引入:请问到本节为止,我们探讨两个三角形满足三个条件的哪几种情况,情况如何呢?(如果两个三角形有三条边分别对应相等或两个三角形有两条边及其夹角分别对应相等,那么这两个三角形就一定全等.如果两个三角形有三个角分别对应相等,或两个三角形的两边及其一边所对的角对应相等,那么这两个三角形不一定全等.)还有哪些情况还没有探讨呢? (如果两个三角形的两个角及一条边分别对应相等,这两个三角形一定全等吗?) 本节我们探讨两个三角形的两个角及一条边分别对应相等,这两个三角形是否全等的课题.2.问题1:如果把已知一个三角形的两角及一边,那么有几种可能的情况呢?(一种情况是两个角及两角的夹边;另一种情况是两个角及其中一角的对边.) 每一种情况下得到的三角形都全等吗?3.请同学们动手做一个实验:同桌两位同学为一组.(1)共同商定画出任意一条线段AB ,与两个角A ∠、B ∠(180A B ∠+∠<︒)(2)两位同学各自在硬纸板上画线段''A B 的长等于商定的线段AB 的长,在''A B 的同旁,画'''B A C ∠等于商定的A ∠,画'''A B C ∠等于商定的B ∠,设''A C 与''B C 相交于'C ,便得△'''A B C .(3)用剪刀各自剪出△'''A B C ,将同桌同学剪出的两个三角形重叠在一起发现了什么?其他各桌的同学是否也有同样的结论呢?同学们各抒己见后,总结:对于已知两个角和一条线段,以该线段为夹边,所画的三角形都是全等的.由此得到另一个判定全等三角形的简便方法:如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等.简记为“角边角”或简记为(4.问题2:试说明ASA 全等判定法与相似三角形的判定法有什么类似的.(两个角对应相等的两个三角形相似,当这两个角的公共边相等时,这两个三角形的形状、大小都相同,即为全等三角形.)5.思考:如图,如果两个三角形有两个角及其中一个角的对边分别对应相等, 那么这两个三角形是否一定全等? 动手画一画:比如45A ∠=︒,60C ∠=︒,3AB cm =,你能画这个三角形吗? 提示:这里的条件与实验中的条件有什么相同点与不同点?你能将它转化为实验中的条件吗? 你画的三角形与同伴画的一定全等吗?现在两组同学按如果45︒角所对的边为3cm 画,另两组同学换两个角和一条线段,试试看,你们得出什么结论同学们各抒己见后,总结:对于已知两个角和一条线段,以该线段为夹边,所画的三角形都是全等的.由此得到另一个判定全等三角形的简便方法:如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等.简写成:“角角边”或简记为(6.问题3:你能说说ASA 与AAS 这两种全等判定法间的关系吗?(AAS 判定法可由ASA判定法推导出来,如上图中,因为A D ∠=∠,C F ∠=∠,由于180B A C ∠=︒-∠-∠,180E B D ∠=︒-∠-∠,所以B E ∠=∠,于是△ABC 与△DEF 具备ASA 全等.)7.范例 如图,ABC DCB ∠=∠,ACB DCB ∠=∠,试说明△ABC ≌△DCB解:已知ABC DCB ∠=∠,ACB DCB ∠=∠又BC 是公共边,由(ASA )全等判定法,可知△ABC ≌△DCB三、巩固练习 四、小结 用采访的形式访问一些同学,本节学到什么知识,对这些知识有什么体会,对本节的知识存在着哪些疑问.五、作业19.2 全等三角形的判定(4)【教学目标】1.使学生理解边边边公理的内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;2.继续培养学生画图、实验,发现新知识的能力.【重点难点】1.难点:让学生掌握边边边公理的内容和运用公理的自觉性;2.重点:灵活运用SSS 判定两个三角形是否全等. 【教学过程】一、创设问题情境,引入新课 请问同学,老师在黑板上画得两个三角形,△ABC 与△'''A B C 全等吗?你是如何判定的.(同学们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观察是否有三条边对应相等,三个角对应相等.)上一节课我们已经探讨了两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全等.满足三个条件时,两个三角形是否全等呢?现在,我们就一起来探讨研究. D CB A二、实践探索,总结规律1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗做一做:给你三条线段a 、b 、c ,分别为4cm 、3cm 、4.8cm ,你能画出这个三角形吗?先请几位同学说说画图思路后,教师指导,同学们动手画,教师演示并叙述书写出步骤. 步骤:(1)画一线段AB 使它的长度等于c (4.8cm ).(2)以点A 为圆心,以线段b (3cm )的长为半径画圆弧;以点B 为圆心,以线段a (4cm )的长为半径画圆弧;两弧交于点C .(3)连结AC 、BC .△ABC 即为所求把你画的三角形与其他同学的图形叠合在一起,你们会发现什么? 换三条线段,再试试看,是否有同样的结论请你结合画图、对比,说说你发现了什么? 同学们各抒己见,教师总结:给定三条线段,如果它们能组成三角形,那么所画的三角形都是全等的. 这样我们就得到判定三角形全等的一种简便的方法: 如果两个三角形的三条边分别对应相等,那么这两个三角形全等.简写为“边边边”,或简记为(2、问题2:你能用相似三角形的判定法解释这个(SSS )三角形全等的判定法吗? (我们已经知道,三条边对应成比例的两个三角形相似,而相似比为1时,三条边就分别对应相等了,这两个三角形不但形状相同,而且大小都一样,即为全等三角形.)3、问题3、你用这个“SSS ”三角形全等的判定法解释三角形具有稳定性吗?(只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了4、范例例1 如图19.2.2,四边形ABCD 中,AD =BC ,A B =DC ,试说明△ABC ≌△CDA . 解:已知 AD =BC ,AB =DC ,又因为AC 是公共边,由(,可知△ABC ≌△CDA5、练习:6、试一试:已知一个三角形的三个内角分别为40︒、60︒、80︒,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,你发现了什么? (所画出的三角形都是相似的,但大小不一定相同). 三个对应角相等的两个三角形不一定全等.三、加强练习,巩固知识1、如图,AB DC =,AC DB =,△ABC ≌△DCB 全等吗?为什么?2、如图,AD 是△ABC 的中线,AB AC =.1∠与2∠相等吗?请说明理由四、小结本节课探讨出可用(SSS )来判定两个三角形全等,并能灵活运用(SSS )来判定三角形全等.三个角对应相等的两个三角不一定会全等.五、作业19.2 全等三角形的判定(5)【教学目标】1.经历探索直角三角形全等条件HL 的过程,掌握直角三角形全等的条件,并能运用其解决一些实际问题;图24.2.22.学习事物的特殊、一般关系、发展逻辑思维能力.【重点难点】1.重点:让学生掌握直角三角形全等的“HL ”判定法;2.难点:理解直角三角形为内角在构造三角形时特殊性,并能灵活地运用各种全等判定法判定两个直角三角形全等是否全等.【教学准备】剪刀、卡纸【教学过程】一、复习如图,△ABC 和△'''A B C 都是直角三角形,请你用所学的知识,须加上什么条件直角△ABC 和△'''A B C 全等.并说明理由.[''AB A B =,''BC B C =,(SAS );''AB A B =,'A A ∠=∠(AS A );''AB A B =,''BC B C =,''AC A C =,(SSS ) ''AB A B =,'C C ∠=∠(AAS )]等,让学生抢答. 二、创设问题情境问题:舞台背景的形状是两个直角三角形.工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆计划遮住无法测量.1、你能帮他想个办法吗?2、如果他只带了一个卷尺,能完成这个任务吗?[问题1,学生可以回答去量斜边和一锐角,或直角边和一个锐角;但对于问题2,学生则难肯定].工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”,你相信他的结论吗? 三、动手实践,探索新知 我们已经知道,对于两个三角形,如果有“边角边”或“角边角”或“角角边”或“边边边”分别对应相等,那么这两个三角形一定全等.如果有“角角角”分别对应相等,那么不能判定这两个三角形全等,这两个三角形可以有不同的大小.如果有“边边角”分别对应相等,那么也不能保证这两个三角形全等. 那么在两个直角三角形中,当斜边和一条直角边分别对应相等时,也具有“边边角”对应相等的条件,这时这两个直角三角形能否全等呢?如图19.2.16,已知两条线段(这两条线段长不相等),以长的线段为斜边、短的线段为一条直角边,画一个直角三角形. 把你画的直角三角形与其他同学画的直角三角形进行比较,所有的直角三角形都全等吗? 换两条线段,试试看,是否有同样的结论?步骤:1. 画一线段AB ,使它等于4cm ;2. 画∠M AB =90°;3. 以点B 为圆心,以5cm 长为半径画圆弧,交射线AM 于点C ;4. 连结BC△ABC 即为所求.如图19.2.17,在Rt △ABC 和Rt △A ′B ′C ′中,已知∠ACB=∠A ′C ′B ′=90°, AB =A ′B ′, AC =A ′C ′.由于直角边AC =A ′C ′,我们移动其中的Rt △ABC ,使点A 与点A ′、点C 与点C ′重合,且使点B 与点B ′分别位于线段A ′C ′的两侧.因为∠ACB =∠A ′C ′B =∠A ′C ′B ′=90°,故图19.2.17∠B′C′B=∠A′C′B′+∠A′C′B=180°,因此点B、C′、B′在同一条直线上.于是在△A′B′B中,由AB=A′B=A′B′(已知),得∠B=∠B′.由“角角边”,便可知这两个三角形全等.于是可得如果两个直角三角形的斜边和一条直角边分别对应相等,那么这两个直角三角形全等.简记为H.L.(或斜边直角边).例4如图19.2.18,已知AC=BD,∠C=∠D=90°,Array求证Rt△ABC≌Rt△BAD.证明∵∠C=∠D=90°∴△ABC与△BAD都是直角三角形.在Rt△ABC与Rt△BAD中,∵ AB=BA,图19.2.18AC=BD,∴ Rt△ABC≌Rt△BAD(H.L.).六、巩固练习P79 练习1、2七、小结学生谈谈收获、疑惑.总结本节学习直角三角形全等的判定,除了一般三角形全等判定法外,还有“HL”.八、作业19.2 全等三角形的判定(小复习)(6)【教学目标】:1、帮助学生总结一般三角形全等的判定条件,使他们自觉运用各种全等判定法进行说理;2、通过一般三角形全等判定条件的归纳,帮助学生认识事物间存在着的因果关系和制约的关系.【重点难点】:1、重点:让学生识别三角的哪些元素能用来确定三角形的形状与大小,因而可用来判定三角形全等.2、难点:灵活应用各种判定法识别全等三角形.【教学准备】:卡纸剪出的图1、2中的六个三角形.I II I IIIIII II(图1)(图2)【教学过程】:一、复习1、判定两个三角形全等的条件有哪些?(有SAS、ASA、AAS、SSS.HL)2、一个三角形共有三条边与三个角,你是否想到这样一问题了:除了上述四种判定法,还有其他的三角形全等判定法吗?比如说“SSA”、“AAA”能成为判定两个三角形全等的条件吗?二、新授1、演示(1)演示图1中的I、II三角形,它们间有两边及一对角对应相等,这两个三角形能完全重合,是全等形.但再取出III的三角形与I叠在一起后,发现它们不重合不是全等形,因此我们进一点证实了:有两边和其中一边的对角对应相等的两个三角形不一定全等.“SSA ”不是判定三角形全等的方法.(2)演示图2中的I 、II 三角形,它们间有三个角对应相等,这两个三角形能完全重合,是全等形,但再取出III 的三角形与I 叠在一起后,发现它们不重合,不是全等形.因此我们进一步证实了:三个角对应相等的两个三角形不一定全等“AAA ”也不是判定三角形全等的方法. 2、填下表(挂出小黑板,让学生思考、讨论,共同填答).两个三角形中对应相等的元素两个三角形是否全等 依据的判定法 反例 SSS√ SSS SAS√ SAS SSAX 可举反例 ASA√ ASA AAS√ AAS AAAX 可举反例3、范例例:如图AB AE =,B E ∠=∠,BC ED =,点F 是CD 的中点,AF CD ⊥吗?试说明理由.教学要点:(1)分析题目结论假定AF CD ⊥,可转化为AFC AFD ∠=∠,需证它们所在的两个三角形全等;(2)观察图形,AFC ∠、AFD ∠中,并不在三角形中,为此添辅助线AC 、AD ;(3)在△ACF 与△ADF 中,已知AF 是公共边,CF=FD ,尚缺一条件,它只能是AC 与AD 相等; (4)为证AC 与AD 相等.又要找它们分别在的△ACB 与△ADE ;(5)△ACB 与△ADE ,由已知条件可由SAS 证它们全等;(6)书写范例. 解:连结AC 、AD ,由已知AB=AE ,B E ∠=∠,BC=DE由SAS 三角形全等判定法可知: △ABC ≌△AED根据全等三角形的对应相等可知AC AD =由AC AD =,CF DF =,AF AF =(公共边),根据SSS 可知△ACF ≌△ADF根据全等三角形的对应角相等可知AFC AFD ∠=∠ 又由于F 在直线CD 上,可得90AFC ∠=︒,即AF CD ⊥.你们可有其他方法吗? 三、巩固练习1、如图,在△ABC 中,AB AC =,12∠=∠,试说明△AED 是等腰三角形.2、如图,AB ∥CD ,AD ∥BC ,A ∠与C ∠,B ∠与D ∠相等吗?说明理由. 四、小结 由学生对本节的学习过程进行总结.五、作业 (一)、填空题: 1、有一边对应相等的两个 三角形全等; 2、有一边和 对应相等的两个三角形全等3、有两边和 一角对应相等的两个三角形全等; F E DC B A 21ED C B A D CB A OD C B A4、如图,AB ∥CD ,AD ∥BC ,AC 、BD 相交于点O.(1)由AD ∥BC ,可得∠ =∠ ,由AB ∥CD ,可得∠ =∠ ,又由 ,于是△ABD ≌△CDB ;(2)由 ,可得AD=CB ,由 ,可得△AOD ≌△COB ;(3)图中全等三角形共有 对.(二)、选择题:1、若△ABC ≌△BAD ,A 和B 、C 和D 是对应顶点,如果6AB cm =, 5.5BD cm =,3AD cm =,则BC 的长是( )A 、6cmB 、5.5cmC 、3cmD 、无法确定2、下列各说法中,正确的是( ) A 、有两边和一角对应相等的两个三角形全等;B 、有两个角对应相等且周长相等的两个三角形全等;C 、两个锐角对应相等的两个直角三角形全等;D 、有两组边相等且周长相等的两个三角形全等.(三)、解答题:1、如图,AB AC ⊥,BD DC ⊥,AC 、BD 交于点ACB DBC ∠=∠,图中共有几对长度相等的线段,你是通过什么办法找到的?2、如图,AD BC =,AB CD =, (1)A B C D ∠+∠+∠+∠等于多少度?(2)图中有哪几组平行线?(3)A ∠与B ∠的和是定值吗? E D C B A D C B A。
全等三角形的判定条件19.2.2边角边
两个三角形全等。
应用场景
03
在几何、代数、三角函数等领域中都有广泛应用。
对全等三角形判定条件的进一步研究
01 02
探索其他判定条件
除了边角边(SAS)外,全等三角形还有其他的判定条件,如边边边 (SSS)、角边角(ASA)、角角边(AAS)等,可以进一步研究这些 判定条件的证明和应用。
深入理解全等三角形的性质
全等三角形在各个领域都有广泛的应用,可以进一步拓展其应用领域,如在计 算机图形学、机器视觉、人工智能等领域中探索全等三角形的应用。
提高应用效果
随着科学技术的发展,全等三角形的应用效果可以进一步提高,如通过引入新 的数学工具和计算方法,提高全等三角形在实际问题中的解决效率和应用效果。
THANKS FOR WATCHING
然而,并不是所有满足"角边角"条件的三角形都满足" 边角边"条件。例如,两个三角形可能满足两组对应角 和一组对应的非夹角分别相等,但它们的对应边并不 相等,这种情况下不满足"边角边"条件。
与"角角边"的关系
"角角边"也是全等三角形的一种判定条件,即两组对应 角和一组对应的夹角分别相等的两个三角形全等。在 某些情况下,如果两个三角形满足"角角边"条件,那么 它们也满足"边角边"条件。例如,如果两个三角形的两 组对应角和一组对应的夹角分别相等,那么它们的对 应边也必然相等,因此满足"边角边"条件。
感谢您的观看
判定条件的实例
• 一个常见的边角边判定条件的应用是解决几何问题。例如, 如果我们知道一个三角形的一边和两个角的大小,我们可以 使用边角边的判定条件来确定这个三角形是否与另一个三角 形全等。此外,在几何作图和证明中,边角边的判定条件也 是非常有用的工具。
三角形全等的判定“边角边”判定定理教案
三角形全等的判定-“边角边”判定定理教案一、教学目标:1. 让学生理解并掌握三角形全等的概念。
2. 让学生了解并掌握“边角边”判定定理。
3. 培养学生运用“边角边”判定定理证明三角形全等的能力。
二、教学内容:1. 三角形全等的定义。
2. “边角边”判定定理的内容及其证明。
3. “边角边”判定定理在实际问题中的应用。
三、教学重点:1. 三角形全等的概念。
2. “边角边”判定定理的证明。
四、教学难点:1. 三角形全等的证明。
2. “边角边”判定定理在实际问题中的应用。
五、教学方法:1. 采用讲授法讲解三角形全等的定义和“边角边”判定定理。
2. 利用图形演示法展示三角形全等的证明过程。
3. 运用练习法巩固学生对“边角边”判定定理的理解和应用。
4. 采用小组讨论法培养学生的合作意识和解决问题的能力。
教案一、导入(5分钟)1. 复习三角形全等的概念。
2. 提问:我们已经学习了三角形全等的哪些判定方法?二、新课讲解(15分钟)1. 讲解三角形全等的定义。
2. 引入“边角边”判定定理,讲解其内容及其证明过程。
3. 通过图形演示,让学生直观地理解“边角边”判定定理。
三、实例分析(10分钟)1. 给出实例,让学生运用“边角边”判定定理证明三角形全等。
2. 引导学生分析实例中的关键步骤,巩固对“边角边”判定定理的理解。
四、课堂练习(10分钟)1. 布置练习题,让学生独立完成。
2. 选取部分学生的作业进行点评,讲解错误原因,纠正错误。
五、课堂小结(5分钟)1. 总结本节课所学内容,强调三角形全等的判定方法。
2. 提醒学生在实际问题中运用“边角边”判定定理时,要注意分析题目条件。
六、课后作业(课后自主完成)1. 复习本节课所学内容,整理笔记。
2. 完成课后练习题,巩固对“边角边”判定定理的理解和应用。
六、教学评价:1. 通过课堂讲解、练习和课后作业,评价学生对三角形全等概念和“边角边”判定定理的理解程度。
2. 观察学生在实例分析和练习中的表现,评估其运用“边角边”判定定理解决问题的能力。
三角形全等的判定方法(5种)例题+练习(全面)
三角形全等的判定方法(5种)例题+练习(全面)本文讲述了全等三角形的判定方法,重点是边角边和角边角。
边角边指两边及其夹角分别相等的两个三角形全等,可以简写成“SAS”。
需要注意的是,必须是两边及其夹角,不能是两边和其中一边的对角。
例如,在图中的△ABC和△ABD中,虽然有一个角和两边相等,但是这两个三角形不全等。
但是在例1中,如果AC=AD,且∠CAB=∠DAB,则可以证明△ACB≌△ADB。
在例2中,如果AD∥BC,且∠ABC=∠DCB,AB=DC,AE=DF,则可以证明BF=CE。
角边角是指两角及其夹边分别相等的两个三角形全等,可以简写成“ASA”。
例如,在例2中,如果AD平分∠BAC,且∠ABD=∠ACD,则可以直接判定△ABD≌△ACD。
在例3中,如果在Rt△ABC中,BC=2cm,CD⊥AB,且EC=BC,EF=5cm,则可以求出AE的长度。
除了边角边和角边角外,还有三种判定全等三角形的条件。
在例5中,如果在△ABC和△DEF中,AB=DE,BC=EF,且有一个角相等,则可以证明△ABC≌△DEF。
在例6中,如果AB∥DE,AB=DE,BF=CE,则可以证明△ABC≌△DEF。
在例7和例8中,分别是通过角平分线和垂线的判定方法来证明两个三角形全等。
总之,掌握全等三角形的判定方法对于解决几何问题非常重要。
1.如图所示,在三角形ABC中,已知AB=DC,∠ABC=∠DCB。
根据角角边相等可知,∠ACB=∠DCB。
又因为AB=DC,所以BC=AC。
因此,根据SSS(边边边)相等可知,△ABC≌△DCB。
同时,∠ACB=∠DCB,AC=BC=DC。
2.如图所示,在三角形ABD和ABF中,已知AD=AE,∠1=∠2,BD=CE。
根据角角边相等可知,∠ABD=∠BCE。
又因为AD=CE,所以BD=BE。
因此,根据SAS(边角边)相等可知,△ABD≌△BCE。
同时,∠ABD=∠BCE,AD=CE=BE。
19.2三角形全等的判定——边角边
A 10cm
B
三角形全等的判定方法( 三角形全等的判定方法(1):
这是一个 公理。 公理。
如果两个三角形有两边及其夹角分别对应相等, 如果两个三角形有两边及其夹角分别对应相等,那么 两边及其夹角分别对应相等 这两个三角形全等.简记为S.A.S 或边角边). S.A.S( 这两个三角形全等.简记为S.A.S(或边角边).
B
边: AB=CB(已知) AB=CB(已知 已知) 角: ∠ABD= ∠CBD(已知) ∠CBD(已知 已知) 边:
(SAS)
D C
?
活动2 活动
⑵边-边-角 剪一个三角形,使它的两边长分别为6cm 10cm, 剪一个三角形,使它的两边长分别为6cm、10cm, 6cm所对的角为 所对的角为45°,情况又怎样? 且6cm所对的角为 ,情况又怎样?
⑶
答: (1)全等 (1)全等
(2)全等 (2)全等
⑶不一定全等
2.在下列推理中填写需要补充的条件, 2.在下列推理中填写需要补充的条件,使结论成立 在下列推理中填写需要补充的条件 AOB和 DOC中 在△AOB和△DOC中 A0=DO(已知) A0=DO(已知) ∠AOB
A
0
D
=
∠DOC (对顶角相等) 对顶角相等)
C A B D F E
两边及一边的对角对应相等
C A B D F E
做一做( ) 做一做(1)
⑴边-角-边
剪一个三角形,使它的两边分别为10cm、6cm, 剪一个三角形,使它的两边分别为10cm、6cm,且 10cm 这两边的夹角为450.把你剪出来的三角形与同桌所剪的 这两边的夹角为45 把你剪出来的三角形与同桌所剪的 三角形进行比较,你发现了什么? 三角形进行比较,你发现了什么?
全等三角形的判定方法:边角边定理
如图:AB=AD,∠BAC= ∠DAC, △ABC和△ADC全等吗?为什么?
A
B
D
C
1、如图:AB=AC,AD=AE,△ABE和 △ACD全等吗?请说明理由。
B
在这个图形中你还能得到哪些相等 的线段和相等的角?
例1如图19.2.4,在△ABC中,AB=AC, AD平分 ∠BAC,求证: △ABD≌△ACD.
如图,已知两条线段和一个角,以长的线段为已 知角的邻边,短的线段为已知角的对边,画一个 三角形.
把你画的三角形与其他同学画的三角形进行比较, 那么所有的三角形都全等吗?此时符合条件的三角 形的形状能有多少种呢?
用“两边一角”证明三角形全等时, 那个“角”必须是“两边”的夹角
例2:点E、F在AC上,AD//BC,AD=CB,
E
即 AF=CE
指范围
在△AFD和△CEB中,
B
D
F C
写出结论
AD=CB (已知) ∠A=∠C (已证) AF=CE (已证) △AFD≌△CEB(SAS)
EB=DF
摆齐根据
已知:如图,点A、B、C、D在同一条直线上, AC=DB,AE=DF,EA⊥AD,FD⊥AD,垂足 分别是A,D。
求证:△EAB≌△FDC
90°
E
∟
A B C ∟D
F
已知:如图,AB=AC,AD=AE,∠1=A∠2,
求证:△ABD≌△ACE
1
证明:∵ ∠1=∠2,
C B
∴ ∠1+ ∠EAB = ∠2+ ∠EAB
2 ED
即 ∠DAB = ∠EAC
在△ABD和△ACE中,
AB = AC
∠DAB = ∠EAC
三角形全等的判定“角边角与角角边”(6种题型)-2023年新八年级数学题型(人教版)(解析版)
三角形全等的判定“角边角与角角边”(6种题型)【知识梳理】一、全等三角形判定——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .二、全等三角形判定——“角角边” 1.全等三角形判定——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.【考点剖析】题型一:用“角边角”直接证明三角形全等例1.如图,∠A =∠B ,AE =BE ,点D 在 AC 边上,∠1=∠2,AE 和BD 相交于点O .求证:△AEC ≌△BED ;【详解】∵AE 和BD 相交于点O ,∴∠AOD=∠BOE .在△AOD 和△BOE 中,∠A=∠B ,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO ,∴∠AEC=∠BED .在△AEC 和△BED 中,A B AE BEAEC BED ∠∠⎧⎪⎨⎪∠∠⎩===∴△AEC ≌△BED (ASA ).【变式1】如图,AB =AD ,∠1,DA 平分∠BDE .求证:△ABC ≌△ADE .【解答】证明:∵∠1=∠2,∴∠1+∠DAC =∠2+∠DAC ,∴∠BAC =∠DAE ,∵AB =AD ,∴∠ADB =∠B ,∵DA 平分∠BDE .∴∠ADE =∠ADB ,∴∠ADE =∠B ,在△ABC和△ADE中,{∠ADE=∠B AB=AD∠BAC=∠DAE,∴△ABC≌△ADE(ASA).【变式2】如图,已知∠1=∠2,∠3=∠4,要证BC=CD,证明中判定两个三角形全等的依据是()A.角角角B.角边角C.边角边D.角角边【分析】已知两角对应相等,且有一公共边,利用全等三角形的判定定理进行推理即可.【解答】解:在△ABC与△ADC中,{∠1=∠2 AC=AC∠3=∠4,则△ABC≌△ADC(ASA).∴BC=CD.故选:B.【变式3】(2022•长安区一模)已知:点B、E、C、F在一条直线上,AB∥DE,AC∥DF,BE=CF.求证:△ABC≌△DEF.【解答】证明:∵AB∥DE,∴∠B=∠DEF,∵AC∥DF,∴∠ACB=∠F,∵BE=CF,∴BE+EC=CF+EC,即BC =EF ,在△ABC 和△DEF 中,{∠B =∠DEFBC =EF ∠ACB =∠F,∴△ABC ≌△DEF (ASA ). 题型二:用“角边角”间接证明三角形全等例2.如图,已知AB ∥CD ,AB =CD ,∠A =∠D .求证:AF =DE .【详解】证明:∵AB //CD ,∴∠B =∠C ,在△ABF 和△DCE 中,A D AB CD BC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABF ≌△DCE (ASA ),∴AF =DE .【变式1】已知:如图,E ,F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B .求证:AE =CF .【答案与解析】证明:∵AD ∥CB∴∠A =∠C在△ADF 与△CBE 中A C AD CB D B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△CBE (ASA )∴AF =CE ,AF +EF =CE +EF故得:AE =CF【变式2】如图,AB =AC ,AB ⊥AC ,AD ⊥AE ,且∠ABD =∠ACE .求证:BD =CE .【详解】∵AB ⊥AC ,AD ⊥AE ,∴∠BAE +∠CAE =90°,∠BAE +∠BAD =90°,∴∠CAE =∠BAD .又AB =AC ,∠ABD =∠ACE ,∴△ABD ≌△ACE (ASA ).∴BD =CE .【变式3】如图,要测量河两岸相对两点A 、B 间的距离,在河岸BM 上截取BC =CD ,作ED ⊥BD 交AC 的延长线于点E ,垂足为点D .(DE ≠CD )(1)线段 的长度就是A 、B 两点间的距离(2)请说明(1)成立的理由.【解答】解:(1)线段DE 的长度就是A 、B 两点间的距离;故答案为:DE ;(2)∵AB ⊥BC ,DE ⊥BD∴∠ABC =∠EDC =90°又∵∠ACB =∠DCE ,BC =CD∴△ABC ≌△CDE (ASA )∴AB =DE .【变式4】如图,G 是线段AB 上一点,AC 和DG 相交于点E.请先作出∠ABC 的平分线BF ,交AC 于点F ;然后证明:当AD∥BC,AD =BC ,∠ABC=2∠ADG 时,DE =BF.【答案与解析】证明: ∵AD∥BC,∴∠DAC=∠C∵BF 平分∠ABC∴∠ABC=2∠CBF∵∠ABC=2∠ADG∴∠CBF=∠ADG在△DAE 与△BCF 中 ⎪⎩⎪⎨⎧∠=∠=∠=∠C DAC BCAD CBF ADG ∴△DAE≌△BCF(ASA )∴DE=BF【变式5】已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.【答案】证明:∵MQ 和NR 是△MPN 的高,∴∠MQN =∠MRN =90°,又∵∠1+∠3=∠2+∠4=90°,∠3=∠4∴∠1=∠2在△MPQ 和△NHQ 中,12MQ NQ MQP NQH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MPQ ≌△NHQ (ASA )∴PM =HN【变式6】如图,已知224m ABC S =△,AD 平分BAC ∠,且AD BD ⊥于点D ,则ADC S =△________2m .【答案】12【详解】解:如图,延长BD 交AC 于点E ,∵AD 平分BAC ∠,AD BD ⊥,∴BAD EAD ∠=∠,90ADB ADE ∠=∠=︒.∵AD AD =,∴()ADB ADE ASA ≌.∴BD DE =.∴ABD AED S S =△△,BCD ECD S S =. ∴12ABD BCD AED ECD ABC S S S S S =++=△△△△△.即12ADC ABC S S =.∵224m ABC S =△,∴212m ADC S =△.故答案为:12.【变式7】(2022秋•苏州期中)如图,△ABC 中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且BE ∥CF .(1)求证:△BDE ≌△CDF ;(2)若AE =13,AF =7,试求DE 的长.【解答】(1)证明:∵AD 是BC 边上的中线,∴BD =CD ,∵BE ∥CF ,∴∠DBE =∠DCF ,在△BDE 和△CDF 中,,∴△BDE ≌△CDF (ASA );(2)解:∵AE =13,AF =7,∴EF =AE ﹣AF =13﹣7=6,∵△BDE ≌△CDF ,∴DE =DF ,∵DE +DF =EF =6,∴DE =3.题型三:用“角角边”直接证明三角形全等例3.如图,在四边形ABCD中,E是对角线AC上一点,AD∥BC,∠ADC=∠ACD,∠CED+∠B=180°.求证:△ADE≌△CAB.【解答】证明:∵∠ADC=∠ACD,∴AD=AC,∵AD∥BC,∴∠DAE=∠ACB,∵∠CED+∠B=180°,∠CED+∠AED=180°,∴∠AED=∠B,在△ADE与△CAB中,{∠DAE=∠ACB ∠AED=∠BAD=AC,∴△ADE≌△CAB(AAS).【变式】(202210块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B 分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC 和△CEB 中,∴△ADC ≌△CEB (AAS ); (2)解:由题意得:AD =2×3=6(cm ),BE =7×2=14(cm ),∵△ADC ≌△CEB ,∴EC =AD =6cm ,DC =BE =14cm ,∴DE =DC +CE =20(cm ),答:两堵木墙之间的距离为20cm .题型四:用“角角边”间接证明三角形全等例4、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .【答案与解析】证明:∵AB ⊥AE ,AD ⊥AC ,∴∠CAD =∠BAE =90°∴∠CAD +∠DAB =∠BAE +∠DAB ,即∠BAC =∠EAD在△BAC 和△EAD 中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC ≌△EAD (AAS )∴AC =AD【变式】已知:如图,90ACB ∠=︒,AC BC =,CD 是经过点C 的一条直线,过点A 、B 分别作AE CD ⊥、 BF CD ⊥,垂足为E 、F ,求证:CE BF =.【答案与解析】证明:∵ CD AE ⊥,CD BF ⊥∴︒=∠=∠90BFC AEC∴︒=∠+∠90B BCF∵,90︒=∠ACB∴︒=∠+∠90ACF BCF∴B ACF ∠=∠在BCF ∆和CAE ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠BC AC B ACE BFC AEC∴BCF ∆≌CAE ∆(AAS )∴BF CE =【总结升华】要证BF CE =,只需证含有这两个线段的BCF ∆≌CAE ∆.同角的余角相等是找角等的好方法.题型五:“边角边”与“角角边”综合应用例5.如图,120CAB ABD ∠+∠=AD 、BC 分别平分CAB ∠、ABD ∠,AD 与BC 交于点O .(1)求AOB ∠的度数;(2)说明AB AC BD =+的理由.【答案】(1)120°;(2)见解析【详解】解:(1)∵AD ,BC 分别平分∠CAB 和∠ABD ,∠CAB +∠ABD =120°,∴∠OAB +∠OBA =60°,∴∠AOB =180°-60°=120°;(2)在AB 上截取AE =AC ,∵∠CAO=∠EAO,AO=AO,∴△AOC≌△AOE(SAS),∴∠C=∠AEO,∵∠C+∠D=(180°-∠CAB-∠ABC)+(180°-∠ABD-∠BAD)=180°,∴∠AEO+∠D=180°,∵∠AEO+∠BEO=180°,∴∠BEO=∠D,又∠EBO=∠DBO,BO=BO,∴△OBE≌△OBD(AAS),∴BD=BE,又AC=AE,∴AC+BD=AE+BE=A B.【变式】如图(1)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)求证:①△ADC≌△CEB;②DE=AD+BE.(2)当直线MN绕点C旋转到图(2)的位置时,DE、AD、BE又怎样的关系?并加以证明.【答案】(1)①证明见解析;②证明见解析;(2)DE=AD-BE,证明见解析.【详解】解:(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE,在△ADC 和△CEB 中,CDA BEC DAC ECB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS ).②证明:由(1)知:△ADC ≌△CEB ,∴AD =CE ,CD =BE ,∵DC +CE =DE ,∴AD +BE =DE .(2)成立.证明:∵BE ⊥EC ,AD ⊥CE ,∴∠ADC =∠BEC =90°,∴∠EBC +∠ECB =90°,∵∠ACB =90°,∴∠ECB +∠ACE =90°,∴∠ACD =∠EBC ,在△ADC 和△CEB 中,ACD CBE ADC BEC AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB (AAS ),∴AD =CE ,CD =BE ,∴DE =EC -CD =AD -BE .题型六:尺规作图——利用角边角或角角边做三角形例6、已知三角形的两角及其夹边,求作这个三角形已知:∠α,∠β和线段c ,如图4-4-21所示.图4-4-21求作:△ABC ,使∠A =∠α,∠B =∠β,AB =c .作法:(1)作∠DAF =∠α;图4-4-224-4-23(2)在射线AF 上截取线段AB =c ;图4-4-24(3)以B 为顶点,以BA 为一边,在AB 的同侧作∠ABE =∠β,BE 交AD 于点C .△ABC 就是所求作的三角形.[点析] 我们这样作出的三角形是唯一的,依据是两角及其夹边分别相等的两个三角形全等. 例7.已知:角α,β和线段a ,如图4-4-29所示,求作:△ABC ,使∠A =∠α,∠B =∠β,BC =a .图4-4-29[解析] 本题所给条件是两角及其中一角的对边,可利用三角形内角和定理求出∠C ,再利用两角夹边作图. 解: 如图4-4-30所示:(1)作∠γ=180°-∠α-∠β;(2)作线段BC =a ;(3)分别以B ,C 为顶点,以BC 为一边作∠CBM =∠β,∠BCN =∠γ;(4)射线BM ,CN 交于点A .△ABC 就是所求作的三角形.图4-4-30【变式】(2022春·陕西·七年级陕西师大附中校考期中)尺规作图已知:α∠,∠β和线段a ,求作ABC ,使A α∠=∠,2B β∠=∠,AB a =.要求:不写作法,保留作图痕迹,标明字母.【详解】解:如图,△ABC即为所求..【过关检测】一、单选题A.带①去B.带②去C.带③去D.①②③都带去【答案】A【分析】根据全等三角形的判定可进行求解【详解】解:第①块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:A.【点睛】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.≌过程中,先作2.(2023春·广东佛山·七年级校考期中)如图,在用尺规作图得到DBC ABCDBC ABC ∠=∠,再作DCB ACB ∠=∠,从而得到DBC ABC ≌,其中运用的三角形全等的判定方法是( )A .SASB .ASAC .AASD .SSS【答案】B 【分析】根据题意分析可得DBC ABC ∠=∠,DCB ACB ∠=∠,再加上公共边BC BC =,根据AAS ,即可判断DBC ABC ≌.【详解】解:∵得DBC ABC ∠=∠, BC BC =,DCB ACB ∠=∠,∴DBC ABC≌()ASA , 故选:B .【点睛】本题考查了作一个角等于已知角,全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.3.(2023春·重庆沙坪坝·七年级重庆一中校考期末)如图,OC 平分AOB ∠,点P 是射线OC 上一点,PM OB ⊥于点M ,点N 是射线OA 上的一个动点,连接PN ,若6PM =,则PN 的长度不可能是( )【答案】D 【分析】如图所示,过点P 作PH OA ⊥于H ,证明POH POM △≌△得到6PH PM ==,由垂线段最短可知PN PH ≥,由此即可得到答案.【详解】解:如图所示,过点P 作PH OA ⊥于H ,∵PM OB ⊥,∴90PHO PMO ==︒∠∠,∵OC 平分AOB ∠,∴POH POM ∠=∠,又∵OP OP =,∴()AAS POH POM △≌△,∴6PH PM ==,由垂线段最短可知PN PH ≥,∵(264036=>,∴6,∴四个选项中,只有D 选项符合题意,故选:D .【点睛】本题主要考查了全等三角形的性质与判定,垂线段最短,实数比较大小,正确作出辅助线构造全等三角形是解题的关键. 4.(2023春·陕西咸阳·七年级统考期末)如图,AD BC ∥,ABC ∠的平分线BP 与BAD ∠的平分线AP 相交于点P ,作PE AB ⊥于点E ,若4PE =,则点P 到AD 与BC 的距离之和为( )A .4B .6C .8D .10【答案】C【分析】如图所示,过点P 作FG AD ⊥与F ,延长FP 交BC 于G ,先证明AD FG ⊥,由角平分线的定义得到EBP GBP =∠∠,进而证明EBP GBP △≌△得到4PG PE ==,同理可得4PF PE ==,则8FG PF PG =+=,由此即可得到答案.【详解】解:如图所示,过点P 作FG AD ⊥与F ,延长FP 交BC 于G ,∵AD BC ∥,∴AD FG ⊥,∵PE AB ⊥,∴90PFA PEA PEB PGB ====︒∠∠∠∠,∵BP 平分ABC ∠,∴EBP GBP =∠∠,又∵BP BP =,∴()AAS EBP GBP △≌△,∴4PG PE ==,同理可得4PF PE ==,∴8FG PF PG =+=,∴点P 到AD 与BC 的距离之和为8,故选C .【点睛】本题主要考查了平行线的性质,全等三角形的性质与判定,角平分线的定义,平行线间的距离等等,正确作出辅助线构造全等三角形是解题的关键. 5.(2023春·福建福州·七年级福建省福州第十六中学校考期末)如图,90C ∠=︒,点M 是BC 的中点,DM 平分ADC ∠,且8CB =,则点M 到线段AD 的最小距离为( )A .2B .3C .4D .5【答案】C 【分析】如图所示,过点M 作ME AD ⊥于E ,证明MDE MDC △≌△,得到ME MC =,再根据线段中点的定义得到142ME MC BC ===,根据垂线段最短可知点M 到线段AD 的最小距离为4.【详解】解:如图所示,过点M 作ME AD ⊥于E ,∴90MED C ==︒∠∠,∵DM 平分ADC ∠,∴MDE MDC =∠∠,又∵MD MD =,∴()AAS MDE MDC △≌△,∴ME MC =,∵点M 是BC 的中点,8CB =,∴142ME MC BC ===,∴点M 到线段AD 的最小距离为4,故选:C .【点睛】本题主要考查了全等三角形的性质与判定,角平分线的定义,垂线段最短等等,正确作出辅助线构造全等三角形是解题的关键.6.(2023·全国·八年级假期作业)如图,点E 在ABC 外部,点D 在ABC 的BC 边上,DE 交AC 于F ,若123∠=∠=∠,AE AC =,则( ).A .ABD AFE △≌△B .AFE ADC ≌△△ C .AFE DFC ≌△△D .ABC ADE △≌△ 【答案】D 【分析】首先根据题意得到BAC DAE ∠=∠,E C ∠=∠,然后根据ASA 证明ABC ADE △≌△.【详解】解:∵12∠=∠,∴12DAC DAC ∠+∠=∠+∠,∴BAC DAE ∠=∠,∵23∠∠=,AFE DFC ∠=∠,∴E C ∠=∠,∴在ABC 和ADE V 中,BAC DAE AC AEC E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA ABC ADE ≌△△, 故选:D .【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定定理.7.(2023·浙江·八年级假期作业)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块)你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带( )A .带①去B .带②去C .带③去D .①②③都带去【答案】B 【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【详解】解:①、③、④块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去, 只有第②块有完整的两角及夹边,符合ASA ,满足题目要求的条件,是符合题意的.故选:B .【点睛】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS . 8.(2023春·浙江宁波·七年级校考期末)如图,ABC 的两条高AD 和BF 相交于点E ,8AD BD ==,10AC =,2AE =,则BF 的长为( )A .11.2B .11.5C .12.5D .13【答案】A 【分析】先证明BDE ADC △≌△,可得 6DE DC ==,14BC =,而10AC =,再由等面积法可得答案.【详解】解:∵ABC 的两条高AD 和BF 相交于点E ,∴90ADB ADC BFA ∠=∠=︒=∠,∵AEF BED ∠=∠,∴DBE DAC ∠=∠,∵8AD BD ==,2AE =,∴BDE ADC △≌△,6DE =,∴6DE DC ==,∴14BC =,而10AC =,由等面积法可得:111481022BF ⨯⨯=⨯⨯,解得:11.2BF =;故选A【点睛】本题考查的是三角形的内角和定理的应用,全等三角形的判定与性质,等面积法的应用,证明BDE ADC △≌△是解本题的关键. 9.(2023春·辽宁沈阳·七年级沈阳市第一二六中学校考阶段练习)如图,抗日战争期间,为了炸毁敌人的碉堡,需要测出我军阵地与敌人碉堡的距离.我军战士想到一个办法,他先面向碉堡的方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部点B ;然后转过身保持刚才的姿势,这时视线落在了我军阵地的点E 上;最后,他用步测的办法量出自己与E 点的距离,从而推算出我军阵地与敌人碉堡的距离,这里判定ABC DEF ≌△△的理由可以是( )A . SSSB . SASC . ASAD . AAA【答案】C 【分析】根据垂直的定义和全等三角形的判定定理即可得到结论.【详解】解:∵士兵的视线通过帽檐正好落在碉堡的底部点B ,然后转过身保持刚才的姿势,这时视线落在了我军阵地的点E 上,∴A D ∠=∠,∵AC BC ⊥,DF EF ^,∴90ACB DFE ∠=∠=︒,∵AC DF =,∴判定ABC DEF ≌△△的理由是ASA . 故选C .【点睛】本题主要考查了全等三角形的应用,分析题意找到相等的角和边判定三角形的全等是解题的关键.10.(2023春·四川达州·八年级统考期末)如图,已知BP 是ABC ∠的平分线,AP BP ⊥,若212cm BPC S =△,则ABC 的面积( )A .224cmB .230cmC .236cmD .不能确定【答案】A【分析】延长AP 交BC 于点C ,根据题意,易证()ASA ABP DBP ≌,因为APC △和DPC △同高等底,所以面积相等,根据等量代换便可得出2224cm ABC BPC S S ==.【详解】如图所示,延长AP ,交BC 于点D ,,∵AP BP ⊥,∴90APB DPB ∠=∠=︒,∵BP 是ABC ∠的角平分线,∴ABP DBP ∠=∠,在ABP 和DBP 中,ABP DBP BP BP APB DPB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA ABP DBP ≌,∴AP DP =,∴ABP DBP S S =△△,∵APC △和DPC △同底等高,∴APC DPC S S =△,∴PBC DPB DPC ABP APC S S S S S =+=+△△△△,∴2224ABC BPC S S cm ==,故选:C .【点睛】本题考查了三角形的角平分线和全等三角形的判定,解题的关键是熟练运用三角形的角平分线和全等三角形的判定.二、填空题 11.(2023·浙江·八年级假期作业)如图,D 在AB 上,E 在AC 上,且B C ∠=∠,补充一个条件______后,可用“AAS ”判断ABE ACD ≌.【答案】BE CD =或AE AD =【分析】由于两个三角形已经具备B C ∠=∠,A A ∠=∠,故要找边的条件,只要不是这两对角的夹边即可.【详解】解:∵B C ∠=∠,A A ∠=∠,∴若用“AAS ”判断ABE ACD ≌,可补充的条件是BE CD =或AE AD =;故答案为:BE CD =或AE AD =.【点睛】本题考查了全等三角形的判定,熟知掌握判定三角形全等的条件是解题的关键.七年级期末)如图,在ABC 中, 【答案】ASA【分析】由AD BC ⊥、AD 平分BAC ∠、AD AD =可得出两个三角形对应的两个角及其夹边相等,于是可以利用ASA 判定这两个三角形全等.【详解】∵AD BC ⊥,∴90BDA CDA ︒=∠=∠.∵AD 平分BAC ∠,∴BAD ∠CAD =∠.在ABD △与ACD 中,BDA CDA AD AD BAD CAD ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴()ASA ABD ACD ≌.故答案为:ASA【点睛】本题考查了三角形全等的判定条件,解题的关键是找到两个三角形对应的边角相等. 13.(2023春·陕西榆林·七年级统考期末)如图,AB CD ⊥,且AB CD =,连接AD ,CE AD ⊥于点E ,BF AD ⊥于点F .若8CE =,5BF =,4EF =,则AD 的长为________.【答案】9【分析】只要证明(AAS)ABF CDE ≌,可得8AF CE ==,5BF DE ==,推出AD AF DF =+即可得出答案.【详解】解:∵AB CD ⊥,CE AD ⊥,BF AD ⊥,∴90AFB CED ∠=∠=︒,90A D ∠+∠=︒,90C D ∠=∠=︒,∴A C ∠=∠,∵AB CD =,∴(AAS)ABF CDE ≌,∴8AF CE ==,5BF DE ==,∵4EF =,∴()8549AD AF DF =+=+−=,故答案为:9.【点睛】本题考查全等三角形的判定与性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型. 14.(2023春·山东枣庄·七年级统考期末)如图,A ,B 两个建筑物分别位于河的两岸,为了测量它们之间的距离,可以沿河岸作射线BF ,且使BF AB ⊥,在BF 上截取BC CD =,过D 点作DE BF ⊥,使E C A ,,在一条直线上,测得16DE =米,则A ,B 之间的距离为______米.【答案】16【分析】根据已知条件可得ABC EDC △≌△,从而得到DE AB =,从而得解.【详解】∵BF AB DE BF ⊥⊥,,∴90B EDC ∠=∠=°,∵90B EDC ∠=∠=,BC CD BCA DCE =∠=∠,,∴()ASA ABC EDC ≌△△,∴DE AB =.又∵16DE =米,∴16AB =米,即A B ,之间的距离为16米.【点睛】此题主要考查全等三角形的应用,解题的关键是熟知全等三角形的判定方法.15.(2023·广东茂名·统考一模)如图,点A 、D 、C 、F 在同一直线上,AB DE ∥,AD CF =,添加一个条件,使ABC DEF ≌△△,这个条件可以是______.(只需写一种情况)【答案】BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =(答案不唯一)【分析】先证明A EDF ∠=∠及AC DF =,然后利用全等三角形的判定定理分析即可得解.【详解】解∶BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =,理由是∶∵AB DE ∥,∴A EDF ∠=∠,∵AD CF =,∴AD CD CF CD +=+即AC DF =,当BC EF ∥时,有BCA EFD ∠=∠,则() ASA ABC DEF ≌, 当BCA EFD ∠=∠时,则() ASA ABC DEF ≌, 当B E ∠=∠时,则() AAS ABC DEF ≌, 当AB DE =时,则() SAS ABC DEF ≌,故答案为∶BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =.【点睛】本题考查了对全等三角形的判定定理的应用,掌握全等三角形的判定定理有SAS , ASA , AAS , SSS 是解题的关键. 16.(2023春·上海虹口·七年级上外附中校考期末)如图,有一种简易的测距工具,为了测量地面上的点M 与点O 的距离(两点之间有障碍无法直接测量),在点O 处立竖杆PO ,并将顶端的活动杆PQ 对准点M ,固定活动杆与竖杆的角度后,转动工具至空旷处,标记活动杆的延长线与地面的交点N ,测量点N 与点O 的距离,该距离即为点M 与点O 的距离.此种工具用到了全等三角形的判定,其判定理由是______.【答案】两个角及其夹边对应相等的两个三角形全等【分析】根据全等三角形的判定方法进行分析,即可得到答案.【详解】解:在POM 和PON △中,90OP OPPOM PON ⎪=⎨⎪∠=∠=︒⎩, ()ASA POM PON ∴≌,∴判定理由是两个角及其夹边对应相等的两个三角形全等,故答案为:两个角及其夹边对应相等的两个三角形全等.【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题关键.【答案】 = 180BCA α∠+∠=︒【分析】①求出90BEC AFC ∠=∠=︒,CBE ACF ∠=∠,根据AAS 证BCE CAF ≌△△,推出BE CF =,CE AF =即可得出结果;②求出CBE ACF ∠=∠,由AAS 证BCE CAF ≌△△,推出BE CF =,CE AF =即可得出结果.【详解】解:①90BCA ∠=︒,90α∠=︒,90BCE CBE ∴∠+∠=︒,90BCE ACF ∠+∠=︒,CBE ACF ∴∠=∠,在BCE 和CAF V 中,BEC CFACB CA ⎪∠=∠⎨⎪=⎩,(AAS)BCE CAF ∴△≌△,BE CF ∴=,CE AF =,||||EF CF CE BE AF ∴=−=−,②α∠与BCA ∠应满足180BCA α∠+∠=︒,在BCE 中,180180CBE BCE BEC α∠+∠=︒−∠=︒−∠,180BCA α∠=︒−∠,BCA CBE BCE ∴∠=∠+∠,ACF BCE BCA ∠+∠=∠,CBE ACF ∴∠=∠,在BCE 和CAF V 中,CBE ACF BEC CFACB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)BCE CAF ∴△≌△, BE CF ∴=,CE AF =,||||EF CF CE BE AF ∴=−=−,故答案为:=,180BCA α∠+∠=︒.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质、三角形的面积计算、三角形的外角性质等知识;解题的关键是判断出BCE CAF ≌△△. ABC 的角平分线,过点【答案】4【分析】延长CE 与BA 的延长线相交于点F ,利用ASA 证明ABD △和ACF △全等,进而利用全等三角形的性质解答即可.【详解】解:如图,延长CE 与BA 的延长线相交于点F ,90EBF F ∠+∠=︒,90ACF F ∠+∠=︒,EBF ACF ∴∠=∠,在ABD △和ACF △中,EBF ACF AB ACBAC CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA ABD ACF ∴≌, BD CF ∴=,BD Q 是ABC ∠的平分线,EBC EBF ∴∠=∠.在BCE 和BFE △中,BE BECEB FEB ⎪=⎨⎪∠=∠⎩,()ASA BCE BFE ∴≌, CE EF ∴=,2CF CE ∴=,24BD CF CE ∴===.故答案为:4.【点睛】本题主要考查了全等三角形的性质和判定,理解题意、灵活运用全等三角形的判定与性质是解题的关键.三、解答题【答案】(1)见解析(2)5【分析】(1)首先根据垂直判定AB EF ∥,得到ABC F ∠=∠,再利用AAS 证明即可;(2)根据全等三角形的性质可得9AB CF ==,4BC EF ==,再利用线段的和差计算即可.【详解】(1)解:∵CD AB ⊥,EF CE ⊥,∴AB EF ∥,∴ABC F ∠=∠,在ABC 和CFE 中,ACB EAC CE ⎪∠=∠⎨⎪=⎩, ∴()AAS ABC CFE △△≌; (2)∵ABC CFE △△≌, ∴9AB CF ==,4BC EF ==,∴5BF CF BC =−=.【点睛】本题考查了全等三角形的判定和性质,平行线的判定和性质,解题的关键是找准条件,证明三角形全等. 20.(2023春·陕西西安·七年级西安市铁一中学校考期末)如图,A ,C ,D 三点共线,ABC 和CDE 落在AD 的同侧,AB CE ∥,BC DE =,B D ∠=∠.求证:AB CE AD +=.【答案】见解析【分析】证明()AAS ABC CDE ≌,得出AB CD =,BC CE =,即可证明结论.【详解】解:∵AB CE ∥,∴A DCE ∠=∠,∵B D ∠=∠,BC DE =,∴()AAS ABC CDE ≌,∴AB CD =,BC CE =,∴AB CE CD AC AD +=+=.【点睛】本题主要考查了平行线的性质,三角形全等的判定和性质,解题的关键是熟练掌握三角形全等的判定方法证明ABC CDE △≌△.21.(2022秋·八年级课时练习)已知αβ∠∠,和线段a (下图),用直尺和圆规作ABC ,使A B AB a αβ∠=∠∠=∠=,,.【答案】见解析 【分析】先作出线段AB a =,再根据作与已知角相等的角的尺规作图方法作DAB EBA αβ∠=∠∠=∠,即可得到答案.【详解】解:作法如下图.1.作一条线段AB a =.2.分别以A ,B 为顶点,在AB 的同侧作DAB EBA αβ∠=∠∠=∠,,DA 与EB 相交于点C .ABC 就是所求作的三角形.【点睛】本题主要考查了三角形的尺规作图,熟知相关作图方法是解题的关键.22.(2023春·全国·七年级专题练习)如图,已知ABC ,请根据“ASA”作出DEF ,使DEF ABC ≌.【答案】见解析【分析】先作MEN B ∠=∠,再在EM 上截取ED BA =,在EN 上截取EF BC =,从而得到DEF ABC ≌.【详解】解:如图,DEF 为所作.【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定. 23.(2023春·山西太原·七年级校考阶段练习)如图,点B 、F 、C 、E 在同一条直线上,已知FB CE =,AB DE ∥,ACB DFE ∠=∠,试说明:AC DF =.【答案】见解析【分析】利用ASA 定理证明三角形全等,然后利用全等三角形的性质分析求解.【详解】解:∵FB CE =,∴FB FC CE FC +=+,即BC EF =,∵AB DE ∥,∴B E ∠=∠,在ABC 和DEF 中B E BC EF ACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABC DEF ≌△△, ∴AC DF =.【点睛】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法:SSS 、SAS 、ASA 、AAS 、HL .三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.24.(2020秋·广东广州·八年级海珠外国语实验中学校考阶段练习)如图,已知:EC AC =,BCE DCA ∠=∠,A E ∠=∠.求证:AB ED =.【答案】见解析【分析】先求出ACB ECD ∠=∠,再利用“角边角”证明ABC 和EDC △全等,然后根据全等三角形对应边相等证明即可.【详解】证明:∵BCE DCA ∠=∠,∴BCE ACE DCA ACE ∠+∠=∠+∠,即ACB ECD ∠=∠.在ABC 和EDC △中,∵ACB ECD AC ECA E ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ABC EDC ≌△△.∴AB ED =.【点睛】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.25.(2023春·福建宁德·七年级校考阶段练习)如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB DE =,AB DE ∥,A D ∠=∠.(1)求证:ABC DEF ≌△△; (2)若10BE =,3BF =,求FC 的长度.【答案】(1)见解析(2)4【分析】(1)由AB DE ∥,得ABC DEF ∠=∠,而AB DE =,A D ∠=∠,即可根据全等三角形的判定定理“ASA ”证明ABC DEF ≌△△; (2)根据全等三角形的性质得BC EF =,则3BF CE ==,即可求得FC 的长度.【详解】(1)解:证明:∵AB DE ∥,∴ABC DEF ∠=∠,在ABC 和DEF 中,A D AB DE ABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴()ASA ABC DEF ≌△△; (2)解:由(1)知()ASA ABC DEF ≌△△,∴BC EF =, ∴BF FC CE FC +=+,∴3BF CE ==,∵10BE =,∴10334FC BE BF CE =−−=−−=,∴FC 的长度是4.【点睛】此题重点考查全等三角形的判定与性质、平行线的性质等知识,根据平行线的性质证明ABC DEF ∠=∠是解题的关键. 26.(2023·浙江·八年级假期作业)如图,ABC 中,BD CD =,连接BE ,CF ,且BE CF ∥.(1)求证:BDE CDF ≌;(2)若15AE =,8AF =,试求DE 的长.【答案】(1)证明见解析(2)72【分析】(1)根据平行线的性质可得BED CFD Ð=Ð,根据全等三角形的判定即可证明;(2)根据全等三角形的性质可得DE DF =,即可求得.【详解】(1)证明:∵BE CF ∥,∴BED CFD Ð=Ð,∵BDE CDF ∠=∠,BD CD =,∴()AAS BDE CDF ≌;(2)由(1)结论可得DE DF =,∵1587EF AE AF =−=−=,∴72DE =.【点睛】全等三角形的判定和性质,熟练掌握平行线的性质,全等三角形的判定和性质是解题的关键. 27.(2023春·江西鹰潭·七年级校考阶段练习)将两个三角形纸板ABC 和DBE 按如图所示的方式摆放,连接DC .已知DBA CBE ∠=∠,BDE BAC ∠=∠,AC DE DC ==.(1)试说明ABC DBE ≌△△.(2)若72ACD ∠=︒,求BED ∠的度数.【答案】(1)见解析(2)36BED ∠=︒【分析】(1)利用AAS 证明三角形全等即可;(2)全等三角形的性质,得到BED BCA ∠=∠,证明()SSS DBC ABC ≌,得到1362BCD BCA ACD ∠=∠=∠=︒,即可得解.【详解】(1)解:因为DBA CBE ∠=∠,所以DBA ABE CBE ABE ∠+∠=∠+∠,即DBE ABC ∠=∠.在ABC 和DBE 中,ABC DBE BAC BDEAC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, 所以()AAS ABC DBE ≌. (2)因为ABC DBE ≌△△, 所以BD BA =,BCA BED ∠=∠.在DBC △和ABC 中,DC AC CB CBBD BA =⎧⎪=⎨⎪=⎩, 所以()SSS DBC ABC ≌, 所以1362BCD BCA ACD ∠=∠=∠=︒,所以36BED BCA ∠=∠=︒.【点睛】本题考查全等三角形的判定和性质.解题的关键是证明三角形全等. 28.(2023春·河南驻马店·七年级统考期末)如图,线段AD 是ABC 的中线,分别过点B 、C 作AD 所在直线的垂线,垂足分别为E 、F .(1)请问BDE 与CDF 全等吗?说明理由;(2)若ACF △的面积为10,CDF 的面积为6,求ABE 的面积.【答案】(1)BDE CDF ≌△△,见解析 (2)22【分析】(1)利用AAS 证明三角形全等即可.(2)根据中线性质,得到,ABD ACD ACF CDF CDF ==+=△△△△△BDE △S S S S S S ,结合ABEABD BDE S S S =+△△△计算即可. 【详解】(1)BDE CDF ≌△△,理由如下: ∵AD 是ABC 的中线,∴BD CD =,∵BE AE ⊥,CF AE ⊥,∴90BED CFD ∠=∠=︒,在BDE 和CDF 中,BED CFD BDE CDFBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS BDE CDF ≌.(2)∵10ACF S =△,6CDF S =△,BDE CDF ≌,∴10616ACD ACF CDF S S S =+=+=△△△,6BDE CDF S S ==,∵BD CD =∴ABD △和ACD 是等底同高的三角形∴16ABD ACD S S ==△△∴16622ABE ABD BDE S S S =+=+=△△△.【点睛】本题考查了三角形全等的判定和性质,中线的性质,三角形面积的计算,熟练掌握三角形全等的判定和性质,中线的性质是解题的关键. 29.(2019·七年级单元测试)(1)求证:等边三角形内的任意一点到两腰的距离之和等于定长.(提示:添加辅助线证明)(2)如图所示,在三角形ABC 中,点D 是三角形内一点,连接DA 、DB 、DC ,若,=∠=∠AB AC ADB ADC ,求证:AD 平分BAC ∠.【答案】(1)详见解析;(2)详见解析.【分析】(1)已知点P 是等边三角形ABC 内的任意一点,过点P 分别作三边的垂线,分别交三边于点D 、点E 、点F .求证PD PE PF ++为定长,即可完成证明;(2)(面积法)过点A 作AE BD ⊥交BD 延长线于点E ,再过点A 作AF CD ⊥交CD 延长线于点F.因为ADB ADC ∠=∠,所以ADE ADF ∠=∠,因此(AAS)ADF ADE ≅,得到AF AE =.进而AFC AEB ≅,得到ABD ACD ∠=∠,因此BAD CAD ∠=∠,即AD 平分BAC ∠.【详解】(1) 已知:等边如图三角形ABC ,P 为三角形ABC 内任意一点,PD ⊥AB, PF ⊥AC, PE ⊥BC, 求证:PD+PE+PF 为定值.证明:如图:过点A 作AG BC ⊥,垂足为点G ,分别连接AP 、BP 、CP .∵ABC ABP BCP CAP S S S S =++, ∴11112222BC AG BC PE AC PF AB PD =++又∵BC=AB=AC∴AG=PE+PF+PD,即PD PE PF AG ++=定长.∴等边三角形内的任意一点到两腰的距离之和等于定长.(2)过点A 作AE BD ⊥交BD 延长线于点E ,再过点A 作AF CD ⊥交CD 延长线于点F.∵ADB ADC ∠=∠,∴ADE ADF ∠=∠,又∵AD=AD∴(AAS)ADF ADE ≅,∴AF AE =∴AFC AEB ≅,∴ABD ACD ∠=∠,∴BAD CAD ∠=∠,即AD 平分BAC ∠.【点睛】本题考查了等边三角形的性质和全等三角形的性质和判定,其中做出辅助线是解答本题的关键.。
19.2 三角形全等的条件(角边角)
如图:要测量河两岸相对的两点 的距离, 如图 要测量河两岸相对的两点A,B的距离 要测量河两岸相对的两点 的距离 可以在AB的垂线 上取两点C,D,使BC=CD, 的垂线BF上取两点 可以在 的垂线 上取两点 使 再定出BF的垂线 的垂线DE,使A,C,E在一条直线上 在一条直线上, 再定出 的垂线 使 在一条直线上 这时测得DE的长就是 的长,为什么 的长就是AB的长 为什么? 这时测得 的长就是 的长 为什么
变式练习
如图: ABC是等腰三角形, 如图:△ABC是等腰三角形, 是等腰三角形 AD、BE分别是 分别是∠ AD、BE分别是∠A、∠B的角平 分线, ABD和 BAE全等吗 全等吗? 分线,△ABD和△BAE全等吗? 试说明理由. 试说明理由.
若改为:AD、BE分别是两腰上 若改为:AD、BE分别是两腰上 的高, 的中线,ABD和△BAE全等吗? ABD和 BAE全等吗 全等吗? 全等吗? 的高,△ABD和 BAE全等吗 的中线,△ABD和△BAE全等吗? 试说明理由. 试说明理由.
分析:此题是实际应用题, 分析 此题是实际应用题, 此题是实际应用题 文字语言叙述的内容用符号 语言表示出来即是: 、 语言表示出来即是:AE、BD 相交于C点 相交于 点,且BC=CD, , AB⊥BD,ED⊥BD,垂足分 ⊥ , ⊥ , 别是B、 , 别是 、D,则AB=ED,由 , 分别是△ 于AB、ED分别是△ABC和 、 分别是 和 的边, △EDC的边,可考虑证 的边 △ABC≌△EDC ≌
图 19 。 2 。 7
把你们画的三角形与其他同学画的三角形进行比较, 所有的三角形都全等吗?
仔细观察
在△ABC 与△A'B'C'中,若 中若 AB=A‘B', ∠A=∠A', ∠B=∠B', ∠ ∠ 那么△ABC 与△A'B'C'全等吗 那么△ 全等吗? 全等吗
三角形全等的判定“边角边”(7种题型)-2023年新八年级数学常见题型(人教版)(解析版)
三角形全等的判定“边角边”(7种题型)【知识梳理】全等三角形判定——“边角边”1. 全等三角形判定——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.【考点剖析】题型一:用“边角边”直接证明三角形全等例1.已知:如图,点C 为AB 中点,CD=BE ,CD ∥BE.求证:△ACD ≌△CBE.【解析】证明:∵CD ∥BE ,∴∠ACD=∠B..∵点C 为AB 中点,∴AC=CB.又∵CD=BE ,∴△ACD ≌△CBE (SAS )【变式1】如图,AC DF =,12∠=∠,如果根据“SAS ”判定ABC DEF △≌△,那么需要补充的条件是( )A .A D ∠=∠B .AB DE =C .B E ∠=∠D .BF CE =【答案】D 【详解】解:需要补充的条件是BF=CE ,∴BF+FC=CE+CF ,即BC=EF ,在△ABC 和△DEF 中,12AC DF BC EF =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ).故选:D .【变式1】如图,点B ,E ,C ,F 在同一条直线上,AB =DE ,BE =CF ,∠B =∠DEF .求证:△ABC ≌△DEF .【解答】证明:∵BE =CF ,∴BE+CE =CF+EC .∴BC =EF .在△ABC 和△DEF 中,{AB =DE∠B =∠DEF BC =EF,∴△ABC≌△DEF(SAS).【变式3】如图,CA=CD,∠BCE=∠ACD,BC=EC.求证:△ABC≌△DEC.【解答】证明:∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,∴∠ACB=∠DCE,在△ABC和△DEC中,{AC=DC∠ACB=∠DCE BC=EC,∴△ABC≌△DEC(SAS).【变式4】如图,D、C、F、B四点在一条直线上,AC=EF,AC⊥BD,EF⊥BD,垂足分别为点C、点F,BF=CD.试说明:△ABC≌△EDF.【解答】解:∵AC⊥BD,EF⊥BD,∴∠ACB=∠EFD=90°,∵BF=CD,∴BF+CF=CD+CF,即BC=DF,在△ABC和△EDF中,{BC=DF∠ACB=∠EFD AC=EF,∴△ABC≌△EDF(SAS).【变式5】如图,△ABC 中,AB=AC ,点E ,F 在边BC 上,BE=CF ,点D 在AF 的延长线上,AD=AC ,(1)求证:△ABE ≌△ACF ;(2)若∠BAE=30°,则∠ADC= °.【答案】(1)证明见解析;(2)75.【详解】(1)∵AB=AC ,∴∠B=∠ACF ,在△ABE 和△ACF 中,AB AC B ACFBE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACF (SAS );(2)∵△ABE ≌△ACF ,∠BAE=30°,∴∠CAF=∠BAE=30°,∵AD=AC ,∴∠ADC=∠ACD ,∴∠ADC=280013︒−︒=75°,故答案为75. 【变式6】(2023春·江苏·七年级统考期末)如图,在ABC 和ADE V 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒,连接BD CE 、.(1)求证:ABD ACE ≌△△. (2)图中BD 和CE 有怎样的关系?试证明你的结论.【详解】(1)解:90BAC DAE ∠=∠=︒∴BAC CAD DAE CAD ∠+∠=∠+∠∴BAD EAC ∠=∠AB AC =,AD AE =∴ABD ACE ≌△△. (2)解:如图,设BD 和CE 交点为FABD ACE ≌△△∴ACE ABD ∠=∠90BAC ∠=︒∴90ABD DBC ACB ∠+∠+∠=︒∴90ACE DBC ACB ∠+∠+∠=︒即90ECB DBC ∠+∠=︒∴()18090BFC ECB DBC ∠=︒−∠+∠=︒∴BD CE ⊥.题型二:用“边角边”间接证明三角形全等例2、已知:如图,AB =AD ,AC =AE ,∠1=∠2.求证:BC =DE .【答案与解析】证明: ∵∠1=∠2∴∠1+∠CAD =∠2+∠CAD ,即∠BAC =∠DAE在△ABC 和△ADE 中AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ADE (SAS )∴BC =DE (全等三角形对应边相等)【变式1】如图所示,点O 为AC 的中点,也是BD 的中点,那么AB 与CD 的关系是________.【答案】平行且相等【详解】解:∵点O 为AC 的中点,也是BD 的中点,∴AO=OC ,BO=OD ,又∵∠AOB=∠DOC ,∴△AOB ≌△COD (SAS )∴AB=CD ,∠A=∠C ,∴AB//CD,即AB 与CD 的关系是平行且相等,故答案为:平行且相等.【变式2】如图,已知AB ∥CD ,AB =CD ,∠A =∠D .求证:AF =DE .【详解】证明:∵AB//CD ,∴∠B =∠C ,在△ABF 和△DCE 中,A D AB CDB C ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABF ≌△DCE (ASA ),∴AF =DE .【变式3】如图,点E 、F 分别是矩形ABCD 的边 AB 、CD 上的一点,且DF =BE .求证:AF=CE .【分析】由SAS 证明△ADF ≌△CBE ,即可得出AF =CE .【详解】证明:∵四边形ABCD 是矩形,∴∠D =∠B =90°,AD =BC ,在△ADF 和△CBE 中,AD BC D B DF BE ⎧⎪∠∠⎨⎪⎩===,∴△ADF ≌△CBE (SAS ),∴AF =CE .【变式4】已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.【详解】解:(1)在△ADB 和△AEC 中,12AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩∴△ADB ≌△AEC (SAS ),∴BD=CE ;(2)∵12∠=∠,∴BAN CAM ∠=∠,∵△ADB ≌△AEC ,∴B C ∠=∠,∴180180B BAN C CAM ︒−∠−∠=︒−∠−∠,即M N ∠=∠.【变式5】如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案】AE =CD ,并且AE ⊥CD证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形∴AB =BC ,BD =BE在△ABE 和△CBD 中90AB BC ABE CBD BE BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE ≌△CBD (SAS )∴AE =CD ,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC =90°∴AE ⊥CD题型三:边角边与倍长中线例3、如图,AD 是△ABC 的中线,求证:AB +AC >2AD .【答案与解析】 证明:如图,延长AD 到点E ,使AD =DE ,连接CE .在△ABD 和△ECD 中,∴△ABD ≌△ECD (SAS ).∴AB =CE .∵AC +CE >AE ,∴AC +AB >AE =2AD .即AC +AB >2AD .14.如图所示,AD 是△ABC 中BC 边上的中线,若AB =2,AC =6,则AD 的取值范围是__________AD DE ADB EDC BD CD ⎧⎪∠∠⎨⎪⎩===.【答案】2<AD <4【分析】此题要倍长中线,再连接,构造全等三角形.根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:延长AD 到E ,使AD =DE ,连接BE ,∵AD 是△ABC 的中线,∴BD =CD ,在△ADC 与△EDB 中,BD CD ADC BDE AD DE =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EDB (SAS ),∴EB =AC ,根据三角形的三边关系定理:6-2<6+2,∴2<AD <4,故AD 的取值范围为2<AD <4.【点睛】本题主要考查对全等三角形的性质和判定,三角形的三边关系定理等知识点的理解和掌握,能推出6-2<AE <6+2是解此题的关键.题型四:边角边与截长补短例4、已知,如图:在△ABC 中,∠B =2∠C ,AD ⊥BC ,求证:AB =CD -BD .【答案与解析】 证明:在DC 上取一点E ,使BD =DE∵ AD ⊥BC ,∴∠ADB =∠ADE在△ABD 和△AED 中,∴△ABD ≌△AED (SAS ). ∴AB =AE ,∠B=∠AED .又∵∠B =2∠C =∠AED =∠C +∠EAC .∴∠C =∠EAC .∴AE =EC .∴AB =AE =EC =CD —DE =CD —BD .【变式】已知,如图,在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,并且AE =(AB +AD ), 求证:∠B +∠D =180°.【答案】证明:在线段AE 上,截取EF =EB ,连接FC ,BD DE ADB=ADE AD AD ⎧⎪⎨⎪⎩=∠∠=12A EDC B∵CE ⊥AB ,∴∠CEB =∠CEF =90°在△CBE 和△CFE 中,∴△CBE 和△CFE (SAS )∴∠B =∠CFE∵AE =(AB +AD ),∴2AE = AB +AD∴AD =2AE -AB∵AE =AF +EF ,∴AD =2(AF +EF )-AB =2AF +2EF -AB =AF +AF +EF +EB -AB =AF +AB -AB ,即AD =AF在△AFC 和△ADC 中∴△AFC ≌△ADC (SAS )∴∠AFC =∠D∵∠AFC +∠CFE =180°,∠B =∠CFE.∴∠AFC +∠B =180°,∠B +∠D =180°.题型五:边边角不能判定两个三角形全等例5.如图,已知AC =BD ,添加下列一个条件后,仍无法判定△ABC ≌△BAD 的是()A .∠ABC =∠BADB .∠C =∠D =90° C .∠CAB =∠DBA D .CB =DA【答案】A CEB CEFEC =EC EB EF=⎧⎪∠=∠⎨⎪⎩12(AF ADFAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩角平分线定义)【分析】根据全等三角形的判定方法即可一一判断;【详解】在△ABC 与△BAD 中,AC =BD ,AB =BA ,A 、SSA 无法判断三角形全等,故本选项符合题意;B 、根据HL 即可判断三角形全等,故本选项不符合题意;C 、根据SAS 即可判断三角形全等,故本选项不符合题意;D 、根据SSS 即可判断三角形全等,故本选项不符合题意;故选:A . 题型六:尺规作图——利用边角边做三角形例6.(2023春·广东揭阳·七年级统考期末)已知:线段a ,c ,α∠.求作:ABC .使BC a =,AB c =,ABC α∠=∠.(要求:尺规作图,不写作法,保留作图痕迹)【详解】解:如图所示:【变式1】(2023春·陕西宝鸡·七年级校考阶段练习)尺规作图:已知:线段m ,n ,∠β.求作:ABC ,使AB m =,BC n =,ABC β∠=∠(保留作图痕迹,不写作法).【详解】解:如图所示:ABC ∴即为所作.题型七:边边边与边角边综合 八年级假期作业)如图,在ABC 中,(1)图中有___________对全等三角形;(2)请选一对加以证明.【详解】(1)图中有3对全等三角形:ABD ACD ≌△△,ABE ACE ≌△△,BDE CDE ≌V V . 故答案为3;(2)∵D 是BC 的中点,∴BD CD =.在ABD △和ACD 中,AB AC BD CDAD AD =⎧⎪=⎨⎪=⎩, ∴()SSS ABD ACD ≌V V ;∴BAE CAE ∠=∠.在ABE 和ACE △中,AB AC BAE CAEAE AE =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABE ACE △△≌; ∴BE CE =.在BDE △和CDE 中,BE CE BD CDDE DE =⎧⎪=⎨⎪=⎩, ∴()SSS BDE CDE ≌V V . 【过关检测】一、单选题A .SSSB .SASC .ASAD .AAS【答案】B 【分析】由题意可知根据“边角边”可证OAB OCD VV ≌即可选择.【详解】解:∵在OAB 和OCD 中,OC OA COD AOB OD OB =⎧⎪∠=∠⎨⎪=⎩, ∴()OAB OCD SAS ≌△△.故判定这两个三角形全等的依据是“SAS ”.故选B .【点睛】本题考查三角形全等的判定.熟练掌握判定三角形全等的条件是解题关键. 2.(2023春·江西景德镇·七年级统考期末)如图,AB AC =,点D 、E 分别在AC 和AB 边上,且AD AE =,则可得到ABD ACE △△≌,判定依据是( )A .ASAB .AASC .SASD .SSS【答案】C 【分析】根据SAS 证明ABD ACE △△≌,即可求解. 【详解】解:在ABD △与ACE △中,AB AC BAD CAEAD AE =⎧⎪∠=∠⎨⎪=⎩∴ABD ACE △△≌()SAS ,故选:C . 【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.3.(2023春·四川成都·七年级统考期末)如图,在ABF △和DCE △中,点E 、F 在BC 上,AF DE =,AFB DEC ∠=∠,添加下列一个条件后能用“SAS ”判定ABF DCE ≌△△的是( )A .BE CF =B .BC ∠=∠ C .AD ∠=∠ D .AB DC =【答案】A 【分析】先根据BE CF =得到BF CE =,再根据全等三角形的判定定理进行分析即可.【详解】解:∵BE CF =,∴BE EF CF EF +=+,即BF CE =,A 选项,因为BE CF =,AFB DEC ∠=∠,BF CE =,满足“SAS ”判定ABF DCE ≌△△,符合题意; B 选项,因为B C ∠=∠,AFB DEC ∠=∠,BF CE =,是用“AAS ”判定ABF DCE ≌△△,不符合题意; C 选项,因为A D ∠=∠,AF DE =,AFB DEC ∠=∠,是用“ASA ”判定ABF DCE ≌△△,不符合题意; D 选项,因为AB DC =,AF DE =,AFB DEC ∠=∠,不能判定ABF DCE ≌△△,不符合题意; 故选:A .【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键.4.(2023春·四川达州·七年级统考期末)如图,在2×3的正方形方格中,每个正方形方格的边长都为1,则1∠和2∠的关系是( )A .221∠=∠B .2190∠−∠=︒C .1290∠+∠=︒D .12180∠+∠=︒【答案】C 【分析】先证明ABC CDE △△≌,再利用全等三角形的性质和等量代换求解即可. 【详解】解:如图,在ABC 和CDE 中,2901AC CE ACB CED BC DE ==⎧⎪∠=∠=︒⎨⎪==⎩,∴ABC CDE △△≌()SAS ,∴1DCE ∠=∠, ∵290DCE ∠+∠=︒,∴1290∠+∠=︒,故选:C .【点睛】本题考查了全等三角形的判定与性质,利用网格证明三角形全等是解题的关键.A .20cmB .45cmC .25cmD .65cm【答案】D 【分析】根据题意可得:OF OG =,OC OD =,利用已知条件判断出OFC OGD ≌,得到CF DG =,即可求出答案.【详解】解:如图:∵O 是FG 和CD 的中点,∴OF OG =,OC OD =,在OFC △和OGD 中,OF OG FOC GODOC OD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS OFC OGD ≌,∴CF DG =,又20cm DG =,∴20cm CF DG ==,∴小明离地面的高度=支点到地面的高度452065cm CF +=+=,故D 正确.故选:D .【点睛】本题主要考查了三角形全等知识的应用,用数学方法解决生活中有关的实际问题,把实际问题转换成数学问题,用数学方法加以论证,最后进行求解,是一种十分重要的方法. 七年级统考期末)如图,已知在ABC 和BAD 中,直接判定ABC BAD ≌的依据是( A .SSSB .AASC .ASAD .SAS【答案】D 【分析】找出两个三角形中已知相等的对应边和对应角,然后根据判定方法即可判断.【详解】解:在ABC 和ABD △中,BC AD ABC BAD AB BA =⎧⎪∠=∠⎨⎪=⎩, ∴()ABC BAD SAS ≌.故选:D .【点睛】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 7.(2023春·上海浦东新·七年级校考阶段练习)如图,AD 平分BAC ∠,AB AC =,连接BD 、CD ,并延长交AC 、AB 于F 、E 点,则图中全等的三角形有( )对.A .3对B .4对C .5对D .6对【答案】B 【分析】认真观察图形,确定已知条件在图形上的位置,结合全等三角形的判定方法,仔细寻找.【详解】解:AD 平分BAC ∠,BAD CAD ∴∠=∠,在ABD 与ACD 中,AB AC BAD CADAD AD ⎧⎪∠∠⎨⎪⎩===,()SAS ABD ACD ∴≌,BD CD ∴=,B C ∠=∠,ADB ADC ∠=∠,又EDB FDC ∠=∠,ADE ADF ∴∠=∠,AED AFD ∴≌,BDE CDF ≌,ABF ACE ≌.AED AFD ∴≌,ABD ACD ≌,BDE CDF ≌,ABF ACE ≌,共4对.故选:B .【点睛】本题考查三角形全等的判定方法和全等三角形的性质.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.(2023春·河北保定·七年级校考阶段练习)如图,在AOB 和COD △中,OA OB =,OC OD =,AOB COD ∠=∠,AC ,BD 交于点M ,关于结论Ⅰ,Ⅱ,下列判断正确的是( )结论Ⅰ:AC BD =;结论Ⅱ:CMD COD ∠>∠A .Ⅰ对,Ⅱ错B .Ⅰ错,Ⅱ对C .Ⅰ,Ⅱ都对D .Ⅰ,Ⅱ都错【答案】A 【分析】根据已知条件可知三角形的全等,根据全等三角形的性质可知边相等,再根据三角形的内角和即可求出角的大小.【详解】AOB COD ∠=∠,AOB AOD COD AOD ∴∠+∠=∠+∠,AOC BOD ∴∠=∠,∴在AOC 和BOD 中,∴OA OB AOC BODOC OD =⎧⎪∠=∠⎨⎪=⎩,()AOC BOD SAS ∴≌, AC BD ∴=,故Ⅰ正确;AOC BOD ≌,OCA BDO ∴∠=∠,MDC MDO ODC ∴∠=∠+∠,OCD OCA MCD ∴∠=∠+∠,180()COD OCD ODC ∠=︒−∠+∠,180()CMD MDC MCD ∠=︒−∠+∠,180()CMD MDO ODC MCD ∴∠=︒−∠+∠+∠,180()COD OCA MCD ODC ∠=︒−∠+∠+∠,CMD COD ∴∠=∠,故Ⅱ错误;故选:A .【点睛】本题考查了全等三角形的性质,熟记对应性质和判定定理是解题的关键. 9.(2023春·江苏·七年级统考期末)如图,在四边形ABCD 中,对角线AC 平分BAD ∠,AD AB >,下列结论正确的是( )A .AD AB CD BC −=−B .AD AB CD BC −>− C .AD AB CD BC −<−D .AD AB −与CD BC −的大小关系无法确定【答案】B 【分析】在AD 上截取AE AB =,BAC EAC ≌,由DE CD CE >−即可求解.【详解】解:如图,在AD 上截取AE AB =,AC 平分BAD ∠,BAC EAC ∴∠=∠,在BAC 和EAC 中AB AE BAC EACAC AC =⎧⎪∠=∠⎨⎪=⎩,∴BAC EAC ≌(SAS ),BC EC ∴=,在CDE 中:DE CD CE >−,AD AB AD AE CD BC −=−>−.故选:B .【点睛】本题考查了三角形中三边的关系,三角形全等的判定及性质,掌握性质,并根据题意作出辅助线是解题的关键. 10.(2022秋·云南昭通·八年级统考期末)如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且CE BF ,连接BF CE ,,下列说法: ①DE DF =;②ABD 和ACD 面积相等;③CE BF =;④BDF CDE ≌;⑤CEF F ∠∠=. 其中正确的有( )【答案】B 【分析】根据三角形中线的定义可得BD CD =,然后利用“边角边”证明BDF 和CDE 全等,根据全等三角形对应边相等可得CE BF =,全等三角形对应角相等可得F CED ∠∠=,再根据内错角相等,两直线平行可得BF CE ,最后根据等底等高的三角形的面积相等判断出②正确.【详解】解:∵AD 是ABC 的中线,∴BD CD =,在BDF 和CDE 中,BD CD BDF CDEDF DE =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BDF CDE ≌,故④正确∴CE BF F CED ∠∠==,,故①正确,∵CEF CED ∠∠=,∴CEF F ∠∠=,故⑤正确,∴BF CE ,故③正确,∵BD CD =,点A 到BD CD 、的距离相等,∴ABD 和ACD 面积相等,故②正确,综上所述,正确的有5个,故选:B .【点睛】本题考查全等三角形的判定与性质,熟练掌握全等三角形的判定方法并准确识图是解题的关键.二、填空题【答案】120°【分析】先证明,DAG BAC ≌得到GDA CBA ∠=∠,再利用60BAD ∠=︒以及三角形的内角和定理、邻补角的性质可得答案.【详解】解:60,DAE GAC ∠=∠=︒,DAG BAC ∴∠=∠,,AD AB AC AG ==在DAG 与BAC 中,,AD AB DAG BACAG AC =⎧⎪∠=∠⎨⎪=⎩,DAG BAC ∴≌,GDA CBA ∴∠=∠,BEO AED ∠=∠,BOE BAD ∴∠=∠60,BAD ∴∠=︒60,BOE ∴∠=︒120.DOC ∴∠=︒故答案为:120.︒【点睛】本题考查的是三角形全等的判定与性质,等边三角形的判定与性质,邻补角的性质,三角形的内角和定理,掌握以上知识是解题的关键. 七年级统考期末)如图,在锐角ABC 中,24ABC S = 【分析】先根据三角形全等的判定定理与性质可得ME MN =,再根据两点之间线段最短可得BM MN +的最小值为BE ,然后根据垂线段最短可得当BE AC ⊥时,BE 取得最小值,最后利用三角形的面积公式即可得.【详解】如图,在AC 上取一点E ,使AE AN =,连接ME ,AD 是BAC ∠的平分线,EAM NAM ∴∠=∠,在AEM △和ANM 中,AE AN EAM NAMAM AM =⎧⎪∠=∠⎨⎪=⎩,()SAS AEM ANM ∴≌, ME MN ∴=,BM MN BM ME ∴+=+,由两点之间线段最短得:当点,,B M E 共线时,BM ME +取最小值,最小值为BE ,又由垂线段最短得:当BE AC ⊥时,BE 取得最小值,248,ABC S AC ==,1182422AC BE BE ∴⋅=⨯⋅=,解得6BE =,即BM MN +的最小值为6,故答案为:6.【点睛】本题考查了角平分线的定义、三角形全等的判定定理与性质、两点之间线段最短、垂线段最短等知识点,正确找出BM MN +取得最小值时BE 的位置是解题关键. 13.(2023春·广东云浮·八年级校考期中)如图,小明与小红玩跷跷板游戏,已知跷跷板的支点O (即跷跷板的中点)至地面的距离是48cm ,当小红从水平位置CD 下降28cm 时,这时小明离地面的高度是___________cm .【答案】76【分析】根据题意可得:OF OG =,OC OD =,利用已知条件判断出OFC OGD ≌V V ,得到CF DG =,即可【详解】解:如图:∵O 是FG 和CD 的中点,∴OF OG =,OC OD =,在OFC △和OGD 中,OF OG FOC GODOC OD =⎧⎪∠=∠⎨⎪=⎩,∴(SAS)OFC OGD ≌V V ,∴CF DG =,又28cm DG =,∴28cm CF DG ==,∴小明离地面的高度=支点到地面的高度482876cm CF +=+=,故答案为:76.【点睛】本题主要考查了三角形全等知识的应用,用数学方法解决生活中有关的实际问题,把实际问题转换成数学问题,用数学方法加以论证,最后进行求解,是一种十分重要的方法. 14.(2023春·广东佛山·七年级校考期中)在测量一个小口圆形容器的壁厚(厚度均匀)时,小明用“X 型转动钳”按如图方法进行测量,其中OA OD =,OB OC =,测得3cm AB =,5cm EF =,圆形容器的壁厚是______cm .【分析】由题证明AOB DOC ≌,由全等三角形的性质可得,AB CD =,即可解决问题.【详解】在AOB 和DOC △中,OA OD AOB DOCBO OC =⎧⎪∠=∠⎨⎪=⎩,(SAS)AOB DOC ∴≌,3cm AB CD ∴==,cm 5EF =Q ,∴圆柱形容器的壁厚是1(53)1(cm)2⨯−=,故答案为:1.【点睛】本题考查了全等三角形的应用,解题的关键是利用全等三角形的性质解决实际问题.【答案】25米/25m【分析】根据SAS 可证明ACB DCE ≌△△,再根据全等三角形的性质可得AB DE =,进而得到答案. 【详解】解:∵点C 是AD 的中点,也是BE 的中点,∴AC DC =,BC EC =,∵在ACB △和DCE △中,AC DC ACB DCEBC EC =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ACB DCE ≌,∵25DE =米,∴25AB =米,故答案为:25米.【点睛】此题考查了全等三角形的应用,关键掌握全等三角形的判定定理和性质定理. 16.(2022秋·陕西宝鸡·八年级统考期末)如图,E 是ABC ∆外一点,D 是AE 上一点,AC BC BE ==,DA DB =,EBD CBD ∠=∠,70C ∠=︒,则BED ∠的度数为___________.【答案】35︒/35度【分析】连接DC ,则DC 垂直平分AB ,可得35ADC DCB ∠=∠=︒,再证明BED BCD ∆≅∆,即可得到35BED DCB ∠=∠=︒.【详解】连接DC ,DA DB =,CA CB =,DC ∴是AB 的垂直平分线,1352DCB ACB ∴∠=∠=︒,在BED 和BCD △中BD BD EBD CBDBE BC =⎧⎪∠=∠⎨⎪=⎩(SAS)BED BCD ∴≌,35BED DCB ∴∠=∠=︒,故答案为:35︒.【点睛】本题主要考查等腰三角形的性质,由条件得到DC 是AB 的垂直平分线再想到证明BED BCD △≌△是解题的关键. 17.(2023·全国·八年级假期作业)如图,AB 与CD 相交于点O ,且O 是AB CD ,的中点,则AOC 与BOD 全等的理由是________.【答案】SAS /边角边【分析】根据全等三角形的判定定理求解即可.【详解】解:∵O 是AB CD ,的中点,∴,,OA OB OC OD ==在AOC 和DOB 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩ ∴()SAS AOC DOB ≌, 故答案为:SAS .【点睛】此题考查了全等三角形的判定,熟记全等三角形的判定定理是解题的关键.18.(2022秋·山东聊城·八年级统考期末)如图,在ABC ∆中,已知 AB AC =,BD CF = ,BE CD =.若40A ∠=︒,则EDF ∠的度数为__________.【答案】70°【分析】(1)证△BED ≌△CDF ;(2)利用AB=AC 得到∠B 与∠C(3)利用整体法求得∠EDF【详解】∵AB=AC ,∴∠B=∠C∵BD=CF ,BE=CD∴△BED ≌△CDF ,∴∠FDC=∠BED∵∠A=40°∴∠B=∠C=70°∴在△BED 中,∠BED+∠BDE=110°∴∠EDB+∠FDC=110°∴∠EDF=70°【点睛】求角度,常见的方法有:(1)方程思想;(2)整体思想;(3)转化思想本题就是利用全等,结合整体思想求解的角度三、解答题 19.(2023秋·广东广州·八年级统考期末)已知:如图,12BC DC =∠=∠,,求证:ABC ≌ADC △.【答案】见解析【分析】先证明ACB ACD ∠=∠,再结合AC AC =,BC DC =,即可得到结论.【详解】.证明:12∠=∠,ACB ACD ∴∠=∠,AC AC BC DC ==,,ABC ∴≌ADC △.【点睛】本题考查的是全等三角形的判定,掌握“利用SAS 证明两个三角形全等”是解本题的关键. 20.(2021秋·广东广州·八年级广州市第八十九中学校考期中)如图,点E 、F 在BC 上,BF EC =,AB DC =,B C ∠=∠.求证:A D ∠=∠.【答案】证明见解析【分析】证明()SAS ABF DCE ≌△△,然后根据全等三角形的性质即可得出结论.【详解】证明:在ABF △和DCE △中,AB DC B CBF CE =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABF DCE ≌△△, ∵A D ∠=∠.【点睛】本题考查全等三角形的判定和性质.掌握全等三角形的判定是解题的关键.21.(2023春·陕西西安·七年级校考阶段练习)已知:如右图ABCD ,AB CD =.求证:ADC CBA ≌.【答案】见解析【分析】由AB CD ,得ACD CAB ∠=∠,再利用SAS 即可证得结论.【详解】证明:∵ABCD ,∴ACD CAB ∠=∠,在ADC △与CBA △中:AB CD ACD CAB AC CA =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ADC CBA ≌.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL . 22.(2023春·陕西咸阳·七年级统考期末)如图,点D 在线段BE 上,AB CD ,AB DE =,BD CD =.ABD △和EDC △全等吗?为什么?【答案】ADB ECD △≌△,理由见解析【分析】先根据平行线的性质得到ABD EDC =∠∠,再利用SAS 证明ADB ECD △≌△即可得到结论.【详解】解:ADB ECD △≌△,理由如下:∵AB CD ,∴ABD EDC =∠∠,∵AB ED =,BD DC =,∴()SAS ADB ECD △≌△.【点睛】本题主要考查了全等三角形的判定,平行线的性质,熟知边角边证明三角形全等是解题的关键.(1)求证:AEC DFB △△≌; (2)若6AEC S ∆=,求三角形BEC 的面积.【答案】(1)见解析(2)92BEC S =△【分析】(1)根据AE DF ∥得A D ∠=∠,根据AB CD =得AB BC CD BC +=+,即AC DB =,根据ASA 即可证明AEC DFB △△≌; (2)在AEC △中,以AC 为底作EH 为高,则12AEC S EH AC ∆=⋅,12BCE S EH BC ∆=⋅,根据13AB CD BC ==得43AC BC =,6AEC S ∆=,即可得.【详解】(1)证明:∵AE DF ∥,A D ∴∠=∠, ∵AB CD =,AB BC CD BC ∴+=+AC DB ∴=,在AEC △和DFB △中,AE DF A DAC DB =⎧⎪∠=∠⎨⎪=⎩,SAS AEC DFB ∴≌()△△;(2)解:如图所示,在AEC △中,以AC 为底作EH 为高,12AEC S EH AC ∆∴=⋅,12BCE S EH BC ∆=⋅,∵13AB CD BC ==,43AC BC ∴=,6AEC S ∆=, ΔΔ3 4.54BEC AEC S S ∴==.【点睛】本题考查了三角形的判定与性质,三角形的面积,解题的关键是理解题意,掌握这些知识点. 24.(2023春·福建福州·七年级福州华伦中学校考期末)已知:如图,点,F C 在线段BE 上,AB DE =,B E ∠=∠,BF EC =.求证:A D ∠=∠.【答案】见解析【分析】先根据线段的和差得出BC EF =,进而证明ABC DEF ≌△△,根据全等三角形的性质即可得证. 【详解】证明:∵BF EC =,∴BF FC FC CE +=+,即BC EF =,在,ABC DEF 中,AB DE B EBC EF =⎧⎪∠=∠⎨⎪=⎩,∴ABC DEF ≌△△, ∴A D ∠=∠.【点睛】本题考查了全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.25.(2023·全国·八年级假期作业)如图,在△ABC 中,已知AB AC =,2BAC DAE ∠=∠,且DAE FAE ∆≅∆.求证:ABD ACF ∆≅∆.【答案】见解析【分析】先根据全等三角形的性质以及已知2BAC DAE ∠=∠得出BAD CAF ∠=∠,再利用SAS 即可证出ABD ACF ∆≅∆.【详解】证明:∵DAE FAE ∆≅∆,∴,AD AF DAE FAE =∠=∠.∵2BAC DAE ∠=∠,∴BAD EAC DAE FAE ∠+∠=∠=∠,∵FAC EAC FAE ∠+∠=∠∴BAD CAF ∠=∠.在ABD ∆和ACF ∆中,AB AC BAD CAFAD AF =⎧⎪∠=∠⎨⎪=⎩∴ABD ACF ∆≅∆.【点睛】本题考查了全等三角形的判定和性质,灵活运用这些性质解决问题是本题的关键. 八年级假期作业)如图,在ABC 和V(1)求证:ABD ACE △△≌(2)若35BDA ∠=︒,则【答案】(1)见解析(2)70【分析】(1)根据等式的性质,可得=BAD CAE ∠∠,根据SAS 可得两个三角形全等;(2)根据全等三角形的性质,可得对应角相等,根据等腰三角形的性质,可得ADC AEC ∠∠=,根据等量代换,可得证明结论.【详解】(1)证明:=BAC DAE ∠∠,BAC DAC DAE DAC ∴∠−∠=∠−∠,即=BAD CAE ∠∠.在ABD △和ACE △中,AB AC BAD EACAD AE =⎧⎪∠=∠⎨⎪=⎩,SAS ABD ACE ∴≌();(2)证明:ABD ACE ≌△△, ADB AEC ∴∠=∠,AD AE =ADC AEC ∴∠=∠35BDA ADC ∴∠=∠=︒∴223570BDC BDA ∠∠==⨯︒=︒.故答案为:70.【点睛】本题考查了全等三角形的判定与性质,利用SAS 证明三角形全等,利用全等三角形的性质,证明对应角相等,再利用等量代换得出证明结论. 27.(2023春·全国·七年级专题练习)如图,已知点B ,E ,C ,F 在一条直线上,AB DE =,BF CE =,B E ∠=∠.求证:ABC DEF ≌△△【答案】见解析【分析】用边角边定理进行证明即可.【详解】解:∵BF CE =∴BF FC CE FC +=+即:BC EF =在ABC 和DEF 中AB DE B EBC EF =⎧⎪∠=∠⎨⎪=⎩∴()SAS ABC DEF ≌. 【点睛】本题考查边角边定理证明三角形全等,根据题意找到相应的条件是解题关键. 求证:DE BF =.证明:AD BC (已知)∴∠_______=∠_______(两直线平行,内错角相等)AF CE =∴ADE CBF ∴≌( 【答案】A ;C ;AF EF CE EF −=−;AD BC =;A C ∠=∠;AE CF =;SAS ;全等三角形对应边相等.【分析】根据平行线的性质得到∠A =∠C ,根据等式的性质得到AE CF =,然后证明ADE CBF V V ≌即可得到结论.【详解】证明:AD BC (已知)∴∠A =∠C (两直线平行,内错角相等)AF CE =(已知)∴AF EF CE EF −=−(等式的基本性质)即AE CF =在ADE V 和CBF V 中AD BC A CAE CF =⎧⎪∠=∠⎨⎪=⎩,ADE CBF ∴≌(SAS )DE BF ∴=(全等三角形对应边相等)故答案为:A ;C ;AF EF CE EF −=−;AD BC =;A C ∠=∠;AE CF =;SAS ;全等三角形对应边相等.【点睛】本题考查全等三角形的判定和性质,掌握全等三角形的判定定理是解题的关键.【答案】见解析【分析】根据BE CF =可得BC EF =,根据AC DF ∥可得ACB DFE ∠=∠,即可根据SAS 进行求证.【详解】证明:∵BE CF =,∴BE CE CF CE −=−,即BC EF =,∵AC DF ∥,∴ACB DFE ∠=∠,在ABC 和DEF 中,AC DF ACB DFEBC EF =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABC DEF △△≌. 【点睛】本题主要考查了全等三角形的判定,解题的关键是根据题目所给条件,得出相应的边和角度相等,熟练掌握三角形全等的判定定理. 求证:(1)AE CF =;(2)AE CF ∥;(3)∠=∠AFE CEF .【答案】(1)见解析(2)见解析(3)见解析【分析】(1)根据“边角边”证明ABE CDF △≌△,即可证得结论;(2)根据全等三角形的性质可得AEB CFD ∠=∠,进而可得结论;(3)由全等三角形的性质可得AE CF =,根据“边角边”证明AEF CFE △≌△,即可证得结论.【详解】(1)证明:在ABE 和CDF 中,∵AB CD =, B D ∠=∠,BE DF =,∴ABE CDF△≌△()SAS ,∴AE CF =; (2)证明:∵ABE CDF △≌△,∴AEB CFD ∠=∠,∴AE CF ∥;(3)证明:∵ABE CDF △≌△,∴AE CF =,又∵AEB CFD ∠=∠,EF FE =,∴AEF CFE △≌△,∴∠=∠AFE CEF .【点睛】本题考查了全等三角形的判定和性质以及平行线的判定,熟练掌握全等三角形的判定和性质是解题的关键. 求作:ABC ,使 【答案】见解析【分析】先作CAB α∠=∠,再在角的两边上分别截取AC b =,AB c =,从而可得答案.【详解】解:ABC 即为所求.【点睛】本题考查的是作三角形,掌握作一个角等于已知角是解本题的关键. 32.(2023·全国·八年级假期作业)“倍长中线法”是解决几何问题的重要方法.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,具体做法是:如图,AD 是ABC 的中线,延长AD 到E ,使DE AD =,连接BE ,构造出BED 和CAD .求证:BED CAD △≌△.【答案】见解析【分析】由AD 是ABC 的中线,可得DE AD =,再由EDB ADC ∠=∠,DB DC =,即可证明BED CAD △≌△.【详解】证明:如图所示:,AD 是ABC 的中线,DB DC ∴=,在BED 和CAD 中,ED AD EDB ADCDB DC =⎧⎪∠=∠⎨⎪=⎩,(SAS)BED CAD ∴≌.【点睛】本题主要考查了三角形全等的判定,倍长中线,熟练掌握三角形全等的判定,添加适当的辅助线是解题的关键. 33.(2023春·全国·七年级期末)如图,在ABC 中,D 是BC 延长线上一点,满足CD BA =,过点C 作CE AB ∥,且CE BC =,连接DE 并延长,分别交AC ,AB 于点F ,G .(1)求证:ABC DCE ≅;(2)若12BD =,2AB CE =,求BC 的长度.【答案】(1)见解析(2)4【分析】(1)根据SAS 证明≌ABC DCE 即可;(2)根据全等三角形的性质解答即可.【详解】(1)∵CE AB ∥,∴B ECD ∠=∠,在ABC 与DCE △中,AB CD B ECDBC CE =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABC DCE ≌;(2)∵≌ABC DCE ,∴,AB CD BC CE ==,∵2AB CE =,∴2CD BC =,∵12BD =,∴312BD CD BC BC =+==∴4BC =.【点睛】此题考查全等三角形的判定和性质,关键是掌握全等三角形的判定和性质.。
全等三角形的判定边角边课件上课讲义
把你画的三角形与同桌画的三角形进行比较,你们
的三角形全等吗?
动画演示
三角形全等的判定方法(1):
这是一个 公理。
如果两个三角形有两边及其夹角分别对应相等,那么
这两个三角形全等.简记为SAS(或边角边).
几何语言:
在△ABC与△A’B’C’中 ∵ AB=A’B’
∠B=∠B’
A
B
C
A’
BC=B’C’
B’
∠ CBD ,△ ABD 和△ CBD 全等吗?
A
解: 在△ ABD 和△ CBD中
B
AB=CB
D
∠ABD= ∠CBD C
BD=BD
∴△ ABD ≌△ CBD (S.A.S. )
巩 固 练 习
C
A
1: 如图,已知AB和CD相交与O, OA=OB, OC=OD.说明 △ OAD与
△ OBC全等的理由 解:在△OAD 和△OBC中
B'
C'
边-边-角
体会分类的原则: 不重、不漏
做 一
画一个三角形,使它的一个内角为45° ,
夹这个角的一条边为3厘米,另一条
做 边长为4厘米.
步骤:1.画一线段AB,使它等于4cm 2.画∠ MAB= 45° 3.在射线AM上截取AC=3cm 4.连结BC.
△ ABC就是所求的三角形
ห้องสมุดไป่ตู้
温馨 提示
探究新知⑴
证习明:∵ 点M是等腰梯形ABCD底边AB的中点
∴ AD=BC (等腰梯形的两腰相等)
∠A=∠B(等腰梯形的同一底边的两内角相等)
AM=BM (线段中点的定义)
在△ADM和△BCM中 AD=BC (已证) ∠A=∠B (已证) AM=BM (已证)
192三角形全等的判定(SAS)说课案
§19.2三角形全等的判定(SAS)说课案杨丽心一教材分析(一)教材的地位和作用:本课是华东师大版《数学》八年级下册第十九章第二节“三角形全等的判定”的第二课时。
直接运用三角形全等的定义来判定两个三角形全等带有繁琐性和困难性,因此,研究三角形全等的简便判定方法就显得尤为重要,具有其必要性。
“边角边”是第一个三角形全等的简便判定方法,学好了这种方法,再学以后的几个判定方法就有了相仿的研究办法,问题就迎刃而解,它既是学习三角形全等判定的关键,又是今后学习三角形相似,四边形,圆的基础。
(二)教学目标:1、知识与技能:⑴掌握边角边判定方法的内容,会运用边角边判定方法证明两三角形全等。
(2)掌握两边一角画三角形的方法。
(3)体会证明两线段相等,两个角相等通常转化为“证明两三角形全等”来解决的数学方法。
2、过程与方法:从动手操作到理性证明探索出三角形全等的判定方法:“边角边”,通过“边角边”的应用,掌握转化的数学方法。
3、情感态度与价值观:(1)培养学生的动手实践能力。
(2)培养学生严密的逻辑思维能力。
(三)教学重点与难点:1、重点:掌握三角形全等的判定方法——“边角边”。
2、难点:理解“边边角”不一定会全等,熟练运用“边角边”判定方法。
二、教学方法与手段:1、教学方法:遵循“学生为主体,教师为主导”的教学原则,按照学生从感性认识到理性认识,从特殊到一般的认知规律,采用学生操作确认的方式及直观演示验证法,启发式引导学生展开思维、探究证明思路,循序渐进的教学方法。
最大限度提高学生的参与率。
2、教学手段:借助于多媒体课件演示及学生动手操作确认发现新知。
三、学法指导:在让学生直观感知和操作确认的同时,提升为理论上的证明,使学生的感性认识飞跃到理性认识,在探讨运用的思路中,挖掘隐含条件,体验“转化”的数学思想方法,领悟逻辑推理的严密性,经历知识产生、发展、形成与应用的过程,养成言之有据的思维习惯,提高数学语言的表达能力。
全等三角形的判定边角边(第3课时) (1)
例题讲解
例1:点E、F在AC上,AD//BC,AD=CB,AE=CF 求证:△AFD≌△CEB ;A D E F B C
BE =DF
(已知) 两直线平行,
分析:证三角形全等的三个条件 边 AD = CB
角 ∠A=∠C 边
内错角相等
AD // BC
AF = CE
?
AE+EF=CF+EF
AE = CF
一起放飞理想的翅膀 在知识的天空中自由翱翔
§ 19.2.2 三角形全等的判定 ——边角边
执教人: 周恒宇 下两中学
小明不小心打翻了墨水,将自己所画 的三角形涂黑了,你能帮小明想想办法, 画一个与原来完全一样的三角形吗?
动动手:
画一个三角形,使它的一个内角为 45°,夹这个角的一条边为3厘米,另 一条边长为4厘米。
比一比你画的三角形
与同伴画的一定全等吗?
全等
动动手:
小组的同学自行约定:画一个三角形,使 他们具有相同的两条线段和一个夹角。比 较一下,可以得出什么结论?
画出的三角形全等
边角边公理
在两个三角形中,如果有两条边及它们 的夹角对应相等,那么这两个三角形全等。 (简记为S.A.S)。
温馨提示:
S ——边
A——角
小试
牛刀
在下列图中找出全等三角形,并把它们用符号写出来.
30º
Ⅰ
Ⅱ
Ⅲ Ⅲ
Ⅳ Ⅳ
5 cm
30º
Ⅵ
Ⅴ
30º
Ⅶ
Ⅷ
在下列推理中填写需要补充的条 A 件,使结论成立:
(1)如图,在△AOB和△DOC中已知 AO=DO,BO=CO, 求证:△AOB≌△DOC
D O C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.2三角形全等的判定(边角边)
【教材研学】
一、三角形全等的条件――“边角边”(S .A .S )
两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“S .A .S .”).运用这个定理请务必找准对应角,一定要是两边的夹角. 二、“边角边”应用
根据“边角边”可以测量不能到达的两个位置的距离.
现实生活中一些点,如在水中或其他很难测量的位置,为了方便的计算这些难于测量的距离,我们常构造全等三角形,构造出与要测量的两点间距离相等的对应线段,这些线段是便于测量的,条件得以转化,如测量池塘两点,山脚下一点与山的对面一点等,常用此方法. 【点石成金】
例1.如图,已知A 、B 、C 三点在一条直线上,分别以AB 、BC 为边在AC 同侧作等边三角形ABD 和等边三角形BCE ,AE 交BD 于F ,DC 交BE 于G 。
求证:AE=DC . 证明:因为△ABD 和△BCE 为等边三角形, 所以AB=BD ,BC=BE ,∠ ABD=∠EBC=60°. 所以∠ABE=∠DBC=120°,∠ABF=∠DBG=60
°.
在△ABE 和△DBC 中,⎪⎩
⎪
⎨⎧=∠=∠=BC EB DBC ABE BD
AB
所以△ABE ≌△DBC(S .A .S .). 所以AE=DC (全等三角形的对应边相等).
名师点金:上题中A 、B 、C 三点不在一条直线上,其他条件不写仍有AE=DC ,请自行证明.
A
1.先任意画出一个△ABC ,再画出一个△A ’B ’C ’,使A ’B ’=AB ,A ’C ’=AC,∠
A ’= ∠A .把画好的△A ’
B ’
C ’剪下,放到△ABC 上,它们全等吗?
2.如图所示,已知AD ∥BC ,AD=BC ,请你思考一下,△ABC 与△CDA 有什么关系?
3.在证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形_____来解决.
4.如图所示,AB=AC ,AD=AE ,△ABE 与△ACD 全等吗?请说明理由.
答案: 1.全等
2.由AD ∥BC 得出∠CAD =∠ACB ,∵AD=BC ,AC=CA . 用S .A .S .可推出△ABC ≌△CDA . 3.全等。
4.全等,理由S .A .S
- 3 -
一、基础巩固
1.如图1所示,在△ABC 中,CD ⊥AB ,请你添加一个条件,写出一个正确结论(不要在图中添加辅助线、字母).
条件:______________________,结论:
____________________________.
(1) (2) (3)
2.如图2所示,AC ⊥BE ,AC=EC ,CB=CF ,把△EFC 绕着点C 逆时针方向旋转90°,E 点将落在______点上.
3.如图3所示,M 是AB 的中点,MC=MD ,∠1=∠2.求证:∠C=∠D .
4.如图所示,已知AB ∥DC ,AB=DC, 求证:AD ∥BC .
5.如图所示,已知CA⊥AB,DB⊥AB,AC=BE,AE=BD.试猜想线段CE与DE的大小与位置关系,并说明理由.
6.如图所示,D、E、F、B在一条直线上,AB=CD,∠B=∠D,BF=DE.求证:(1)AE=CF;(2)AE∥CF;(3)∠AFE=∠CEF.
7.如图,小明要测量小口瓶下半部的内径.他把两根相等的钢条AA’,BB’的中点O连在一起.可活动A、B两点,使A’、B’卡在小口瓶内壁上.然后量出AB的长度,就可知道小口瓶下半部的内径,你知道这是为什么吗?说明你的理由.
8.已知,如图所示,AD=BC,AB=DC,DE=BF.求证:BE=DF.
9.如图19—2—12所示,AB=AC,AD=AE,∠1=∠2,请你说明△ABD≌△ACE的理由.
二、探究提高
10.如图所示,已知AB=AC,D是BC的中点,E是AD上的任意一点,连接EB、EC.求证:EB=EC.
- 5 -
11.如图,AB、BC、CD是三根长度分别为1cm、2 cm、5 cm的木棒,它们之间的连接处可以转动,现在A、D之间拉一根橡皮筋,请根据四边形的不稳定性思考:这根橡皮筋的最大长度可拉到多少厘米?最短长度为多少厘米?
12.如图所示,在△ABC中,AD为BC边上的中线.求证:2AD<AB+AC.
三、拓展延伸
13.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为( )
A.15°B.20°C.25°D.30°
14.如图所示,△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD.不添加辅助线,请你写出尽可能多的结论.
中考模拟题
15.(2006·山东日照)如图,AB=12米,CA⊥AB,DB⊥AB,垂足分别为A、B,P、Q 两点同时从B出发,P点从B向A运动,每分钟走1米;P点从B点向D运动,每分钟走2米.试问P、Q出发几分钟后,△CAP≌△PBQ
B
P
- 7 -。