圆柱表面积与体积实际应用练习题精选

合集下载

圆柱认识、表面积、体积操作综合思维训练练习题(立体图形的表面积和体积复习)

圆柱认识、表面积、体积操作综合思维训练练习题(立体图形的表面积和体积复习)

圆柱表面积、体积操作练习题姓名:提示:请同学们先用卡纸制作下列立体图形的模型(制作时请注意预留接口粘贴处),再解决问题。

本次练习共需制作5个模型,你全做对了吗?一、制作一个长、宽、高分别为8厘米、6厘米、4厘米的长方体。

再分别计算出它的表面积和体积。

1、模型是否已经制作?()。

画出它的草图,标出有关数据:2、长方体的表面积计算公式是:()这个长方体的表面积:3、长方体的体积计算公式是:()这个长方体的体积:4、如果把这个长方体看作是一块长方体木料,要将加工成一个最大的圆柱。

这个圆柱的高应该是()厘米,底面半径是()厘米。

(可以模型或草图上画一画)这个圆柱的表面积是多少?这个圆柱的体积是多少?二、制作一个棱长为6厘米的正方体。

再分别计算出它的表面积和体积。

1、模型是否已经制作?()。

画出它的草图,标出有关数据:2、正方体的表面积计算公式是:()这个正方体的表面积:3、正方体的体积计算公式是:()这个正方体的体积:4、如果把这个正方体看作是一块正方体木料,要将加工成一个最大的圆柱。

这个圆柱的高应该是()厘米,底面半径是()厘米。

(可以模型或草图上画一画)这个圆柱的表面积是多少?这个圆柱的体积是多少?这个圆柱的体积是原来正方体体积的几分之几?三、制作一个底面直径是4厘米,高也是4厘米的圆柱。

1、模型是否已经制作?()2、画出侧面展开图的草图,并标上有关数据:3、画出该圆柱沿直径劈成相等的两半,所得到的截面的草图,并标出相关数据:4、求出这个圆柱的表面积(写出每一步的计算公式)。

5、求出圆柱的体积(写出每一步的计算公式)。

6、如果把这圆柱看作是一块圆柱形木料,沿横截面切成两段,表面积多出多少?7、如果把这圆柱看作是一块圆柱形木料,沿直径劈成相等的两半,表面积多出多少?四、用一张长25.12厘米,宽18.84厘米的长方形卡纸围成一个圆柱有几种围法?()1、请以长方形的长作为圆柱的高,制作出1号圆柱,1号圆柱的底面半径是多少厘米?2、求出1号圆柱的表面积(写出每一步的计算公式)。

小学圆柱和圆锥体积表面积常考解答应用题

小学圆柱和圆锥体积表面积常考解答应用题

解答题1.木工师傅加工一块长方体木块(如图),它的底面是正方形。

将它削成 14圆柱(阴影部分),削去部分的体积是8.6dm 3。

原来长方体木块的体积是多少?【解析】【分析】可以设底面边长是1,高是h ,用阴影部分底面积乘高表示出14圆柱的体积,根据长方体体积公式表示出长方体体积。

写出圆柱体积与长方体体积的最简比是157:200,那么削去部分的份数是(200-157),由此用削去部分的体积除以削去部分的份数求出每份数,用每份数乘200求出长方体体积。

2.一个直角三角形的三条边分别是6厘米、8厘米和10厘米,沿着它的一条直角边为轴旋转一周,可得到( )体,体积最小是多少?体积最大是多少?【解析】【分析】一个直角三角形,沿它的一条直角边为轴旋转一周,可以得到一个圆锥体,此题中直角三角形的两条直角边不相等,所以旋转出的圆锥有两种不同的情况:①以8厘米的直角边为轴旋转可得到一底面半径是6厘米,高是8厘米的圆锥;②以6厘米的直角边为轴旋转可得到一底面半径是8厘米,高是6厘米的圆锥,根据公式:V=13πr 2h ,据此计算并比较大小即可。

3.将一个长30厘米,宽25厘米,高20厘米的长方体木块削成一个最大的圆柱,这个圆柱的体积是多少?【解析】【分析】长方形中,要剪一个大圆,那么圆的直径与长方形的宽相等;圆柱的体积=πr 2h 。

据此作答即可。

4.从一个底面半径为10分米的圆柱形水桶里取出一块底面积是6.28平方分米完全浸泡在水中的圆锥形钢材,取出后水面下降5厘米,求圆锥形钢材的体积。

【解析】【分析】根据题意可知,水面下降部分的体积,就是圆锥的体积,因为是圆柱形水桶,所以下降的水的体积根据圆柱的体积公式:V=πr 2h ,据此列式解答.5.已知一根长3米的圆柱形木料,将它截成4段,其表面积增加18.84平方米,如果将它削成一个最大的圆锥,则这个圆锥的体积是多少立方米?【解析】【分析】把木料截成4段,那么就说明把这根木料切了3次,每切一次就增加2个面,所以增加了2×3=6个底面积,那么这个圆柱的底面积=表面积增加的平方米数÷6,削成最大的圆锥的体积=这个圆柱的底面积×圆柱形木料的长度×13,据此代入数据作答即可。

圆柱表面积与体积实际应用练习题精选

圆柱表面积与体积实际应用练习题精选

圆柱表面积与体积实际应用练习题精选一选择:(在正确答案下划线)(1)一只铁皮水桶能装水多少升是求水桶的(侧面积、表面积、容积、体积)(2)做一只圆柱体的油桶,至少要用多少铁皮是求油桶的(侧面积、表面积、容积、体积)(3)做一节圆柱形铁皮通风管,要用多少铁皮是求通风管的(侧面积、表面积、容积、体积)(4)求一段圆柱形钢条有多少立方米,是求它的(侧面积、表面积、容积、体积)二、深化练习1、一个圆柱的体积是94.2平方厘米,底面直径是4厘米,它的高是多少?2、一个圆柱形水池底面直径8米,池深2米,如果在水池的底面和四周涂上水泥,涂水泥的面积有多少平方米?水池最多能盛水多少立方米?3、用铁皮制10节同样大小的通风管,每节长是5分米,底面直径是1.2分米,至少需要多少平方分米铁皮?4、一种压路机的滚筒是圆柱形的,筒宽1.5米,直径是0.8米。

这种压路机每分钟向前滚动5周。

这种压路机1分钟压路多少平方米?5、一个圆柱形蓄水池,从里面量底面直径是20米,深为5米,(1) 要在这个蓄水池的四周和底面抹上水泥,抹水泥部分的面积是多少平方米?(2) 这个蓄水池最多可以蓄水多少吨?(每立方米水重1吨)6、做一个底面直径是4分米,高是5分米的圆柱形铁皮油桶,(1) 做这个铁皮油桶,至少要用铁皮多少平方分米?( 得数用进一法保留整平方分米)(2) 这个油桶里装了4/5的油,这些油重多少千克?(每升油重0.85千克,得数保留整千克数)7、一根长4米,底面直径是4厘米的圆柱形钢材,把它锯成同样长的3段,表面积比原来增加了多少平方厘米?8、用一块边长是9.42分米的正方形铁皮配上一个地面,做成一个圆柱形铁皮水桶。

(1)这个水桶的底面半径是多少?(2)这个水桶的侧面积是多少?(3)这个水桶最多能容纳多少升水?9、一个水杯从里面量底面直径10厘米,高15厘米,杯里的水面离杯口5厘米,这个杯子有水多少升?10、有两个等底的圆柱,第一个圆柱的高是第二个圆柱高的4/5,第一个圆柱的体积是3.2立方厘米,第二个圆柱比第一个圆柱多多少立方厘米?11、一个零件,底面直径5厘米,高10厘米,沿着它的一条底面直径往下切,切成相同大小的两份,(1)总面积比原来增加了多少平方厘米?(2每半个零件的表面积是多少?体积是多少?12、某宾馆大堂有6根圆柱形大柱,高10米,大柱周长25.12分米,要全部涂上油漆,如果按每平方米的油漆费为80元计算,需用多少钱?13、一根长2米,底面积半径是4厘米的圆柱形木段,把它据成同样长的4根圆柱形的木段。

圆柱圆锥表面积和体积计算应用题

圆柱圆锥表面积和体积计算应用题

圆柱、圆锥表面积和体积计算应用题1.一根圆柱的高是50分米,底面半径是20分米,它的表面积是多少?(圆柱的表面积=侧面积+底面积*2,可以先求出侧面积和底面积再来求表面积)2.一个圆柱的底面周长是12.56米,高是6米,它的侧面积是多少平方米?(圆柱的侧面积=底面周长*高)3.做一个没有盖的铁皮圆桶,高是40厘米,底面直径是40厘米。

至少需要铁皮多少平方厘米?(计算这个无盖水桶的用料,就是求侧面积和一个底面积的和。

)4.一个圆柱体的侧面积是376.8平方厘米,底面半径是6厘米,这样的圆柱高是多少厘米?5.一根圆柱形铁管的底面直径是0.4米,高是5米,涂防腐漆的面积是多少平方米?6.一个圆柱体的底面周长是12。

56米,高是1米。

涂上顏料需要涂多少平方米?7.给10节底面周长是25.12分米,长2米的圆柱形铁皮烟筒涂上防腐漆,涂漆面积是多少平方分米?8.一个圆柱形的储物罐,底面直径和高都是8厘米.它的表面积是多少?9.量得一种圆柱形茶叶盒,它的底面直径和高都是8厘米.它的表面积是多少?11.一种圆柱形铅笔底面直径是1厘米,长是18厘米,这支铅笔的侧面积是多少平方厘米?12.一只有底无盖的圆柱形铁皮桶,底面周长为6.28分米,高为1分米做成这只铁皮桶至少需要多少铁皮?13.铁筒长1.2米,直径0.5米,如果它在马路上滚动10圈,所压路面的面积是多少平方米?14.一个圆柱体,底面半径是2厘米,侧面积是62.8平方厘米,求这个圆柱体的高是多少厘米?15.做一个无盖的铁桶,底面直径是4分米,高是5分米.做一只这样的铁桶至少要用多少铁皮?16.如果1立方分米水重0.8千克,这只铁桶可装水多少千克?17.一张长8米,宽5米的铁片,做成一个最大的圆柱,它的侧面积是多少?圆柱体积应用题18.一个圆柱形储米桶,底面直径是20米,高4.5米.这个储米桶的容积是多少立方米?[圆柱的体积(容积)=底面积*高]19.一个圆柱形粮囤的底面周长是9.42米,高是2米,每立方米小麦重800千克,这个粮囤能装20.一个圆柱形茶叶盒底面半径是10厘米,高是15厘米.它的体积是多少立方厘米?21.把一块长10厘米,宽15.7厘米,高10厘米的长方体橡皮泥,捏成直径是2厘米的圆橡皮泥条,橡皮泥条长多少?22.一个圆柱体的体积是640立方厘米,底面积是80平方厘米,它的高是多少?23.有一个圆柱形水桶,底面直径2分米,盛水未满,放入一个铁球,当铁球完全沉入水中之后,水面升高3厘米,求铁球的体积?24.把棱长是8厘米的正方体木块,削成一个最大的圆柱,圆柱体的体积是多少?25.把一根8米长的圆柱木截成四段,表面积比原来增加75.36平方厘米,求原木材的体积?26.一只钢管,长100厘米,外直径20厘米,内直径是16厘米.每立方厘米钢重8.2克.这只钢管重多少千克?27.一只圆柱形的储油罐的容积是9.42立方分米,直径是2分米,这个储油罐的高是多少分米?28.一个圆柱形油桶,底面半径是20厘米,高是50厘米,这个油桶能装多少毫升的油?29.一个圆柱形的茶叶盒,底面周长是18.84厘米,高是15厘米,它的体积是多少立方厘米?30.一把铁锤,底面积是20平方厘米,高是4厘米.它的体积是多少立方厘米?31.一个棱长是6厘米的正方体木块,削成一个体积最大的圆柱体,这个圆柱体的体积是多少立方厘米?32.一个圆柱形粮囤,底面的内直径是8米,高为2.5米,如果每立方米大米重550千克,这个粮囤能装多少吨大米?33.把2个长宽高分别是8厘米,5厘米,4厘米的长方体铁块,铸成一个底面积为40平方厘米的圆柱体,它的高是多少厘米?34.将一个长是6厘米的铁圆柱,切割成了节小圆柱体后,表面积比原来增加了20平方厘米.每立方厘米铁重7.8克,这两节铁圆柱共重多少克?35.一根钢管的外直径是20厘米,内直径是10厘米,这根钢管长2米,钢管每立方厘米重7.8克,这根钢管重多少千克?圆锥体积36.一个圆锥形容器,它的体积是113.04立方厘米,底面半径是3厘米.这个容器的高是多少厘米?37.一个圆锥形粮囤,测得底面周长是6.28米,高1.5米,如果每立方米稻谷重800千克,这个粮囤能装稻谷多少千克?38.一个圆柱形钢材,底面半径是2分米,高是4分米,将它铸成底面半径是4分米的圆锥,圆锥高多少分米?39.一个圆锥形漏斗,体积是9.42立方米,底面半径是3米,高是多少米?40.一个圆锥形漏斗,量得底面周长是25.12分米,高是15分米,这个圆锥形钢材的体积是多少?41.一堆圆锥形的稻谷,底面积2.4平方米,高0.9米,稻谷每立方米重1.7吨,这堆稻谷重多少吨?42.一个圆锥形沙堆的体积是6.4立方米,高1.2米,这个沙堆的底面积是多少平方米?43.一个圆锥形米堆,高1.5米,底面半径为2米,每立方米的大米重1.7吨44.一种铜制圆锥体,底面半径是2厘米,高是4厘米,如果每立方厘米铜重8.9克,求它的重量.45.一个棱长是5厘米的正方体容器容积等于一个底面积是15平方厘米的锥形容器的容积,这个锥形容器的高是多少厘米?46.一个圆锥体,底面直径是8米,高是直径的1/4,这个圆锥体的体积是多少立方米?47.一个圆锥形的谷堆,底面积是31.4平方米,高是1.2米,把这些稻谷铺2厘米厚晒在10米宽的路上,能铺晒多少米?48.一个圆锥形沙堆,测得底面直径是4米,高是0.9米,求:这堆沙子的体积是多少立方米?感谢下载!欢迎您的下载,资料仅供参考。

圆柱表面积和体积练习题

圆柱表面积和体积练习题

圆柱表面积和体积练习题圆柱表面积和体积练题一、选择题1.圆柱体的底面半径和高都扩大2倍,它的体积扩大()倍。

A。

2 B。

4 C。

6 D。

82.体积单位和面积单位相比较,()。

A。

体积单位大 B。

面积单位大 C。

一样大 D。

不能相比3.等底等高的圆柱体、正方体、长方体的体积相比较,()。

A。

正方体体积大B。

长方体体积大C。

圆柱体体积大D。

一样大二、填空题1.0.9平方米 = ()平方分米。

9002.3立方米5立方分米 = ()立方米。

3.53.4.5立方分米 = ()立方分米()立方厘米。

4.5.45004.一个棱长为4厘米的正方体,它的表面积是()。

965.一个圆柱体的底面半径是4厘米,高6厘米,它的侧面积是()、表面积是()、体积是()。

48π。

80π。

96π6.一个圆柱体的底面直径是4厘米,高8厘米,它的侧面积是()、表面积是()、体积是()。

64π。

80π。

128π7.一个圆柱体的底面周长是6.28分米,高2分米,它的侧面积是()、表面积是()、体积是()。

12.56.18.84.12.568.一个圆柱体的侧面展开图是边长为31.4厘米的正方形,这个圆柱体的底面积是(1个)是()平方厘米,这个圆柱体的体积是()立方厘米。

314.31409.圆柱体的底面周长是62.8厘米,高是20厘米,这圆柱体的表面积是()、体积是()。

1256.10.一个圆柱体,它的高增加3厘米,侧面积就增加18.84平方厘米,这个圆柱体的底面积是()。

16π11.一个高5厘米的圆柱体,沿底面直径将圆柱体锯成两块,其表面积增加40平方厘米,原来这个圆柱体的体积是()。

50π12.一个圆柱体的体积是125.6立方厘米,底面直径是4厘米,它的侧面积是()平方厘米。

100π三、判断题1.一个正方体切成两个体积相等的长方体后,每个长方体的表面积是原正方体的1/2.(错误)2.正方体的表面积是6平方厘米,它的体积一定是6立方厘米。

圆柱表面积体积应用题带答案一个无盖空心,两个底面积的

圆柱表面积体积应用题带答案一个无盖空心,两个底面积的

圆柱表面积体积应用题带答案一个无盖空心,两个底面积的1、一个圆柱形油桶,从里面量的底面半径是20厘米,高是3分米。

这个油桶的容积是多少?2、一个圆柱,侧面展开后是一个边长9.42分米的正方形。

这个圆柱的底面直径是多少分米?3、一个圆柱铁皮油桶内装有半桶汽油,现在好像出来汽油的 35 后,还剩下12再升汽油。

如果这个油桶的内底面积就是10平方分米,油桶的低就是多少分后米?4、一只圆柱形玻璃杯,内底面直径是8厘米,内装药水的深度是16厘米,恰好占整杯容量的45 。

这只玻璃杯最多能盛药水多少毫升?5、有甲、乙两个底面半径成正比的圆柱,甲的低就是乙的低的。

第二个圆柱的体积就是175立方厘米,第二个圆柱的体积比第一个圆柱多多少立方厘米?6、一个圆柱和一个圆锥等底等高,体积相差6.28立方分米。

圆柱和圆锥的体积各是多少?7、东风化工厂存有一个圆柱形油罐,从里面量的底面半径就是4米,低就是20米。

油罐内已转化成占到容积34 的石油。

如果每立方分米石油重700千克,这些石油轻多少千克?8、一个无盖的圆柱形铁皮水桶,底面直径是30厘米,高是50厘米。

做这样一个水桶,至少需用铁皮多少平方厘米?最多能盛水多少升?(得数保留整数)9、一个圆锥形沙堆,低就是1.8米,底面半径就是5米,每立方米沙重1.7吨。

这堆上沙约轻多少吨?(得数留存整数)10、一个圆锥与一个圆柱底面积相等。

已知圆锥的体积是圆柱体积的。

圆锥的高是4.8厘米,圆柱的高是多少厘米?11、把一个体积就是282.6立方厘米的铁块锻造成一个底面半径就是6厘米的圆锥形机器零件,谋圆锥零件的高?12、在一个直径是20厘米的圆柱形容器里,放入一个底面半径3里米的圆锥形铁块,全部浸没在水中,这是水面上升0.3厘米。

圆锥形铁块的高是多少厘米?13、把一个底面半径就是6厘米,低就是10厘米的圆锥形容器注满水,然后把水放入一个底面半径就是5厘米的圆柱形容器里,谋圆柱形容器内水面的高度?14、做一种没有盖的.圆柱形铁皮水桶,每个高3分米,底面直径2分米,做50个这样的水桶需多少平方米铁皮?15、学校走廊上加10根圆柱形柱子,每根柱子底面半径就是4分米,低就是2.5分米,必须油漆这些柱子,每平方米用油漆0.3千克,共须要油漆多少千克?16、一个底面周长是43.96厘米,高为8厘米的圆柱,把它截成4个小的圆柱体,表面积增加了多少?17、一个圆柱体木块,底面直径和低都就是10厘米,若把它加工成一个最小的圆锥,这个圆锥的体积就是参考答案:1.这个油桶的容积=3.14*2*2*3=37.68分米^32.边长9.42分米=3.14*底面直径,底面直径=9.42/3.14=3分米3.现在倒出汽油的3/5后?1/2(1-3/5)=1/512/(1/5)=60升油桶的高=容积/底面积=60/10=6分米4.底面直径是8厘米,半径=4厘米4/5容积=3.14*4*4*16容积=5/4*3.14*4*4*16=.8毫升5.低的比是7:5175÷7×5=125(立方厘米)6.等底等低的圆柱体体积就是圆锥体积的3倍圆锥体积:6.28÷(3-1)=3.14(立方分米)圆柱体积:3.14×3=9.42(立方分米)7.重=3/4*3.14*4*4*20*700=千克8.底面直径就是30厘米,半径=15厘米需用铁皮=3.14*15*15+3.14*30*50=.5平方厘米最多能够丰水=3.14*1.5*1.5*5=35.325=35再升9.这堆沙约重=1/3*3.14*5*5*1.8=47.1=47吨10.未知圆锥的体积就是圆柱体积的?11.圆锥的体积=1/3*6*6*高=282.6低=23.55厘米12.直径是20厘米,半径=10厘米圆锥形铁块的体积=3.14*10*10*0.3=94.2立方厘米即为:94.2=1/3*3.14*3*3*尖锥低锥高=94.2*3/3.14*3*3=10厘米13.圆锥形容器容积=1/3*3.14*6*6*10=376.8立方厘米圆柱形容器内水面的高度=376.8/(3.14*5*5)=4.8厘米14.底面直径2分米,半径=1分米做50个这样的水桶需=50[3.14*1*1*2+3.14*2*3]=50*(6.28+18.84)=平方米15.,共需要油漆=3.14*4*2*2.5*10*0.3=188.4千克16.底面周长就是43.96厘米,半径=43.96/(3.14*2)=7厘米截成4个小的圆柱体,表面积减少了6个底面积=6*3.14*7*7=923.16平方厘米17.底面直径是10厘米,半径=5厘米这个圆锥的体积=1/3*3.14*5*5*10=261.67立方厘米。

圆柱圆锥表面积和体积计算应用题

圆柱圆锥表面积和体积计算应用题

圆柱、圆锥表面积和体积计算应用题1.一根圆柱的高是50分米,底面半径是20分米,它的表面积是多少?(圆柱的表面积=侧面积+底面积*2,可以先求出侧面积和底面积再来求表面积)2.一个圆柱的底面周长是12.56米,高是6米,它的侧面积是多少平方米?(圆柱的侧面积=底面周长*高)3.做一个没有盖的铁皮圆桶,高是40厘米,底面直径是40厘米。

至少需要铁皮多少平方厘米?(计算这个无盖水桶的用料,就是求侧面积和一个底面积的和。

)4.一个圆柱体的侧面积是376.8平方厘米,底面半径是6厘米,这样的圆柱高是多少厘米?5.一根圆柱形铁管的底面直径是0.4米,高是5米,涂防腐漆的面积是多少平方米?6.一个圆柱体的底面周长是12。

56米,高是1米。

涂上颜料需要涂多少平方米?7.给10节底面周长是25.12分米,长2米的圆柱形铁皮烟筒涂上防腐漆,涂漆面积是多少平方分米?8.一个圆柱形的储物罐,底面直径和高都是8厘米.它的表面积是多少?9.量得一种圆柱形茶叶盒,它的底面直径和高都是8厘米.它的表面积是多少?10.一个圆柱形不锈钢茶杯,底面半径是5厘米,高是8厘米.它的表面积是多少?11.一种圆柱形铅笔底面直径是1厘米,长是18厘米,这支铅笔的侧面积是多少平方厘米?12.一只有底无盖的圆柱形铁皮桶,底面周长为6.28分米,高为1分米做成这只铁皮桶至少需要多少铁皮?13.铁筒长1.2米,直径0.5米,如果它在马路上滚动10圈,所压路面的面积是多少平方米?14.一个圆柱体,底面半径是2厘米,侧面积是62.8平方厘米,求这个圆柱体的高是多少厘米?15.做一个无盖的铁桶,底面直径是4分米,高是5分米.做一只这样的铁桶至少要用多少铁皮?16.如果1立方分米水重0.8千克,这只铁桶可装水多少千克?17.一张长8米,宽5米的铁片,做成一个最大的圆柱,它的侧面积是多少?圆柱体积应用题18.一个圆柱形储米桶,底面直径是20米,高4.5米.这个储米桶的容积是多少立方米?[圆柱的体积(容积)=底面积*高]19.一个圆柱形粮囤的底面周长是9.42米,高是2米,每立方米小麦重800千克,这个粮囤能装小麦多少千克?20.一个圆柱形茶叶盒底面半径是10厘米,高是15厘米.它的体积是多少立方厘米?21.把一块长10厘米,宽15.7厘米,高10厘米的长方体橡皮泥,捏成直径是2厘米的圆橡皮泥条,橡皮泥条长多少?22.一个圆柱体的体积是640立方厘米,底面积是80平方厘米,它的高是多少?23.有一个圆柱形水桶,底面直径2分米,盛水未满,放入一个铁球,当铁球完全沉入水中之后,水面升高3厘米,求铁球的体积?24.把棱长是8厘米的正方体木块,削成一个最大的圆柱,圆柱体的体积是多少?25.把一根8米长的圆柱木截成四段,表面积比原来增加75.36平方厘米,求原木材的体积?26.一只钢管,长100厘米,外直径20厘米,内直径是16厘米.每立方厘米钢重8.2克.这只钢管重多少千克?27.一只圆柱形的储油罐的容积是9.42立方分米,直径是2分米,这个储油罐的高是多少分米?28.一个圆柱形油桶,底面半径是20厘米,高是50厘米,这个油桶能装多少毫升的油?29.一个圆柱形的茶叶盒,底面周长是18.84厘米,高是15厘米,它的体积是多少立方厘米?30.一把铁锤,底面积是20平方厘米,高是4厘米.它的体积是多少立方厘米?31.一个棱长是6厘米的正方体木块,削成一个体积最大的圆柱体,这个圆柱体的体积是多少立方厘米?32.一个圆柱形粮囤,底面的内直径是8米,高为2.5米,如果每立方米大米重550千克,这个粮囤能装多少吨大米?33.把2个长宽高分别是8厘米,5厘米,4厘米的长方体铁块,铸成一个底面积为40平方厘米的圆柱体,它的高是多少厘米?34.将一个长是6厘米的铁圆柱,切割成了节小圆柱体后,表面积比原来增加了20平方厘米.每立方厘米铁重7.8克,这两节铁圆柱共重多少克?35.一根钢管的外直径是20厘米,内直径是10厘米,这根钢管长2米,钢管每立方厘米重7.8克,这根钢管重多少千克?圆锥体积36.一个圆锥形容器,它的体积是113.04立方厘米,底面半径是3厘米.这个容器的高是多少厘米?37.一个圆锥形粮囤,测得底面周长是6.28米,高1.5米,如果每立方米稻谷重800千克,这个粮囤能装稻谷多少千克?38.一个圆柱形钢材,底面半径是2分米,高是4分米,将它铸成底面半径是4分米的圆锥,圆锥高多少分米?39.一个圆锥形漏斗,体积是9.42立方米,底面半径是3米,高是多少米?40.一个圆锥形漏斗,量得底面周长是25.12分米,高是15分米,这个圆锥形钢材的体积是多少?41.一堆圆锥形的稻谷,底面积2.4平方米,高0.9米,稻谷每立方米重1.7吨,这堆稻谷重多少吨?42.一个圆锥形沙堆的体积是6.4立方米,高1.2米,这个沙堆的底面积是多少平方米?43.一个圆锥形米堆,高1.5米,底面半径为2米,每立方米的大米重1.7吨44.一种铜制圆锥体,底面半径是2厘米,高是4厘米,如果每立方厘米铜重8.9克,求它的重量.45.一个棱长是5厘米的正方体容器容积等于一个底面积是15平方厘米的锥形容器的容积,这个锥形容器的高是多少厘米?46.一个圆锥体,底面直径是8米,高是直径的1/4,这个圆锥体的体积是多少立方米?47.一个圆锥形的谷堆,底面积是31.4平方米,高是1.2米,把这些稻谷铺2厘米厚晒在10米宽的路上,能铺晒多少米?48.一个圆锥形沙堆,测得底面直径是4米,高是0.9米,求:这堆沙子的体积是多少立方米?。

圆柱练习题含答案

圆柱练习题含答案

圆柱练习题含答案1. 计算圆柱的体积和表面积已知圆柱的底面半径为r,高为h,请计算该圆柱的体积和表面积。

解答:- 圆柱的体积计算公式为:V = π * r^2 * h- 圆柱的表面积计算公式为:A = 2 * π * r^2 + 2 * π * r * h其中,π(pi)取3.14。

根据给定的底面半径和高,代入公式进行计算即可得到圆柱的体积和表面积。

2. 计算圆柱的侧面积和母线长度已知圆柱的底面半径为r,高为h,请计算该圆柱的侧面积和母线长度。

解答:- 圆柱的侧面积计算公式为:S = 2 * π * r * h- 圆柱的母线长度计算公式为:L = √(r^2 + h^2)根据给定的底面半径和高,代入公式进行计算即可得到圆柱的侧面积和母线长度。

3. 圆柱的应用场景圆柱是一种常见的几何体,在生活和工程中有着广泛的应用。

下面列举几个圆柱的应用场景:- 水桶:水桶的形状就是一个圆柱,圆柱的设计使得水桶能够存储大量的液体,并且容易倒出。

- 柱形雕塑:许多雕塑作品采用圆柱形状,例如公园中的柱形雕塑。

圆柱形状使得雕塑具有更好的稳定性。

- 管道:在建筑工程中,许多管道采用圆柱形状。

圆柱的设计使得管道具有较大的容纳空间,并且易于连接和安装。

这些场景都体现了圆柱的特点和优势,圆柱在不同领域中发挥着重要的作用。

总结:通过以上练习题,我们学习了如何计算圆柱的体积、表面积、侧面积和母线长度。

圆柱在生活和工程中有着广泛的应用,了解和掌握圆柱的相关知识对我们理解和应用几何学具有重要意义。

希望以上内容能够帮助到您,并且满足您的需求。

如有其他问题或需要进一步解答,请随时告知。

(完整版)圆柱表面积与圆柱圆锥体积实际应用题精选及答案

(完整版)圆柱表面积与圆柱圆锥体积实际应用题精选及答案

5、一个圆柱形蓄水池,从里面量底面直径是20 米,深为 5 米,(1)要在这个蓄水池的四周和底面抹上水泥,抹水泥部分的面积是多少平方米?(2)这个蓄水池最多可以蓄水多少吨?(每立方米水重 1 吨)7、一根长 4 米,底面直径 4 厘米的圆柱形钢材,把它锯成同样长的 3 段,表面积比原来增加了多少平方厘米?10 、有两个等底的圆柱,第一个圆柱的高是第二个圆柱高的4/5 ,第一个圆柱的体积是 3.2 立方厘米,第二个圆柱比第一个圆柱多多少立方厘米?11 、一个零件,底面直径 5 厘米,高10 厘米,沿着它的一条底面直径往下切,切成相同大小的两份,(1)总面积比原来增加了多少平方厘米?(2)每半个零件的表面积是多少?体积是多少?13 、把一个高为 5 厘米的圆柱从直径处沿高剖成两上半圆柱,这两个半圆柱的表面积比原来增加80 平方厘米,求原来圆柱的表面积。

16 、把一个圆柱底面平均分成若干个扇形,沿高切开拼成一个近似长方体,这个长方体的底周长是41.4 厘米,高是 5 厘米,求它的体积。

20 、一个长方体木块,长10 厘米宽8 厘米高 4 厘米,把它削成一个圆柱,求削成圆柱体积最大是多少?21 、把一个长 2 米的圆柱木料戴成 4 段,表面积增加了56.52 平方厘米,求原来木料的体积22 、一个圆柱高为15 厘米,把它的高增加 2 厘米后表面积增加25.12 平方厘米,求原来圆柱的体积。

23 、一个圆柱高20 厘米,如果把高减少 3 厘米,它的表面积就减少31.68 平方厘米,求原来圆柱的体积。

26、甲乙两个圆柱,底半径比是3:2,相等,它们的体积比是多少?五、综合练习:1、在一只底面半径为10 厘米的圆柱形玻璃容器中,水深8 厘米,要在容器中放入长和宽都是8 厘米,高15 厘米的一块铁块。

(1)如果把铁块横放在水中水面上升多少厘米?(2)如果把铁块竖放在水中,水面上升多少厘米?2、一个圆柱体的高和底面周长相等。

圆柱的侧面积、表面积和体积典型例题及答案

圆柱的侧面积、表面积和体积典型例题及答案

圆柱的侧面积、表面积和体积答案典题探究例1.一个圆柱和一个圆锥等底等高,圆锥体积是圆柱体积的,圆锥的体积与圆柱体积的比是1:3.考点:圆柱的侧面积、表面积和体积;圆锥的体积.分析:(1)根据等底等高的圆柱的体积与圆锥的体积的关系即可得出答案;(2)根据等底等高的圆柱的体积是圆锥的体积的3倍,即可得出答案.解答:解:(1)等底等高的圆锥的体积是圆柱的体积的,(2)因为等底等高的圆柱的体积是圆锥的体积的3倍,所以把圆锥的体积看作1份,那圆柱的体积是3份,即圆锥的体积与圆柱的体积的比是:1:3,故答案为:,1:3.点评:此题主要考查了等底等高的圆柱的体积与圆锥的体积的关系.例2.一个圆柱的底面半径是5cm,高是10cm,它的底面积是78.5cm2,侧面积是314 cm2,体积是785cm3.考点:圆柱的侧面积、表面积和体积.分析:圆柱的底面积=πr2=3.14×52=78.5(平方厘米);侧面积=底面周长×高=ch;体积=sh,利用这三个公式即可求出.解答:解:①3.14×52,=78.5(平方厘米);②2×3.14×5×10,=314(平方厘米);③78.5×10,=785(立方厘米).故答案为:①78.5;②314;③785.点评:此题考查了学生对s底=πr2、s侧=ch、v=sh三个公式的掌握情况,同时应注意面积与体积单位的不同.例3.一个高10厘米的圆柱体,如果把它的高截短3厘米,它的表面积减少94.2平方厘米.这个圆柱体积是785立方厘米.考点:圆柱的侧面积、表面积和体积.专题:压轴题.分析:由题意知,截去的部分是一个高为3厘米的圆柱体,并且表面积减少了94.2平方厘米,其实减少的面积就是截去部分的侧面积,由此可求出圆柱体的底面周长,进一步可求出底面半径,再利用V=sh求出体积即可.解答:解:94.2÷3=31.4(厘米);31.4÷3.14÷2=5(厘米);3.14×52×10,=3.14×250,=785(立方厘米);答:这个圆柱体积是785立方厘米.故答案为:785.点评:此题是复杂的圆柱体积的计算,要明白:沿高截去一段后,表面积减少的部分就是截去部分的侧面积.例4.一个圆柱体,底面半径是7厘米,表面积是1406.72平方厘米.这个圆柱的高是多少?考点:圆柱的侧面积、表面积和体积.专题:压轴题.分析:已知底面半径是7厘米,那么可以求得这个圆柱的底面积和底面周长;这里要求圆柱的高,根据已知条件,需要求得这个圆柱的侧面积,根据圆柱的表面积公式可得:侧面积=表面积﹣2个底面积,再利用圆柱的侧面积公式即可求得这个圆柱的高.解答:解:(1406.72﹣3.14×72×2)÷(2×3.14×7),=(1406.72﹣307.72)÷43.96,=1099÷43.96,=25(厘米);答:这个圆柱的高是25厘米.点评:此题考查了圆柱的表面积、侧面积、体积公式的综合应用,要求学生要熟练掌握公式的变形.例5.圆柱体积300立方厘米,侧面积100平方厘米,这个圆柱的表面积是多少平方厘米?考点:圆柱的侧面积、表面积和体积.专题:压轴题;立体图形的认识与计算.分析:根据题意,要求圆柱体的表面积关键是求出底面半径,根据圆柱体的体积公式:v=πr2h,侧面积公式:s=2πrh,求出体积与侧面积的比值,进而求出底面半径,再根据圆柱体的表面积=侧面积+底面积×2,列式解答.解答:解:圆柱的体积:圆柱的侧面积=πr2h:2πrh=,所以圆柱的底面半径:r=(300÷100)×2=3×2=6(厘米),圆柱体的表面积:3.14×62×2+100,=3.14×36×2+100,=226.08+100,=326.08(平方厘米).答:这个圆柱体的表面积是326.08平方厘米.点评:此题主要考查圆柱体的表面积的计算,关键是如何求出底面半径,可以根据圆柱的体积公式、侧面积公式,求出体积与侧面积的比值,进一步求底面半径.演练方阵A档(巩固专练)一.选择题(共15小题)1.(•徐州模拟)一圆柱体的体积是141.3立方厘米.底面周长是18.84厘米.高是()厘米.A.7.5B.5C.15考点:圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:圆柱的体积=底面积×高,已知一个圆柱的体积是141.3立方厘米,底面周长是18.84厘米,首先求出它的底面积,再用体积÷底面积=高;由此列式解答.解答:解:底面半径是:18.84÷3.14÷2=6÷2=3(厘米);141.3÷(3.14×32)=141.3÷(3.14×9)=141.3÷28.26=5(厘米).答:高是5厘米.故选:B.点评:此题主要根据已知圆的周长求圆的面积的方法求出圆柱的底面积,再用体积÷底面积=高解决问题.2.(•阳谷县)把一个棱长为20厘米的正方体木块削成一个最大的圆柱体,这个圆柱体的体积是()立方厘米.A.8000B.6280C.1884考点:圆柱的侧面积、表面积和体积.专题:压轴题;立体图形的认识与计算.分析:把一个棱长为20厘米的正方体木块削成一个最大的圆柱体,这个圆柱体的底面直径、高都等于正方体的棱长,根据圆柱的体积=底面积×高,把数据代入公式解答.解答:解:3.14×(20÷2)2×20,=3.14×100×20,=6280(立方厘米);答:这个圆柱的体积是6280立方厘米.故选:B.点评:此题主要考查圆柱的体积公式的灵活运用,关键是明白:这个圆柱体的底面直径、高都等于正方体的棱长.3.(•锦屏县)一个圆柱体和一个圆锥体等底等高,圆柱体的体积是圆锥体的()A.B.3倍C.考点:圆柱的侧面积、表面积和体积;圆锥的体积.专题:立体图形的认识与计算.分析:一个圆柱体和一个圆锥体在“等底等高”的条件下,圆柱体的体积应是圆锥体的3倍.解答:解:一个圆柱体和一个圆锥体等底等高,那么圆柱体的体积应是圆锥体的3倍;故选B.点评:此题是考查圆柱、圆锥的关系,要注意圆柱和圆锥只有在等底等高的条件下体积才有3倍或的关系.4.(•广州)一个圆柱体和一个圆椎体的底面积和高相等,已知圆柱体的体积是7.8立方米,那么圆椎体的体积是()立方米.A.23.4B.15.6C.3.9D.2.6考点:圆柱的侧面积、表面积和体积;圆锥的体积.专题:立体图形的认识与计算.分析:根据等底等高的圆锥和圆柱的体积之间的关系,如果圆锥和圆柱等底等高,那么圆锥的体积是圆柱体积的,由此解答.解答:解:7.8×=2.6(立方米),答:圆椎体的体积是2.6立方米;故选:D.点评:此题主要考查了圆锥和圆柱等底等高,圆锥的体积是圆柱体积的.5.(•鞍山)把一根长2米的圆柱形木料截成3段小圆柱,3个小圆柱的表面积之和比原来增加了0.6平方米,原来这根木料的体积是()立方米.A.1.2B.0.4C.0.3D.0.2512考点:圆柱的侧面积、表面积和体积.专题:压轴题;立体图形的认识与计算.分析:根据圆柱的切割特点可知,切成3段后,表面积比原来增加了4个圆柱的底面的面积,由此利用增加的表面积0.6平方米,除以4即可得出圆柱的一个底面的面积,再利用圆柱的体积公式即可求出这根木料的体积.解答:解:0.6÷4×2=0.3(立方米),答:这根木料的体积是0.3立方米.故选:C.点评:抓住圆柱的切割特点和增加的表面积,先求出圆柱的底面积是解决此类问题的关键.6.(•桃源县)圆锥的体积是6立方分米,与它等底等高圆柱的体积是()A.3立方分米B.2立方分米C.18立方分米考点:圆柱的侧面积、表面积和体积;圆锥的体积.专题:压轴题;立体图形的认识与计算.分析:根据等底等高的圆柱的体积是圆锥的体积的3倍,用6×3即可求出圆柱的体积.解答:解:6×3=18(立方分米),答:圆柱的体积是18立方分米.故选:C.点评:此题主要考查了等底等高的圆柱的体积是圆锥的体积的3倍.7.(•长寿区)一段重12千克的圆柱体钢柱,锻压成等底的圆锥,这个圆锥的高和圆柱的高相比()A.圆锥的高是圆柱的3倍B.相等C.圆锥的高是圆柱的D.圆锥的高是圆柱的考点:圆柱的侧面积、表面积和体积;圆锥的体积.专题:综合题.分析:把圆柱体的钢柱锻压等底的圆锥,只是形状改变了,体积不变.根据等底等高的圆锥的体积是圆柱体积的.这个圆柱和圆锥等底等体积,那么圆锥的高就是圆柱高的3倍.解答:解:根据等底等高的圆锥的体积是圆柱体积的.如果圆锥和圆柱等底等体积,那么圆锥的高是圆柱高的3倍.答:这个圆锥的高是圆柱高的3倍.故选:A.点评:此题主要根据等底等高的圆锥的体积是圆柱体积的这一关系解决问题.8.(•平坝县)等底等体积的圆柱和圆锥,如果圆锥的高是12厘米,那么圆柱的高是()厘米.A.12B.4C.36D.14考点:圆柱的侧面积、表面积和体积;圆锥的体积.专题:立体图形的认识与计算.分析:根据等底等高圆锥的体积是圆柱体积的,已知圆锥和圆柱等底等体积,圆锥的高是12厘米,那么圆柱的高是圆锥高的,由此解答.解答:解:圆锥和圆柱等底等体积,圆锥的高是12厘米,那么圆柱的高是圆锥高的,即12×=4(厘米),答:圆柱的高是4厘米.故选:B.点评:此题解答关键是理解和掌握等底等高圆锥的体积是圆柱体积的,已知圆锥和圆柱等底等体积,那么圆柱的高是圆锥高的,由此解决问题.9.(•晴隆县)36个铁圆锥,可以熔铸成等底等高的圆柱体的个数是()A.12个B.8个C.36个D.72个考点:圆柱的侧面积、表面积和体积;圆锥的体积.分析:等底等高的圆柱的体积是圆锥体积的3倍,所以在36中有几个3就能铸造成几个等底等高的圆柱,求一个数里面有几个另一个数,用除法,直接列式即可解答.解答:解:36÷3=12(个),故选:A.点评:此题考查了等底等高的圆柱的体积是圆锥体积的3倍关系的灵活应用.10.(•广汉市模拟)圆柱的体积不变,如果高扩大2倍,底面积应该()A.扩大4倍B.缩小4倍C.扩大2倍D.缩小2倍考点:圆柱的侧面积、表面积和体积.分析:圆柱的体积=底面积×高,此题根据积不变的规律:一个因数扩大几倍,另一个因数同时缩小相同的倍数,积不变,即可解答.解答:解:圆柱的体积=底面积×高,高扩大2倍,要使体积不变,根据积不变的规律可知:底面积要缩小2倍,故选:D.点评:此题考查了积不变规律在圆柱的体积公式中的灵活应用.11.(•江油市模拟)下面()杯中的饮料最多.A.B.C.考点:圆柱的侧面积、表面积和体积.分析:本题是一道选择题,要比较体积的大小,可分别计算出结果再判断选哪一个答案;也可经过分析比较用排除法解答.解答:解:用排除法分析解答:(1)要选最多的饮料,故答案D排除;(2)比较B、C的大小,因为高相等,那么底面直径大的体积就大,故B>C;(3)比较A、C的大小,因为底面直径相等,那么高大的体积就大,故C>A;因为B>C且C>A,所以B最大;故选B.点评:此类题目往往不用列式计算,灵活地运用排除法即可解答.12.(•慈利县模拟)等体积的圆柱和圆锥,圆柱的底面半径是圆锥底面半径的,圆柱的高是圆锥高的()A.B.C.4倍D.考点:圆柱的侧面积、表面积和体积;圆锥的体积.专题:立体图形的认识与计算.分析:圆柱的体积=底面积×高,圆锥的体积=×底面积×高,设圆柱的底面半径为r,圆柱的高为h,圆锥的高为H,则圆锥的底面半径为2r,依据体积相等,即可得解.解答:解:根据体积相等得:πr2h=π(2r)2H,h=H,答:圆柱的高是圆锥的高的.故选:D.点评:此题主要考查圆柱和圆锥的体积的计算方法的灵活应用.13.(•顺昌县)一个圆柱体杯中盛满15升水,把一个与它等底等高的铁圆锥倒放入水中,杯中还有()水.A.5升B.7.5升C.10升D.9升考点:圆柱的侧面积、表面积和体积;圆锥的体积.分析:由条件“一个与它等底等高的铁圆锥”可知,圆锥的体积是圆柱体积的,也就是15升的;把铁圆锥倒放入水中后,铁圆锥会排出与它等体积的水,所以杯中剩下的水的体积就是圆柱体积的(1﹣),也就是15升的(1﹣),可用乘法列式求得.解答:解:15×(1﹣)=10(升);故选C.点评:此题是考查圆柱、圆锥的关系,要注意圆柱和圆锥只有在等底等高的条件下才有3倍或的关系.14.(•中山市模拟)圆柱体和圆锥体底面周长比是2:3,体积比是8:5,圆锥与圆柱高的比是()A.16:15B.15:16C.5:6D.6:5考点:圆柱的侧面积、表面积和体积;圆锥的体积.分析:根据圆的周长公式知道底面周长的比就是半径的比,所以设圆柱的底面半径是2,则圆锥的底面半径是3,设圆柱的体积是8,则圆锥的体积是5;再根据圆柱的体积公式V=sh=πr2h与圆锥的体积公式V=sh=πr2h,得出圆柱的高与圆锥的高的关系,由此得出答案.解答:解:底面周长的比就是半径的比,所以圆柱与圆锥的底面半径之比是2:3,设圆柱的底面半径是2,则圆锥的底面半径是3,设圆柱的体积是8,则圆锥的体积是5;所以圆柱的底面积是:π×22=4π;圆锥的底面积是:π×32=9π,所以圆柱与圆锥的高的比是::=6:5,故选:D.点评:此题主要是根据圆柱的体积公式与圆锥的体积公式的推导出圆柱与圆锥的高的关系.15.(•郯城县)等底等体积的圆柱和圆锥,圆锥高是9米,圆柱高是()A.9米B.18米C.6米D.3米考点:圆柱的侧面积、表面积和体积;圆锥的体积.分析:设圆柱和圆锥的体积为V;底面积为S,由此利用圆柱和圆锥的体积公式推理得出圆柱与圆锥的高的关系,由此即可解决问题.解答:解:设圆柱和圆锥的体积为V;底面积为S,所以圆柱的高是:,圆锥的高是:,所以圆柱的高与圆锥的高的比是::=1:3,因为圆锥的高是9米,所以圆柱的高是:9÷3=3(米);故选:D.点评:根据圆柱与圆锥的体积公式得出体积相等、底面积相等的圆柱和圆锥的高的比是1:3是解决此类问题的关键.二.填空题(共13小题)16.(•玉环县)一个圆柱底面周长是12.56分米,高是6分米,它的底面积是12.56平方分米,表面积是100.48平方分米,体积是75.36立方分米.如果把这个圆柱削成最大的圆锥,那圆锥体积是25.12立方分米.考点:圆柱的侧面积、表面积和体积;圆锥的体积.分析:先根据圆柱的底面周长求出半径,然后根据圆面积计算公式求出面积.圆柱的表面积=底面积的2倍+侧面积,侧面积=底面周长(12.56分米)×高(6分米).圆柱的体积=底面积(已求出)×高(6分米).把圆柱削成最大的圆锥,则削成的圆锥和圆柱等底等高,所以圆锥的体积等于圆柱体积的(已求出)列式解答即可.解答:解:底面积是:3.14×(12.56÷3.14÷2)×(12.56÷3.14÷2),=3.14×2×2,=12.56(平方分米);表面积是:12.56×2+12.56×6,=12.56×(2+6),=12.56×8,=100.48(平方分米);体积是:12.56×6=75.36(立方分米);圆锥的体积是:75.36×,=25.12(立方分米);故答案为:12.56,100.48,75.36,25.12.点评:解答此题的知识点是:已知圆周长求半径和面积;已知底面积、底面周长和高求侧面积、表面积和体积;圆柱和圆锥之间的关系.17.(•北京)一个铁皮水桶,求做它用多少铁皮是求它的表面积,求它占空间的大小是求它的体积,求它可装多少升水是求它的容积.考点:圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:根据圆柱的表面积、底面积、体积、容积的意义进行解答.解答:解:做一个长方体的水桶需要多少铁皮是求水桶的表面积,水桶所占空间的大小是指水桶的体积,水桶能装多少水是指水桶的容积.故答案为:表面积,体积,容积.点评:此题考查了表面积、底面积、体积、容积四个概念的区别与联系.18.(•晴隆县)底面积和高分别相等的长方体、正方体、圆柱的体积一定相等.√.(判断对错)考点:圆柱的侧面积、表面积和体积;长方体和正方体的体积.专题:立体图形的认识与计算.分析:底面积和高分别相等的长方体、正方体、圆柱,它们的体积都是用底面积乘高得来,所以它们的体积也一定相等,原题说法是正确的.解答:解:底面积和高分别相等的长方体、正方体、圆柱,由于它们的体积都是用底面积×高求得,所以它们的体积也是相等的;故答案为:√.点评:此题是考查体积的计算公式,求长方体、正方体、圆柱的体积都可用V=sh解答.19.(•康县模拟)把一根5米的圆柱形钢锭截成两个小圆柱,表面积增加了25.12平方分米,这根钢锭的体积是628立方分米.考点:圆柱的侧面积、表面积和体积.分析:根据题意知道,25.12平方分米是圆柱的两个底面的面积,由此求出圆柱的底面积,进而根据圆柱的体积公式V=sh,即可求出这根钢锭的体积.解答:解:5米=50分米,25.12÷2×50,=12.56×50,=628(立方分米),答:这根钢锭的体积是628立方分米;故答案为:628.点评:解答此题的关键是,知道25.12平方分米是圆柱的两个底面的面积,再根据圆柱的体积公式解决问题.20.(•临川区模拟)圆锥的体积与圆柱的体积比等于1:3.×.(判断对错)考点:圆柱的侧面积、表面积和体积;圆锥的体积.分析:圆锥的体积等于与它等底等高的体积的,即等底等高的圆锥体的体积与圆柱体的体积的比等于1:3.解答:解:圆锥的体积等于与它等底等高的圆柱体体积的,即等底等高的圆锥体的体积与圆柱体的体积的比等于1:3.故答案为:×.点评:此题主要考查的是圆锥的体积等于与它等底等高的体积的,考查此题的目的是强调“等底等高”的圆锥与圆柱之间的关系.21.(•吴中区)有一个盖着瓶盖的瓶子里装着一些水(如图所示),请你根据图中标明的数据,计算瓶子的容积是60cm3.考点:圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:因为两个瓶中的水是一样多的,所以空着的部分也是一样多的,用第一个瓶中的水+第二个瓶中的空余部分就是总的容积.根据圆柱的容积公式:v=sh,把数据代入公式解答即可.解答:解:10×4+10×(7﹣5),=40+10×2,=40+20,=60(立方厘米);答:瓶子的容积是60立方厘米.故答案为:60.点评:此题解答关键是明确:两个瓶子中的水是一样多,所以直接利用圆柱的容积公式解答.22.(•正宁县)圆锥的体积是圆柱体积的.×.(判断对错)考点:圆柱的侧面积、表面积和体积;圆锥的体积.专题:立体图形的认识与计算.分析:因为圆柱和圆锥是在“等底等高”的条件下,圆锥的体积才是圆柱体积的,所以原题说法是错误的.解答:解:圆锥的体积是与它等底等高的圆柱体积的,原题没有“等底等高”的条件是不成立的;故答案为:×.点评:此题是考查圆柱、圆锥的关系,要注意圆柱和圆锥在等底等高的条件下有3倍或的关系.23.(•福田区模拟)一个圆柱底面半径是1厘米,高是2.5厘米,它的侧面积是15.7平方厘米.考点:圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:圆柱的侧面积=底面周长×高=2πrh,据此代入数据即可解答.解答:解:3.14×1×2×2.5=15.7(平方厘米),答:这个圆柱的侧面积是15.7平方厘米.故答案为:15.7.点评:此题考查圆柱的侧面积公式的计算应用,熟记公式即可解答.24.(•福田区模拟)一个圆柱和一个圆锥的底面积和高分别相等,圆锥的体积是圆柱体积的,圆柱的体积是圆锥体积的3倍.考点:圆柱的侧面积、表面积和体积;圆锥的体积.专题:立体图形的认识与计算.分析:等底等的圆锥的体积是圆柱体积的,圆柱的体积是圆锥体积的3倍.据此解答.解答:解:等底等的圆锥的体积是圆柱体积的,圆柱的体积是圆锥体积的3倍.故答案为:,3倍.点评:此题考查的目的是掌握等底等高的圆锥和圆柱体积之间的关系.25.(•福田区模拟)有一个圆柱体和一个圆锥体它们的底面半径相等,高也相等,圆柱的体积是6 立方分米,圆锥的体积是2立方分米.正确.考点:圆柱的侧面积、表面积和体积;圆锥的体积.分析:根据底面半径和高相等可知这个圆柱与圆锥是等底等高的,则圆柱的体积就是圆锥的体积的3倍,由此即可解答问题.解答:解:等底等高圆柱的体积就是圆锥的体积的3倍,6÷2=3,所以原题说法正确.故答案为:正确.点评:此题考查了等底等高的圆柱与圆锥的体积倍数关系的灵活应用,此题的关键是根据底面半径和高对应相等得出它们是等底等高的.26.(•淮安)新亚商城春节期间,文具店实行“买一赠一”促销活动,实际是打五折出售;把一个圆柱体的侧面展开,得到一个长31.4厘米,宽10厘米的长方形,这个圆柱体的侧面积是314平方厘米,表面积是471平方厘米.考点:圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:(1)买一赠一是指买2件商品,只需要付1件的钱数;设一件商品的单价是1,求出2件商品的总价,1件商品的总价除以1件商品的总价,求出现价是原价的百分之几十,再根据打折的含义求解.(2)根据圆柱体的侧面展开后,得到长方形的长是圆柱的底面周长,宽是圆柱的高,再依据圆柱的侧面积=底面周长×高,最后先求出圆柱底面的半径,再依据圆柱的表面积=侧面积+底面积×2解答即可.解答:解:(1)1÷(1+1)=1÷2=50%答:打五折出售.(2)侧面积:31.4×10=314(平方厘米)半径:31.4÷3.14÷2=5(厘米)表面积:314+3.14×52×2=314+157=471(平方厘米);答:这个圆柱体的侧面积是314平方厘米,表面积是471平方厘米.故答案为:五,314,471.点评:本题主要考查打折的含义和圆柱的表面积,解答本题时,依据侧面积和表面积公式代入相应的数据即可解答,关键是理解长方形的长是圆柱的底面周长,宽是圆柱的高.27.(•淮安)圆柱的侧面积加上两个底面的面积,就是圆柱的表面积.考点:圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:根据圆柱体的表面积的意义和它特征,圆柱体的特征是:上下底面是完全相同的两个圆,侧面是一个曲面,侧面沿高展开是一个长方形,它的侧面积加上两个底面积就是它的表面积.由此解答.解答:解:根据圆柱体的表面积的意义和它的特征,圆柱的侧面积加上两个底面积就是它的表面积.故答案为:侧,两个底面.点评:此题主要考查圆柱体的表面积的意义和它的特征.28.(•田林县模拟)把一个体积是9.42立方分米的圆柱体削成一个最大的圆锥体,削去的体积是6.28立方分米.√.(判断对错)考点:圆柱的侧面积、表面积和体积;圆锥的体积.专题:立体图形的认识与计算.分析:把一个圆柱体削成一个最大的圆锥体,说明圆柱与圆锥等底等高,那么圆锥的体积就是圆柱体积的,求得圆锥体积,就可以求出削去的体积.解答:解:9.42﹣9.42×=9.42﹣3.14=6.28(立方分米);答:要削去6.28立方分米.故答案为:√.点评:此题主要考查等底等高的圆柱与圆锥的关系:圆锥的体积等于与它等底等高圆柱体积的.B档(提升精练)一.选择题(共15小题)1.(•通川区模拟)把一个圆柱的底面平均分成若干个扇形,然后切开拼成一个近似的长方体,表面积比原来增加了100cm2,已知圆柱的高是10cm,圆柱的侧面积是()cm2.A.314B.628C.785D.1000考点:圆柱的侧面积、表面积和体积.分析:根据题意可知:把一个圆柱体的底面平均分成若干个扇形,然后切开拼成一个近似的长方体,表面积比原来增加了100cm2,表面积比原来增加了两个长方形的面积.这个长方形长是圆柱的高,宽是圆的底面半径.因此,圆柱的底面半径是100÷2÷10=5厘米,圆柱体的侧面积=底面周长×高;由此列式解答.解答:解:圆柱的底面半径是:100÷2÷10,=50÷10,=5(厘米);圆柱的侧面积是:2×3.14×5×10,=31.4×10,=314(平方厘米);答:圆柱的侧面积是314平方厘米.故选:A.点评:此题主要考查圆柱的侧面积的计算,解答关键是理解把圆柱切拼成近似长方体,表面积比原来增加了两个长方形的面积.每个长方形的长等于圆柱的高,宽等于底面半径;再根据侧面积公式解答即可.2.(•温江区模拟)一个底面直径是4厘米的圆柱,侧面展开是一个正方形,则这个圆柱的体积是()立方厘米.A.4πB.4π2C.16πD.16π2考点:圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:根据圆柱的侧面展开图特征可知,这个正方形的边长等于圆柱的底面周长和高,由此根据圆柱的体积公式即可解答问题.解答:解:底面半径是:4÷2=2(厘米)圆柱的底面积:π×22=4π(平方厘米);圆柱的高(即圆柱的底面周长):π×2×2=4π(厘米);圆柱的体积:4π×4π=16π2(立方厘米).答:这个圆柱的体积是16π2立方厘米.故选:D.点评:解答此题的关键是根据侧面展开图是一个正方形,明确圆柱的高与底面周长相等.3.(•延边州)计算一个圆柱形无盖水桶要用多少铁皮,应该是求()A.侧面积B.侧面积十1个底面积C.侧面积十2个底面积D.体积考点:圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:根据圆柱的特征,圆柱的上、下底面是完全相同的两个圆,侧面是一个曲面,侧面展开是一个长方形,这个长方形的长等于圆柱的底面周长,宽等于圆柱的高.根据题意可知,因为铁皮水桶无盖,因此计算做一个无盖的圆柱形铁皮水桶需要多少铁皮,其实就是计算水桶的侧面积和一个底面积的和.解答:解:因为铁皮水桶无盖,因此计算做一个无盖的圆柱形铁皮水桶需要多少铁皮,其实就是计算水桶的侧面积和一个底面积的和.故选:B.点评:此题主要考查圆柱的特征,明确水桶无盖.。

圆柱体的体积与表面积应用题

圆柱体的体积与表面积应用题

圆柱体的体积与表面积应用题在日常生活中,我们经常会遇到与圆柱体相关的问题,尤其是涉及到其体积和表面积的计算。

本文将通过应用题的方式,深入探讨圆柱体的体积和表面积,并解答如何应用这些知识来解决实际问题。

问题一:水桶的容积小明家的水桶是一个圆柱体,它的底面半径为30厘米,高为80厘米。

请问这个水桶能够储存多少水?解答:首先,我们需要计算水桶的体积。

根据圆柱体的体积公式V = πr²h,其中V表示体积,π约等于3.14,r表示半径,h表示高度。

将给定的数据代入公式:V = 3.14 * 30² * 80计算得到水桶的体积为:V ≈ 226,080立方厘米所以,小明家的水桶能够储存约226,080立方厘米的水。

问题二:涂料的使用量某栋楼房的墙面需要刷漆,它是由两个圆柱体组成,高度均为3米。

第一个圆柱体的底面半径为4米,第二个圆柱体的底面半径为6米。

涂料的使用量应该是多少?解答:要计算涂料的使用量,我们需要先计算这两个圆柱体的表面积,再将它们相加。

根据圆柱体的表面积公式S = 2πrh + 2πr²,其中S表示表面积,π约等于3.14,r表示半径,h表示高度。

第一个圆柱体的表面积:S₁ = 2 * 3.14 * 4 * 3 + 2 * 3.14 * 4²计算得到第一个圆柱体的表面积为:S₁ = 226.08平方米第二个圆柱体的表面积:S₂ = 2 * 3.14 * 6 * 3 + 2 * 3.14 * 6²计算得到第二个圆柱体的表面积为:S₂ = 452.16平方米两个圆柱体的表面积之和为:S = S₁ + S₂ ≈ 226.08 + 452.16 ≈ 678.24平方米因此,涂料的使用量应为约678.24平方米。

通过以上应用题的解答,我们可以看到圆柱体的体积和表面积知识在实际问题中的应用。

当我们需要计算水桶的容积或者涂料的使用量时,可以通过合适的公式和计算方法得出准确的结果。

六年级下学期数学 圆柱的表面积和体积 应用题训练30题

六年级下学期数学 圆柱的表面积和体积 应用题训练30题

圆柱的表面积和体积应用题训练30题1、将一个边长为5分米的正方形纸片卷成圆柱筒,这个圆柱的侧面积是多少平方分米?2、压路机的前轮是圆柱形,底面直径1.2米,轮宽1.8米。

前轮滚动一周,压过的路面的面积是多少平方米?3、压路机的前轮是圆柱形,底面直径1米,轮宽1.5米。

前轮滚动一周,压过的路面的面积是多少平方米?4、一段圆钢长4米,底面半径是5厘米,把他平均分成3段后,表面积增加了多少平方厘米?5、一个圆柱粮囤,如果他的高增加2米,表面积就增加62.8平方米,这个粮囤占地多少平方米?6、在一个高为6分米的圆柱形水桶里装了半桶水,把里面的水倒出12升后,剩下的水恰好占水桶容积的30%,这个水桶的底面积是多少平方分米?7、把一个横截面积为正方形的长方体,削成一个最大的圆锥,已知圆锥的底面周长是6.28厘米,高为5厘米,长方体的体积是多少立方厘米?8、一个圆柱形水池的底面直径是8米,池深2米,如果要在水池的底面和四周池壁抹上水泥,抹上水泥的面积是多少平方米?9、李阿姨做了一个圆柱形的抱枕,长80厘米,底面直径是18厘米,如果侧面用花布,底面用黄色的布,两种布各需要多少?10、一个圆柱形铁皮水桶(无盖),高12分米,底面直径是高的2/3,做这个水桶大约需要用多少铁皮?(用进一法,得数保留一位小数)11、把一个圆柱的侧面沿着高展开,得到一个边长是31.4厘米的正方形,求这个圆柱的表面积?12、一段长2米的圆柱形木料,从一段截去0.4米厚的一段后,原木料的表面积减少了1.256平方米,原来木料的表面积是多少平方米?13、将高都是1厘米,底面半径分别为3厘米、2厘米、1厘米的三个圆柱叠成一个立体图形,且这个立体图形的表面积。

14、一根2米长的圆柱形木料, 横截面的半径是10厘米, 沿横截面的直径垂直锯开, 分成相等的两块, 每块的体积和表面积各是多少?15、李明拿了一张长方形铁皮做油桶,做油桶的师傅根据铁皮的形状和大小量了量,标上了长度(如右图),你能算一算做成的这个油桶的表面积是多少吗?16、用铁皮做一个如图所示的工件(两端不封闭),需要铁皮多少平方厘米17、挖一个圆柱形蓄水池,底面半径是5米,深是4米,这个蓄水池可蓄水多少立方米?18、一个圆柱的底面半径为2厘米,侧面展开后正好是一个正方形,这个圆柱的体积是多少立方分米?19、如图,想想办法,你能否求出它的体积?(20、一个圆柱的底面面积是25平方厘米,高是10分米,它的体积是多少立方厘米?21、求下面圆柱的体积和表面积。

圆柱表面积与体积实际应用练习题精选

圆柱表面积与体积实际应用练习题精选

圆柱表面积与体积实际应用练习题精选圆柱表面积与体积实际应用练习题一选择:(在正确答案下划线)(1)一只铁皮水桶能装水多少升是求水桶的(侧面积、表面积、容积、体积)(2)做一只圆柱体的油桶,至少要用多少铁皮是求油桶的(侧面积、表面积、容积、体积)(3)做一节圆柱形铁皮通风管,要用多少铁皮是求通风管的(侧面积、表面积、容积、体积)(4)求一段圆柱形钢条有多少立方米,是求它的(侧面积、表面积、容积、体积)二、深化练习1、一个圆柱的体积是94.2平方厘米,底面直径是4厘米,它的高是多少?2、一个圆柱形水池底面直径8米,池深2米,如果在水池的底面和四周涂上水泥,涂水泥的面积有多少平方米?水池最多能盛水多少立方米?3、用铁皮制10节同样大小的通风管,每节长是5分米,底面直径是1.2分米,至少需要多少平方分米铁皮?4、一种压路机的滚筒是圆柱形的,筒宽1.5米,直径是0.8米。

这种压路机每分钟向前滚动5周。

这种压路机1分钟压路多少平方米?5、一个圆柱形蓄水池,从里面量底面直径是20米,深为5米,(1) 要在这个蓄水池的四周和底面抹上水泥,抹水泥部分的面积是多少平方米?(2) 这个蓄水池最多可以蓄水多少吨?(每立方米水重1吨)6、做一个底面直径是4分米,高是5分米的圆柱形铁皮油桶,(1) 做这个铁皮油桶,至少要用铁皮多少平方分米?( 得数用进一法保留整平方分米)(2) 这个油桶里装了4/5的油,这些油重多少千克?(每升油重0.85千克,得数保留整千克数)7、一根长4米,底面直径是4厘米的圆柱形钢材,把它锯成同样长的3段,表面积比原来增加了多少平方厘米?8、只列式不计算:用一块边长是9.42分米的正方形铁皮配上一个底面,做成一个圆柱形铁皮水桶。

(1)这个水桶的底面半径是多少?(2)做这个水桶(无盖)需要多少铁皮?(3)这个水桶最多能容纳多少升水?9、一个水杯从里面量底面直径10厘米,高15厘米,杯里的水面离杯口5厘米,这个杯子装有水多少毫升?圆柱表面积与体积实际应用练习题一.填空题。

(完整版)圆柱的表面积和体积练习题精选

(完整版)圆柱的表面积和体积练习题精选

圆柱的表面积和体积练习题精选
姓名:
一、知识归纳
求表面积:求体积:
(1)侧面积S侧=2πrh (1)底面积S底=πr2 (2)底面积S底=πr2 (2)体积 V=S底h (3)表面积S表=S侧+2S底
(1)已知圆的半径和高,怎样求圆柱的表面积和体积?
(2)已知圆的直径和高,怎样求圆柱的表面积和体积?
(3)已知圆的周长和高,怎样求圆柱的表面积和体积?
二、求下面各圆柱的表面积和体积
⑴底面积28.26平方米,高2米
⑵半径3厘米,高15厘米
⑶直径8分米,高12分米
⑷底面周长25.12米,高3米
⑸底面半径为3厘米,侧面展开图是正方形
3、一个圆柱形水池,直径16米,深1.5米。

(1)这个水池占地面积是多少?(2)在池底及池壁抹一层水泥,抹水泥部分的面积是多少?
(3)挖成这个水池,共需挖土多少立方米?
三、综合练习
1、一个无盖的圆柱形,侧面积是1884平方厘米,底面周长是28.26厘米。

做这个水桶至少要多少平方分米的铁皮?这个水桶的容积是多少立方分米?
2、压路机的滚筒是个圆柱,它的长是1.8米,滚筒横截面半径是0.8米,如果滚筒每分钟滚动12周,那么1小时可压路多少平方米?前进了多少米?
3、在直径8米的水管中,水流速度是每秒2.5米,那么5分钟流过的水有多少立方米?
4、把一个长、宽、高分别是10厘米、8厘米、5厘米的长方体铁块和一个棱长是5厘米的正方体铁块,熔铸成一个圆柱体。

这个圆柱体的底面直径是30厘米,高是多少厘米?
5、想一想,把圆锥的侧面展开会得到一个什么图形?这个图形的一些线段分别和原来圆锥的那些线段相等?怎样计算圆锥的底面积?。

圆柱、圆锥的表面积与体积练习题.

圆柱、圆锥的表面积与体积练习题.

圆柱、圆锥的表面积与的体积练习题2、计算下面图形的表面积和体积。

(单位:厘米)803、一个圆柱形奶粉盒的谋面半径是5厘米,高是20厘米,它的容积是多少立方厘米?4、把一块棱长12分米的正方体木料加工成一个体积最大的圆柱体,这个圆柱体的体积是多少?A、底面积是1.25平方米,高3米。

B、底面直径和高都是8分米。

C、底面半径和高都是8分米。

D、底面周长是12.56米,高2米。

6、一个圆柱形的油桶,从里面量底面半径直径是4分米,高3分米,做这个油桶至少要用多少平方分米的铁皮?如果1升柴油重0.82千克,这个油桶能装多少千克的柴油?(得数保留两位小数)7、一个圆柱形水池的容积是43.96立方米,池底直径4米,池深多少米?8、一口周长是6.28米的圆柱形水井,它的深是10米,平时蓄水深度是井深的0.8倍,这口井平时的水量是多少立方米?9、一个长8分米,宽6分米,高4分米的长方体与一个圆柱体的体积相等,高相等,这个圆柱的底面积是多少?10、一段圆柱形钢材,长50厘米,横截面半径是4厘米,如果每立方厘米钢是7.9克,这段钢材的重量是多少千克?(得数保留一位小数)11、求下面图形的表面积和体积(单位:分米)12、有一段底面是环形的钢管,外圆直径是40厘米,内圆直径是20厘米,这根钢管长250厘米,求这根钢管的体积是多少立方厘米?圆柱的体积练习二1、一个圆柱的底面半径是6厘米,高是2分米,求这个圆柱的体积。

2、小刚有一个圆柱形的水杯,水杯的底面半径是5厘米,高是10厘米,有资料显示:每人每天的正常饮水量大约是1升,小刚一天要喝几杯水?3、一个圆柱形水桶,底面直径和高都是40厘米,用这个水桶容积的85%装水,每升水重1千克,桶中的水大约有多少千克?4、一个底面半径是10米的圆柱形蓄水池,能蓄水2512立方米,若再挖深2米,可蓄水多少立方米?5、一个圆柱形油桶,内底面直径是40厘米,高是50厘米,它的容积是多少升?如6、一个圆柱形玻璃杯底面半径是10厘米,里面装不水,水的高度是12厘米,把一小块铁块放进杯中,水上升到15厘米,这块铁块重多少克?(每立方厘米铁重7.8克)7、下图是一个长15厘米,宽6厘米、高15个底面半径为5厘米的圆柱形空洞,求这个零件的体积。

人教版六年级数学——圆柱的表面积、体积知识点+练习

人教版六年级数学——圆柱的表面积、体积知识点+练习

圆柱的表面积应用类型一:利用圆柱表面积解决实际问题例1:一顶圆柱形厨师帽,高30 cm,帽顶直径20cm。

做这样一顶帽子至少要用多少平方厘米的面料?(得数保留整十数。

)1、一种没有盖的圆柱形铁皮水桶,底面周长是12.56 dm,高是6 dm。

做一对这样的水桶大约需要铁皮多少平方分米?例2:制作一截底面直径是6cm,长是40cm的烟囱,至少要用多少平方厘米铁皮?2、一个刷油漆的滚简长为1.4 dm,直径为5 cm。

如果它向一个方向滚动100 周,能刷墙多少平方分米?类型二:运用图示法解决圆柱的高增加(或减少)引起表面积的变化问题例3、一根圆柱形木料的底面半径是0.3m,长是2m。

将它截成4段,这些木料的表面积比原木料增加了多少平方米?例4、一个高为25cm的圆柱,截去高为5cm的小圆柱后,圆柱的表面积减少了31.4cm,原来圆柱的表面积是多少平方厘米?3、把一根长是2m,底面直径是3dm的圆柱形木材锯成3段,得到的3个小圆柱的表面积总和比原来增加了多少平方分米?4、一个高为10 cm的圆柱,如果它的高增加2cm,那么它的表面积就增加125.6㎡,原来这个圆柱的表面积是多少?类型三:组合图形的面积例5、如图是一种钢制的配件,计算它的表面积。

(单位:cm)5、要将路灯柱(如右图,圆柱的下底面不刷漆)漆上白色的油漆,要漆多少平方米?街心花园有30 个这样的灯柱,如果油漆灯柱每平方米人工费5 元,一共需要人工费多少元?圆柱的体积知识点一:理解圆柱的体积的意义一个圆柱所占空间的大小叫做这个圆柱的体积。

比较拼成的长方体与原来的圆柱的关系将圆柱切拼成近似的长方体,形状变了,但体积不变。

(2)推导圆柱体积的计算公式长方体的体积=底面积x 高 圆柱的体积 = 底面积x 高 如果用V 表示圆柱的体积,S 表示圆柱的底面积,h 表示圆柱的高,那么圆柱的体积计算公式用字母表示为:V=Sh 。

归纳总结:计算圆柱的体积的基本方法。

圆柱表面积与体积的应用题

圆柱表面积与体积的应用题

圆柱表面积与体积的应用题圆柱的表面积与体积练一、填空。

1、圆柱的表面积=2πrh+2πr^2;圆柱的体积=πr^2h,用字母表示:V=πr^2h。

2、已知一个圆的半径是2厘米,高是5厘米,它的底面积是4π平方厘米。

侧面积是20π平方厘米,体积是20π/3立方厘米。

二、分别求下面圆柱的表面积和体积。

(单位:cm)1、半径为3,高为10,表面积为94.25π平方厘米,体积为90π立方厘米。

2、直径为8,高为6,表面积为100π平方厘米,体积为96π/3立方厘米。

3、半径为5,高为12,表面积为310π平方厘米,体积为300π/3立方厘米。

三、解决问题。

1、将两个长8厘米,宽5厘米,高4厘米的长方体铁块铸造成一个底面积为40平方厘米的圆柱体,它的高是5厘米。

2、一个圆柱体钢材,底面半径是4厘米,长是2米,熔铸成横截面面积是4平方厘米的长方体的钢材,这个长方体的长是50厘米。

3、将一个长6分米的圆柱型钢材切割成2节小圆柱体后,表面积比原来增加了20平方厘米。

这两节钢材共重2.34千克。

4、将一个长60厘米的圆柱体钢材切割成3节,得到3个小圆柱体钢材,这时表面积比原来增加了40平方厘米。

原来的钢材重18.48千克。

5、把3个高相等底面半径都是10厘米的圆柱形盒子叠放在一起。

每个盒子体积是100π/3立方厘米。

6、底面直径是4米,高是6米的一个圆柱,沿着底面直径把圆柱切成两半,表面积增加了24π平方米。

7、一个棱长是6厘米的正方体木块,削成一个体积最大的圆柱体,这个圆柱体的体积是54π/4立方厘米。

8、一个长方体木块,长10厘米宽8厘米高4厘米,削成一个圆柱,削成圆柱体积最大是100π/3立方厘米。

圆柱练习题大全

圆柱练习题大全

圆柱练习题大全圆柱是几何学中的一个重要概念,常常在数学和物理学的学习中出现。

本文将为大家提供一系列的圆柱练习题,以帮助读者更好地理解和掌握圆柱的相关知识。

练习题一:计算圆柱的体积已知一个圆柱的半径为 r,高度为 h,请计算其体积 V。

解析:圆柱的体积公式为V = πr^2h,其中π 取近似值3.14。

练习题二:计算圆柱的表面积已知一个圆柱的半径为 r,高度为 h,请计算其表面积 S。

解析:圆柱的表面积由三部分组成:底面积、侧面积和顶面积。

底面积为πr^2,侧面积为2πrh,顶面积为πr^2。

因此,圆柱的表面积公式为S = 2πr^2 + 2πrh。

练习题三:已知圆柱的体积求半径已知一个圆柱的体积为 V,高度为 h,请计算其半径 r。

解析:通过圆柱的体积公式V = πr^2h,可以得到半径 r 的计算公式为r = √(V / (πh))。

练习题四:已知圆柱的体积求高度已知一个圆柱的体积为 V,半径为 r,请计算其高度 h。

解析:通过圆柱的体积公式V = πr^2h,可以得到高度 h 的计算公式为h = V / (πr^2)。

练习题五:已知圆柱的表面积求半径已知一个圆柱的表面积为 S,高度为 h,请计算其半径 r。

解析:将圆柱的表面积公式S = 2πr^2 + 2πrh 改写为关于半径 r 的方程,然后求解该方程即可。

练习题六:已知圆柱的表面积求高度已知一个圆柱的表面积为 S,半径为 r,请计算其高度 h。

解析:将圆柱的表面积公式S = 2πr^2 + 2πrh 改写为关于高度 h 的方程,然后求解该方程即可。

练习题七:已知圆柱的体积和表面积求半径已知一个圆柱的体积为 V,表面积为 S,请计算其半径 r。

解析:根据题意,可以得到两个方程:V = πr^2h 和S = 2πr^2 +2πrh。

将这两个方程联立,然后求解该方程组,即可得到半径 r。

练习题八:已知圆柱的表面积和高度求半径已知一个圆柱的表面积为 S,高度为 h,请计算其半径 r。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆柱表面积与圆柱圆锥体积实际应用练习题精选一、选择:(在正确答案下划线)
(1)一只铁皮水桶能装水多少升是求水桶的(侧面积、表面积、容积、体积)
(2)做一只圆柱体的油桶,至少要用多少铁皮是求油桶的(侧面积、表面积、容积、体积)(3)做一节圆柱形铁皮通风管,要用多少铁皮是求通风管的(侧面积、表面积、容积、体积)(4)求一段圆柱形钢条有多少立方米,是求它的(侧面积、表面积、容积、体积)
二、深化练习
1、一个圆柱的体积是94.2平方厘米,底面直径是4厘米,它的高是多少?
2、一个圆柱形水池底面直径8米,池深2米,如果在水池的底面和四周涂上水泥,涂水泥的面积有多少平方米?水池最多能盛水多少立方米?
3、用铁皮制10节同样大小的通风管,每节长5分米,底面直径1.2分米,至少需要多少平方分米铁皮?
4、一种压路机的滚筒是圆柱形的筒宽1.5米,直径是0.8米。

这种压路机每分钟向前滚动5周。

这种压路机1分钟压路多少平方米?
5、一个圆柱形蓄水池,从里面量底面直径是20米,深为5米,
(1)要在这个蓄水池的四周和底面抹上水泥,抹水泥部分的面积是多少平方米?
(2)这个蓄水池最多可以蓄水多少吨?(每立方米水重1吨) 6、做一个底面直径是4分米,高是5分米的圆柱形铁皮油桶,
(1)做这个铁皮油桶,至少要用铁皮多少平方分米?( 得数用进一法保留整平方分米)
(2)这个油桶里装了4/5的油,这些油重多少千克?(每升油重0.85千克,得数保留整千克数)
7、一根长4米,底面直径4厘米的圆柱形钢材,把它锯成同样长的3段,表面积比原来增加了多少平方厘米?
8、只列式不计算:用一块边长是9.42分米的正方形铁皮配上一个地面,做成一个圆柱形铁皮水桶。

(1)这个水桶的底面半径是多少?
(2)这个水桶的侧面积是多少?
(3)这个水桶最多能容纳多少升水?
9、一个水杯从里面量底面直径10厘米,高15厘米,杯里的水面离杯口5厘米,这个杯子有水多少升?
10、有两个等底的圆柱,第一个圆柱的高是第二个圆柱高的4/5,第一个圆柱的体积是3.2立方厘米,第二个圆柱比第一个圆柱多多少立方厘米?
11、一个零件,底面直径5厘米,高10厘米,沿着它的一条底面直径往下切,切成相同大小的两份,(1)总面积比原来增加了多少平方厘米?
(2)每半个零件的表面积是多少?体积是多少?
12、一个圆柱,表面积是345.4平方厘米,底半径是5厘米,求它的高。

13、把一个高为5厘米的圆柱从直径处沿高剖成两上半圆柱,这两个半圆柱的表面积比原来增加80平方厘米,求原来圆柱的表面积。

14、把一个圆柱底面平均分成若干个扇形,沿高切开拼成一个近似长方体,这个长方体的长是6.28厘米,高是5厘米,求它的体积。

15、把一个圆柱底面平均分成若干个扇形,沿高切开拼成一个近似长方体,这个长方体的宽是4厘米,高是5厘米,求它的体积。

16、把一个圆柱底面平均分成若干个扇形,沿高切开拼成一个近似长方体,这个长方体的底周长是41.4厘米,高是5厘米,求它的体积。

17、一个圆柱的侧面积是125.6平方厘米,半径是8厘米,求它的体积。

18、用一张长8厘米,宽6厘米的长方形,旋转形成圆柱,求形成的圆柱的体积。

19、用一张长12.56厘米,宽6.28厘米的长方形卷形成圆柱,求卷成的圆柱的体积。

20、一个长方体木块,长10厘米宽8厘米高4厘米,把它削成一个圆柱,求削成圆柱体积最大是多少?
21、把一个长2米的圆柱木料戴成4段,表面积增加了56.52平方厘米,求原来木料的体积
22、一个圆柱高为15厘米,把它的高增加2厘米后表面积增加25.12平方厘米,求原来圆柱的体积。

23、一个圆柱高20厘米,如果把高减少3厘米,它的表面积就减少31.68平方厘米,求原来圆柱的体积。

24、把一个底半径为5厘米的圆柱铁块放入一个底半径10厘米,高14厘米的容器里,水面上升了3厘米,求这个圆柱铁块的体积。

25、把一个底半径为5厘米的圆柱铁块放入一个底半径10厘米,高14厘米的容器里,水面上升了3厘米,求这个圆柱铁块的高。

26、甲乙两个圆柱,底半径比是3:2,相等,它们的体积比是多少?
27、甲乙两个圆柱,底面积相等,高是比是4:5,它们的体积比是多少?
28、甲乙两个圆柱,底半径比是2:3,高的比是4:5,它们的体积比是多少?
29、甲乙两个圆柱,体积比是16:25,底半径比是4:5,体积比是多少?
30、甲乙两个圆柱体积是5:6,高的比是2:3,求它们的底面积比。

六年级圆柱表面积和体积提高练习
一、表面积变化
1、一个圆柱的高减少2厘米侧面积就减少50.24平方厘米,它的体积减少多少立方厘米?
2、一个圆柱的高增加3分米,侧面积就增加56.52平方分米,它的体积增加多少立方分米?
3、一个圆柱的侧面展开是一个正方形。

如果高增加2厘米,表面积增加12.56平方厘米。

原来这个圆柱的侧面积是多少平方厘米?
4、一个圆柱的侧面展开是一个正方形。

如果高减少3分米,表面积减少94.2平方分米。

原来这个圆柱的体积是多少立方分米?
二、拼、切圆柱
1、把一个高是6分米的圆柱,沿着底面直径竖直切开,平均分成两半,表面积增加48平方分米。

原来这个圆柱的体积是多少立方分米?
2、把两个完全一样的半个圆柱合并成一个圆柱,底面半径是3厘米,表面积减少72平方厘米。

现在这个圆柱的侧面积是多少平方厘米?
3、把一个长3分米的圆柱,平均分成两段圆柱,表面积增加6.28平方分米。

原来这个圆柱体积是多少立方分米?
4、把3完全一样的圆柱,连接成一个大圆柱,长9厘米,表面积减少12.56平方分米。

原来每个圆柱的体积是多少立方厘米?
三、加工圆柱
1、一个正方体棱长是4分米,把它削成一个最大的圆柱,削去的体积是多少?
2、一个正方体棱长20厘米,把它削成一个最大的圆柱,这个圆柱的表面积是多少平方厘米?
3、一个长方体,长8分米,宽8分米,高12分米。

把它削成一个最大的圆柱,这个圆柱的体积为多少立方分米?
4、一个长方体,长8厘米,宽6厘米,高8厘米。

把它削成一个最大的圆柱,这个圆柱体积是多少立方厘米?
四、旋转圆锥
1、一个直角三角形,两条直角边分别是6厘米和9厘米,沿一条直角边旋转一周后,得到一个圆锥体,求圆锥体的体积是多少?
2、一个直角三角形,两条直角边分别是6厘米和10厘米,沿斜边旋转一周后,得到一个旋转体,求旋转体的体积是多少?
五、综合练习:
1、在一只底面半径为10厘米的圆柱形玻璃容器中,水深8厘米,要在容器中放入长和宽都是8厘米,高15厘米的一块铁块。

(1)如果把铁块横放在水中水面上升多少厘米?
(2)如果把铁块竖放在水中,水面上升多少厘米?
2、一个圆柱体的高和底面周长相等。

如果高缩短2厘米,表面积就减少12.56平方厘米,求这个圆柱的表面积。

3、一个长方形的长是5厘米,宽是2厘米,以其中的一条边为轴旋转一周,可以得到一个圆柱,圆柱体积最大是多少立方厘米?
4、一根圆柱形木材长2米,把它截成相等的4段后,表面积增加了18.84平方厘米。

截成后每段圆木的体积是多少立方厘米?
5、底面直径是20厘米的圆钢,将其截成两段同样的圆钢,两段表面积的和为7536平方厘米,原来圆钢的体积是多少立方厘米?
6、把一根圆柱形木材沿底面直径切开成两个半圆柱体,已知一个剖面的面积是960平方厘米,半圆柱的体积是3014.4立方厘米,求原来圆柱形木材的体积和侧面积。

7、一个圆柱体和一个圆锥体等底等高,它们的体积相差50.24立方厘米。

如果圆锥体的底面半径是2厘米,这个圆锥体的高是多少厘米?
8、一个菱形的两条对角线分别为4厘米和6厘米,以菱形的对角线为轴旋转,转成的立体图形的体积是()立方厘米或()立方厘米。

9、一个圆柱体和一个圆锥体的体积相等,它们底面积的比是3:5,圆柱的高8厘米,圆锥的高是()厘米。

相关文档
最新文档