7.1线段的大小比较-拓展训练
线段的大小比较完整版课件
线段的大小比较完整版课件一、教学内容本节课我们将探讨教材第三章“平面几何初步”中的第二节“线段的大小比较”。
具体内容包括:线段的定义、线段长度的度量方法、以及线段大小比较的方法。
二、教学目标1. 理解并掌握线段的概念及其性质。
2. 学会使用工具测量线段的长度,并能准确进行比较。
3. 能够运用线段大小比较的方法解决实际问题。
三、教学难点与重点教学难点:线段大小比较的方法在实际问题中的应用。
教学重点:线段的定义、测量及大小比较。
四、教具与学具准备教具:尺子、直尺、圆规、多媒体课件。
学具:尺子、直尺、练习本。
五、教学过程1. 实践情景引入通过展示一些日常生活中的实例,如操场的跑道、书本的尺寸等,引导学生理解线段的概念及其在生活中的应用。
2. 知识讲解(1)线段的定义:线段是由两个端点及这两个端点之间的所有点组成的图形。
(2)线段长度的测量:使用尺子、直尺等工具,按照一定的比例进行测量。
(3)线段大小比较:通过比较线段的长度,判断线段的大小。
3. 例题讲解例题1:比较下列线段的长度,指出较长的线段。
解答:通过直接测量或比较,得出结论。
例题2:在下列图形中,找出最长的线段。
解答:观察图形,比较各线段的长度,找出最长的线段。
4. 随堂练习发放练习题,让学生独立完成,巩固所学知识。
六、板书设计1. 线段的定义2. 线段长度的测量3. 线段大小比较4. 例题及解答5. 随堂练习七、作业设计1. 作业题目线段AB:________ 线段CD:________(2)找出下列图形中最长的线段:答案:________2. 答案(1)线段AB:________ 线段CD:________(2)最长的线段:________八、课后反思及拓展延伸1. 反思:本节课学生掌握了线段的概念、测量及大小比较,但在解决实际问题时,还需加强练习。
2. 拓展延伸:引导学生了解线段的性质,如线段的垂直平分线、线段的中点等,为后续学习打下基础。
每日一练 线段的大小比较
7.1线段的大小比较知识梳理1.联结两点的线段的,叫做两点之间的.2.两点之间,最短.3.通常,把比较两条线段的长短称作“两条线段的的比较”.达标训练一、选择题1.下列说法正确的是·······························································································()A.射线比直线短;B.经过一点可以画出一条直线;C.连接两点的线段叫两点间的距离;D.两点之间线段最短.2.下列说法正确的是·······························································································()A.延长射线AB到C;B.延长线段AB到C;C.延长直线AB到C;D.反向延长直线AB到C.3.下列说法中错误的是····························································································()A.过不重合的两点,可以画线段只有1条;B.三条线段两两相交,最多有3个交点,至少有一个交点;C.B是射线AB的端点;D.线段AB和线段BA是同一条线段.二、填空题4.如图4,图中线段可表示为.5.线段AB有个端点,射线CD有个端点,直线EF有个端点.6.若点D在线段AB的反向延长线上,则AD BD.(填“>”或“<”)7.比较线段AB与线段CD的大小时,将线段AB移到线段CD的位置,使端点A与端点C,线段AB与线段CD.这时端点B有种可能的位置情况,如果AB>CD,那么点B的位置在.8.如图5,AC+BC>AB,理由是.9.如图6,图中共有条线段,分别是.三、解答题10.如图7,已知线段a,用圆规和直尺画出线段AB,使得AB=a.11.如图8,按要求画图:①延长AD到E,使AD=DE;②连接BD;③反向延长BC到G,使GC=2GB.12.根据下列语句画出图形.①点A在直线上,点B在直线外.②点D在射线OA的反向延长线上.③点C在线段AB的延长线上,且BC=AB.。
听课记录11
时间
__2020_年__5_月_22_日,星期_五上午,第__1_节
见习教师
华依婷
班级
六(8)
学科
数学
课题
7.1线段的大小的比较
听课记录
一、线段、射线、直线
1、线段的表示方法:
Hale Waihona Puke (1)我们可以用两个大写英文字母表示一条线段的两个端点.如图,记作:线段 或线段BA
(2)用一个小写英文字母表示.如图,记作:线段 .
例题3如图,在教学楼到活动室之间有三条小路,如果把教学楼和活动室看作点,那么小路1是经过这两点的一条线段,请画出小路1,
评课意见和教学建议
华依婷老师的这节课重难点突出,条例清晰,
教态比较自然,和学生的互动可以略增加,
有些结论可以引导学生自己归纳得出。
2、线段的延长线:线段向一方延伸的部分叫做线段的延长线.
3、射线的表示方法:线段向一方无限延伸所形成的图形叫做射线.
4、直线的表示方法:线段向两方无限延伸所形成的图形叫做直线.
2、根据要求画图:
例题1如图,已知线段 ,用圆规、直尺画出线段 ,使得 = .
例题2先观察估计图中线段 , 的大小,然后用比较线段大小的方法验证你的估计,并用“ ”符号连结.
71线段的大小的比较资料
两点之间,线段最短。
课堂练习
1、A
C
B 图中有几条线段?
怎样用字母表示?
2、 A
B
C
D
图中有几条线段?最短是哪条?最长是哪条?
课堂练习
3、已知:两条线段a、b的和为14,差为6, 求线段a、b的长度。 4、按下列语句画出图形: (1)点C在线段AB上,点D在线段AB的延长线上。 (2)点P在线段AB的反向延长线上(即在线段 BA的延长线上)。
能
旧知复习
2、线段的表示法:
(1)用两个大写英文字母表示线段的两个端点,
如A
B ,记作线段AB。
(2)用一个小写英文字母表示线段的两个端点,
如
a
,记作线段a。
新课思考
1、如何比较两个同学的高矮? 如何比较两段AB 移到线段CD的位置,使端点A 与端点C重合,线段AB 与线段CD叠合, 这时端点B有几种可能的位置情况?
a
练习1、如图,已知线段长=4cm,用圆规、直尺 画出线段AB,使AB=4cm。
新课思考
例题2、先观察估计图中线段a、b的大小, 然后用比较线段大小的方法对 a、b 进行比较,并用“〈”连接。
a
b
新课知识
两点间距离的概念:
(1)如果一条线段的两个端点的位置确定了, 那么这条线段的位置就确定了,即两点确定一 条以这两点为端点的线段。 (2)联结两点的线段的长度叫做两点之间的
7.1线段的大小比较
旧知复习
1、出示一些直线、射线、线段,你能辨别吗? 试一试,说说他们的区别。
图形 表示法 端点 延伸 能否 能否比 个数 情况 延长 较大小
直线
A
B 直线AB 0
线段的大小比较完整版课件
线段的大小比较完整版课件一、教学内容本节课我们将探讨教材第五章“几何初步”中的第二节“线段的大小比较”。
详细内容包括线段的定义、线段长度的测量方法,以及如何直观和准确地比较两条线段的大小。
二、教学目标1. 理解线段的定义,掌握线段长度的测量方法。
2. 学会直观和准确地比较两条线段的大小,并运用到实际问题中。
3. 培养学生的观察能力、逻辑思维能力和实际操作能力。
三、教学难点与重点教学难点:线段大小的准确比较。
教学重点:线段的定义、长度测量方法,以及线段大小比较的方法。
四、教具与学具准备1. 教具:多媒体课件、直尺、三角板、圆规等。
2. 学具:直尺、三角板、练习本等。
五、教学过程1. 实践情景引入:展示一张地图,提出问题:“如何比较地图上两个城市之间的距离?”引导学生思考线段大小比较的实际意义。
2. 知识讲解:a. 线段的定义及性质。
b. 线段长度的测量方法。
c. 线段大小比较的方法。
3. 例题讲解:a. 通过实际操作,比较两条线段的大小。
b. 讲解如何利用工具(如直尺)进行线段长度的测量和比较。
4. 随堂练习:a. 让学生测量并比较教室内不同物品的长度。
b. 在练习本上完成线段大小比较的题目。
六、板书设计1. 线段的定义及性质2. 线段长度的测量方法3. 线段大小比较的方法a. 直观比较b. 工具测量比较七、作业设计1. 作业题目:AB = 5cm,CD = 8cm;EF = 12cm,GH = 15cm。
课本的长度、宽度;笔的长度;课桌的高度。
2. 答案:a. CD > AB,GH > EF。
b. 略。
八、课后反思及拓展延伸1. 反思:本节课学生对线段大小比较的方法掌握程度,以及在实际操作中的表现。
2. 拓展延伸:a. 探讨线段长度与距离的关系。
b. 研究线段大小比较在生活中的应用,如测量地图上的距离、比较物品长度等。
重点和难点解析1. 线段大小比较的方法。
2. 实际操作中测量线段长度的准确性。
线段的大小比较说课稿
线段的大小比较说课稿线段的大小比较说课稿作为一名优秀的教育工作者,通常需要准备好一份说课稿,借助说课稿可以有效提升自己的教学能力。
那么问题来了,说课稿应该怎么写?以下是小编收集整理的线段的大小比较说课稿,欢迎阅读与收藏。
首先,我对本节教材进行一些分析一、教材结构与内容简析本节内容在全书及章节的地位:《线段的大小比较》是初中数学新教材六年级第七章第一节。
在此之前,小学时学生已学习了初步的关于射线、直线、线段的相关知识,这为过渡到本节的学习起着铺垫作用。
本节内容是第七章的开篇内容,是之后学习线段的和、差、倍;角;长方体的认识等几何知识的基础,因此,在初中几何教学中占据比较重要的地位。
数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图培养学生科学严谨的学习态度,激发学生的探究意识,初步渗透分类思想。
二、教学目标根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:[知识与技能]:1、初步掌握线段大小比较的一般方法;2、掌握用尺规画一条线段等于已知线段,了解一些基本的作图语句;3、理解“两点之间线段最短”的意义。
[过程能力与方法]:1、经历用叠合法比较两条线段大小关系的过程,并会用数学符号表示它们的大小关系;2、通过使用尺规等作图工具,掌握线段的画法,初步体验用作图语言叙述画法。
[情感态度与价值观]:1、经历将实际问题抽象为数学问题的过程,体会数学的应用价值,培养应用数学的意识;2、培养科学严谨的学习态度,初步养成积极探究的精神。
三、教学重点、难点本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点。
[重点]:探求比较线段的大小的方法;学会用尺规等作图工具画线段。
对于本节课教学重点通过课件演示、动手演示来突出。
[难点]:用尺规法比较线段的大小;“两点之间线段最短”的应用。
对于教学难点准备通过实物教具演示来突破。
七年级数学上册《线段的大小比较》教案、教学设计
3.培养学生合作交流、共同解决问题的能力,提高学生的团队协作水平。
教学设想:
1.创设情境导入:通过生活中与线段长度相关的实例,如测量课桌、黑板的长度,引发学生对线段大小比较的兴趣,从而导入新课。
2.探究活动设计:
a.采用直观演示法,让学生观察不同长度的线段,引导学生发现线段长短的比较方法。
1.学生对线段概念的理解程度,了解他们在认知上的盲点和误区,以便有针对性地进行教学。
2.学生在数学思维能力上的差异,关注那些思考速度较慢、逻辑思维较弱的学生,给予他们更多的鼓励和支持。
3.学生在合作交流中的表现,培养他们的团队协作能力,让他们在互动中共同成长。
4.学生在情感态度上的变化,关注学生对数学学科的兴趣和自信心,激发他们的学习动力。
三、教学重难点和教学设想
(一)教学重点
1.线段的大小比较方法的掌握与应用,使学生能够灵活运用不同的方法比较线段长短。
2.培养学生运用线段知识解决实际问题的能力,提高学生的应用意识和实践能力。
3.培养学生严谨的逻辑思维和空间想象能力,为后续几何学习打下坚实基础。
(二)教学难点
1.线段比较方法的灵活运用,特别是间接比较和尺规作图方法的掌握。
3.思考题:布置一些需要学生进行推理和证明的题目,例如,证明两条线段的中点连线等于第三条线段的一半。这类题目旨在锻炼学生的逻辑思维和推理能力。
4.创新题:鼓励学生发挥想象力,设计自己的线段比较问题,并尝试使用不同的方法解决。这样的题目可以激发学生的创新意识,提高他们的问题解决能力。
5.小组合作项目:布置一个小组合作任务,要求学生共同完成一份关于线段大小比较的研究报告,内容包括线段比较的历史、不同文化中的线段比较方法、线段比较在现实生活中的应用等。这样的项目有助于培养学生的团队合作能力和研究能力。
7.1线段的大小的比较
A BBAA CA BBAla 7.1线段的大小的比较学习目标:1、初步掌握线段大小比较的一般方法并会用数学符号表示;2、会用直尺、圆规等学习工具画一条线段等于已知线段,初步体验基本的作图语句;3、掌握两点间距离的概念,并理解“两点之间线段最短”的意义.学习过程:一、线段、射线、直线1、线段的表示方法:(1)我们可以用两个大写英文字母表示一条线段的两个端点.如图,记作:线段AB或线段BA(2)用一个小写英文字母表示.如图,记作:线段a.2、线段的延长线:线段向一方延伸的部分叫做线段的延长线.延长线段AB或反向延长线段BA.延长线段BA或反向延长线段AB.3、射线的表示方法:线段向一方无限延伸所形成的图形叫做射线.如图,记作:射线AC.点A叫做射线AC的端点,一条射线只有一个端点.如果只显示端点A,不显示点C,依然用两个大写英文字母表示.如图,记作射线AC.4、直线的表示方法:线段向两方无限延伸所形成的图形叫做直线.如图,记作:直线AB或直线BA如果不显示点A、点B,依然用两个大写英文字母表示.如图,记作:直线AB或直线BA也可以用一个小写英文字母表示.如图,记作:直线l.试一试:1、填表:BbaA Ba2、根据要求画图:如图,已知线段AB ,延长线段AB 到点C ,使AC=5cm ,反向延长线段AB 到点D ,使AD=2cm.操作:画线段AB 和CD ,使端点...A .与端点...C .重合..,线段..AB ..与线段...CD ..叠合... 这时端点B 有几种可能的位置情况?例题1 如图,已知线段a , 用圆规、直尺画出线段AB , 使得AB =a .例题2 先观察估计图中线段a ,b 的大小,然后用比较线段大小的方法验证你的估计,并用“ ”符号连结.例题3 如图,在教学楼到活动室之间有三条小路,如果把教学楼和活动室看作点,那么小路1是经过这两点的一条线段,请画出小路1,(1)CD(2)(3)活动室教学楼◆ _____确定一条____________________线段.◆ 联结两点的________的_________叫做两点之间的________. ◆ _______________________最短. 巩固练习:1、比较下列各图中两条线段AB 与CD 的大小.2、已知线段AB 、CD ,AB>CD,(1)如果将CD 移动到AB 的位置,使点C 与点A 重合,CD 与AB 叠合,那么点D 的位置状况是__________________(2)如果将AB 移动到CD 的位置,使点A 与点C 重合,AB 与CD 叠合,那么点B 的位置状况是__________________ 3、下列叙述正确的是( )A 、联结两点的直线叫做两点之间的距离.B 、联结两点的线段叫做两点之间的距离.C 、联结两点的直线的长度叫做两点之间的距离. D 、联结两点的线段的长度叫做两点之间的距离.*7.2 画线段的和、差、倍学习目标:1、能用等式表示两条线段的和、差、倍关系并掌握用直尺、圆规作线段的和、差、倍;2、理解线段的中点的意义,能用数学符号语言表示线段的中点并能用直尺、圆规作线段中点; 学习过程: 一、新课探索1、观察:如图所示,A 、B 、C 三点在一条直线上, 1)图中有几条线段?2)这几条线段之间有怎样的等量关系?两条线段可以_____________,它们的和(或差)也是___________,其长度等于这两条线段_________的和(或差). 练习1:(书第90页练习7.2第1题) 例题1:如图,已知线段a 、b , (1)画出一条线段 , 使它等于a b +; (2)画出一条线段 , 使它等于a b -.解:(1) ①画___________;ab②在_________上顺次截取______________________;(2) ①画_____________;②在___________上截取_______,在_________ 上截取___________;思考1:已知线段a ,类比乘法的意义,你能讲出2a ,3a ,……,na (n 为正整数,且1n >)的含义吗?例题2 如图,已知线段a 、b ,画出一条线段,使它等于2a b -.思考2:如图,已知线段AB ,你能否在线段AB 的上找一点C ,使点C 把线段AB 分成相等的两条线段?将一条线段分成两条相等线段的点叫做这条线段的中点.若已知点M 是线段AB 的中点,你能得到哪些等量关系?abABABMAB( )练习2:(书第90页练习7.2第2题)练习3(书第91页练习7.2第4题)*7.3 角的概念与表示学习目标:1、知道角的有关概念;2、掌握角的四种表示方法;3、在用含方向角的射线表示方向的过程中,感受实际问题与数学问题间的互相转化. 学习过程: 一、角的概念角是具有公共端点的两条射线组成的图形.角的形成过程:( )操作:把圆规的两只脚由并在一起到逐渐把一只脚旋转到另一个位置.角是由___________绕着它的端点旋转到另一个位置所成的图形.初始位置的那条射线叫做角的________,终止位置的那条射线叫做角的_________.角的始边转动到角的终边所经过的平面部分,叫做角的内部,简称角内,余下部分是角的外部,简称角外.二、角的表示方法(1)分别说出∠ABC 、∠POQ 、∠XYZ 的顶点和边. (2)B CEFHG西东特别地:我们书中所说的角,如不加以说明是指小于平角的角.(周角除外)反馈练习:1、用一个大写字母或一个希腊字母表示图中的角.2、图中共有()个角,并分别表示出来.三、方位角读法:1、点A在点O的_____________方向2、点B在点O的_____________方向3、点C在点O的_____________方向4、画出表示南偏东50°的射线OP7.4角的大小的比较、画相等的角(1)学习目标:1、掌握角的大小的比较方法;2、会使用量角器画角.学习过程:一、学习新课:1、怎样比较两个角的大小?方法一:_______________2、使用量角器的操作方法:(1)将量角器的中心点与角的顶点重合;(对中)(2)将量角器的零度刻度线与角的一边重叠;(对边)(3)看角的另一边落在量角器的什么刻度线上。
《线段的大小的比较》说课稿
《线段的大小的比较》说课稿(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、合同协议、总结报告、演讲致辞、规章制度、自我鉴定、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as workplace documents, contract agreements, summary reports, speeches, rules and regulations, self-assessment, emergency plans, teaching materials, essay summaries, other sample essays, etc. If you want to learn about different sample essay formats and writing methods, please stay tuned!《线段的大小的比较》说课稿《线段的大小的比较》说课稿作为一名专为他人授业解惑的人民教师,通常需要准备好一份说课稿,通过说课稿可以很好地改正讲课缺点。
浙教版数学七年级上《线段的长短比较》精品教案
《线段的长短比较》是浙教版数学七年级上的重要内容之一、通过这个教学内容,学生将学会如何更好地比较线段的长短,并掌握这个技巧在实际问题中的应用。
教学目标:1.理解并掌握线段的定义和相关术语。
2.学会使用尺规作图方法来比较线段的长短。
3.能够运用线段的长短比较方法解决实际问题。
教学准备:1.教师准备教学课件。
2.学生准备纸张、铅笔、尺子。
教学步骤:一、导入新知(15分钟)1.教师出示两个线段,让学生通过直观感受比较线段的长短。
2.引导学生关注线段长度的差异和大小关系,提出两个线段的长短比较问题。
二、引入概念(20分钟)1.介绍线段的定义和相关术语,如起点、终点、长度等。
2.教师出示两个线段AB和CD,并引导学生比较两个线段的长短。
3.通过尺规作图方法,教师将线段AB和CD都延长到相同方向上的同一端点上,再比较两个线段的长短。
4.学生跟随教师的指导进行实际操作,并分析结果。
三、巩固练习(30分钟)1.分组练习:教师提供一些线段的长短比较题目,让学生分组完成。
2.学生之间进行讨论和讲解,解答问题并互相补充。
3.教师对学生的答案进行批评和指导。
四、拓展应用(20分钟)1.引导学生思考线段的长短比较在实际生活中的应用。
2.提供一些实际问题,让学生应用线段的长短比较方法解决问题。
3.学生个别或小组完成问题,并进行讲解和讨论。
五、总结归纳(15分钟)1.教师对本节课的学习内容进行总结和归纳,梳理重点和难点。
2.学生根据教师的指导,将本节课的重点知识点记录在笔记本上。
3.学生提问和教师解答。
六、作业布置(5分钟)1.教师布置相关的作业,巩固和拓展学生对线段长短比较的理解。
2.确认作业要求和提交时间。
教学反思:通过这个教案,学生将能够更好地理解和掌握线段的长短比较方法。
通过尺规作图的实际操作,学生将能够更直观地感受到线段的长短比较过程。
并且,通过实际问题的应用拓展,学生将运用所学知识解决实际问题。
这样的教学设计,既注重了理论的学习,又切实地运用到实际问题中,能够提高学生的学习兴趣和能力。
线段比较大小的教案
线段比较大小的教案线段比较大小一、教学目标:1.知道比较线段大小的方法和规则。
2.能够通过线段长度的大小进行比较。
3.能够熟练地进行线段大小的比较。
4.能够通过练习来提高对线段大小的比较能力。
二、教学重点:1.理解线段大小进行比较的基本规则。
2.掌握线段大小比较的方法。
3.练习线段大小比较,提高比较能力。
三、教学难点:1.熟练掌握线段大小较的方法及其应用。
2.通过举例进行线段大小比较。
四、教学过程:1.线段比较大小的规则先介绍线段比较大小的基本规则,即在同一条直线上,线段长度越长,线段就越大;在不同的直线上,则无从比较。
2.线段大小的比较方法(1)直接法直接法是将线段的两端点连线,然后根据距离大小进行比较。
如图,线段AB和线段CD都在同一条直线上,且AB的长度大于CD,因此可以推断出AB > CD。
(2)分段法如果线段是在一些不同的直线上,则可以通过分段法来比较线段的大小。
对直线进行切割,每个线段就成为一份。
然后可以将每个线段的长度进行比较,从而确定线段大小的排列顺序。
如图,将线段AB、BC、CD、DE和EF分段后,就可以对其长度进行比。
因此,可以得出EF > DE > CD > BC > AB。
(3)比率法如果两个线段在不同的直线上,无法直接比较其长度,那么就可以使用比率法。
比率法是将两个长度不同的线段分别缩放到相同的长度,然后比较其缩放比率的大小,从而得出线段的大小顺序。
如图AB和CD在不同的直线上,无法直接比较大小。
因此,可以通过将CD缩放(伸长)到与AB相同的长度,然后比较缩放比例的大小,确定CD < AB。
3.练习通过练习来巩固线段大小比较的基本方法和规则。
(1)比较线段大小1.比较线段AB和线段AC2.比较线段DE和线段BC3.比较线段GJ和线段HL(2)确定线段的大小排列顺序ABCDEF中各线段的长度如下图所示,请按大小从大到小的顺序排列。
注:本练习的大量练习题目将在教材中提供。
上海版六年级数学线段与角的画法全章内容
7.1 线段的大小的比较一、课前思考怎样比较两条线段的大小?什么叫两点之间的距离?在所有连接两点的线中, 什么线最短?二、课堂练习(1)填空: 比较线段AB, CD大小的方法有:___________比较法:如果AB=acm, CD=bcm若a>b则AB____CD, 若a<b则AB__CD.(2)___________比较法:将端点___与端点___重合, 线段___与线段___叠合, 如果B点在线段CD上, 则AB____CD, 如果点B与点D重合, 则AB____CD, 如果点B在线段CD的延长线上则AB___CD.2. 按要求画图, 并写全画法.已知线段a, 用圆规、直尺画出线段AB, 使AB=a.a解(1)画射线________;(2)在射线_______上截取_______.________就是___________.三、课后测试知识巩固1.根据要求画图, 并理解文字语言和图形语言的对应关系:(1)点C在线段AB上;(2)线段MN上有一点P;(3)点P在线段CD的延长线上;(4)点P在线段DC的延长线上;2.根据要求做题, 并理解文字语言、图形语言和数学符号语言的对应关系. (1)用两种形式的文字语言表达点B与线段CD的关系:BC D①_________________________________________________________________;②_________________________________________________________________. 数学符号语言(用“>”、“<”或“=”填空): CD______BC,BD______CD. (2)用两种形式的文字语言表达点P与线段MN的关系:NM P①_________________________________________________________________;②_________________________________________________________________. 数学符号语言(用“>”、“<”或“=”填空): MP_____MN,NP_____MP.(3)用两种形式的文字语言表达点M与线段EF的关系:M FE①_________________________________________________________________;②_________________________________________________________________. 数学符号语言(用“>”、“<”或“=”填空): MF_____EF,ME_____MF.3.用直尺、圆规按要求画图, 理解比较线段大小的方法:在射线OC上截取OA=a, OB=b.OC比较a与b的大小: a_____b.4.根据要求做题, 并理解叠合的意义.已知线段AB、CD, 如果将AB移动到CD, 使点A与点C重合, CD与AB重叠, 则点B的位置状况怎样?点D的位置状况怎样?A BCD第4题图从点A到点B 有4条路可以到达, 你认为哪条路最短?理由是什么?BA第5题图知识拓展铁路上海站与南京站之间途经四个车站, 车站应准备多少种不同的车票?7.2画线段的和、差、倍一、课前思考1.理解截取、顺次截取的意义.你会画线段的和(a+b)、差(a-b)、倍(2a)吗?你会用尺规作图法作图法作线段的中点吗?“画图”与“作图”的工具要求有点不同, 你明白吗?二、课堂练习 1.根据如图填空D A _B C_(1) AD=___+BC+___=AB+___=CD+___ (2) AB=AD-___;(3) AC=BC+___=AD-___; BD-CD+AB=___.2、如图:已知点C是线段AB的中点, AC=___, AB=2___=2___, AB=___=___.CAB第2题图三、课后测试知识巩固1.如图, A.B.C.D.四点在一条直线上, 图中有( )条线段.ADCB第1题图2.根据所示图形填空, 理解截取、顺次截取的意义, 熟练掌握基本画图语句. 已知线段a 、b, 画出一条线段, 使它等于a+b.ab第3题图 解: (1)画射线OP ;(2)在射线OP 上顺次截取( )=a, ( )=b. 线段( )就是所要画的线段.POBA3.根据所示图形填空, 理解截取、顺次截取的意义, 熟练掌握基本画图语句. 已知线段a 、b, 画出一条线段, 使它等于a-b.a b解法一: (1)画射线OP;(2)在射线OP上截取()=a, 在线段()上截取()=b.线段()就是所要画的线段.O B AP解法二: (1)画射线OP;(2)在射线OP上截取()=a, 在线段()上截取()=b.线段()就是所要画的线段.O D CP4.如图, 点M是线段AB上的一点, 点C是线段AM的中点, 点D 是线段MB的中点, 已知AM=8cm, MD=2cm.根据图形填空:A BC M D第4题图AC=( )cm,BM=( )cm,BC=( )cm,AB=( )cm,CD=( )cm,CD=( )AB.5.根据所示图形填空, 理解截取、顺次截取的意义, 熟练掌握基本画图语句.已知线段a、b、c, 画出一条线段, 使它等于2a-b+c.a b c第5题图解: (1)画射线OP;(2)在射线OP上顺次截取()=a, ()=b, ()=c;(3)在线段()上截取CD=b.线段()就是所要画的线段.O A D B CP知识拓展6.A、B、C、D四个小区在同一条路上, 为了给小区的居民出行带来方便准备在这条路上增设一个车站, 车站应建在哪里使车站与各个小区的距离和最短,请同学们设计出方案.C DA B7.3角的概念与表示一、课前思考1.角的顶点、边、外部、内部, 你理解吗?2.角有四种表示方法, 是不是任何一个角都可以用四种方法表示?你会表示两个点的相对方位吗?二、课堂练习1.如下左图所示, 把图中用数学表示的角, 改用大写字母表示分别是________.用阴影部分表示角的外部.三、课后测试知识巩固1.分别用三种形式表示下图中的角:B2.分别说出∠ABC.∠MON 、∠PCQ 的顶点和边.3.把下图中小于平角的角用三个大写字母的形式表示出来:ABOMABE F4.下图中, 标明了上海、哈尔滨、呼和浩特、西安与北京的大致方位, 请你用规范的数学用语写出上海、哈尔滨、呼和浩特、西安分别在北京的什么方向?5.图中共有()个角.能用一个大写字母表示的就用一个大写字母表示出来, 否则就用三个大写字母表示出来.ABCFED6.图中共有.. )个角.能用一个大写字母表示的就用一个大写字母表示出来, 否则就用三个大写字母表示出来.知识拓展7、如果点B在点O南偏东60°方向, 在点A的正南方向, 你能确定点B的位置吗?试着找出点B的位置.西东北南A7.4角的大小的比较、画相等的角一、课前思考怎么比较两个角的大小?你会用量角器画一个角等于已知角吗?你会用直尺和圆规作一个角等于已知角吗?二、课堂练习1.因为OA与OA是公共边, 边OC在∠AOB的__, 所以∠AOC____∠AOB;2.因为OA与OA是公共边, 边____与边OC叠合, 所以∠AOC____∠AOD;3、因为OB与OB是公共边, 边OA在___的___, 所以∠BOC____∠BOA.O第1题图ABCD三、课后测试知识巩固1.用量角器分别量出下图中∠B.∠A.∠ACD的大小,指出最大的角.B DAC B DAC2.根据图形, 写出OC与∠AOB的位置关系, 并用数学符号写出∠AOB与∠COB的大小关系.O BBO B3.用量角器画∠AOB=35°, 以OB 为一边, 在∠AOB 的外部画∠BOC=55°, 比较一下∠AOC 与三角板的直角的大小.4.用量角器画∠AOB=135°, 以OB 为一边, 在∠AOB 的外部画∠BOC=45°, 用直尺比画一下∠AOC 与平角的大小.5.已知射线BC, ∠β, 仿照上题, 用直尺和圆规作∠ABC, 使∠ABC=∠β(不写作法, 保留作图痕迹).注意, 点A 在射线BC 的上边还是下边?βC6.用量角器量图中的角, 45°的角有( )个, 90°的角有()个.7、用量角器量图中的角, 30°的角有()个, 60°的角有()个, 90°的角有()个, 120°的角有()个.知识拓展8、学校的绿化带有一个花坛, 花坛的各种变长都相等, 相邻的两条边的夹角都是120°, 其中的一条边AB长5. 5米, 按比例画出图形, 花坛的周长是多少米?A B7.5画角的和、差、倍一、课前思考1.你会用量角器画两个角的和(α+β)、差(α-β), 倍(2a)吗?你会用直尺和圆规作一个角的平分线吗?二、课堂练习1.如图, 从点O出发有4条射线OA.OB.OC.OD, 图中共有()个角.ODBAC∠AOD=()+∠COD ;∠AOB=()-∠COB;∠AOC=()+();∠DOB=()-∠AOB;∠BOC=∠AOD-()-∠COD.2.已知∠AOB=78°, 射线OE是∠AOB的平分线, ∠AOE=____.3、已知射线OE平分∠AOB, ∠AOE=30°, ∠AOB=____三、课后测试知识巩固1.如图: 根据图形填空∠BOC=∠AOD-____-____=____-∠AOB=____-∠DOC;∠BOD=∠AOD-____=∠DOC+____.第1题图DCB2.已知∠α、∠β, 用量角器画出∠AOB=∠α+∠β.(不写作法, 标明字母)αβ3.已知∠α、∠β, 用量角器画出∠AOB=∠α+2∠β.(不写作法, 标明字母)αβ4.已知∠α、∠β,用量角器画出∠AOB=2∠α-∠β.(不写作法,标明字母)αβ5.已知∠1+∠2=180°,∠1-∠2=90°, 求∠1.∠2的度数.6.已知∠A+∠B+∠C=180°, ∠A: ∠B: ∠C=1: 2: 3, 求∠A.∠B.∠C 的度数.7、如图, 作∠A.∠B 的平分线, 并作出它们的交点O, 再连结OC, 用量角器度量、比较∠ACO 、∠BCO 的大小.(不写作法, 保留作图痕迹)ACBAC知识拓展8、如图已知点O为直线AC上一点, OE平分∠AOB, ∠DOB: ∠DOC=1: 3, ∠EOD=65°, 求∠DOC的度数?7.6余角、补角 一、课前思考1.两个角互余(或互补), 和这两个角所在的位置有关吗?2.你会用计算器进行度、分、秒互化吗?3.你会根据角的互余(或互补)关系列方程吗?4.同角的余角__________;同角的补角__________.二、课堂练习1.如果∠α与∠β=互为余角, 则∠α+∠β=____°, ∠α=____-∠β, ∠β=____-____.2.1°=____', 1'=____''.3、∠1=a°, ∠1的余角=____°, ∠1的补角=____°.4、如图:已知∠BOD=∠AOC=90°, ∠AOB=25°, 则∠COD____°, 理由_______________________.?ACO第4题图DOACB第5题图OBACD5.如图:已知AB与CD相交于点O,∠AOD=34°, 则∠BOC=________°, 理由____________. 三、课后测试知识巩固 1.填空:(1)30°角的余角的度数是( ); (2)45°角的余角的度数是( ); (3)30°角的补角的度数是( ); (4)120°角的补角的度数是( );(5)36°30’20” 角的余角的度数是( ); (6)108°19’40” 角的补角的度数是( ); 2.(1)一个角与它的余角相等, 这个角的度数为_____; (2)一个角等于它的余角的2倍, 这个角的度数为_____; (3)一个角等于它的补角的2倍, 这个角的度数为_____; (4)一个角比它的补角大36°, 这个角的度数为_____; (5)一个角比它的补角小90°, 这个角的度数为_____;3.在左下图中画射线OC.OD, 使∠COA.∠DOB 都与∠AOB 互余.在右下图中画射线OP 、OQ, 使∠POM 、∠QON 都与∠MON 互补.BOMN∠COA=∠DOB, 可以概括为:_________________________________;∠POM=∠QON, 可以概括为:_________________________________.4.(1)18°19’14”+17°26’41”=_______________;(2)98°47’55”-68°15’24”=_______________;(3)36°47’51”+59°48’47”=_______________;(4)104°33’31”-59°57’45”=_______________;(5)68°13’-59°48’45”=_______________;5.动手做一做: 剪一张直角三角形的纸片ABC, 将点B折到线段AB上, 折痕经过点C, 探究一下图中互余的角有哪几对?CDAB6.动手做一做:剪一张直角三角形的纸片ABC, 将点A 与点B 重合, 折痕为DE,探究一下图中与∠A互余的角有哪几个?CBDA E知识拓展动手做一做: 将一张长方形的纸块ABCD折一下, 折痕为MN,再将MC与MN叠合、MB与MN叠合, 折痕分别为ME、MF, 探究一下∠EMF的大小, 与∠CMF互余的角有哪些?图中以M为顶点的哪些角互补?M CB第七章测试(A )卷(时间: 45分钟, 满分: 100分) 一、填空题(每小题3分, 共36分)1.点D 在线段AB 的延长线上, 则AD_____BD(填“<”或“>”).2.点C 是线段MN 的中点, 则CM=_____MN.3.如图, A 、B 、C 、D 四点在一条直线上, 图中共有_____条线段.ADCB4.如图, 点C 是线段AD 的中点, AC=2cm, BC=5cm, 则BD=_____cm.ABCD5.已知线段a=4cm, b=3cm, c=2cm 则a-2b+3c=_____cm.6.OC 在∠AOB 的内部, 则∠COB_____∠AOB(填“<”或“>”).7.OD 是∠MON 的平分线, 则∠MOD=_____∠MON.8.如图,A 、O 、B 三点在一条直线上,图中小于180°的角共有_____个. 9.72°角的补角比它的余角大_____.10.一个角是它的补角的 , 这个角的度数为_____. 11.58°19’34”+16°55’41”=__________.12.如图, 浦东国际机场大致在人民广场的什么位置? 答:__________.二、判断题(每小题3分, 共12分)13.互余的两个角都是锐角........................) 14. 互补的两个角一个是锐角, 一个是钝角............. ...) 15.连接两点的线段叫做两点之间的距离..................) 16.角的平分线是一条射线........................) 三、选择题(每小题3分, 共12分)17.一个钝角与一个锐角的差是 ( )A.锐角;B.直角;C.钝角;D.锐角、直角或钝角.18.点C.D 是线段AB 的三等分点, 点E 是线段AB 的中点,则下面结论中正确的是ABCDE( )A.AC=21AD;B.AD=32AB ;C.AD=4CE;D.CE=61AB.19. 如图, A.O 、B 三点在一条直线上, OC 为∠AOE 的平分线, OD 为∠BOE 的平分线, 图中共有__________对互余的角.................... ...)A BOA.1;B.2;C.3;D.4.20. 用两个三角板(一个是30°的, 一个是45°的)可以画出的角度是()A.75°;B.15°;C.135°;D.115°.四、作图题(每小题10分, 共20分)21.已知线段a、b, 用直尺和圆规画出一条线段, 使它等于2a-b.(不写作法, 保留作图痕迹, 表明字母, 说明结论)22.已知∠ABC, 用直尺和圆规画出∠ABC的平分线.(不写作法, 保留作图痕迹, 表明字母, 说明结论)C五、解答题(每小题10分, 共20分)23.如图, 点M是线段AB上的一点, 点C是线段AM的中点, 点D 是线段MB的中点, 已知AM=18cm, MD=3cm.通过计算、比较, 说明线段CD与线段AB有什么关系?C DA BM24.一个角的补角比它的余角的3倍多40°, 求这个角的度数.第七章测试(B)卷一、 填空题1. 点C在线段AB上, 则AC____AB. (天上“<”, “>”或“=”) 已知线段AB=8, 点C是线段AB的中点, 点D是线段BC的中点, AD=____.如图:已知OB平分∠AOC, OC平分∠BOD, ∠AOB=25°, 则∠AOB=____.第3题图A2. 将一个直角3等分, 每份是____度. 时针由3点钟走到11点, 时针走了____度.如图:已知AB-AC=5cm, AC:BC=2:3, AB=____cm.第6题图B第7题图O3. 如图: 已知OC是∠AOB的平分线, 图中所有角的度数和是120度,∠AOC=____度.如图:已知∠AOC=∠BOD=90°, ∠AOD:∠DOC=5:1, ∠AOB=____度.第8题图A第10题图C4. 45°54'=____°.5. 如图: ∠1=(x-4)度, ∠2=3x度, 则∠1=____度, ∠2=____度.6. 一个角的余角与这个角的补角互为补角, 这个角是____度.7. 画出∠α的邻补角第12题图二、 选择题如图: 已知点C是线段AB上一点, 一下天健不能确定点C是线段AB中点的是( )A. AB=2AC B. BC= AB C. AC=BC D. AC+BC=AB第13题图C第14题图图中小于平角的角有____个. ( )8. A. 7个 B. 8个 C. 9个 D. 10个 一个角的补角是____角. ( )A. 锐角 B. 直角 C. 钝角 D. 锐角, 直角或钝角 如果AB=10cm, BC=5cm, 则AC=____cm.A. 15㎝ B. 5㎝ C. 15㎝或5㎝ D. 无法确定 三、简答题 9. 计算:(1) 180°-14°25'15''+25°34'45''; 10.33°23'14''×4.已知线段a, b, 用直尺, 圆规作出AB= (a+b).第18题图如图: 已知AC: CD: DB=2: 3: 4, 点E、F、G分别是线段AC、CD、DB的中点, EF=10cm, 线段AD, AB的长分别是多少厘米?第19题图一个角的余角比这个角的补角的 小10°, 这个角是多少度?如图:已知点A、O、B在同一条直线上, OD平分∠BOC, ∠BOC-∠AOC=56°, 求∠BOD的度数?O第21题图ABDC四、解答题如图: 已知∠AOC=58°, ∠BOC=112°, OD, OE分别平分∠AOC, ∠BOD, 求∠AOE的度数?第22题图如图: 已知点C, D在线段AB上, AC: BC=2:3, AD: BD=2:5, DC=8cm, 求AB长多少厘米?第23题图五、能力题①已知线段AB=10cm, 点C是线段AB上任意一点, 点D、E分别是线段AC、BC的中点,②求线段DE的长度?如果点C在线段AB的延长线上, 求线段DE的长度?如果点C在线段AB的反方向延长线上, 求线段DE的长度?。
《线段和角的画法》知识点归纳
③反方向延长射线 AB
A
B
2、线段大小比较 ①目测 ②测量(用刻度尺) ③用尺规量
A (c) A B (D) B C D
点 D 在线段 AB 延长线上
AB<CD
a b
a b
a<b
3、作一条线段等于已知线段
a
解:
a A B C
⑴作射线 AC ⑵在射线 AC 上截取线段 AB=a(以点 A 为圆心,a 为半径,画弧交射线 AC 作 点 B) ,线段 AB 即为所求 两点之间线段最短 两点之间的距离联结两点间的线段的长度叫两点之间的距离。
《线段和角的画法》知识点归纳 &7.1 1、 名称
A l A A B B
线段的大小比较
图形
B
表示方法 直线 AB 直线 l 射线 AB 射线 BA
线段 AB(线段 BA)
端点
能否度量
直线
无
不能
射线
一个 点A 两个 点A点B不能Leabharlann 线段A aB
线段 a
可以
①延长线段 AB
A B
②延长线段 BA(反向延长线段 AB)
7.1线段的大小比较 教学反思
线段的大小比较教学反思
本节课通过比较两支铅笔的长短这一生活中的实例揭示课题,极大地激发了学生的学习兴趣;并通过动手操作,亲身体验用叠合法比较线段的长短。
例1同学们学会了用圆规、直尺画线段,并初步体验了用作图语言叙述画法;例2是本节课的重点用叠合法尺规作图比较两条线段的大小;最后掌握两点间距离的概念,体会两点间线段最短。
本节课的一大亮点就是让学生动起来,让学生成为学习的主体,可操作性强,并培养锻炼学生的表述能力;师生配合融洽,课堂气氛和谐;并能够善于利用学生的课堂生成资源,对学生正确及错误都能够做出有效评价。
当然也存在不足之处,有待提高:
1.时间控制的不太合理,主要由于例1后的练习,事先没有预想到学生的接受能力与应变能力而加大难度,导致大部分学生出现问题:线段基本能够画出,但字母不知道标什么,还是照搬例1中的字母。
因此我选取以为典型错误投影出来,让学生集体纠错,加深大家的印象,在此比预期的多花了5分钟的时间。
通过这件事我充分意识到课前预设的重要性,一定要站在学生的角度考虑问题,充分考虑学生的接受以及吸收能力,可适当降低难度,依然用例1中的字母就可以了。
2.小组讨论前可先把座位合并在一起,以利于学生讨论方便。
3.对于思考题部分学生不太理解表格的意思,可在问题后加注提示,让学生更易接受。
七年级数学线段的大小比较(基础)(含答案)
C.线段AC与线段BD的交点D.直线AB与直线CD的交点
答案:C
解题思路:
如图,
根据两点之间线段最短,连接AC,BD,则线段AC的长是A,C两个小区之间的最短距离,线段BD的长是B,D两个小区之间的最短距离;线段BD与线段AC交于点E,则点E到A,B,C,D四个小区的距离之和EA+EB+EC+ED=AC+BD,所以点E到A,B,C,D四个小区的距离之和最小.
A.2a-b B.a-b
C.a+b D.2(a-b)
答案:A
解题思路:
根据题意得: ,
故选A.
试题难度:三颗星知识点:中点的应用
6.如图,已知线段AB=12,点C是线段AB的中点,求BC的长.
解:如图,
∵________________
∴________________
∵________________
线段的大小比较(基础)
一、单选题(共10道,每道10分)
1.如图,已知线段AB,用尺规作图(保留作图痕迹):延长线段AB到点C,使BC=2AB.下列尺规作图正确的是( )
A. 线段BC即为所求
B. 线段BC即为所求
C. 线段AC即为所求
D. 线段BC即为所求
答案:A
解题思路:
延长线段AB到C,Байду номын сангаасC在线段AB的延长线上,故C和D选项错误;
答案:D
解题思路:
A,B,C选项均未强调点A,B,M位于同一直线上.
故选D.
试题难度:三颗星知识点:中点的定义与表示
4.如图所示,长度为12 cm的线段AB的中点为点M,点C将线段MB分成MC:CB=1:2,则线段AC的长度为( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.1线段的大小比较-拓展训练
1.点O是线段CD的中点,而点P将CD分为两部分,且CP:PD=2:5已知线段CD=28㎝,求OP的长。
2.在同一条公路旁,住着五个人,他们在同一家公司上班,如图,不妨设这五个人的家分别住在点ABDEF 位置,公司在C点,若AB=4km,BC=2km,CD=3km,DE=3km,EF=1km,他们全部乘出租车上班,车费单位报销。
出租车收费标准是:起步价13元(3km以内,包括3km),以后每千米2元(不足1km,以1km计算),每辆车能容纳3人。
若他们分别乘出租车去上班,公司应支付车费多少元?
如果你是公司经理,你对他们有没有什么建议?
3.如图,在正方形两个相距最远的顶点处逗留着一只苍蝇和一只蜘蛛。
蜘蛛可以从哪条最短的路径爬到苍蝇处?请你画图并说明你的理由?
如果蜘蛛要沿着棱爬到苍蝇处,最短的路线有几条?
4.图为中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走,例如:图中“马”所在的位置可以直接走到点A、B等处,若“马”的位置在C处,为了到达D点,请按“马”走的规则,在图中的棋盘上用虚线画出一种你认为合理的行走路线。
第1题
6
第2题
第1小题85
第2小题A打车路上接B,F打车路上接D和E
第3题
第1小题,如图所示:展开图上的那条线段,理由:两点之间线段最短。
第2小题6条
第4题。