一元二次不等式的解法 含答案(精编文档).doc
高中数学《一元二次不等式的解法》习题(含解析)
解得 x 2 或 x 2 ,即不等式的解集为{x | x 2 或 x 2};
(2)设 t x 0 ,则不等式 2x x 1 ,可化为 2t 2 t 1 0 ,
解得 t 1或 t 1 (舍去),即 2
x 1 ,解得 x 1 ,即不等式的解集为 { x | x 1} .
所以
是
的真子集,
所以
或 ,解得
或
所以 的取值范围是 17.解下列不等式:
或.
(1) x4 x2 2 0 ;
(2) 2x x 1 . 【答案】(1){x | x 2 或 x 2};(2) { x | x 1} .
【解析】
(1)由题意,可得不等式 x4 x2 2 (x2 2)(x2 1) 0 ,解得 x2 2 ,
【解析】
3x2 x 2 0 , 即 (x 1)(3x 2) 0 ,
即 1 x 2 , 3
故 x 取值范围是 (1, 2) . 3
11.不等式
2x 1 x 1
3
的解集为_____________
【答案】 (4, 1)
【解析】
由题意,不等式
2x 1 x 1
3 ,即
2x 1 x 1
3
2x
1 3x x 1
x x
5 2
0},则
A
B
(
)
A.{x |1 x 2} B.{x |1 x 2} C.{x | 2 x 4} D.{x|2<x≤4}
【答案】D 【解析】
依题意 A 1, 4, B 2,5 ,故 A B 2, 4.
6.若不等式 ax2 x a 0 对一切实数 x 都成立,则实数 a 的取值范围为( )
当 m 1 0 时,即 m 1时,此时不等式 1 0 恒成立,满足题意; 当 m 1 0 时,即 m 1 时,则 [3(m 1)]2 4(m 1)(m) 0 ,即 (m 1)(13m 9) 0 , 解得 9 m 1;
含参数的一元二次不等式的解法(精品范文).doc
【最新整理,下载后即可编辑】含参数的一元二次不等式的解法含参一元二次不等式常用的分类方法有三种: 一、按2x 项的系数a 的符号分类,即0,0,0<=>a a a ; 例1 解不等式:()0122>+++x a ax分析:本题二次项系数含有参数,()044222>+=-+=∆a a a ,故只需对二次项 系数进行分类讨论。
解:∵()044222>+=-+=∆a a a解得方程 ()0122=+++x a ax 两根,24221a a a x +---=aa a x 24222++--=∴当0>a 时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<++-->a a a x a a a x x 242242|22或 当0=a 时,不等式为012>+x ,解集为⎭⎬⎫⎩⎨⎧>21|x x 当0<a 时, 解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<<++--a a a x a a a x 242242|22 例2 解不等式()00652≠>+-a a ax ax分析 因为0≠a ,0>∆,所以我们只要讨论二次项系数的正负。
解 ()()032)65(2>--=+-x x a x x a∴当0>a 时,解集为{}32|><x x x 或;当0<a 时,解集为{}32|<<x x 变式:解关于x 的不等式1、0)2)(2(>--ax x ;2、(1-ax )2<1.}2,2|{,1)5(}2|{,1)4(}2,2|{,10)3(}2|{,0)2(}22|{,0)1(><>≠=><<<<=<<<x ax x a x x a ax x x a x x a x ax a 或时当时当或时当时当时当3、ax 2-(a +1)x +1<0(a ∈R) 【解】由(1-ax )2<1得a 2x 2-2ax +1<1.即ax (ax -2)<0.(1)当a =0时,不等式转化为0<0,故原不等式无解.(2)当a <0时,不等式转化为x (ax -2)>0,即x (x -2a )<0.∵2a <0,∴不等式的解集为{x |2a<x <0}.(3)当a >0时,不等式转化为x (ax -2)<0,2}11|{1)5(1)4(}11|{10)3(}1|{0)2(}1,1|{0)1(<<>Φ=<<<<>=><<x ax a a ax x a x x a x ax x a 时,当时,当时,当时,当或时,当二、按判别式∆的符号分类,即0,0,0<∆=∆>∆; 例3 解不等式042>++ax x分析 本题中由于2x 的系数大于0,故只需考虑∆与根的情况。
一元二次不等式及分式不等式的解法(含答案)
⼀元⼆次不等式及分式不等式的解法(含答案)⼀元⼆次不等式及分式不等式的解法典题探究()a x a A 1.?a x a B 1.a x ax C ??或1.a x a x D ??或1.例262--x x 有意义,则x 的取值范围是例3 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =________.例4 解关于x 的不等式012)1(<+--x x k (k ≥0,k ≠1).演练⽅阵A 档(巩固专练)1.关于x 的不等式|2|x m ->的解集为R 的充要条件是()(A )0m < (B )2m ≥ (C )0m ≤ (D )2m ≤2.不等式02)1(≥+-x x 的解集为()(A )),1[∞+ (B )}2{),1[-∞+ (C ))1,2[- (D )),2[∞+-3.不等式a x x <-+-|3||4|的解集为⾮空集合,则实数a 的取值范围是()(A )1(B )1>a(C )1≥a(D )43<4 .不等式13log (1)1x ->-的解集为( ) (A ){x |x >4} (B ){x |x <4} (C ){x |132}5 .已知关于x 的不等式0ax b +<的解集是(1,)+∞,则关于x 的不等式026.若不等式2222x x a y y ++≥--对任意实数x y 、都成⽴,则实数a 的取值范围是()(A )0a ≥ (B ) 1a ≥ (C )2a ≥ (D )3a ≥例若<<,则不等式--<的解是1 0a 1(x a)(x )01a7.若关于x 的不等式2()1()g x a a x R ≥++∈的解集为空集,则实数a 的取值范围是.8.关于x 的不等式12a x >-(其中0a >)的解集为.9. 已知关于x 的不等式052<--ax ax 的解集为M .(1)当4=a 时,求集合M ;(2)若M M ?∈53且,求实数a 的取值范围.10.已知21,:(2)10,:(1)(2) 1.a P a x Q x a x >-+>->-+试寻求使得,P Q 都成⽴的x 的集合.B 档(提升精练)1.已知a ,b 都是实数,那么“a >|b |”是“a 2>b 2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.在两个实数之间定义⼀种运算“#”,规定a #b =?1,(a <b ),-1,(a ≥b ).则⽅程|1x -2|#2=1的解集是( )A .{14}B .(14,+∞)C .(-∞,14)D .[14,+∞)3.若b <a <0,则下列不等式中正确的是( )>2 D .a +b >ab 4.已知集合A ={x |x 2-3x -4>0},B ={x ||x -3|>4},则A ∩(?R B )为( )A .(4,7]B .[-7,-1)C .(-∞,-1)∪(7,+∞)D .[-1,7]5.对于⾮零实数a 、b ,“b (b -a )≤0”是“ab≥1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.设集合A ={x | |x -a |<1,x ∈R},B ={x |1<x <5,x ∈R}.若A ∩B =?,则实数a 的取值范围是( )A .{a |0≤a ≤6}B .{a |a ≤2,或a ≥4}C .{a |a ≤0,或a ≥6}D .{a |2≤a ≤4}7.已知x >0,y >0,x +2y +2xy =8,则x +2y 的最⼩值是( )A .3B .4C.92D.1128.解关于x 的不等式.1||,11≠>++a ax ax 其中 9.设a ,b ,c ∈R +,则(a +b +c )(1a +b +1c )的最⼩值为__________.10. (1)设x >-1,求实数y =(x +5)(x +2)x +1的最⼩值.(2)设0<x <34,求函数y =5x (3-4x )的最⼤值.C 档(跨越导练)2. 关于x 的不等式(m x -1)(x -2)>0,若此不等式的解集为{x |<x <2},则m 的取值范围是()A.m >0B.0<m <2C.m >D.m <03.已知a 1、a 2∈(0,1).记M =a 1a 2,N =a 1+a 2-1,则M 与N 的⼤⼩关系是( )A .M <NB .M >NC .M =ND .不确定 4.“a >0且b >0”是“a +b2≥ab ”成⽴的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分⼜不必要条件 5.下列命题中的真命题是( )2x x >(),0-∞()0,1()1,+∞()(),01,-∞+∞A .若a >b ,c >d ,则ac >bdB .若|a |>b ,则a 2>b 2C .若a >b ,则a 2>b 2D .若a >|b |,则a 2>b 2 6.若a <b <0,则下列不等式中不能成⽴的是( )A.1a >1bB.1a -b >1aC .|a |>|b |D .a 2>b 2 7.若实数a ,b ,c 满⾜|a -c |<|b |,则下列不等式中成⽴的是( )A .|a |>|b |-|c |B .|a |<|b |+|c |C .a >c -bD .a <b +c8.已知正数x ,y 满⾜x +2y =1,则1x +1B .5C .3+22D .4 29.已知a 1≤a 2,b 1≤b 2,则a 1b 1+a 2b 2与a 1b 2+a 2b 1的⼤⼩关系为________.10.若1<α<3,-4<β<2,则α-|β|的取值范围是⼀元⼆次不等式及分式不等式的解法参考答案典题探究例1 【答案】A 【解析】⽐较a 与a 1的⼤⼩后写出答案 0a 1,解应当在“两根之间”,得ax a 1例2【答案】x ≥3或x ≤-2.【解析】分析求算术根,被开⽅数必须是⾮负数.据题意有,x 2-x -6≥0,即(x -3)(x +2)≥0,解在“两根之外”,所以x ≥3或x ≤-2.例3【答案】【解析】分析根据⼀元⼆次不等式的解公式可知,-1和2是⽅程ax 2+bx -1=0的两个根,考虑韦达定理.解根据题意,-1,2应为⽅程ax 2+bx -1=0的两根,则由韦达定理知例4【解析】原不等式即022)1(<--+-x k x k ,1°若k=0,原不等式的解集为空集;2°若1-k>0,即0x kkx 此时k k --12-2=k k --12>0,∴若0k --12};3°若1-k<0,即k>1时,原不等式等价于,0)2)(12(>----x kkx 此时恒有2>k k --12,所以原不等式的解集为{x|xk--12,或x>2}1【答案】A 【解析】由|2|x m ->得,m <0 2【答案】B 【解析】0∴10x -≥即可∴1x ≥3【答案】B 【解析】有绝对值得⼏何意义可知:|4||3|x x -+-表⽰数轴上的点到点4和点3的距离之和,所以|4||3|x x -+-≥1,∴a >1即可4【答案】C【解析】:由13log (1)1x ->-,得1113331log (1)log log 33x ->-=, 即013x <-<,即14x <<.选Ca b ==-1212,.-=-+=-=-=-??baa()()1211122×得a b ==-1212,.5【答案】A 【解析】由题1b a =-意得且0a <,∴02ax b x ->-即02bx a x -<-,即(2)()0b x x a --<. 6【答案】C 【解析】221x x a a ++≥-,221yy --≤即11a -≥,2a ≥.选C.7.【答案】(,1)(0,)a ∈-∞-?+∞【解析】:2()1()g x a a x R ≥++∈的解集为空集,就是1= [()g x ]max <21a a ++所以(,1)(0,)a ∈-∞-?+∞8【解析】:1210022ax a a x x --->?<--. 当0a >时21(2)()0a x x a +--<,则1∈【解析】:(1)当4=a 时,不等式为04542<--x x ,解之,得 ()5,2,24M ??=-∞-. (2)当25≠a 时,3,5M M ∈350,955025a a a a-?∈ .当25=a 时,不等式为0255252<--x x ,解之,得()1,5,55M ??=-∞-,则M M ?∈53且,∴25=a 满⾜条件.综上可知(]51,9,253a ??∈.10【解析】:由题意,要使,P Q 都成⽴,当且仅当不等式组2 (2)10,(1)(2)1a x x a x -+>??->-+? 成⽴.此不等式组等价于12,()(2)0.x ax a x ?>-?-->? ①当12a <<时,则有12,2,x a x x a ?>-?>或⽽111(2)20,2a a a a a a --=+->∴>-,所以122x x a a >-<<或 ; ②当2a =时,322x x >≠且 ;或所以122x a x a >-<<或. 综上,当12a <<时,使,P Q 都成⽴的x 的集合是122x x x a a ??>-<或; 当2a =时,使,P Q 都成⽴的x 的集合是 B 档(提升精练)1【答案】A 【解析】:由a >|b |≥0⼀定能得出a 2>b 2,但当a 与b 都⼩于0时,若a 2>b 2,则有a <|b |,故其为充分不必要条件.2【答案】B 【解析】:运⽤规定的运算“#”转化求解,∵|1x -2|#2=1,故|1x -2|<2.解得x >14. 3【答案】C 【解析】:1a -1b =b -aab<0,A 选项错;b <a <0?-b >-a >0?|b |>|a |,B 选项错;b a +a b =|b a |+|a b |≥2,由于b a ≠ab ,所以等号不成⽴,C 选项正确;a +b <0且ab >0,D 选项错.4【答案】A 【解析】:因为A =(-∞,-1)∪(4,+∞),B =(-∞,-1)∪(7,+∞),所以A ∩(?RB )=(4,7].5【答案】C 【解析】:∵a ≠0,b ≠0,故有3 b (b -a )≤0?b -a b ≤0?1-a b ≤0?ab≥1. 6【答案】C 【解析】:由于不等式|x -a |<1的解是a -1<x <a +1,当A ∩B =?时,只要a +1≤1或a -1≥5即可,即a ≤0或a ≥6.7【答案】B 【解析】:依题意得(x +1)(2y +1)=9,(x +1)+(2y +1) ≥2(x +1)(2y +1)=6,x +2y ≥4,即x +2y 的最⼩值是4.8解:,0)1()1(01>+--->+--+a x a x a a x a x ax 即得原不等式的解集为}1|{a x x x -<>或; 若01,1<+-x x a 则,当,1,11<-<<-a a 时得原不等式的解集为}1|{<<-x a x ;当1,1>--9【答案】4【解析】:(a +b +c )(1a +b +1c )=1+c a +b +a +b c +1=2+c a +b+a +b c ≥2+2=4.10【解析】解:(1)设x +1=t ,∵x >-1,∴t >0,原式化为y =(t -1)2+7(t -1)+10t =t 2+5t +4t =t +4t+5≥2t ·4t+5=9,当且仅当t =4t,即t =2时,取等号,∴当x =1时,y 取最⼩值9.(2)∵0<x <34,∴34-x >0.∴y =5x (3-4x )=20x (34-x )≤20×[x +(34-x )2]2=20×(38)2=4516,当且仅当x =34-x ,即x =38时,取等号.∴当x =38时,y 取最⼤值4516.C 档(跨越导练)1.【答案】D 【解析】由得,所以解集为,故选D;别解:抓住选择题的特点,显然当时满⾜不等式,故选D.2.【答案】D 【解析】解析:由不等式的解集形式知m <0.3.【答案】B 【解析】:M -N =a 1a 2-(a 1+a 2-1)=(a 1-1)(a 2-1),∵a 1、a 2∈(0,1),∴(a 1-1)(a 2-1)>0,∴M >N .4.【答案】A 【解析】:由于a >0且b >0?2≥ab ?/ a >0且b >0.只能推出a ≥0且b ≥0.5.【答案】D 【解析】:∵a >|b |≥0,∴a 2>b 2.6.【答案】B 【解析】:∵a <b <0,∴-a >-b >0.由a <b <0得1a >1b,∴A 成⽴.由a <b<0得|a |>|b |,∴C 成⽴.由-a >-b >0得(-a )2>(-b )2,即a 2>b 2,∴D 成⽴.∵a <b <0,∴a -b <0,∴a <a -b <0,∴-a >b -a >0,∴1-a <1-(a -b ),∴1a >1a -b ,∴B 不成⽴.7.【答案】B 【解析】:∵|a -c |<|b |,⽽|a |-|c |≤|a -c |,∴|a |-|c |<|b |,即|a |<|b |+|c |. 8.【答案】C 【解析】:1x +1y =x +2y x +x +2y y =3+2y x +xy≥3+2 2.(当2y x =x y 即x =2-1,y =1-22时取“=”)9.【答案】a 1b 1+a 2b 2≥a 1b 2+a 2b 1【解析】解析:法⼀:∵(a 1b 1+a 2b 2)-(a 1b 2+a 2b 1)=(b 1-b 2)(a 1-a 2),a 1≤a 2,b 1≤b 2,∴a 1-a 2≤0,b 1-b 2≤0,∴(b 1-b 2)(a 1-a 2)≥0,∴a 1b 1+a 2b 2≥a 1b 2+a 2b 1.法⼆:取a 1=a 2=b 1=b 2,则两式相等.取a 1=1,a 2=2,b 1=3,b 2=4,则a 1b 1+a 2b 2=11,a 1b 2+a 2b 1=10,∴a 1b 1+a 2b 2≥a 1b 2+a 2b 1.10.【答案】(-3,3)【解析】:∵-4<β<2,则0≤|β|<4.∴-4<-|β|≤0.∴-3<α-|β|<3.2x x >(1)0x x ->()(),01,-∞+∞ 2x =±。
高考数学 一元二次不等式及其解法大全(含练习和答案)
一元二次不等式及其解法1.一元二次不等式(20(0)ax bx c a ++>>)与相应的二次函数(2(0)y ax bx c a =++>)及一元二次方程(20(0)ax bx c a ++=>)的关系(简称三个二次之间的关系)判别式Δ=b 2-4acΔ>0 Δ=0 Δ<0 二次函数y =ax 2+bx +c (a >0)的图象一元二次方程 ax 2+bx +c =0 (a >0)的根有两相异实根1212,()x x x x < 有两相等实根 122b x x a==-没有实数根 ax 2+bx +c >0 (a >0)的解集R ax 2+bx +c <0 (a >0)的解集∅ 注:(1)若0a <时,可以先将二次项系数化为正数,若对应方程有两实根,则可根据“大于取两边,小于取中间”求解集。
2.简单的分式不等式(1)()0()f x g x >⇔______________; (2)()0()f xg x <⇔____________ (3)()0()f x g x ≥⇔ ___________ (4)()0()f x g x ≤⇔_____________ 3.二次不等式恒成立的条件(1)ax 2+bx +c >0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________ (2)ax 2+bx +c <0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________1.(人教A 版教材习题改编)不等式2x 2-x -1>0的解集是( )A .(-12,1) B .(1,+∞)C .(-∞,1)∪(2,+∞)D .(-∞,-12)∪(1,+∞)2.不等式x -12x +1≤0的解集为( )A .(-12,1]B .{x |x ≥1或x <-12}C .[-12,1]D .{x |x ≥1或x ≤-12} 3.(2012·福建高考)已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是________.4.一元二次不等式ax 2+bx +2>0的解集是(-12,13),则a +b 的值是________.(一)考向1 一元二次不等式的解法例1 求下列不等式的解集(1)22730x x ++> (2)3+2x -x 2≥0;(3)2830x x -+-> (4)213502x x -+-> (5)22320x x -+-< (6)2xx -1≤1解一元二次不等式的步骤: (1)把二次项系数化为正数;(2)先考虑因式分解法,再考虑求根公式法或配方法或判别式法; (3)写出不等式的解集. 变式训练1 解下列不等式:(1)2310x x -+≤ (2)23520x x +-> (3)22530x x --+> (4)29610x x -+-<(5)3012x x+≤- (6)-1≤x 2+2x -1≤2;(二)考向2 三个二次的关系例2 已知关于x 的不等式x 2+ax +b <0的解集(-1,2),试求关于x 的不等式ax 2+x +b <0的解集. 【思路点拨】 不等式解集的端点值是相应方程的根.(1)给出一元二次不等式的解集,则可知二次项系数的符号和相应一元二次方程的两根.(2)三个二次的关系体现了数形结合,以及函数与方程的思想方法.变式训练2 若关于x的不等式axx-1<1的解集是{x|x<1或x>2},求实数a的取值范围.(三)考向3含参数的一元二次不等式的解法例3求不等式12x2-ax>a2(a∈R)的解集.【思路点拨】先求方程12x2-ax=a2的根,讨论根的大小,确定不等式的解集.解含参数的一元二次不等式的步骤(1)二次项若含有参数应讨论参数是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程实根的个数,讨论判别式Δ与0的关系.(3)确定方程无实根时可直接写出解集,确定方程有两个相异实根时,要讨论两实根的大小关系,从而确定解集形式.变式训练3 解关于x的不等式x2-(a+1)x+a<0.(四)考向4 不等式恒成立问题例4 若不等式mx 2-mx -1<0对一切实数x 恒成立,求实数m 的取值范围.【思路点拨】分m =0与m ≠0两种情况讨论,当m ≠0时,用判别式法求解.1.不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c >0;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ<0;不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c <0;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ<0.2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.变式训练4 对任意a ∈[-1,1]不等式x 2+(a -4)x +4-2a >0恒成立,则实数x 的取值范围是________.一个过程解一元二次不等式的一般过程是:一看(看二次项系数的符号),二算(计算判别式,判断方程根的情况),三写(写出不等式的解集).两点联想不等式ax 2+bx +c >0(或ax 2+bx +c <0)(a ≠0)的求解,善于联想:(1)二次函数y =ax 2+bx +c 的图象与x 轴的交点,(2)方程ax 2+bx +c =0(a ≠0)的根,运用好“三个二次”间的关系.三个防范1.二次项系数中含有参数时,参数的符号影响不等式的解集;不要忘了二次项系数是否为零的情况.2.解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.3.不同参数范围的解集切莫取并集,应分类表述.课时训练1.设集合M={}2230x x x --<,N=12log 0,x x M N ⎧⎫<⋂⎨⎬⎩⎭则等于 ( )A .-(1,1) B.(1,3) C.(0,1) D.(-1,0)2.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则 ( )A 、11a -<<B 、02a <<C 、1322a -<<D 、3122a -<<3.“|x -1|<2成立”是“x (x -3)<0成立”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.定义02x x <>或运算a b ad bc c d ⎛⎫=- ⎪⎝⎭,则不等式1011x x ⎛⎫<< ⎪⎝⎭的解集为() A .(1,1)- B. (1,0)(0,1)-⋃C. (1)(1-⋃D.5.设A ={x ∈Z ||x -2|≤5},则A 中最小元素为( )A .2B .-3C .7D .06、不等式20x ax b --<的解集为{}223,10x x bx ax <<-->则的解集为( )A 、{}23x x <<B 、1132x x ⎧⎫<<⎨⎬⎩⎭C 、1123x x ⎧⎫-<<-⎨⎬⎩⎭D 、{}32x x -<<-7.设x ∈R ,则“x >12”是“2x 2+x -1>0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.不等式102xx-≥+的解集为 ( ) A.[]2,1- B. (]2,1- C. ()(),21,-∞-⋃+∞ D. (](),21,-∞-⋃+∞ 9. “关于x 的不等式x 2-2ax +a >0的解集为R ”是“0≤a ≤1”( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 10.不等式22530x x --≥成立的一个必要不充分条件是 ( )A .0x ≥ B. 02x x <>或 C. 12x <- D. 132x x ≤-≥或 11.不等式22253x x a a -+≥-对任意实数x 恒成立,则实数a 的取值范围为 ( )A .[]1,4- B. [)(,2)5,-∞-⋃+∞ C. (][),14,-∞-⋃+∞ D. []2,5-12、若函数222,0(),0x x x f x x ax x ⎧-≥=⎨-+<⎩是奇函数,则满足()f x a x >的的取值范围是________13.若不等式2(1)0x a x a --+≤的解集是[-4,3]的子集,则a 的取值范围是________14.已知不等式|x -2|>1的解集与不等式x 2+ax +b >0的解集相等,则a +b 的值为________.15. 设命题p :2x 2-3x +1≤0; 命题q :x 2-(2a +1)x +a (a +1)≤0, 若命题p 是命题q 的必要不充分条件,则实数a 的取值范围是________. 16.不等式ax 2+4x +a >1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是________.一元二次不等式及其解法答案1、D 【解析】 ∵2x 2-x -1=(x -1)(2x +1)>0, ∴x >1或x <-12.故原不等式的解集为(-∞,-12)∪(1,+∞).2、A 【解析】 原不等式等价于(1)(21)0210x x x -+≤⎧⎨+≠⎩.∴原不等式的解集为(-12,1].3、(0,8) 【解析】 ∵x 2-ax +2a >0在R 上恒成立, ∴Δ=a 2-4×2a <0,∴0<a <8.4、-14 【解析】 由已知得方程ax 2+bx +2=0的两根为-12,13.则⎩⎨⎧-b a =-12+132a =(-12)×13解得⎩⎪⎨⎪⎧a =-12,b =-2, ∴a +b =-14.典例分析:例1:(1)原不等式可化为(3)(21)0x x ++> 故原不等式的解集为132x x x ⎧⎫<->-⎨⎬⎩⎭或(2)原不等式化为x 2-2x -3≤0, 即(x -3)(x +1)≤0, 故原不等式的解集为{x |-1≤x ≤3}. (3)原不等式可化为2830x x -+<284(1)(3)520∆=-⨯-⨯-=>212830413413x x x x ∴-+-===方程有两个实根,故原不等式的解集为{}413413x x << (4)原不等式可化为26100x x -+≤ 26411040∆=-⨯⨯=-<∴原不等式的解集为∅(5)原不等式可化为22620x x -+> 2(6)42270∆=--⨯⨯=-<∴故原不等式的解集为R(6) ∵2x x -1≤1⇔2xx -1-1≤0 ⇔x +1x -1≤0 ⇔(1)(1)01110x x x x ≤⎧⇔-≤<⎨-≠⎩-+∴原不等式的解集为[-1,1).变式训练1 (1)9450∆=-=> 12353522x x ∴==对应的方程有两实数根 ∴原不等式的解集为35352x ⎧-+⎪≤≤⎨⎪⎪⎩⎭(2)原不等式可化为(31)(2)0x x -+> ∴原不等式的解集为123x x x ⎧⎫<->⎨⎬⎩⎭或(3)∵-2x 2-5x +3>0, ∴2x 2+5x -3<0,∴(2x -1)(x +3)<0, ∴原不等式的解集为{x |-3<x <12}.(4)原不等式可化为2(31)0x -> ∴原不等式的解集为13x x ⎧⎫≠⎨⎬⎩⎭(5)原不等式可化为(3)(12)0120x x x +-≤⎧⎨-≠⎩ (3)(21)0120x x x +-≥⎧⎨-≠⎩则 13212x x x ⎧≤-≥⎪⎪∴⎨⎪≠⎪⎩或∴原不等式的解集为132x x x ⎧⎫≤->⎨⎬⎩⎭或(6)这是一个双向不等式,可转化为不等式组⎩⎪⎨⎪⎧x 2+2x -1≥-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x ≥0, ①x 2+2x -3≤0. ② 由①得x ≥0或x ≤-2; 由②得-3≤x ≤1. 故得所求不等式的解集为{x |-3≤x ≤-2或0≤x ≤1}.例2 由于x 2+ax +b <0的解集是(-1,2),所以⎩⎪⎨⎪⎧1-a +b =0,4+2a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =-2.故不等式即为-x 2+x -2<0, ∵⎩⎪⎨⎪⎧-1<0,Δ=1-8=-7<0∴不等式ax 2+x +b <0的解集为R .,变式训练2 解: axx -1<1⇔(a -1)x +1x -1<0⇔[(a -1)x +1](x -1)<0,由原不等式的解集是{x |x <1或x >2}, 知⎩⎪⎨⎪⎧a -1<0,-1a -1=2⇒a =12. ∴实数a 的取值范围是{12}. 例3 ∵12x 2-ax >a 2, ∴12x 2-ax -a 2>0,即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得:x 1=-a 4,x 2=a3.①a >0时,-a 4<a 3,解集为{x |x <-a 4或x >a3};②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a 3,解集为{x |x <a 3或x >-a4}.综上所述:当a >0时,不等式的解集为{x |x <-a 4或x >a3};当a =0时,不等式的解集为{x |x ∈R 且x ≠0};当a <0时,不等式的解集为{x |x <a3或x >-变式训练3 【解】 原不等式可化为(x -a )(x -1)<0.当a >1时,原不等式的解集为(1,a ); 当a =1时,原不等式的解集为空集; 当a <1时,原不等式的解集为(a ,例4 要使mx 2-mx -1<0对一切实数x 恒成立,若m =0,显然-1<0;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,解得-4<m <0, 故实数m 的取值范围是(-4,0].,变式训练4 【解析】 设f (a )=(x -2)a +x 2-4x +4,则原问题可转化为一次函数(或常数函数)f (a )在区间[-1,1]上恒正时x 应满足的条件,故应有⎩⎪⎨⎪⎧f (-1)>0,f (1)>0. 即⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0, 化为⎩⎪⎨⎪⎧(x -2)(x -3)>0,(x -1)(x -2)>0. 解之,得x <1或x >3.课时训练1、B 解:由2230x x --<, 得13x -<<由12log 0x <,得1x > 所以{}13M N x x ⋂=<<2、C 解:()()1x a x a -⊗+<对任意实数x 成立, 即()(1)1x a x a ---<对任意实数x 成立2210x x a a ∴--++>恒成立 214(1)0a a ∴∆=--++< 1322a ∴-<< 3. B 【解析】 ∵|x -1|<2⇔-1<x <3,又x (x -3)<0⇔0<x <3.则(0,3)(-1,3). 4、C 解:由题意可知原不等式即为2011x <-< ,212x ∴<<1221x x ∴<<<-或5. B 【解析】 由|x -2|≤5,得-3≤x ≤7, 又x ∈Z ,∴A 中的最小元素为-36、C 解:由题意知2,3是方程20x ax b --=的解235,236a ab b +==⎧⎧∴∴⎨⎨⨯=-=-⎩⎩ 22106510bx ax x x ∴-->--->不等式为2116+5+1023x x x x ⎧⎫<∴-<<-⎨⎬⎩⎭即, 7、 A 【解析】 2x 2+x -1>0的解集为{x |x >12或x <-1}, 故由x >12⇒2x 2+x -1>0,但2x 2+x -1>0D ⇒/x >12. 则“x >12”是“2x 2+x -1>0”的充分不必要条件. 8、B 解:由102x x -≥+,得(1)(2)020x x x -+≥⎧⎨+≠⎩ 则(1)(2)020x x x -+≤⎧⎨+≠⎩解得21x -<≤ (]2,1∴-原不等式的解集为9、A 【解析】 关于x 的不等式x 2-2ax +a >0的解集为R ,则Δ=4a 2-4a <0,解得0<a <1,由集合的包含关系可知选A.10、B 解:原不等式可化为(21)(3)0x x +-≥,解得132x x ≤-≥或 所以原不等式成立的一个必要不充分条件是02x x <>或11、A 解:由题意知,2225(1)4x x x -+=-+的最小值为4,所以22253x x a a -+≥- 对任意实数x 恒成立,只需234a a -≤,解得14a -≤≤12、(13,)-+∞ 解:()(1)(1)f x f f ∴-=-是奇函数, 即1(12)a --=--2()2a f x ∴=->-,则不等式等价于22002222x x x x x x ≥<⎧⎧⎨⎨->--->-⎩⎩,或,解得030x x ≥<<,或-1- 即(13,)x ∈--+∞13、43a -≤≤ 解:原不等式可化为()(1)0x a x --≤,当1a <时,不等式的解集为[],1a , 此时只要4a ≥-即可,即41a -≤<,当1a =时,不等式的解集为1x =,此时符合要求; 当1a >时,不等式的解集为[]1,a ,此时只要3a ≤即可,即13a <≤,综上可得43a -≤≤14. -1 【解析】 由|x -2|>1得x -2<-1或x -2>1,即x <1或x >3.依题意得知,不等式x 2+ax +b >0的解集是(-∞,1)∪(3,+∞)于是有⎩⎪⎨⎪⎧1×3=b ,1+3=-a ,即a =-4,b =3,a +b =-1. 15、[0,12], 解:由2x 2-3x +1≤0,得12≤x ≤1, 由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,由命题p 是命题q 的必要不充分条件知,p 是q 的充分不必要条件,即{x |12≤x ≤1}{x |a ≤x ≤a +1}, ∴⎩⎪⎨⎪⎧a ≤12,a +1≥1,∴0≤a ≤12. 16、 (2,+∞) 【解析】 由题意知,不等式(a +2)x 2+4x +a -1>0对一切x ∈R 恒成立,则有⎩⎪⎨⎪⎧a +2>0,Δ=16-4(a +2)(a -1)<0,解得a >2.。
高中数学必修5一元二次不等式及其解法精选题目(附答案)
高中数学必修5一元二次不等式及其解法精选题目(附答案)1.一元二次不等式我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式,即形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)(其中a≠0)的不等式叫做一元二次不等式.2.一元二次不等式的解与解集使一元二次不等式成立的x的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.3.一元二次不等式与相应的二次函数及一元二次方程的关系表题型一:一元二次不等式解法1.解下列不等式:(1)2x2+5x-3<0;(2)-3x2+6x≤2;(3)4x2+4x+1>0;(4)-x2+6x-10>0.题型二:三个“二次”关系的应用2.若不等式ax 2+bx +2>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,则a +b 的值为( )A .14B .-10C .10D .-143.已知一元二次不等式x 2+px +q <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,求不等式qx 2+px +1>0的解集.题型三:解含参数的一元二次不等式4.解关于x 的不等式x 2+(1-a )x -a <0.巩固练习:1.不等式6x 2+x -2≤0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-23≤x ≤12B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-23或x ≥12 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥12D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-23 2.设a <-1,则关于x 的不等式a (x -a )⎝ ⎛⎭⎪⎫x -1a <0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <a 或x >1a B .{x |x >a } C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >a 或x <1aD.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <1a 3.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)4.不等式mx 2-ax -1>0(m >0)的解集可能是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >14 B .R C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-13<x <32 D .∅5.函数y =17-6x -x 2的定义域为( )A .[-7,1]B .(-7,1)C .(-∞,-7]∪[1,+∞)D .(-∞,-7)∪(1,+∞)6.已知全集U =R ,A ={x |x 2-1≥0},则∁U A =________.7.若二次函数y =ax 2+bx +c (a <0)的图象与x 轴的两个交点为(-1,0)和(3,0),则不等式ax 2+bx +c <0的解集是________.8.已知函数f (x )=⎩⎨⎧x 2+2x ,x ≥0,-x 2+2x ,x <0.若f (a )≤3,则a 的取值范围是________.9.解关于x 的不等式x 2-3ax -18a 2>0. 10.若函数f (x )=2 018ax 2+2ax +2的定义域是R ,求实数a 的取值范围.参考答案:1.[解] (1)Δ=49>0,方程2x 2+5x -3=0的两根为x 1=-3,x 2=12, 作出函数y =2x 2+5x -3的图象,如图①所示.由图可得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-3<x <12.(2)原不等式等价于3x 2-6x +2≥0.Δ=12>0,解方程3x 2-6x +2=0,得x 1=3-33,x 2=3+33,作出函数y =3x 2-6x +2的图象,如图②所示,由图可得原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤3-33或x ≥3+33. (3)∵Δ=0,∴方程4x 2+4x +1=0有两个相等的实根x 1=x 2=-12.作出函数y =4x 2+4x +1的图象如图所示.由图可得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-12,x ∈R.(4)原不等式可化为x 2-6x +10<0,∵Δ=-4<0, ∴方程x 2-6x +10=0无实根,∴原不等式的解集为∅. 2.解:由已知得,ax 2+bx +2=0的解为-12,13,且a <0. ∴⎩⎪⎨⎪⎧-b a =-12+13,2a =⎝ ⎛⎭⎪⎫-12×13,解得⎩⎨⎧a =-12,b =-2,∴a +b =-14.3.解:因为x 2+px +q <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,所以x 1=-12与x 2=13是方程x 2+px +q =0的两个实数根,由根与系数的关系得⎩⎪⎨⎪⎧13-12=-p ,13×⎝ ⎛⎭⎪⎫-12=q ,解得⎩⎪⎨⎪⎧p =16,q =-16 .所以不等式qx 2+px +1>0即为-16x 2+16x +1>0,整理得x 2-x -6<0,解得-2<x <3.即不等式qx 2+px +1>0的解集为{x |-2<x <3}.4.[解] 方程x 2+(1-a )x -a =0的解为x 1=-1,x 2=a ,函数y =x 2+(1-a )x -a 的图象开口向上,则当a <-1时,原不等式解集为{x |a <x <-1};当a =-1时,原不等式解集为∅;当a >-1时,原不等式解集为{x |-1<x <a }. 5.设a ∈R ,解关于x 的不等式ax 2+(1-2a )x -2>0.5.解:(1)当a =0时, 不等式可化为x -2>0,解得x >2,即原不等式的解集为{x |x >2}.(2)当a ≠0时,方程ax 2+(1-2a )x -2=0的两根分别为2和-1a .①当a <-12时,解不等式得-1a <x <2,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1a <x <2;②当a =-12时,不等式无解,即原不等式的解集为∅;③当-12<a <0时,解不等式得2<x <-1a ,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2<x <-1a ; ④当a >0时,解不等式得x <-1a 或x >2,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1a 或x >2. 练习:1.解析:选A 因为6x 2+x -2≤0⇔(2x -1)·(3x +2)≤0,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-23≤x ≤12. 2.解析:选A ∵a <-1,∴a (x -a )·⎝ ⎛⎭⎪⎫x -1a <0⇔(x -a )·⎝ ⎛⎭⎪⎫x -1a >0.又a <-1,∴1a >a ,∴x >1a 或x <a .3.解析:选B 由a ⊙b =ab +2a +b ,得x ⊙(x -2)=x (x -2)+2x +x -2=x 2+x -2<0,所以-2<x <1.4.解析:选A 因为Δ=a 2+4m >0,所以函数y =mx 2-ax -1的图象与x 轴有两个交点,又m >0,所以原不等式的解集不可能是B 、C 、D ,故选A.5.解析:选B 由7-6x -x 2>0,得x 2+6x -7<0,即(x +7)(x -1)<0,所以-7<x <1,故选B.6.解析:∁U A ={x |x 2-1<0}={x |-1<x <1}. 答案:{x |-1<x <1}7.解析:根据二次函数的图象知所求不等式的解集为(-∞,-1)∪(3,+∞). 答案:(-∞,-1)∪(3,+∞)8.解析:当a ≥0时,a 2+2a ≤3,∴0≤a ≤1;当a <0时,-a 2+2a ≤3,∴a <0.综上所述,a 的取值范围是(-∞,1].9.解:将x 2-3ax -18a 2>0变形得(x -6a )(x +3a )>0, 方程(x -6a )(x +3a )=0的两根为6a ,-3a .所以当a >0时,6a >-3a ,原不等式的解集为{x |x <-3a 或x >6a };当a =0时,6a =-3a =0,原不等式的解集为{x |x ≠0}; 当a <0时,6a <-3a ,原不等式的解集为{x |x <6a 或x >-3a }. 10.解:因为f (x )的定义域为R ,所以不等式ax 2+2ax +2>0恒成立. (1)当a =0时,不等式为2>0,显然恒成立;(2)当a ≠0时,有⎩⎨⎧ a >0,Δ=4a 2-8a <0,即⎩⎨⎧a >0,0<a <2,所以0<a <2.综上可知,实数a 的取值范围是[0,2).。
归纳与技巧:一元二次不等式及其解法(含解析)
归纳与技巧:一元二次不等式及其解法基础知识归纳一元二次不等式的解集二次函数y =ax 2+bx +c 的图象、一元二次方程ax 2+bx +c =0的根与一元二次不等式ax 2+bx +c >0与ax 2+bx +c <0的解集的关系,可归纳为:判别式Δ=b 2-4ac Δ>0Δ=0Δ<0二次函数y =ax 2+bx +c (a >0)的图象一元二次方程ax 2+bx +c =0(a ≠0)的根有两相异实根x =x 1或x=x 2 有两相同实根x=x 1 无实根 一元 二次不等式的解集 ax 2+bx +c >0(a >0){x |x <x 1或x >x 2}{x |x ≠x 1}Rax 2+bx +c <0(a >0){x |x 1<x <x 2}∅∅若a <0时,可以先将二次项系数化为正数,对照上表求解.基础题必做1.(教材习题改编)不等式x (1-2x )>0的解集是( ) A.⎝⎛⎭⎫-∞,12 B.⎝⎛⎭⎫0,12 C .(-∞,0)∪⎝⎛⎭⎫12,+∞D.⎝⎛⎭⎫12,+∞ 答案:B2.不等式9x 2+6x +1≤0的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-13 B.⎩⎨⎧⎭⎬⎫-13 C.⎩⎨⎧⎭⎬⎫x ⎪⎪-13≤x ≤13D .R答案:B3. 若关于x 的方程x 2+mx +1=0有两个不相等的实数根,则实数m 的取值范围是( ) A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)解析:选C 由一元二次方程有两个不相等的实数根,可得:判别式Δ>0,即m 2-4>0,解得m <-2或m >2.4. 已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =__________,n =________.解析:因为|x +2|<3,即-5<x <1,所以A =(-5,1),又A ∩B ≠∅,所以m <1,B =(m,2),由A ∩B =(-1,n )得m =-1,n =1.答案:-1 15.不等式1x -1<1的解集为________.解析:由1x -1<1得1-1x -1>0,即x -2x -1>0,解得x <1,或x >2.答案:{x |x <1,或x >2}解题方法归纳解一元二次不等式应注意的问题:(1)在解一元二次不等式时,要先把二次项系数化为正数.(2)二次项系数中含有参数时,参数的符号会影响不等式的解集,讨论时不要忘记二次项系数为零的情况.(3)解决一元二次不等式恒成立问题要注意二次项系数的符号.(4)一元二次不等式的解集的端点与相应的一元二次方程的根及相应的二次函数图象与x 轴交点的横坐标相同.一元二次不等式的解法典题导入[例1] 解下列不等式: (1)0<x 2-x -2≤4; (2)x 2-4ax -5a 2>0(a ≠0). [自主解答] (1)原不等式等价于⎩⎪⎨⎪⎧ x 2-x -2>0,x 2-x -2≤4⇔⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0⇔⎩⎪⎨⎪⎧ (x -2)(x +1)>0,(x -3)(x +2)≤0⇔⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3.借助于数轴,如图所示,原不等式的解集为{}x |-2≤x <-1,或2<x ≤3. (2)由x 2-4ax -5a 2>0知(x -5a )(x +a )>0. 由于a ≠0故分a >0与a <0讨论. 当a <0时,x <5a 或x >-a ; 当a >0时,x <-a 或x >5a .综上,a <0时,解集为{}x |x <5a ,或x >-a ;a >0时,解集为{}x |x >5a ,或x <-a .解题方法归纳1.解一元二次不等式的一般步骤:(1)对不等式变形,使一端为0且二次项系数大于0,即ax 2+bx +c >0(a >0),ax 2+bx +c <0(a >0);(2)计算相应的判别式;(3)当Δ≥0时,求出相应的一元二次方程的根; (4)根据对应二次函数的图象,写出不等式的解集.2.解含参数的一元二次不等式可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.以题试法1.解下列不等式: (1)-3x 2-2x +8≥0; (2)ax 2-(a +1)x +1<0(a >0).解:(1)原不等式可化为3x 2+2x -8≤0, 即(3x -4)(x +2)≤0. 解得-2 ≤x ≤43,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-2≤x ≤43.(2)原不等式变为(ax -1)(x -1)<0, 因为a >0,所以⎝⎛⎭⎫x -1a (x -1)<0. 所以当a >1时,解为1a <x <1;当a =1时,解集为∅; 当0<a <1时,解为1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a<x <1.一元二次不等式恒成立问题典题导入[例2] 已知f (x )=x 2-2ax +2(a ∈R ),当x ∈[-1,+∞)时,f (x )≥a 恒成立,求a 的取值范围.[自主解答] 法一:f (x )=(x -a )2+2-a 2,此二次函数图象的对称轴为x =a . ①当a ∈(-∞,-1) 时,f (x )在[-1,+∞)上单调递增,f (x )min =f (-1)=2a +3. 要使f (x )≥a 恒成立,只需f (x )min ≥a ,即2a +3≥a ,解得-3≤a <-1; ②当a ∈[-1,+∞)时,f (x )min =f (a )=2-a 2,由2-a 2≥a ,解得-1 ≤a ≤1. 综上所述,a 的取值范围为[-3,1].法二:令g (x )=x 2-2ax +2-a ,由已知,得x 2-2ax +2-a ≥0在[-1,+∞)上恒成立,即Δ=4a 2-4(2-a )≤0或⎩⎪⎨⎪⎧Δ>0,a <-1,g (-1)≥0.解得-3 ≤a ≤1.所求a 的取值范围是[-3,1].本题中的“x ∈[-1,+∞)改为“x ∈[-1,1)”,求a 的取值范围.解:令g (x )=x 2-2ax +2-a ,由已知,得x 2-2ax +2-a ≥0在[-1,1)上恒成立,即Δ=4a 2-4(2-a )≤0或⎩⎪⎨⎪⎧Δ>0,a <-1,g (-1)≥0或⎩⎪⎨⎪⎧Δ>0,a >1,g (1)≥0.解得-3≤a ≤1,所求a 的取值范围是[-3,1] .解题方法归纳1.对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方;恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.2.一元二次不等式恒成立的条件:(1)ax 2+bx +c >0(a ≠0)(x ∈R ) 恒成立的充要条件是: a >0且b 2-4ac <0.(2)ax 2+bx +c <0(a ≠0)(x ∈R )恒成立的充要条件是: a <0且b 2-4ac <0.以题试法2. 若关于x 的不等式x 2-ax -a >0的解集为(-∞,+∞),则实数a 的取值范围是________;若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,则实数a 的取值范围是________.解析:由Δ1<0,即a 2-4(-a )<0,得-4<a <0; 由Δ2≥0,即a 2-4(3-a )≥0,得a ≤-6或a ≥2. 答案:(-4,0) (-∞,-6]∪[2,+∞)一元二次不等式的应用典题导入[例3] 某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围. [自主解答] (1)由题意得y =100⎝⎛⎭⎫1-x 10·100⎝⎛⎭⎫1+850x . 因为售价不能低于成本价, 所以100⎝⎛⎭⎫1-x10-80≥0. 所以y =f (x )=20(10-x )(50+8x ),定义域为[0,2]. (2)由题意得20(10-x )(50+8x )≥10 260,化简得8x 2-30x +13≤0. 解得12≤x ≤134.所以x 的取值范围是⎣⎡⎦⎤12,2.解题方法归纳解不等式应用题,一般可按如下四步进行:(1)认真审题,把握问题中的关键量,找准不等关系; (2)引进数学符号,用不等式表示不等关系; (3)解不等式; (4)回答实际问题.以题试法3.某同学要把自己的计算机接入因特网.现有两家ISP 公司可供选择.公司A 每小时收费1.5元;公司B 在用户每次上网的第1小时内收费1.7元,第2小时内收费1.6元,以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算).假设该同学一次上网时间总是小于17小时,那么该同学如何选择ISP 公司较省钱?解:假设一次上网x 小时,则公司A 收取的费用为1.5x 元,公司B 收取的费用为x (35-x )20元.若能够保证选择A 比选择B 费用少,则 x (35-x )20>1.5x (0<x <17), 整理得x 2-5x <0,解得0<x <5,所以当一次上网时间在5小时内时,选择公司A 的费用少;超过5小时,选择公司B 的费用少.1. 不等式x -1x +2<0的解集为( )A .(1,+∞)B .(-∞,-2)C .(-2,1)D .(-∞,-2)∪(1,+∞)解析:选C 原不等式化为(x -1)(x +2)<0,解得-2<x <1,故原不等式的解集为(-2,1).2. 不等式4x -2≤x -2的解集是( )A .(-∞,0]∪(2,4]B .[0,2)∪[4,+∞)C .[2,4)D .(-∞,2]∪(4,+∞)解析:选B ①当x -2>0即x >2时,原不等式等价于(x -2)2≥4,解得x ≥4. ②当x -2<0即x <2时,原不等式等价于(x -2)2≤4, 解得0≤x <2.3.关于x 的不等式x 2-(a +1)x +a <0的解集中,恰有3个整数,则a 的取值范围是( ) A .(4,5) B .(-3,-2)∪(4,5) C .(4,5]D .[-3,-2)∪(4,5]解析:选D 原不等式可能为(x -1)(x -a )<0,当a >1时得1<x <a ,此时解集中的整数为2,3,4,则4<a ≤5,当a <1时得a <x <1,则-3≤a <-2,故a ∈[-3,-2)∪(4,5]4.若(m +1)x 2-(m -1)x +3(m -1)<0对任何实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(-∞,-1)C.⎝⎛⎭⎫-∞,-1311D.⎝⎛⎭⎫-∞,-1311∪(1,+∞) 解析:选C ①m =-1时,不等式为2x -6<0,即x <3,不合题意.②m ≠-1时,⎩⎪⎨⎪⎧m +1<0,Δ<0,解得m <-1311.5.已知函数f (x )的定义域为(-∞,+∞),f ′(x )为f (x )的导函数,函数y =f ′(x )的图象如图所示,且f (-2)=1,f (3)=1,则不等式f (x 2-6)>1的解集为( )A .(2,3)∪(-3,-2)B .(-2,2)C .(2,3)D .(-∞,-2)∪(2,+∞)解析:选A 由导函数图象知,当x <0时,f ′(x )>0,即f (x )在(-∞,0)上为增函数;当x >0时,f ′(x )<0,即f (x )在(0,+∞)上为减函数,故不等式f (x 2-6)>1等价于f (x 2-6)>f (-2)或f (x 2-6)>f (3),即-2<x 2-6≤0或0 ≤x 2-6<3,解得x ∈(2,3)∪(-3,-2).6. 已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( )A .(-∞,-1)∪(0,+∞)B .(-∞,0)∪(1,+∞)C .(-1,0)D .(0,1)解析:选C ∵f (x )=ax 2-(a +2)x +1,Δ=(a +2)2-4a =a 2+4>0,∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点, 又f (x )在(-2,-1)上有一个零点,则f (-2)f (-1)<0, ∴(6a +5)(2a +3)<0,解得-32<a <-56.又a ∈Z ,∴a =-1.不等式f (x )>1,即-x 2-x >0,解得-1<x <0.7.若不等式k -3x -3>1的解集为{x |1<x <3},则实数k =________.解析:k -3x -3>1,得1-k -3x -3<0,即x -k x -3<0,(x -k )(x -3)<0,由题意得k =1.答案:18.不等式x 2-2x +3 ≤a 2-2a -1在R 上的解集是∅,则实数a 的取值范围是________. 解析:原不等式即x 2-2x -a 2+2a +4≤0,在R 上解集为∅, ∴Δ=4-4(-a 2+2a +4)<0, 即a 2-2a -3<0, 解得-1<a <3. 答案:(-1,3)9. 若函数f (x )=⎩⎪⎨⎪⎧x +5,x <3,2x -m ,x ≥3,且f (f (3))>6,则m 的取值范围为________.解析:由已知得f (3)=6-m ,①当m ≤3时,6-m ≥3,则f (f (3))=2(6-m )-m =12-3m >6,解得m <2;②当m >3时,6-m <3,则f (f (3))=6-m +5>6,解得3<m <5.综上知,m <2或3<m <5.答案:(-∞,2)∪(3,5) 10.解下列不等式: (1)8x -1≤16x 2;(2)x 2-2ax -3a 2<0(a <0).解:(1)原不等式转化为16x 2-8x +1≥0, 即(4x -1)2 ≥0,则x ∈R , 故原不等式的解集为R .(2)原不等式转化为(x +a )(x -3a )<0, ∵a <0,∴3a <-a ,得3a <x <-a .故原不等式的解集为{x |3a <x <-a }.11.一个服装厂生产风衣,月销售量x (件)与售价p (元/件)之间的关系为p =160-2x ,生产x 件的成本R =500+30x (元).(1)该厂月产量多大时,月利润不少于1 300元?(2)当月产量为多少时,可获得最大利润,最大利润是多少? 解:(1)由题意知,月利润y =px -R , 即y =(160-2x )x -(500+30x ) =-2x 2+130x -500.由月利润不少于1 300元,得-2x 2+130x -500≥1 300. 即x 2-65x +900≤0,解得20≤x ≤45.故该厂月产量在20~45件时,月利润不少于1 300元. (2)由(1)得,y =-2x 2+130x -500 =-2⎝⎛⎭⎫x -6522+3 2252, 由题意知,x 为正整数.故当x =32或33时,y 最大为1 612.所以当月产量为32或33件时,可获最大利润,最大利润为1 612元.12.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ). (1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a ,比较f (x )与m 的大小.解:由题意知,F (x )=f (x )-x =a (x -m )·(x -n ), 当m =-1,n =2时,不等式F (x )>0, 即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1,或x >2}; 当a <0时,不等式F (x )>0 的解集为{x |-1<x <2}. (2)f (x )-m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1), ∵a >0,且0<x <m <n <1a ,∴x -m <0,1-an +ax >0. ∴f (x )-m <0,即f (x )<m .1.若关于x 的不等式x 2+12x -⎝⎛⎭⎫12n ≥0对任意n ∈N *在x ∈(-∞,λ]上恒成立,则实数λ的取值范围是________.解析:由题意得x 2+12x ≥⎝⎛⎭⎫12n max =12,解得x ≥12或x ≤-1.又x ∈(-∞,λ],所以λ的取值范围是(-∞,-1]. 答案:(-∞,-1]2. 已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________.解析:因为f (x )的值域为[0,+∞),所以Δ=0,即a 2=4b ,所以x 2+ax +a 24-c <0的解集为(m ,m +6),易得m ,m +6是方程x 2+ax +a 24-c =0的两根,由一元二次方程根与系数的关系得⎩⎪⎨⎪⎧2m +6=-a ,m (m +6)=a 24-c ,解得c =9. 答案:93.行驶中的汽车,在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,其种型号汽车的刹车距离s (m)与汽车的车速v (km/h)满足下列关系:s=n v 100+v 2400(n 为常数,且n ∈N ),做了两次刹车试验,有关试验数据如图所示,其中⎩⎪⎨⎪⎧6<s 1<8,14<s 2<17. (1)求n 的值;(2)要使刹车距离不超过12.6 m ,则行驶的最大速度是多少?解:(1)依题意得⎩⎨⎧6<40n 100+1 600400<8,14<70n 100+4 900400<17,解得⎩⎪⎨⎪⎧5<n <10,52<n <9514.又n ∈N ,所以n =6. (2)s =3v 50+v 2400≤12.6⇒v 2+24v -5 040≤0⇒-84≤v ≤60.因为v ≥0,所以0≤v ≤60,即行驶的最大速度为60 km/h.1.对于实数x ,规定[x ]表示不大于x 的最大整数,那么不等式4[x ]2-36[x ]+45<0成立的x 的取值范围是( )归纳与技巧:一元二次不等式及其解法(含解析)A.⎝⎛⎭⎫32,152B .[2,8]C .[2,8)D .[2,7]解析:选C 由4[x ]2-36[x ]+45<0,得32<[x ]<152,又[x ]表示不大于x 的最大整数,所以2≤x <8.2. 不等式x 2-9x -2>0的解集是________. 解析:由x 2-9x -2>0,得(x +3)(x -3)(x -2)>0,利用数轴穿根法易得-3<x <2或x >3. 答案:{x |-3<x <2,或x >3}3. 若圆x 2+y 2-4x +2my +m +6=0与y 轴的两交点A ,B 位于原点的同侧,则实数m 的取值范围是( )A .m >-6B .m >3或-6<m <-2C .m >2或-6<m <-1D .m >3或m <-1解析:选B 依题意,令x =0得关于y 的方程y 2+2my +m +6=0有两个不相等且同号(均不等于零)的实根,于是有⎩⎪⎨⎪⎧Δ=(2m )2-4(m +6)>0,m +6>0, 由此解得m >3或-6<m <-2.。
一元二次不等式及其解法知识梳理及典型练习题(含答案)(精品范文).doc
【最新整理,下载后即可编辑】一元二次不等式及其解法1.一元一次不等式解法任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax>b(a≠0)的形式.当a>0时,解集为;当a<0时,解集为.2.一元二次不等式及其解法(1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式.(2)使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________.(3)一元二次不等式的解:有两相异实有两相等实根(1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为f (x )g (x )的形式. (2)将分式不等式转化为整式不等式求解,如:f (x )g (x )>0 ⇔ f (x )g (x )>0; f (x )g (x )<0 ⇔ f (x )g (x )<0;f (x )g (x )≥0 ⇔ ⎩⎪⎨⎪⎧f (x )g (x )≥0,g (x )≠0;f (x )g (x )≤0 ⇔ ⎩⎪⎨⎪⎧f (x )g (x )≤0,g (x )≠0.(2014·课标Ⅰ)已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A ∩B =( )A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)解:∵A ={x |x ≥3或x ≤-1},B ={x |-2≤x <2},∴A ∩B ={x |-2≤x ≤-1}=[-2,-1].故选A .设f (x )=x 2+bx +1且f (-1)=f (3),则f (x )>0的解集为( )A.{x |x ∈R }B.{x |x ≠1,x ∈R }C.{x |x ≥1}D.{x |x ≤1}解:f (-1)=1-b +1=2-b ,f (3)=9+3b +1=10+3b ,由f (-1)=f (3),得2-b =10+3b ,解出b =-2,代入原函数,f (x )>0即x 2-2x +1>0,x 的取值范围是x ≠1.故选B.已知-12<1x<2,则x 的取值范围是( ) A.-2<x <0或0<x <12 B.-12<x <2 C.x <-12或x >2 D.x <-2或x >12解:当x >0时,x >12;当x <0时,x <-2. 所以x 的取值范围是x <-2或x >12,故选D. 不等式1-2x x +1>0的解集是 . 解:不等式1-2x x +1>0等价于(1-2x )(x +1)>0, 也就是⎝⎛⎭⎪⎪⎫x -12(x +1)<0,所以-1<x <12. 故填⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |-1<x <12,x ∈R . (2014·武汉调研)若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为________.解:显然k ≠0.若k >0,则只须(2x 2+x )max <38k ,解得k ∈∅;若k <0,则只须38k<(2x 2+x )min ,解得k ∈(-3,0).故k 的取值范围是(-3,0).故填(-3,0).类型一 一元一次不等式的解法已知关于x 的不等式(a +b )x +2a -3b <0的解集为⎝ ⎛⎭⎪⎪⎫-∞,-13,求关于x 的不等式(a -3b )x +b -2a >0的解集.解:由(a +b )x <3b -2a的解集为⎝ ⎛⎭⎪⎪⎫-∞,-13, 得a +b >0,且3b -2a a +b =-13, 从而a =2b ,则a +b =3b >0,即b >0,将a =2b 代入(a -3b )x +b -2a >0,得-bx -3b >0,x <-3,故所求解集为(-∞,-3).点拨:一般地,一元一次不等式都可以化为ax >b (a ≠0)的形式.挖掘隐含条件a +b >0且3b -2a a +b =-13是解本题的关键.解关于x 的不等式:(m 2-4)x <m +2.解:(1)当m 2-4=0即m =-2或m =2时,①当m =-2时,原不等式的解集为∅,不符合②当m =2时,原不等式的解集为R ,符合(2)当m 2-4>0即m <-2或m >2时,x <1m -2. (3)当m 2-4<0即-2<m <2时,x >1m -2. 类型二 一元二次不等式的解法解下列不等式:(1)x 2-7x +12>0; (2)-x 2-2x +3≥0;(3)x 2-2x +1<0; (4)x 2-2x +2>0.解:(1){x |x <3或x >4}.(2){x |-3≤x ≤1}.(3)∅.(4)因为Δ<0,可得原不等式的解集为R .(2013·金华十校联考)已知函数f (x )=⎩⎪⎨⎪⎧-x +1,x <0,x -1,x ≥0, 则不等式x +(x +1)f (x +1)≤1的解集是( )A.{x |-1≤x ≤2-1}B.{x |x ≤1}C.{x |x ≤2-1}D.{x |-2-1≤x ≤2-1}解:由题意得不等式x +(x +1)f (x +1)≤1等价于①⎩⎪⎨⎪⎧x +1<0,x +(x +1)[-(x +1)+1]≤1 或②⎩⎪⎨⎪⎧x +1≥0,x +(x +1)[(x +1)-1]≤1,解不等式组①得x <-1;解不等式组②得-1≤x ≤2-1.故原不等式的解集是{x |x ≤2-1}.故选C.类型三 二次不等式、二次函数及二次方程的关系已知关于x 的不等式x 2-bx +c ≤0的解集是{x |-5≤x ≤1},求实数b ,c 的值.解:∵不等式x 2-bx +c ≤0的解集是{x |-5≤x ≤1},∴x 1=-5,x 2=1是x 2-bx +c =0的两个实数根,∴由韦达定理知⎩⎪⎨⎪⎧-5+1=b ,-5×1=c ,∴⎩⎪⎨⎪⎧b =-4,c =-5.已知不等式ax 2+bx +c >0的解集为{x |2<x <3},求不等式cx 2-bx +a >0的解集.解:∵不等式ax 2+bx +c >0的解集为{x |2<x <3},∴a <0,且2和3是方程ax 2+bx +c =0的两根,由根与系数的关系得⎩⎪⎨⎪⎧-b a=2+3,c a=2×3,a <0.即⎩⎨⎧b =-5a ,c =6a ,a <0.代入不等式cx 2-bx +a >0,得6ax 2+5ax +a >0(a <0).即6x 2+5x +1<0,∴所求不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |-12<x <-13. 类型四 含有参数的一元二次不等式解关于x 的不等式:mx 2-(m +1)x +1<0.解:(1)m =0时,不等式为-(x -1)<0,得x -1>0,不等式的解集为{x |x >1};(2)当m ≠0时,不等式为m ⎝ ⎛⎭⎪⎪⎫x -1m (x -1)<0. ①当m <0,不等式为⎝ ⎛⎭⎪⎪⎫x -1m (x -1)>0, ∵1m <1,∴不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x <1m 或x >1. ②当m >0,不等式为⎝ ⎛⎭⎪⎪⎫x -1m (x -1)<0. (Ⅰ)若1m<1即m >1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |1m <x <1; (Ⅱ)若1m>1即0<m <1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |1<x <1m ; (Ⅲ)若1m=1即m =1时,不等式的解集为∅.点拨:当x 2的系数是参数时,首先对它是否为零进行讨论,确定其是一次不等式还是二次不等式,即对m ≠0与m =0进行讨论,这是第一层次;第二层次:x 2的系数正负(不等号方向)的不确定性,对m <0与m >0进行讨论;第三层次:1m与1大小的不确定性,对m <1、m >1与m =1进行讨论.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).解:不等式整理为ax 2+(a -2)x -2≥0,当a =0时,解集为(-∞,-1].当a ≠0时,ax 2+(a -2)x -2=0的两根为-1,2a,所以当a >0时,解集为(-∞,-1]∪⎣⎢⎢⎡⎭⎪⎪⎫2a ,+∞; 当-2<a <0时,解集为⎣⎢⎢⎡⎦⎥⎥⎤2a ,-1; 当a =-2时,解集为{x |x =-1};当a <-2时,解集为⎣⎢⎢⎡⎦⎥⎥⎤-1,2a . 类型五 分式不等式的解法(1)解不等式x -12x +1≤1. 解:x -12x +1≤1 ⇔ x -12x +1-1≤0 ⇔ -x -22x +1≤0 ⇔ x +22x +1≥0. x +22x +1≥0 ⇔ ⎩⎪⎨⎪⎧(x +2)(2x +1)≥0,2x +1≠0.得{xx >-12或x ≤-2}. ※(2)不等式x -2x 2+3x +2>0的解集是 . 解:x -2x 2+3x +2>0⇔x -2(x +2)(x +1)>0⇔ (x -2)(x +2)(x +1)>0,数轴标根得{x |-2<x <-1或x >2},故填{x|-2<x <-1或x >2}.点拨:分式不等式可以先转化为简单的高次不等式,再利用数轴标根法写出不等式的解集,如果该不等式有等号,则要注意分式的分母不能为零.※用“数轴标根法”解不等式的步骤:(1)移项:使得右端为0(注意:一定要保证x 的最高次幂的项的系数为正数).(2)求根:就是求出不等式所对应的方程的所有根..(3)标根:在数轴上按从左到右(由小到大)依次标出各根(不需标出准确位置,只需标出相对位置即可).(4)画穿根线:从数轴“最右根”的右上方向左下方画线,穿过此根,再往左上方穿过“次右根”,一上一下依次穿过各根,“奇穿偶不穿”来记忆.(5)写出不等式的解集:若不等号为“>”,则取数轴上方穿根线以内的范围;若不等号为“<”,则取数轴下方穿根线以内的范围;若不等式中含有“=”号,写解集时要考虑分母不能为零.(1)若集合A ={x |-1≤2x +1≤3},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x -2x ≤0,则A ∩B =( )A.{x |-1≤x <0}B.{x |0<x ≤1}C.{x |0≤x ≤2}D.{x |0≤x ≤1} 解:易知A ={x |-1≤x ≤1},B 集合就是不等式组⎩⎪⎨⎪⎧x (x -2)≤0,x ≠0 的解集,求出B ={}x |0<x ≤2,所以A ∩B ={x |0<x ≤1}.故选B.(2)不等式x -12x +1≤0的解集为( )A.⎝ ⎛⎦⎥⎥⎤-12,1B.⎣⎢⎢⎡⎦⎥⎥⎤-12,1C.⎝ ⎛⎭⎪⎪⎫-∞,-12∪[1,+∞)D.⎝ ⎛⎦⎥⎥⎤-∞,-12∪[1,+∞) 解:x -12x +1≤0⇔⎩⎪⎨⎪⎧(x -1)(2x +1)≤0,2x +1≠0得-12<x ≤1.故选A. 类型六 和一元二次不等式有关的恒成立问题(1)若不等式x 2+ax +1≥0对于一切x ∈⎝ ⎛⎦⎥⎥⎤0,12成立,则a 的最小值为( )A.0B.-2C.-52D.-3 解:不等式可化为ax ≥-x 2-1,由于x ∈⎝ ⎛⎦⎥⎥⎤0,12, ∴a ≥-⎝ ⎛⎭⎪⎪⎫x +1x .∵f (x )= x +1x 在⎝ ⎛⎦⎥⎥⎤0,12上是减函数, ∴⎝⎛⎭⎪⎪⎫-x -1x max =-52.∴a ≥-52.(2)已知对于任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,则x 的取值范围是( )A.1<x <3B.x <1或x >3C.1<x <2D.x <1或x >2解:记g (a )=(x -2)a +x 2-4x +4,a ∈[-1,1],依题意,只须⎩⎪⎨⎪⎧g (1)>0,g (-1)>0⇒⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0⇒x <1或x >3,故选B.点拨:对于参数变化的情形,大多利用参变量转换法,即参数转换为变量;变量转换为参数,把关于x 的二次不等式转换为关于a 的一次不等式,化繁为简,然后再利用一次函数的单调性,求出x 的取值范围.对于满足|a |≤2的所有实数a ,求使不等式x 2+ax +1>2x +a 成立的x 的取值范围.解:原不等式转化为(x -1)a +x 2-2x +1>0,设f (a )=(x -1)a +x 2-2x +1,则f (a )在[-2,2]上恒大于0,故有:⎩⎪⎨⎪⎧f (-2)>0,f (2)>0 即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2-1>0 解得⎩⎪⎨⎪⎧x >3或x <1,x >1或x <-1.∴x <-1或x >3.类型七 二次方程根的讨论若方程2ax 2-x -1=0在(0,1)内有且仅有一解,则a的取值范围是( )A.a <-1B.a >1C.-1<a <1D.0≤a <1 解法一:令f (x )=2ax 2-x -1,则f (0)·f (1)<0,即-1×(2a-2)<0,解得a >1.解法二:当a =0时,x =-1,不合题意,故排除C ,D ;当a =-2时,方程可化为4x 2+x +1=0,而Δ=1-16<0,无实根,故a =-2不适合,排除A.故选B.1.不等式x -2x +1≤0的解集是( ) A.(-∞,-1)∪(-1,2] B.[-1,2]C.(-∞,-1)∪[2,+∞)D.(-1,2]解:x -2x +1≤0⇔()x +1()x -2≤0,且x ≠-1,即x ∈(-1,2],故选D.2.关于x 的不等式(mx -1)(x -2)>0,若此不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |1m <x <2,则m 的取值范围是( )A.m >0B.0<m <2C.m >12D.m <0 解:由不等式的解集形式知m <0.故选D.3.(2013·安徽)已知一元二次不等式f (x )<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x <-1或x >12,则f (10x )>0的解集为( )A.{x |x <-1或x >lg2}B.{x |-1<x <lg2}C.{x |x >-lg2}D.{x |x <-lg2} 解:可设f (x )=a (x +1)⎝ ⎛⎭⎪⎪⎫x -12(a <0),由f (10x )>0可得(10x +1)⎝ ⎛⎭⎪⎪⎫10x -12<0,从而10x<12,解得x <-lg2,故选D. 4.(2013·陕西)在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x (单位:m )的取值范围是( )A.[15,20]B.[12,25]C.[10,30]D.[20,30]解:设矩形的另一边为y m ,依题意得x 40=40-y 40,即y =40-x ,所以x (40-x )≥300,解得10≤x ≤30.故选C.5.若关于x 的不等式2x 2-8x -4-a >0在(1,4)内有解,则实数a 的取值范围是( )A.a <-12B.a >-4C.a >-12D.a <-4 解:关于x 的不等式2x 2-8x -4-a >0在(1,4)内有解,即a <2x 2-8x -4在(1,4)内有解,令f (x )=2x 2-8x -4=2(x -2)2-12,当x =2时,f (x )取最小值f (2)=-12;当x =4时,f (4)=2(4-2)2-12=-4,所以在(1,4)上,-12≤f (x )<-4.要使a <f (x )有解,则a <-4.故选D.6.若不等式x 2-kx +k -1>0对x ∈(1,2)恒成立,则实数k 的取值范围是____________.解:∵x ∈(1,2),∴x -1>0.则x 2-kx +k -1=(x -1)(x +1-k )>0,等价于x +1-k >0,即k <x +1恒成立,由于2<x +1<3,所以只要k ≤2即可.故填(-∞,2].7.(2014·江苏)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.解:由题可得f (x )<0对于x ∈[m ,m +1]恒成立,即⎩⎪⎨⎪⎧f (m )=2m 2-1<0,f (m +1)=2m 2+3m <0, 解得-22<m <0.故填⎝ ⎛⎭⎪⎪⎫-22,0. 8.若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,求实数a 的取值范围.解:x 2-ax -a ≤-3的解集不是空集⇔x 2-ax -a +3=0的判别式Δ≥0,解得a ≤-6或a ≥2.9.已知二次函数f (x )的二次项系数为a ,且不等式f (x )>-2x 的解集为(1,3).(1)若方程f (x )+6a =0有两个相等的实根,求f (x )的解析式;(2)若f (x )的最大值为正数,求a 的取值范围.解:(1)∵f (x )+2x >0的解集为(1,3),∴f (x )+2x =a (x -1)(x -3),且a <0.因而f (x )=a (x -1)(x -3)-2x=ax 2-(2+4a )x +3a.①由方程f (x )+6a =0得ax 2-(2+4a )x +9a =0.②因为方程②有两个相等的实根,所以Δ=[-(2+4a )]2-4a ·9a =0,即5a 2-4a -1=0,解得a =1或a =-15. 由于a <0,舍去a =1,将a =-15代入①得f (x )的解析式f (x )=-15x 2-65x -35. (2)由f (x )=ax 2-2(1+2a )x +3a =a ⎝ ⎛⎭⎪⎪⎫x -1+2a a 2-a 2+4a +1a , 及a <0,可得f (x )的最大值为-a 2+4a +1a. 由⎩⎪⎨⎪⎧-a 2+4a +1a >0,a <0,解得a <-2-3或-2+3<a <0. 故当f (x )的最大值为正数时,实数a 的取值范围是(-∞,-2-3)∪(-2+3,0).10.解关于x 的不等式:a (x -1)x -2>1(a >0). 解:(x -2)[(a -1)x +2-a ]>0,当a <1时有(x -2)⎝ ⎛⎭⎪⎪⎫x -a -2a -1<0, 若a -2a -1>2,即0<a <1时,解集为{x |2<x <a -2a -1}; 若a -2a -1=2,即a =0时,解集为∅; 若a -2a -1<2,即a <0时,解集为{x |a -2a -1<x <2}.。
一元二次不等式的解法含答案
一元二次不等式的解法含答案(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--课时作业16 一元二次不等式及其解法时间:45分钟 满分:100分课堂训练1.不等式x 2-5x +6≤0的解集为( ) A .[2,3] B .[2,3) C .(2,3) D .(2,3]【答案】 A【解析】 因为方程x 2-5x +6=0的解为x =2或x =3,所以不等式的解集为{x |2≤x ≤3}.2.若a 2-174a +1<0,则不等式x 2+ax +1>2x +a 成立的x 的范围是( )A .{x |x ≥3或x ≤1}B .{x |x <14或x >4}C .{x |1<x <3}D .{x |x ≤-3或x >1}【答案】 D【解析】 由a 2-174a +1<0,得:a ∈(14,4).不等式x 2+ax +1>2x +a ,可化为:(x -1)[x -(1-a )]>0, ∴x <1-a 或x >1, ∴x ≤-3或x >1.3.若关于x 的不等式ax 2-6x +a 2<0的解集为(1,m ),则实数m =________.【答案】 2【解析】 ∵x =1是方程ax 2-6x +a 2=0的根,∴a -6+a 2=0,∴a =2或-3.当a =2时,不等式2x 2-6x +4<0的解集为(1,2),∴m =2.当a =-3时,不等式-3x 2-6x +9<0的解集为(-∞,-3)∪(1,+∞),不合题意.4.求函数f (x )=log 2(x 2-x +14)+x 2-1的定义域.【解析】由函数的解析式有意义,得⎩⎪⎨⎪⎧x 2-x +14>0,x 2-1≥0,即⎩⎪⎨⎪⎧x ≠12,x ≤-1或x ≥1.因此x ≤-1或x ≥1.故所求函数的定义域为{x |x ≤-1或x ≥1}.课后作业一、选择题(每小题5分,共40分) 1.不等式2x 2-x -1>0的解集是( ) A .(-12,1) B .(1,+∞)C .(-∞,1)∪(2,+∞)D .(-∞,-12)∪(1,+∞)【答案】 D【解析】 ∵2x 2-x -1=(2x +1)(x -1),∴由2x 2-x -1>0得(2x +1)(x -1)>0,解得x >1或x <-12,∴不等式的解集为(-∞,-12)∪(1,+∞).故应选D.2.设集合A ={x |1<x <4},集合B ={x |x 2-2x -3≤0},则A ∩(?RB )=( )A .(1,4)B .(3,4)C .(1,3)D .(1,2)∪(3,4)【答案】 B【分析】 先解不等式求出集合B ,然后进行集合的相应运算.【解析】 B ={x |-1≤x ≤3},A ∩(?R B )={x |3<x <4},故选B. 3.函数y =11-x2+lg(3x -x 2)的定义域为( ) A .{x |-1<x <1} B .{x |0<x <3} C .{x |0<x <1} D .{x |-1<x <3}【答案】 C【解析】 由题意须满足⎩⎪⎨⎪⎧1-x 2>0,3x -x 2>0,即⎩⎪⎨⎪⎧x 2-1<0,x 2-3x <0, ∴⎩⎪⎨⎪⎧-1<x <1,0<x <3,∴0<x <1. 4.不等式ax 2+bx +2>0的解集是{x |-12<x <13},则a -b 等于( )A .-4B .14C .-10D .10【答案】 C【解析】 ∵不等式ax 2+bx +2>0的解集为{x |-12<x <13},∴-12、13是方程ax 2+bx +2=0的两根,∴⎩⎪⎨⎪⎧-12+13=-b a-12×13=2a,解得⎩⎪⎨⎪⎧a =-12b =-2.∴a -b =-10.5.设f (x )=x 2+bx +1,且f (-1)=f (3),则f (x )>0的解集为( )A .(-∞,-1)∪(3,+∞)B .RC .{x |x ≠1}D .{x |x =1}【答案】 C【解析】 ∵f (-1)=f (3) ∴1-b +1=9+3b +1 ∴b =-2,∴f (x )=x 2-2x +1=(x -1)2, ∴f (x )>0的解集为x ≠1.6.若关于x 的不等式mx 2-(2m +1)x +m -1≥0的解集为?,则( )A .m <0B .m <-18C .-18<m <0D .m 的值不存在 【答案】 B【解析】 要使不等式的解集为?,则⎩⎪⎨⎪⎧m <0,Δ<0,∴m <-18.7.若0<a <1,则不等式(a -x )(x -1a)>0的解集是( )A .{x |1a<x <a }B .{x |a <x <1a}C .{x |x <a 或x >1a}D .{x |x <1a或x >a }【答案】 B【解析】 原不等式可化为(x -a )(x -1a)<0.又∵0<a <1,∴1a>1>a >0,∴原不等式的解集为{x |a <x <1a}.8.如果ax 2+bx +c >0的解集为{x |x <-2或x >4},那么对于函数f (x )=ax 2+bx +c 有( )A .f (5)<f (2)<f (-1)B .f (2)<f (5)<f (-1)C .f (2)<f (-1)<f (5)D .f (-1)<f (2)<f (5)【答案】 C【解析】 ∵ax 2+bx +c >0的解集为x <-2或x >4. 则a >0且-2和4是方程ax 2+bx +c =0的两根,∴-b a =2,ca=-8.∴函数f (x )=ax 2+bx +c 的图象开口向上,对称轴为x =-b 2a=1.∴f (5)>f (-1)>f (2),故选C.二、填空题(每小题10分,共20分)9.二次函数y =ax 2+bx +c (x ∈R )的部分对应值如表:【答案】 {x |x <-2,或x >3}【解析】 由图表可知a >0.且f (3)=0,f (-2)=0.∴ax 2+bx +c >0的解集为{x |x <-2,或x >3}.10.若a <0,则关于x 的不等式x 2-4ax -5a 2>0的解集是________.【答案】 {x |x >-a 或x <5a }【解析】 方程x 2-4ax -5a 2=0的两根分别为-a 和5a ,且-a >5a .∴不等式的解集是{x |x >-a 或x <5a }.三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.解不等式.(1)-x 2+2x -3>0;(2)x 2+x >-14;(3)-2x 2+3x -2<0.【分析】 把不等式化为二次项系数为正,右边为0的形式,利用“三个二次”之间的关系求解.【解析】 (1)原不等式可化为x 2-2x +3<0, ∵Δ=(-2)2-4×1×3=-8<0, ∴原不等式的解集为?.(2)原不等式可化为x 2+x +14>0.∵Δ=12-4×1×14=0,∴方程x 2+x +14=0有两个相等实根x 1=x 2=-12.∴原不等式的解集为{x |x ≠-12,x ∈R }.(3)原不等式可化为2x 2-3x +2>0. ∵Δ=(-3)2-4×2×2=-7<0, ∴原不等式的解集为R .【规律方法】 一元二次不等式化为二次项系数为正的形式后,若Δ≤0,可根据二次函数的图象直接写出解集.12.解关于x 的不等式(x -2)(ax -2)>0(a ∈R ). 【解析】 当a =0时,原不等式化为x -2<0,∴x <2. 当a <0时,原不等式化为(x -2)(x -2a)<0,∴2a<x <2.当a >0时,原不等式化为(x -2)(x -2a)>0.①当0<a <1时,x >2a或x <2.②当a =1时,x ≠2. ③当a >1时,x >2或x <2a.综上所述,当a =0时,原不等式的解集为{x |x <2};当a <0时,原不等式的解集为{x |2a<x <2};当0<a <1时,原不等式的解集为{x |x >2a或x <2};当a =1时,原不等式的解集为{x |x ≠2};当a >1时,原不等式的解集为{x |x >2或x <2a}.。
一元二次不等式及其解法知识梳理及典型练习题(含答案)
一元二次不等式及其解法知识梳理及典型练习题(含答案)一元二次不等式及其解法1.一元一次不等式解法任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax>b(a≠0)的形式。
当a>0时,解集为x>b/a;当a<0时,解集为x<b/a。
2.一元二次不等式及其解法1) 我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式。
2) 使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的解集。
3) 一元二次不等式的解:对于一元二次不等式ax^2+bx+c>0(a>0),我们可以先求出其对应的一元二次方程ax^2+bx+c=0的解集,然后根据一元二次函数的图像,判断不等式的解集。
3.分式不等式解法对于分式不等式f(x)/g(x)>0或f(x)/g(x)<0,我们可以先化为标准型,即将右边化为0,左边化为分母的符号,然后将分式不等式转化为整式不等式求解。
对于分式不等式f(x)/g(x)≥0或f(x)/g(x)≤0,我们可以先求出f(x)/g(x)>0或f(x)/g(x)<0的解集,然后根据分式函数的图像判断不等式的解集。
例题1:已知集合A={x|x^2-2x-3≥0},B={x|-2≤x<2},则A∩B=[-2,-1]。
例题2:设f(x)=x^2+bx+1且f(-1)=f(3),则f(x)>0的解集为{x|x≠1,x∈R}。
例题3:已知-2<x/11<1/2,则x的取值范围是-22<x<11.解:首先求出方程2x2-8x-4=0的解为x1=-1,x2=2.根据题意,不等式在(1,4)内有解,即在x1和x2之间有解,则2x2-8x-4-a的图像必定开口向上,且在x1和x2处有两个零点。
又因为a>0时,图像整体上移,不可能在(1,4)内有解,故a<0.又因为当a=-4时,2x2-8x-4=0在(1,4)内有解,故a的取值范围是a<-4.故选A.1) 给定不等式 $2x^2-8x-4-a>0$ 在区间 $(1,4)$ 内有解,即$a<2x^2-8x-4$ 在区间 $(1,4)$ 内有解。
一元二次不等式及解法作业(含答案)精选全文
可编辑修改精选全文完整版 一元二次不等式及其解法 一、选择题 1.不等式(x +5)(3-2x )≥6的解集是 ( )A.{x |x ≤-1或x ≥92}B.{x|-1≤x ≤92}C.{x |x ≤-92或x ≥1}D.{x |-92≤x ≤1}解析:因为不等式(x +5)(3-2x )≥6可化为2x 2+7x -9≤0,而2x 2+7x -9=0的两根为x 1=-92,x 2=1,所以函数f (x )=2x 2+7x -9与x 轴的交点为(-92,0),(1,0),又函数f (x )=2x 2+7x -9的图象开口向上,所以不等式(x +5)·(3-2x )≥6的解集是{x |-92≤x ≤1}.答案:D 2.设A ={x |x 2-2x -3>0},B ={x |x 2+ax +b ≤0},若A ∪B =R ,A ∩B =(3,4],则a +b 等于 ( )A.7B.-1C.1D.-7解析:A =(-∞,-1)∪(3,+∞),∵A ∪B =R ,A ∩B =(3,4],则B =[-1,4],∴a =-(-1+4)=-3,b =-1×4=-4,∴a +b =-7.答案:D3.若ax 2+x +a <0的解集为∅,则实数a 取值范围 ( )A.a ≥12B.a <12C.-12≤a ≤12D.a ≤-12或a ≥12解析:∵ax 2+x +a <0的解集为∅,01,.02a a >⎧∴∴⎨⎩≤≤答案:A 4.不等式12+-x x ≤0的解集是( ) A.(-∞,-1)∪(-1,2] B.[-1,2] C.(-∞,-1)∪[2,+∞)D.(-1,2]解析:由,012≤+-x x 得⎩⎨⎧≠+≤+-.01,0)1)(2(x x x 所以不等式的解集为(-1,2].答案:D5.不等式|x 2-x|<2的解集为 ( )A.(-1,2)B.(-1,1)C.(-2,1)D.(-2,2)解析:∵|x 2-x|<2,∴-2<x 2-x <2,即⎪⎩⎪⎨⎧<-->+-2.02,022x x x x 解得⎩⎨⎧<<-∈,21,x R x ∴x ∈(-1,2),故选A. 答案:A6.已知集合A ={x|3x-2-x 2<0},B ={x|x-a <0},且BA ,则实数a 的取值范围是( )A.a ≤1B.1<a ≤2C.a >2D.a ≤2解析:不等式3x-2-x 2<0化为x 2-3x+2>0⇒x >2或x <1,由不等式x-a <0,得x <a.要使B A,则a ≤1.答案:A二、填空题7.若关于x 的方程x 2+ax +a 2-1=0有一正根和一负根,则a 的取值范围为 .解析:令f (x )=x 2+ax +a 2-1,∴二次函数开口向上,若方程有一正一负根,则只需f (0)<0,即a 2-1<0,∴-1<a <1.答案:-1<a <18.不等式21213≤+-x x 的解集为__________________. 解析: x x x x x x x x x x x x x ⇔≤-+⇔≤-+⇔-≤+-⇔≤⇔≤-+-+-0)1)(3(03211322212221313∈(-∞,-3]∪(0,1].答案:(-∞,-3]∪(0,1]三、解答题1. 已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围.(2)若方程两根均在区间(0,1)内,求m 的范围.解:(1)条件说明抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧->-<∈-<⇒⎪⎪⎩⎪⎪⎨⎧>+=<+=>=-<+=65,21,21056)2(,024)1(,02)1(,012)0(m m R m m m f m f f m f ∴2165-<<-m . (2)据抛物线与x 轴交点落在区间(0,1)内,列不等式组⎪⎪⎩⎪⎪⎨⎧<-<≥∆>>10,0,0)1(,0)0(m f f ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<--≤+≥->->⇒.01,2121,21,21m m m m m 或(这里0<-m <1是因为对称轴x =-m 应在区间(0,1) 2、已知2()2(2)4f x x a x =+-+,(1)如果对一切x R ∈,()0f x >恒成立,求实数a 的取值范围; (2)如果对[3,1]x ∈-,()0f x >恒成立,求实数a 的取值范围.解:(1)24(2)16004a a ∆=--<⇒<<;(2)(2)3(3)0a f --<-⎧⎨->⎩或3(2)10a -≤--≤⎧⎨∆<⎩或(2)1(1)0a f -->⎧⎨>⎩, 解得a φ∈或14a ≤<或112a -<<,∴a 的取值范围为1(,4)2-. 3.已知二次函数2()f x ax bx c =++的图象过点(1,0)-,问是否存在常数,,a b c ,使不等式21()(1)2x f x x ≤≤+对一切x R ∈都成立?解:假设存在常数,,a b c 满足题意,∵()f x 的图象过点(1,0)-,∴(1)0f a b c -=-+= ① 又∵不等式21()(1)2x f x x ≤≤+对一切x R ∈都成立,∴当1x =时,211(1)(11)2f ≤≤+,即11a b c ≤++≤,∴1a b c ++= ② 由①②可得:11,22a c b +==,∴211()()22f x ax x a =++-, 由21()(1)2x f x x ≤≤+对一切x R ∈都成立得:22111()(1)222x ax x a x ≤++-≤+恒成立, ∴2211()022(21)20ax x a a x x a ⎧-+-≥⎪⎨⎪-+-≤⎩的解集为R ,∴0114()042a a a >⎧⎪⎨--≤⎪⎩且21018(21)0a a a -<⎧⎨+-≤⎩,即20(14)0a a >⎧⎨-≤⎩且212(14)0a a ⎧<⎪⎨⎪-≤⎩∴14a =,∴14c =, ∴存在常数111,,424a b c ===使不等式21()(1)2x f x x ≤≤+对一切x R ∈都成立。
一元二次不等式及其解法(精)全
一元二次不等式5x2 10x 4.8 0的解集就是 二次函数y 5x2 10x 4.8的图象(抛物线) 位于x轴下方的点所对应的x的集合.
因此, 求解一元二次不等式可以先解相应的一元二次方程, 确定抛物线与x轴交点的横坐标, 再根据图象写出不等式的解集. 第一步:解方程5x2 10x 4.8 0,得:x1 0.8, x2 1.2;
问题: 怎样解不等式5x2 10x 4.8 0?
思考(:1)当x是什么实数时,函数y 5x2 10x 4.8的值是:
(1)0 (2)正数 (3)负数
(2)能否画出二次函数 y 5x2 10x 4.8 的图象。 y
(3)能否找出抛物线上纵坐标 y 0 的点?其横坐标应取哪些值?
0 0.8
y 5x2 10x 4.8
有两相异实根 x1, x2 (x1<x2)
有两相等实根 x1=x2= b 2a
ax2+bx+c>0 (a>0)的解集 {x|x<x1,或 x>x2}
{x|x≠
b
}
2a
ax2+bx+c<0
(a>0)的解集 {x|x1< x <x2 }
Φ
△<0 y
x O 没有实根
R Φ
例1:解下列不等式:
(1)x2 7x 12 0; (2) x2 2x 3 0; (3)x2 2x 1 0; (4)x2 2x 2 0.
从这题可得出求一元二次不等式的解集的 基本步骤是怎样的?
解一元二次不等式的基本步骤:
(1)化不等式为标准形式:ax2 bx c 0(a 0) 或ax2 bx c (0 a 0)
(2)确定方程ax2 bx c 0 a 0 的根;
一元二次不等式的解法(含答案)
一元二次不等式的解法一、单选题(共10道,每道10分)1.不等式x2-5x-6<0的解集为( )A.{x|x<-1,或x>6}B.{x|-1<x<6}C.{x|x<-2,或x>3}D.{x|-2<x<3}答案:B解题思路:试题难度:三颗星知识点:一元二次不等式的解法2.不等式-x2+4x+5>0的解集为( )A.{x|-5<x<1}B.{x|-1<x<5}C.{x|x<-5,或x>1}D.{x|x<-1,或x>5}答案:B解题思路:试题难度:三颗星知识点:一元二次不等式的解法3.不等式2x2-7x+3>0的解集为( )A.{x|-3<x<}B.{x|<x<3}C.{x|x<-3,或x>}D.{x|x<,或x>3}答案:D解题思路:试题难度:三颗星知识点:一元二次不等式的解法4.不等式2x2+x-6≥0的解集为( )A.{x|x≤-2,或x≥}B.{x|-2≤x≤}C.{x|x≤,或x≥2}D.{x|≤x≤2}答案:A解题思路:试题难度:三颗星知识点:一元二次不等式的解法5.不等式3x2-2x+1>0的解集为( )A.{x|-1<x<}B.{x|<x<1}C.∅D.R答案:D解题思路:试题难度:三颗星知识点:一元二次不等式的解法6.不等式4x2-4x+1<0的解集为( )A.∅B.{3}C.{x|x≠3}D.R答案:A解题思路:试题难度:三颗星知识点:一元二次不等式的解法7.不等式-x2-x+12>3x的解集是( )A.{x|x<-2,或x>6}B.{x|x<-6,或x>2}C.{x|-6<x<2}D.{x|-2<x<6}答案:B解题思路:试题难度:三颗星知识点:一元二次不等式的解法8.若有意义,则实数x的取值范围为( )A.RB.{x|x≠3}C.{x|x:3}D.∅答案:C解题思路:试题难度:三颗星知识点:一元二次不等式的解法9.已知集合A={x|-x2+x+6>0},B={x|x2+2x-8>0},则A∩B=( )A.{x|2<x<3}B.{x|x>3}C.{x|x<-4}D.{x|-3<x<-2}答案:A解题思路:试题难度:三颗星知识点:集合的基本运算——交集10.在R上定义运算⊙:a⊙b=ab+2a+b,则满足x⊙(x-2)<0的实数x的取值范围为( )A.{x|0<x<2}B.{x|-2<x<1}C.{x|x<-2,或x>1}D.{x|-1<x<2}答案:B解题思路:试题难度:三颗星知识点:定义新运算。
一元二次不等式解法专题知识梳理及典型练习题(含答案)(精品范文).doc
【最新整理,下载后即可编辑】一元二次不等式解法专题一.一元二次不等式与相应的二次函数及一元二次方程的关系判别式Δ=b 2-4acΔ>0 Δ=0 Δ<0二次函数y =ax 2+bx +c (a >0)的图象一元二次方程ax 2+bx +c =0 (a >0)的根有两相异实根x 1,x 2(x 1<x 2)有两相等实根x 1=x 2=-b2a没有实数根ax 2+bx +c >0 (a >0)的解集{x |x >x 2或x<x 1} ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠-b 2aRax 2+bx +c <0 (a>0)的解集 {x |x 1<x <x 2}Φ Φ例1 解下列不等式:(1)x x ≥-2414 (2)0822≥+--x x (3)0)3)(2(>-+x x例2 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =_____.例3(穿针引线法) 解不等式:(x-1)2(x+1)(x-2)(x+4)<0例4 不等式xx ->+111的解集为( )A .{x|x >0}B .{x|x≥1}C .{x|x >1}D .{x|x >1或x =0}解不等式化为+->,通分得>,即>,1x 000111122----xx x x x∵x 2>0,∴x-1>0,即x >1.选C . 例5 与不等式023≥--xx 同解得不等式是( )A .(x -3)(2-x)≥0 B.0<x -2≤1C .≥230--x xD .(x -3)(2-x)≤0练习1:1.不等式x 2-3x +2<0的解集为( ).A .(-∞,-2)∪(-1,+∞)B .(-2,-1)C .(-∞,1)∪(2,+∞)D .(1,2)答案 D2.(2011·广东)不等式2x 2-x -1>0的解集是( ).A.⎝⎛⎭⎪⎪⎫-12,1 B .(1,+∞)C .(-∞,1)∪(2,+∞) D.⎝⎛⎭⎪⎪⎫-∞,-12∪(1,+∞)故原不等式的解集为⎝⎛⎭⎪⎪⎫-∞,-12∪(1,+∞). 答案 D3.不等式9x 2+6x +1≤0的解集是( ). A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠-13 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-13 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |-13≤x ≤13D .R答案 B4.若不等式ax 2+bx -2<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |-2<x <14,则ab =( ).A .-28B .-26C .28D .26答案 C5.函数f (x )=2x 2+x -3+log 3(3+2x -x 2)的定义域为________. 解析依题意知⎩⎪⎨⎪⎧2x 2+x -3≥0,3+2x -x 2>0,解得⎩⎪⎨⎪⎧x ≤-32或x ≥1,-1<x <3.∴1≤x <3.故函数f (x )的定义域为[1,3).答案 [1,3) 6.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,解不等式f (x )>3.[审题视点] 对x 分x ≥0、x <0进行讨论从而把f (x )>3变成两个不等式组. 解由题意知⎩⎪⎨⎪⎧x ≥0,x 2+2x >3或⎩⎪⎨⎪⎧x <0,-x 2+2x >3,解得:x >1.故原不等式的解集为{x |x >1}.例不等式<的解为<或>,则的值为7 1{x|x 1x 2}a axx -1A aB aC aD a .<.>.=.=-12121212分析可以先将不等式整理为<,转化为 0()a x x -+-111[(a -1)x +1](x -1)<0,根据其解集为{x|x <1或x >2}可知-<,即<,且-=,∴=.a 10a 12a 1112a - 选C .例解不等式≥.8 237232x x x -+- 解 先将原不等式转化为3723202x x x -+--≥即≥,所以≤.由于++=++>,---+-+++-2123212314782222x x x x x x x x 002x x 12(x )022∴不等式进一步转化为同解不等式x 2+2x -3<0,即(x +3)(x -1)<0,解之得-3<x <1.解集为{x|-3<x <1}. 说明:解不等式就是逐步转化,将陌生问题化归为熟悉问题. 练习21.(x+4)(x+5)2(2-x)3<0.2.解下列不等式(1);22123+-≤-x x 127314)2(22<+-+-x x x x3.解下列不等式1x 5x 2)2(;3x 1x 1+>+-≤-)(4.解下列不等式()()12log 6log 1log )2(;08254)1(21212121≥-++≥+⋅-+x x x x5解不等式1)123(log 2122<-+-x x x .。
一元二次不等式(含答案)
一元二次不等式1.一元一次不等式解法任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax >b (a ≠0)的形式. 当a >0时,解集为 ;当a <0时,解集为 . 2.一元二次不等式及其解法(1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式.(2)使某个一元二次不等式成立的x 的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________.(3)一元二次不等式的解:函数与不等式 Δ>0Δ=0Δ<0二次函数 y =ax 2+bx +c (a >0)的图象一元二次方程 ax 2+bx +c =0 (a >0)的根 有两相异实根 x 1,x 2(x 1<x 2)有两相等实根 x 1=x 2=-b2a无实根ax 2+bx +c >0 (a >0)的解集 ① ② Rax 2+bx +c <0 (a >0)的解集{x |x 1<x <x 2}∅③3.分式不等式解法(1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为f (x )g (x )的形式.(2)将分式不等式转化为整式不等式求解,如:f (x )g (x )>0 ⇔ f (x )g (x )>0; f (x )g (x )<0 ⇔ f (x )g (x )<0; f (x )g (x )≥0 ⇔ ⎩⎪⎨⎪⎧f (x )g (x )≥0,g (x )≠0; f (x )g (x )≤0 ⇔ ⎩⎪⎨⎪⎧f (x )g (x )≤0,g (x )≠0.已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A ∩B =( ) A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)解:∵A ={x |x ≥3或x ≤-1},B ={x |-2≤x <2},∴A ∩B ={x |-2≤x ≤-1}=[-2,-1].故选A . 设f (x )=x 2+bx +1且f (-1)=f (3),则f (x )>0的解集为( )A.{x |x ∈R }B.{x |x ≠1,x ∈R }C.{x |x ≥1}D.{x |x ≤1}解:f (-1)=1-b +1=2-b ,f (3)=9+3b +1=10+3b ,由f (-1)=f (3),得2-b =10+3b , 解出b =-2,代入原函数,f (x )>0即x 2-2x +1>0,x 的取值范围是x ≠1.故选B.已知-12<1x <2,则x 的取值范围是( )A.-2<x <0或0<x <12B.-12<x <2C.x <-12或x >2D.x <-2或x >12解:当x >0时,x >12;当x <0时,x <-2.所以x 的取值范围是x <-2或x >12,故选D.不等式1-2xx +1>0的解集是 .解:不等式1-2x x +1>0等价于(1-2x )(x +1)>0,也就是⎝⎛⎭⎫x -12(x +1)<0,所以-1<x <12. 故填⎩⎨⎧⎭⎬⎫x |-1<x <12,x ∈R .若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为________.解:显然k ≠0.若k >0,则只须(2x 2+x )max <38k ,解得k ∈∅;若k <0,则只须38k <(2x 2+x )min ,解得k ∈(-3,0).故k 的取值范围是(-3,0).故填(-3,0).类型一 一元一次不等式的解法已知关于x 的不等式(a +b )x +2a -3b <0的解集为⎝⎛⎭⎫-∞,-13,求关于x 的不等式(a -3b )x +b -2a >0的解集.解:由(a +b )x <3b -2a 的解集为⎝⎛⎭⎫-∞,-13,得a +b >0,且3b -2a a +b =-13, 从而a =2b ,则a +b =3b >0,即b >0,将a =2b 代入(a -3b )x +b -2a >0, 得-bx -3b >0,x <-3,故所求解集为(-∞,-3).点拨:一般地,一元一次不等式都可以化为ax >b (a ≠0)的形式.挖掘隐含条件a +b >0且3b -2a a +b =-13是解本题的关键.解关于x 的不等式:(m 2-4)x <m +2.解:(1)当m 2-4=0即m =-2或m =2时,①当m =-2时,原不等式的解集为∅,不符合 ②当m =2时,原不等式的解集为R ,符合(2)当m 2-4>0即m <-2或m >2时,x <1m -2.(3)当m 2-4<0即-2<m <2时,x >1m -2.类型二 一元二次不等式的解法解下列不等式:(1)x 2-7x +12>0; (2)-x 2-2x +3≥0;(3)x 2-2x +1<0; (4)x 2-2x +2>0.解:(1){x |x <3或x >4}.(2){x |-3≤x ≤1}.(3)∅.(4)因为Δ<0,可得原不等式的解集为R .已知函数f (x )=⎩⎪⎨⎪⎧-x +1,x <0,x -1,x ≥0, 则不等式x +(x +1)f (x +1)≤1的解集是( )A.{x |-1≤x ≤2-1}B.{x |x ≤1}C.{x |x ≤2-1}D.{x |-2-1≤x ≤2-1} 解:由题意得不等式x +(x +1)f (x +1)≤1等价于①⎩⎪⎨⎪⎧x +1<0,x +(x +1)[-(x +1)+1]≤1 或②⎩⎪⎨⎪⎧x +1≥0,x +(x +1)[(x +1)-1]≤1,解不等式组①得x <-1;解不等式组②得-1≤x ≤2-1.故原不等式的解集是{x |x ≤2-1}.故选C.类型三 二次不等式、二次函数及二次方程的关系已知关于x 的不等式x 2-bx +c ≤0的解集是{x |-5≤x ≤1},求实数b ,c 的值.解:∵不等式x 2-bx +c ≤0的解集是{x |-5≤x ≤1},∴x 1=-5,x 2=1是x 2-bx +c =0的两个实数根,∴由韦达定理知⎩⎪⎨⎪⎧-5+1=b ,-5×1=c ,∴⎩⎪⎨⎪⎧b =-4,c =-5. 已知不等式ax 2+bx +c >0的解集为{x |2<x <3},求不等式cx 2-bx +a >0的解集.解:∵不等式ax 2+bx +c >0的解集为{x |2<x <3},∴a <0,且2和3是方程ax 2+bx +c =0的两根,由根与系数的关系得⎩⎪⎨⎪⎧-ba =2+3,c a =2×3,a <0.即⎩⎪⎨⎪⎧b =-5a ,c =6a ,a <0.代入不等式cx 2-bx +a >0,得6ax 2+5ax +a >0(a <0).即6x 2+5x +1<0,∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x |-12<x <-13.类型四 含有参数的一元二次不等式解关于x 的不等式:mx 2-(m +1)x +1<0.解:(1)m =0时,不等式为-(x -1)<0,得x -1>0,不等式的解集为{x |x >1}; (2)当m ≠0时,不等式为m ⎝⎛⎭⎫x -1m (x -1)<0.①当m <0,不等式为⎝⎛⎭⎫x -1m (x -1)>0, ∵1m <1,∴不等式的解集为⎩⎨⎧⎭⎬⎫x |x <1m 或x >1. ②当m >0,不等式为⎝⎛⎭⎫x -1m (x -1)<0. (Ⅰ)若1m <1即m >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1m <x <1;(Ⅱ)若1m >1即0<m <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1<x <1m ;(Ⅲ)若1m=1即m =1时,不等式的解集为∅.点拨:当x 2的系数是参数时,首先对它是否为零进行讨论,确定其是一次不等式还是二次不等式,即对m ≠0与m =0进行讨论,这是第一层次;第二层次:x 2的系数正负(不等号方向)的不确定性,对m <0与m >0进行讨论;第三层次:1m与1大小的不确定性,对m <1、m >1与m =1进行讨论.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).解:不等式整理为ax 2+(a -2)x -2≥0,当a =0时,解集为(-∞,-1].当a ≠0时,ax 2+(a -2)x -2=0的两根为-1,2a ,所以当a >0时,解集为(-∞,-1]∪⎣⎡⎭⎫2a ,+∞; 当-2<a <0时,解集为⎣⎡⎦⎤2a ,-1;当a =-2时,解集为{x |x =-1};当a <-2时,解集为⎣⎡⎦⎤-1,2a . 类型五 分式不等式的解法(1)解不等式x -12x +1≤1.解:x -12x +1≤1 ⇔ x -12x +1-1≤0 ⇔ -x -22x +1≤0 ⇔ x +22x +1≥0.x +22x +1≥0 ⇔ ⎩⎪⎨⎪⎧(x +2)(2x +1)≥0,2x +1≠0.得{xx >-12或x ≤-2}.※(2)不等式x -2x 2+3x +2>0的解集是 .解:x -2x 2+3x +2>0⇔x -2(x +2)(x +1)>0⇔(x -2)(x +2)(x +1)>0,数轴标根得{x |-2<x <-1或x >2},故填{x|-2<x <-1或x >2}.点拨:分式不等式可以先转化为简单的高次不等式,再利用数轴标根法写出不等式的解集,如果该不等式有等号,则要注意分式的分母不能为零.※用“数轴标根法”解不等式的步骤:(1)移项:使得右端为0(注意:一定要保证x 的最高次幂的项的系数为正数).(2)求根:就是求出不等式所对应的方程的所有根..(3)标根:在数轴上按从左到右(由小到大)依次标出各根(不需标出准确位置,只需标出相对位置即可).(4)画穿根线:从数轴“最右根”的右上方向左下方画线,穿过此根,再往左上方穿过“次右根”,一上一下依次穿过各根,“奇穿偶不穿”来记忆.(5)写出不等式的解集:若不等号为“>”,则取数轴上方穿根线以内的范围;若不等号为“<”,则取数轴下方穿根线以内的范围;若不等式中含有“=”号,写解集时要考虑分母不能为零.(1)若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x |x -2x ≤0,则A ∩B =( )A.{x |-1≤x <0}B.{x |0<x ≤1}C.{x |0≤x ≤2}D.{x |0≤x ≤1}解:易知A ={x |-1≤x ≤1},B 集合就是不等式组⎩⎪⎨⎪⎧x (x -2)≤0,x ≠0 的解集,求出B ={}x |0<x ≤2,所以A ∩B={x |0<x ≤1}.故选B.(2)不等式x -12x +1≤0的解集为( )A.⎝⎛⎦⎤-12,1B.⎣⎡⎦⎤-12,1C.⎝⎛⎭⎫-∞,-12∪[1,+∞)D.⎝⎛⎦⎤-∞,-12∪[1,+∞) 解:x -12x +1≤0⇔⎩⎪⎨⎪⎧(x -1)(2x +1)≤0,2x +1≠0得-12<x ≤1.故选A.类型六 和一元二次不等式有关的恒成立问题(1)若不等式x 2+ax +1≥0对于一切x ∈⎝⎛⎦⎤0,12成立,则a 的最小值为( ) A.0 B.-2 C.-52D.-3解:不等式可化为ax ≥-x 2-1,由于x ∈⎝⎛⎦⎤0,12,∴a ≥-⎝⎛⎭⎫x +1x .∵f (x )=x +1x 在⎝⎛⎦⎤0,12上是减函数, ∴⎝⎛⎭⎫-x -1x max=-52.∴a ≥-52.(2)已知对于任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,则x 的取值范围是( ) A.1<x <3B.x <1或x >3C.1<x <2D.x <1或x >2解:记g (a )=(x -2)a +x 2-4x +4,a ∈[-1,1],只须⎩⎪⎨⎪⎧g (1)>0,g (-1)>0⇒⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0⇒x <1或x >3,故选B.点拨:对于参数变化的情形,大多利用参变量转换法,即参数转换为变量;变量转换为参数,把关于x 的二次不等式转换为关于a 的一次不等式,化繁为简,然后再利用一次函数的单调性,求出x 的取值范围.对于满足|a |≤2的所有实数a ,求使不等式x 2+ax +1>2x +a 成立的x 的取值范围.解:原不等式转化为(x -1)a +x 2-2x +1>0,设f (a )=(x -1)a +x 2-2x +1,则f (a )在[-2,2]上恒大于0,故有:⎩⎪⎨⎪⎧f (-2)>0,f (2)>0 即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2-1>0 解得⎩⎪⎨⎪⎧x >3或x <1,x >1或x <-1.∴x <-1或x >3. 类型七 二次方程根的讨论若方程2ax 2-x -1=0在(0,1)内有且仅有一解,则a 的取值范围是( ) A.a <-1B.a >1C.-1<a <1D.0≤a <1解法一:令f(x)=2ax2-x-1,则f(0)·f(1)<0,即-1×(2a-2)<0,解得a>1.解法二:当a=0时,x=-1,不合题意,故排除C,D;当a=-2时,方程可化为4x2+x+1=0,而Δ=1-16<0,无实根,故a=-2不适合,排除A.故选B.。
一元二次不等式的解法练习附答案
1.不等式(x -2)(2x -3)<0的解集是( )A .⎝⎛⎭⎫-∞,32∪(2,+∞) B.R C .⎝⎛⎭⎫32,2 D .∅解析:选C .因为不等式(x -2)(2x -3)<0,解得32<x <2, 所以不等式的解集是⎝⎛⎭⎫32,2.2.不等式1-x 2+x≥1的解集为( ) A .⎣⎡⎦⎤-2,-12 B .⎝⎛⎦⎤-2,-12 C .(-∞,-2)∪⎝⎛⎭⎫-12,+∞ D .(-∞,-2]∪⎝⎛⎭⎫-12,+∞ 解析:选B .1-x 2+x ≥1⇔1-x 2+x -1≥0⇔1-x -2-x 2+x≥0 ⇔-2x -12+x ≥0⇔2x +1x +2≤0⇔ ⎩⎪⎨⎪⎧(2x +1)(x +2)≤0x +2≠0⇔-2<x ≤-12.故选B . 3.已知不等式ax 2-5x +b >0的解集为{x |-3<x <2},则不等式bx 2-5x +a >0的解集是( )A .⎩⎨⎧x ⎪⎪⎭⎬⎫-13<x <12 B .⎩⎨⎧x ⎪⎪⎭⎬⎫-12<x <13 C .⎩⎨⎧x ⎪⎪⎭⎬⎫x <-13或x >12 D .⎩⎨⎧x ⎪⎪⎭⎬⎫x <-12或x >13 解析:选C .由题意得方程ax 2-5x +b =0的两根分别为-3,2,于是⎩⎨⎧-3+2=--5a ,-3×2=b a ,⇒⎩⎪⎨⎪⎧a =-5,b =30. 则不等式bx 2-5x +a >0,即为30x 2-5x -5>0,即(3x +1)(2x -1)>0,⇒x <-13或x >12.故选C . 4.规定符号“⊙”表示一种运算,定义a ⊙b =ab +a +b (a ,b 为非负实数),若1⊙k 2<3,则k 的取值范围是( )A .(-1,1)B.(0,1) C .(-1,0) D .(0,2)解析:选A .因为定义a ⊙b =ab +a +b (a ,b 为非负实数),1⊙k 2<3,所以k 2+1+k 2<3, 化为(|k |+2)(|k |-1)<0,所以|k |<1,所以-1<k <1.5.若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是( )A .[-4,1]B.[-4,3] C .[1,3] D .[-1,3]解析:选B .原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a ,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3.综上可得-4≤a ≤3.6.若关于x 的不等式ax >b 的解集为⎝⎛⎭⎫-∞,15,则关于x 的不等式ax 2+bx -45a >0的解集为________.解析:由已知ax >b 的解集为⎝⎛⎭⎫-∞,15,可知a <0,且b a =15,将不等式ax 2+bx -45a >0两边同除以a ,得x 2+b a x -45<0,即x 2+15x -45<0,即5x 2+x -4<0,解得-1<x <45,故所求解集为⎝⎛⎭⎫-1,45. 答案:⎝⎛⎭⎫-1,45 7.若关于x 的不等式x 2-ax +1≤0的解集中只有一个整数,且该整数为1,则a 的取值范围为________.解析:令f (x )=x 2-ax +1,由题意可得⎩⎪⎨⎪⎧f (1)≤0f (2)>0,解得2≤a <52.。
高考数学常考题型:一元二次不等式的解法(含详解答案)
(1) ;
(3) ;
19.求参数范围.
已知集合A={x| }, .
(1)若 ,求实数m的取值范围;
(2)若 ,求出实数m的取值范围;
(3)若 ,求出实数m的取值范围.
20.已知命题p:实数x满足 ,命题q:实数x满足 .
(1)求命题p为真命题,求实数x的取值范围;
(2)若q是p的必要不充分条件,求实数m的取值范围.
可得[(4+2 )x-3][(4-2 )x-3]≤0,
当a=2时,不等式为-24x+9≤0,解集为x ,不是恰好有三个整数解.
当a≠2时,不等式为含x的一元二次不等式,此时
若 时,即a=0时,不等式的解为x= 不是恰好有三个整数解.
若0 时,即0<a<4且a≠2时,不等式的解集为{x| }又∵ ,∴如果恰有三个整数解,只能是1,2,3.
a≥x2﹣x﹣f(x),令g(x)=x2﹣x﹣f(x) ,
可得g(x)的大致图象,如图所示,
又g(0)=﹣2,g(1)=﹣1,g(﹣1)=2,∴要使不等式的解集中有且仅有1个整数,
则﹣2≤a<1,即a取值范围是{a|﹣2≤a<1}.
12.
原不等式等价于 即 ,
故不等式的解为 或 .
13. 或
不等式变形为 ,即
∴ 解得: .
若 时,即a>4时,不等式的解集为{x|x 或 }不会恰好有三个整数解.综上所述,a的取值范围是[ , ).
18.(1) ;(2) ;(3)
(1) 即 .
即 ,解得 .
(2)①当 时, 即 ,此时无解.
②当 时, 即 ,此时无解.
③当 时, 即 ,此时无解.
综上, 解集为 .
(3)由分母中含有 可知 ,故 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【最新整理,下载后即可编辑】课时作业16 一元二次不等式及其解法时间:45分钟 满分:100分课堂训练1.不等式x 2-5x +6≤0的解集为( ) A .[2,3] B .[2,3) C .(2,3) D .(2,3]【答案】 A【解析】 因为方程x 2-5x +6=0的解为x =2或x =3,所以不等式的解集为{x |2≤x ≤3}.2.若a 2-174a +1<0,则不等式x 2+ax +1>2x +a 成立的x 的范围是( )A .{x |x ≥3或x ≤1}B .{x |x <14或x >4}C .{x |1<x <3}D .{x |x ≤-3或x >1}【答案】 D【解析】 由a 2-174a +1<0,得:a ∈(14,4).不等式x 2+ax +1>2x +a ,可化为:(x -1)[x -(1-a )]>0, ∴x <1-a 或x >1, ∴x ≤-3或x >1.3.若关于x 的不等式ax 2-6x +a 2<0的解集为(1,m ),则实数m =________.【答案】 2【解析】 ∵x =1是方程ax 2-6x +a 2=0的根,∴a -6+a 2=0,∴a =2或-3.当a =2时,不等式2x 2-6x +4<0的解集为(1,2),∴m =2.当a =-3时,不等式-3x 2-6x +9<0的解集为(-∞,-3)∪(1,+∞),不合题意.4.求函数f (x )=log 2(x 2-x +14)+x 2-1的定义域.【解析】 由函数的解析式有意义,得⎩⎪⎨⎪⎧x 2-x +14>0,x 2-1≥0,即⎩⎪⎨⎪⎧x ≠12,x ≤-1或x ≥1.因此x ≤-1或x ≥1.故所求函数的定义域为{x |x ≤-1或x ≥1}.课后作业一、选择题(每小题5分,共40分) 1.不等式2x 2-x -1>0的解集是( ) A .(-12,1) B .(1,+∞)C .(-∞,1)∪(2,+∞)D .(-∞,-12)∪(1,+∞)【答案】 D【解析】 ∵2x 2-x -1=(2x +1)(x -1),∴由2x 2-x -1>0得(2x +1)(x -1)>0,解得x >1或x <-12,∴不等式的解集为(-∞,-12)∪(1,+∞).故应选D. 2.设集合A ={x |1<x <4},集合B ={x |x 2-2x -3≤0},则A ∩(∁RB )=( )A .(1,4)B .(3,4)C .(1,3)D .(1,2)∪(3,4)【答案】 B【分析】 先解不等式求出集合B ,然后进行集合的相应运算.【解析】 B ={x |-1≤x ≤3},A ∩(∁R B )={x |3<x <4},故选B.3.函数y =11-x2+lg(3x -x 2)的定义域为( ) A .{x |-1<x <1} B .{x |0<x <3} C .{x |0<x <1} D .{x |-1<x <3}【答案】 C【解析】由题意须满足⎩⎪⎨⎪⎧1-x 2>0,3x -x 2>0,即⎩⎪⎨⎪⎧x 2-1<0,x 2-3x <0,∴⎩⎪⎨⎪⎧-1<x <1,0<x <3,∴0<x <1.4.不等式ax 2+bx +2>0的解集是{x |-12<x <13},则a -b 等于( )A .-4B .14C .-10D .10【答案】 C【解析】 ∵不等式ax 2+bx +2>0的解集为{x |-12<x <13},∴-12、13是方程ax 2+bx +2=0的两根,∴⎩⎪⎨⎪⎧-12+13=-b a-12×13=2a,解得⎩⎪⎨⎪⎧a =-12b =-2.∴a -b =-10.5.设f (x )=x 2+bx +1,且f (-1)=f (3),则f (x )>0的解集为( )A .(-∞,-1)∪(3,+∞)B .RC .{x |x ≠1}D .{x |x =1}【答案】 C【解析】 ∵f (-1)=f (3) ∴1-b +1=9+3b +1 ∴b =-2,∴f (x )=x 2-2x +1=(x -1)2, ∴f (x )>0的解集为x ≠1.6.若关于x 的不等式mx 2-(2m +1)x +m -1≥0的解集为∅,则( )A .m <0B .m <-18C .-18<m <0D .m 的值不存在【答案】 B【解析】 要使不等式的解集为∅,则⎩⎪⎨⎪⎧m <0,Δ<0,∴m <-18.7.若0<a <1,则不等式(a -x )(x -1a)>0的解集是( )A .{x |1a<x <a }B .{x |a <x <1a}C .{x |x <a 或x >1a}D .{x |x <1a或x >a }【答案】 B【解析】 原不等式可化为(x -a )(x -1a)<0.又∵0<a <1,∴1a>1>a >0,∴原不等式的解集为{x |a <x <1a}.8.如果ax 2+bx +c >0的解集为{x |x <-2或x >4},那么对于函数f (x )=ax 2+bx +c 有( )A .f (5)<f (2)<f (-1)B .f (2)<f (5)<f (-1)C .f (2)<f (-1)<f (5)D .f (-1)<f (2)<f (5)【答案】 C【解析】 ∵ax 2+bx +c >0的解集为x <-2或x >4. 则a >0且-2和4是方程ax 2+bx +c =0的两根,∴-b a =2,ca=-8.∴函数f (x )=ax 2+bx +c 的图象开口向上,对称轴为x =-b 2a=1.∴f (5)>f (-1)>f (2),故选C. 二、填空题(每小题10分,共20分)9.二次函数y =ax 2+bx +c (x ∈R )的部分对应值如表:【答案】{x|x<-2,或x>3}【解析】由图表可知a>0.且f(3)=0,f(-2)=0.∴ax2+bx +c>0的解集为{x|x<-2,或x>3}.10.若a<0,则关于x的不等式x2-4ax-5a2>0的解集是________.【答案】{x|x>-a或x<5a}【解析】方程x2-4ax-5a2=0的两根分别为-a和5a,且-a>5a.∴不等式的解集是{x|x>-a或x<5a}.三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.解不等式.(1)-x2+2x-3>0;(2)x2+x>-14;(3)-2x2+3x-2<0.【分析】把不等式化为二次项系数为正,右边为0的形式,利用“三个二次”之间的关系求解.【解析】(1)原不等式可化为x2-2x+3<0,∵Δ=(-2)2-4×1×3=-8<0,∴原不等式的解集为∅.(2)原不等式可化为x 2+x +14>0.∵Δ=12-4×1×14=0,∴方程x 2+x +14=0有两个相等实根x 1=x 2=-12.∴原不等式的解集为{x |x ≠-12,x ∈R }.(3)原不等式可化为2x 2-3x +2>0. ∵Δ=(-3)2-4×2×2=-7<0, ∴原不等式的解集为R .【规律方法】 一元二次不等式化为二次项系数为正的形式后,若Δ≤0,可根据二次函数的图象直接写出解集.12.解关于x 的不等式(x -2)(ax -2)>0(a ∈R ). 【解析】 当a =0时,原不等式化为x -2<0,∴x <2. 当a <0时,原不等式化为(x -2)(x -2a)<0,∴2a<x <2.当a >0时,原不等式化为(x -2)(x -2a)>0.①当0<a <1时,x >2a或x <2.②当a =1时,x ≠2.③当a >1时,x >2或x <2a.综上所述,当a =0时,原不等式的解集为{x |x <2};当a <0时,原不等式的解集为{x |2a<x <2};当0<a <1时,原不等式的解集为{x |x >2a或x <2};当a =1时,原不等式的解集为{x |x ≠2};当a >1时,原不等式的解集为{x |x >2或x <2a}.。