杆件的内力分析(1轴向拉伸与压缩)
杆件的内力截面法
杆件的内力截面法一、基本要求1.了解轴向拉伸与压缩、扭转、弯曲的概念;2.掌握用截面法计算基本变形杆件截面上的内力;3.熟练掌握基本变形杆件内力图的绘制方法。
表示轴力沿杆件轴线变化规律的图线。
该图一般以平行于杆件轴线的横坐标x轴表示横截面位置,纵轴表示对应横截面上轴力的大小。
正的轴力画在x轴上方,负的轴力画在x轴下方。
e n当功率P单位为马力(PS),转速为n(r/min)时,外力偶矩为根据内力与外力的平衡关系,若外力对截面形心取矩为顺时针力矩,则该力在截面上产生正的剪力,反之为负的剪力(顺为正,逆为负);固定截面,若外力或外力偶使梁产生上挑的变形,则该力或力偶在截面上产生正的弯矩,反之为负的弯矩(上挑为正,下压为负)。
4)剪力方程和弯矩方程一般情况下,梁横截面上的剪力和弯矩随截面位置不同而变化。
若以坐标x 表示横截面在梁轴线上的位置,则横截面上的剪力和弯矩可以表示为x 的函数,即)()(S S x M M x F F ==上述函数表达式称为梁的剪力方程和弯矩方程。
5)剪力图和弯矩图为了直观地表达剪力F S 和弯矩M 沿梁轴线的变化规律,以平行于梁轴线的横坐标x 表示横截面的位置,以纵坐标按适当的比例表示响应横截面上的剪力和弯矩,所绘出的图形分别称为剪力图和弯矩图。
剪力图和弯矩图的绘制方法有以下两种:(1)剪力、弯矩方程法:即根据剪力方程和弯矩方程作图。
其步骤为: 第一,求支座反力。
第二,根据截荷情况分段列出F S (x )和M (x )。
在集中力(包括支座反力)、集中力偶和分布载荷的起止点处,剪力方程和弯矩方程可能发生变化,所以这些点均为剪力方程和弯矩方程的分段点。
第三,求控制截面内力,作F S 、M 图。
一般每段的两个端点截面为控制截面。
在有均布载荷的段内,F S =0的截面处弯矩为极值,也作为控制截面求出其弯矩值。
将控制截面的内力值标在的相应位置处。
分段点之间的图形可根据剪力方程和弯矩方程绘出。
轴向拉伸和压缩
六、强度计算
1.极限应力和许用应力
工作应力 FN
A
极限应力
塑性材料
u
(S
)
p 0.2
脆性材料
u
( bt
)
bc
u n —安全因数 — 许用应力
n
塑性材料的许用应力 脆性材料的许用应力
s
ns
bt
nb
p0.2
ns
bc
nb
轴向拉伸和压缩
2.强度计算
max
FN A
轴向拉伸和压缩
二、杆的内力计算
1.内力的概念
构件所承受的载荷及约束反力统称为外力。构件在外力作用下发生变形,产生构
件内部各部分之间的相互作用力,这种作用力称为内力。
2.截面法
(1)截开 (2)代替 (3)平衡
F5
F1
F2
F5
F1
F2
m F4
m
F3
F4
F3
轴向拉伸和压缩
3.轴力
轴向拉伸或压缩时杆横截面上 F
的内力与杆轴线重合,因此 称为轴力,
F
m F
m
FN
FN
F
Fx 0
FN F 0 FN F
轴向拉伸和压缩
4.轴力图
A
为了表明横截面上的轴力
沿轴线变化的情况,可 F1
按选定的比例尺,以与
杆件轴线平行的坐标轴 表示各横截面的位置,
F1
以垂直于该坐标轴的方 向表示相应的内力值,
F1
这样做出的图形称为轴
根据强度条件,可以解决三类强度计算问题
1、强度校核: 2、设计截面: 3、确定许可载荷:
max
FN A
轴向拉伸和压缩
第七章轴向拉伸和压缩一、内容提要轴向拉伸与压缩是杆件变形的基本形式之一,是建筑工程中常见的一种变形。
(一)、基本概念1. 内力 由于外力的作用,而在构件相邻两部分之间产生的相互作用力。
这里要注意产生内力的前提条件是构件受到外力的作用。
2. 轴力 轴向拉(压)时,杆件横截面上的内力。
它通过截面形心,与横截面相垂直。
拉力为正,压力为负。
3. 应力 截面上任一点处的分布内力集度称为该点的应力。
与截面相垂直的分量σ称为正应力,与截面相切的分量τ称为切应力。
轴拉(压)杆横截面上只有正应力。
4. 应变 单位尺寸上构件的变形量。
5. 轴向拉(压) 杆件受到与轴线相重合的合外力作用,产生沿着轴线方向的伸长或缩短的变形,称为轴向拉(压)。
6. 极限应力 材料固有的能承受应力的上限,用σ0表示。
7. 许用应力与安全系数 材料正常工作时容许采用的最大应力,称为许用应力。
极限应力与许用应力的比值称为安全系数。
8. 应力集中 由于杆件截面的突然变化而引起局部应力急剧增大的现象,称为应力集中。
(二)、基本计算1. 轴向拉(压)杆的轴力计算求轴力的基本方法是截面法。
用截面法求轴力的三个步骤:截开、代替和平衡。
求出轴力后要能准确地画出杆件的轴力图。
画轴向拉(压)杆的轴力图是本章的重点之一,要特别熟悉这一内容。
2. 轴向拉(压)杆横截面上应力的计算任一截面的应力计算公式 AF N =σ 等直杆的最大应力计算公式 AF max N max =σ 3. 轴向拉(压)杆的变形计算虎克定律 A E l F l N =∆εσE =或 虎克定律的适用范围为弹性范围。
泊松比 εε=μ'4. 轴向拉(压)杆的强度计算强度条件塑性材料:σma x ≤[σ] 脆性材料: σt ma x ≤[σt ]σ c ma x ≤[σc ]强度条件在工程中的三类应用(1)对杆进行强度校核在已知材料、荷载、截面的情况下,判断σma x是否不超过许用值[σ],杆是否能安全工作。
(材料力学)第一章轴向拉伸和压缩
24
根据Saint-Venant原理:
25
7. 应力集中(Stress Concentration):
由于截面尺寸急剧变化而引起的局部应力增大的现象。
·应力集中因数
K max m
26
不同性质的材料对应力集中的敏感程度不同
1.脆性材料
σmax 达到强度极限,此位置开裂,所 以脆性材料构件对应力集中很敏感。
轴力图如右图 N
2P + –
3P
BC
PB
PC
N3
C
PC N4
5P
+
P
D PD D PD D PD
x
11
[例2] 图示杆长为L,受轴线方向均布力 q 作用,方向如图,试画
出杆的轴力图。 q
解:x 坐标向右为正,坐标原点在 自由端。
L
取左侧x 段为对象,内力N(x)为:
O x
N – qL
N(x)maxqL
2.塑性材料
应力集中对塑性材料在静载作用下的强度影响不 大,因为σmax 达到屈服极限,应力不再增加,未达 到屈服极限区域可继续承担加大的载荷,应力分布 趋于平均。
在静载荷情况下,不需考虑应力集中的影响;但 在交变应力情况下,必须考虑应力集中对塑性材料 的影响。
况、安全重要性、计算模型等等
16
依强度准则可进行三种强度计算:
①校核强度:
m ax
②设计截面尺寸:
Amin
Nmax
[ ]
③许可载荷:
N ma xA ;
Pf(Ni)
17
[例4] 已知三铰屋架如图,承受竖向均布载荷,载荷的分布 集度为:q =4.2kN/m,屋架中的钢拉杆直径 d =16 mm,许用
杆件的内力分析
故:
W W'
(c)
将(a)、(b)两式代入上式,于是求得:
Me
9549
P n
(N·m)
如果功率P以马力为单位,代入〈c〉式则可得:
Me
7024
N n
(N·m)
例1、 传动轴如图所示,主动轮A输入功率PA=50kW,从动轮 B、C、D输出功率分别为PB=PC=15kW,PD=20kW,轴的转速 n=300r/min,计算各轮上所受的外力偶矩。
x
T3
3
D
Mx 0 MD T3 0 T3 MD= 637N m
横截面3-3处的扭矩T3也可以利用3—3截面左边的受力平 衡来解决。
1
MB
MC
2 MA
3
1
B
2
C
3
A
M x 0 M B M C M A T3 0
T3
M
B
MC
M
=
A
637
N
m
4、扭矩图:用来表示受扭杆件横截面上扭矩随轴线位置变化
A B
已知:电动机通过皮带轮输给AB轴的功率为P千瓦。AB轴 的转速n转/分。
则: 电动机每秒钟所作的功为:
W P1000N m
(a)
设电动机通过皮带轮作用于AB轴上的外力偶矩为Me
则:Me在每秒内完成的功为:
W
2
n 60
M
e
(N
m)
(b)
由于Me所作的功也就是电动机通过皮带轮给AB轴输入的功
N
单位:KN
F
N
正
20kN
10kN
30kN
10kN
30kN
20kN
轴向拉、压杆的内力及应力计算
AB段:用1-1截面在AB段内将杆截开,取左段为研究对象,以N1表示截面上的轴力,并假设为拉力。写出平
衡方程: ∑X=0,N1+P1=0
得 N1=-P1=-20KN 负号表示AB段轴力N1实际为压力。
BC段:同理写出平衡方程: ∑X=0,N2+P1-P2=0
得 N2=-P1+P2=-20+30=10KN 正号表示BC段轴力N2实际为拉力。
面垂直的应力为正应力,与截面相切的应力为剪应力。轴向拉伸、压缩时,杆件
截面上各点处产生正应力,且大小相等。若应力用σ表示,横截面积为A,轴力
为N,则
N
A
正应力的正负号规定:拉应力为正,压应力为负。
课题七 轴向拉、压杆的内力及应力计算
例:如图7-2a悬臂梁,已知P1=20KN,P2=30KN,P3=10KN,试画出杆的轴力图。
课题七 轴向拉、压杆的内力及应力计算
三、轴力图
表明沿杆长各横截面轴力变化规律的图形称为轴力图。用平行于杆轴线的坐 标表示横截面的位置,用垂直于杆轴线的坐标表示横截面上的轴力,按选定的比 例尺把正轴力画在轴的上方,负轴力画在轴的下方,并连成直线,就得到轴力 图。
四、轴向拉、压杆横截面上的应力
单位面积课题七 轴向拉、压杆的内力及应力计算
一、轴向拉伸和压缩
受力特点:直杆的两端沿杆轴线方向作用一对大小相等,方向相反的力。 变形特点:在外力作用下产生轴线方向的伸长或缩短。 当作用力背离杆端时,作用力是拉力,杆件产生伸长变形,叫做轴向拉伸。 见图7-1a 当作用力指向杆端时,作用力是压力,杆件产生压缩变形,叫做轴向压缩。 见图7-1b
图 7-1
课题七 轴向拉、压杆的内力及应力计算
杆件轴向拉伸与压缩_图文
许用应力:构件安全工作时的最大应力,即构件在工作时允许承受的
最大工作应力,以符号[σ]表示。计算公式为:
式中,n为安全系数,它是一个大于1的系数,一般来说,确定安全系数 时应考虑以下几个方面的因素。(1) 实际荷载与设计荷载的出入。(2) 材料 性质的不均匀性。(3) 计算结果的近似性。(4) 施工、制造和使用时的条件 影响。可见,确定安全系数的数值要涉及工程上的各个方面,不单纯是个 力学问题。通常,安全系数由国家制定的专门机构确定。
根据上述现象,对杆件内部的变形作如下假设:变形之前横截面为平 面,变形之后仍保持为平面,而且仍垂直于杆轴线,只是每个横截面沿 杆轴作相对平移。这就是平面假设。
ac
F
a' c'
F
b' d'
bd
11
建筑力学
推论:
1、等直拉(压)杆受力时没有发生剪切变形,因而横截 面上没有切应力。 2、拉(压)杆受力后任意两个横截面之间纵向线段的伸长 (缩短)变形是均匀的。亦即横截面上各点处的正应力 都相等。
p t
s M
10
建筑力学
拉(压)杆横截面上的正应力
推导思路:实验→变形规律→应力的分布规律→应力的计算公式
简单实验如下。用弹性材料做一截面杆(如下图),在受拉力前,在截 面的外表皮上画ab和cd两个截面,在外力F的作用下,两个截面ab和cd的 周线分别平行移动到a`b`和c`d`。根据观察,周线仍为平面周线,并且截 面仍与杆件轴线正交。
一般来说,在采用截面法之前不要使用力的可传性原理, 6
轴向拉(压)杆的内力
轴向拉(压)杆的内力
为了简捷、直观、正确地作出内力 图,可以假想用一个刚性屏蔽面将杆件 的弃去部分屏蔽起来,免去用假想截面 将杆件切开的过程,而直接对未屏蔽的 部分进行受力分析,根据未屏蔽部分的 外力求出截面上的内力大小及正负。
轴向拉(压)杆的内力
3. 轴力图
当杆件受到多个沿轴线的外力作用 而处于平衡状态时,杆件各横截面上轴 力的大小、方向将有差异。为直观地表 示各横截面轴力变化的情况,所画出轴 力沿轴线变化的图形称为轴力图。
(2)取AC段为研究对象,根据平衡可知,在留下部分 的1—1截面上的内力必然也作用在杆的轴线上,即为轴 力。由平衡方程∑Fix=0可得FN-P=0,即FN=P。
(3)取CB段为研究对象,同理可得F′N=P。显然,FN 和F′N构成作用力和反作用力的关系,故求得FN之后,F′N 即可直接写出。
轴向拉(压)杆的内力
图5-2
轴向拉(压)杆的内力
1.2 轴力 1. 轴力的概念
轴力是指作用线在轴 线上的内力,用FN或N表 示。如图5-3(a)所示的 拉杆AB,采用截面法求杆 件某横截面杆的内力
工 程 力 学轴向拉伸和压缩第5章(1)用1—1截面将 杆件假想地截为两段,如图5-3(b)、(c)所示。
轴向拉(压)杆的内力
【例5-1】
轴向拉(压)杆的内力
图5-4
轴向拉(压)杆的内力
(3)作轴力图。 杆的轴力图如图5-4(f)所示。 画轴力图应注意:轴力图应封闭;图中 直线表示截面位置对应的轴力数值,因此, 应垂直于轴线,而不是斜线,画时亦可省略; 轴力图应标出轴力数值、正负号、单位。
工程力学
综上所述,某截面上的轴力在数值上等于截面任意 一侧的轴向外力的代数和,即
FN=左或右侧∑Fi (5-1) 式中,FN为拉(压)杆某截面上的轴力;Fi为轴向 外力。 为了明确表示杆件在横截面上是受拉还是受压,并 保证任取一侧所求结果相同,通常规定轴力带有正负号, 即使截面受拉的轴力为正、受压的轴力为负。同时规定 使截面受拉的外力为正,受压的外力为负。
高职材料力学1—轴向拉伸与压缩
1.1 轴向拉伸与压缩的概念与实例
力学模型如图
F
F
轴向拉伸, 对应的力称为拉力。
F
F
轴向压缩, 对应的力称为压力。
1.2 轴向拉伸或压缩时的内力
1.2.1 内力及轴力 内力指由外力作用所引起的、物体内相邻部分之间 分布内力系的合成(附加内力)。
要求截面上的内力,一般采用截面法,其基本步骤 如下:
的正应力为:
d2
s1
FN1 A1
4 2.0104
0.0202
6.37 107 Pa
63.7
MPa
同理,得 BC 段内任一横截面 2-2 上的正应力为:
s2
FN2 A2
4 (3.0104 )
0.0302
4.24107 Pa
42.4 MPa
是压应力
1.4 轴向拉伸或压缩时的变形
直杆在轴向拉力作用下,将引起轴向尺寸的增大和 横向尺寸的缩小。反之,在轴向压力作用下,将引 起轴向的缩短和横向的增大。
1.3 横截面上的应力 结论
F
F
(1)各纤维的伸长相同, 所以它们所受的力也相同。
(2)平面假设:变形前为平面的横截面,变形后仍保 持为平面且仍垂直于轴线。
1.3 横截面上的应力
推导公式 由结论可知, 在横截面上作用着均匀分布的正应力。
F
}s
FN
s FN
(2.1)
A
式中, FN为轴力, A 为杆的横截面面积。s的符号与轴
横向增大,所以'和的符号是相反的。'和的关
系可以写成
说明P18:表1-1.
例 图所示杆系由两根钢杆1和2组成。已知杆端铰接,两杆与
铅垂线均成=30º的角度,长度均为l=2 m,直径均为d=25
轴向拉伸与压缩—轴向拉(压)杆的内力与轴力图(工程力学课件)
例题2 设一直杆AB 沿轴向受力如图示。 已知P1=2kN,P2=3kN,P3=1kN,试做轴力图。
P1
1
P2 2
P3
N
1
2kN
+
2
-
x
1kN
➢ 2.内力:由外力引起杆件内部之间的相互作用力。
➢ 3.截面法:截面法是显示和确定内力的基本方法。
截面法求内力的步骤
截取
用一个假想的截面,将 杆件沿需求内力的截面 处截为两部分;取其中 任一部分为研究对象。
代替
用内力来代替弃去部分 对选取部分的作用。
平衡
用静力平衡条件,根 据已知外力求出内力。
轴力N——轴向拉压时横截面上的内力。规定拉力为正,压力为负。
用截面法求1-1截面上的轴力:
P
N
X 0
NP0
x
N P(拉力)
例题1
设一直杆 AB 沿轴向受力如图示。
已知P1=2kN,P2=3kN,P3=1kN, 试求杆各段的轴力。
P1
1
P2 2
P3
P1
1NБайду номын сангаас
1
2
x
x
N2
P3
1-1截面: X 0, N1 P1 0,
2-2截面: X 0, N2 P3 0,
第一节 轴向拉(压)杆的内力与轴力图 第二节 轴向拉(压)杆横截面上的正应力 第三节 轴向拉(压)杆的强度计算 第四节 轴向拉(压)杆的变形计算 第五节 材料在拉伸和压缩时的力学性能
➢ 1.轴向拉(压)杆件
• 受力特点:作用在杆件上的外力(或外力的合力)作用线与杆轴线重合。 • 变形特点:杆件沿轴向发生伸长或缩短。 • 外力:外力作用在杆件上的荷载和约束反力。
轴向拉伸与压缩1(内力与应力)
1 4、作内力图 P 1 FN P P
2
3 P
2
3
P
P
x
[例2] 图示杆的A、B、C、D点分别作用着大小为5P、8P、 4P、 P 的力,方向如图,试画出杆的轴力图。
O
A
PA PB
B
C
PC
D
PD D PD
FN1
A PA
B PB
C PC
解: 求OA 段内力FN1,设置截面如图
F
x
0 F N 1 P A PB PC P D 0
解: 1、求1-1截面上内力 FN1,设置截面如图
F
x
0
1 P 1 FN1 P P P
2
3
P
FN 1 P 0 FN 1 P
P
2
3
2、2-2截面上的内力
F
x
0
P
FN2
P P
FN 2 0
3、3-3截面上的内力
FN 3 P
P
FN3
FN 1 P FN 2 0
FN 3 P
2
s
α
t
Pa
1 2
t p sin s cos sin
s sin 2
四、sα 、tα出现最大的截面
1、=0º 即横截面上,s达到最大
s s cos s
2
t 0
t max s cos sin
1 2
2、=45º 的斜截面上, t剪应力达最大
P -3P x
★轴力图的特点:
1)遇到集中力,轴力图发生突变;
2)突变值 = 集中载荷的大小
5kN FN 5KN
材料力学 第2章
第二章杆件的内力分析第一节杆件拉伸或压缩的内力一、轴向拉伸或压缩的概念轴向拉伸或压缩:由一对大小相等、方向相反、作用线与杆件轴线重合的外力作用下引起的,沿杆件长度发生的伸长或缩短。
二、工程实例三、轴力轴力图1、轴力与杆轴线重合的内力合力。
轴力符号:拉伸为正,压缩为负。
∑=0X0122=-+F F N kNF F N 242212-=-=-= ∑=0X34=-N FkNF N143==任一截面上的轴力等于该截面一侧轴向载荷的代数和,轴向载荷矢量离开该截面者取正,指向该截面者取负。
2、轴力图正对杆的下方,以杆的左端为坐标原点,取平行于杆轴线的直线为x 轴,并称为基线,垂直于x 轴的N 轴为纵坐标。
正值绘在基线的上方,负值绘在基线的下方,最后在图上标上各截面轴力的大小。
注意:轴力图与基线形成一闭合曲线。
轴力图必须与杆件对齐。
在轴向集中力作用的截面上,轴力图将发生突变,其突变的绝对值等于轴向集中力的大小,而突变方向:集中力箭头向左时向上突变,集中力箭头向右时向下突变(图是从左向右画)。
例2-10第二节剪切的内力一、剪切的概念剪切:由一对相距很近、大小相等、方向相反的横向外力引起的横截面沿外力作用方向发生的相对错动。
剪切面或受剪面 m-m二、工程实例三、剪力第三节杆件扭转的内力一、扭转的概念扭转:由一对大小相等、方向相反、作用面都垂直于杆轴的力偶引起的杆的任意两个横截面绕杆轴线的相对转动。
ϕ:扭转角;γ:剪切角二、工程实例三、扭矩某一截面上的扭矩等于其一侧各外力偶矩的代数和。
外力偶矩矢量指向该截面的取负,离开该截面的取正。
四、 扭矩图在外力偶作用的截面上,扭矩图将发生突变,其突变的的绝对值等于该外力偶矩的大小,而突变方向:外力偶矩矢量方向向左的向上突变,向右则向下突变。
外力偶矩的计算公式:)(9550m N nP Mk ⋅=注意:kP 单位为kw ;n 单位为min r ;M 单位为m N ⋅第四节 梁弯曲时的内力一、 弯曲 变形的基本概念弯曲变形:由一对大小相等、方向相反,位于杆的纵向平面内的力偶引起的,杆件的轴线由直线变为曲线。
轴向拉伸与压缩
承受载荷F和变形ΔL之间的
关系,可以绘制出该材料的 拉伸应力应变σ-ε曲线。
低碳钢
曲线分析:
ob段—弹性阶段 (比例极限σp弹性极限σe )
bc段—屈服阶段
屈服强度 s
cd段—强化阶段 抗拉强度 b de段—缩颈断裂 阶段
1.材料的弹性模量E为:_102/0.5_GPa 2.屈服点σs为:_240_MPa 3.材料的抗拉强度σb为:_380_Mpa 4.强度计算时,若安全系数取为2,则材料的许用应力 [σ]=__240/2_MPa 注意计算许用应力时: 塑性材料: 屈服极限/安全系数 脆性材料: 抗拉强度极限/安全系数
例:一杆件受力如图,F1=2KN,F2=1KN, F3=3KN,(1)画出轴力图;(2)如已知杆直径 d=10mm,材料的许用正应力[σ ]=60MPa,试 校核强度
解: 1、计算各段轴力:
(找节点,相邻两外力作用点间取截面)
FN1=2KN, FN2=1KN, FN3=4KN 2、画出轴力图 3、校核强度
FN F
方向:拉为正、压为负
轴向拉伸时杆的内力特点:内力方向沿轴向,简称轴力
14
三、拉(压)杆的轴力和轴力图
2.轴力图 轴力图:轴力随横截面变化的曲线,称为轴力 图。
m
杆轴线为横坐标表示 横截面位置,
F
m FN
F
垂直于轴线的纵坐标 表示轴力的大小
x
15
例1: 已知F=10KN,受力如图所示,试用截面 法 求图示杆件指定截面1-1、2-2、3-3 的轴力.
24
例:如图所示杆件,求各段内截面的轴力和应力,并画出 轴力图。若杆件较细段横截面面积 A1 200mm2 ,较粗 E, 200GPa L 100 mm 段 A2 300 ,材料的弹性模量 mm2 求杆件的总变形。
杆件轴向拉伸与压缩
6
建筑力学
[例] 如图,以A点为分界点将杆分为两部分,用截面法求这两部分内力。
P
Ⅰ AⅡ
P
解: 截:
P
A P
代:
P
A FN
平:
Fx 0 P FN 0 P FN
内力 FN沿轴线方向,所以称为轴力。
7
建筑力学
❖ 轴力图 若用平行于杆轴线的坐标表示横截面的位置,用垂直于杆
它与垂直面的夹角为a。取左段为脱离体,
F
k pa FN
可求出该截面的轴力FN,且FN=F。则斜截 面上的应力P a为
k
Pa
FN Aa
式中,A a为斜截面面积。设横截面面积为A,则有:
Aa
A
cosa
可得:
Pa
FN A
cosa
Pa s cosa
13
建筑力学
应力可分解为斜截面上的正应力和平行于截面的切应力(如 下图),它们分别为:
16
[例] 起吊钢索如图所示,截面积分别为A1=3cm2,
A2=4cm2,l1=l2=50m,P=12kN,材料单位体积重量 γ=0.028N/cm3,试考虑自重绘制轴力图,并求σmax。
14
建筑力学
❖ 应力集中的概念 在实际工程中,由于结构和工艺上的要求,构件的截面尺寸
可能有突然的变化,这时,应力在截面上的分布就不均匀了, 在截面突然变化处,局部应力远大于平均应力,这种应力在 局部剧增的现象就称为应力集中。
如下图,具有小孔和开口的均匀拉伸板,在通过圆心的截 面上的应力不再是均匀的,在孔或开口附近的应力远大于平均 应力,而离孔和开口较远处的应力下降并趋于均匀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引言
主要内容
内力的概念及求解方法 轴向拉伸或压缩 剪切或挤压 圆轴的扭转 直梁的弯曲
重点
轴向拉伸或压缩、直梁的弯曲、剪切或挤压
难点
直梁的弯曲
授课计划
授课时数3.5学时, 累计 3.5学时
1、内力的概念及求解方法
1.1 内力的概念
外力—构件所承受的载荷及约束反力; 内力—构件在外力作用下将产生变形,其 各部分之间的相对位置将发生变化,从而产生 构件内部各部分之间的相互作用力。这种由外 力引起的构件内部的相互作用力,称为内力。 3 这种内力的大小以及它在构件内部的分布 4 方式随外力和变形的改变而变化,并与构件的 强度、刚度和稳定性密切相关,内力分析是材 料力学的基础。
例2-2:做轴力图并求各个截面应力
1 20 4kN 3 2 10 30 2kN 3kN
6kN 2
3 5kN 2kN
1
N
1kN
+
1kN
+
|N|max=5kN
30 20 4kN 6kN 3kN 10 2kN
5 10 3 4 1 15 . 9 MPa -3 2 A 1 ( 20 10 ) N1 2 3 N2 A2 N3 A3 - 1 10 3 4 - 12 . 7 MPa -3 2 ( 10 10 ) 2 10 3 4 2 . 8 MPa -3 2 ( 30 10 )
为了表明横截面上的轴力沿轴线变化的情 况,选定一定比例尺,以平行于杆轴线的坐标 表示横截面所在的位置,以垂直于杆轴线的坐 标表示横截面上轴力的数值,这样绘出的图形 称为轴力图。
I
50kN I 50kN N 150kN
II 100kN II
I
50kN
I NI=50kN II
NI
+
100kN |N|max=100kN
1、截面法
切开:沿所求截面假想地将杆件切开;
取出:取出其中任意一部分作为研究对象;
替代:以内力代替弃去部分对选取部分的作用; 平衡:列出平衡方程求出内力。
截面法的步骤:
注意:外力的正负号取决于坐 标,与坐标轴同向为正, 反之 为负。
P
P
I
II
P
I
N
x
SX=0:+N-P=0
N=P
SX=0:-N'+P=0
bt
nb
拉压杆的强度条件
2 强度条件
max
FN A
根据强度条件,可以解决三类强度计算问题
(1)强度校核: max (2)设计截面:
A
FN A
FN
目录
(3)确定许可载荷: N A F
拉压杆的强度条件
例题
p D
D=350mm,p=1MPa。螺栓 [σ]=40MPa, 求活塞杆直径。 π 2 F D p 解: 油缸盖受到的力 4
y
F2
Q
x
Y
0
F1 cos 60 - Q 0
F2 1 2 3 F1 17 . 32 KN
F1 2 Q 20 KN
C 由作用力和反作用力可知: BC杆的受力为拉力,大小等于 F1 AB杆的受力为压力,大 小等于 F2 最后可以计算的应力:
BC杆: 1
N1 A1 F1 A1 20 KN 100 mm
根据前面的实验,我么可以得出结论,即横 截面上每一点存在相同的拉力
P
N A
N
如果杆的横截面积为:A
例2-1 图示矩形截面(b h)杆,已知b = 2cm , h=4cm ,P1 = 20 KN, P2 = 40 KN, P3 = 60 KN,求AB 段和BC段的应力
A P1 P1
1
1 Pa 1 N / m
2
记为:
记为:
1 MPa 1 N / mm
2
10 Pa
6
工程上经常采用兆帕(MPa)作单位
2、拉压杆横截面上的应力
杆件在外力作用下不但产生内力,还使杆 件发生变形所以讨论横截面的应力时需要知道 变形的规律,我们可以做一个实验
P
P
P
P
说明杆内纵向纤维的伸长量是相同的,或者 说横截面上每一点的伸长量是相同的
外力大小相等 方向相反沿杆 轴线 杆的变形为轴向伸 长或缩短
连杆
ω
P
等直杆沿轴线受到一对大小相等方向相反的力作用,称为轴向 拉压。
受力特征:杆受一对大小相等、方向相反的纵向力, 力的作用线与杆轴线重合
2.2 截面法与轴力
为了分析拉压杆的强度和变形,首先需要了 解杆的内力情况 材料力学中,采用截面法研究杆的内力
C
例2-3 图示为一悬臂吊车, BC为 实心圆管,横截面积A1 = 100mm2, AB为矩形截面,横截面积A2 = 200mm2,假设起吊物重为 Q = 10KN,求各杆的应力。 首先计算各杆的内力: 需要分析B点的受力 - F1 cos X 0 F1
30 + F 2 0
30
B
A
θ
2、横向变形
Dh h - h
P
l
h
P
同理,令
P
l
h
P
h - h h
Dh
h
为横向线应变
实验表明,对于同一种材料,存在如下关系:
称为泊松比,是一个材料常数
-
N EA
E
负号表示纵向与横向 变形的方向相反
1 E
-
E
最重要的两个材料弹性常数,可查表
2.5 拉伸和压缩时材料的力学性能
力学性质:在外力作用下材料在变形和破坏方面所 表现出的力学性能 1 试 件 和 实 验 条 件
常 温 、 静 载
材料拉伸时的力学性质
材料拉伸时的力学性质
2 低 碳 钢 的 拉 伸
材料拉伸时的力学性质
e
b
2、屈服阶段bc(失去抵 f 抗变形的能力)
NII II
100kN
NII= -100kN
求轴力的简化方法:
某截面的轴力等于该截面一侧所有外力的代数 和; 外力指向截面为负;背离截面为正。
N 1 10 kN N 2 -5 kN N 3 -20 kN
2.3 拉压杆横截面上的应力
1、应力的概念
为了描写内力的分布规律,我们将单位面积的内力称为应力。 在某个截面上, 与该截面垂直的应力称为正应力。 与该截面平行的应力称为剪应力。 应力的单位:Pa
N'=P
x
N'
II
P
截面法求内力举例:求杆AB段和BC段的内力
B
2P
A
1
1
P
2
2
C
P
x
2P
N1
2P
X 0 N1 - 2P 0
N1 2P
P
X 0 N 2 + P - 2P 0
N2
N2 P
2、轴力与轴力图
拉压杆的内力称为轴力,用 N 表示
轴力的正负号规定: 轴力的方向与所在截面的外法线方向一致时,取 正;反之取负。 轴力沿横截面的分布图称为轴力图:
l1 - l0 l0
100%
断面收缩率
A0 - A1 A0
100%
5% 为塑性材料: 低碳钢、铝合 金、青铜等
5% 为脆性材料: 铸铁、高碳钢、 混凝土
低碳钢的
20 — 30% 60%
为塑性材料
目录
材料拉伸时的力学性质
4 其 它 材 料 拉 伸 时 的 力 学 性 质 对于没有明 显屈服阶段的塑 性材料,用名义 屈服极限σp0.2来 表示。
3 脆 性 材 料 ( 铸 铁 ) 的 压 缩
bt
o
脆性材料的抗拉与抗压 性质不完全相同 压缩时的强度极限远大 于拉伸时的强度极限
bc bt
bc
目录
材料压缩时的力学性质
目录
2.6 拉压杆的强度条件
1 安全系数和许用应力 工作应力
u
n FN A
2
30
B A
y
F1
200 MPa
F2 Q
x
AB杆:
2
N2 A2
- F2 A2
- 17 . 32 KN 200 mm
2
- 86 . 6 MPa
课堂练习
1、已知实心圆截面阶梯轴受力P1 = 20KN, P2 = 50KN,AB 段直径d1 = 20mm,BC段直径d2 = 30mm,求两段杆横截面的 正应力。 C B A P1 P2
P
1、纵向变形
Dl l - l
实验表明
l
Pl A
P
P
Dl
P
l
P
变形和拉力成正比
引入比例系数E,又拉压杆的轴力等于拉力
Dl
Nl EA
Dl
Nl EA
称为胡克(虎克)定律
E 体现了材料的性质,称为材料的拉伸弹性模量,单
位与应力相同
显然,纵向变形与E 成反比,也与横截面积A 成反比
EA 称为抗拉刚度
目录
材料压缩时的力学性质
1 试 件 和 实 验 条 件
常 温 、 静 载
目录
材料压缩时的力学性质