带电离子在磁场中的运动
带电粒子在有界磁场磁场中的运动
d
αR O
过程模型:匀速圆周运动 规律:牛顿第二定律 + 圆周运动公式 条件:要求时间最短
t
s v
速度 v 不变,欲使穿过磁场时间最短,须使 s 有最 小值,则要求弦最短。
题1 一个垂直纸面向里的有界匀强磁场形 状如图所示,磁场宽度为 d。在垂直B的平面
内的A点,有一个电量为 -q、质量为 m、速
y B
如粒子带正电,则: 如粒子带负电,则:
60º v
60º
O 120º
x
A. 2mv qB
B. 2mvcosθ qB
C. 2mv(1-sinθ) qB
2mv(1-cosθ)
D. qB
M
D
C
θ θ θθ
P
N
θθ
练、 一个质量为m电荷量为q的带电粒子(不计重力)
从x轴上的P(a,0)点以速度v,沿与x正方向成60º的
束比荷为q/m=2 ×1011 C/kg的正离子,以不同角度α入射,
其中入射角 α =30º,且不经碰撞而直接从出射孔射出的
离子的速度v大小是 (
C)
αa
A.4×105 m/s B. 2×105 m/s
r
C. 4×106 m/s D. 2×106 m/s O′
O
解: 作入射速度的垂线与ab的垂直平分线交于 r
P
B v0
O
AQ
例、如图,A、B为水平放置的足够长的平行板,板间距离为
d =1.0×10-2m,A板上有一电子源P,Q点在P点正上方B
板上,在纸面内从P点向Q点发射速度在0~3.2×107m/s范
围内的电子。若垂直纸面内加一匀强磁场,磁感应强度
B=9.1×10-3T,已知电子质量 m=9.1×10-31kg ,电子电
带电粒子在匀强磁场中的匀速圆周运动
洛伦兹力提供向心力,使带电 粒子绕固定点做圆周运动。
运动过程中,带电粒子的速度 方向时刻改变,但速度大小保 持不变。
周期和半径公式
周期公式
$T = frac{2pi m}{qB}$,其中$m$是带电粒子的质量,$q$是带电粒子的电荷 量,$B$是匀强磁场的磁感应强度。
半径公式
$r = frac{mv}{qB}$,其中$v$是带电粒子运动的速度。
偏转方向和速度大小不变
偏转方向
带电粒子在匀强磁场中做匀速圆周运 动时,其偏转方向与磁场方向垂直。
速度大小不变
由于洛伦兹力始终与带电粒子的速度 方向垂直,因此洛伦兹力不做功,带 电粒子的速度大小保持不变。
04 带电粒子在磁场中的运动 规律
周期与速度的关系
总结词
带电粒子在匀强磁场中做匀速圆周运动时,其周期与速度无关,即T=恒定值。
域。
核聚变反应
在高温高压条件下,带电粒子在匀 强磁场中高速旋转,可以引发核聚 变反应,为未来的清洁能源提供可 能。
磁流体发电
利用高温导电流体在匀强磁场中做 高速旋转运动,可以将机械能转化 为电能,具有高效、环保的优点。
对未来研究的展望
1 2 3
探索极端条件下的运动特性
随着实验技术的不断发展,未来可以进一步探索 带电粒子在更高温度、更高磁感应强度等极端条 件下的运动特性。
详细描述
带电粒子在匀强磁场中受到洛伦兹力作用,该力提供向心力使粒子做匀速圆周运 动。根据牛顿第二定律和向心力公式,粒子的周期T与速度v无关,只与磁场强度 B和粒子的质量m有关。
周期与磁场强度的关系
总结词
带电粒子在匀强磁场中做匀速圆周运 动时,其周期与磁场强度成正比。
详细描述
带电离子在磁场中运动
十一、带电粒子在磁场中的运动【例1】磁流体发电机原理图如右。
等离子体高速从左向右喷射,两极板间有如图方向的匀强磁场。
该发电机哪个极板为正极?两板间最大电压为多少?解:由左手定则,正、负离子受的洛伦兹力分别向上、向下。
所以上极板为正。
正、负极板间会产生电场。
当刚进入的正负离子受的洛伦兹力与电场力等值反向时,达到最大电压:U=Bdv 。
当外电路断开时,这也就是电动势E 。
当外电路接通时,极板上的电荷量减小,板间场强减小,洛伦兹力将大于电场力,进入的正负离子又将发生偏转。
这时电动势仍是E=Bdv ,但路端电压将小于Bdv 。
在定性分析时特别需要注意的是:⑴正负离子速度方向相同时,在同一磁场中受洛伦兹力方向相反。
⑵外电路接通时,电路中有电流,洛伦兹力大于电场力,两板间电压将小于Bdv ,但电动势不变(和所有电源一样,电动势是电源本身的性质。
)⑶注意在带电粒子偏转聚集在极板上以后新产生的电场的分析。
在外电路断开时最终将达到平衡态。
【例2】 半导体靠自由电子(带负电)和空穴(相当于带正电)导电,分为p 型和n 型两种。
p 型中空穴为多数载流子;n 型中自由电子为多数载流子。
用以下实验可以判定一块半导体材料是p 型还是n 型:将材料放在匀强磁场中,通以图示方向的电流I ,用电压表判定上下两个表面的电势高低,若上极板电势高,就是p 型半导体;若下极板电势高,就是n 型半导体。
试分析原因。
解:分别判定空穴和自由电子所受的洛伦兹力的方向,由于四指指电流方向,都向右,所以洛伦兹力方向都向上,它们都将向上偏转。
p 型半导体中空穴多,上极板的电势高;n 型半导体中自由电子多,上极板电势低。
注意:当电流方向相同时,正、负离子在同一个磁场中的所受的洛伦兹力方向相同,所以偏转方向相同。
3.洛伦兹力大小的计算带电粒子在匀强磁场中仅受洛伦兹力而做匀速圆周运动时,洛伦兹力充当向心力,由此可以推导出该圆周运动的半径公式和周期公式: Bqm T Bq mv r π2,==【例3】 如图直线MN 上方有磁感应强度为B 的匀强磁场。
带电粒子在匀强磁场中的运动
〔思考与讨论〕
◎带电教粒材子在资匀料强分磁场析中做匀速圆周运动的圆半径,与粒
子的速度、磁场的磁感应强度有什么关系? 点拨: 由演示实验知,粒子做圆周运动的半径与速度、
磁感应强度有关系,分析可知,因洛伦兹力提供向心力,即 qvB=mrv2,可得:r=mqBv.
可见,粒子圆周运动的半径与速度大小成正比,与磁感 应强度 B 成反比.
质谱仪可以求出该粒子的比荷(电荷量与质量之比)mq =B22Ur2.
(2)回旋加速器 ①工作原理 利用电场对带电粒子的加速作用和磁场对
运a.动磁电场的荷作的用 偏 转 作 用 来 获 得 高 能 粒 子 , 这 些带电过粒程子在以某回一旋速度加垂速直器磁场的方核向心进入部匀件强磁——场两后,个在D 洛伦形兹盒力作和用其下间做匀的速窄圆缝周运内动完,其成周.期与速率、半径均无
(1)M点与坐标原点O间的距离; (2)粒子从P点运动到M点所用的时间.
解析:(1)带电粒子在匀强电场中做类平抛 运 负OP方动=l向,=12上在at1做x2,正初O方Q速=向2度上3为l=做零v匀0t1的,速a匀=直加qmE线速运运动动,,在设y 加 用解得速 的v度时0=大间小为6qmt为E1l,a;进粒入子磁从场P时点速运度动方到向Q与点x所轴 正方向的夹角为θ,则
解析: 粒子在电场中加速时,只有静电力做功,由动
能定理得 qU=12mv2,故EEkk12=qq12UU=qq12=12,同时也能求得 v = 2mqU,因为粒子在磁场中运动的轨迹半径 r=mqBv=qmB
2mqU=B1
2mqU,所以有rr12=
m1 q1 = 1 ,粒子做圆周运 m2 2 q2
动的周期 T=2qπBm,故TT21=mm12//qq12=12.
带电粒子在有界磁场中的运动
简单回顾
一、带电粒子在匀强 磁场中的运动规律
1.带电粒子在匀强磁场中 运动( v B),只受洛伦兹
F v
o
力作用,做 匀速圆周运动 .
2.洛伦兹力提供向心力:
v2 m q v B R
半径:
2R T v
周期:
T
mv R qB 2m
qB
二、 r(1 cos ) cot
mv0 x1 b L a (1 cos ) cot eB eBL (其中 arcsin ) ⑤ mv0
④
P
v0
θ θ
0
图1
x
Q
②当 r<L 时,磁场区域及电子运动轨迹如图 2 所示,
( 1 )粒子沿环状的半径方向射入磁场,不能穿越磁场的最大 速度。
(2)所有粒子不能穿越磁场的最大速度。
解析:( 1)要粒子沿环状的半径方向射入磁场,不能穿越磁 场,则粒子的临界轨迹必须要与外圆相切,轨迹如图所示。
2 2 2 r R ( R r ) 由图中知, 1 1 2 1
解得
r1 0.375m
v v
v v v
v
一.带电粒子在平行直线边界磁场中的运动
Q P B P Q
P
Q
v
S
垂直磁场边界射入
①速度较小时,作半圆 运动后从原边界飞出; ②速度增加为某临界值 时,粒子作部分圆周运 动其轨迹与另一边界相 切;③速度较大时粒子 作部分圆周运动后从另 一边界飞出
v
S
①速度较小时,作圆 周运动通过射入点; ②速度增加为某临界 值时,粒子作圆周运 动其轨迹与另一边界 相切;③速度较大时 粒子作部分圆周运动 后从另一边界飞出
备战2023年高考物理母题题源解密(全国通用):带电粒子在磁场中的运动(原卷版)
专题10带电粒子在磁场中的运动【母题来源一】2022年高考广东卷【母题题文】(2022·广东卷·T8)如图所示,磁控管内局部区域分布有水平向右的匀强电场和垂直纸面向里的匀强磁场。
电子从M点由静止释放,沿图中所示轨迹依次经过N、P两点。
已知M、P在同一等势面上,下列说法正确的有()A.电子从N到P,电场力做正功B.N点的电势高于P点的电势C.电子从M到N,洛伦兹力不做功D.电子在M点所受的合力大于在P点所受的合力【母题来源二】2022年高考广东卷【母题题文】(2022·广东卷·T7)如图所示,一个立方体空间被对角平面MNPQ划分成两个区域,两区域分布有磁感应强度大小相等、方向相反且与z轴平行的匀强磁场。
一质子以某一速度从立方体左侧垂直Oyz平面进入磁场,并穿过两个磁场区域。
下列关于质子运动轨迹在不同坐标平面的投影中,可能正确的是()A. B. C. D.【母题来源三】2022年高考全国甲卷【母题题文】(2022·全国甲卷·T18)空间存在着匀强磁场和匀强电场,磁场的方向垂直于纸面(xOy平面)向里,电场的方向沿y轴正方向。
一带正电的粒子在电场和磁场的作用下,从坐标原点O由静止开始运动。
下列四幅图中,可能正确描述该粒子运动轨迹的是()A. B.C. D.【母题来源四】2022年高考浙江卷【母题题文】(2022·浙江6月卷·T15)如图为某一径向电场示意图,电场强度大小可表示为E a r ,a 为常量。
比荷相同的两粒子在半径r 不同的圆轨道运动。
不考虑粒子间的相互作用及重力,则()A.轨道半径r 小的粒子角速度一定小B.电荷量大的粒子的动能一定大C.粒子的速度大小与轨道半径r 一定无关D.当加垂直纸面磁场时,粒子一定做离心运动【母题来源五】2022年高考湖北卷【母题题文】(2022·湖北·T8)在如图所示的平面内,分界线SP 将宽度为L 的矩形区域分成两部分,一部分充满方向垂直于纸面向外的匀强磁场,另一部分充满方向垂直于纸面向里的匀强磁场,磁感应强度大小均为B ,SP 与磁场左右边界垂直。
带电粒子在磁场中的运动
θ O
B
R
比较学习: 这点与带电粒子在匀强电场中的偏转情况一 样吗?
◆带电粒子在矩形磁场区域中的运动
B v
d o
圆心在磁场原边界上 B
①速度较小时粒子作半圆 运动后从原边界飞出;② 速度在某一范围内时从侧 面边界飞出;③速度较大 时粒子作部分圆周运动从 对面边界飞出。 量变积累到一定程度发生质变,出现临界状态(轨迹与边界相切)
Bx
z
Vz
由于磁场的不均匀, 洛仑兹力的大小要变 化,所以不是匀速圆 周运动。且半径逐渐 变小。
极光
带电粒子(如宇宙射线的 带电粒子)被地磁场捕获, 绕地磁感应线作螺旋线运 动,当太阳黑子活动引起空间 磁场的变化,使粒子在两 极处的磁力线引导下,在 两极附近进入大气层,能 引起美妙的极光。
地轴
带电粒子在匀强磁场中的匀速圆周运动解决思路
带电粒子在磁场中的螺旋线运动
2m 螺距 h V//T V sin qB V和 V//分别是速度在平行于磁场方向
的分量和垂直于磁场的分量。 匀速圆周运动的半径仅与速度的垂直分量有关。
* 磁聚焦magnetic focusing
一束发散角不大的带电粒子 束,若这些粒子沿磁场方向 的分速度大小又一样,它们 有相同的螺距,经过一个周 期它们将重新会聚在另一点 这种发散粒子束会聚到一点 的现象叫磁聚焦。
①速度较小时,作圆周运动通过射入点; ②速度增加为某临界值时,粒子作圆周 运动其轨迹与另一边界相切;③速度较 大时粒子作部分圆周运动后从另一边界 飞出
量变积累到一定程度发生质变,出现临界状态.
(1)偏向角(回旋角)θ
v
B
d sin r
(2)侧移距离y
r
带电粒子在磁场中的运动轨迹
确定带电粒子在磁场中运动轨迹的方法带电粒子在匀强磁场中作圆周运动的问题是近几年高考的热点,这些考题不但涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。
但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。
只要确定了带电粒子的运动轨迹,问题便迎刃而解。
下面举几种确定带电粒子运动轨迹的方法。
一、对称法带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。
利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。
例1.如图3所示,直线MN上方有磁感应强度为B的匀强磁场。
正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?解析:正、负电子的半径和周期是相同的。
只是偏转方向相反。
先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。
所以两个射出点相距s=2r=,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。
例2.如图5所示,在半径为r的圆形区域内,有一个匀强磁场。
一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。
当∠MON=120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。
解析:分别过M、N点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。
由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O'的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30°=又带电粒子的轨道半径可表示为:故带电粒子运动周期:带电粒子在磁场区域中运动的时间二、旋转圆法在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。
带电粒子在匀强磁场中的运动(知识小结)
带电粒子在匀强磁场中的运动(知识小结)一.带电粒子在磁场中的运动(1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即 ① 为静止状态。
② 则粒子做匀速直线运动。
(2)若速度方向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。
(3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。
二、带电粒子在匀强磁场中的圆周运动1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动.(4)运动时间: (Θ 用弧度作单位 )1.只有垂直于磁感应强度方向进入匀强磁场的带电粒子,才能在磁场中做匀速圆周运动.2.带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速率的大小有关,而周期与速率、半径都无关.三、带电粒子在有界匀强磁场中的匀速圆周运动(往往有临界和极值问题)(一)边界举例:1、直线边界(进出磁场有对称性)规律:如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等。
速度与边界的夹角等于圆弧所对圆心角的一半,并且如果把两个速度移到共点时,关于直线轴对称。
2、平行边界(往往有临界和极值问题)(在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界)3、矩形边界磁场区域为正方形,从a 点沿ab 方向垂直射入匀强磁场:若从c 点射出,则圆心在d 处若从d 点射出,则圆心在ad 连线中点处4.圆形边界(从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。
)特殊情形:在圆形磁场内,沿径向射入时,必沿径向射出一般情形:磁场圆心O 和运动轨迹圆心O ′都在入射点和出射点连线AB 的中垂线上。
或者说两圆心连线OO ′与两个交点的连线AB 垂直。
(二)求解步骤:(1)定圆心、(2)连半径、(3)画轨迹、(4)作三角形.(5)据半径公式求半径,2.其特征方程为:F 洛=F 向. 3.三个基本公式: (1)向心力公式:qvB =m v 2R ; (2)半径公式:R =mv qB ; (3)周期和频率公式:T =2πm qB =1f ; 222m t qB m qB T θππθπθ==⨯=⨯v L =t再解三角形求其它量;或据三角形求半径,再据半径公式求其它量(6)求时间1、确定圆心的常用方法:(1)已知入射方向和出射方向(两点两方向)时,可以作通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图3-6-6甲所示,P 为入射点,M 为出射点,O 为轨道圆心.(2)已知入射方向和出射点的位置时(两点一方向),可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心,如图3-6-6乙所示,P 为入射点,M 为出射点,O 为轨道圆心.(3)两条弦的中垂线(三点):如图3-6-7所示,带电粒子在匀强磁场中分别经过O 、A 、B 三点时,其圆心O ′在OA 、OB 的中垂线的交点上.(4)已知入射点、入射方向和圆周的一条切线:如图3-6-8所示,过入射点A 做v 垂线AO , 延长v 线与切线CD 交于C 点,做∠ACD 的角平分线交AO 于O 点,O 点即为圆心,求解临界问题常用到此法.(5)已知入射点,入射速度方向和半径大小2.求半径的常用方法 :由于已知条件的不同,求半径有两种方法:一是:利用向心力公式求半径;二是:利用平面几何知识求半径。
高中物理选修三3.6带电粒子在匀强磁场中的运动
知识点一 带电粒子在匀强磁场中的运动:
1.运动轨迹: 带电粒子(不计重力)以一定的速度 v 进入磁感应强度为 B 的匀 强磁场时:
(1)当 v∥B 时,带电粒子将做_匀__速__直__线_运动. (2)当 v⊥B 时,带电粒子将做_匀__速__圆__周_运动.
2.圆周运动轨道半径和周期:
(1)由
提示:(1)带电粒子以某一速度垂直磁场方向进入匀强磁场后, 在洛伦兹力作用下做匀速圆周运动,其运动周期与速率、半径均无
关(T=2qπBm),带电粒子每次进入 D 形盒都运动相等的时间(半个周 期)后平行电场方向进入电场中加速.
(2)回旋加速器两个 D 形盒之间的窄缝区域存在周期性变化的 并垂直于两个 D 形盒正对截面的匀强电场,带电粒子经过该区域时 被加速.
(2)圆弧 PM 所对应圆心角 α 等于弦 PM 与切线的夹角(弦切角)θ 的 2 倍,即 α=2θ,如图所示.
拓展 (1)关于半径的计算,还有直接观察法(不借助数学方法而直接 观察得到半径)、三角函数法、勾股定理法、正弦定理法、余弦定 理法等,但经常用到的是利用三角函数和勾股定理求解.实际应用 中要根据题目中提供的有关条件,构建三角形后灵活选择合适的方 法求出半径,进而求得相关物理量. (2)直线边界:进出磁场具有对称性,如图所示.
(3)为了保证带电粒子每次经过盒缝时均被加速,使其能量不断
提高,交变电压的周期必须等于带电粒子在回旋加速器中做匀速圆
周运动的周期,即 T=2Bπqm.因此,交变电压的周期由带电粒子的质 量 m、带电量 q 和加速器中磁场的磁感应强度 B 决定.
(4)带电粒子在磁场中做圆周运动,洛伦兹力充当向心力,qvB =mvR2,Ek=12mv2,因此,带电粒子经过回旋加速器加速后,获得 的动能 Ek=q22Bm2R2.
高中物理 3.6带电粒子在匀强磁场中的运动
提出问题
沿着与磁场垂直的方向射入磁场的带电 粒子,在匀强磁场中做什么运动?
V - F洛
一、带电粒子在匀强磁场中的运动
1、垂直射入匀强磁场的带电 粒子,它的初速度和所受洛伦 兹力的方向都在跟磁场方向垂 直的平面内,没有任何作用使 粒子离开这个平面,所以粒子 只能在这个平面内运动。
ev θ
B
d
1.圆心在哪里? A
2.轨迹半径是多少?
F
3、圆心角θ =?
d
v
B
30°
4.穿透磁场的时间如何求?
Fv
qvB=mv2/r r=mv/qB
θ =30°r
r=d/sin 30o =2d
O
m=qBr/v=2qdB/v
t/T= 30o /360o
小结:
t=( 30o /360o)T= T/12 1、两洛伦兹力的交点即圆心
气泡室
气泡室是由一密闭容 器组成,容器中盛有 工作液体,当其处于 过热状态时,带电粒 子所经轨迹上不断与 液体原子发生碰撞 , 而以这些离子为核心 形成气泡 。
二、质谱仪
s1
s2
照相底片
. . . . ... . .. . . . . .. . s3 ................ .............
例3、一带电粒子在磁感强度为B的匀强磁场中做 匀速圆周运动,如它又顺利进入另一磁感强度为 2B的匀强磁场中仍做匀速圆周运动,则( )
A.粒子的速率加倍,周期减半 B.粒子的速率不变,轨道半径减半 C.粒子的速率减半,轨道半径变为原来的 1/4 D.粒子速率不变,周期减半
例4、一个带电粒子沿垂直于磁场的方向射入一 个匀强磁场,粒子后段轨迹如图所示,轨迹上的 每一小段都可近似看成是圆弧.由于带电粒子使 沿途的空气电离,粒子的能量逐渐减少(带电量 不变).从图中情况可以确定( )
带电粒子在电磁场中的运动
带电粒子在电磁场中的运动[知识精讲]带电粒子在电磁场中运动的问题包括两种基本情形:一种是先后分别在电场、磁场中运动,另一种是在电场和磁场的复合场中运动.对于第一种情形要注意电场力和洛伦兹力的特性所决泄的粒子运动性质的差别,带电粒子在匀强电场中受电场力的作用做匀变速运动,而在匀强磁场中受洛伦兹力的作用做匀速圆周运动,这种情形通常是利用电场来对带电粒子加速后获得一眾的速度,然后在磁场中做匀速圆周运动,因此对于这种情况主要是处理好带电粒子从一场过渡到另一场的速度关系.对于第二种情形,要注意洛伦兹力与运动速度有关,所以粒子的运动和受力相互制约,当粒子的运动速度发生变化时,粒子的受力情况必然发生变化,因此带电粒子要么做匀速直线运动,要么就做变加速曲线运动,当粒子做变加速曲线运动时,要利用洛伦兹力不做功的特点,用功能关系解决问题.[问题稱析][问题1]如图所示,金属圆筒的横截面半径为斤,简内分布有匀强磁场,磁场方向垂直纸面,磁感应强度为万,磁场下面有一加速电场,一个质量为m(重力不计),电量为q的带电粒子,在电场作用下,沿图示轨迹由静止开始从"点运动经过金属圆筒的小孔尸到" 点,在磁场中,带电粒子的速度方向偏转了〃二60°,求加速电场两极板间的电压.解析:带电粒子经过电场加速后获得一左的速度,进入磁场后做匀速圆周运动,根据带电粒子的偏转角度,可以求出带电粒子做圆周运动的半径大小,然后求出它的运动速度, 从而求出加速电压.根据带电粒子进入磁场和到达艸点的速度方向,作岀与速度方向垂直的半径,确泄轨迹圆的圆心,由几何知识可得带电粒子做圆周运动的半径为2^/?tan60°二爲 R带电粒子在做圆周运动过程中,由洛伦兹力提供向心力,所以m\fl…--- 二 qvB2・带电粒子经电场加速后,电势能转化为带电粒子的动能,所以2由①②③式可得* 3届22m[问题2]如图所示,x轴上方有一磁感应强度为5方向垂直于纸而向里的匀强磁场, x轴下方有电场强度为正方向竖直向下的匀强电场.现有一质量为m,电量为q的粒子从y 轴上某一点由静止开始释放,若重力忽略不讣,为使它能到达x轴上位置为的点Q求:y■ X XSx X XX X X KQKrrm(1)粒子应带何种电荷?(2)释放点的位置坐标.(3)从释放到抵达J点经历的时间.解析:从静止开始释放的带电粒子要起动,应放在电场中,所以该带电粒子应放在一y 轴上,因为x轴下方的电场方向是竖直向下的,而带电粒子在x轴方向有位移,带电粒子要运动到磁场中,所以该带电粒子应带负电荷.该粒子释放后,在电场力的作用下,沿卩轴正方向匀加速运动到0点,继而进入X轴上方的匀强磁场中做匀速圆周运动,若苴轨道半径恰好等于彳,则恰好能到达0点,从岀发点到0点的轨迹是一条直线加上半个圆周,假如释放点离0点的距离近一些,粒子进入磁场的速度就小一点,粒子运动半周后到不了0点而要再次进入电场,做减速运动,速度减为零后反向加速再次以原速率进入磁场,开始做第二个半圆周运动,如果粒子在磁场中的轨道半径为士,则第二个半圆运动结束时,刚好到达0点,以此类推,粒子岀发点向0逐4渐靠近,又要能到达。
带电粒子在磁场中运动解题方法及经典例题
带电粒子在磁场中运动一、不计重力的带电粒子在匀强磁场中的运动1.匀速直线运动:若带电粒子的速度方向与匀强磁场的方向平行,则粒子做匀速直线运动.2.匀速圆周运动:若带电粒子的速度方向与匀强磁场的方向垂直,则粒子做匀速圆周运动.质量为m、电荷量为q的带电粒子以初速度v垂直进入匀强磁场B中做匀速圆周运动,其角速度为ω,轨道半径为R,运动的周期为T,推导半径和周期公式:推导过程:运动时间t=3.对于带电粒子在匀强磁场中做匀速圆周运动的问题,应注意把握以下几点.(1)粒子圆轨迹的圆心的确定的常规方法①若已知粒子在圆周运动中的两个具体位置与通过某一位置时的速度方向,可在已知的速度方向的位置作速度的垂线,同时作两位置连线的中垂线,两垂线的交点为圆轨迹的圆心,如图4-2 所示.②若已知做圆周运动的粒子通过某两个具体位置的速度方向,可在两位置上分别作两速度的垂线,两垂线的交点为圆轨迹的圆心,如图4-3所示.③若已知做圆周运动的粒子通过某一具体位置的速度方向与圆轨迹的半径R,可在该位置上作速度的垂线,垂线上距该位置R处的点为圆轨迹的圆心(利用左手定则判断圆心在已知位置的哪一侧),如图4-4所示.图4-2图4-3图4-4例1 、一个质量为m电荷量为q的带电粒子从x轴上的P〔a,0〕点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。
求3〕〕匀强磁场的磁感应强度B和射出点的坐标。
〔坐标为〔0,a例2、电子自静止开始经M、N板间〔两板间的电压为U〕的电场加速后从A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图2所示,求:〔1〕正确画出电子由静止开始直至离开磁场时的轨迹图; 〔2〕匀强磁场的磁感应强度.〔已知电子的质量为m ,电量为e 〕emUd L L 2222(2)利用速度的垂线与角的平分线的交点找圆心当带电粒子通过圆形磁场区后又通过无场区,如果只知道射入和射出时的速度的方向和射入时的位置,而不知道射出点的位置,应当利用角的平分线和半径的交点确定圆心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由牛顿第二定律知evB=m②
解①②得:m=
电子在无界磁场中的运动周期为T=·=
电子在磁场中的轨迹对应的圆心角为θ=30°,故电子在磁场中的运动时间为:t=T=×=.
6、长为l的水平极板间有垂直纸面向里的匀强磁场,磁感应强度为B,板间距离也为l,两极板不带电.现有质量为m、电荷量为q的带正电粒子(不计重力),从两极板间边界中点处垂直磁感线以速度v水平射入磁场,欲使粒子不打在极板上,可采用的办法是()
(1)电子在磁场中运动轨迹的半径R;
(2)电子在磁场中运动的时间t;
(3)圆形磁场区域的半径r.
解析本题是考查带电粒子在圆形区域中的运动问题.一般先根据入射、出射速度确定圆心,再根据几何知识求解.首先利用对准圆心方向入射必定沿背离圆心出射的规律,找出圆心位置,再利用几何知识及带电粒子在匀强磁场中做匀速圆周运动的相关知识求解.
粒子由A点射入,由C点飞出,其速度方向改变了90°,则粒子轨迹半径R=r,
又qvB=m,
则粒子的荷质比=.
(2)设粒子从D点飞出磁场,速度方向改变了60°角,故AD弧所对圆心角为60°,粒子做圆周运动的半径R′=rcot30°=r,又R′=,所以B′=B,
粒子在磁场中运动所用时间t=T=×=.
答案(1)负电荷(2)B
A.使粒子的速度v<
B.使粒子的速度v>
C.使粒子的速度v>
D.使粒子的速度<v<
答案AB
解析如图所示,带电粒子刚好打在极板右边缘时,有
r=(r1-)2+l2
又r1=,
所以v1=
粒子刚好打在极板左边缘时,有r2==,v2=
综合上述分析可知,选项A、B正确.
7.如图所示,在边长为2a的正三角形区域内存在方向垂直于纸面向里的匀强磁场,一个质量为m、电荷量为-q的带电粒子(重力不计)从AB边的中点O以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与AB边的夹角为60°,若要使粒子能从AC边穿出磁场,则匀强磁场磁感应强度B的大小需满足()
由图可知,R=①
在磁场中:F洛=F向,
有qvB=m②
由①②解得:v==
在电场中:设粒子在电场中的最大位移是l
根据动能定理Eql=mv2
l==
第三次到达x轴时,粒子运动的总路程为一个圆周和两个电场最大位移的长度的和.
s=2πR+2l=+
答案+
13.如图所示,两块水平放置、相距为d的长金属板接在电压可调的电源上.两板之间的右侧区域存在方向垂直纸面向里的匀强磁场.将喷墨打印机的喷口靠近上板下表面,从喷口连续不断地喷出质量均为m、水平速度均为v0、带相等电荷量的墨滴.调节电源电压至U,墨滴在电场区域恰能水平向右做匀速直线运动;进入电场、磁场共存区域后,最终垂直打在下板的M点.
mg=qvBcosθ
v=
设MN之间的距离为d,则
d=vt=
液滴从M点运动到N点,电场力对液滴做正功,电势能减少,设电势能减少量为ΔEp
ΔEp=qEdcosθ
ΔEp=mgtanθcosθ
ΔEp=
11、一带电微粒在如图所示的正交匀强电场和匀强磁场中的竖直平面内做匀速圆周运动,求:
(1)该带电微粒的电性?
1.如图所示,在边界PQ上方有垂直纸面向里的匀强磁场,一对正、负电子同时从边界上的O点沿与PQ成θ角的方向以相同的速度v射入磁场中,则关于正、负电子,下列说法正确的是()
A.在磁场中的运动时间相同
B.在磁场中运动的轨道半径相同
C.出边界时两者的速度相同
D.出边界点到O点的距离相等
答案BCD
2.如图所示,有界匀强磁场边界线SP∥MN,速率不同的同种带电粒子从S点沿SP方向同时射入磁场.其中穿过a点的粒子速度v1与MN垂直;穿过b点的粒子速度v2与MN成60°角,设粒子从S到a、b所需时间分别为t1和t2,则t1∶t2为(重力不计)()
(1)请判断该粒子带何种电荷,并求出其荷质比;
(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B′,该粒子仍从A处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B′多大?此次粒子在磁场中运动所用时间t是多少?
解析
(1)由粒子的运动轨迹(如图),利用左手定则可知,该粒子带负电荷.
(1)判定液滴带的是正电还是负电,并画出液滴受力示意图;
(2)求匀强电场的场强E的大小;
(3)求液滴从M点运动到N点的过程中电势能的变化量.
答案(1)液滴带正电图见解析(2)
(3)
解析(1)液滴带正电,液滴受力示意图如图所示
(2)设匀强电场的电场强度为E,由图可知
qE=mgtanθ
E=
(3)设液滴运动的速度为v,由图可知
A.1∶3B.4∶3C.1∶1D.3∶2
解析如图所示,可求出从a点射出的粒子对应的圆心角为90°.从b点射出的粒子对应的圆心角为60°.由t=T,可得:t1∶t2=3∶2,故选D.
3、如图所示,虚线圆所围区域内有方向垂直纸面向里的匀强磁场,磁感应强度为B.一束电子沿圆形区域的直径方向以速度v射入磁场,电子束经过磁场区域后,其运动方向与原入射方向成θ角.设电子质量为m,电荷量为e,不计电子之间相互作用力及所受的重力.求:
解析粒子刚好没能从PQ边界射出磁场,设轨迹半径为r,则粒子的运动轨迹如图所
示,L=r+rcosθ,轨迹半径r==.由半径公式r=得:v=;由几何知识可看出,轨迹所对圆心角为300°,则运动时间t=T=T,周期公式T=,所以t=.
答案
9、一个质量为m=0.1g的小滑块,带有q=5×10-4C的电荷量,放置在倾角α=30°的光滑斜面上(绝缘),斜面固定且置于B=0.5T的匀强磁场中,磁场方向垂直纸面向里,如图5所示,小滑块由静止开始沿斜面滑下,斜面足够长,小滑块滑至某一位置时,要离开斜面(g取10m/s2).求:
(1)由牛顿第二定律得Bqv=,q=e,得R=.
(2)如图所示,设电子做圆周运动的周期为T,则T===.由几何关系得圆心角α=θ,所以t=T=.
(3)由几何关系可知:tan=,所以有r=tan.
答案(1)(2)(3)tan
4、在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场,如图3所示.一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度v沿-x方向射入磁场,它恰好从磁场边界与y轴的交点C处沿+y方向飞出.
12、如图所示,在x轴上方有垂直于xOy平面向里的匀强磁场,磁感应强度为B;在x轴下方有沿y轴负方向的匀强电场,场强为E.一质量为m、电荷量为-q的粒子从坐标原点沿着y轴正方向射出,射出之后,第三次到达x轴时,它与点O的距离为L,求此粒子射出时的速度v的大小和运动的总路程s(重力不计).
解析粒子在磁场中的运动为匀速圆周运动,在电场中的运动为匀变速直线运动.画出粒子运动的过程草图.根据图可知粒子在磁场中运动半个周期后第一次通过x轴进入电场,做匀减速直线运动至速度为零,再反方向做匀加速直线运动,以原来的速度大小反方向进入磁场,即第二次进入磁场,接着粒子在磁场中做圆周运动,半个周期后第三次通过x轴.
5、如图所示,一束电荷量为e的电子以垂直于磁场方向(磁感应强度为B)并垂直于磁场边界的速度v射入宽度为d的磁场中,穿出磁场时速度方向和原来射入方向的夹角为θ=30°.求电子的质量和穿越磁场的时间.
答案
解析过M、N作入射方向和出射方向的垂线,两垂线交于O点,O点即电子在磁场中做匀速圆周运动的圆心,连接ON,过N做OM的垂线,垂足为P,如图所示.由直角三角形OPN知,
墨滴带负电荷.
(2)墨滴垂直进入电场、磁场共存区域后,重力仍与电场力平衡,合力等于洛伦兹力,墨滴做匀速圆周运动,有
qv0B=m③
考虑墨滴进入电场、磁场共存区域和下板的几何关系,可知墨滴在该区域恰完成四分之一圆周运动,则半径
所以vmax==m/s
≈3.5m/s
(3)设该斜面长度至少为l,则小滑块离开斜面的临界情况为小滑块刚滑到斜面底端时.因为下滑过程中只有重力做功,由动能定理得mglsinα=mv-0,所以斜面长至少为l==m≈1.2m
答案(1)负电荷(2)3.5m/s(3)1.2m
10、如图所示,空间同时存在水平向右的匀强电场和方向垂直纸面向里、磁感应强度为B的匀强磁场.一质量为m、电荷量为q的液滴,以某一速度沿与水平方向成θ角斜向上进入正交的匀强电场和匀强磁场叠加区域,在时间t内液滴从M点匀速运动到N点.已知重力加速度为g.
(2)磁场方向向外,洛伦兹力的方向始终指向圆心,由左手定则可判断粒子的旋转方向为逆时针(四指所指的方向与带负电的粒子的运动方向相反).
(3)由微粒做匀速圆周运动,得知电场力和重力大小相等,得:mg=qE①
带电微粒在洛伦兹力的作用下做匀速圆周运动的半径为:r=②
①②联立得:v=
答案(1)负电荷(2)逆时针(3)
(1)小滑块带何种电荷?
(2)小滑块离开斜面时的瞬时速度是多大?
(3)该斜面长度至少是多长?
解析
(1)小滑块在沿斜面下滑的过程中,受重力mg、斜面支持力N和洛伦兹力F作用,如图所示,若要使小滑块离开斜面,则洛伦兹力F应垂直斜面向上,根据左手定则可知,小滑块应带负电荷.
(2)小滑块沿斜面下滑的过程中,由平衡条件得F+N=mgcosα,当支持力N=0时,小滑块脱离斜面.设此时小滑块速度为vmax,则此时小滑块所受洛伦兹力F=qvmaxB,
A.B>B.B<
C.B>D.B<
答案B
解析
粒子刚好达到C点时,其运动轨迹与AC相切,如图所示,则粒子运动的半径为r0=acot30°.由r=得,粒子要能从AC边射出,粒子运动的半径r>r0,解得B<,选项B正确.
8、真空区域有宽度为L、磁感应强度为B的匀强磁场,磁场方向如图所示,MN、PQ是磁场的边界.质量为m、电荷量为+q的粒子沿着与MN夹角为θ=30°的方向垂直射入磁场中,粒子刚好没能从PQ边界射出磁场(不计粒子重力的影响),求粒子射入磁场的速度大小及在磁场中运动的时间.