宁波大学数学分析考试大纲
2019宁波大学671数学分析考试大纲

2019年宁波大学硕士研究生招生考试初试科目考试大纲科目代码、名称: 671数学分析一、考试形式与试卷结构(一)试卷满分值及考试时间本试卷满分为150分,考试时间为180分钟。
(二)答题方式答题方式为闭卷、笔试。
试卷由试题和答题纸组成;答案必须写在答题纸(由考点提供)相应的位置上。
(三)试卷题型结构填空题,选择题,解答题,计算题,证明题,应用题。
二、考试科目简介《数学分析》是数学专业最重要的基础课之一,是数学专业的学生继续学习后继课程的基础,它的理论方法和内容既涉及到几百年来分析数学的严谨性和逻辑性,又与现代数学的各个领域有着密切的联系。
是从事数学理论及其应用工作的必备知识。
本大纲制定的的依据是①根据教育部颁发《数学分析》教学大纲的基本要求。
②根据我国一些国优教材所讲到基本内容和知识点。
要求考生比较系统地理解数学分析的基本概念基本理论,掌握研究分析领域的基本方法,基本上掌握数学分析的论证方法,具备较熟练的演算技能和初步的应用能力及逻辑推理能力。
三、考试内容及具体要求第1章实数集与函数(1)了解实数域及性质(2)掌握几种主要不等式及应用。
(3)熟练掌握领域,上确界,下确界,确界原理。
(4)牢固掌握函数复合、基本初等涵数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)。
第2章数列极限(1)熟练掌握数列极限的定义。
(2)掌握收敛数列的若干性质(惟一性、保序性等)。
(3)掌握数列收敛的条件(单调有界原理、迫敛法则、柯西准则等)。
第3章函数极限(1)熟练掌握使用“ε-δ”语言,叙述各类型函数极限。
(2)掌握函数极限的若干性质。
(3)掌握函数极限存在的条件(归结原则,柯西准则,左、右极限、单调有界)。
(4)熟练应用两个特殊极限求函数的极限。
(5)牢固掌握无穷小(大)的定义、性质、阶的比较。
第4章函数连续性(1)熟练掌握在X0点连续的定义及其等价定义。
(2)掌握间断点定以及分类。
(3)了解在区间上连续的定义,能使用左右极限的方法求极限。
数学分析(二)考试大纲

数学分析(二)考试大纲一、说明:1.数学分析的阶段性考试(期中考试与期末考试)旨在考查基础知识、基本技能、基本方法, 考核学生的运算能力、逻辑思维能力、论证推理能力及运用所学知识、方法分析问题和解决问题的能力。
2.考试要求分五个层次, 这五个层次由低到高依次为: 识记; 理解; 应用; 分析; 综合。
3.教材: 华东师范大学数学系编, 数学分析(第三版), 高等教育出版社, 2001.二、考试内容:参阅《数学分析教学大纲》三、考试要求:7.实数的连续性理解: 确界的概念; 聚点的概念; 实数连续性定理的等价性;应用: 区间套定理; 确界的概念; 确界存在定理; 聚点的概念; 聚点定理; 致密性定理; 柯西准则; 有限覆盖定理;理解: 一致连续性的概念;应用: 闭区间连续函数的性质;8.不定积分理解: 原函数与不定积分的概念; 基本积分表; 不定积分的性质;应用: 分部积分法; 换元积分法;应用: 有理函数的积分;应用: 简单无理函数的积分; 三角函数有理式的积分;9.定积分理解: 定积分的概念; 可积的必要条件;应用: 可积的充要条件; 可积函数类;1应用: 定积分的性质( 线性性, 区间可加性, 单调性, 不等式,绝对可积性, 积分中值定理 );理解: 积分上限函数;应用: 微积分学基本定理; 牛顿─莱布尼兹公式; 分部积分与换元积分法; 定积分的近似计算( 矩形法, 梯形法, 抛物线法 );10.定积分的应用应用:平面图形的面积;平面曲线的弧长与弧微分, 曲率, 已知截面面积函数的立体体积, 旋转体的体积, 旋转体的侧面积, 函数的平均值, 变力作功, 重心, 液体压力, 转动惯量11.非正常积分理解: 无穷积分收敛与发散的概念; 无穷积分收敛的性质; 无穷积分与数项级数的关系; 绝对收敛与条件收敛的概念;应用: 无穷积分敛散性的判别( 无穷积分收敛与发散的概念, 柯西准则, 比较原则, 比式判别法, 阿贝尔判别法, 狄利克莱判别法 );12.数项级数识记: 绝对收敛级数的重排定理;理解: 级数收敛与发散的概念; 收敛级数的基本性质; 柯西准则; 绝对收敛与条件收敛的概念;应用: 正项级数敛散性的判别( 比较原则, 比式判别法与根式判别法 ); 交错级数的莱布尼兹判别法; 一般项级数的阿贝尔判别法与狄利克莱判别法;13.函数项级数理解: 函数列的收敛与一致收敛的概念; 函数项级数的收敛与一致收敛的概念;应用: 函数列一致收敛的判别( 一致收敛的概念, 柯西准则, 一致收敛原理 ); 函数列极限函数的分析性质( 连续性, 可微性, 可积性 ); 函数项级数一致收敛的判别( 一致收敛的概念, 柯西准则, 维尔斯特拉斯判别法, 一致收敛原理, 阿贝尔判别法, 狄利克莱判别法 ); 函数项级数的和函数的分析性质( 连续2性, 逐项可微性, 逐项可积性 );14.幂级数理解: 幂级数的收敛域; 泰勒级数的概念; 阿贝尔第一定理; 阿贝尔第二定理; 函数的泰勒展开条件;应用: 求幂级数的收敛半径与收敛区间; 幂级数的和函数的分析性质( 连续性, 逐项微分, 逐项积分 ); 幂级数的四则运算; 初等函数的泰勒展开; 幂级数在近似计算中的应用;15.富立叶级数识记: 三角级数的概念; 三角函数系的正交性; 傅里叶级数的概念; 贝塞尔不等式;理解: 黎曼─勒贝格定理; 傅里叶级数的部分和公式; 收敛定理; 奇函数与偶函数的富里叶级数; 一致收敛定理; 傅里叶级数的逐项微分与逐项积分;应用: 函数的傅里叶级数展开;四、命题结构和要求1、严格按照教学大纲出题,不出超纲题、偏题、怪题;2、试题以考查数学的基本概念、基本方法和基本原理为主,在此基础上,加强对考生的运算能力、抽象概括能力、逻辑思维能力、空间想象能力、综合运用所学知识解决实际问题能力的考查;3、力求试卷难度控制在0.5 ~ 0.55 之间,并确保试题具有较高的区分度,能将优秀的学生区分出来。
数学分析专升本考试大纲

《数学分析》专升本考试大纲一、课程名称:数学分析二、适用专业:数学与应用数学三、考试方法:闭卷考试四、考试时间:120分钟五、试卷结构:总分:100分;判断题:10分;填空题20分;选择题15分;计算证明应用题:55分六、参考教材:1、林元重著,新编数学分析(上、下册),武汉大学出版社,2015年3月第1版2、陈纪修、於崇华、金路编,数学分析(上、下册),高等教育出版社,2004年6月第二版3、华东师范大学数学系编,数学分析(上、下册),高等教育出版社,2011年5月第四版七、考试内容及基本要求第1章极限论1.1引言(一) 考核要求1. 了解数学分析是什么.2. 掌握实数的性质(有序性,稠密性,阿基米德性.实数的四则运算),掌握实数的基本概念和最常见的不等式.3.掌握函数概念和函数的不同的表示方法.4. 掌握函数的有界性,单调性,奇偶性和周期性.(二) 考核范围1. 数学分析是什么.2. 实数的基本性质和绝对值的不等式,区间与邻域,集合的上下界.3. 函数的定义与表示法,复合函数与反函数,初等函数.4. 函数的有界性,单调性,奇偶性和周期性.1.2 数列极限概念(一) 考核要求ε-定义证明极限,学会证明1. 深刻理解并掌握数列极限概念,学会用数列极限的N数列极限的基本方法.2. 掌握数列极限的基本性质,掌握四则运算法则.3. 掌握夹逼准则,理解数集确界及确界原理,掌握单调有界准则,理解柯西收敛准则.(二) 考核范围1. 数列极限概念.2. 数列极限的唯一性,有界性,保号性,保不等式性,四则运算法则.3. 数列极限的夹逼准则和单调有界准则,数集的确界及确界原理,数列的子列及相关定理(包括致密性定理),柯西收敛准则.1.3 函数极限概念及性质(一) 考核要求1. 正确理解和掌握函数极限的M ε-定义、εδ-定义,掌握极限与左右极限的关系,能够用定义证明和计算函数的极限.2. 理解并掌握函数极限的基本性质(唯一性,有界性,保号性,保不等式性,四则运算法则),会用这些性质计算函数的极限.(二) 考核范围1. 函数极限的M ε-定义、εδ-定义,左右极限.2. 函数极限的唯一性,有界性,保号性,保不等式性,四则运算法则.1.4 函数极限存在的准则与两个重要极限(一) 考核要求1. 理解并掌握函数极限的归结原则,了解函数极限的单调有界定理,理解函数极限的柯西准则.能够写出函数极限的归结原理和柯西准则.2. 熟练掌握两个重要极限.(二) 考核范围1. 函数极限的归结,函数极限的单调有界定理,函数极限的柯西准则.2. 两个重要极限.1.5 无穷小量与无穷大量(一) 考核要求掌握无穷小量与无穷大量以及它们的阶数的概念.(二) 考核范围无穷小量与无穷大量,高阶无穷小,同阶无穷小,等价无穷小,无穷大.1.6 连续性概念(一) 考核要求深刻理解并掌握函数连续性概念.(二) 考核范围1. 函数连续,函数左右连续,区间上函数连续的概念.2. 间断点及其分类.1.7 连续函数的局部性质与初等函数的连续性(一) 考核要求掌握连续函数的局部性质和和初等函数的连续性.(二) 考核范围1. 连续函数的局部有界性,局部保号性,四则运算.2. 复合函数的连续性,反函数的连续性,初等函数的连续性.1.8 闭区间上连续函数的性质(一) 考核要求1. 理解闭区间上连续函数的最大最小值定理,介值性定理.2. 理解并掌握一致连续性概念,理解一致连续性定理.(二) 考核范围1. 连续函数的最大最小值定理,介值性定理.2. 一致连续性概念,一致连续性定理.1.9 实数的连续性与上(下)极限(一)考核要求1. 理解区间套定理、聚点定理,了解上(下)极限及其性质.2. 理解有限覆盖定理,了解几个基本定理的等价性.(二)考核范围1. 区间套定理、聚点定理,上(下)极限及其性质.2. 有限覆盖定理,几个基本定理的等价性.第2章一元函数微分学2.1 导数的概念(一) 考核要求1. 理解并掌握导数的定义,掌握导数的几何意义,了解导数的物理意义.2. 了解增量——微分公式,掌握可导与连续的关系.了解费马定理、达布定理.(二) 考核范围1. 变化率——导数,单侧导数,导函数,几个基本导数公式,几何意义.2. 增量——微分公式,可导与连续的关系.2.2 导数的运算法则(一) 考核要求1. 熟练掌握导数的四则运算法则,理解反函数的求导法则.2. 熟练掌握复合函数的求导法则及基本导数公式.3. 知道求分段函数在分段点处的导数.(二) 考核范围1.导数的四则运算法则,反函数的求导法则.2. 复合函数的求导法则,对数求导法,基本导数公式.2.3 参变量函数和隐函数的导数(一) 考核要求掌握参变量函数的求导法则,知道求隐函数的导数,会运用求导法则求相关变化率.(二) 考核范围参变量函数的求导法则,隐函数的求导法,相关变化率.2.4 微分(一) 考核要求1. 深刻理解并掌握微分的概念,掌握微分的运算方法,了解微分在近似计算中的应用.2. 理解微分与导数的关系,会利用微分法则求参变量函数和隐函数的导数.(二) 考核范围1. 微分的概念,微分的运算法则,一阶微分形式的不变性,微分在近似计算中的应用.2. 利用微分法则求参变量函数和隐函数的导数.2.5 高阶导数与高阶微分(一) 教学目的1. 掌握高阶导数的概念和计算,掌握高阶导数的莱布尼茨公式.2. 了解高阶微分及其计算,知道高阶导数与高阶微分的关系.(二) 考核范围1. 高阶导数及其计算,高阶导数的莱布尼茨公式.2. 高阶微分及其计算.2.6 拉格朗日定理和函数的单调性、极值(一) 考核要求1. 掌握罗尔定理和拉格朗日中值定理的条件、结论及证明方法,会应用中值定理证明一些不等式和一些中值公式,了解达布定理和导数极限定理.2. 掌握求函数的单调区间和极值及最值的一般方法.(二) 考核范围1. 极值概念与费马定理.2. 罗尔定理,拉格朗日中值定理,应用中值定理证明不等式和中值公式举例,达布定理,导数极限定理.3. 函数的单调性与极值,函数的最值,最值应用题举例.2.7 柯西中值定理和不定式极限(一) 考核要求掌握柯西中值定理,掌握罗比达法则,会求各种形式的不定式极限.(二) 考核范围柯西中值定理及其简单应用举例,洛必达法则,不定式极限计算举例.2.8 泰勒公式(一) 考核要求理解带两种余项形式的泰勒公式,掌握基本初等函数的麦克劳林公式(熟记六个),会利用它们求不定式极限,了解泰勒公式在求高阶导数、函数极值以及近似计算方面的应用.(二) 考核范围1. 带佩亚诺余项和带拉格朗日余项的泰勒公式和麦克劳林公式,几个基本初等函数的麦克劳林公式.2. 泰勒公式应用举例(不定式极限,高阶导数,函数极值,近似计算).2.9其它应用(一) 考核要求1. 掌握函数凸性与拐点的概念,会求函数凹凸区间与拐点,了解函数凸性在证明不等式方面的应用.2.会求曲线的渐近线,了解函数作图的一般步骤,会描绘函数的图像.f x=近似解的牛顿切线法.3. 了解求方程()0(二) 考核范围f x=的近似解.函数的凸性与拐点,凸性的判定,渐近线,函数作图,方程()0第3章一元函数积分学3.1 不定积分的概念与线性运算(一) 考核要求理解原函数与不定积分的概念,熟练掌握基本积分公式及不定积分的线性运算法则,了解不定积分的几何意义,了解连续分段函数的原函数的求法.(二) 考核范围原函数与不定积分的概念,基本积分公式与线性运算法则,不定积分的几何意义.3.2 换元积分法与分部积分法(一) 考核要求理解并熟练掌握第一、二换元积分法与分部积分法.(二) 考核范围第一、二换元积分法,分部积分法.3.3 有理函数和三角函数有理式的不定积分(一) 考核要求掌握有理函数不定积分的计算方法,会计算一些三角函数有理式的不定积分,会计算一些简单无理函数的不定积分,了解欧拉变换法.(二) 考核范围有理函数的不定积分,三角函数有理式的不定积分,两类无理函数的不定积分.3.4 定积分的概念与牛顿——莱布尼茨公式(一) 考核要求-定义,了解定积分的几何1. 深刻理解并掌握定积分的概念,知道定积分概念的εδ意义和物理意义.2. 熟练掌握牛顿——莱布尼茨公式,会利用牛顿——莱布尼茨公式计算一些特殊的和式极限.(二) 考核范围-定义),牛顿—定积分的几何背景和物理背景,定积分的定义(极限形式的定义和εδ—莱布尼茨公式.3.5 可积函数类与定积分的性质(一) 考核要求1. 理解函数可积的必要条件,函数可积的充要条件(可积准则),掌握三类可积函数,对这些定理的证明及其证明思路只要求读懂,不作其它较高要求.2. 理解并掌握定积分的若干基本性质,能证明一些简单的积分不等式.(二) 考核范围1. 可积的必要条件,上(下)和与上(下)积分,可积的充要条件(可积准则),可积函数类.2. 定积分的基本性质,积分第一中值定理.3.6 微积分学基本定理、定积分的计算(续)(一) 考核要求1. 掌握微积分学基本定理,会求变上(下)限的定积分的导数.2. 熟练掌握换元积分法与分部积分法.3. 理解积分第二中值定理,理解泰勒公式的积分型余项,了解定积分近似计算.(二) 考核范围变上(下)限的定积分,微积分学基本定理,换元积分法与分部积分法,积分第二中值定理,泰勒公式的积分型余项,定积分近似计算.3.7 (3.8)定积分的应用(一) 考核要求1. 领会微元法的要领,掌握平面图形面积、由平行截面面积求体积、平面曲线弧长的计算公式,了解曲线的曲率,旋转曲面的面积.2. 领会定积分在物理应用方面的基本方法.(二)考核范围1. 微元法概述.2. 平面图形的面积,由平行截面面积求体积,平面曲线的弧长与曲率,旋转曲面面积.3. 功,液体静压力,引力.3.9 无穷积分与瑕积分(一) 考核要求1. 掌握无穷积分与瑕积分的定义和计算.2. 理解无穷积分的基本性质,掌握非负函数无穷积分的收敛性判别的比较判别法,掌握绝对收敛和条件收敛的概念,理解狄利克雷判别法和阿贝尔判别法(不作其它较高要求).3. 了解瑕积分与无穷积分的关系,了解瑕积分的收敛性判别法.(二) 考核范围1. 无穷积分与瑕积分的定义和计算.2. 无穷积分的基本性质,比较判别法(包括极限形式及特殊形式),绝对收敛与条件收敛,狄利克雷判别法与阿贝尔判别法.3. 瑕积分的收敛性判别法.第4章 级数论4.1 数项级数的基本概念及性质(一) 考核要求1. 理解数项级数收敛与发散的定义,掌握收敛级数的基本性质,能够根据定义或性质判别一些简单简单级数的敛散性.2. 掌握等比级数与调和级数.3. 理解级数收敛的柯西准则,对应用柯西准则判别级数的敛散性不作较高要求.(二) 考核范围数项级收敛与发散的定义和基本性质,等比级数,调和级数,柯西准则.4.2 正项级数(一) 考核要求1. 掌握判别正项级数敛散性的基本方法:比较判别法,比式判别法和根式判别.2. 了解积分判别法和拉贝判别法.(二) 考核范围1. 比较判别法,比式判别法,根式判别法.2. 积分判别法,拉贝判别法.4.3 变号级数(一) 考核要求1. 掌握交错级数的莱布尼茨判别法,掌握绝对收敛与条件收敛概念.2. 理解狄利克雷判别法与阿贝尔判别法,对其应用一般不作较高要求.3. 理解绝对收敛级数的两条重要性质,对其应用不作较高要求.(二) 考核范围1. 交错级数及其莱布尼茨判别法,绝对收敛与条件收敛.2. 狄利克雷判别法与阿贝尔判别法.3. 绝对收敛级数的重排,绝对收敛级数的乘积.4.4 函数项级数及其一致收敛性(一) 考核要求1. 深刻理解并掌握函数列和函数项级数一致收敛性的定义,理解一致收敛的柯西准则.2. 掌握一致收敛的另一充要条件(即lim sup ()()0n n x D f x f x →∞∈-=lim sup ()0n n x DR x →∞∈=),掌握判别函数项级数的魏尔斯特拉斯判别法即优级数判别法.3. 理解判别函数项级数收敛性的狄利克雷判别法和阿贝尔判别法,对其应用不作较高要求.(二) 考核范围1. 函数列与函数项级数一致收敛性的定义,一致收敛的柯西准则.2. 一致收敛的另一充要条件,魏尔斯特拉斯判别法.3. 函数项级数收敛性的狄利克雷判别法和阿贝尔判别法.4.5 一致收敛函数序列与函数项级数的性质(一) 考核要求理解并掌握一致收敛函数列和函数项级数的连续性,逐项积分与逐项求导法则.(二) 考核范围一致收敛函数列与函数项级数的连续性,逐项积分与逐项求导法则.4.6 幂级数及其性质(一) 考核要求掌握幂级数的收敛半径及收敛域的求法,掌握幂级数的基本性质和运算法则.(二) 考核范围幂级数的收敛半径,收敛半径的计算公式,收敛区间和收敛域的概念.4.7 函数的幂级数展开(一) 考核要求掌握泰勒级数和麦克劳林级数,熟记一些初等函数的幂级数展开式,掌握初等函数的幂级数展开.(二) 考核范围泰勒级数,麦克劳林级数,五种基本初等函数的幂级数展开式,初等函数的幂级数展开(直接法和间接法).4.8 傅里叶级数(一) 考核要求1. 理解三角级数和傅里叶级数定义,掌握傅里叶级数的收敛定理,能够按照收敛定理将比较简单的函数展开成傅里叶级数.2. 掌握以2l为周期的函数的展开式,掌握偶函数和奇函数的傅里叶级数的展开,掌握正弦级数,余弦级数.3. 了解收敛定理的证明,了解傅里叶级数的一致收敛性.(二) 考核范围1. 三角级数;正交函数系,傅里叶级数,收敛定理,傅里叶级数的展开式举例.2. 以2l为周期的函数的展开式,掌握偶函数和奇函数的傅里叶级数的展开式,函数的奇延拓与偶延拓及正弦级数与余弦级数.3.黎曼引理,收敛定理的证明,贝塞尔不等式,一致收敛性定理.第5章多元函数微分学5.1多元函数与极限(6)(一) 考核要求1. 理解二元及多元函数的定义.了解平面中邻域,开域,闭域的定义.-定义,知道二元函数极限存在的充要条件,了解方向2. 理解二元函数重极限的εδ极限与累次极限,了解重极限与累次极限的区别与联系.(二) 考核范围1. 二元函数及多元函数,平面中的邻域,开域,闭域.2. 二元函数重极限定义,二元函数极限存在的充要条件,方向极限与累次极限.5.2 二元函数的连续性(一) 考核要求1. 理解二元函数的连续性的定义,知道二元初等函数的连续性.R上的完备性定理,知道有界闭区域上连续函数的整体性质.2. 了解有关二维空间2(二) 考核范围1. 二元函数的连续性的定义,二元初等函数的连续性.R中的聚点定理,致密性定理,闭区域套定理,有限覆盖定理.2. 23. 有界闭域上连续函数的最大最小值定理,介值性定理和一致连续性.(1) 基本要求:掌握二元函数的连续性的定义,了解有界闭域上连续函数的性质.(2) 较高要求:掌握有界闭域上连续函数性质的证明要点.5.3 偏导数与全微分(一) 考核要求1. 理解并掌握多元函数偏导数的定义,知道偏导数的几何意义,能够熟练的求出初等函数的偏导数和高阶偏导数,能够求二元函数在一些特殊的导数,知道混合偏导数与求导顺序无关的条件.2. 理解并掌握二元函数可微和全微分的定义,掌握微分法则,掌握可微的必要条件,理解可微的充分条件,了解高阶全微分及其运算.(二) 考核范围1. 多元函数偏导数与高阶偏导数,偏导数的几何意义,混合偏导数与求导顺序无关的条件.2. 二元函数可微和全微分的定义,微分法则,可微的必要条件,可微的充分条件,高阶全微分及其运算.5.4 复合函数微分法与方向导数(一) 考核要求理解并熟练掌握复合函数求导的链式法则,掌握方向导数与梯度的定义及其运算,了解二元函数的梯度的几何意义.(二) 考核范围1. 复合函数链式法则,复合函数的全微分,一阶全微分形式不变性.2. 方向导数与梯度5.5 多元函数的泰勒公式(一) 考核要求理解并掌握多元函数的泰勒公式,了解泰勒公式的一个推论——中值定理.(二) 考核范围泰勒公式与中值定理,泰勒公式的计算与应用举例.5.6 隐函数及其微分法(一) 考核要求1. 理解隐函数定理和可微性定理,掌握隐函数微分法.2. 了解隐函数组及其可微性定理,知道求隐函数组的偏导数.(二) 考核范围1. 隐函数存在性定理,隐函数可微性定理.2. 隐函数组及其可微性定理,反函数组定理.5.7 多元函数偏导数的几何应用(一) 考核要求1. 理解空间曲线(两种表示形式)的切线方程的推导,掌握空间曲线的切线与法平面方程的求法,理解曲面(两种表示形式)的切平面方程的推导,掌握曲面的切平面与法线的求法.2. 了解二元函数全微分的几何意义,了解三元函数梯度的几何意义.(二) 考核范围1. 空间曲线的切线与法平面方程,曲面的切平面与法线方程.2. 二元函数全微分的几何意义,、三元函数梯度的几何意义.5.8多元函数的极值与条件极值(一) 考核要求1. 掌握二元函数的极值的必要条件与充分条件.2. 了解拉格朗日乘数法,会用拉格朗日乘数法求条件极值.(二) 考核范围1. 二元函数的极值,必要条件与充分条件.2. 条件极值,拉格朗日乘数法,用条件极值的方法证明不等式.第6章多元函数积分学6.1 二重积分(一) 考核要求1. 了解平面点集的面积定义及其性质,理解二重积分的定义和性质,理解有界闭区域上的连续函数可积的结论,理解并熟练掌握化二重积分为累次积分的计算公式.2. 理解二重积分变量变换公式的证明,掌握用极坐标计算二重积分.(二) 考核范围1. 二重积分的定义和性质,化二重积分为累次积分的计算公式.2. 二重积分的变量变换公式,用极坐标计算二重积分.6.2 三重积分(一) 考核要求1. 掌握三重积分的定义,了解三重积分的性质,熟练掌握化三重积分为累次积分的计算公式(柱体法和截面法).2. 了解三重积分变量变换公式,掌握用球坐标和柱坐标计算三重积分.(二) 考核范围1. 三重积分的定义,化三重积分为累次积分的计算公式(柱体法和截面法).2. 三重积分变量变换公式,柱坐标变换公式,球坐标变换公式.6.3 n重积分和广义重积分(一) 考核要求了解n重积分和广义二重积分的概念和性质,了解广义二重积分的收敛性判别.(二) 考核范围n重积分的定义,计算公式,广义二重积分的性质,收敛性判别.6.4 重积分的应用(一) 考核要求掌握用重积分计算计算面积和体积,掌握曲面面积的计算公式,了解物体的重心,转动惯量与引力及其计算公式.(二) 考核范围平面区域的面积,立体的体积,曲面的面积,物体重心,转动惯量,引力.6.5 第一型曲线积分(一) 考核要求理解并掌握第一型曲线积分的定义,性质和计算公式.(二) 考核范围第一型曲线积分的定义,性质和计算公式.6.6 第二型曲线积分(一) 考核要求1. 理解并掌握第二型曲线积分的定义,性质,坐标形式和计算公式.2. 了解两类曲线积分之间的联系.(二) 考核范围1. 第二型曲线积分的定义,性质,坐标形式和计算公式.2. 两类曲线积分之间的联系.6.7 格林公式(一) 考核要求理解并掌握格林公式以及曲线积分与路线无关的条件.(二) 考核范围格林公式,曲线积分与路线无关的条件.6.8 第一型曲面积分(一) 考核要求理解并掌握第一型曲面积分的定义和计算公式.(二) 考核范围第一型曲面积分的定义和计算公式.6.9 第二型曲面积分(一) 考核要求理解并掌握第二型曲面积分的定义、性质,了解两类曲面积分的联系,掌握第二型曲面积分的计算公式.(二) 考核范围有向曲面的概念,第二型曲面积分的定义、性质,两类曲面积分的联系,第二型曲面积分的计算公式.6.10 高斯公式与斯托克斯公式(一) 考核要求理解并掌握高斯公式和斯托克斯公式.(二) 考核范围高斯公式,斯托克斯公式,沿空间曲线的第二型积分与路径无关的条件.*6.11 含参变量的积分(一) 考核要求1. 理解并掌握含参变量的定积分的连续性,可微性和可积性定理,掌握计算含参变量的定积分基本方法.2. 了解含参变量的广义积分的一致收敛性概念和性质,了解一致收敛性判别法(魏尔斯特拉斯判别法,狄里克雷判别法和阿贝尔判别法.3. 了解含参变量的广义积分的连续性,可微性与可积性定理,了解含参变量的定积分基本方法.4. 了解Γ函数与β函数的定义、性质及其联系.(二) 考核范围1. 含参变量的定积分的连续性,可微性和可积性定理的证明,定理的应用.2. 含参变量的广义积分的一致收敛性概念和性质,一致收敛性判别法.3. 连续性,可微性与可积性定理,定理的应用.4.Γ函数与β函数的定义、性质及其联系,余元公式.萍乡学院工程与管理学院2019年3月20日。
浙江省大学生数学竞赛(数学分析)大纲

浙江省大学生数学竞赛(数学分析)大纲浙江省大学生数学竞赛数学分析组,主要面向全省各高校数学系或非数学系,但学习《数学分析》课程的在读本科大学生。
内容涉及到大学本科《数学分析》课程所涵盖的各知识点,以单变量内容为主,具体内容如下:一.函数函数是数学分析中的基本概念,主要考察考生对函数的概念及性质的理解和掌握。
包括函数的连续性。
闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理、根的存在定理),并会应用这些性质。
二.极限数列和函数极限的计算,以及有关问题的讨论, 无穷阶的比较,实数完备性理论及其应用。
三.导数及其应用函数可导性的研究,微分中值定理及其应用,利用导数研究函数的性质(单调性,凹凸性等)以及导数的应用(极值、最大值和最小值等)。
四.积分不定积分和定积分的计算,定积分的性质以及变上,下限的积分,定积分的应用和广义积分。
五.级数级数的收敛性判别方法,如正项级数、一般级数等,收敛级数的性质,幂级数的求和、函数的Taylor级数展开和Fourier级数展开等。
六.多变量的微积分多元函数的微分及其性质和应用。
二重积分、三重积分、第一、二类曲线与曲面积分的计算,三个重要公式:Green公式、Gauss公式和Stokes公式以及曲线积分与路径无关性的应用和计算。
主要参考书:《数学分析》教材、吉米多维奇《数学分析习题集》。
浙江省大学生数学竞赛(微积分)大纲浙江省大学生数学竞赛微积分组,主要面向全省各高校非数学系专业的在读本科和专科大学生。
内容涉及到大学本科(专科)《微积分》或《高等数学》课程所涵盖的各知识点,以单变量内容为主,具体内容如下:一.函数极限和连续性考察考生对函数、极限概念的理解和掌握,函数极限的讨论和计算,函数的连续性,闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理、根的存在定理),并会应用这些性质。
二.导数及其应用函数可导性的研究,微分中值定理及其应用,利用导数研究函数的性质(单调性,凹凸性等)以及导数的应用(极值、最大值和最小值等)。
浙江省大学生数学竞赛(微积分、数学分析)大纲

浙江省大学生数学竞赛(微积分、数学分析)大纲浙江省大学生数学竞赛(微积分、数学分析)大纲浙江省大学生数学竞赛分微积分组和数学分析组,微积分组主要面向全省各高校非数学系专业的在读本科和专科大学生,内容涉及到大学本科(专科)《微积分》或《高等数学》课程所涵盖的各知识点。
数学分析组主要面向全省各高校学习《数学分析》课程的在读本科大学生,内容涉及到《数学分析》课程所涵盖的各知识点,以上均以单变量内容为主,具体内容如下:一、函数极限和连续性考察考生对函数、极限概念的理解和掌握,函数极限的讨论和计算,函数的连续性,闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理、根的存在定理),并会应用这些性质。
二、导数及其应用函数可导性的研究,微分中值定理及其应用,利用导数研究函数的性质(单调性,凹凸性等)以及导数的应用(极值、最大值和最小值等)。
三、积分不定积分和定积分的计算,定积分的应用(面积、体积、引力、功、压力)和广义积分。
四、级数级数的收敛性及其判别定理,几类特殊的级数的敛散性,如正项级数、一般级数等,幂级数的求和、函数的Taylor级数展开和Fourier 级数展开等。
五、多元微积分矢量及其运算和空间解析几何,多元函数的微分及其性质和应用。
二重积分、三重积分、第一、二类曲线与曲面积分的计算,三个重要公式:Green公式、Gauss 公式和Stokes公式以及曲线积分与路径无关性的应用和计算。
注:1.经管类学生只考第一至第四部分(功、压力、引力、Fourier级数不要求)。
专科和文科类考生只考第一至第三部分(功、压力、引力不要求)。
2.微积分组主要参考书:《微积分》与《高等数学》教材。
3.数学分析组主要参考书:《数学分析》教材。
宁波大学考研真题671数学分析2015年-2017年

入学考试试题(A卷)(答案必须写在答题纸上)考试科目: 数学分析科目代码:671 适用专业: 基础数学、应用数学入学考试试题(A卷)(答案必须写在答题纸上)考试科目: 数学分析科目代码:671 适用专业: 基础数学、应用数学入学考试试题(B卷)(答案必须写在答题纸上)考试科目:数学分析科目代码:671适用专业:基础数学、应用数学入学考试试题(B卷)(答案必须写在答题纸上)考试科目:数学分析科目代码:671适用专业:基础数学、应用数学科目代码:671科目名称:数学分析适用专业:基础数学应用数学一、单项选择题:本大题共5小题,每小题4分,共20分。
1.关于数列极限下列叙述正确的是()A.lim {}n n n a a a a →∞=的充要条件是在的任意小领域内有中的无限多个点;B.{}{}n n a a 若数列存在极限,则数列一定为一有界数列;C.{},{},{}lim {}n n n n n n n n n n a b c a b c c a b →∞≤≤若数列满足,且(-)=0,则数列一定收敛;D .1{}lim()0,{}n n n n n a a a a +→∞-=若数列满足则数列一定收敛.2.下列叙述正确的是()A.(),();f x f x I 若在区间I上连续则在上一定有界B.()[,],()[,];f x a b f x a b 若在闭区间上可积则在上一定有界C.()[,],()()[,],()();xa f x ab F x f t x a b x f x '=∈=⎰若在上可积令dt,则有F D.00(),()f x x x f x 若在处可导则一定存在的某领域,使得在该领域内连续.3.1,n n u ∞=∑设级数收敛则下列必收敛的级数为()A.1;1n n n u n ∞=+∑ B.21;nn u ∞=∑ C.1(1);nn n u n ∞=-∑ D.2121().n n n uu ∞-=-∑4.,0()111,11x x f x x n n n ≤⎧⎪=⎨<≤⎪++⎩已知函数,下列叙述正确的是()A.0();x f x =是的第一类间断点B.0();x f x =是的第二类间断点C.()0;f x x =在处连续但不可导D.()0f x x =在处可导.5.(0,0)下列函数在处存在重极限的是()A.22(,);xyf x y x y =+ B.2224()(,);x y f x y x y -=+C .222(,);x yf x y x y=+ D.2233(,).x y f x y x y=+科目代码:671科目名称:数学分析适用专业:基础数学应用数学科目代码:671科目名称:数学分析适用专业:基础数学应用数学。
数学分析考试大纲.doc

《数学分析》考试大纲一、课程性质和目的《数学分析》是数学系的一门重要基础课,其主要任务是使学生获得数学的基本思想方法和极限论、单元和多元微积分、级数论、反常积分等方面的系统知识。
它一方面为后继课程(如《微分方程》、《实变函数》、《概率论与数理统计》及有关的《泛函分析》、《微分几何》等限选课程及《普通物理学》等)提供一些所需的基础理论和知识,另一方面还对提高学生思维能力,开发学生智能加强“三基”(基础知识、基本理论、基本技能)及培养学生独立工作能力等起着重要的作用。
通过本课程教学的主要环节(讲授与讨论、习题课、作业、辅导等),使学生对极限思想和方法有较深的认识和理解,从而有助于培养学生辩证唯物主义基本观点及正确理解《数学分析》的基本概念和论证方法及分析问题和解决问题的能力。
整个课程注重培养学生的数学逻辑及思想方法,训练学生举一反三的能力,在单元函数和多元函数相平行的内容以单元函数为主,引导学生通过独立思考得到多元函数的相应结论。
二、课程内容充分条件,必要条件,充要条件,绝对值,不等式,函数,单调函数,周期函数,奇偶函数,复合函数,反函数,初等函数,数列极限,数列极限的性质,单调有界数列,子数列,函数极限,函数极限的性质,函数极限与数列极限的关系,两个重要极限,无穷小量与无穷大量,闭区间套定理,上确界与下确界,确界存在定理,有限覆盖定理,致密性定理,柯西收敛准则,连续,左连续,右连续,间断点,函数在一点连续的性质,中间值定理,有界性定理,最大值与最小值定理,反函数的连续性定理,一致连续性定理,初等函数的连续性,导数,求导法则,微分,微分与导数的关系,高阶导数,高阶微分,参数方程求高阶导数,费尔马定理,洛尔定理,拉格朗日定理,柯西定理,洛必达法则,泰勒公式,单调性判别法,极值,凹凸性,拐点,曲线的渐近线,函数作图,不定积分,换元法,分部积分法,有理函数积分法,三角函数有理式积分,无理函数的积分,平面图形的面积,立体的体积,平面曲线的弧长,曲线的曲率,上极限,下极限,数项级数,正项级数,任意项级数,绝对收敛,条件收敛,无穷乘积,无穷积分,瑕积分,反常积分的收敛与发散,反常积分的计算,柯西主值,函数列,函数项级数,一致收敛,非一致收敛,一致收敛级数的性质,幂级数的收敛域,幂级数的性质,幂级数的展开,富里埃级数,富里埃级数的展开,平面点集,多元函数的极限,多元函数的连续性,偏导数,全微分,方向导数,复合函数的偏导数,一阶全微分形式的不变性,高阶偏导数,高阶全微分,泰勒公式,多元函数的极值,隐函数存在定理,空间曲线的切线与法平面,曲面的切平面与法线,条件极值,含参变量的定积分,含参变量反常积分的一致收敛,含参变量反常积分的分析性质,欧拉积分,二重积分,三重积分,第一型曲线积分,第二型曲线积分,格林公式,平面曲线积分与路径无关的条件,第一型曲面积分,第二型曲面积分,奥高公式,斯托克斯公式。
宁波大学671数学分析2004,2005,2007--2020年考研真题

1. 下列叙述正确的是(
)
(A)若数列
{an}无界,则必有
lim
n
an
.
(B)若f (x)在点x0连续,而g(x)在点x0不连续,则f (x)g(x)在点x0处不连续. (C)若f (x)在x0处可导,则一定存在x0的某个领域U(x0 ),使得f (x)在U(x0 )内的任意点处
都可导.
(D)若f (x)在点x0处连续,则在x0的某个领域内一定有界.
2. f (x)在[a,b]上可积,则f 2 (x)在[a,b]上也可积;f (x)的反常积分在[a, )上收敛,
则f 2 (x)的反常积分在[a, )上(
)
(A)收敛; (B)不收敛; (C)不一定收敛;
(D)以上三个答案都不正确
3.设 f (x) (x a)(x) ,其中(x) 在 x a 处连续但不可导,则 f ' (a) (
xn 的收敛域以及在收敛域内求这个级数的和。
n1 n(n 1)
五.(本题 15 分)请用 语言证明: lim 2 (sin x)n dx 0 。 n 0
六.(本题 15 分)
设 0 b a ,证明: a b ln a a b 。
a
bb
七.(本题 15 分)
设 f (x) 是定义在实数域上的可导正函数,并且 f '(x) 2020 f (x), f (0) 1,求 f (x) 。 八.(本题 15 分)
三、(本题 15 分) 计算二重积分
四、(本题 15 分)实轴上的连续函数 f 被称为凸的,若对任意
及
,满足
请证明:(1)对任意
及任意的
(2)对任意的[0,1]上的黎曼可积函数 , 成立
, , 成立
《数学分析》考试大纲

三、 一元积分学
1. 不定积分法与可积函数类 2. 定积分的概念、性质与计算
级数 数项级数的敛散判别与性质 函数项级数与一致收敛性 幂级数 Fourier 级数
五、 1、 2、 3、 4、 5、 6、 7、 8、
多元微分学 欧式空间 多元函数的极限 多元连续函数 偏导数与微分 隐函数定理 Taylor 公式 多元微分学的几何应用 多元函数的极限
求某些级数的和(如
1 )。
n1 n 2
五、多元微分学 1、理解欧式空间中的概念及欧式空间的内积与模、开集、开区域与闭区域的意义,了解 完备性定理及紧性定理。 2、理解多元函数的概念,掌握多元函数的重极限、累次极限和特殊路径极限的意义,并 能够根据定义计算多元函数极限,或证明二元极限不存在,能计算多元函数的重极限和累 次极限。 3、理解多元连续函数的概念及其性质。并能够判断多元函数的连续性,了解多元函数的 一致连续性。 4、理解偏导数的概念,掌握其计算法则,能够熟练计算多元函数的偏导数和复合函数的 导函数,能计算给定函数在给定方向上的导函数。 5、理解多元函数的微分的概念,并能够判断函数的可微性。 6、理解隐函数存在定理和反函数存在定理,熟练掌握隐函数的微分法。 7、理解 Taylor 公式的意义,并能够求出二元函数的具有指定阶数的 Taylor 公式。 8、能应用偏导数求空间的切线、法平面及空间曲面的法线和切平面的方程。 9、理解多元函数的极限和最值的意义,极值的充分必要条件,掌握求多元函数极值、条 件极值及在闭区域上的最值的方法,并用于解决实际问题。
宁波大学835数学教学论考试大纲

宁波大学硕士研究生招生考试初试科目考试大纲科目代码、名称:835数学教学论一、考试形式与试卷结构(一)试卷满分值及考试时间本试卷满分为150分,考试时间为180分钟。
(二)答题方式答题方式为闭卷、笔试。
(三)试卷内容结构考试内容主要包括数学教育基本概论,数学教育的核心内容,数学课程基本理论,数学教学基本理论和方法,数学问题解决,数学教学评价。
(四)试卷题型结构1.概念题2.简答题3.论述题4.教学设计题二、考查目标教育硕士专业学位入学考试数学教学论科目考查目标在于测试考生系统掌握数学教育教学的基础知识和基本技能、运用数学教育教学的基本理论和基本方法分析、解决数学教育实际问题的能力情况。
三、考查范围或考试内容概要(一)数学教育的历史与发展20世纪数学观的变化,20世纪数学教育观的变化,改革中的中国数学教育,数学教育研究热点透视,国际视野下的中国数学教育,我国影响较大的几次数学教改实验。
(二)数学教育的基本理论弗赖登塔尔的数学教育理论、波利亚的解题理论、建构主义的数学教育理论、“双基”数学教学理论、学习心理学与数学教育、数学史与数学教育、数学教育技术。
(三)数学教育的核心内容数学教育目标的确定、数学教学原则、数学知识的教学、数学能力的界定、数学思想方法、数学活动经验、数学教学模式、数学教学的德育功能、数学核心素养。
(四)数学课程的制定与改革《全日制义务教育数学课程标准(修订)》的基本理念、核心概念、《普通高中数学课程标准》的基本理念、数学建模与数学课程、研究性学习与数学课程。
(五)数学问题与数学考试数学问题和数学解题、数学应用题、情境题、开放题、数学问题解决的教学、数学考试。
(六)数学课堂教学基本技能如何吸引学生、如何启发学生、如何与学生交流、如何组织学生。
(七)数学教学设计教案三要素、数学教学目标的确定、设计意图的形成、教学过程的展示、优秀教学设计的基本要求。
参考教材或主要参考书:《数学教育概论》张奠宙、宋乃庆,高等教育出版社,第三版,2016.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学分析》考试大纲本《数学分析》考试大纲适用于宁波大学数学相关专业硕士研究生入学考试。
一、本考试科目简介:《数学分析》是数学专业最重要的基础课之一,是数学专业的学生继续学习后继课程的基础,它的理论方法和内容既涉及到几百年来分析数学的严谨性和逻辑性,又与现代数学的各个领域有着密切的联系。
是从事数学理论及其应用工作的必备知识。
本大纲制定的的依据是①根据教育部颁发《数学分析》教学大纲的基本要求。
②根据我国一些国优教材所讲到基本内容和知识点。
要求考生比较系统地理解数学分析的基本概念基本理论,掌握研究分析领域的基本方法,基本上掌握数学分析的论证方法,具备较熟练的演算技能和初步的应用能力及逻辑推理能力。
二、考试内容及具体要求:第1章实数集与函数(1)了解实数域及性质(2)掌握几种主要不等式及应用。
(3)熟练掌握领域,上确界,下确界,确界原理。
(4)牢固掌握函数复合、基本初等涵数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)。
第2章数列极限(1)熟练掌握数列极限的定义。
(2)掌握收敛数列的若干性质(惟一性、保序性等)。
(3)掌握数列收敛的条件(单调有界原理、迫敛法则、柯西准则等)。
第3章函数极限(1)熟练掌握使用“ε-δ”语言,叙述各类型函数极限。
(2)掌握函数极限的若干性质。
(3)掌握函数极限存在的条件(归结原则,柯西准则,左、右极限、单调有界)。
(4)熟练应用两个特殊极限求函数的极限。
(5)牢固掌握无穷小(大)的定义、性质、阶的比较。
第4章函数连续性(1)熟练掌握在X0点连续的定义及其等价定义。
(2)掌握间断点定以及分类。
(3)了解在区间上连续的定义,能使用左右极限的方法求极限。
(4)掌握在一点连续性质及在区间上连续性质。
(5)了解初等函数的连续性。
第5章导数与微分(1)熟练掌握导数的定义,几何、物理意义。
(2)牢固记住求导法则、求导公式。
(3)会求各类的导数(复合、参量、隐函数、幂指函数、高阶导数(莱布尼兹公式))。
(4)掌握微分的概念,并会用微分进行近似计算。
(5)深刻理解连续、可导、可微之关系。
第6章微分中值定理、不定式极限(1)牢固掌握微分中值定理及应用(包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理)。
(2)会用洛比达法则求极限,(掌握如何将其他类型的不定型转化为0/0型)。
第1-6章的重点与难点(1)重点:①基本概念:极限、连续、可导、可微。
②基本定理:单调有界,柯西准则,归结原则,微分中值定理。
③基本计算:求极限的方法与类型。
(2)难点:应用微分中值定理,证明问题,连续函数性质应用。
第7章导数应用(1)掌握单调与符号的关系,并用它证明f(x)单调,不等式、求单调区间、极值等。
(2)利用判定凹凸性及拐点。
(3)了解凸函数及性质(4)会求曲线各种类型的渐近线性。
(5)了解方程近似解的牛顿切线法。
第8章极限与连续(续)(1)掌握下列基本概念:区间套、柯西列、聚点、予列。
(2)了解刻划实数完备性的几个定理的等阶性,并掌握各定理的条件与结论。
(3)学会用上述定理证明其他问题,如连续函数性质定理等。
?第9章不定积分(1)掌握原函数与不定积分的概念。
(2)记住基本积分公式。
(3)熟练掌握换元法、分部积分法。
(4)了解有理函数积分步骤,并会求可化为有理函数的积分。
第10章定积分(1)掌握定积分定义、性质。
(2)了解可积条件,可积类。
(3)深刻理解微积分基本定理,并会熟练应用。
(4)熟练计算定积分。
(5)掌握广义积分收敛定义及判别法,会计算广义积分。
?第11章定积分应用(10熟练计算各种平面图形面积。
(2)会求旋转体或已知截面面积的体积。
(3)会利用定积分求孤长、曲率、旋转体的侧面积。
(4)会用微元法求解某些物理问题(压力、变力功、静力矩、重心等)。
?第12章数项级数(1)掌握数项级数敛散的定义、性质。
(2)熟练掌握正项级数的敛、散判别法。
(3)掌握条件、绝对收敛及莱布尼兹定理。
第7-12章的重点、难点(1)重点:导数的应用,积分法则,微积分基本定理,数项级数敛散判别,广义积分敛散判别。
(2)难点:实数完备性定理及应用;定积分的可积性及可积极类的讨论,定积分及数项级数的理论证明,广义积分及数项级数敛散的阿贝尔,狄利克雷判别法。
?第13章函数列与函数项级数(1)了解函数列与函数项级之间的关系,掌握函数列及函数项级数的一致收敛定义。
(2)掌握函数列、函数项级数一致收敛的判别法。
(3)函数列的极限函数,函数项级数的和函数性质。
?第14章幂级数(1)熟练幂级数收敛域,收敛半径,及和函数的求法。
(2)了解幂级数的若干性质。
(3)了解求一般任意阶可微函数的幂级数展式的方法。
特别牢固记住六种基本初等函数的马克劳林展式。
(4)会利用间接法求一些初等函数的幂级数展式。
?第15章付里叶级数(1)熟记付里叶系数公式,并会求之。
(2)掌握以2π为周期函数的付里叶展式。
(3)理解掌握定义在(0,1)上的函数可以展成余弦级数,正弦级数,一般付里叶级数。
(4)了解收敛性定理,并掌握,贝塞尔不等式,勒贝格引理等。
第16章多元函数极限与选择(1)了解平面点集的若干概念。
(2)掌握二元函数二重极限定义、性质。
(3)掌握二次极限,并掌握二重极限与二次极限的关系。
(4)掌握二元连续函数的定义、性质。
(5)了解二元函数关于两个变量全体连续与分别连续的关系。
?第17章多元函数微分学(1)熟练掌握,可微,偏导的意义。
(2)掌握二元函数可微,偏导,连续以及偏导函数连续,概念之间关系。
(3)会计算各种类型的偏导,全微分。
(4)会求空间曲面的切平面,法线。
空间曲线的法平面与切线。
(5)会求函数的方向导数与梯度。
(6)会求二元函数的泰勒展式及无条件极值。
?第18章隐函数定理及其应用(1)掌握由一个方程确定的隐函数的条件,隐函数性质,隐函数的导数(偏导)公式。
(2)掌握由m个方程n个变元组成方程组,确定n-m个隐函数组的条件,并会求这n-m个隐函数对各个变元的偏导数。
(3)会求空间曲线的切线与法平面。
(4)会求空间曲面的切平面与法线。
(5)掌握条件极值的拉格朗日数乘法。
?第19章向量函数微分(一般了解)第13-19章重点、难点(1)重点:函数列、函数项级数一致收敛的判别,求幂级数的收敛域,和函数及其性质,幂级数展式,多元函数极限,连续、偏导、可微概念。
计算部分:求各类偏导,全微分,求方向导数与梯度,求方程(组)确定隐函数(组)的偏导。
应用部分;无条件极值,条件极值,曲线的切线与法平向,曲面的切平面与法线。
(2)难点:函数列与函数项级数一致收敛判别及性质,条件极值。
?第20章重积分(1)了解二重积分,三重积分定义与性质。
(2)掌握二重积分的换序,变量代换的方法。
(3)了解三重积分的换序,会用球、柱、广义球坐标进行代换计算三重积分。
(4)含参量正常积分的定义及性质。
(5)重积分应用:求曲面面积,转动惯量,重心坐标等。
?第21章含参量非正常积分(1)掌握含参量非正常积分一致收敛定义、性质。
(2)掌握含参量非正常积分一致收敛判别。
(3)会用积分号下求导、积分号下做积分方法计算一些定积分或广义积分。
(4)了解欧拉积分,递推公式及性质。
?第22章曲线积分与曲面积分(1)熟练掌握第一、二型曲线、曲面积分的计算方法。
(2)了解两种曲线积分,两种曲面积分关系。
(3)熟练运用格林公式,高斯公式,斯托克斯公式计算。
(4)掌握积分与路径无关的条件。
(5)了解场论初步知识,并会求梯度,散度,旋度。
第20-22章的重点和难点(1)重点:二重积分换序,计算方法;曲线,曲面积分的计算。
格林公式,高斯公式,斯托克斯公式的应用,积分与路径无关性质的应用。
(2)难点:含参量广义积分的一致收敛判别,三重积分的换序,重积分的应用。
?三、题型分布:填空题,选择题,解答题,计算题,证明题,应用题。
《高等代数》考试大纲本《高等代数》考试大纲适用于宁波大学数学相关专业硕士研究生入学考试。
本课程考核内容包括多项式理论、行列式、线性方程组、矩阵理论、二次型、线性空间、线性变换、λ-矩阵、欧氏空间九个部分.一、多项式理论:多项式的整除,最大公因式,多项式的互素,不可约多项式与因式分解,重因式重根的判别,多项式函数与多项式的根.重点掌握:重要定理的证明,如多项式的整除性质,Eisenstein判别法,不可约多项式的性质,整系数多项式的因式分解定理等.运用多项式理论证明有关问题,如与多项式的互素和不可约多项式的性质有关问题的证明与应用以及用多项函数方法证明有关的问题.二、行列式:行列式的定义、性质和常用计算方法(如:三角形法、加边法、降阶法、递推法、按一行一列展开法、Laplace展开法、范得蒙行列式法)。
重点掌握:n阶行列式的计算及应用.三、线性方程组:向量组线性相(无)关的判别(相应齐次线性方程组有无非零解、性质判别法、行列式判别法、矩阵秩判别法)。
向量组极大线性无关组的性质、向量组之间秩的大小关系(向量组(Ι)可由向量组(Π)线性表示,则(Ι)的秩小于等于(Π)的秩)定理2及三个推论、矩阵的秩(行秩和列秩、矩阵秩的行列式判别法、矩阵秩的计算)、Cramer法则,线性方程组有(无)解的判别定理、齐次线性方程组有非零解条件(用系数矩阵的秩进行判别、用行列式判别、用方程个数判别)、基础解系的计算及其性质、齐次线性方程组通解的求法,非齐次线性方程组的解法和解的结构.重点掌握:向量组线性相(无)关的判别、向量组之间秩与矩阵的秩、齐次线性方程组有非零解条件及基础解系的性质、非齐次线性方程组解的结构与其导出组的基础解系的性质.四、矩阵理论:矩阵的运算,矩阵的初等变换与初等矩阵的关系及其应用(求解线性方程组、求逆矩阵、求向量组的秩)、矩阵的等价标准形、矩阵可逆的条件(与行列式、矩阵的秩、初等矩阵的关系)、伴随矩阵及其性质、分块矩阵(包括矩阵乘法的常用分块方法并证明与矩阵相关的问题)、矩阵的常用分解(如:等价分解,满秩分解,实可逆阵的正交三角分解,Jordan 分解),几种特殊矩阵的常用性质(如:准对角阵,对称矩阵与反对称矩阵,伴随矩阵、幂等矩阵,幂零矩阵,正交矩阵等)。
重点掌握:利用分块矩阵的初等变换证明有关矩阵秩的等式与不等式,矩阵的逆与伴随矩阵的性质与求法,应用矩阵理论解决一些相关问题.五、二次型理论:化二次型为标准形和规范形,实二次型在合同变换之下的规范型以及在正交变换之下的特征值标准型的求法、惯性定律的应用,正定、半正定矩阵的判别及应用、正定矩阵的一些重要结论及其应用.重点掌握:正定和半正定矩阵有关的证明,实二次型在合同变换之下的规范型以及在正交变换之下的特征值标准型的计算.六、线性空间:线性空间、子空间的定义及性质、求线性空间中一个向量组的秩、求线性(子)空间的基与维数的方法、基扩充定理,维数公式,基变换与坐标变换,生成子空间,子空间直和,一些常见的子空间(线性方程组解的解空间、矩阵空间、多项式空间、函数空间、线性变换的特征子空间和不变子空间)。