高考文科数学专题复习导数训练题(文)教学提纲
高考文科数学专题复习导数训练题文
欢迎下载学习好资料高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。
考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。
导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。
选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。
3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。
二、经典例题剖析考点一:求导公式。
13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。
例1. 是????2?1?2?1?f'32x??xf'解析:,所以答案:3点评:本题考查多项式的求导法则。
考点二:导数的几何意义。
1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是??(1)(f1?)f。
115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3答案:学习好资料欢迎下载32?3)(1,2??4x?yx?2x例3. 。
在点曲线处的切线方程是2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1,?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。
考点三:导数的几何意义的应用。
??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。
高考文科数学专题复习导数训练题(汇编)
高考文科数学专题复习导数训练题(文)一、考点回顾和基础知识1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容.考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义.2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题.选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用.3.应用导数解决实际问题,关键是建立适当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极值,而此时不用和端点值进行比较,也可以得知这就是最值.2.导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值xx f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000. 注:①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零.②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ⊇. 3.求导数的四则运算法则:''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数))0(2'''≠-=⎪⎭⎫⎝⎛v v u v vu v u *复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅=4.几种常见的函数导数:I.0'=C (C 为常数) x x cos )(sin '=1')(-=n n nx x (R n ∈) x x sin )(cos '-=II. x x 1)(ln '=e xx a a log 1)(log '= x x e e =')( a a a x x ln )('=二、经典例题剖析考点一:求导公式 例1)(/x f 是1231)(3++=x x x f 的导函数,则=-)1(/f . 考点二:导数的几何意义例2. 已知函数)(x f y =的图象在点))1(,1(f M 处的切线方程是221+=x y ,则=+)1()1(/f f . 考点三:导数的几何意义的应用例3.已知曲线,23:23x x x y C +-=直线,:kx y l =且直线l 与曲线C 相切于点()(),0,000≠x y x 求直线l 的方程及切点坐标. 考点四:函数的单调性例4.设函数c bx ax x x f 8332)(23+++=在1=x 及2=x 时取得极值. (1)求b a ,的值及函数)(x f 的单调区间;(2)若对于任意的[],3,0∈x 都有)(x f <2c 成立,求c 的取值范围.考点五:函数的最值例5.已知a 为实数,).)(4()(2a x x x f --=(1)求导数)(/x f ;(2)若,0)1(/=-f 求)(x f 在区间[]2,2-上的最值.考点六:导数的综合性问题例6. 设函数)0()(3≠++=a c bx ax x f 为奇函数,其图象在点())1(,1f 处的切线与直线076=--y x 垂直,导函数.12|)(min /-=x f (1)求c b a ,,的值;(2)求函数)(x f 的单调递增区间,并求函数)(x f 在[]3,1-上的最大值和最小值.例7.已知cx bx ax x f ++=23)(在区间[]1,0上是增函数,在区间()()+∞∞-,1,0,上是减函数,又1322f ⎛⎫'= ⎪⎝⎭.(Ⅰ)求()f x 的解析式;(Ⅱ)若在区间[0](0)m m >,上恒有()f x x ≤成立,求m 的取值范围.例8.设函数2()()f x x x a =--(x ∈R ),其中a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程;(Ⅱ)当0a ≠时,求函数()f x 的极大值和极小值;(Ⅲ)当3a >时,证明存在[]10k ∈-,,使得不等式22(cos )(cos )f k x f k x --≥对任意的x ∈R 恒成立.例9.已知),,()(23R c b a c bx x ax x f ∈++-=在()0,∞-上是增函数,[]3,0上是减函数,方程0)(=x f 有三个实根,它们分别是.,2,βα(1)求b 的值,并求实数a 的取值范围;(2)求证:βα+≥.25三、 方法总结 (一)方法总结导数是中学限选内容中较为重要的知识,由于其应用的广泛性,为我们解决所学过的有关函数问题提供了一般性方法,是解决实际问题强有力的工具.导数的概念及其运算是导数应用的基础,是高考重点考查的对象.要牢记导数公式,熟练应用导数公式求函数的导数,掌握求导数的方法.应用导数解决实际问题的关键是要建立恰当的数学模型,了解导数概念的实际背景.应用导数求函数最值及极值的方法在例题讲解中已经有了比较详细的叙述. (二)高考预测导数的考查方式以客观题为主,主要考查求导数的基本公式和法则,以及导数的几何意义.也可以解答题的形式出现,即以导数的几何意义为背景设置成导数与解析几何的综合题.导数的应用是重点,侧重于利用导数确定函数的单调性和极值、最值、值域问题. 四、强化训练1.已知曲线42x y =的一条切线的斜率为21,则切点的横坐标为( )A .1B .2C .3D .42.函数,93)(23-++=x ax x x f 已知)(x f 在3-=x 时取得极值,则=a ( )(A )2(B )3 (C )4 (D )53.函数32312)(x x x f -=在区间[]6,0上的最大值是( ) A .323B .163C .12D .94.三次函数x ax y +=3在()+∞∞-∈,x 内是增函数,则 ( )A . 0>aB .0<aC .1=aD .31=a 5.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( )A .3B .2C .1D .06.已知函数,)(23c bx ax x x f +++=当1-=x 时,取得极大值7;当1-=x 时,取得极小值.求这个极小值及c b a ,,的值.7.设函数).()(23R x cx bx x x f ∈++=已知)()()(/x f x f x g -=是奇函数. (1)求c b ,的值;(2)求)(x g 的单调区间与极值.8.用长为18 cm 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?9.已知函数()()()331,5f x x ax g x f x ax =+-=--,其中()'f x 是的导函数. (I)对满足11a -≤≤的一切a 的值,都有()0g x <,求实数x 的取值范围;(II)设2a m =-,当实数m 在什么范围内变化时,函数()y f x =的图象与直线3y =只有一个公共点. 10.设函数22()21(0)f x tx t x t x t =++-∈>R ,.(I)求()f x 的最小值()h t ; (II)若()2h t t m <-+对(02)t ∈,恒成立,求实数m 的取值范围.11.设函数).,(4)1(3)(23R b a b ax x a x x f ∈+++-= (I)若函数)(x f 在3=x 处取得极小值,21求b a ,的值;(II)求函数)(x f 的单调递增区间; (III) 若函数)(x f 在)1,1(-上有且只有一个极值点,求实数a 的取值范围.12.已知二次函数),,()(2R c b a c bx ax x f ∈++=满足:对任意R x ∈,都有)(x f ≥,x 且当)3,1(∈x 时,有)(x f ≤2)2(81+x 成立.(I)试求)2(f 的值;(II)若,0)2(=-f 求)(x f 的表达式; (III)在(II)的条件下,若[)+∞∈,0x 时,)(x f >412+x m 恒成立,求实数m 的取值范围. 13.已知函数).,(4)(,6)23(213)(223R m a m x ax x g x x a x a x f ∈-+-=++-=(I)当[]3,0,1∈=x a 时,求()f x 的最大值和最小值;(II)当a <2且0≠a 时,无论a 如何变化,关于x 的方程)()(x g x f =总有三个不同实根,求m 的取值范围.例题参考答案例1 3;例2 3;例3 ⎪⎭⎫⎝⎛--=83,23,41x y ;例4 (1) ,4,3=-=b a 增区间为()()+∞∞-,2,1,;减区间为()2,1, (2) ()()+∞-∞-,91,Y ;例5 (1),423)(2/--=ax x x f (2).2750)34()(,29)1()(min max -===-=f x f f x f ; 例6 (1).0,12,2=-==c b a (2) ()().28)2()(,18)3()(;,2,2,min max -====+∞-∞-f x f f x f ; 例7解:(Ⅰ)2()32f x ax bx c '=++,由已知(0)(1)0f f ''==,即0320c a b c =⎧⎨++=⎩,,解得032c b a =⎧⎪⎨=-⎪⎩,.2()33f x ax ax '∴=-,13332422a a f ⎛⎫'∴=-= ⎪⎝⎭,2a ∴=-,32()23f x x x ∴=-+.(Ⅱ)令()f x x ≤,即32230x x x -+-≤,(21)(1)0x x x ∴--≥,102x ∴≤≤或1x ≥. 又()f x x ≤在区间[]0m ,上恒成立,102m ∴<≤. 例8解:(Ⅰ)当1a =时,232()(1)2f x x x x x x =--=-+-,得(2)2f =-,且2()341f x x x '=-+-,(2)5f '=-.所以,曲线2(1)y x x =--在点(22)-,处的切线方程是25(2)y x +=--,整理得580x y +-=. (Ⅱ)解:2322()()2f x x x a x ax a x =--=-+-,22()34(3)()f x x ax a x a x a '=-+-=---. 令()0f x '=,解得3ax =或x a =. 由于0a ≠,以下分两种情况讨论.(1)若0a >,当x 变化时,()f x '的正负如下表:因此,函数()f x 在3ax =处取得极小值3a f ⎛⎫⎪⎝⎭,且34327a f a ⎛⎫=- ⎪⎝⎭;函数()f x 在x a =处取得极大值()f a ,且()0f a =. (2)若0a <,当x 变化时,()f x '的正负如下表:因此,函数()f x 在x a =处取得极小值()f a ,且()0f a =;函数()f x 在3ax =处取得极大值3a f ⎛⎫⎪⎝⎭,且34327a f a ⎛⎫=- ⎪⎝⎭.(Ⅲ)证明:由3a >,得13a >,当[]10k ∈-,时,cos 1k x -≤,22cos 1k x -≤. 由(Ⅱ)知,()f x 在(]1-∞,上是减函数,要使22(cos )(cos )f k x f k x --≥,x ∈R 只要22cos cos ()k x k x x --∈R ≤ 即22cos cos ()x x k k x --∈R ≤ ①设2211()cos cos cos 24g x x x x ⎛⎫=-=-- ⎪⎝⎭,则函数()g x 在R 上的最大值为2.要使①式恒成立,必须22k k -≥,即2k ≥或1k -≤.所以,在区间[]10-,上存在1k =-,使得22(cos )(cos )f k x f k x --≥对任意的x ∈R 恒成立.例9解:(1))(,23)(2/x f b x ax x f +-=Θ在()0,∞-上是增函数,在[]3,0上是减函数,所以当0=x 时,)(x f 取得极小值,.048,0)2(.0,0)0(/=+-∴==∴=∴c a f b f Θ又方程0)(=x f 有三 实根,023)(.02/=+-=∴≠∴b x ax x f a 的两根分别为.32,021ax x == 又)(x f 在()0,∞-上是增函数,在[]3,0上是减函数,)(/x f ∴>0在()0,∞-上恒成立,)(/x f <0在[]3,0上恒成立.由二次函数的性质知,a >0且a 32≥0,3∴<a ≤.92 故实数a 的取值范围为.92,0⎥⎦⎤⎝⎛ (2) βα,2,Θ是方程0)(=x f 的三个实根,则可设.2)22()2())(2)(()(23αβαββαβαβαa x a x a ax x x x a x f -+++++-=---= 又),,()(23R c b a c bx x ax x f ∈++-=有,21,1)2(-=+∴=++aa βαβα 0Θ<a ≤∴,92βα+≥.25强化训练答案: ADAAD6.解:b ax x x f ++=23)(2/.据题意,-1,3是方程0232=++b ax x 的两个根,由韦达定理得⎪⎪⎩⎪⎪⎨⎧=⨯--=+-3313231b a∴c x x x x f b a +--=∴-=-=93)(,9,323,2,7)1(=∴=-c f Θ ∴极小值25239333)3(23-=+⨯-⨯-=f 7.解:(1)∵()32f x x bx cx=++,∴()232f x x bx c'=++。
高考文科数学专题复习导数训练题文
考点一:求导公式。
例1. ()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 。
解析:()2'2+=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。
例2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+= 。
解析:因为21=k ,所以()211'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()251=f ,所以()()31'1=+f f 答案:3例3.曲线32242y x x x =--+在点(13)-,处的切线方程是 。
解析:443'2--=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x考点三:导数的几何意义的应用。
例4.已知曲线C :x x x y 2323+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00≠x ,求直线l 的方程及切点坐标。
解析:Θ直线过原点,则()000≠=x x y k 。
由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴2302000+-=x x x y 。
又263'2+-=x x y ,∴ 在()00,y x 处曲线C 的切线斜率为()263'0200+-==x x x f k ,∴ 26323020020+-=+-x x x x ,整理得:03200=-x x ,解得:230=x 或00=x (舍),此时,830-=y ,41-=k 。
所以,直线l 的方程为xy 41-=,切点坐标是⎪⎭⎫ ⎝⎛-83,23。
导数文科大题含详细答案教学提纲
导数文科大题1.知函数,. (1)求函数的单调区间;(2)若关于的方程有实数根,求实数的取值范围. 答案解析2.已知, (1)若,求函数在点处的切线方程; (2)若函数在上是增函数,求实数a 的取值范围; (3)令, 是自然对数的底数);求当实数a等于多少时,可以使函数取得最小值为3.解:(1)时,,′(x),′(1)=3,,数在点处的切线方程为,(2)函数在上是增函数,′(x),在上恒成立,即,在上恒成立,令,当且仅当时,取等号, ,的取值范围为(3),′(x),①当时,在上单调递减,,计算得出(舍去);②当且时,即,在上单调递减,在上单调递增,,计算得出,满足条件;③当,且时,即,在上单调递减,,计算得出(舍去);综上,存在实数,使得当时,有最小值3.解析(1)根据导数的几何意义即可求出切线方程.(2)函数在上是增函数,得到f′(x),在上恒成立,分离参数,根据基本不等式求出答案,(3),求出函数的导数,讨论,,的情况,从而得出答案3.已知函数,(1)分别求函数与在区间上的极值;(2)求证:对任意,解:(1),令,计算得出:,,计算得出:或,故在和上单调递减,在上递增,在上有极小值,无极大值;,,则,故在上递增,在上递减,在上有极大值,,无极小值;(2)由(1)知,当时,,,故;当时,,令,则,故在上递增,在上递减,,;综上,对任意,解析(1)求导,利用导数与函数的单调性及极值关系,即可求得及单调区间及极值;4.已知函数,其中,为自然数的底数.(1)当时,讨论函数的单调性;(2)当时,求证:对任意的,.解:(1)当时,,则,,故则在R上单调递减.(2)当时,,要证明对任意的,.则只需要证明对任意的,.设,看作以a为变量的一次函数,要使,则,即,恒成立,①恒成立,对于②,令,则,设时,,即.,,在上,,单调递增,在上,,单调递减,则当时,函数取得最大值,故④式成立,综上对任意的,.解析:(1)求函数的导数,利用函数单调性和导数之间的关系进行讨论即可.(2)对任意的,转化为证明对任意的,,即可,构造函数,求函数的导数,利用导数进行研究即可.5.已知函数(1)当时,求函数在处的切线方程;(2)求在区间上的最小值.解:(1)设切线的斜率为k.因为,所以,所以,所以所求的切线方程为,即(2)根据题意得, 令,可得①若,则,当时,,则在上单调递增.所以②若,则, 当时,,则在上单调递减. 所以③若,则,所以,随x的变化情况如下表:x 1 20 - 0 + 0-e Φ极小值Γ0所以的单调递减区间为,单调递增区间为所以在上的最小值为综上所述:当时,;当时,;当时,解析(1)设切线的斜率为k.利用导数求出斜率,切点坐标,然后求出切线方程.(2)通过,可得.通过①,②,③,判断函数的单调性求出函数的最值.6.已知函数。
高考文科数学专题复习导数训练题文
高考文科数学专题复习导数训练题文Newly compiled on November 23, 2020考点一:求导公式。
例1. ()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 。
解析:()2'2+=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。
例2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+= 。
解析:因为21=k ,所以()211'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()251=f ,所以()()31'1=+f f 答案:3例3.曲线32242y x x x =--+在点(13)-,处的切线方程是 。
解析:443'2--=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x考点三:导数的几何意义的应用。
例4.已知曲线C :x x x y 2323+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00≠x ,求直线l 的方程及切点坐标。
解析: 直线过原点,则()000≠=x x y k 。
由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴2302000+-=x x x y 。
又263'2+-=x x y ,∴ 在()00,y x 处曲线C 的切线斜率为()263'0200+-==x x x f k ,∴26323020020+-=+-x x x x ,整理得:03200=-x x ,解得:230=x 或00=x (舍),此时,830-=y ,41-=k 。
高考文科数学专题复习导数训练题(优选.)
最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改高考文科数学专题复习导数训练题(文)一、考点回顾1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容.考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义.2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题.选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用.3.应用导数解决实际问题,关键是建立适当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极值,而此时不用和端点值进行比较,也可以得知这就是最值.二、经典例题剖析 考点一:求导公式 例1)(/x f 是1231)(3++=x x x f 的导函数,则=-)1(/f . 考点二:导数的几何意义例2. 已知函数)(x f y =的图象在点))1(,1(f M 处的切线方程是221+=x y ,则=+)1()1(/f f .考点三:导数的几何意义的应用例3.已知曲线,23:23x x x y C +-=直线,:kx y l =且直线l 与曲线C 相切于点()(),0,000≠x y x 求直线l 的方程及切点坐标.考点四:函数的单调性例4.设函数c bx ax x x f 8332)(23+++=在1=x 及2=x 时取得极值.(1)求b a ,的值及函数)(x f 的单调区间;(2)若对于任意的[],3,0∈x 都有)(x f <2c 成立,求c 的取值范围.考点五:函数的最值例5.已知a 为实数,).)(4()(2a x x x f --=(1)求导数)(/x f ;(2)若,0)1(/=-f 求)(x f 在区间[]2,2-上的最值.考点六:导数的综合性问题例6. 设函数)0()(3≠++=a c bx ax x f 为奇函数,其图象在点())1(,1f 处的切线与直线076=--y x 垂直,导函数.12|)(min /-=x f (1)求c b a ,,的值;(2)求函数)(x f 的单调递增区间,并求函数)(x f 在[]3,1-上的最大值和最小值.例7.已知cx bx ax x f ++=23)(在区间[]1,0上是增函数,在区间()()+∞∞-,1,0,上是减函数,又1322f ⎛⎫'= ⎪⎝⎭. (Ⅰ)求()f x 的解析式;(Ⅱ)若在区间[0](0)m m >,上恒有()f x x ≤成立,求m 的取值范围.例8.设函数2()()f x x x a =--(x ∈R ),其中a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程;(Ⅱ)当0a ≠时,求函数()f x 的极大值和极小值;(Ⅲ)当3a >时,证明存在[]10k ∈-,,使得不等式22(cos )(cos )f k x f k x --≥对任意的x ∈R 恒成立.例9.已知),,()(23R c b a c bx x ax x f ∈++-=在()0,∞-上是增函数,[]3,0上是减函数,方程0)(=x f 有三个实根,它们分别是.,2,βα(1)求b 的值,并求实数a 的取值范围;(2)求证:βα+≥.25三、方法总结 (一)方法总结导数是中学限选内容中较为重要的知识,由于其应用的广泛性,为我们解决所学过的有关函数问题提供了一般性方法,是解决实际问题强有力的工具.导数的概念及其运算是导数应用的基础,是高考重点考查的对象.要牢记导数公式,熟练应用导数公式求函数的导数,掌握求导数的方法.应用导数解决实际问题的关键是要建立恰当的数学模型,了解导数概念的实际背景.应用导数求函数最值及极值的方法在例题讲解中已经有了比较详细的叙述.(二)高考预测导数的考查方式以客观题为主,主要考查求导数的基本公式和法则,以及导数的几何意义.也可以解答题的形式出现,即以导数的几何意义为背景设置成导数与解析几何的综合题.导数的应用是重点,侧重于利用导数确定函数的单调性和极值、最值、值域问题. 四、强化训练1.已知曲线42x y =的一条切线的斜率为21,则切点的横坐标为( A )A .1B .2C .3D .42.函数,93)(23-++=x ax x x f 已知)(x f 在3-=x 时取得极值,则=a ( D )(A )2 (B )3 (C )4(D )53.函数32312)(x x x f -=在区间[]6,0上的最大值是( A ) A .323B .163C .12D .94.三次函数x ax y +=3在()+∞∞-∈,x 内是增函数,则 ( A )A . 0>aB .0<aC .1=aD .31=a 5.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( D )A .3B .2C .1D .06.已知函数,)(23c bx ax x x f +++=当1-=x 时,取得极大值7;当1-=x 时,取得极小值.求这个极小值及c b a ,,的值.7.设函数).()(23R x cx bx x x f ∈++=已知)()()(/x f x f x g -=是奇函数. (1)求c b ,的值;(2)求)(x g 的单调区间与极值.8.用长为18 cm 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?9.已知函数()()()331,5f x x ax g x f x ax =+-=--,其中()'f x 是的导函数. (I)对满足11a -≤≤的一切a 的值,都有()0g x <,求实数x 的取值范围;(II)设2a m =-,当实数m 在什么范围内变化时,函数()y f x =的图象与直线3y =只有一个公共点.10.设函数22()21(0)f x tx t x t x t =++-∈>R ,.(I)求()f x 的最小值()h t ; (II)若()2h t t m <-+对(02)t ∈,恒成立,求实数m 的取值范围.11.设函数).,(4)1(3)(23R b a b ax x a x x f ∈+++-= (I)若函数)(x f 在3=x 处取得极小值,21求b a ,的值;(II)求函数)(x f 的单调递增区间; (III) 若函数)(x f 在)1,1(-上有且只有一个极值点,求实数a 的取值范围.12.已知二次函数),,()(2R c b a c bx ax x f ∈++=满足:对任意R x ∈,都有)(x f ≥,x 且当)3,1(∈x 时,有)(x f ≤2)2(81+x 成立.(I)试求)2(f 的值;(II)若,0)2(=-f 求)(x f 的表达式;(III)在(II)的条件下,若[)+∞∈,0x 时,)(x f >412+x m 恒成立,求实数m 的取值范围. 13.已知函数).,(4)(,6)23(213)(223R m a m x ax x g x x a x a x f ∈-+-=++-=(I)当[]3,0,1∈=x a 时,求()f x 的最大值和最小值;(II)当a <2且0≠a 时,无论a 如何变化,关于x 的方程)()(x g x f =总有三个不同实根,求m 的取值范围.例题参考答案例1 3;例2 3;例3 ⎪⎭⎫ ⎝⎛--=83,23,41x y ;例4 (1) ,4,3=-=b a 增区间为()()+∞∞-,2,1,;减区间为()2,1, (2)()()+∞-∞-,91, ;例 5 (1),423)(2/--=ax x x f(2).2750)34()(,29)1()(min max -===-=f x f f x f ; 例6(1).0,12,2=-==c b a (2)()().28)2()(,18)3()(;,2,2,min max-====+∞-∞-f x f f x f ;例7解:(Ⅰ)2()32f x ax bx c '=++,由已知(0)(1)0f f ''==,即0320c a b c =⎧⎨++=⎩,,解得032c b a =⎧⎪⎨=-⎪⎩,.2()33f x ax ax '∴=-,13332422a a f ⎛⎫'∴=-= ⎪⎝⎭,2a ∴=-,32()23f x x x ∴=-+.(Ⅱ)令()f x x ≤,即32230x x x -+-≤,(21)(1)0x x x ∴--≥,102x ∴≤≤或1x ≥.又()f x x ≤在区间[]0m ,上恒成立,102m ∴<≤. 例8解:(Ⅰ)当1a =时,232()(1)2f x x x x x x =--=-+-,得(2)2f =-,且2()341f x x x '=-+-,(2)5f '=-.所以,曲线2(1)y x x =--在点(22)-,处的切线方程是25(2)y x +=--,整理得580x y +-=.(Ⅱ)解:2322()()2f x x x a x ax a x=--=-+-,22()34(3)()f x x ax a x a x a '=-+-=---.令()0f x '=,解得3ax =或x a =. 由于0a ≠,以下分两种情况讨论.(1)若0a >,当x 变化时,()f x '的正负如下表:因此,函数()f x 在3x =处取得极小值3f ⎛⎫ ⎪⎝⎭,且3327f a ⎛⎫=- ⎪⎝⎭;函数()f x 在x a =处取得极大值()f a ,且()0f a =. (2)若0a <,当x 变化时,()f x '的正负如下表:函数()f x 在3ax =处取得极大值3a f ⎛⎫⎪⎝⎭,且34327a f a ⎛⎫=- ⎪⎝⎭.(Ⅲ)证明:由3a >,得13a >,当[]10k ∈-,时,cos 1k x -≤,22cos 1k x -≤. 由(Ⅱ)知,()f x 在(]1-∞,上是减函数,要使22(cos )(cos )f k x f k x --≥,x ∈R 只要22cos cos ()k x k x x --∈R ≤ 即22cos cos ()x x k k x --∈R ≤①设2211()cos cos cos 24g x x x x ⎛⎫=-=-- ⎪⎝⎭,则函数()g x 在R 上的最大值为2.要使①式恒成立,必须22k k -≥,即2k ≥或1k -≤.所以,在区间[]10-,上存在1k =-,使得22(cos )(cos )f k x f k x --≥对任意的x ∈R恒成立.例9解:(1))(,23)(2/x f b x ax x f +-= 在()0,∞-上是增函数,在[]3,0上是减函数,所以当0=x 时,)(x f 取得极小值,.048,0)2(.0,0)0(/=+-∴==∴=∴c a f b f又方程0)(=x f 有三 实根,023)(.02/=+-=∴≠∴b x ax x f a 的两根分别为.32,021ax x == 又)(x f 在()0,∞-上是增函数,在[]3,0上是减函数,)(/x f ∴>0在()0,∞-上恒成立,)(/x f <0在[]3,0上恒成立.由二次函数的性质知,a >0且a 32≥0,3∴<a ≤.92 故实数a 的取值范围为.92,0⎥⎦⎤ ⎝⎛ (2) βα,2, 是方程0)(=x f 的三个实根, 则可设.2)22()2())(2)(()(23αβαββαβαβαa x a x a ax x x x a x f -+++++-=---=又),,()(23R c b a c bx x ax x f ∈++-=有,21,1)2(-=+∴=++aa βαβα 0 <a ≤∴,92βα+≥.25强化训练答案:6.解:b ax x x f ++=23)(2/.据题意,-1,3是方程0232=++b ax x 的两个根,由韦达定理得⎪⎪⎩⎪⎪⎨⎧=⨯--=+-3313231b a∴c x x x x f b a +--=∴-=-=93)(,9,323,2,7)1(=∴=-c f∴极小值25239333)3(23-=+⨯-⨯-=f7.解:(1)∵()32f x x bx cx=++,∴()232f x x bx c'=++。
文科《导数》高考常考题型专题训练
文科《导数》高考常考题型专题训练1.已知函数/。
)= 6'一。
工一3(。
£/?)(1)若函数段)在函,—1))处的切线与直线木广0平行,求实数”的值;(2)当a=2, k为整数,且当Q1时,“一外/'(x) + 2x + l>0,求〃的最大值.1 .【解析】(1)由/(x) = "—ax — 3,则/'*・) = "—〃又函数7U)在(1,火1))处的切线与直线片厂0平行,则=(2)当〃=2,且当x>l 时,&一行(。
”一+ 2x + l>0等价于2), 2x+l)当x>l 时,k< x + ^—k " - 2 7m j n2x + \,-2X-3)令g(x) = x + ^-则g (幻=—:-------------------e -2 (。
”-2)-再令h(x) = e x - 2x - 3(x > 1),则/(x) = " - 2 > 0 ,所以,〃(x)在(L+o。
)上单调递增,且以l)vO,以2)>0,所以,/?(x)在(1, 2)上有唯一的零点,设该零点为小,则x°w(l,2),且e"=2%+3, 当xw。
,,q)时,〃(%)v。
,即g'(x)<。
:当xw(小,+°°)时,"(x)>。
,即g'(x)>0, 所以,g (x)在。
,小)单调递减,在(/,+8)单调递增,2( +1所以,g(X)min +c - z而x°e(L2),故一+le(2,3)且"vg(瓦),又k为整数,所以k的最大值为2.2.已知函数/(x) = 6 + sinx,其中(1)若函数”刈在区间上单调递增,求k的取值范围:⑵若k = l时,不等式/Oarcosx在区间0尚上恒成立,求实数。
的取值范围.2・1解析】(1)由题意,f\x) = k+cosx t(冗5兀।「兀5兀、因为/(”)在区间二;上单调递增,所以工£二:时,/'(x) = Z + cosxNO恒成立,即k 3 6 7 V3 6 yk>—COSX9因为函数)'= -cosx在(工:上单调递增,所以—cosxK—cos^ =无,所以攵之五. (361 6 2 2(2) 〃 = 1 时,/(x) = x + sinx,令g(x) = /(x)—ovcosx = x+sinx-arcosx, xw[o.g],则g(x)A。
高考文科数学专题复习导数训练题(文)汇编
高考文科数学专题复习导数训练题(文)一、考点回顾1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容。
考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义。
2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。
选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用。
3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。
二、经典例题剖析 考点一:求导公式。
例1. ()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 。
解析:()2'2+=x x f ,所以()3211'=+=-f答案:3点评:本题考查多项式的求导法则。
考点二:导数的几何意义。
例2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+= 。
解析:因为21=k ,所以()211'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()251=f ,所以()()31'1=+f f答案:3例3.曲线32242y x x x =--+在点(13)-,处的切线方程是 。
解析:443'2--=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x点评:以上两小题均是对导数的几何意义的考查。
人教版高考文科数学专题复习导数训练题及参考答案
高考文科数学专题复习导数训练题(文)(附参考答案)一、考点回顾1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容.考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义.2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题.选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用.3.应用导数解决实际问题,关键是建立适当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极值,而此时不用和端点值进行比较,也可以得知这就是最值.二、经典例题剖析考点一:求导公式例1是的导函数,则.考点二:导数的几何意义例2. 已知函数的图象在点处的切线方程是,则.考点三:导数的几何意义的应用例3.已知曲线直线且直线与曲线相切于点求直线的方程及切点坐标.考点四:函数的单调性例4.设函数在及时取得极值.(1)求的值及函数的单调区间;(2)若对于任意的都有<成立,求的取值范围.考点五:函数的最值例5.已知为实数,(1)求导数;(2)若求在区间上的最值.考点六:导数的综合性问题例6. 设函数为奇函数,其图象在点处的切线与直线垂直,导函数(1)求的值;(2)求函数的单调递增区间,并求函数在上的最大值和最小值.例7.已知在区间上是增函数,在区间上是减函数,又.(Ⅰ)求的解析式;(Ⅱ)若在区间上恒有成立,求的取值范围.例8.设函数(),其中.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)当时,求函数的极大值和极小值;(Ⅲ)当时,证明存在,使得不等式对任意的恒成立.例9.已知在上是增函数,上是减函数,方程有三个实根,它们分别是(1)求的值,并求实数的取值范围;(2)求证:≥三、方法总结(一)方法总结导数是中学限选内容中较为重要的知识,由于其应用的广泛性,为我们解决所学过的有关函数问题提供了一般性方法,是解决实际问题强有力的工具.导数的概念及其运算是导数应用的基础,是高考重点考查的对象.要牢记导数公式,熟练应用导数公式求函数的导数,掌握求导数的方法.应用导数解决实际问题的关键是要建立恰当的数学模型,了解导数概念的实际背景.应用导数求函数最值及极值的方法在例题讲解中已经有了比较详细的叙述.(二)高考预测导数的考查方式以客观题为主,主要考查求导数的基本公式和法则,以及导数的几何意义.也可以解答题的形式出现,即以导数的几何意义为背景设置成导数与解析几何的综合题.导数的应用是重点,侧重于利用导数确定函数的单调性和极值、最值、值域问题.四、强化训练1.已知曲线的一条切线的斜率为,则切点的横坐标为( A )A.1B.2C.3D.42.函数已知在时取得极值,则(D )(A)2(B)3(C)4(D)53.函数在区间上的最大值是(A)A.B.C.D.4.三次函数在内是增函数,则( A )A.B.C.D.5.在函数的图象上,其切线的倾斜角小于的点中,坐标为整数的点的个数是( D )A.3B.2C.1D.06.已知函数当时,取得极大值7;当时,取得极小值.求这个极小值及的值.7.设函数已知是奇函数.(1)求的值;(2)求的单调区间与极值.8.用长为18 cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?9.已知函数,其中是的导函数.(I)对满足的一切的值,都有,求实数的取值范围;(II)设,当实数在什么范围内变化时,函数的图象与直线只有一个公共点.10.设函数.(I)求的最小值;(II)若对恒成立,求实数的取值范围.11.设函数(I)若函数在处取得极小值求的值;(II)求函数的单调递增区间;(III)若函数在上有且只有一个极值点,求实数的取值范围.12.已知二次函数满足:对任意,都有≥且当时,有≤成立.(I)试求的值;(II)若求的表达式;(III)在(II)的条件下,若时,>恒成立,求实数的取值范围.13.已知函数(I)当时,求的最大值和最小值;(II)当<2且时,无论如何变化,关于的方程总有三个不同实根,求的取值范围.例题参考答案例13;例23;例3 ;例4 (1)增区间为;减区间为,(2);例5 (1) (2);例6 (1) (2);例7解:(Ⅰ),由已知,即解得,,,.(Ⅱ)令,即,,或.又在区间上恒成立,.例8解:(Ⅰ)当时,,得,且,.所以,曲线在点处的切线方程是,整理得.(Ⅱ)解:,.令,解得或.由于,以下分两种情况讨论.(1)若,当变化时,的正负如下表:因此,函数在处取得极小值,且;函数在处取得极大值,且.(2)若,当变化时,的正负如下表:因此,函数在处取得极小值,且;函数在处取得极大值,且.(Ⅲ)证明:由,得,当时,,.由(Ⅱ)知,在上是减函数,要使,只要即①设,则函数在上的最大值为.要使①式恒成立,必须,即或.所以,在区间上存在,使得对任意的恒成立.例9解:(1)在上是增函数,在上是减函数,所以当时,取得极小值,又方程有三实根,的两根分别为又在上是增函数,在上是减函数,>0在上恒成立,<0在上恒成立.由二次函数的性质知,>0且≥<≤故实数的取值范围为(2)是方程的三个实根,则可设又有<≤≥强化训练答案:6.解:.据题意,-1,3是方程的两个根,由韦达定理得∴,∴极小值7.解:(1)∵,∴。
高考文科数学导数专题复习
高考文科数学导数专题复习文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算知 识 梳 理1.导数的概念(1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0limx ∆→f (x 0+Δx )-f (x 0)Δx. (2)函数f (x )的导函数f ′(x )=0limx ∆→f (x +Δx )-f (x )Δx为f (x )的导函数.2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0).3.基本初等函数的导数公式4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算【例1】 求下列函数的导数:(1)y =e xln x ;(2)y =x ⎝⎛⎭⎪⎫x 2+1x +1x 3;解 (1)y ′=(e x)′ln x +e x(ln x )′=e xln x +e x1x =⎝⎛⎭⎪⎫ln x +1x e x .(2)因为y =x 3+1+1x2,所以y ′=(x 3)′+(1)′+⎝ ⎛⎭⎪⎫1x 2′=3x 2-2x 3.【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+lnx ,则f ′(1)等于( )A.-eB.-1解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B(2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.(2)f ′(x )=a⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3考点二 导数的几何意义 命题角度一 求切线方程【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e-x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1+x .又f (x )为偶函数,f (x )=f (-x )=e x -1+x ,所以当x >0时,f (x )=ex -1+x .因此,当x >0时,f ′(x )=ex -1+1,f ′(1)=e 0+1=2.则曲线y =f (x )在点(1,2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x-y =0. 答案 2x -y =0【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )+y -1=0 -y -1=0 +y +1=0 -y +1=0(2)∵点(0,-1)不在曲线f (x )=x ln x 上,∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎨⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln 1=1.∴直线l 的方程为y =x -1,即x -y -1=0.答案 B 命题角度二 求切点坐标【例3】 (2017·西安调研)设曲线y =e x 在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.解析 由y ′=e x ,知曲线y =e x 在点(0,1)处的切线斜率k 1=e 0=1.设P (m ,n ),又y =1x (x >0)的导数y ′=-1x 2,曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m2.依题意k 1k 2=-1,所以m =1,从而n =1. 则点P 的坐标为(1,1).答案 (1,1)【训练3】若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.解析 (1)由题意得y ′=ln x +x ·1x=1+ln x ,直线2x -y +1=0的斜率为2.设P (m ,n ),则1+ln m =2,解得m =e ,所以n =eln e =e ,即点P的坐标为(e,e). 答案(1)(e,e)命题角度三求与切线有关的参数值(或范围)【例4】(2015·全国Ⅱ卷)已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=________.解析由y=x+ln x,得y′=1+1x,得曲线在点(1,1)处的切线的斜率为k=y′|x=1=2,所以切线方程为y-1=2(x-1),即y=2x-1.又该切线与y=ax2+(a +2)x+1相切,消去y,得ax2+ax+2=0,∴a≠0且Δ=a2-8a=0,解得a=8.答案8【训练4】1.函数f(x)=ln x+ax的图象存在与直线2x-y=0平行的切线,则实数a的取值范围是________.函数f(x)=ln x+ax的图象存在与直线2x-y=0平行的切线,即f′(x)=2在(0,+∞)上有解,而f′(x)=1x+a,即1x+a在(0,+∞)上有解,a=2-1x,因为a>0,所以2-1x<2,所以a的取值范围是(-∞,2).答案 (2)(-∞,2)2.点P是曲线x2-y-ln x=0上的任意一点,则点P到直线y=x-2的最小距离为( )解析点P是曲线y=x2-ln x上任意一点,当过点P的切线和直线y=x-2平行时,点P 到直线y =x -2的距离最小,直线y =x -2的斜率为1,令y =x 2-ln x ,得y ′=2x -1x =1,解得x =1或x =-12(舍去),故曲线y =x 2-ln x 上和直线y =x -2平行的切线经过的切点坐标为(1,1),点(1,1)到直线y =x -2的距离等于2,∴点P 到直线y =x -2的最小距离为 2.答案 D第2讲 导数在研究函数中的应用知 识 梳 理函数的单调性与导数的关系函数y =f (x )在某个区间内可导,则:(1)若f ′(x )>0,则f (x )在这个区间内单调递增;(2)若f ′(x )<0,则f (x )在这个区间内单调递减;(3)若f ′(x )=0,则f (x )在这个区间内是常数函数. 考点一 利用导数研究函数的单调性【例1】设f (x )=e x (ax 2+x +1)(a >0),试讨论f (x )的单调性.解 f ′(x )=e x (ax 2+x +1)+e x (2ax +1)=e x [ax 2+(2a +1)x +2]=e x (ax +1)(x +2)=a e x⎝⎛⎭⎪⎫x +1a (x +2)①当a =12时,f ′(x )=12e x (x +2)2≥0恒成立,∴函数f (x )在R上单调递增;②当0<a <12时,有1a >2,令f ′(x )=a e x ⎝⎛⎭⎪⎫x +1a (x +2)>0,有x >-2或x <-1a,令f ′(x )=a e x⎝ ⎛⎭⎪⎫x +1a (x +2)<0,有-1a <x <-2,∴函数f (x )在⎝⎛⎭⎪⎫-∞,-1a 和(-2,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-1a ,-2上单调递减;③当a >12时,有1a <2,令f ′(x )=a e x⎝ ⎛⎭⎪⎫x +1a (x +2)>0时,有x >-1a 或x <-2,令f ′(x )=a e x ⎝⎛⎭⎪⎫x +1a (x +2)<0时,有-2<x <-1a,∴函数f (x )在(-∞,-2)和⎝ ⎛⎭⎪⎫-1a ,+∞上单调递增;在⎝ ⎛⎭⎪⎫-2,-1a 上单调递减. 【训练1】(2016·四川卷节选)设函数f (x )=ax 2-a -ln x ,g (x )=1x -eex ,其中a ∈R ,e =…为自然对数的底数.(1)讨论f (x )的单调性;(2)证明:当x >1时,g (x )>0.(1)解 由题意得f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0时,由f ′(x )=0有x =12a ,当x ∈⎝⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )单调递减;当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )单调递增.(2)证明 令s (x )=e x -1-x ,则s ′(x )=e x -1-1.当x >1时,s ′(x )>0,所以e x -1>x ,从而g (x )=1x -1e x -1>0.考点二 求函数的单调区间【例2】 (2015·重庆卷改编)已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x ,求函数g (x )的单调减区间.解 (1)对f (x )求导得f ′(x )=3ax 2+2x ,因为f (x )在x =-43处取得极值,所以f ′⎝⎛⎭⎪⎫-43=0,即3a ·169+2·⎝⎛⎭⎪⎫-43=16a 3-83=0,解得a =12. (2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x 故g ′(x )=⎝ ⎛⎭⎪⎫32x 2+2x e x +⎝ ⎛⎭⎪⎫12x 3+x 2e x=⎝ ⎛⎭⎪⎫12x 3+52x 2+2x e x=12x (x +1)(x +4)e x .令g ′(x )<0,得x (x +1)(x +4)<0.解之得-1<x <0或x <-4.所以g (x )的单调减区间为(-1,0),(-∞,-4).【训练2】 已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x ,由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x-32,(x >0).则f ′(x )=x 2-4x -54x 2.令f ′(x )=0,解得x =-1或x =5.但-1(0,+∞),舍去.当x ∈(0,5)时,f ′(x )<0;当x ∈(5,+∞)时,f ′(x )>0.∴f (x )的增区间为(5,+∞),减区间为(0,5).考点三 已知函数的单调性求参数【例3】 (2017·西安模拟)已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解 (1)h (x )=ln x -12ax 2-2x ,x >0.∴h ′(x )=1x -ax -2.若函数h (x )在(0,+∞)上存在单调减区间,则当x >0时,1x -ax -2<0有解,即a >1x 2-2x 有解.设G (x )=1x2-2x ,所以只要a >G (x )min .(*)又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,所以G (x )min =-1.所以a >-1.即实数a 的取值范围是(-1,+∞).(2)由h (x )在[1,4]上单调递减,∴当x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,(**)则a ≥1x 2-2x恒成立,所以a ≥G (x )max .又G (x )=⎝ ⎛⎭⎪⎫1x-12-1,x ∈[1,4]因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x =(7x -4)(x -4)16x ,∵x ∈[1,4],∴h ′(x )=(7x -4)(x -4)16x≤0,当且仅当x =4时等号成立.(***)∴h (x )在[1,4]上为减函数.故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.【训练3】 已知函数f (x )=x 3-ax -1.(1)若f (x )在R 上为增函数,求实数a 的取值范围;(2)若函数f (x )的单调减区间为(-1,1),求a 的值.解 (1)因为f (x )在R 上是增函数,所以f ′(x )=3x 2-a ≥0在R 上恒成立,即a ≤3x 2对x ∈R 恒成立.因为3x 2≥0,所以只需a ≤0.又因为a =0时,f ′(x )=3x 2≥0,当且仅当x =0时取等号.∴f (x )=x 3-1在R 上是增函数.所以实数a 的取值范围是(-∞,0].(2)f ′(x )=3x 2-a .当a ≤0时,f ′(x )≥0,f (x )在(-∞,+∞)上为增函数,所以a ≤0不合题意.当a >0时,令3x 2-a <0,得-3a 3<x <3a3,∴f (x )的单调递减区间为⎝ ⎛⎭⎪⎫-3a 3,3a 3, 依题意,3a3=1,即a =3. 第3讲 导数与函数的极值、最值知 识 梳 理1.函数的极值与导数的关系(1)函数的极小值与极小值点:若函数f (x )在点x =a 处的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0,而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0,则点a 叫做函数的极小值点,f (a )叫做函数的极小值.(2)函数的极大值与极大值点:若函数f (x )在点x =b 处的函数值f (b )比它在点x=b附近其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数的极大值点,f(b)叫做函数的极大值.2.函数的最值与导数的关系(1)函数f(x)在[a,b]上有最值的条件:如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤考点一用导数研究函数的极值命题角度一根据函数图象判断极值【例1】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( )A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-2)和极小值f(2)解析由题图可知,当x<-2时,1-x>3,此时f′(x)>0;当-2<x<1时,0<1-x<3,此时f′(x)<0;当1<x<2时,-1<1-x<0,此时f′(x)<0;当x>2时,1-x<-1,此时f′(x)>0,由此可以得到函数f(x)在x=-2处取得极大值,在x=2处取得极小值.答案D命题角度二求函数的极值【例2】求函数f(x)=x-a ln x(a∈R)的极值.解 由f ′(x )=1-a x =x -a x,x >0知:(1)当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值;(2)当a >0时,令f ′(x )=0,解得x =a .又当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞),f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值. 命题角度三 已知极值求参数【例3】 已知关于x 的函数f (x )=-13x 3+bx 2+cx +bc 在x =1处有极值-43,试求b ,c 的值.解 ∵f ′(x )=-x 2+2bx +c ,由f (x )在x =1处有极值-43,可得⎩⎨⎧f ′(1)=-1+2b +c =0,f (1)=-13+b +c +bc =-43.解得⎩⎨⎧b =1,c =-1或⎩⎨⎧b =-1,c =3.若b =1,c =-1,则f ′(x )=-x 2+2x -1=-(x -1)2≤0,f (x )没有极值.若b =-1,c =3,则f ′(x )=-x 2-2x +3=-(x +3)(x -1).当x 变化时,f (x )与f ′(x )的变化情况如下表:∴当x =1时,f (x )有极大值-43,满足题意.故b =-1,c =3为所求. 【训练1】 设函数f (x )=ax 3-2x 2+x +c (a >0).(1)当a =1,且函数图象过(0,1)时,求函数的极小值;(2)若f (x )在R 上无极值点,求a 的取值范围.解 由题意得f ′(x )=3ax 2-4x +1.(1)函数图象过(0,1)时,有f (0)=c =1.当a=1时,f ′(x )=3x 2-4x +1.令f ′(x )>0,解得x <13或x >1;令f ′(x )<0,解得13<x <1.所以函数在⎝ ⎛⎭⎪⎫-∞,13和(1,+∞)上单调递增;在⎣⎢⎡⎦⎥⎤13,1上单调递减.故函数f (x )的极小值是f (1)=13-2×12+1+1=1.(2)若f (x )在R 上无极值点,则f (x )在R 上是单调函数,故f ′(x )≥0或f ′(x )≤0恒成立.当a =0时,f ′(x )=-4x +1,显然不满足条件;当a ≠0时,f ′(x )≥0或f ′(1)≤0恒成立的充要条件是Δ=(-4)2-4×3a ×1≤0,即16-12a ≤0,解得a ≥43.综上,a 的取值范围是⎣⎢⎡⎭⎪⎫43,+∞. 考点二 利用导数求函数的最值【例4】 (2017·郑州模拟)已知函数f (x )=(x -k )e x .(1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.解 (1)由f (x )=(x -k )e x ,得f ′(x )=(x -k +1)e x ,令f ′(x )=0,得x =k -1.当x 变化时,f (x )与f ′(x )的变化情况如下表:所以,f (x )的单调递减区间是(-∞,k -1);单调递增区间是(k -1,+∞).(2)当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (0)=-k ,当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1.当k -1≥1,即k ≥2时,函数f (x )在[0,1]上单调递减,所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e.综上可知,当k ≤1时,f (x )min =-k ;当1<k <2时,f (x )min =-e k -1;当k ≥2时,f (x )min =(1-k )e.【训练2】 设函数f (x )=a ln x -bx 2(x >0),若函数f (x )在x =1处与直线y =-12相切,(1)求实数a ,b 的值;(2)求函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值. 解 (1)由f (x )=a ln x -bx 2,得f ′(x )=a x -2bx (x >0).∵函数f (x )在x =1处与直线y =-12相切.∴⎩⎨⎧f ′(1)=a -2b =0,f (1)=-b =-12,解得⎩⎨⎧a =1,b =12.(2)由(1)知f (x )=ln x-12x 2,则f ′(x )=1x -x =1-x 2x ,当1e ≤x ≤e 时,令f ′(x )>0,得1e<x <1,令f ′(x )<0,得1<x <e ,∴f (x )在⎝ ⎛⎭⎪⎫1e ,1上单调递增,在(1,e)上单调递减, ∴f (x )max =f (1)=-12. 考点三 函数极值与最值的综合问题【例5】 已知函数f (x )=ax 2+bx +c e x (a >0)的导函数y =f ′(x )的两个零点为-3和0. (1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值.解 (1)f ′(x )=(2ax +b )e x -(ax 2+bx +c )e x (e x )2=-ax 2+(2a -b )x +b -c e x.令g (x )=-ax 2+(2a -b )x +b -c ,由于e x >0.令f ′(x )=0,则g (x )=-ax 2+(2a -b )x +b -c =0,∴-3和0是y =g (x )的零点,且f ′(x )与g (x )的符号相同.又因为a >0,所以-3<x <0时,g (x )>0,即f ′(x )>0,当x <-3或x >0时,g (x )<0,即f ′(x )<0,所以f (x )的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞).(2)由(1)知,x =-3是f (x )的极小值点,所以有⎩⎨⎧9a -3b +c e -3=-e 3,g (0)=b -c =0,g (-3)=-9a -3(2a -b )+b -c =0,解得a =1,b =5,c =5,所以f (x )=x 2+5x +5e x .因为f (x )的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞).所以f (0)=5为函数f (x )的极大值,故f (x )在区间[-5,+∞)上的最大值取f (-5)和f (0)中的最大者,又f (-5)=5e -5=5e 5>5=f (0),所数f (x )在区间[-5,+∞)上的最大值是5e 5.【训练3】 (2017·衡水中学月考)已知函数f (x )=ax -1-ln x (a ∈R ).(1)讨论函数f (x )在定义域内的极值点的个数;(2)若函数f (x )在x =1处取得极值,x ∈(0,+∞),f (x )≥bx -2恒成立,求实数b 的最大值.解 (1)f (x )的定义域为(0,+∞),f ′(x )=a -1x =ax -1x.当a ≤0时,f ′(x )≤0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上单调递减.∴f (x )在(0,+∞)上没有极值点.当a >0时,由f ′(x )<0,得0<x <1a ;由f ′(x )>0,得x >1a,∴f (x )在⎝ ⎛⎭⎪⎫0,1a 上递减,在⎝ ⎛⎭⎪⎫1a ,+∞上递增,即f (x )在x =1a 处有极小值.综上,当a ≤0时,f (x )在(0,+∞)上没有极值点;当a >0时,f (x )在(0,+∞)上有一个极值点.(2)∵函数f (x )在x =1处取得极值,∴f ′(1)=a -1=0,则a =1,从而f (x )=x-1-ln x .因此f (x )≥bx -21+1x -ln x x ≥b ,令g (x )=1+1x -ln x x,则g ′(x )=ln x -2x 2,令g ′(x )=0,得x =e 2,则g (x )在(0,e 2)上递减,在(e 2,+∞)上递增,∴g (x )min =g (e 2)=1-1e 2,即b ≤1-1e 2.故实数b 的最大值是1-1e 2. 第4讲 导数与函数的综合应用考点一 利用导数研究函数的性质【例1】 (2015·全国Ⅱ卷)已知函数f (x )=ln x +a (1-x ).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0.所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.(2)由(1)知,当a ≤0,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1.因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0.于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0.因此,a 的取值范围是(0,1).【训练1】设f (x )=-13x 3+12x 2+2ax .(1)若f (x )在⎝ ⎛⎭⎪⎫23,+∞上存在单调递增区间,求a 的取值范围;(2)当0<a <2时,f (x )在[1,4]上的最小值为-163,求f (x )在该区间上的最大值. 解 (1)由f ′(x )=-x 2+x +2a =-⎝ ⎛⎭⎪⎫x -122+14+2a ,当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a ;令29+2a >0,得a >-19.所以,当a >-19时,f (x )在⎝ ⎛⎭⎪⎫23,+∞上存在单调递增区间. (2)已知0<a <2,f (x )在[1,4]上取到最小值-163,而f ′(x )=-x 2+x +2a 的图象开口向下,且对称轴x =12,∴f ′(1)=-1+1+2a =2a >0,f ′(4)=-16+4+2a =2a -12<0,则必有一点x 0∈[1,4],使得f ′(x 0)=0,此时函数f (x )在[1,x 0]上单调递增,在[x 0,4]上单调递减,f (1)=-13+12+2a =16+2a >0,∴f (4)=-13×64+12×16+8a =-403+8a =-163a =1.此时,由f ′(x 0)=-x 20+x 0+2=0x 0=2或-1(舍去),所以函数f (x )max =f (2)=103. 考点二 利用导数研究函数的零点或方程的根【例2】 (2015·北京卷)设函数f (x )=x 22-k ln x ,k >0.(1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.(1)解 由f (x )=x 22-k ln x (k >0),得x >0且f ′(x )=x -k x =x 2-k x.由f ′(x )=0,解得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上的情况如下:所以f (x )的单调递减区间是(0,k ),单调递增区间是(k ,+∞).f (x )在x =k 处取得极小值f (k )=k (1-ln k )2.(2)证明 由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k (1-ln k )2.因为f (x )存在零点,所以k (1-ln k )2≤0,从而k ≥e.当k =e 时,f (x )在区间(1,e)上单调递减,且f (e)=0,所以x =e 是f (x )在区间(1,e]上的唯一零点.当k >e 时,f (x )在区间(0,e)上单调递减,且f (1)=12>0,f (e)=e -k 2<0, 所以f (x )在区间(1,e]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.【训练2】 (2016·北京卷节选)设函数f (x )=x 3+ax 2+bx +c .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围.解 (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b .因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c .(2)当a =b =4时,f (x )=x 3+4x 2+4x +c ,所以f ′(x )=3x 2+8x +4.令f ′(x )=0,得3x 2+8x +4=0,解得x =-2或x =-23.当x 变化时,f (x )与f ′(x )的变化情况如下:所以,当c >0且c -3227<0,存在x 1∈(-4,-2),x 2∈⎝ ⎛⎭⎪⎫-2,-23,x 3∈⎝ ⎛⎭⎪⎫-23,0,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎝⎛⎭⎪⎫0,3227时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.考点三 导数在不等式中的应用命题角度一 不等式恒成立问题【例3】 (2017·合肥模拟)已知f (x )=x ln x ,g (x )=x 3+ax 2-x +2.(1)如果函数g (x )的单调递减区间为⎝ ⎛⎭⎪⎫-13,1,求函数g (x )的解析式;(2)对任意x ∈(0,+∞),2f (x )≤g ′(x )+2恒成立,求实数a 的取值范围.解 (1)g ′(x )=3x 2+2ax -1,由题意3x 2+2ax -1<0的解集是⎝ ⎛⎭⎪⎫-13,1,即3x 2+2ax -1=0的两根分别是-13,1.将x =1或-13代入方程3x 2+2ax -1=0,得a =-1.所以g (x )=x 3-x 2-x +2.(2)由题意2x ln x ≤3x 2+2ax -1+2在x ∈(0,+∞)上恒成立,可得a ≥ln x -32x-12x ,设h (x )=ln x -32x -12x ,则h ′(x )=1x -32+12x 2=-(x -1)(3x +1)2x 2,令h ′(x )=0,得x =1或-13(舍),当0<x <1时,h ′(x )>0,当x >1时,h ′(x )<0,所以当x =1时,h (x )取得最大值,h (x )max =-2,所以a ≥-2,所以a的取值范围是[-2,+∞).【训练3】已知函数f (x )=x 2-ln x -ax ,a ∈R .(1)当a =1时,求f (x )的最小值;(2)若f (x )>x ,求a 的取值范围.解 (1)当a =1时,f (x )=x 2-ln x -x ,f ′(x )=(2x +1)(x -1)x.当x ∈(0,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )的最小值为f (1)=0.(2)由f (x )>x ,得f (x )-x =x 2-ln x -(a +1)x >0.由于x >0,所以f (x )>x 等价于x -ln xx >a +1.令g (x )=x -ln xx ,则g ′(x )=x 2-1+ln xx 2.当x ∈(0,1)时,g ′(x )<0;当x ∈(1,+∞)时,g ′(x )>0.故g (x )有最小值g (1)=1.故a +1<1,a <0,即a 的取值范围是(-∞,0).命题角度二 证明不等式【例4】 (2017·昆明一中月考)已知函数f (x )=ln x -(x -1)22.(1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1. (1)解 f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞).由f ′(x )>0得⎩⎨⎧x >0,x 2+x +1>0.解得0<x <1+52.故f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,1+52.(2)证明 令F (x )=f (x )-(x -1),x ∈(0,+∞).则有F ′(x )=1-x 2x.当x ∈(1,+∞)时,F ′(x )<0,所以F (x )在(1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.故当x >1时,f (x )<x -1. 【训练4】 (2017·泰安模拟)已知函数f (x )=ln x .(1)求函数F (x )=f (x )x +12的最大值;(2)证明:f (x )x +12<x -f (x );(1)解F(x)=f(x)x+12=ln xx+12,F′(x)=1-ln xx2,当F′(x)>0时,0<x<e;当F′(x)<0时,x>e,故F(x)在(0,e)上是增函数,在(e,+∞)上是减函数,故F(x)max=F(e)=1e+12.(2)证明令h(x)=x-f(x)=x-ln x,则h′(x)=1-1x=x-1x,当h′(x)<0时,0<x<1;当h′(x)>0时,x>1,故h(x)在(0,1)上是减函数,在(1+∞)上是增函数,故h(x)min=h(1)=1.又F(x)max=1e+12<1,故F(x)<h(x),即f(x)x+12<x-f(x).。
高考文科数学专题复习导数训练题(文)
高考文科数学专题复习导数训练题〔文〕例1. 是的导函数,则的值是 .解析:,所以 答案:3()2'2+=x x f ()3211'=+=-f 考点二:导数的几何意义.例2. 已知函数的图象在点处的切线方程是,则 .解析:因为,所以,由切线过点,可得点M 的纵坐标为,所以,21=k ()211'=f (1(1))M f ,25()251=f所以 答案:3()()31'1=+f f 例3.曲线在点处的切线方程是 .解析:,点处切线的斜率为,所以设切线方程为,将点带入切线方程可得,所以,过曲线上点处的切线方程为:443'2--=x x y ∴(13)-,5443-=--=k b x y +-=5(13)-,2=b (13)-,025=-+y x 考点三:导数的几何意义的应用.例4.已知曲线C :,直线,且直线与曲线C 相切于点,求直线的方程及切点坐标.解析:直线过原点,则.由点在曲线C 上,则, .又, 在处曲线C 的切线斜率为, ,整理得:,解得:或〔舍〕,此时,,.所以,直线的方程为,切点坐标是. 考点四:函数的单调性.例5.已知在R 上是减函数,求的取值范围.解析:函数的导数为.对于都有时,为减函数.由可得,解得.所以,当时,函数对为减函数. 当时,.由函数在R 上的单调性,可知当是,函数对为减函数.当时,函数在R 上存在增区间.所以,当时,函数在R 上不是单调递减函数. 综合〔1〕〔2〕〔3〕可知. 答案: 考点五:函数的极值.例6. 设函数在及时取得极值.〔1〕求a 、b 的值;〔2〕若对于任意的,都有成立,求c 的取值范围. 解析:〔1〕,因为函数在及取得极值,则有,.即,解得,. 〔2〕由〔Ⅰ〕可知,,.当时,;当时,;当时,.所以,当时,取得极大值,又,.则当时,的最大值为.因为对于任意的,有恒成立,所以 ,解得 或,因此的取值范围为.答案:〔1〕,;〔2〕. 考点六:函数的最值.例7. 已知为实数,.求导数;〔2〕若,求在区间上的最大值和最小值. 解析:〔1〕, . 〔2〕,.令,即,解得或, 则和在区间上随的变化情况如下表:4=x答案:〔1〕;〔2〕最大值为,最小值为. 考点七:导数的综合性问题.例8. 设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为.〔1〕求,,的值; 〔2〕求函数的单调递增区间,并求函数在上的最大值和最小值.解析: 〔1〕∵为奇函数,∴,即∴,∵的最小值为,∴,又直线的斜率为,因此,,∴,,.0c =2'()3f x ax b =+12-12b =-670x y --=16'(1)36f a b =+=-2a =12b =-0c =〔2答案:〔1〕,,;〔2〕最大值是,最小值是. 4 强化训练 一、选择题1. 已知曲线的一条切线的斜率为,则切点的横坐标为〔 A 〕 A .1 B .2 C .3 D .42. 曲线在点〔1,-1〕处的切线方程为 〔 B 〕 A . B . C . D .43-=x y 23+-=x y 34+-=x y 54-=x y3. 函数在处的导数等于 〔 D 〕 A .1 B .2 C .3 D .44. 已知函数的解析式可能为 〔 A 〕A .B .)1(3)1()(2-+-=x x x f )1(2)(-=x x fC .D .2)1(2)(-=x x f 1)(-=x x f 5. 函数,已知在时取得极值,则=〔 D 〕〔A 〕2 〔B 〕3 〔C 〕4〔D 〕56. 函数是减函数的区间为〔 D 〕 〔A〕〔B〕〔C〕〔D〕7. 若函数的图象的顶点在第四象限,则函数的图象是〔 A 〕 8. 函数在区间上的最大值是〔 A 〕A .B .C .D .3231631299. 函数的极大值为,极小值为,则为 〔 A 〕A .0B .1C .2D .410. 三次函数在内是增函数,则 〔 A 〕A .B .C .D . 0>a 0<a 1=a 31=a11. 在函数的图象上,其切线的倾斜角小于的点中,坐标为整数的点的个数是 〔 D 〕 A .3 B .2 C .1 D .012. 函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极小值点〔 A 〕A .1个B .2个C .3个D . 4个 二、填空题13. 曲线在点处的切线与轴、直线所围成的三角形的面积为__________.14. 已知曲线,则过点“改为在点”的切线方程是______________31433y x =+(2,4)P (2,4)P15. 已知是对函数连续进行n 次求导,若,对于任意,都有=0,则n 的最少值为 .16. 某公司一年购买某种货物400吨,每次都购买吨,运费为4万元/次,一年的总存储费用为万元,要使一年的总运费与总存储费用之和最小,则 吨.x 4x x = 三、解答题17. 已知函数,当时,取得极大值7;当时,取得极小值.求这个极小值及的值.()c bx ax x x f +++=231-=x 3=x c b a ,, 解:.据题意,-1,3是方程的两个根,由韦达定理得0232=++b ax x ⎪⎪⎩⎪⎪⎨⎧=⨯--=+-3313231ba ∴ ∴9,3-=-=b a ()c x x x x f +--=9323 ∵,∴ 极小值()71=-f 2=c ()25239333323-=+⨯-⨯-=f∴极小值为-25,,.18. 已知函数.93)(23a x x x x f +++-=〔1〕求的单调减区间;〔2〕若在区间[-2,2].上的最大值为20,求它在该区间上的最小值. 解:〔1〕 令,解得所以函数的单调递减区间为)(x f ).,3(),1,(+∞--∞ 〔2〕因为所以因为在〔-1,3〕上,所以在[-1,2]上单调递增,又由于在[-2,-1]上单调递减,因此和分别是在区间上的最大值和最小值.于是有,解得 故 因此 即函数在区间上的最小值为-7..293)(23-++-=x x x x f ,72931)1(-=--+=-f )(x f []2,2- 19. 设,点P 〔,0〕是函数的图象的一个公共点,两函数的图象在点P 处有相同的切线. 〔1〕用表示;〔2〕若函数在〔-1,3〕上单调递减,求的取值范围. 解:〔1〕因为函数,的图象都过点〔,0〕,所以, 即.因为所以. 03=+at t ,0≠t 2t a -=.,0,0)(2ab c c bt t g ==+=所以即又因为,在点〔,0〕处有相同的切线,所以而.23,2)(,3)(22bt a t bx x g a x x f =+='+='所以将代入上式得 因此故,,2t a -=.t b =.3t ab c -==2t a -=t b =.3t c -= 〔2〕.当时,函数单调递减.0))(3(<-+='t x t x y )()(x g x f y -=由,若;若0<'y t x t t <<->3,0则.3,0t x t t -<<<则由题意,函数在〔-1,3〕上单调递减,则).3,()3,1(),3()3,1(t t t t -⊂--⊂-或所以.39.333≥-≤≥-≥t t tt 或即或又当时,函数在〔-1,3〕上单调递减. 所以的取值范围为20. 设函数,已知是奇函数.〔1〕求、的值.〔2〕求的单调区间与极值. 解:〔1〕∵,∴.从而=是一个奇函数, 所以得,由奇函数定义得;(0)0g =0c =3b = 〔2〕由〔Ⅰ〕知,从而,由此可知,(,-∞和是函数是单调递增区间;是函数是单调递减区间;)+∞()gx (()g x在时,取得极大值,极大值为,在时,取得极小值,极小值为.21. 用长为18 cm 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少? 解:设长方体的宽为〔m 〕,则长为 〔m 〕,高为.故长方体的体积为()()()⎪⎭⎫ ⎝⎛<<-=-=2306935.423322x m x x x x x V从而).1(18)35.4(1818)(2x x x x x x V -=--=' 令,解得〔舍去〕或,因此.当时,;当时,,10<<x ()0'>x V 231<<x ()0'<x V故在处取得极大值,并且这个极大值就是的最大值.从而最大体积,此时长方体的长为2 m ,高为1.5 m.()()3321619'm x V V ⨯-⨯==答:当长方体的长为2 m 时,宽为1 m ,高为1.5 m 时,体积最大,最大体积为.22. 已知函数在区间,内各有一个极值点.〔1〕求的最大值;当时,设函数在点处的切线为,若在点处穿过函数的图象〔即动点在点附近沿曲线运动,经过点时,从的一侧进入另一侧〕,求函数的表达式.解:〔1〕因为函数在区间,内分别有一个极值点,所以在,内分别有一个实根, 设两实根为〔〕,则,且.于是04,,且当,即,时等号成立.故的最大值是16.20416a b <-≤11x =-,23x =2a =-3b =-24a b -〔2〕解法一:由知在点处的切线的方程是(1)(1)(1)y f f x '-=-,即,21(1)32y a b x a=++--因为切线在点处空过的图象,l (1())A f x ,()y f x = 所以在两边附近的函数值异号,则不是的极值点.21()()[(1)]32g x f x a b x a =-++--1x =1x =()g x 而,且()g x 321121(1)3232x ax bx a b x a=++-++++ 22()(1)1(1)(1)g x x ax b a b x ax a x x a '=++-++=+--=-++.若,则和都是的极值点.11a ≠--1x =1x a =--()g x所以,即,又由,得,故.11a =--2a =-248a b -=1b =-321()3f x x x x =--解法二:同解法一得.21()()[(1)]32g x f x a b x a =-++--2133(1)[(1)(2)]322a x x x a =-++-+因为切线在点处穿过的图象,所以在两边附近的函数值异号,于是存在〔〕. 当时,,当时,;11m x <<()0g x <21x m <<()0g x > 或当时,,当时,.11m x <<()0g x >21x m <<()0g x <设,则当时,,当时,;233()1222a a h x x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭11m x <<()0h x >21x m <<()0h x >或当时,,当时,.11m x <<()0h x <21x m <<()0h x <由知是的一个极值点,则,(1)0h =1x =()h x 3(1)21102a h =⨯++=所以,又由,得,故.2a =-248a b -=1b =-321()3f x x x x =--〔一〕选择题1.A 2.B 3.D 4.A 5.D 6.D 7.A 8.A 9.A 10.A 11.D 12.A〔二〕填空题13. 14. 15. 7 16. 20。
高考文科数学导数专题复习
实用文档文案大全高考文科数学导数专题复习第1讲变化率与导数、导数的计算知识梳理1.导数的概念(1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0lim x f (x 0+Δx )-f (x 0)Δx .(2)函数f (x )的导函数f ′(x )=0lim x f (x +Δx )-f (x )Δx为f (x )的导函数.2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P(x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0).3.基本初等函数的导数公式4.导数的运算法则若f ′(x ),g ′(x )存在,则有:考点一导数的计算【例1】求下列函数的导数:(1)y =e xln x ;(2)y =x x 2+1x +1x3;解(1)y ′=(e x )′ln x +e x(ln x )′=e xln x +e x1x=ln x +1xe x.(2)因为y =x 3+1+1x2,所以y ′=(x 3)′+(1)′+1x2′=3x 2-2x3.【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( )A.-eB.-1C.1D.e解析由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案B(2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ln x +x ·1x=a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案(2)3考点二导数的几何意义命题角度一求切线方程【例2】(2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e-x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.解析(1)设x >0,则-x <0,f (-x )=e x -1+x .又f (x )为偶函数,f (x )=f (-x )=ex -1+x ,所以当x >0时,f (x )=e x -1+x .因此,当x >0时,f ′(x )=ex -1+1,f ′(1)=e 0+1=2.则曲线y =f (x )在点(1,2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案2x -y =0【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时,函数 f x 对 x R 为减函数。
3
fx
3x 3 3x 2 x 1
1 3x
8
2
当 a 3 时,
3 9。
由函数 y x 3 在R 上的单调性,可知当 a 3 是,函数 f x 对 x R 为减函数。
7
当 a 3 时,函数 f x 在 R 上存在增区间。所以,当 a 3 时,函数 f x 在 R 上
二、经典例题剖析 考点一:求导公式。
例 1. f ( x)是 f ( x)
1 x3 3
2x 1
的导函数,则
f ( 1) 的值是
。
解析: f ' x x 2 2 ,所以 f ' 1 1 2 3
答案: 3
点评:本题考查多项式的求导法则。
考点二:导数的几何意义。
1
例 2. 已 知 函 数 y
f ( x) 的 图 象 在 点 M (1, f (1)) 处 的 切 线 方 程 是 y
时, f ( x) 取得极大值 f (1) 5 8c ,又 f (0) 8c , f (3) 9 8c 。则当 x 0,3 时, f ( x) 的 最大值为 f (3) 9 8c 。因为对于任意的 x 0,3 ,有 f ( x) c2 恒成立, 所以 9 8c c2 ,解得 c 1 或 c 9 ,因此 c 的取值范围为 ( , 1) (9, ) 。
3, b 4 。
( 2 )由(Ⅰ)可知, f ( x) 2x3 9x 2 12 x 8c , f ( x) 6x2 18x 12 6(x 1)( x 2) 。
当 x (0,1) 时, f ( x) 0 ;当 x 1(2) , 时, f ( x) 0 ;当 x 2(3) , 时, f (x) 0 。所以,当 x 1
x0
曲线 C 的切线斜率为 k f ' x0
2
x0
3 x0
2 。又 y'
3x2
6x
2,
在 x0 , y0 处
3x02 6 x0 2 ,
x
2 0
3x0
2
3x
2 0
6x0
2 ,整
理得: 2 x0 3x 0
0 ,解得: x0
3 2 或 x0
0 (舍),此时, y0
3 k
8,
1 4 。所以,
y 直线 l 的方程为
1 x
33 ,
4 ,切点坐标是 2 8 。
y 答案:直线 l 的方程为
1 x
3, 3
4 ,切点坐标是 2 8
点评:本小题考查导数几何意义的应用。 解决此类问题时应注意 “切点既在曲线上又在切线上 ”
这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。
考点四:函数的单调性。
x2
2
,则
f ( 1 )f ( 1 )
。
k
解析:因为
1 f'1
2 ,所以
1
5
2 ,由切线过点 M (1,f (1)) ,可得点 M的纵坐标为 2 ,所
5
f1
以
2 ,所以 f 1
f' 1 3
答案: 3
更多精品文档
学习 -----好资料
例 3.曲线 y x3 2x2 4x 2 在点 (1, 3) 处的切线方程是
不是单调递减函数。
综合( 1 )( 2 )( 3)可知 a 3 。
答案: a 3
点评:本题考查导数在函数单调性中的应用。对于高次函数单调性问题,要有求导意识。
考点五:函数的极值。
例 6. 设函数 f ( x) 2x3 3ax2 3bx 8c 在 x 1及 x 2 时取得极值。
( 1 )求 a 、 b的值;
例 4.已知曲线 C:y x3 3x 2 2x ,直线 l : y kx ,且直线 l 与曲线 C相切于点 x0 , y0 x0 0 ,
求直线 l 的方程及切点坐标。
解析 :
k
直 线过 原点,则
y0 x0 x0
0 。 由 点 x0 , y0 在 曲 线 C 上 , 则
y0
y0
x0 3 3x0 2 2x0 ,
学习 -----好资料
高考文科数学专题复习导数训练题(文)
一、考点回顾 1. 导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主 要考查导数的基本公式和运算法则,以及导数的几何意义。 2. 导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工 具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导 数确定函数的单调性、 单调区间和最值问题, 解答题侧重于导数的综合应用, 即与函数、 不等式、 数列的综合应用。 3. 应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只 有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这 就是最大(小)值。
取值的正负可确定并求出函数 f x 的极值。
考点六:函数的最值。
例 7. 已知 a 为实数, f x x2 4 x a 。求导数 f ' x ;( 2 )若 f ' 1 0 ,求 f x 在区
例 5.已知 f x ax3 3x 2 x 1在 R上是减函数,求 a 的取值范围。
解析:函数 f x 的导数为 f ' x 3ax2 6x 1。对于 x R 都有 f ' x 0 时, f x 为减
更多精品文档
学习 -----好资料
a0
函数。 由 3ax2 6x 1 0 x R 可得
36 12a 0 ,解得 a 3 。所以, 当 a 3
。
2
解析: y' 3x
4x
4 , 点 (1, 3) 处切线的斜率为 k
344
5 ,所以设切线方程
为 y 5x b ,将点 (1, 3) 带入切线方程可得 b 2 ,所以,过曲线上点 (1, 3) 处的切线
方程为: 5x y 2 0
答案: 5x y 2 0
点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。
( 2 )若对于任意的 x [0,3] ,都有 f ( x) c2 成立,求 c的取值范围。
解析: ( 1) f (x) 6x2 6ax 3b ,因为函数 f (x) 在 x 1 及 x 2 取得极值,则有 f (1) 0 ,
6 6a 3b 0, f (2) 0 .即 24 12a 3b 0.,解得 a
答案:( 1) a 3, b 4 ;( 2 ) ( , 1) (9, ) 。
更多精品文档
学习 -----好资料
点评:本题考查利用导数求函数的极值。求可导函数
f x 的极值步骤:①求导数 f ' x ;
②求 f ' x 0 的根;③将 f ' x 0 的根在数轴上标出,得出单调区间,由 f ' x 在各区间上