深圳中考数学突破训练之填空选择压轴题资料

合集下载

深圳历年中考数学压轴题(选择题)(1)(1)

深圳历年中考数学压轴题(选择题)(1)(1)

深圳历年中考数学压轴题(选择题20)1.二次函数2(0)y ax bx c a =++≠的图像如图1所示,则下列结论正确的是( )A .0abc >B .20a b +<C .30a c +<D .方程230ax bx c ++-=有两个不相等的实数根2.如图2,A 、B 是反比例函数12y x=图像上的两点,过点A 作x 轴的平行线,过点B 作y 轴的平行线,交于点P ,连接OA 、OB 、AB ,则下列说法正确的是( ) ①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16PAB S ∆= A .①③ B .②③ C .②④ D .③④3.如图3,在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是的中点,点D 在OB 上, 点E 在OB 的延长线上,当正方形CDEF 的边长为2时,则阴影部分的面积为( )A .2π﹣4B .4π﹣8C .2π﹣8D .4π﹣4图3 图44.如图4,CB=CA ,∠ACB=90°,点D 在边BC 上(与B 、C 不重合),四边形ADEF 为正方形,过点F 作FG ⊥CA ,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:①AC=FG ;②S △FAB :S 四边形CBFG =1:2;③∠ABC=∠ABF ;④AD 2=FQ •AC , 其中正确的结论的个数是( )A .1B .2C .3D .45.如图5,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=.在以上4个结论中,正确的有()(图5)A.1 B.2 C.3 D.46.二次函数y=ax2+bx+c图象如图6,下列正确的个数为()①bc>0;②2a﹣3c<0;③2a+b>0;④ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.(图6)A.2 B.3 C.4 D.57.如图7,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=()(图7)(图8)A.1 B.3﹣C.﹣1 D.4﹣28.如图8,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则sinα的值是()A.B.C.D.9.如图9,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3(图9)(图10)10.如图10,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.6411.如图11,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为()(图11)(图12)A.:1 B.:1 C.5:3 D.不确定12.如图12,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=13.如图13,已知点A,B,C,D均在已知圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10cm.图中阴影部分的面积为()(图13)(图14)A.cm2B.(π﹣)cm2C.cm2D.cm214.如图14,边长为1的菱形ABCD绕点A旋转,当B、C两点恰好落在扇形AEF的弧EF上时,弧BC的长度等于()A.B.C.D.15.如图15,在▱ABCD中,AB:AD=3:2,∠ADB=60°,那么cos∠A的值等于()A.B.C.D.(图15)(图16)16.如图16,AB是⊙O的直径,点D、E是半圆的三等分点,AE、BD的延长线交于点C,若CE=2,则图中阴影部分的面积是()A.π﹣B.πC.π﹣D.π17.如图17,⊙O的两弦AB、CD相交于点M,AB=8cm,M是AB的中点,CM:MD=1:4,则CD=()A.12cm B.10cm C.8cm D.5cm(图17)(图18)18.如图18,圆内接四边形ABCD中,AC平分∠BAD,EF切圆于C,若∠BCD=120°,则∠BCE=()A.30°B.40°C.45°D.60°19.如图19,抛物线过点A(2,0)、B(6,0)、C(1,),平行于x轴的直线CD交抛物线于点C、D,以AB为直径的圆交直线CD于点E、F,则CE+FD的值是()A.2 B.4 C.5 D.6(如图19)(如图20)20.如图20,直线l1∥l2,AF:FB=2:3,BC:CD=2:1,则AE:EC是()A.5:2 B.4:1 C.2:1 D.3:2。

专题01 选择压轴题-备战2022年中考数学满分真题模拟题分类之压轴题汇编(深圳专用)(解析版)

专题01 选择压轴题-备战2022年中考数学满分真题模拟题分类之压轴题汇编(深圳专用)(解析版)

专题01 选择压轴题1.(2021•深圳)在正方形ABCD 中,2AB =,点E 是BC 边的中点,连接DE ,延长EC 至点F ,使得EF DE =,过点F 作FG DE ⊥,分别交CD 、AB 于N 、G 两点,连接CM 、EG 、EN ,下列正确的是( ) ①1tan 2GFB ∠=; ②MN NC =; ③12CM EG =; ④512GBEM S +=四边形.A .4B .3C .2D .1 【答案】B【详解】四边形ABCD 是正方形,AB BC CD AD ∴===,2AB =,点E 是BC 边的中点,1CE ∴=,DNM FCN ∠=∠,FG DE ⊥,90DMN ∴∠=︒,90DMN NCF ∴∠=∠=︒,GFB EDC ∠=∠,1tan tan 2ECGFB EDC ED ∠=∠==,①正确;②90DMN NCF ∠=∠=︒,MND CNF ∠=∠,MDN CFN ∴∠=∠ECD EMF ∠=∠,EF ED =,MDN CFN ∠=∠()DEC FEM AAS ∴∆≅∆EM EC ∴=,DM FC ∴=,MDN CFN ∠=∠,MND CNF ∠=∠,DM FC =,()DMN FCN AAS ∴∆≅∆,MN NC ∴=,故②正确;③BE EC =,ME EC =,BE ME ∴=,在Rt GBE ∆和Rt GME ∆中,BE ME =,GE GE =,Rt GBE Rt GME(HL)∴∆≅∆,BEG MEG ∴∠=∠,ME EC =,EMC ECM ∠=∠,EMC ECM BEG MEG ∠+∠=∠+∠,GEB MCE ∴∠=∠,//MC GE ∴, ∴CM CF EG EF =, 225EF DE EC CD ==+=,51CF EF EC =-=-,∴515555CM CF EG EF --===,故③错误; ④由上述可知:1BE EC ==,51CF =-,51BF ∴=+,1tan tan 2GB F EDC BF =∠==, 15122GB BF +∴==,故④正确 2.(2020•深圳)如图,矩形纸片ABCD 中,6AB =,12BC =.将纸片折叠,使点B 落在边AD 的延长线上的点G 处,折痕为EF ,点E 、F 分别在边AD 和边BC 上.连接BG ,交CD 于点K ,FG 交CD 于点H .给出以下结论:①EF BG ⊥;②GE GF =;③GDK ∆和GKH ∆的面积相等;④当点F 与点C 重合时,75DEF ∠=︒,其中正确的结论共有( )A .1个B .2个C .3个D .4个【答案】C【详解】如图,连接BE ,设EF 与BG 交于点O ,将纸片折叠,使点B 落在边AD 的延长线上的点G 处,EF ∴垂直平分BG ,EF BG ∴⊥,BO GO =,BE EG =,BF FG =,故①正确,//AD BC ,EGO FBO ∴∠=∠,又EOG BOF ∠=∠,()BOF GOE ASA ∴∆≅∆,BF EG ∴=,BF EG GF ∴==,故②正确,BE EG BF FG ===,∴四边形BEGF 是菱形,BEF GEF ∴∠=∠,当点F 与点C 重合时,则12BF BC BE ===, 61sin 122AB AEB BE ∠===, 30AEB ∴∠=︒,75DEF ∴∠=︒,故④正确,BG 平分EGF ∠,DG GH ∴≠,由角平分线定理,DG DK GH KH =, DK KH ≠, GDK GKH S S ∆∆∴≠, 故③错误; 3.(2019•深圳)已知菱形ABCD ,E 、F 是动点,边长为4,BE AF =,120BAD ∠=︒,则下列结论正确的有几个( )①BEC AFC ∆≅∆;②ECF ∆为等边三角形;③AGE AFC ∠=∠;④若1AF =,则13GF EG =.A .1B .2C .3D .4【答案】D【详解】①四边形ABCD 是菱形,AB BC CD AD ∴===,//AB CD ,180B BCD ∴∠+∠=︒,120BCD ∠=︒,60B ∴∠=︒, ABC ∴∆,ACD ∆是等边三角形,60B CAF ∴∠=∠=︒,BE AF =,BC AC =,BEC AFC ∴∆≅∆()SAS ,正确;②BEC AFC ∆≅∆,CE CF ∴=,BCE ACF ∠=∠,60BCE ECA BCA ∠+∠=∠=︒,60ACF ECA ∴∠+∠=,CEF ∴∆是等边三角形,故②正确;③60AGE CAF AFG AFG ∠=∠+∠=︒+∠;60AFC CFG AFG AFG ∠=∠+∠=︒+∠,AGE AFC ∴∠=∠,故③正确;④过点E 作//EM BC 交AC 于点M ,易证AEM ∆是等边三角形,则3EM AE ==,//AF EM ,∴则13GF AF EG EM ==. 故④正确, 故①②③④都正确.4.(2021•涪城区校级模拟)如图,在矩形ABCD 中,E 是AD 边的中点,BE AC ⊥,垂足为点F ,连接DF ,有下面结论:①2CF AF =;②6DF EF =;③DFC AEB ∠=∠;④tan 2CAD ∠=.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C【详解】①//AD BC , AEF CBF ∴∆∆∽,∴AE AF BC CF=, 1122AE AD BC ==, ∴12AF CF =, 2CF AF ∴=,故①正确;②如图,延长BE 、CD 交于点M ,设AE a =,AB b =,则2AD a =,由BAE ADC ∆∆∽,有2b a a b =,即2b a =, 四边形ABCD 是矩形, //AD BC ∴,2CD AB a ==, ∴12MD DE MC BC ==, 2MC MD ∴=,2MD CD MD ∴+=,2CD MD a ∴==,222MC CD a ∴==,90CFM ∠=︒,122DF MC a ∴==, 在Rt ABE ∆中,2222(2)3BE AE AB a a a =+=+=,AEF BEA ∠=∠,90AFE BAE ∠=∠=︒,EAF EBA ∴∆∆∽,∴EF AE AE BE =,即3EF a a a=, 33EF a ∴=, ∴2633DF a EF a ==,6DF EF ∴=,故②正确;③如图,由②可得:DF CD =,DFC DCF ∴∠=∠,又BAE ADC ∆∆∽,AEB DCF ∴∠=∠,DFC AEB ∴∠=∠,故③正确;④如图,设AE a =,AB b =,则2AD a =,由②知,2b a =,22tan 222CD b a CAD AD a a ∴∠====,故④错误5.(2021•南山区一模)如图,正方形ABCD 边长为2,BM ,DN 分别是正方形的两个外角的平分线,点P ,Q 分别是平分线BM ,DN 上的点,且满足45PAQ ∠=︒,连接PQ ,PC ,CQ .则下列结论:① 3.6BP DQ ⋅=,②QAD APB ∠=∠,③135PCQ ∠=︒④222BP DQ PQ +=,其中正确的有( )A .1个B .2个C .3个D .4个 【答案】C【详解】BM ,DN 分别是正方形ABCD 的两个外角平分线,135ADQ ABP ∴∠=∠=︒,45BAP APB ∴∠+∠=︒,45PAQ ∠=︒,45QAD BAP ∠+∠=︒,QAD APB ∴∠=∠,故②正确;ABP QDA ∴∆∆∽, ∴AB BP DQ AD=, 正方形ABCD 边长为2,4BP DQ AD AB∴⋅=⋅=,故①错误;AB BPDQ AD=,∴CD BP DQ BC=,即CD DQBP BC=,45 PBC CDQ∠=∠=︒,PBC CDQ∴∆∆∽,BCP DQC∴∠=∠,36090PCQ DQC DCQ∴∠=︒-︒-∠-∠,18018045DQC DCQ CDQ∠+∠=︒-∠=︒-︒,135PCQ∴∠=︒,故③正确;如图,将AQD∆绕点A顺时针旋转90︒,得ABG∆,连接GP,AB与GP相交于点H,ADQ ABG∴∆≅∆,GAB QAD∴∠=∠,AG AQ=,BG DQ=,AGB AQD∠=∠,45GAP GAB BAP QAD BAP BAD PAQ∴∠=∠+∠=+∠=∠-∠=︒,45GAP PAQ∴∠=∠=︒,AP AP=,()AGP AQP SAS∴∆≅∆,GP QP∴=,45PBC∠=︒,90HBC∠=︒,45HBP∴∠=︒,4545 GBP GBH HBP AGB GAB AQD QAD∴∠=∠+∠=∠+∠+︒=∠+∠+︒,180********AQD QAD ADQ∠+∠=︒-∠=︒-︒=︒,90GBP∴∠=︒,GBP ∴∆是直角三角形,222BP BG GP ∴+=,222BP DQ PQ ∴+=,故④正确.属于其中正确的有②③④,共3个.6.(2021•连云港模拟)如图,在矩形ABCD 中,32AB =+,3AD =.把AD 沿AE 折叠,使点D 恰好落在AB 边上的D '处,再将AED ∆'绕点E 顺时针旋转α,得到△A ED ''',使得EA '恰好经过BD '的中点F .A D '''交AB 于点G ,连接AA '.有如下结论:①A F '的长度是62-;②弧D D '''的长度是5312π;③7.5A AF ∠'=︒;④△AA F EGF '∆∽.上述结论中,所有正确的序号是( )A .①②④B .①③C .②③④D .①②③④【答案】D【详解】把AD 沿AE 折叠,使点D 恰好落在AB 边上的D '处,90D AD E DAD ''∴∠=∠=︒=∠,AD AD '=,∴四边形ADED '是矩形, 又3AD AD '==,∴四边形ADED '是正方形,3AD AD D E DE ''∴====,26AE AD ==,45EAD AED ''∠=∠=︒,2DBAB AD ''∴=-=, 点F 是BD '中点,1D F '∴=,22312EF D E D F ∴='+'=+=,将AED ∆'绕点E 顺时针旋转α,6AE A E '∴==,D ED α'''∠=,45EA D EAD ''''∠=∠=︒,62A F '∴=-,故①正确;13tan 33D F FED DE ''∠===', 30FED '∴∠=︒304575α∴=︒+︒=︒,∴弧DD '''的长度7535318012ππ⨯⨯==,故②正确; AE A E '=,75AEA '∠=︒,52.5EAA EA A ''∴∠=∠=︒,7.5A AF '∴∠=︒,故③正确;D E D E '''=,EG EG =,Rt ∴△ED G Rt '≅△()ED G HL '',D GE D GE '''∴∠=∠,105AGD A AG AA G ''''∠=∠+∠=︒,52.5D GE AA F ''∴∠=︒=∠,又AFA EFG '∠=∠,AFA EFG '∴∆∆∽,故④正确,所以所有正确的序号为:①②③④.7.(2020•泰安二模)如图1,有一张矩形纸片ABCD ,已知10AB =,12AD =,现将纸片进行如下操作:现将纸片沿折痕BF 进行折叠,使点A 落在BC 边上的点E 处,点F 在AD 上(如图2);然后将纸片沿折痕DH 进行第二次折叠,使点C 落在第一次的折痕BF 上的点G 处,点H 在BC 上(如图3),给出四个结论:①AF 的长为10;②BGH ∆的周长为18;③23BG GF =;④GH 的长为5,其中正确的结论有( )A .①②③B .①②④C .①③④D .②③④【答案】C【详解】如图,过点G 作//MN AB ,分别交AD 、BC 于点M 、N , 四边形ABCD 为矩形,10AB CD ∴==,12BC AD ==, 由折叠可得AB BE =,且90A ABE BEF ∠=∠=∠=︒, ∴四边形ABEF 为正方形,10AF AB ∴==,故①正确;//MN AB ,BNG ∴∆和FMG ∆为等腰直角三角形,且10MN AB ==,设BN x =,则GN AM x ==,10MG MN GN x =-=-,12MD AD AM x =-=-, 又由折叠的可知10DG DC ==,在Rt MDG ∆中,由勾股定理可得222MD MG GD +=,即222(12)(10)10x x -+-=,解得4x =,4GN BN ∴==,6MG =,8MD =,又90DGH C GMD ∠=∠=∠=︒,90NGH MGD MGD MDG ∴∠+∠=∠+∠=︒,NGH MDG ∴∠=∠,DMG GNH ∠=∠,MGD NHG ∴∆∆∽, ∴MD MG DG GN NH GH ==,即86104NH GH ==, 3NH ∴=,5GH CH ==,1257BH BC HC ∴=-=-=,故④正确;又BNG ∆和FMG ∆为等腰直角三角形,且4BN =,6MG =,42BG ∴=,62GF =,BGH ∴∆的周长42571242BG GH BH =++=++=+,∴422362BG GF ==, 故②不正确;③正确;综上可知正确的为①③④8.(2020•南宁模拟)如图,以矩形ABCD 对角线AC 为底边作等腰直角ACE ∆,连接BE ,分别交AD ,AC 于点F ,N ,CD AF =,AM 平分BAN ∠.下列结论: ①CDE AFE ∆≅∆;②BCM NCM ∠=∠;③AE AM NE FM ⋅=⋅;④222BN EF EN +=;其中正确结论的个数是( )A .1B .2C .3D .4【答案】C【详解】如图1中,连接BD 交AC 于O ,连接OE .四边形ABCD 是矩形,OA OC OD OB ∴===,OAD ODA ∠=∠,ACE ∆是等腰直角三角形,EAC ECA ∴∠=∠,EAF DCE ∴∠=∠,在CDE ∆和AFE ∆中,CE AE DCE EAF CD AF =⎧⎪∠=∠⎨⎪=⎩,()CDE AFE SAS ∴∆≅∆,故①正确,CD AB AF ==,90BAF ∠=︒,45ABF AFB FBC ∴∠=∠=∠=︒,BM ∴平分ABC ∠, AM 平分BAC ∠,∴点M 是ABC ∆的内心,CM ∴平分ACB ∠,MCB MCN ∴∠=∠,故②正确,如图2中,将ABN ∆绕点A 逆时针旋转90︒,得到AFG ∆,连接EG ,NAB GAF ∠=∠,90GAN BAD ∴∠=∠=︒,45EAN ∠=︒,45EAG EAN ∴∠=∠=︒,AG AN =,AE AE =,()AEG AEN SAS ∴∆≅∆,EN EG ∴=,GF BN =,45AFG ABN AFB ∠=∠=∠=︒,90GFB GFE ∴∠=∠=︒,222EG GF EF ∴=+,222BN EF EN ∴+=,故④正确,不妨设AE AM NE FM ⋅=⋅,AE EC =, ∴EC EN FM AM =, ∴只有ECN MAF ∆∆∽才能成立,AMF CEN ∴∠=∠,//CE AM ∴,AE CE ⊥,MA AE ∴⊥(矛盾), ∴假设不成立,故③错误9.(2020•深圳模拟)如图,在矩形ABCD 中,22AD AB =.将矩形ABCD 对折,得到折痕MN ;沿着CM 折叠,点D 的对应点为E ,ME 与BC 的交点为F ;再沿着MP 折叠,使得AM 与EM 重合,折痕为MP ,此时点B 的对应点为G .下列结论: ①CMP ∆是直角三角形;②62PC MP =;③2tan 2NMF ∠=;④点F 是CMP ∆外接圆的圆心;⑤6PNM PMCG S S ∆=四边形.其中正确的个数为( )A .2个B .3个C .4个D .5个【答案】A 【详解】沿着CM 折叠,点D 的对应点为E ,DMC EMC ∴∠=∠, 再沿着MP 折叠,使得AM 与EM 重合,折痕为MP ,AMP EMP ∴∠=∠,180AMD ∠=︒, 1180902PME CME ∴∠+∠=⨯︒=︒, CMP ∴∆是直角三角形;故①正确,符合题意; 在矩形ABCD 中,22AD AB =,设AB a =,则CD a =,22AD BC a == 将矩形ABCD 对折,得到折痕MN ,2AM DM BN CN a ∴====,在Rt CDM ∆中,90D ∠=︒,3CM a =,由①知,90CMP ∠=︒,CMP D ∴∠=∠,//AD BC ,DMC MCP ∴∠=∠,DMC MCP ∴∆∆∽,∴DC MC MP CP =, ∴3MP DC a CP MC a==,即3CP MP =,故②错误,不符合题意; 由上可知,DMC MCP ∆∆∽,2MC CP DM ∴=⋅,即2(3)2a a CP =⋅,322CP a ∴=,22BP a ∴=, 由折叠可知,22PG BP a ==,90G B ∠=∠=︒,90MEG A ∠=∠=︒,90MEC D ∠=∠=︒, GE AB a ==,CE CD a ==,∴点C ,E ,G 三点共线,2CG a ∴=,222tan 24a PG PCG CG a ∴∠===, 又90MNC MEC ∠=∠=︒,MFN EFC ∠=∠,NMF ECF ∴∠=∠,2tan tan 4NMF PCG ∴∠=∠=,故③错误,不符合题意; 由折叠可知,DMC EMC ∠=∠,AMP EMP ∠=∠,又//AD BC ,DMC MCP ∴∠=∠,AMP MPC ∠=∠,EMC MCP ∴∠=∠,EMP MPC ∠=∠,PF FM FC ∴==,即点F 是CMP ∆的外接圆的圆心,故④正确,符合题意; 如图,MCE MCD PMCG PME PMB S S S S S ∆∆=+=+四边形梯形梯形,()22321122224PMBA S BP AM AB a a a a ⎛⎫=⋅+⋅=⨯+⨯= ⎪ ⎪⎝⎭梯形, 21122222MCD S MD CD a a a ∆=⋅⋅=⨯⨯=, 2524PMCG S a ∴=四边形, 又211222224PNM S MN PN a a a ∆=⋅⋅=⋅=, 即5PNM PMCG S S ∆=四边形,故⑤错误,不符合题意.∴符合题意的有2个.10.(2020•福田区模拟)如图所示,已知正方形ABCD ,对角线AC 、BD 交于点O ,点P是边BC 上一动点(不与点B 、C 重合),过点P 作BPF ∠,使得12BPF ACB ∠=∠.BG PF ⊥于点F ,交AC 于点G ,PF 交BD 于点E .给出下列结论,其中正确的是( ) ①2AG GO =;②2PE BF =;③在点P 运动的过程中,当GB GP =时,(22)GP BF =+;④当P 为BC的中点时,BEF ABG S S ∆∆=.A .①②③B .①②④C .②③④D .①②③④【答案】A【详解】过点G 作GH AB ⊥于点H ,作BPF FPM ∠=∠,PM 交BD 于点K ,过点M 作MN PG ⊥于点N ,正方形ABCD 中,45ACB DBC ∠=∠=︒,12BPF ACB ∠=∠, 22.5BPF ∴∠=︒, 67.5PBF ∴∠=︒,22.5OBG PBF DBC ∴∠=∠-∠=︒,22.5OBG GBH ∴∠=∠=︒,GO BD ⊥,GH AB ⊥,OG GH ∴=,2AG GO ∴=;故①正确;BPF FPM ∠=∠,PF PF =,PFB PFM ∠=∠,()PFM PFB ASA ∴∆≅∆,FM BF ∴=,45KBP KPB ∠=∠=︒,PBK ∴∆为等腰直角三角形,KB KP ∴=,90PKB ∠=︒,KPE MBK ∠=∠,PKB BKM ∠=∠,()MBK EPK AAS∴∆≅∆,PE BM∴=,2PE BF∴=;故②正确;BG GP=,67.5GBP GPB∴∠=∠=︒,45BGP∴∠=︒,MNG∴∆为等腰直角三角形,22.5MPG∠=︒,MPF MPN∴∠=∠,MN NG FM BF∴===,2 MG BF ∴=,22(22)PG BG BF FM MG BF BF BF∴==++=+=+;故③正确;在BF上截取TF EF=,则EFT∆为等腰直角三角形,设EF FT a==,2BT ET a∴==,∴1221EF aBF a a==++,(21)BF EF∴=+,2PE BF=,∴1212122BEFPEBBFS EFS PE BF∆∆-+===,∴2(21)PEB BEFS S∆∆=+,45EBP BAG∠=∠=︒,22.5BPE ABG∠=∠=︒,BPE ABG∴∆∆∽,∴21()4BPEABGS BPS AB∆∆==,4ABG BPES S∆∆∴=,8(21)ABG BEF S S ∆∆∴=+, ∴12188(21)BEF ABG S S ∆∆-==+.故④错误. 11.(2021•南山区校级一模)如图,在矩形ABCD 中,12AB =,P 是边AB 上一点,把PBC ∆沿直线PC 折叠,得到PGC ∆,边CG 交AD 于点E ,连接BE ,90BEC ∠=︒,BE 交PC 于点F ,那么下列选项正确的有( )①BP BF =;②若点E 是AD 的中点,则AEB DEC ∆≅∆;③当25AD =,且AE DE <时,则16DE =;④当25AD =,可得310sin 10PCB ∠=;⑤当9BP =时,108BE EF ⋅=.A .5个B .4个C .3个D .2个【答案】B【详解】①在矩形ABCD ,90ABC ∠=︒,BPC ∆沿PC 折叠得到GPC ∆, 90PGC PBC ∴∠=∠=︒,BPC GPC ∠=∠,BE CG ⊥,//BE PG ∴,GPF PFB ∴∠=∠,BPF BFP ∴∠=∠,BP BF ∴=;故①正确;②在矩形ABCD 中,90A D ∠=∠=︒,AB DC =,E 是AD 中点,AE DE ∴=,在ABE ∆和DCE ∆中,90AB DC A D AE DE =⎧⎪∠=∠=︒⎨⎪=⎩,()ABE DCE SAS ∴∆≅∆;故②正确;③当25AD =时,90BEC ∠=︒,90AEB CED ∴∠+∠=︒,90AEB ABE ∠+∠=︒,CED ABE ∴∠=∠,90A D ∠=∠=︒,ABE DEC ∴∆∆∽, ∴AB DE AE CD =, 设AE x =, 25DE x ∴=-, ∴122512x x -=, 9x ∴=或16x =,AE DE <,9AE ∴=,16DE =;故③正确;④由③知:2225614420CE DE CD =+=+=,228114415BE AE AB =+=+=,由折叠得,BP PG =,BP BF PG ∴==,//BE PG ,ECF GCP ∴∆∆∽,∴EF EC PG CG=, 设BP BF PG y ===,∴152025y y -=, 253y ∴= 253BP ∴=, 在Rt PBC ∆中,22625251062593PC PB BC =+=+=,25103sin 1025103PB PCB PC ∴∠===, 故④不正确;⑤如图,连接FG,由①知//BF PG ,BF PG PB ==,BPGF ∴是菱形,//BP GF ∴,9FG PB ==,GFE ABE ∴∠=∠,GEF EAB ∴∆∆∽,∴EF GF AB BE=, 129108BE EF AB GF ∴⋅=⋅=⨯=;故⑤正确,所以本题正确的有①②③⑤,共4个12.(2021•泗水县一模)如图,在正方形ABCD 中,对角线AC ,BD 相交于点O ,点E 在DC 边上,且2CE DE =,连接AE 交BD 于点G ,过点D 作DF AE ⊥,连接OF 并延长,交DC 于点P ,过点O 作OQ OP ⊥分别交AE 、AD 于点N 、H ,交BA 的延长线于点Q ,现给出下列结论:①45AFO ∠=︒;②OG DG =;③2DP NH OH =⋅;④5sin 5AQO ∠=;其中正确的结论有( )A .①②③B .②③④C .①②④D .①②③④【答案】D 【详解】四边形ABCD 是正方形,AO DO CO BO ∴===,AC BD ⊥,90AOD NOF ∠=∠=︒,AON DOF ∴∠=∠,90OAD ADO OAF DAF ADO ∠+∠=︒=∠+∠+∠,DF AE ⊥,90DAF ADF DAF ADO ODF ∴∠+∠=︒=∠+∠+∠,OAF ODF ∴∠=∠,()ANO DFO ASA ∴∆≅∆,ON OF ∴=,45AFO ∴∠=︒,故①正确;如图,过点O 作OK AE ⊥于K ,2CE DE =,3AD DE ∴=, 1tan 3DE DF DAE AD AF ∠===, 3AF DF ∴=,ANO DFO ∆≅∆,AN DF ∴=,2NF DF ∴=,ON OF =,90NOF ∠=︒,12OK KN KF FN ∴===, DF OK ∴=,又OGK DGF ∠=∠,90OKG DFG ∠=∠=︒,()OKG DFG AAS ∴∆≅∆,GO DG ∴=,故②正确;③45DAO ODC ∠=∠=︒,OA OD =,AOH DOP ∠=∠, ()AOH DOP ASA ∴∆≅∆,AH DP ∴=,45ANH FNO HAO ∠=∠=︒=∠,AHN AHO ∠=∠,AHN OHA ∴∆∆∽, ∴AH HN HO AH =, 2AH HO HN ∴=⋅, 2DP NH OH ∴=⋅,故③正确;45NAO AON ANQ ∠+∠=∠=︒,45AQO AON BAO ∠+∠=∠=︒, NAO AQO ∴∠=∠,OG GD =,2AO OG ∴=,225AG AO OG OG ∴=+=,5sin sin 5OG NAO AQO AG ∴∠=∠==,故④正确 13.(2020秋•龙岗区期末)如图,在正方形ABCD 中,E 、F 分别在CD 、AD 边上,且CE DF =,连接BE 、CF 相交于G 点.则下列结论:①BE CF =;②BCG DFGE S S ∆=四边形;③2CG BG GE =⋅;④当E 为CD 中点时,连接DG ,则45FGD ∠=︒.正确结论的个数是( )A .1B .2C .3D .4【答案】D【详解】四边形ABCD 是正方形,BC CD ∴=,90BCD CDF ∠=∠=︒, 又CE DF =,()BCE CDF SAS ∴∆≅∆,BE CF ∴=,故①正确,BCE CDF ∆≅∆,BCE CDF S S ∆∆∴=,BCG DFGE S S ∆∴=四边形;故②正确,BCE CDF ∆≅∆,DCF EBC ∴∠=∠,90DCF BCG ∠+∠=︒,90EBC BCG ∴∠+∠=︒,90BGC EGC ∴∠=∠=︒,BCG CEG ∴∆∆∽, ∴CG GE BGGC =, 2CG BG GE ∴=⋅;故③正确; 如图,连接EF ,点E 是CD 中点,DE CE ∴=,BCE CDF ∆≅∆,DF CE DE ∴==,45DFE DEF ∴∠=∠=︒,90ADC EGF ∠=∠=︒,∴点D ,点E ,点G ,点F 四点共圆,45DEF DGF ∴∠=∠=︒,故④正确;14.(2021•宝安区模拟)如图,正方形ABCD 边长为3,连接BD .点E 、F 分别是AD 、CD 上的一点,1AE DF ==.连接AF 、BE 交于点G ,AF 与BD 交于点P .点M 是BC 上一点,45MAF ∠=︒,连接AM 交BE 于点H .将AM 绕点M 旋转90︒交AF 的延长线于点N ,连接CN .下列结论:①AG GH =;②135MCN ∠=︒;③13AGH BMH S S ∆∆=;④1tan 2CNM ∠=;⑤连接CP ,CNP ∆的面积是94.其中,正确结论的个数是( )A .5B .4C .3D .2 【答案】B【详解】AD AB =,90BAD ADF ∠=∠=︒,DF AE =, ()ADF BAE SAS ∴∆≅∆,DAF ABE ∴∠=∠,BE AF =,45MAF ∠=︒,45DAF BAM ∴∠+∠=︒,45ABE BAM AHG ∴∠+∠=︒=∠,45AHG MAF ∴∠=∠=︒,AG GH ∴=,90AGH ∠=︒,故①正确; 如图,连接AC ,MF ,过点A 作//AQ BE ,交CB 的延长线于Q ,四边形ABCD 是正方形,45ACB ACD ∴∠=∠=︒,3AB BC ==, 32AC ∴=, 将AM 绕点M 旋转90︒交AF 的延长线于点N , AM MN ∴=,90AMN ∠=︒,45MAN MNA ∴∠=∠=︒,45MNA MCA ∴∠=∠=︒,∴点A ,点M ,点C ,点N 四点共圆, 90AMN ACN ∴∠=∠=︒,135MCN ∴∠=︒,故②正确;//AQ BE ,//AE BC ,∴四边形AEBQ 是平行四边形,90QAF BAD ∠=∠=︒, 1AE BQ ∴==,BAQ DAF ∠=∠,AQ BE AF ==, 45FAM ∠=︒,45DAF BAM ∴∠+∠=︒,45BAQ BAM QAM ∴∠+∠=︒=∠,QAM MAF ∴∠=∠,又AM AM =,AQ AF =,()AQM AFM SAS ∴∆≅∆,QM MF ∴=,222MF CF MC =+,222(1)(31)(3)BM BM ∴+=-+-, 32BM ∴=, //AD BC , AEH MBH ∴∆∆∽, ∴24()9AEH BHM S AE S BM ∆∆==, ∴设4AEH S a ∆=,9BHM S a ∆=,1tan 3DF EG DAF AD AG ∠===, 3AG EG GH ∴==,3AGH S a ∆∴=,∴13AGH BHM S S ∆∆=,故③正确; 点A ,点M ,点C ,点N 四点共圆, MNC MAC ∴∠=∠,45MAC CAN ∠+∠=︒,45CAN DAF ∠+∠=︒, DAF MAC MNC ∴∠=∠=∠,1tan tan 3DF CNM DAF AD ∴∠=∠==,故④错误; AB BC =,45ABP CBP ∠=∠=︒,BP BP =, ()ABP CBP SAS ∴∆≅∆,AP CP ∴=,PAC PCA ∴∠=∠,90ACN ∠=︒,90PAC ANC PCA PCN ∴∠+∠=︒=∠+∠, PCN PNC ∴∠=∠,PC PN AP ∴==,45CAN DAF DAF BAM ∠+∠=︒=∠+∠, CAN BAM ∴∠=∠,tan tan CAN BAM ∴∠=∠, ∴BM CN AB AC =, ∴32332CN =, 322CN ∴=, 1922ACN S AC CN ∆∴=⨯⨯=, AP PN =,94CPN S ∆∴=,故⑤正确; 15.(2021•深圳模拟)如图,已知正方形ABCD ,E 为AB 的中点,F 是AD 边上的一个动点,连接EF 将AEF ∆沿EF 折叠得HEF ∆,延长FH 交BC 于M ,现在有如下5个结论:①EFM ∆定是直角三角形;②BEM HEM ∆≅∆;③当M 与C 重合时,有13DF AF =;④MF 平分正方形ABCD 的面积;⑤24FH MH AB ⋅=,在以上5个结论中,正确的有A .2B .3C .4D .5【答案】【详解】四边形是正方形,, ()C ABCD 90A B ∴∠=∠=︒为的中点,,由翻折可知:,,, ,,,,,,, 是直角三角形,故①②正确,,, ,又,,, 又, ,故⑤正确,如图1中,当与重合时,设.则, ,, ,又,, E AB EA EB ∴=FA FH =EA EH =90A FHE ∠=∠=︒90EHM B ∴∠=∠=︒EM EM =EH EB =Rt EMH Rt EMB(HL)∴∆≅∆MEH MEB ∴∠=∠FEH FEA ∠=∠∴1()902FEM FEH MEH AEH BEH ∠=∠+∠=∠+∠=︒EFM ∴∆90FEM FHE ∠=︒=∠90FEH MEH FEH EFH ∴∠+∠=︒=∠+∠EFH HEM ∴∠=∠90FHE EHM ∠=∠=︒FHE EHM ∴∆∆∽∴EH HM FH EH =12EH EB AB ==24ABHF HM∴=⋅M C 2AE EB a ==4AB BC AD CD a ====90FEM ∠=︒90AEF CEB AEF AFE ∴∠+∠=︒=∠+∠AFE ECB ∴∠=∠90A B ∠=∠=︒AEF BCE ∴∆∆∽, ,,,,故③正确, 如图2中,当点与点重合时,显然直线不平分正方形的面积,故④错误, 综上所述,正确的有:①②③⑤16.(2020•深圳模拟)如图,正方形,点在边上,且,,垂足为,且交于点,与交于点,延长至,使,连接.有如下结论: ①;②;③; ④.上述结论中,所有正确结论的序号是A .①②B .③④C .①②③D .①②③④【答案】【详解】①四边形是正方形, ,, ,, ∴12AF AE EB BC ==AF a ∴=3DF a ∴=3DF AF ∴=∴13DF AF=F D MF ABCD F AB :2:3AF FB =CE DF ⊥M AD E AC DF N CB G 14BG BC =CM DE AF =DMC AFME S S ∆=四边形:5:4MG AB =:1:8ANF CNFB S S ∆=四边形()C ABCD AD AB CD BC ∴===90CDE DAF ∠=∠=︒CE DF ⊥90DCE CDF ADF CDF ∴∠+∠=∠+∠=︒在与中,, ,,故①正确;②,,;故②正确;③如图,过点作于,,设,, ,, , ,, , , ,ADF ∆DCE ∆90DAF CDE AD CD ADF DCE ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()ADF DCE ASA ∴∆≅∆DE AF ∴=ADF DCE ∆≅∆ADF DCE S S ∆∆∴=DMC AFME S S ∆∴=四边形G GH EC ⊥H :2:3AF FB =∴2AF x DE ==3BF x =5AB BC x CD ∴===14BG BC =54BG x ∴=222225429CE DE DC x x x ∴=+=+=cos DC CM DCE CE DC ∠==∴529CM xx =252929CM x ∴=//AD BC又, , , , , , 又,, , 故③正确;④, 设,, , , , ,, ,,, , , , , CDE GHC ∠=∠CDE GHC ∴∆∆∽∴CE DE DC CG CH HG ==∴292554x x x CH HG x x ==+252958CH x ∴=252958MH CH x ∴==GH CH ⊥525544MG GC x x x ∴==+=:5:4MG AB ∴=:2:3AF FB =∴2AF x =3BF x =5AB BC x CD ∴===14BG BC =54BG x ∴=//AB CD ANF CND ∴∆∆∽∴25AF AN CD NC ==425ANF CND S S ∆∆=2252ABC ACDx S S ∆∆==212514CND S x ∆∴=2107ANF S x ∆∴=215514BCNF x S ∴=四边形:4:31ANF CNFB S S ∆∴=四边形故④错误;17.(2021•平南县三模)如图,正方形的边长为2,延长至使,以为边在上方作正方形,延长交于,连接,,为的中点,连接分别与,交于点,.则下列结论:①;②;③;④,正确的是A .①②③B .①②④C .②③④D .①③④ 【答案】【详解】四边形,四边形都是正方形,,,,,,,故①正确;为的中点,,又,,,故②错误;,,,四边形是矩形,,,,,,,, ABCD BC E 1CE =CE CEFG FG AB M DM DF H AD FH CD DM N K DHF HFG ∠=∠DHK GFN ∆≅∆:2:1FN HK =72DFN AMKH S S ∆=四边形()D ABCD CEFG 2AD CD ∴==1CE CG GF ===//CE GF //AD BC //AD GF ∴DHF HFG ∴∠=∠H AD 1HD GF ∴==90ADG DGF ∠=∠=︒DNH GNF ∠=∠()DHN GFN AAS ∴∆≅∆12DN NG ∴==12HN FN HF ==90B BCD CGM ∠=∠=∠=︒∴BCGM 2MG BC ∴==1GC BM ==3MF ∴=//AD MF HDK FMK ∴∆∆∽∴HDHKDKMF KF KM ==∴13HK DKKF KM ==, ;故③正确;连接,,, , ,, ,, , , ,故④正确; 18.(2020秋•福田区校级期中)如图,正方形的边长为6,点是的中点,连接与对角线交于点,连接并延长,交于点,连接交于点,连接.以下结论:①;②③;④的个数是 14HK HF ∴=:2:1FN HK ∴=HM 12DN =1GF =1111224DNF S ∆∴=⨯⨯=111122AMH S ∆=⨯⨯=11212AMD S ∆=⨯⨯=12DMH S ∆∴=13DK KM =111248DHK S ∆∴=⨯=78AMKH S ∴=四边形72DFN AMKH S S ∆∴=四边形ABCD E BC AE BD G CG AB F DE CF H AH CF DE ⊥23CH HF =AD AH =455GH ()A .1B .2C .3D .4 【答案】【详解】四边形是边长为6的正方形,点是的中点, ,,,,,,,,,,,且,,,,故①正确;,,, , , ,,, , , , ,故②正确; D ABCD E BC 6AB AD BC CD ∴====3BE CE ==90DCE ABE ∠=∠=︒45ABD CBD ∠=∠=︒()ABE DCE SAS ∴∆≅∆CDE BAE ∴∠=∠DE AE =AB BC =ABG CBG ∠=∠BG BG =()ABG CBG SAS ∴∆≅∆BAE BCF ∴∠=∠BCF CDE ∴∠=∠90CDE CED ∠+∠=︒90BCF CED ∴∠+∠=︒90CHE ∴∠=︒CF DE ∴⊥6DC =3CE =2236935DE CD CE ∴=+=+=1122DCE S CD CE DE CH ∆=⨯⨯=⨯⨯655CH ∴=CHE CBF ∠=∠BCF ECH ∠=∠ECH FCB ∴∆∆∽∴CH CE BC CF=6335655CF ⨯∴==955HF CF CH ∴=-=∴23CH HF =如图,过点作,,,, ,,,且,, ,, ,且, ,故③正确; ,, ,, ,,,, ,故④正确 19.(2020•庆云县一模)如图,中,,,将绕点逆时针旋转,得到,过作交的延长线于点,连接并延长交于点,连接交于点.下列结论:①平分;②;③是的中点;④;A AM DE ⊥6DC =65CH =22361253655DH DC CH ∴=-=-=90CDH ADM ∠+∠=︒90ADM DAM ∠+∠=︒CDH DAM ∴∠=∠AD CD =90CHD AMD ∠=∠=︒()ADM DCH AAS ∴∆≅∆655CH DM ∴==125AM DH ==655MH DM ∴==AM DH ⊥AD AH ∴=35DE =125DH =355HE ∴=95ME HE MH =+=AM DE ⊥CF DE ⊥//AM CF ∴∴GH HE AM ME=∴35512595=455HG ∴=Rt ABE ∆90B ∠=︒AB BE =ABE ∆A 45︒AHD ∆D DC BE ⊥BE C BH DC F DE BF O DE HDC ∠DO OE =H BF 2BC CF CE -=⑤,其中正确的有A .5个B .4个C .3个D .2个【答案】【详解】,,,, 将绕点逆时针旋转,,,,,, ,,又,四边形是矩形,,,, ,,,,,, 平分,故①正确;,,,,,,,,故②正确;如图,连接,CD HF =()B 90ABE ∠=︒AB BE =45AEB BAE ∴∠=∠=︒2AE BE=ABE ∆A 45︒45DAE AEB ∴∠=∠=︒2AD AE BE ==DH BE =AH AB =90ABE AHD ∠=∠=︒90DAB ABE ∴∠=∠=︒AH DH AB BE ===DC BE ⊥∴ABCD AB CD DH ∴==2AD BC BE =90BCD DHE ∠=∠=︒DH DC =DE DE =Rt DEC Rt DEH(HL)∴∆≅∆HE EC ∴=67.5AED DEC ∠=∠=︒22.5CDE HDE ∠=∠=︒DE ∴HDC ∠AB AH =45BAE ∠=︒67.5ABH AHB ∴∠=∠=︒67.5OHE OEH ∴∠=∠=︒OH OE ∴=22.5DHO HDO ∠=︒=∠DO HO ∴=OE OD ∴=CH,,,,,,,,,,,,点是的中点,故③正确,如图,过点作于,,,, ,,,,,,, ,67.5ABH ∠=︒22.5CBH ∴∠=︒67.5BFC ∴∠=︒HE EC =45AEB ∠=︒22.5ECH EHC ∴∠=∠=︒HBC HCE ∴∠=∠67.5FCH ∠=︒BH CH ∴=FCH BFC ∠=∠HC HF ∴=BH HF ∴=∴H BF H HN BC ⊥N //HN CD ∴BHN BFC ∴∆∆∽∴12BH HN BF FC ==2FC HN ∴=2AE BE =AH BE =(21)HE BE CE ∴=-=HN BC ⊥45AEB ∠=︒22(21)22HN HE BE ∴==-2(22)CF HN BE ∴==-, ,故④正确;,,,,,故⑤不合题意20.(2021•福田区二模)如图,已知在中,,,,把沿着翻折得到,过点作,交于点,点是线段上一点,且.则下列结论: ①;②;③; ④. 其中,正确的结论是A .①④B .②③④C .①②③D .①②③④【答案】【详解】如图,在中,,,, , ,,沿着翻折得到,,,,, ,,,,(21)(22)2(21)BC CF BE CE CF BE BE BE BE -=+-=+---=-2BC CF CE ∴-=18067.5112.5HFD ∠=︒-=︒45HDF ∠=︒HFD HDF ∴∠≠∠HF DH ∴≠HF CD ∴≠Rt ABC ∆90ACB ∠=3AC =3BC =Rt ABC ∆AB Rt ABD ∆B BE BC ⊥AD E F BE 3tan ADF ∠AE BE =BED ABC ∆∆∽2BD AD DE =⋅2133AF =()D Rt ABC ∆90ACB ∠=3AC =3BC =23AB ∴=60ABC ∴∠=︒30BAC ∠=︒Rt ABC ∆AB Rt ABD ∆ABC ABD ∴∆≅∆30BAD BAC ∴∠=∠=︒60ABD ABC ∠=∠=︒90ADB C ∠=∠=︒3AD AC ==3BD BC =BE BC ⊥90C ∠=︒90EBC ∴∠=︒,,,,,即①正确;由上可知,,,又,,即②正确; 由②知,, ,又由折叠可知,,,,即③正确; ,, ,过点作于点,, , 设,则,又,,, 180EBC C ∴∠+∠=︒//BE AC ∴30EBA BAC ∴∠=∠=︒EBA EAB ∴∠=∠BE AE ∴=30DBE ∠=︒DBE BAC ∴∠=∠90ADB C ∠=∠=︒BED ABC ∴∆∆∽BD DE AC BC=BD BC AC DE ∴⋅=⋅BD BC =AD AC =2BD AD DE ∴=⋅2BD AD DE =⋅2(3)3DE ∴=1DE ∴=F FG DE ⊥G 3tan 2ADF ∠=∴3FG DG 3FG t =2DG t =BED ABC ∆∆∽60DEB ∴∠=︒GE t ∴=,解得, ,, ,故④正确. 综上,正确的结论是①②③④.21.(2020•开鲁县一模)如图,正方形中,,为的中点,将沿翻折得到,延长交于,,垂足为,连接、.以下结论:①;②;③;④;⑤;其中正确的个数是A .2B .3C .4D .5 【答案】 【详解】正方形中,,为的中点, ,,, 沿翻折得到,,,,, ,,,,,,故①正确;,, 在和中,, ,故②正确;,,,,21t t ∴+=13t =23DG ∴=27333AG =-=133GF =222273213()()333AF AG GF ∴=+=+=ABCD 6AB =E AB ADE ∆DE FDE ∆EF BC G FH BC ⊥H BF DG //BF ED DFG DCG ∆≅∆FHB EAD ∆∆∽4tan 3GEB ∠= 2.4BFG S ∆=()D ABCD 6AB =E AB 6AD DC BC AB ∴====3AE BE ==90A C ABC ∠=∠=∠=︒ADE ∆DE FDE ∆AED FED ∴∠=∠6AD FD ==3AE EF ==90A DFE ∠=∠=︒3BE EF ∴==90DFG C ∠=∠=︒EBF EFB ∴∠=∠AED FED EBF EFB ∠+∠=∠+∠DEF EFB ∴∠=∠//BF ED ∴AD FD =DF DC ∴=Rt DFG ∆Rt DCG ∆DF DC DG DG =⎧⎨=⎩Rt DFG Rt DCG(HL)∴∆≅∆FH BC ⊥90ABC ∠=︒//AB FH ∴90FHB A ∠=∠=︒,,故③正确;,,设,则,,在中,由勾股定理得:,解得:,, ,故④正确; ,且, 设,则, 在中,由勾股定理得:,解得:(舍去)或, ,故⑤正确; 22.(2021•深圳模拟)如图,在中,,是的中点,点在上,,,垂足分别为、,连接,则下列结论中:①;②;③;④,其中正确结论的个数是A .1B .2C .3D .4【答案】【详解】,,,, 又,, EBF BFH AED ∴∠=∠=∠FHB EAD ∴∆∆∽Rt DFG Rt DCG ∆≅∆FG CG ∴=FG CG x ==6BG x =-3EG EF FG BEFG x =+=+=+Rt BEG ∆2223(6)(3)x x +-=+2x =4BG ∴=4tan 3BG GEB BE ∴∠==FHB EAD ∆∆∽12AE AD =2BH FH ∴=FH a =42HG a =-Rt FHG ∆222(42)2a a +-=2a =65a =164 2.425BFG S ∆∴=⨯⨯=Rt ABC ∆CA CB =M AB D BM AE CD ⊥BF CD ⊥E F EM BF CE =AEM DEM ∠=∠CF DM BM DE ⋅=⋅2222DE DF DM +=()D 90ACB ∠=︒90BCF ACE ∴∠+∠=︒90BCF CBF ∠+∠=︒ACE CBF ∴∠=∠90BFD AEC ∠=︒=∠AC BC =,,故①正确;由全等可得:,,,如图,连接,,点是中点,,, 在和中,,,,又,,,,,,,即为等腰直角三角形,,,,故②正确,,,,, ,,, ,故③正确;如图,设与交于点,连接,()BCF CAE AAS ∴∆≅∆BF CE ∴=AE CF =BF CE =AE CE CF CE EF ∴-=-=FMCM M AB 12CM AB BM AM ∴===CM AB ⊥BDF ∆CDM ∆BFD CMD ∠=∠BDF CDM ∠=∠DBF DCM ∴∠=∠BM CM =BF CE =()BFM CEM SAS ∴∆≅∆FM EM ∴=BMF CME ∠=∠90BMC ∠=︒90EMF ∴∠=︒EMF ∆45MEF MFE ∴∠=∠=︒90AEC ∠=︒45MEF AEM ∴∠=∠=︒CDM ADE ∠=∠90CMD AED ∠=∠=︒CDM ADE ∴∆∆∽∴CD CM DM AD AE DE==BM CM =AE CF =∴BM DM CF DE=CF DM BM DE ∴⋅=⋅AE CM N DN,,,,,,为等腰直角三角形,,而,,故④正确;故正确结论为:①②③④.共4个.23.(2021春•岳麓区校级期末)如图,在中,,点,分别是的边、的中点,边分别与、相交于点,,且,,连接、、,现在下列四个结论:①,②平分,③,④.则其中正确的结论有A .1个B .2个C .3个D .4个【答案】【详解】①,,,,,①的结论正确; ②连接、,如图,点,分别是的边、的中点,且,,,,,,,,,,平分,DMF NME ∠=∠FM EM =45DFM DEM AEM ∠=∠=∠=︒()DFM NEM ASA ∴∆≅∆DF EN ∴=DM MN =DMN ∴∆2DN DM ∴=90DEA ∠=︒22222DE DF DN DM ∴+==ABC ∆120BAC ∠=︒E F ABC ∆AB AC BC DE DF H G DE AB ⊥DF AC ⊥AD AG AH 60EDF ∠=︒AD GAH ∠60GAH ∠=︒GD GH =()C DE AB ⊥DF AC ⊥90AED AFD ∴∠=∠=︒120BAC ∠=︒36060EDF AED AFD BAC ∴∠=︒-∠-∠-∠=︒∴BD CD E F ABC ∆AB AC DE AB ⊥DF AC ⊥HB HA ∴=GA GC =DB DA DC ==ABH BAH ∴∠=∠ACG CAG ∠=∠DBA DAB ∠=∠DCA DAC ∠=∠DCB DBC ∠=∠DAH DBH DCG DAG ∴∠=∠=∠=∠AD ∴HAG ∠②的结论正确;③点,分别是的边、的中点,,,,,,,,,,③的结论正确;④,,,,当时,用,,,,不是等边三角形,,④的结论不正确.24.(2021•龙岗区模拟)如图,矩形中,为的中点,,,连接并延长,交的延长线于点,、相交于点.下列结论:①平分;②;③;④.其中正确的个数是A .1B .2C .3D .4【答案】【详解】设,, ∴E F ABC ∆AB AC DE AB ⊥DF AC ⊥HB HA ∴=GA GC =HBA HAB ∴∠=∠GAC C ∠=∠120BAC ∠=︒60B C HAB GAC ∴∠+∠=∠+∠=︒60HAG ∴∠=︒∴DE AB ⊥DF AC ⊥90DHG BHE B ∴∠=∠=︒-∠90DGH CGF C ∠=∠=︒-∠AB AC ≠B C ∠≠∠DHG DGH ∴∠≠∠DH DG ∴≠60HDG ∠=︒DHG ∴∆GD GH ∴≠∴ABCD E DC :3:2AD AB =:1:2CP BP =EP AB F AP BE O EP CEB ∠2BF PB EF =⋅22PF EF AD ⋅=4EF EP AO PO ⋅=⋅()C 3AD x =2AB x =四边形是矩形,,,.,,,,,. 为的中点,,,, ,,,,,平分,故①正确;,,,,,, .,,.故②正确;,, 过点作于,ABCD AD BC ∴=CD AB =90D C ABC ∠=∠=∠=︒//DC AB 3BC x ∴=2CD x =:1:2CP BP =33CP x ∴=23BP x =E DC 12CE CD x ∴==333tan 3x PC CEP EC x ∴∠===3tan 3EBC x∠=30CEP ∴∠=︒30EBC ∠=︒60CEB ∴∠=︒30PEB ∴∠=︒CEP PEB ∴∠=∠EP ∴CEB ∠//DC AB 30CEP F ∴∠=∠=︒30F EBP ∴∠=∠=︒30F BEF ∠=∠=︒EBP EFB ∴∆∆∽∴DE BP EF BF=BE BF BP EF ∴⋅=⋅F BEF ∠=∠BE BF ∴=2BF PB EF ∴=⋅30F ∠=︒4323PF PB x ∴==E EG AF ⊥G,,, ,,,故③错误;在中,, . , ,,,在和中,由勾股定理得,,, , . .故④正确.25.(2021•深圳模拟)如图,在矩形中,,,于,于,平分交于点,交延长线于点,则下列说法中正确的有 个①② ③ ④⑤ 90EGF ∴∠=︒223EF EG x ∴==2432383PF EF x x x ∴⋅=⋅=22222(3)6AD x x =⨯=2268x x ≠22PF EF AD ∴⋅≠Rt ECP ∆30CEP ∠=︒2323x EP PC ∴==2333tan 23x PAB x ∠==30PAB ∴∠=︒60APB ∴∠=︒90AOB ∴∠=︒Rt AOB ∆Rt POB ∆3AO x =3PO =2232343EF EP x x x ∴⋅=⋅=2344343AO PO x x x ⋅=⨯⋅=4EF EP AO PO ∴⋅=⋅ABCD 3AB =6AD =CE BD ⊥E AG BD ⊥G AF BAD ∠BC N EC F ()BE DG =12BN AD =2MN =BD CF =2AG BG DG =A .2B .3C .4D .5【答案】【详解】四边形是矩形,,,,于,于,, ,,,故①正确,,平分,,,,,,,,,故②正确, ,,,, ,故③正确, 连接,易证,,,D ABCD AB CD ∴=//AB CD ABG CDE ∴∠=∠CE BD ⊥E AG BD ⊥G 90AGB CED ∴∠=∠=︒()AGB CED AAS ∴∆≅∆BG DE ∴=BE DG ∴=90BAD ∠=︒FA BAD ∠45BAN ∴∠=︒90ABN ∠=︒45ANB ∴∠=︒AB BN ∴=3AB =6AD BC ==2BC AB ∴=12BN AD ∴=3AB NB ==32AN ∴=//BN AD ∴12NM BN AM AD ==123MN AN ∴==AC ECB BAC ∠=∠45ECB F ∠=︒+∠45BAC CAF ∠=︒+∠,,四边形是矩形,,,故④正确,,,,可得,故⑤正确26.(2021•福田区一模)如图,在矩形中,,的平分线交于点.于点,连接并延长交于点,连接交于点,下列结论:①;②;③;④;⑤,其中正确的有A .2个B .3个C .4个D .5个 【答案】【详解】①平分,, ,,,,,,,故①正确;F CAF ∴∠=∠CA CF ∴=ABCD AC BD ∴=BD CF =90BAD ∠=︒AG BD ⊥AGB DGA ∴∆∆∽2AG BG DG=ABCD 2AD AB =BAD ∠BC E DH AE ⊥H BH CD F DE BF O AD AE =AED CED ∠=∠OE OD =BH HF =2BC CF HE -=()D AE BAD ∠1452BAE DAE BAD ∴∠=∠=∠=︒//AD BC 45DAE AEB ∴∠=∠=︒45AEB BAE ∴∠=∠=︒AB BE ∴=2AE AB ∴=2AD AB =AD AE ∴=②在和中,,,,,, ,,故②正确;,,(对顶角相等), ,,,,,,,故③正确;,,在和中,, ,,,故④正确;,.故⑤正确;27.(2021•龙岗区校级一模)如图,正方形中,点为对角线上一点,交边于,连接交线段于点,延长交边于点,连接.下列结论:①;②若,,则; ③; ④若,ABE ∆AHD ∆BAE DAE ABE AHD AE AD ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABE AHD AAS ∴∆≅∆BE DH ∴=AB BE AH HD ∴===1(18045)67.52ADE AED ∴∠=∠=︒-︒=︒1804567.567.5CED ∴∠=︒-︒-︒=︒AED CED ∴∠=∠AB AH =1(18045)67.52AHB ∠=︒-︒=︒OHE AHB ∠=∠67.5OHE AED ∴∠=︒=∠OE OH ∴=9067.522.5DHO ∠=︒-︒=︒67.54522.5ODH ∠=︒-︒=︒DHO ODH ∴∠=∠OH OD ∴=OE OD OH ∴==9067.522.5EBH ∠=︒-︒=︒EBH OHD ∴∠=∠BEH ∆HDF ∆22.545EBH OHD BE DHAEB HDF ∠=∠=︒⎧⎪=⎨⎪∠=∠=︒⎩()BEH HDF ASA ∴∆≅∆BH HF ∴=HE DF =HE AE AH BC CD =-=-()()()2BC CF BC CD DF BC CD HE BC CD HE HE HE HE ∴-=--=--=-+=+=ABCD E AC EF DE ⊥AB F DF AC H DE BC Q QF DE EF =6AB =3CQ =2AF =AFD DFQ ∠=∠2AH =。

2022年深圳中考数学各区压轴题(1)

2022年深圳中考数学各区压轴题(1)

2022年深圳中考数学各区压轴题1一.选择题(共12小题)1.(2021•广元)如图,在△ABC中,∠ACB=90°,AC=BC=4,点D是BC边的中点,点P是AC边上一个动点,连接PD,以PD为边在PD的下方作等边三角形PDQ,连接CQ.则CQ的最小值是()A.B.1C.D.2.(2021•龙湖区二模)如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④3.(2021•深圳模拟)如图,在Rt△ABC中,CA=CB,M是AB的中点,点D在BM上,AE⊥CD,BF⊥CD,垂足分别为E、F,连接EM,则下列结论中:①BF=CE;②∠AEM =∠DEM;③CF•DM=BM•DE;④DE2+DF2=2DM2,其中正确结论的个数是()A.1B.2C.3D.4 4.(2021•福田区校级开学)如图,四边形ABCD是正方形,AB=6,E是BC中点,连接DE,DE的垂直平分线分别交AB、DE、CD于M、O、N,连接EN,过E作EF⊥EN交AB于F,下列结论中,正确结论有()①△BEF∽△CNE;②MN=3③BF=AF;④△BEF的周长是12;⑤△EON的面积是3.A.2个B.3个C.4个D.5个5.(2021•湖南模拟)如图,AB是⊙O的直径,弦CD⊥AB于点G.点F是CD上一点,且满足=,连接AF并延长交⊙O于点E.连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是()A.①②④B.①②③C.②③④D.①③④6.(2020•新余模拟)如图,Rt△AOB∽Rt△DOC,∠AOB=∠COD=90°,M为OA的中点,OA=5,OB=12,将△COD绕O点旋转,连接AD,CB交于P点,连接MP,则MP的最大值为()A.10B.11C.12D.12.57.(2021春•宝安区校级月考)如图,在正方形ABCD中,以BC为直径作半圆O,以D为圆心,DA为半径作,与半圆O交于点P,我们称:点P为正方形ABCD的一个“奇妙点”,过奇妙点的多条线段与正方形ABCD无论是位置关系还是数量关系,都具有不少优美的性质值得探究.连接P A、PB、PC、PD,并延长PD交AB于点F.下列结论中:①FD=FB+BC;②∠APC=135°;③S△PBC=AP2;④tan∠BAP=;其中正确的结论有()A.4个B.3个C.2个D.1个8.(2021春•宝安区校级月考)如图,所示的曲边三角形可按下述方法作出:作等边三角形ABC;分别以点A,B,C为圆心,以AB的长为半径作弧BC,弧AC,弧AB,三段弧所围成的图形就是一个曲边三角形,如果一个曲边三角形的周长为3π,则它的面积为()A.B.C.D.9.(2021秋•深圳期末)如图,矩形ABCD中,点E,点F分别是BC,CD的中点,AE交对角线BD于点G,BF交AE于点H.则的值是()A.B.C.D.10.(2021•深圳)在正方形ABCD中,AB=2,E是BC的中点,在BC延长线上取点F使EF=ED,过点F作FG⊥ED交ED于点M,交AB于点G,交CD于点N,以下结论中:①tan∠GFB=;②NM=NC;③;④S四边形GBEM=.正确的个数是()A.4个B.3个C.2个D.1个11.(2021秋•福田区期中)如图,正方形ABCD的边长为6,点E是BC的中点,连接AE 与对角线BD交于点G,连接CG并延长,交AB于点F,连接DE交CF于点H,连接AH.以下结论:①CF⊥DE;②=③AD=AH;④GH=,其中正确结论的个数是()A.1B.2C.3D.4 12.(2021•河南模拟)如图,点A在反比例函数的图象上,以点A 为圆心画弧交x轴于点B、C,延长AC交y轴于点D,连接BD,若△BCD的面积等于1,BC=4OC,则k的值为()A.1B.2C.3D.4二.填空题(共18小题)13.(2020秋•渠县期末)已知:一次函数y=﹣2x+10的图象与反比例函数y=(k>0)的图象相交于A,B两点(A在B的右侧).直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y轴于点D.=,△ABC的面积=.14.(2022•宝安区校级开学)如图,在平面直角坐标系xOy中,直线y=﹣x+m(m≠0)分别交x轴,y轴于A,B两点,已知点C(2,0).设点P为线段OB的中点,连接P A,PC,若∠CP A=45°,则m的值是.15.(2015•武汉模拟)如图,已知:直线y=﹣x+1与坐标轴交于A,B两点,矩形ABCD 对称中心为M,双曲线y=(x>0)正好经过C,M两点,则k=.16.(2021•梓潼县模拟)如图,在矩形ABCD中,AB=1,BC=2,P为线段BC上的一动点,且和B、C不重合,连接P A,过点P作PE⊥P A交CD于E,将△PEC沿PE翻折到平面内,使点C恰好落在AD边上的点F,则BP长为.17.(2021•罗湖区一模)如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上,△AOB的两条外角平分线交于点P,P在反比例函数y=(k>0,x>0)的图象上,P A的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD,OD=3,OC=5,则k的值为.18.(2021•福田区校级开学)如图,点A在反比例函数(x>0)上,AB垂直x轴于B,C是x轴负半轴上一个动点,D是斜边AC上一点,,若△BCE的面积为9.则k =.19.(2021春•深圳校级月考)如图,点A在反比例函数y=(k≠0)的图象上,且点A 是线段OB的中点,点D为x轴上一点,连接BD交反比例函数图象于点C,连接AC,着BC:CD=2:1,S△ADC=,则k的值为.20.(2020•浙江自主招生)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y=(x<0)图象上一点,AO的延长线交函数y=(x>0,k>0的常数)的图象于点C,点A关于y轴的对称点为A′,点C关于x轴的对称点为C′且点O、A′、C′在同一条直线上,连接CC′,交x轴于点B,连接AB,AA′,A′C′,若△ABC 的面积等于6,则由线段AC,CC′,C′A′,A′A所围成的图形的面积等于.21.(2017•石城县模拟)如图,在2×2的网格中,以顶点O为圆心,以2个单位长度为半径作圆弧,交图中格线于点A,则tan∠ABO的值为.22.(2021春•宝安区校级月考)如图,矩形OACB的顶点C在反比例函数y=(x>0,k1>0)的图象上,交反比例函数y=(x>0,k2>0)图象于点D、E,EF⊥AO于点F,连接DF,若CB=3CE,S四边形DCEF=2,则k1=.23.(2021春•宝安区校级月考)如图,△ABC中,∠BAC=120°,AB=AC,点D为BC 边上的点,点E为线段CD上一点,且CE=1,AB=2,∠DAE=60°,则DE的长为.24.(2021春•龙华区月考)如图,在Rt△ABC中,∠ABC=90°,C(0,﹣6),CD=3AD,点A在反比例函数y=的图象上,且y轴平分∠ACB,则k=.25.(2021秋•深圳期末)如图,已知一次函数y=2x+4的图象与反比例函数y=的图象交于A,B两点,点B的横坐标是1,过点A作AC⊥y轴于点C,连接BC,则△ABC的面积是.26.(2021秋•深圳期末)如图,已知△ABC与△ADE均是等腰直角三角形,∠BAC=∠ADE =90°,AB=AC=1,AD=DE=,点D在直线BC上,EA的延长线交直线BC于点F,则FB的长是.27.(2021•宝安区模拟)如图,A、B两点是反比例函数y1=与一次函数y=2x的交点,点C在反比例函数y2=上,连接OC,过点A作AD⊥x轴交OC于点D,连接BD.若AD=BD,OC=3OD,则k=.28.(2020•浙江自主招生)如图,射线AM,BN都垂直于线段AB,点E为AM上一点,过点A作BE的垂线AC分别交BE,BN于点F,C,过点C作AM的垂线CD,垂足为D,若CD=CF,则=.29.(2020秋•坪山区期末)如图,已知直线y=x+1交x轴于点A,交反比例函数y=(x >0)于点B,过点B作BC⊥AB交反比例函数y=(x>0)于点C,若BC=AB.则k的值为.30.(2020•红花岗区一模)如图,在平面直角坐标系中,矩形ABCD的顶点A、D分别在x 轴、y轴上,对角线BD∥x轴,反比例函数y=(k>0,x>0)的图象经过矩形对角线的交点E.若点A(2,0)、D(0,4),则反比例函数的解析式为.三.解答题(共30小题)31.(2017秋•福田区期末)如图,抛物线y=ax2+bx+c(a≠0),经过点A(﹣1,0),B(3,0),C(0,﹣3)三点.(1)求抛物线的解析式及顶点M的坐标;(2)连接AC、BC,N为抛物线上的点且在第一象限,当S△NBC=S△ABC时,求N点的坐标;(3)在(2)问的条件下,过点C作直线l∥x轴,动点P(m,﹣3)在直线l上,动点Q(m,0)在x轴上,连接PM、PQ、NQ,当m为何值时,PM+PQ+QN的和最小,并求出PM+PQ+QN和的最小值.32.(2020秋•南山区期末)(1)证明推断:如图(1),在正方形ABCD中,点E、Q分别在边BC、AB上,DQ⊥AE于点O,点G、F分别在边CD、AB上,GF⊥AE.①填空:DQ AE(填“>”“<”或“=”);②推断的值为;(2)类比探究:如图(2),在矩形ABCD中,=k(k为常数).将矩形ABCD沿GF 折叠,使点A落在BC边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE 交GF于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP,当k=时,若=,GF=2,求CP的长.33.(2021•罗湖区校级模拟)如图,在平面直角坐标系xOy中,直线y=2x+b经过点A(﹣2,0),与y轴交于点B,与反比例函数y=(x>0)的图象交于点C(m,6),过B作BD⊥y轴,交反比例函数y=(x>0)的图象于点D,连接AD、CD.(1)求b,k的值;(2)求△ACD的面积;(3)在坐标轴上是否存在点E(除点O),使得△ABE与△AOB相似,若存在,请求出点E的坐标;若不存在,请说明理由.34.(2018•恩施州)如图,已知抛物线交x轴于A、B两点,交y轴于C点,A点坐标为(﹣1,0),OC=2,OB=3,点D为抛物线的顶点.(1)求抛物线的解析式;(2)P为坐标平面内一点,以B、C、D、P为顶点的四边形是平行四边形,求P点坐标;(3)若抛物线上有且仅有三个点M1、M2、M3使得△M1BC、△M2BC、△M3BC的面积均为定值S,求出定值S及M1、M2、M3这三个点的坐标.35.(2021春•深圳月考)问题:如图1,⊙O中,AB是直径,AC=BC,点D是劣弧BC上任一点(不与点B、C重合),求证:为定值.思路:和差倍半问题,可采用截长补短法,先证明△ACE≌△BCD.按思路完成下列证明过程.证明:在AD上截取点E,使AE=BD,连接CE.运用:如图2,在平面直角坐标系中,⊙O1与x轴相切于点A(3,0),与y轴相交于B、C两点,且BC=8,连接AB、O1B.(1)OB的长为.(2)如图3,过A、B两点作⊙O2与y轴的负半轴交于点M,与O1B的延长线交于点N,连接AM、MN,当⊙O2的大小变化时,问BM﹣BN的值是否变化,为什么?如果不变,请求出BM﹣BN的值.36.(2021•梓潼县模拟)如图1,已知抛物线y=﹣(x+3)(x﹣4)与x轴交于A、B 两点,与y轴交于点C.(1)写出A、B、C三点的坐标.(2)若点P为△OBC内一点,求OP+BP+CP的最小值.(3)如图2,点Q为对称轴左侧抛物线上一动点,点D(4,0),直线DQ分别与y轴、直线AC交于E、F两点,当△CEF为等腰三角形时,请直接写出CE的长.37.(2021•福田区校级开学)已知:如图,在Rt△ACB中,∠ACB=90°,以AC为直径作⊙O交AB于点D.(1)若AC=6,BD=5,求BC;(2)若点E为线段BC的中点,连接DE.求证:DE是⊙O的切线.38.(2021•福田区校级开学)如图,在平面直角坐标系中,直线AB:y=﹣x+4交x轴于点A,交y轴于点B,OC⊥AB于点C,点P从B点出发,以每秒4个单位的速度沿BA 运动,点Q从O点出发,以每秒3个单位的速度沿OC向终点C运动,当Q点到达点C 时,点P也随之停止运动,连接OP,连接AQ并延长交OP于点H,设运动时间为t秒.(1)BP=,OQ=;(用含t的代数式表示)(2)求证:AH⊥OP.(3)当△APH为等腰直角三角形时,求t的值.39.(2021•福田区校级开学)如图1,抛物线y=ax2﹣2ax+1(a<0)与x轴交于A、B两点,与y轴交于点C.直线与抛物线交C、D两点,点P是抛物线的顶点.(1)当点A的坐标是(﹣1,0)时,求抛物线的解析式;(2)如图2,连接PC、PD,当时,求点P的坐标;(3)当点P关于直线CD的对称点P′落在x轴上时,求a的值.40.(2020•江都区三模)【阅读理解】设点P在矩形ABCD内部,当点P到矩形的一条边的两个端点距离相等时,称点P为该边的“和谐点”.例如:如图1,矩形ABCD中,若P A =PD,则称P为边AD的“和谐点”.【解题运用】已知,点P在矩形ABCD内部,且AB=10,BC=6.(1)设P是边AD的“和谐点”,则P边BC的“和谐点”(填“是”或“不是”);(2)若P是边BC的“和谐点”,连接P A,PB,当△P AB是直角三角形时,求P A的值;(3)如图2,若P是边AD的“和谐点”,连接P A,PB,PD,求tan∠P AB•tan∠PBA的最小值.41.(2020•西藏)在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;(2)如图甲,连接AC,P A,PC,若S△P AC=,求点P的坐标;(3)如图乙,过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D,交⊙M于点E.点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.42.(2019•锦州)如图,M,N是以AB为直径的⊙O上的点,且=,弦MN交AB于点C,BM平分∠ABD,MF⊥BD于点F.(1)求证:MF是⊙O的切线;(2)若CN=3,BN=4,求CM的长.43.(2020•石城县一模)如图,在平面直角坐标系xOy中,直线y=2x+b经过点A(﹣1,0),与y轴正半轴交于B点,与反比例函数y=(x>0)交于点C,且BC=2AB,BD∥x 轴交反比例函数y=(x>0)于点D,连接AD.(1)求b,k的值;(2)求△ABD的面积;(3)若E为线段BC上一点,过点E作EF∥BD,交反比例函数y=(x>0)于点F,且EF=BD,求点F的坐标.44.(2019•吴兴区二模)如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点C,点D为该二次函数图象顶点.连接BC、AC及CD、BD.(1)如图1,若点B的坐标(3,0),顶点D坐标(1,4).①求a的值,并说明∠DBA=∠ACB;②如图2,点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD相切,求点P的坐标;(2)若a=﹣,点B(1,0),点A(﹣4,0),如图3,动点G在直线AC上方的二次函数图象上.过点G作GE⊥AC于点E,是否存在点G,使得△CGE中的某个角恰好等于∠BAC的2倍?若存在,求出点G的横坐标:若不存在,请说明理由.45.(2021春•宝安区校级月考)背景:如图1,点A为线段BC外一动点,且BC=a,AB =b(a>b).线段AC长的最大值为,最小值为;(用含a,b的式子表示)问题初探:如图2,在△ABC中,BC=4,AB=2AC,请写出任意一对满足条件的AB与AC的值:AB=,AC=;(一对即可)问题解决:如图3,在△ABC中,BC=4,AB=2AC,在AC的右侧作∠CAD=∠B.①求CD的长;②求△ABC的面积最大值.46.(2021春•宝安区校级月考)如图,抛物线y=ax2+bx+3经过点A(﹣1,0),点B(3,0)与y轴交于点C.(1)求抛物线的表达式;(2)如图1,点D是第一象限内抛物线上一点,连接BC,DO交于点E,若S△CDE:S△COE=2:3,求D的坐标;(3)如图2,点P是抛物线上一点,连接BP,将BP沿直线BC折叠,当点P恰好落在抛物线的对称轴上时,求P点的横坐标.47.(2021•南山区校级模拟)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点(B在A的右侧),且与直线l1:y=x+2交于A,D两点,已知B点的坐标为(6,0).(1)求抛物线的函数表达式;(2)过点B的直线l2与线段AD交于点E,且满足=,与抛物线交于另一点C.①若点P为直线l2上方抛物线y=﹣x2+bx+c上一动点,设点P的横坐标为t,当t为何值时,△PEB的面积最大;②过E点向x轴作垂线,交x轴于点F,在抛物线上是否存在一点N,使得∠NAD=∠FEB,若存在,求出N的坐标,若不存在,请说明理由.48.(2021•罗湖区校级二模)如图1,以BC为直径的半圆O上有一动点F,点E为弧CF 的中点连接BE、FC相交于点M,延长CF到A点,使得AB=AM,连接AB、CE.(1)求证:AB是⊙O的切线;(2)如图2,连接BF,若AF=FM,试说明的值是否为定值?如果是,求出此值,如果不是说明理由?(3)如图3,若tan∠ACB=,BM=10.求EC的长.49.(2020•鞍山)在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)经过点A(﹣2,﹣4)和点C(2,0),与y轴交于点D,与x轴的另一交点为点B.(1)求抛物线的解析式;(2)如图1,连接BD,在抛物线上是否存在点P,使得∠PBC=2∠BDO?若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图2,连接AC,交y轴于点E,点M是线段AD上的动点(不与点A,点D重合),将△CME沿ME所在直线翻折,得到△FME,当△FME与△AME重叠部分的面积是△AMC面积的时,请直接写出线段AM的长.50.(2019•淄博)如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.(1)求证:①BC是⊙O的切线;②CD2=CE•CA;(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.51.(2021•广东模拟)如图1,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),且与直线y=x﹣2交于坐标轴上的B,C两点,动点P在直线BC下方的二次函数图象上.(1)求此二次函数解析式;(2)如图①,连接PC,PB,设△PCB的面积为S,求S的最大值;(3)如图②,抛物线上是否存在点Q,使得∠ABQ=2∠ABC?若存在,则求出直线BQ 的解析式及Q点坐标;若不存在,请说明理由.52.(2017•盘锦)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P顺时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=15°,BP=4,请求出BQ的长53.(2021秋•深圳期末)【综合与实践】现实生活中,人们可以借助光源来测量物体的高度.已知榕树CD,FG和灯柱AB如图①所示,在灯柱AB上有一盏路灯P,榕树和灯柱的底端在同一水平线上,两棵榕树在路灯下都有影子,只要测量出其中一些数据,则可求出所需要的数据,具体操作步骤如下:①根据光源确定榕树在地面上的影子;②测量出相关数据,如高度,影长等;③利用相似三角形的相关知识,可求出所需要的数据.根据上述内容,解答下列问题:(1)已知榕树CD在路灯下的影子为DE,请画出榕树FG在路灯下的影子GH;(2)如图①,若榕树CD的高度为3.6米,其离路灯的距离BD为6米,两棵榕树的影长DE,GH均为4米,两棵树之间的距离DG为6米,求榕树FG的高度;(3)无论太阳光还是点光源,其本质与视线问题相同.日常生活中我们也可以直接利用视线解决问题.如图②,建筑物CD高为50米,建筑物MF上有一个广告牌EM,合计总高度EF为70米,两座建筑物之间的直线距离FD为30米.一个观测者(身高不计)先站在A处观测,发现能看见广告牌EM的底端M处,观测者沿着直线AF向前走了5米到B处观测,发现刚好看到广告牌EM的顶端E处.则广告牌EM的高度为米.54.(2021秋•深圳期末)(1)【探究发现】如图①,已知四边形ABCD是正方形,点E为CD边上一点(不与端点重合),连接BE,作点D关于BE的对称点D',DD'的延长线与BC的延长线交于点F,连接BD′,D'E.①小明探究发现:当点E在CD上移动时,△BCE≌△DCF.并给出如下不完整的证明过程,请帮他补充完整.证明:延长BE交DF于点G.②进一步探究发现,当点D′与点F重合时,∠CDF=°.(2)【类比迁移】如图②,四边形ABCD为矩形,点E为CD边上一点,连接BE,作点D关于BE的对称点D',DD′的延长线与BC的延长线交于点F,连接BD',CD',D'E.当CD'⊥DF,AB=2,BC=3时,求CD'的长;(3)【拓展应用】如图③,已知四边形ABCD为菱形,AD=,AC=2,点F为线段BD上一动点,将线段AD绕点A按顺时针方向旋转,当点D旋转后的对应点E落在菱形的边上(顶点除外)时,如果DF=EF,请直接写出此时OF的长.55.(2020•庆云县模拟)如图11,在平面直角坐标系中,已知矩形OABC的顶点A在x轴上,顶点C在y轴上,OA=8,OC=4,点P为对角线AC上一动点,过点P作PQ⊥PB,PQ交x轴于点Q.(1)tan∠ACB=;(2)在点P从点C运动到点A的过程中,的值是否发生变化?如果变化,请求出其变化范围;如果不变,请求出其值;(3)若将△QAB沿直线BQ折叠后,点A与点P重合,则PC的长为.56.(2021•饶平县校级模拟)如图1,平面直角坐标系xOy中,A(4,3),反比例函数y=(k>0)的图象分别交矩形ABOC的两边AC,AB于E、F两点(E、F不与A重合),沿着EF将矩形ABOC折叠使A、D两点重合.(1)AE=(用含有k的代数式表示);(2)如图2,当点D恰好落在矩形ABOC的对角线BC上时,求CE的长度;(3)若折叠后,△ABD是等腰三角形,求此时点D的坐标.57.(2020秋•坪山区期末)如图1,抛物线y=ax2+2x+c与x轴交于点A、B(点A在点B 左侧),与y轴交于点C(0,3),连接BC,抛物线的对称轴直线x=1与BC交于点D,与x轴交于点E.(1)求抛物线的解析式;(2)如图2,把△DEB绕点D顺时针旋转60°得到△DMN,求证:点M在抛物线上;(3)如图3,点P是抛物线上的动点,连接PN,BN,当∠PNB=30°时,请直接写出直线PN的解析式.58.(2020秋•坪山区期末)如图1,已知直线y=kx+6,交x轴于点A,交y轴于点B,且OA:OB=4:3.(1)求直线AB的解析式;(2)如图2,动点C以1个单位/秒的速度从点O出发沿OA向A运动,动点D以2个单位/秒的速度从点A出发沿AB向B运动,当一个点停止运动时,另一个点也随之停止运动.两点同时出发,设运动的时间为t,△ACD的面积为S,求S与t的函数关系式;(3)如图3,在(2)的条件下,当S取最大值时,将△ACD向右平移得到△EFG,FG 交AB于点H,若△EFG的面积被直线AB分成1:2两部分,求线段HF的长度.59.(2020•历下区校级模拟)如图,在平面直角坐标系中,直线y=3x+b经过点A(﹣1,0),与y轴正半轴交于B点,与反比例函数y=(x>0)交于点C,且BC=2AB,BD∥x 轴交反比例函数y=(x>0)于点D,连接AD.(1)求b、k的值;(2)求△ABD的面积;(3)若E为射线BC上一点,设E的横坐标为m,过点E作EF∥BD,交反比例函数y =(x>0)的图象于点F,且EF=BD,求m的值.60.(2019•南召县二模)问题背景如图(1),在四边形ABCD中,∠B+∠D=180°,AB=AD,∠BAD=α,以点A为顶点作一个角,角的两边分别交BC,CD于点E,F,且∠EAF=α,连接EF,试探究:线段BE,DF,EF之间的数量关系.(1)特殊情景在上述条件下,小明增加条件“当∠BAD=∠B=∠D=90°时”如图(2),小明很快写出了:BE,DF,EF之间的数量关系为.(2)类比猜想类比特殊情景,小明猜想:在如图(1)的条件下线段BE,DF,EF之间的数量关系是否仍然成立?若成立,请你帮助小明完成证明;若不成立,请说明理由.(3)解决问题如图(3),在△ABC中,∠BAC=90°,AB=AC=4,点D,E均在边BC上,且∠DAE =45°,若BD=,请直接写出DE的长.2022年深圳中考各区压轴题1参考答案与试题解析一.选择题(共12小题)1.(2021•广元)如图,在△ABC中,∠ACB=90°,AC=BC=4,点D是BC边的中点,点P是AC边上一个动点,连接PD,以PD为边在PD的下方作等边三角形PDQ,连接CQ.则CQ的最小值是()A.B.1C.D.【分析】如图在CD的下方作等边△CDT,作射线TQ.证明△CDP≌△TDQ(SAS),推出∠DCP=∠DTQ=90°,推出∠CTQ=30°,推出点Q在射线TQ上运动,当CQ⊥TQ 时,CQ的值最小.解法二:在CD的上方,作等边△CDM,连接PM,过点M作MH⊥CB于H.利用全等三角形的性质解决问题即可.【解答】解:解法一:如图在CD的下方作等边△CDT,作射线TQ.∵∠CDT=∠QDP=60°,DP=DQ,DC=DT,∴∠CDP=∠QDT,在△CDP和△TDQ中,,∴△CDP≌△TDQ(SAS),∴∠DCP=∠DTQ=90°,∵∠CTD=60°,∴∠CTQ=30°,∴点Q在射线TQ上运动(点T是定点,∠CTQ是定值),当CQ⊥TQ时,CQ的值最小,最小值=CT=CD=BC=1,解法二:如图,CD的上方,作等边△CDM,连接PM,过点M作MH⊥CB于H.∵△DPQ,△DCM都是等边三角形,∴∠CDM=∠PDQ=60°,∵DP=DQ,DM=DC,∴△DPM≌△DQC(SAS),∴PM=CQ,∴PM的值最小时,CQ的值最小,当PM⊥MH时,PM的最小值=CH=CD=1,∴CQ的最小值为1.故选:B.【点评】本题考垂线段最短,等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.2.(2021•龙湖区二模)如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④【分析】①错误,②正确.想办法证明∠GFM+∠AMD=90°即可;③正确.只要证明△CPM∽△HPC,可得=,推出PC2=PM•PH,根据对称性可知:P A=PC,可得P A2=PM•PH;④错误.利用矩形的性质可知EF=PC,当PC⊥BD时,EF的值最小,最小值为1;【解答】解:①错误.因为当点P与BD中点重合时,CM=0,显然FM≠CM;②正确.连接PC交EF于O.根据对称性可知∠DAP=∠DCP,∵四边形PECF是矩形,∴OF=OC,∴∠OCF=∠OFC,∴∠OFC=∠DAP,∵∠DAP+∠AMD=90°,∴∠GFM+∠AMD=90°,∴∠FGM=90°,∴AH⊥EF.③正确.∵AD∥BH,∴∠DAP=∠H,∵∠DAP=∠PCM,∴∠PCM=∠H,∵∠CPM=∠HPC,∴△CPM∽△HPC,∴=,∴PC2=PM•PH,根据对称性可知:P A=PC,∴P A2=PM•PH.④错误.∵四边形PECF是矩形,∴EF=PC,∴当CP⊥BD时,PC的值最小,此时A、P、C共线,∵AC=2,∴PC的最小值为1,∴EF的最小值为1;故选:B.【点评】本题考查正方形的性质、矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.3.(2021•深圳模拟)如图,在Rt△ABC中,CA=CB,M是AB的中点,点D在BM上,AE⊥CD,BF⊥CD,垂足分别为E、F,连接EM,则下列结论中:①BF=CE;②∠AEM =∠DEM;③CF•DM=BM•DE;④DE2+DF2=2DM2,其中正确结论的个数是()A.1B.2C.3D.4【分析】证明△BCF≌△CAE,得到BF=CE,可判断①;再证明△BFM≌△CEM,从而判断△EMF为等腰直角三角形,得到∠MEF=∠MFE=45°,可判断②;证明△CDM∽ADE,得到对应边成比例,结合BM=CM,AE=CF,可判断③;证明△DFM≌△NEM,得到△DMN为等腰直角三角形,得到DN=DM,可判断④.【解答】解:∵∠ACB=90°,∴∠BCF+∠ACE=90°,∵∠BCF+∠CBF=90°,∴∠ACE=∠CBF,又∵∠BFD=90°=∠AEC,AC=BC,∴△BCF≌△CAE(AAS),∴BF=CE,故①正确;由全等可得:AE=CF,BF=CE,∴AE﹣CE=CF﹣CE=EF,如图,连接FM,CM,∵点M是AB中点,∴CM=AB=BM=AM,CM⊥AB,在△BDF和△CDM中,∠BFD=∠CMD,∠BDF=∠CDM,∴∠DBF=∠DCM,又BM=CM,BF=CE,∴△BFM≌△CEM(SAS),∴FM=EM,∠BMF=∠CME,∵∠BMC=90°,∴∠EMF=90°,即△EMF为等腰直角三角形,∴∠MEF=∠MFE=45°,∵∠AEC=90°,∴∠MEF=∠AEM=45°,故②正确,∵∠CDM=∠ADE,∠CMD=∠AED=90°,∴△CDM∽△ADE,∴==,∵BM=CM,AE=CF,∴=,∴CF•DM=BM•DE,故③正确;如图,设AE与CM交于点N,连接DN,∵∠DMF=∠NME,FM=EM,∠DFM=∠DEM=∠AEM=45°,∴△DFM≌△NEM(ASA),∴DF=EN,DM=MN,∴△DMN为等腰直角三角形,∴DN=DM,而∠DEA=90°,∴DE2+DF2=DN2=2DM2,故④正确;故正确结论为:①②③④.共4个.故选:D.【点评】本题属于三角形综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,等腰直角三角形的判定和性质,等量代换,难度较大,解题的关键是添加辅助线,构造全等三角形.4.(2021•福田区校级开学)如图,四边形ABCD是正方形,AB=6,E是BC中点,连接DE,DE的垂直平分线分别交AB、DE、CD于M、O、N,连接EN,过E作EF⊥EN交AB于F,下列结论中,正确结论有()①△BEF∽△CNE;②MN=3③BF=AF;④△BEF的周长是12;⑤△EON的面积是3.A.2个B.3个C.4个D.5个【分析】由∠BFE=∠CEN,∠B=∠C即可证得△BEF∽△CNE,即可判断①正确;根据三角形面积公式即可判断②正确;求得BF=4,即可得到BF=2AF,即可判断③错误;根据勾股定理求得EF,即可求④△BEF的周长是12,即可判断④正确;根据△EON的面积=S△EDN即可求得△EON的面积=,即可判断⑤错误.【解答】解:∵EF⊥EN,∴∠BEF+∠CEN=90°,∵∠BEF+∠BFE=90°,∴∠BFE=∠CEN,∵∠B=∠C,∴△BEF∽△CNE,故①正确;∵四边形ABCD是正方形,AB=6,E是BC中点,∴CD=6,CE=3,∴DE==3,∵MN垂直平分BE,∴OD=OE=,EN=DN,设DN=x,则EN=x,CN=6﹣x,∵EN2=EC2+CN2,∴x2=32+(6﹣x)2,解得x=,∴DN=,∵S△DMN=,∴DN•AD=MN•OD,即×6=MN,∴MN=3,故②正确;∵△BEF∽△CNE,∴,∵BE=CE=3,CN=6﹣=,∴,∴BF=4,∴AF=6﹣4=2,∴BF=2AF,故③错误;∵BE=3,BF=4,∴EF=5,∴△BEF的周长=3+4+5=12,故④正确;△EON的面积=S△EDN==××3=,故⑤错误,∴正确的结论为①②④共3个,故选:B.【点评】本题考查了正方形的性质,线段垂直平分线的性质,勾股定理的应用,三角形相似的判定和性质,三角形的面积等,熟练掌握性质定理是解题的关键.5.(2021•湖南模拟)如图,AB是⊙O的直径,弦CD⊥AB于点G.点F是CD上一点,且满足=,连接AF并延长交⊙O于点E.连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是()A.①②④B.①②③C.②③④D.①③④【分析】①由AB是⊙O的直径,弦CD⊥AB,根据垂径定理可得:=,DG=CG,继而证得△ADF∽△AED;②由=,CF=2,可求得DF的长,继而求得CG=DG=4,则可求得FG=2;③由勾股定理可求得AG的长,即可求得tan∠ADF的值,继而求得tan∠E=;④根据三角形面积公式求得△ADF的面积,通过证得△ADF∽△AED,根据相似三角形面积的比等于相似比的平方求得△ADE的面积,进而求得S△DEF=4.【解答】解:①∵AB是⊙O的直径,弦CD⊥AB,∴=,DG=CG,∴∠ADF=∠AED,∵∠F AD=∠DAE(公共角),∴△ADF∽△AED;故①正确;②∵=,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG=CG﹣CF=2;故②正确;③∵AF=3,FG=2,∴AG==,∴在Rt△AGD中,tan∠ADG==,∵∠ADG=∠E,∴tan∠E=;故③错误;④∵DF=DG+FG=6,AD==,∴S△ADF=DF•AG=×6×=3 ,∵△ADF∽△AED,∴=()2,∴=,∴S△AED=7 ,∴S△DEF=S△AED﹣S△ADF=4 ;故④正确.故选:A.【点评】此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、勾股定理以及三角函数等知识.此题综合性较强,难度适中,注意掌握数形结合思想的应用.6.(2020•新余模拟)如图,Rt△AOB∽Rt△DOC,∠AOB=∠COD=90°,M为OA的中点,OA=5,OB=12,将△COD绕O点旋转,连接AD,CB交于P点,连接MP,则MP的最大值为()A.10B.11C.12D.12.5【分析】根据相似三角形的判定定理证明△COB∽△DOA,得到∠OBC=∠OAD,得到O、B、P、A共圆,求出MS和PS,根据三角形三边关系解答即可.【解答】解:取AB的中点S,连接MS、PS,则PM≤MS+PS,∵∠AOB=90°,OA=5,OB=12,∴AB=13,∵∠AOB=∠COD=90°,∴∠COB=∠DOA,∵△AOB∽△DOC,∴,∴△COB∽△DOA,。

中考数学选择填空压轴题之动点或最值问题(共19张PPT)

中考数学选择填空压轴题之动点或最值问题(共19张PPT)
选择填空压轴题 ----动点或最值问题
动点问题是指以几何知识和图形为背景,渗入运动变化观点的一类问题, 常见的形式是:点在线段、射线或弧线上运动等。此类题的解题方法:
1、利用动点(图形)位置进行分类,把运动问题分割成几个静态问题,然后 运用转化的思想和方法将几何问题转化为函数和方程问题。
2、利用函数与方程的思想和方法将要解决图形的性质(或所求图形面积)直 接转化为函数或方程。
∵PQ为正数,∴PQ²最小时PQ也最小,利用二次函数的 增减性来解决。
5、如图,在△AOB中,∠O=90°,AO=8 cm,BO=6 cm,点C从A点出发, 在边AO上以2 cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上 1以7 1.5 cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了 _8___s时,以C点为圆心,1.5 cm为半径的圆与直线EF相切.
图解

2cm/s
解析:
↓ 1.5cm/s 本题主要考查图形运动、直角三角形以及相似三角形的 应用 。
当以点C为圆心、1.5cm为半径的圆与直线EF相切时,因 为EF⊥CD,所以切点就为点F,则CF=1.5cm。点C速度为 2cm/s,点D的速度为1.5cm/s,则运动t秒后,AC=2t, BD=1.5t,因为AO=8cm,BO=6cm,所以,CO=AO-AC=82t,DO=BO-BD=6-1.5t,因为E是CO的中点,所以 CE=½CO=½(8-2t)=4-t。 因为∠FCE公用,又因为∠CFE=∠DOC=90°,所以,所 以△CFE∽△COD,则EF:DO=CF:CO,所以 EF:(6-1.5t)=1.5:(8-2t),解得EF=9/8。在Rt△CFE中,根据勾 股定理,则CF²+EF²=CE²,即1.5²+(9/8)²=(4-t)²,所以解得

2022年深圳中考数学各区压轴题2

2022年深圳中考数学各区压轴题2

2022年深圳中考数学各区压轴题2一.选择题(共15小题)1.(2019•鞍山)如图,正方形ABCD和正方形CGFE的顶点C,D,E在同一条直线上,顶点B,C,G在同一条直线上.O是EG的中点,∠EGC的平分线GH过点D,交BE 于点H,连接FH交EG于点M,连接OH.以下四个结论:①GH⊥BE;②△EHM∽△FHG;③=﹣1;④=2﹣,其中正确的结论是()A.①②③B.①②④C.①③④D.②③④2.(2020秋•化州市期末)如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF 与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°,②∠BAF=∠EDB,③AM=MF,④ME+MF=MB.其中正确结论的有()A.4个B.3个C.2个D.1个3.(2021秋•宝安区校级期中)如图,在Rt△ABC中,∠ACB=90°,AC=3,∠BAC=30°,把Rt△ABC沿AB翻折得到Rt△ABD,过点B作BE⊥BC,交AD于点E,点F是线段BE上一点,且∠ADF=45°.则下列结论:①AE=BE;②△BED∽△ABC;③BD2=AD •DE;④AF=,其中正确的有()A.①④B.②③④C.①②③D.①②③④4.(2021秋•宝安区校级期中)如图,在▱ABCD中,点E在线段AB上,点F、G分别为对角线AC与DE、DB的交点.若AB:AE=3:2,则四边形BGFE与▱ABCD的面积之比为()A.7:60B.8:70C.5:43D.3:26 5.(2021秋•深圳期中)如图,在正方形ABCD中,F为CD上一点,AF交对角线BD于点E,过点E作EG⊥AF,交BC于点G,连结AG,交BD于点H.现给出下列结论:①AE=EG;②BG+DF=FG;③AH2=HE•HD;④若F为CD中点,则CG=2BG.其中正确的有()个.A.1B.2C.3D.46.(2021秋•深圳期中)如图,▱ABCD中,点F为AD上一点,AF=2DF,连结BF,交AC于点E,延长线交CD的延长线于点G,则的值为()A.B.C.3D.2 7.(2020•遂宁)如图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF⊥AE交CB的延长线于F,下列结论:①∠AED+∠EAC+∠EDB=90°,②AP=FP,③AE=AO,④若四边形OPEQ的面积为4,则该正方形ABCD的面积为36,⑤CE•EF=EQ•DE.其中正确的结论有()A.5个B.4个C.3个D.2个8.(2021•锡山区模拟)如图,正方形ABCD的边长为4,点E在边AB上,BE=1,∠DAM =45°,点F在射线AM上,且AF=,过点F作AD的平行线交BA的延长线于点H,CF与AD相交于点G,连接EC、EG、EF.下列结论:①CG=;②△AEG的周长为8;③△EGF的面积为.其中正确的是()A.①②③B.①③C.①②D.②③9.(2020秋•宝安区期末)如图,边长为4的正方形ABCD中,对角线AC,BD交于点O,E在BD上,连接CE,作EF⊥CE交AB于点F,连接CF交BD于点H,则下列结论:①EF=EC;②CF2=CG•CA;③BE•DH=16;④若BF=1,则DE=,正确的是()A.①②④B.②③④C.①②③D.①②③④10.(2021•龙岗区校级一模)如图,抛物线y=x2﹣2x+m交x轴于点A(a,0),B(b,0),交y轴于点C,抛物线的顶点为D,下列四个结论:①无论m取何值,CD=恒成立;②当m=0时,△ABD是等腰直角三角形;③若a=﹣2,则b=6;④P(x1,y1),Q(x2,y2)是抛物线上的两点,若x1<1<x2,且x1+x2>2,则y1<y2.其中正确的有()A.①②③④B.①②④C.①②D.②③④11.(2021•龙岗区校级一模)如图,正方形ABCD中,点E为对角线AC上一点,EF⊥DE 交边AB于F,连接DF交线段AC于点H,延长DE交边BC于点Q,连接QF.下列结论:①DE=EF;②若AB=6,CQ=3,则AF=2;③∠AFD=∠DFQ;④若AH=2,CE=4,则AB=3+;其中正确的有()个.A.1个B.2个C.3个D.4个12.(2021秋•福田区校级月考)如图所示的是抛物线y=ax2+bx+c(a≠0)的一部分,已知抛物线的对称轴为直线x=2,与x轴的一个交点是(﹣1,0),有以下结论:①b2>4ac;②4a﹣2b+c<0;③c=﹣6a;④若顶点的纵坐标为﹣1,则关于x的方程ax2+bx+c+1=0有两个相等的实数根.其中正确的有()A.1个B.2个C.3个D.4个13.(2021秋•仓山区校级期末)如图,正方形ABCD中,AB=6,点E在边CD上,且CE =2DE.将△ADE沿AE对折至△AFE,延长EF交BC于点G,连结AG、BF、CF.下列结论:①△ABG≌△AFG;②FG=CG;③AG∥CF;④S△BFC=.其中正确结论的个数是()A.1个B.2个C.3个D.4个14.(2021秋•罗湖区校级月考)如图,正方形ABCD中,AB=1,连接AC,∠ACD的平分线交AD于点E,在AB上截取AF=DE,连接DF,分别交CE,AC于点G,H,点P是线段GC上的动点,PQ⊥AC于点Q,连接PH,以下结论:①CE⊥DF;②DE+DC=AC;③EA=AH;④PH+PQ的最小值是,其中正确的结论有()个.A.1B.2C.3D.415.(2021秋•罗湖区校级月考)如图,正方形ABCD中,AB=6,点E在边CD上,且CE:ED=2:1,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①∠GAE=45°;②GB=GC=GF;③S△GCF=3.2;④AG∥CF;⑤图中与∠AGB 相等的角有5个,其中正确的结论的个数为()A.2个B.3个C.4个D.5个二.填空题(共20小题)16.(2018春•江北区期末)如图,四边形ABCD是矩形,边AB长为6,∠ABD=60°,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD,CD于G,F两点,若M,N分别是DG,CE的中点,则MN的长为.17.(2021秋•深圳期中)如图所示,已知AB∥EF∥CD,AC,BD相交于点E,AB=3cm,CD=6cm,则EF=.18.(2021秋•罗湖区期中)如图,在正方形ABCD中,以AB为腰向正方形内部作等腰△ABE(AB=AE),点G在CD上,且CG=3DG,连接BG并延长,与AE交于点F,与AD延长线交于点H,连接DE交BH于点K,连接CK.若AE2=BF•BH,FG=,则S△BCK=.19.(2021秋•罗湖区期中)如图,矩形ABCD的顶点D在反比例函数y=的图象上,且点D在第一象限,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,若△BCE的面积是12,则k=.20.(2020秋•覃塘区期末)如图,在等腰△ABC中,AB=AC,点P在BA的延长线上,P A =AB,点D在BC边上,PD=PC,则的值是.21.(2021秋•宝安区校级期中)如图,在△ABC中,AC>AB,AD是角平分线,AE是中线,BF⊥AD于点G,交AE于点F,交AC于点M,EG的延长线交AB于点H,若∠BAC=60°,则=.22.(2021秋•宝安区校级期中)如图,矩形OABC的两边OA、OC分别在x轴和y轴上,以AC为边作平行四边形ACDE,E点在CB的延长线上,反比例函数y=(x>0)过B 点且与CD交于F点,CF=3DF,S△ABF=6,则k的值为.23.(2021秋•深圳期中)如图,已知AB∥CD,AB=CD,∠A=∠D,E是AB边的中点,F为AD边上一点,∠DFC=2∠BCE.若CE=4,CF=5,则AF的值为.24.(2021秋•罗湖区校级期中)如图,矩形ABCD中,AB=8,点E是AD上的一点,若AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G,若G是CD的中点,则CM的长是.25.(2021秋•龙岗区校级期中)如图,点A(0,4),点B(3,0),点P为线段AB上一个动点,作PM⊥y轴于点M,作PN⊥x轴于点N,连接MN,当MN取最小值时,则PN 为.26.(2021秋•龙岗区校级期中)如图,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k为常数),则BD的长为.(用含k 的式子表示)27.(2021•鹿城区校级三模)如图,点A在反比例函数y=的图象上,点B在反比例函数y=的图象上,且AB⊥x轴于点C,点D在y轴上,则△ABD的面积为.28.(2020•饶平县校级模拟)如图,四边形OABC是平行四边形,其面积为8,点A在反比例函数y=的图象上,过点A作AD∥x轴交BC于点D,过点D的反比例函数图象关系式为y=,则k的值是.29.(2020•饶平县校级模拟)如图,在矩形ABCD中,AC=5,AE平分∠DAC交CD于E,CF平分∠ACD交AE于点F,且EF:AF=1:2,则CF=.30.(2020•成都)如图,六边形ABCDEF是正六边形,曲线F A1B1C1D1E1F1…叫做“正六边形的渐开线”,,,,,,,…的圆心依次按A,B,C,D,E,F循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB=1时,曲线F A1B1C1D1E1F1的长度是.31.(2021春•福田区校级月考)平面直角坐标系中,点A(0,5),点B(﹣5,3),点C 为x轴负半轴上一点,且∠BAC=45°,则点C的横坐标为.32.(2021秋•福田区校级月考)如图,在平面直角坐标系中,A是反比例函数y=(k>0,x>0)图象上一点,B是y轴正半轴上一点,以OA、AB为邻边作▱ABCO.若点C及BC 中点D都在反比例函数y=﹣(x<0)图象上,则k的值为.33.(2019秋•长兴县期末)如图,在平面直角坐标系中抛物线y=x2﹣3x+2与x轴交于A、B两点,与y轴交于点C,点D是对称轴右侧抛物线上一点,且tan∠DCB=3,则点D 的坐标为.34.(2021秋•罗湖区校级月考)在正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF 所在直线翻折,得到△EFM,连接DM,若点F是线段AB的中点,则△DEM的周长是.35.(2021•江州区模拟)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为三.解答题(共25小题)36.(2021秋•深圳期中)如图1,矩形OABC在平面直角坐标系中的位置如图所示,点A,C分别在x轴,y轴上,点B的坐标为(8,4),点P,Q同时以相同的速度分别从点O,B出发,在边OA,BC上运动,连接OQ,BP,当点P到达A点时,运动停止.(1)求证:在运动过程中,四边形OPBQ是平行四边形;(2)如图2,在运动过程中,是否存在四边形OPBQ是菱形的情况?若存在,求出此时直线PQ的解析式;若不存在,请说明理由;(3)如图3,在(2)的情况下,直线PQ上是否存在一点D,使得△PBD是直角三角形?如果存在,请直接写出点D的坐标;如果不存在,请说明理由.37.(2008•新华区校级一模)把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C =∠F=45°,AB=DE=4,把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q.(1)如图,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时,AP•CQ=.(2)将三角板DEF由图所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,问AP•CQ的值是否改变?说明你的理由.(3)在(2)的条件下,设2<x<4,两块三角板重叠面积为y,求y与x的函数关系式.(图2,图3供解题用)38.(2021秋•罗湖区期中)(问题发现)数学小组成员小明做作业时遇到以下问题:(1)若四边形ABCD是菱形,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,如图1,当点E在菱形ABCD内部或边上时,连接CE、CA,则BP 与CE有怎样的数量关系?请直接写出你的猜想.(类比探究)数学小组对该问题进行进一步探究:(2)若四边形ABCD是正方形,点P是射线BD上一动点,以AP为直角边在AP边的右侧作等腰Rt△APE,其中∠APE=90°,AP=PE.①如图2,当点P在对角线BD上时,小组发现点E恰好在射线CD上,求BP与CE之间的数量关系(过程只用说明点E在线段CD上的情况即可);②如图3,当P是对角线BD的延长线上一动点时,小组发现点E恰好在射线CD上,连接BE,若BE=6,AB=2,求△BPE的面积.39.(2021秋•南山区校级期中)(1)如图1,Rt△ABC与与Rt△ADE,∠ADE=∠ABC=90°,,连接BD,CE.求证:.(2)如图2,四边形ABCD,∠BAD=∠BCD=90°,且,连接BD,AC,请问BC,AC,CD之间有何数量关系?小明在完成本题中,如图3,使用了“旋转放缩”的技巧,即将△ABC与绕点A逆时针旋转90°,并放大2倍,点B对应点为点D,点C 对应点为点E,连接DE,请你根据以上思路求出BC,AC,CD之间的关系.(3)拓展:如图4,矩形ABCD,E为线段AD上一点,以CE为边,在其右侧作矩形CEFG,且,AB=5,连接BE,BF.直接写出BE+BF的最小值.40.(2021•宁波)【证明体验】(1)如图1,AD为△ABC的角平分线,∠ADC=60°,点E在AB上,AE=AC.求证:DE平分∠ADB.【思考探究】(2)如图2,在(1)的条件下,F为AB上一点,连结FC交AD于点G.若FB=FC,DG=2,CD=3,求BD的长.【拓展延伸】(3)如图3,在四边形ABCD中,对角线AC平分∠BAD,∠BCA=2∠DCA,点E在AC上,∠EDC=∠ABC.若BC=5,CD=2,AD=2AE,求AC的长.41.(2021秋•宝安区校级期中)如图1,在平面直角坐标系xOy中,直线l2:y=﹣与x轴交于点B,与直线l1交于点C,C点到x轴的距离CD为2,直线l1交x轴于点A,且∠BAC=60°.(1)求直线l1的函数表达式;(2)如图2,y轴上的两个动点E、F(E点在F点上方)满足线段EF的长为,连接CE、AF,当线段CE+EF+AF有最小值时,求出此时点F的坐标,以及CE+EF+AF的最小值;(3)如图3,将△ACB绕点B逆时针方向旋转60°,得到△BGH,使点A与点H重合,点C与点G重合,将△BGH沿直线BC平移,记平移中的△BGH为△B'G'H',在平移过程中,设直线B'H'与x轴交于点M,是否存在这样的点M,使得△B'MG'为等腰三角形?若存在,请直接写出此时点M的坐标;若不存在,说明理由.42.(2021秋•深圳期中)在矩形ABCD中,OA=3,AB=6.分别以OA,OC边所在的直线为x轴,y轴建立如图所示的平面直角坐标系.(1)如图1,将△OAC沿对角线AC翻折,交AB于点P,求点P的坐标;(2)如图2,已知H是AB上一点,且S△HBC=,OG⊥CH于点P,求四边形OAHP 的面积;(3)如图3,点D(0,5),点E是OB上一点,且OE=2BE,M是直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N,使以O、D、M、N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,请说明理由.43.(2021秋•福田区校级期中)如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE、BE,若AD平分∠OAE,反比例函数y=(k<0,x<0)的图象经过AE上的点A、F,且AF=EF,△ABE的面积为18.(1)连接BD,证明AF∥BD.(2)连接OF,求△AOF的面积.(3)求k的值.44.(2021秋•福田区校级期中)在平面直角坐标系中,已知点A(0,3),点B在线段AO 上,且AB=2BO,若点P在x轴的正半轴上,连接BP,过点P作PQ⊥PB.(1)如图1,点E是射线PQ上一点,过点E作EC⊥x轴,垂足为点C,求证:△BOP ∽△PCE;(2)在(1)的条件下,如图2,若点C坐标为(4,0).过点A作DA⊥y轴,且和CE 的延长线交于点D,若点C关于直线PQ的对称点C′正好落在线段AD上.连接PC′,求点P的坐标.(3)如图3,若∠BPO=60°,点E在直线PQ上,EC⊥x轴,垂足为点C,若以点E,P,C为顶点的三角形和△BPE相似,请直接写出点E的坐标.45.(2021秋•罗湖区校级期中)如图,点P是菱形ABCD的对角线BD上一点,连结CP 并延长,交AD于E,交BA的延长线于点F.问:如图1:(1)图中△APD≌;△APE∽;(2)猜想:线段PC、PE、PF之间存在什么数量关系(用等式表示)?说明理由;(3)如图2,连接AC交BD于O,连接OE,若CE⊥BC,且PE=,OE=,求菱形的边长.46.(2020•新都区模拟)如图,正方形ABCD的边长为4.点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)设AE=m,①△AGH的面积S有变化吗?如果变化,请求出S与m的函数关系式;如果不变化,请求出定值;②请直接写出使△CGH是等腰三角形的m值.47.(2018秋•福鼎市期中)如图,在矩形ABCD中,AB=1,BC=k,E是边BC上一个动点(不与B,C重合),连接AE,作EF⊥AE,EF交边CD于点F.(1)求证:△ABE∽△ECF;(2)若在动点E的运动过程中,一定存在点F,使得EF=EA,求k的取值范围;(3)若点G是边AB上一点且∠GEB=∠FEC,求EG,EF,EA的数量关系.48.(2020秋•太和县期末)某班“手拉手”数学学习互助小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究时,遇到以下问题,请你逐一加以解答:(1)如图1,正方形ABCD中,EF⊥GH,EF分别交AB,CD于点E,F,GH分别交AD,BC于点G,H,则EF GH;(填“>”“=”或“<”)(2)如图2,矩形ABCD中,EF⊥GH,EF分别交AB,CD于点E,F,GH分别交AD,BC于点G,H,求证:=;(3)如图3,四边形ABCD中,∠ABC=∠ADC=90°,BC=3,CD=5,AD=7.5,AM ⊥DN,点M,N分别在边BC,AB上,求的值.49.(2017•齐齐哈尔)如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在直线折叠,点B落在点D处,DC与y轴相交于点E,矩形OABC的边OC,OA的长是关于x 的一元二次方程x2﹣12x+32=0的两个根,且OA>OC.(1)求线段OA,OC的长;(2)求证:△ADE≌△COE,并求出线段OE的长;(3)直接写出点D的坐标;(4)若F是直线AC上一个动点,在坐标平面内是否存在点P,使以点E,C,P,F为顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.50.(2020秋•宝安区期末)(1)阅读下列材料,填空:如图1,已知点C为线段AB的中点,AD=BE.求证:∠D=∠BEC.证明:作BF∥AD交DC延长线于点F,则=∠F,∠A=∠CBF.∵C为AB中点,∴AC=BC.∴△ADC≌△BFC(AAS).∴AD=BF.∵AD=BE,∴BE=.∴∠BEC=∠F=∠D.(2)如图2,AD为△ABC的中线,E为线段AD上一点,∠BED=∠BAC,F为线段AD 上一点,且CF=BE.①求证:△AEB∽△CF A.②若AD=4,CD=2,当△ABC是以AB为腰的等腰三角形时,求线段AF的长.51.(2021•博山区一模)如图,抛物线y=ax2+bx+c交轴于点A(﹣1,0),B(3,0),交y 轴于点C,∠CAB=60°,点E是线段AB上一动点,作EF∥AC交线段BC于点F.(1)求抛物线的解析式;(2)如图1,延长线段EF交抛物线第一象限的部分于点G,点D是AC边中点,当四边形ADGF为平行四边形时,求出G点坐标;(3)如图2,M为射线EF上一点,且EM=EB,将射线EF绕点E逆时针旋转60°,交直线AC于点N,连接MN,P为MN的中点,连接AP、BP,问:AP+BP是否存在最小值,若存在,请求出这个最小值,若不存在,请说明理由.52.(2021•罗湖区校级模拟)如图①,在平面直角坐标系中,已知抛物线y=ax2+bx+3(a ≠0)与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)如图②,若点D是抛物线上一动点,设点D的横坐标为m(0<m<3),连接CD,BD,当△BCD的面积等于△AOC面积的2倍时,求m的值;(3)抛物线上是否存在点P,使∠CBP+∠ACO=∠ABC?若存在,请求出点P的坐标;若不存在,请说明理由.53.(2021•罗湖区校级模拟)如图1,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,点D,E分别为AC,BC的中点.△CDE绕点C顺时针旋转,设旋转角为α(0°≤α≤360°),记直线AD与直线BE的交点为点P.(1)如图1,当α=0°时,AD与BE的数量关系为,AD与BE的位置关系为;(2)当0°<α≤360°时,上述结论是否成立?若成立,请仅就图2的情形进行证明;若不成立,请说明理由;(3)△CDE绕点C顺时针旋转一周,请直接写出运动过程中P点运动轨迹的长度和P点到直线BC距离的最大值.54.(2021春•福田区校级月考)如图,AD∥BC,∠ABC=90°,AD=3,AB=4,点P为射线BC上一动点以P为圆心,BP长为半径作⊙P,交射线BC于点Q,连接BD、AQ 相交于点G,⊙P与线段BD、AQ分别相交于点E、F.(1)如果⊙P过点G,求BP的长;(2)设BP=x,FQ=y,求y关于x的函数关系式;(3)如果△ADG是等腰三角形,求BP的长.55.(2021•商河县校级模拟)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0).(1)求该二次函数的表达式及点C的坐标;(2)点D为该二次函数在第一象限内图象上的动点,连接AC、CD,以AC、CD为邻边作平行四边形ACDE,设平行四边形ACDE的面积为S.①求S的最大值;②当S取最大值时,P为该二次函数图象对称轴上一点,当点D关于直线CP的对称点E落在y轴上时,求点P的坐标.56.(2021秋•江夏区期中)如图,抛物线y=ax2﹣2ax+c与x轴交于点A(﹣2,0)和B两点,点C(6,4)在抛物线上.(1)求抛物线解析式;(2)如图1,D为y轴左侧抛物线上一点,且∠DCA=2∠CAB,求点D的坐标;(3)如图2,直线y=mx+n与抛物线交于点E、F,连接CE、CF分别交y轴于点M、N,若OM•ON=3.求证:直线EF经过定点,并求出这个定点的坐标.57.(2021秋•西湖区期中)如图,在矩形ABCD中,AB=3,BC=4,动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向终点A运动,P,Q运动速度均为每秒1个单位长度,当一个点到达终点时,另一个点也停止运动,连接PQ,设运动时间为t(t>0)秒.(1)t为何值时,△AQP与△ABC相似?(2)t为何值时,△AQP的面积为0.8?58.(2021秋•罗湖区校级月考)如图,直线y=﹣2x+12与x轴交于点A,与y轴交于点B,点C是线段AB的中点,点D在线段OC上,OD=2CD,直线AD交y轴于点E.(1)点C的坐标为;(2)①求直线AD的解析式;②P是直线AD上的点,在平面内是否存在点Q,使以点O、A、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由;(3)F是线段AB上一动点,连接EF,将△EFB翻折得△EFB′,B′在直线AE的上方,若△EFB′与△AEF的重叠部分为直角三角形,请直接写出线段BF的长.59.(2018•乌鲁木齐)如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.60.(2021•永嘉县校级模拟)如图,在平面直角坐标系中,直线l1:y=﹣x+4分别交x、y轴于B、A两点,将△AOB沿直线l2:y=2x折叠,点B落在y轴的点C处.(1)点C的坐标为;(2)若点D沿射线BA运动,连接OD,当△CDB与△CDO面积相等时,求直线OD的解析式;(3)在(2)的条件下,当点D在第一象限时,沿x轴平移直线OD,分别交x,y轴于点E,F,在平面直角坐标系中,是否存在点M(m,3)和点P,使四边形EFMP为正方形?若存在,求出点P的坐标;若不存在,说明理由.2022年深圳中考各区压轴题2参考答案与试题解析一.选择题(共15小题)1.(2019•鞍山)如图,正方形ABCD和正方形CGFE的顶点C,D,E在同一条直线上,顶点B,C,G在同一条直线上.O是EG的中点,∠EGC的平分线GH过点D,交BE 于点H,连接FH交EG于点M,连接OH.以下四个结论:①GH⊥BE;②△EHM∽△FHG;③=﹣1;④=2﹣,其中正确的结论是()A.①②③B.①②④C.①③④D.②③④【分析】由四边形ABCD和四边形CGFE是正方形,得出△BCE≌△DCG,推出∠BEC+∠HDE=90°,从而得GH⊥BE;由GH是∠EGC的平分线,得出△BGH≌△EGH,再由O是EG的中点,利用中位线定理,得HO∥BG且HO=BG;由△EHG是直角三角形,因为O为EG的中点,所以OH=OG=OE,得出点H在正方形CGFE的外接圆上,根据圆周角定理得出∠FHG=∠EHF=∠EGF=45°,∠HEG=∠HFG,从而证得△EHM ∽△FHG;设CG=a,则BG=GE=a,BC=a﹣a,即可得出==﹣1,设正方形ECGF的边长是2b,则EG=2b,得到HO=b,通过证得△MHO∽△MFE,得到===,进而得到===﹣1,进一步得到==﹣1.【解答】解:如图,∵四边形ABCD和四边形CGFE是正方形,∴BC=CD,CE=CG,∠BCE=∠DCG,在△BCE和△DCG中,∴△BCE≌△DCG(SAS),∴∠BEC=∠BGH,∵∠BGH+∠CDG=90°,∠CDG=∠HDE,∴∠BEC+∠HDE=90°,∴GH⊥BE.故①正确;∵△EHG是直角三角形,O为EG的中点,∴OH=OG=OE,∴点H在正方形CGFE的外接圆上,∵EF=FG,∴∠FHG=∠EHF=∠EGF=45°,∠HEG=∠HFG,∴△EHM∽△FHG,故②正确;∵△BGH≌△EGH,∴BG=EG,设CG=a,则BG=GE=a,∴BC=a﹣a,∴==﹣1;故③正确;∵△BGH≌△EGH,∴EG=BG,∵HO是△EBG的中位线,∴HO=BG,∴HO=EG,设正方形ECGF的边长是2b,∴EG=2b,∴HO=b,∵OH∥BG,CG∥EF,∴OH∥EF,∴△MHO∽△MFE,∴===,∴EM=OM,∴===﹣1,∴=﹣1,∵EO=GO,∴S△HOE=S△HOG,∴=﹣1,故④错误,故选:A.【点评】本题考查了正方形的性质,以及全等三角形的判定与性质,相似三角形的判定与性质,正确求得两个三角形的边长的比是解决本题的关键.2.(2020秋•化州市期末)如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF 与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°,②∠BAF=∠EDB,③AM=MF,④ME+MF=MB.其中正确结论的有()A.4个B.3个C.2个D.1个【分析】根据正方形的性质可得AB=BC=AD,∠ABC=∠BAD=90°,再根据中点定义求出AE=BF,然后利用“边角边”证明△ABF和△DAE全等,根据全等三角形对应角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,从而求出∠AMD =90°,再根据邻补角的定义可得∠AME=90°,得出①正确;根据中线的定义判断出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判断出②错误;设正方形ABCD的边长为2a,利用勾股定理列式求出AF,再根据似三角形对应边成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判断出③正确;如图,过点M作MN⊥AB于N,于是得到==,得到NB=AB﹣AN=2a﹣a=a,根据勾股定理得到BM==a,于是得到结论.【解答】解:在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,∵E、F分别为边AB,BC的中点,∴AE=BF=BC,在△ABF和△DAE中,,∴△ABF≌△DAE(SAS),∴∠BAF=∠ADE,∵∠BAF+∠DAF=∠BAD=90°,∴∠AME=180°﹣∠AMD=180°﹣90°=90°,故①正确;∵DE是△ABD的中线,∴∠ADE≠∠EDB,∴∠BAF≠∠EDB,故②错误;设正方形ABCD的边长为2a,则BF=a,在Rt△ABF中,AF==a,∵∠BAF=∠MAE,∠ABC=∠AME=90°,∴△AME∽△ABF,∴=,即=,解得:AM=a,∴MF=AF﹣AM=a﹣a=a,∴AM=MF,故③正确;如图,过点M作MN⊥AB于N,则==,即==,解得MN=a,AN=a,∴NB=AB﹣AN=2a﹣a=a,根据勾股定理,BM==a,∵ME+MF=a+a=a,MB=a=a,∴ME+MF=MB.综上所述,正确的结论有①③④共3个.故选:B.【点评】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键.3.(2021秋•宝安区校级期中)如图,在Rt△ABC中,∠ACB=90°,AC=3,∠BAC=30°,把Rt△ABC沿AB翻折得到Rt△ABD,过点B作BE⊥BC,交AD于点E,点F是线段BE上一点,且∠ADF=45°.则下列结论:①AE=BE;②△BED∽△ABC;③BD2=AD •DE;④AF=,其中正确的有()A.①④B.②③④C.①②③D.①②③④【分析】由折叠的性质可求∠BAD=∠BAC=30°,AD=AC=3,BD=BC=,∠C =∠ADB=90°,可得∠BAE=∠EBA=30°,可证BE=AE,故①正确,由外角的性质可得∠BED=∠ABC,可证△BED∽△ABC,故②正确;由相似三角形的性质可得,可得BD2=AD•DE,故③正确;过点F作FH⊥AD于H,FG⊥BD于G,由面积法求出FH,DH的长,由勾股定理可求AF=,故④正确,即可求解.【解答】解:∵∠ACB=90°,AC=3,∠BAC=30°,∴∠ABC=60°,BC=,AB=2BC=2,∵BE⊥BC,∴∠EBA=30°,∵把Rt△ABC沿AB翻折得到Rt△ABD,∴∠BAD=∠BAC=30°,AD=AC=3,BD=BC=,∠C=∠ADB=90°,∴∠BAE=∠EBA=30°,∴BE=AE,故①正确,∵∠BED=∠ABE+∠BAE=60°,∴∠BED=∠ABC,又∵∠C=∠ADB,∴△BED∽△ABC,故②正确;∴,∴BD2=AD•DE,故③正确;如图,过点F作FH⊥AD于H,FG⊥BD于G,∵∠DBE=90°﹣∠BED=30°,∠BDE=90°,∴BD=DE=,BE=2DE,∴DE=1,BE=2,∵∠ADF=45°=∠BDF,FH⊥AD,FG⊥BD,∴FH=FG,∵S△BDE=BD×DE=×DE×HF+×BD×GF,∴HF=,∵∠ADF=45°,∠DHF=90°,∴DH=HF=,∴AH=AD﹣DH=,∴AF==,故④正确,故选:D.【点评】本题是三角形综合题,考查了直角三角形的性质,折叠的性质,相似三角形的判定和性质,三角形的面积公式,勾股定理等知识,求出AH的长是解题的关键.4.(2021秋•宝安区校级期中)如图,在▱ABCD中,点E在线段AB上,点F、G分别为对角线AC与DE、DB的交点.若AB:AE=3:2,则四边形BGFE与▱ABCD的面积之比为()A.7:60B.8:70C.5:43D.3:26【分析】根据平行四边形的性质得S△ABD=S▱ABCD,S△AGB=S▱ABCD,再根据AB:AE=3:2得S△ADE=S△ABD=S▱ABCD,根据AB∥CD,推△AEF∽△CDF,得=,从而得S△AEF=S△AED=S▱ABCD,再通过面积之差进而求出四边形BGFE与▱ABCD 的面积之比.【解答】解:∵四边形ABCD为平行四边形,∴S△ABD=S▱ABCD,S△AGB=S▱ABCD,∵AB:AE=3:2,∴S△ADE=S△ABD=S▱ABCD,∵AB∥CD,∴△AEF∽△CDF,∴===,∴=,∴S△AEF=S△AED=S▱ABCD,∵S四BGFE=S△AGB﹣S△AEF=S▱ABCD﹣S▱ABCD=S▱ABCD,∴S四BGFE:S▱ABCD=7:60,故选:A.【点评】本题主要考查了相似三角形的判定与性质、平行四边形的性质,熟练应用平行四边形的性质和相似三角形的判断,根据线段之比求面积之比是解题关键.5.(2021秋•深圳期中)如图,在正方形ABCD中,F为CD上一点,AF交对角线BD于点E,过点E作EG⊥AF,交BC于点G,连结AG,交BD于点H.现给出下列结论:①AE=EG;②BG+DF=FG;③AH2=HE•HD;④若F为CD中点,则CG=2BG.其中正确的有()个.A.1B.2C.3D.4【分析】连接CE,由“SAS”可证△ABE≌△CBE,可得AE=CE,∠BAE=∠BCE,根据四边形的内角和得∠BAE+∠BGE=180°,可得∠EGC=∠BCE,CE=EG,即可得AE =EG;把△ADF顺时针旋转90°得到△ABM,由“SAS”可证△AGM≌△AGF,可得MG=FG,即可得BG+DF=FG;由AE=EG,EG⊥AF,可得∠EAG=∠EGA=45°,由正方形的性质可得∠ADH=∠EAG=45°,可证得△AHE∽△DHA,根据相似三角形的性质可得AH2=HE•HD;设正方形ABCD的边长为2a,BG=m,表示出CG、CF、FG,利用勾股定理即可得出结论.【解答】解:如图①,连接CE,在正方形ABCD中,AB=BC,∠ABE=∠CBE=45°,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE,∠BAE=∠BCE,∵FG⊥AE,在四边形ABGE中,∠BAE+∠BGE=360°﹣90°﹣90°=180°,又∵∠BGE+∠CGE=180°,∴∠BAE=∠CGE,∴∠CGE=∠BCE,∴CE=EG,∴AE=EG,故①正确;如图,把△ADF顺时针旋转90°得到△ABM,则AM=AF,BM=DF,∠BAM=∠DAE,∵AE=EG,EG⊥AE,∴△AEG是等腰直角三角形,∴∠EAG=45°,∴∠MAG=∠BAG+∠DAF=90°﹣45°=45°,∴∠F AG=∠MAG,在△AMG和△AFG中,,∴△AMG≌△AFG(SAS),∴MG=FG,∵FG=BM+BG=DF+BG,∴FG=DF+BG,故②正确;∵AE=EG,EG⊥AF,∴∠EAG=∠EGA=45°,∵四边形ABCD是正方形,∴∠ADH=∠EAG=45°,∵∠AHE=∠DHA,∴△AHE∽△DHA,∴,∴AH2=HE•HD;∴③正确,设正方形ABCD的边长为2a,BG=m,∵F为CD中点,∴CF=DF=a,∴CG=2a﹣m,CF=DF=a,FG=DF+BG=a+m,在Rt△FCG中,GC2+FC2=GF2,即(2a﹣m)2+a2=(a+m)2,∴m=a,∴BG=a,∴CG=2a﹣a=a,∴CG=2BG.故④正确.故选:D.【点评】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,作辅助线构造出等腰三角形和全等三角形是解题的关键.6.(2021秋•深圳期中)如图,▱ABCD中,点F为AD上一点,AF=2DF,连结BF,交AC于点E,延长线交CD的延长线于点G,则的值为()A.B.C.3D.2【分析】由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,证明AB=AF=2k,DF =DG=k,再利用相似三角形的判定与性质即可解决问题.【解答】解:由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AD=BC=3k,∵AD∥BC,∴△AEF∽△CEB,∴,∴,∵AB∥CD,∴△AEB∽△CEG,∴=,故选:B.【点评】本题考查平行四边形的性质,相似三角形的判定与性质,解题的关键是学会利用参数解决问题,属于中考常考题型.7.(2020•遂宁)如图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF⊥AE交CB的延长线于F,下列结论:①∠AED+∠EAC+∠EDB=90°,②AP=FP,③AE=AO,④若四边形OPEQ的面积为4,则该正方形ABCD的面积为36,⑤CE•EF=EQ•DE.其中正确的结论有()A.5个B.4个C.3个D.2个【分析】①正确.证明∠EOB=∠EOC=45°,再利用三角形的外角的性质即可解决问题.②正确.利用四点共圆证明∠AFP=∠ABP=45°即可.③正确.设BE=EC=a,求出AE,OA即可解决问题.④错误,通过计算正方形ABCD的面积为48.。

深圳中考数学 专题1 选择填空题专题突破

深圳中考数学  专题1  选择填空题专题突破
A.abc>0 B.4ac-b2<0 C.3a+c>0 D.关于x的方程ax2+bx+c=n+1无实数根
返回首页
专题一
选择填空题专题突破
思路分析:根据抛物线开口方向,对称轴的位置以及与y轴 的交点可以对A进行判断;根据抛物线与x轴的交点情况可对B进 行判断;x=1时,y<0,可对C进行判断;根据抛物线y=ax2+ bx+c与直线y=n+1无交点,可对D进行判断.
A.
B.
C.
D.
返回首页
专题一
选择填空题专题突破
2.(2020·南山区校级一模)已知:如图,直线l经过点A(-2,
0)和点B(0,1),点M在x轴上,过点M作x轴的垂线交直线l于点
C,若OM=2OA,则经过点C的反比例函数表达式为( B )
A.y=2x4 B.y=1x2 C.y=3x D.y=6x
返回首页
专题一
选择填空题专题突破
正确解答:连接OA,OB,过点A,B分别作AM⊥x轴,BN⊥x
轴,垂足为M、N,
∵点A(-3,3 3),B(32 3,32),
∵OM=3,AM=3 3,BN=32,ON=32 3,
∴OA= 9+27=6,OB= 94+247=3,
∵tan∠AOM=OAMM= 3, ∴∠AOM=60°,
axb在同一坐标系内的大致图象是( A )
A.
B.
C.
D.
返回首页
专题一
选择填空题专题突破
3.(2020·银川二模)二次函数y=ax2+bx+c(a≠0)的图象如图,
则反比例函数y=
a x
与一次函数y=bx+c的图象在同一坐标系内的图象
大致是( A )
A.
B.
C.

中考数学选择填空压轴题训练整理

中考数学选择填空压轴题训练整理

中考数学选择填空压轴题训练1。

如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点, 且∠ACD=45°,DF⊥AB 于点F,EG⊥AB 于点G ,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是2. 如图,在ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC的延长线于点F ,BG⊥AE,垂足为G,BG=24,则ΔCEF 的周长为( ) (A )8 (B )9.5 (C )10 (D)11.5 3、如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与 对角线BD 重合,折痕为DG ,则AG 的长为( ) A .1B .34C .23D .25.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时, 点B 的坐标为(A )(0,0) (B )(22,22) (C)(-21,-21) (D )(-22,-22)6.如图,点G 、D 、C 在直线a 上,点E 、F 、A 、B 在直线b 上,若a b Rt GEF ∥,△从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中GEF △与矩形ABCD 重合部分....的面积(S )随时间(t )变化的图象大致是( )A ′G DBCA图 yxOBA(第5题图)G DCEF ABba(第6题图)stOA .stOB .C .stOD .stO7 如图,△ABC 中,D 、E 分别是BC 、AC 的中点,BF 平分∠ABC,交DE 于点F ,若BC=6,则DF 的长是(A )2 (B )3 (C )25(D )4 9.矩形ABCD 中,8cm 6cm AD AB ==,.动点E 从点C 开始沿边CB 向点B 以2cm/s 的速度运动,动点F 从点C 同时出发沿边CD 向点D 以1cm/s的速度运动至点D 停止.如图可得到矩形CFHE ,设运动时间为x (单位:s ),此时矩形ABCD 去掉矩形CFHE 后剩余部分的面积为y (单位:2cm ),则y 与x 之间的函数关系用图象表示大致是下图中的( )12如图,双曲线)0(>k xky =经过矩形QABC 的边BC 的中点E ,交AB 于点D 。

中考数学填空题压轴题(含答案)

中考数学填空题压轴题(含答案)

根据考试大纲,填空压轴题仍将以探究规律类型题为主要考察方向。

题型一:数字规律【例1】一组按一定规律排列的式子:-,,-,,…,(0a ≠),则第n 个式子是 (n为正整数).【答案】【例2】按一定规律排列的一列数依次为:,916,79,54,31 ……,按此规律排列下去,这列数中的第5个数是 ,第n 个数是 .【答案】1125,122+n n【例3】一组按规律排列的整数5,7,11,19,…,第6个整数为____ _,根据上述规律,第n 个整数为____ (n 为正整数).【答案】67;32+n (n 为正整数)【例4】将除去零以外的自然数按以下规律排列,根据第一列的奇数行的数的规律,写出第一列第9行的数为 ,再结合第一行的偶数列的数的规律,判断2011所在的位置是第 行第 列.【答案】81;第45行第15列2a 52a 83a 114a 31(1)n na n --例题精讲填空题压轴题【例5】某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a )第n 年 1 2 3 4 5 … 老芽率 a a 2a 3a 5a … 新芽率 0 a a 2a 3a … 总芽率a2 a3a5a8a…照这样下去,第8年老芽数与总芽数的比值为 .【解析】由规律可以看出,从第3年开始,老芽率、新芽率,总芽率都分别是前两年之和,因此,第8年的老芽为21,总芽为34,因此答案为2134. 【解析】2134题型二:多边形上存在的点数【例6】如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .【解析】此类型题首先要找到边数的特点,然后找每条边上点的数目,第n 个图形是2n +边形,而且每个边上有n 个点。

【答案】(2)n n +或22n n +或2(1)1n +-【例7】用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子___________【答案】4n【例8】用“O”摆出如图所示的图案,若按照同样的方式构造图案,则第10个图案需要 个“O”.① ② ③ ④ 【答案】181第2个“口”第1个“口” 第3个“口”第n 个“口”………………第1个图形第2个图形第3个图形第4个图形题型三:藏头露尾型【例9】如下图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.【解析】此类问题重点要找到“头是谁”“尾是谁”,①13+;②132+⨯;③133+⨯,……第n 个31n + 【答案】31n +【例10】搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②,图③的方式串起来搭建,则串7顶这样的帐篷需要 根钢管.图1 图2 图3【答案】83.题型四:成倍数变化型【例11】如图,ABC ∆中,90ACB ∠=︒,1AC BC ==,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与ABC ∆的BC 边重叠为止,此时这个三角形的斜边长为_____.【解析】注意每一次变化所变化的倍数 【答案】81;11(2)2n n - 【例12】如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形四边中点为顶点作四边形,......依次作下去,图中所作的第三个四边形的周长为________; 所作的第n 个四边形的周长为_________________.【答案】2,24()2n【例13】如图,在ABC ∆中,A α∠=,ABC ∠的平分线与ACD ∠的平分线交于点1A ,得1A ∠,则1______A ∠=.1A BC ∠的平分线与1ACD ∠的平分线交于点2A ,得2A ∠,……,2009A BC ∠的平分线与2009A CD ∠的平分线交于点2010A ,得2010A ∠,则2010A ∠= .【答案】2α,20102α(1)(2)(3)……A 2A 1DC A【例14】如图,小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形1111A B C D ,正方形1111A B C D 的面积为 ; 再把正方形1111A B C D 的各边延长一倍得到正方形2222A B C D , 如此进行下去,正方形n n n n D C B A 的面积为 . (用含有n 的式子表示,n 为正整数)【答案】5,n5【例15】把一个正三角形分成四个全等的三角形,第一次挖去中间的一个小三角形,对剩下的三个小正三角形再重复以上做法……一直到第n 次挖去后剩下的三角形有 个.第一次 第二次 第三次 第四次【答案】3n题型五:相似与探究规律【例16】已知ABC AB AC m ∆==中,,72ABC ∠=︒,1BB 平分ABC ∠交AC 于1B ,过1B 作12B B //BC交AB 于2B ,作23B B 平分21AB B ∠,交AC 于3B ,过3B 作34//B B BC ,交AB 于4B ……依次进行下去,则910B B 线段的长度用含有m 的代数式可以表示为 .【答案】m 6215⎪⎪⎭⎫⎝⎛-【例17】如图,矩形纸片ABCD 中,6,10AB BC ==.第一次将纸片折叠,使点B 与点D 重合,折痕与BD交于点1O ;设1O D 的中点为1D ,第二次将纸片折叠使 点B 与点1D 重合,折痕与BD 交于点2O ;设21O D 的中点 为2D ,第三次将纸片折叠使点B 与点2D 重合,折痕与BD 交于点3O ,… .按上述方法折叠,第n 次折叠后的折痕与BD 交于点n O ,则1BO = ,n BO = .第一次折叠 第二次折叠 第三次折叠【答案】2;12332n n -- B AD C 1O 1O 2O 1D 1D 2D 1O 2O 3O B AD C B ADCBA DC【例18】如图,直线x y 33=,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线 交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于 点3A ,…,按此做法进行下去,点4A 的坐标为( , ); 点n A ( , ).【答案】(938,0)(1)332(-n ,0) 【例19】如图,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形1ABA ,再以等腰直角三角形1ABA 的斜边为直角边向外作第3个等腰直角三角形11A BB ,……,如此作下去,若1OA OB ==,则第n 个等腰直角三角形的面积n S = ________(n 为正整数).【解析】由题干可知:123124 (222)S S S ===,,可知22n n S -=【答案】22n -【例20】如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,…,1n n n B D C +∆的面积为n S ,则2S = ;n S =____ (用含n 的式子表示).【答案】233,31nn + 【例21】如图,P 为ABC ∆的边BC 上的任意一点,设BC a =,当1B 、1C 分别为AB 、AC 的中点时,1112B C a =,当2B 、2C 分别为1BB 、1CC 的中点时,2234B C a =,当3B 、3C 分别为2BB 、2CC 的中点时,3378B C a =,当4B 、4C 分别为3BB 、3CC 的中点时,441516B C a =当5B 、5C 分别为4BB 、4CC 的中点时,55_____B C =当n B 、n C 分别为1n BB -、1n CC -的中点时,则n n B C = ;设ABC ∆中BC 边上的高为h ,则n n PB C ∆的面积为______(用含a 、h 的式子表示).【答案】a 3231,a n n 212-, ah n n 12212+-D 4D 3D 2D 1C 5C 4C 3C 2C 1B 5B 4B 3B 2B 1A……B 2B 1A 1BOAC 3B 3B 2C 2C 1B 1CBA【例22】如图,在梯形ABCD 中,AB CD ∥,AB a =,CD b =,E 为边AD 上的任意一点,EF AB ∥,且EF 交BC 于点F .若E 为边AD 上的中点,则______EF =(用含有a ,b 的式子表示);若E 为边AD 上距点A 最近的n 等分点(2n ≥,且n 为整数),则______EF =(用含有n ,a ,b 的式子表示).【答案】2a b +;(1)b n an+-【例23】已知在ABC ∆中,BC a =.如图1,点1B 、1C 分别是AB 、AC 的中点,则线段11B C 的长是_______; 如图2,点1B 、2B ,1C 、2C 分别是AB 、AC 的三等分点,则线段1122B C B C +的值是__________;如图3, 点12......、、、n B B B ,12......、、、n C C C 分别是AB 、AC 的(1)n +等分点,则线段1122n n B C B C B C ++⋅⋅⋅+的值是 ______.【答案】1,2a a ,12na 【例24】已知:如图,在Rt ABC ∆中,点1D 是斜边AB 的中点,过点1D 作11D E AC ⊥于点1E ,连接1BE 交1CD 于点2D ;过点2D 作22D E AC ⊥于点2E ,连接2BE ,交1CD 于点3D ;过点3D 作33D E AC ⊥于点3E ,如此继续,可以依次得到点4D 、5D 、…n D , 分别记11BD E ∆、22BD E ∆、33BD E ∆、…n n BD E ∆的面积 为1S 、2S 、3S …n S .设ABC ∆的面积是1,则1______S =, ______n S =(用含n 的代数式表示).【答案】14,21(1)n +题型六:折叠与探究规律【例25】如图,将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .设2AB =,当12CE CD =时,则________AMBN=. 若1CE CD n =(n 为整数),则_______AM BN=.(用含n 的式子表示) 【答案】15;1)1(22+-n n【例26】如图,正方形ABCD ,E 为AB 上的动点,(E 不与A 、B 重合)连接DE ,作DE 的中垂线,交图3图2图12n-1B 2C 2A BCB 1C 1C 1B 1CBA FE D CBANMFEDCBAB321AD 于点F .⑴若E 为AB 中点,则______DFAE= ⑵若E 为AB 的n 等分点(靠近点A ),则________DFAE= 【答案】251,42n n+题型七:其他类型【例27】图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+3中线段AB 的长为 .图1 图2 图31+【例28】如图,1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形34,,,,n P P P ,记纸板n P 的面积为n S ,试计算求出=-23S S ;并猜想得到1n n S S --=()2n ≥【答案】1)41(2,32---n ππ【例29】如图,图①是一块边长为1,周长记为1P 的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第)3(≥n n 块纸板的周长为n P ,则=-34P P ;1--n n P P = .P 3P 2P 1【答案】81,121-⎪⎭⎫⎝⎛n【例30】已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如图所示).当8n =时,共向外作出了 个小等边三角形;当n k =时,共向外作出了 个小等边三角形,这些小等边三角形的面积和是 (用含k 的式子表示).【答案】18; 【例31】在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(10),,点D 的坐标为(02),.延长CB 交x 轴于点1A ,作正方形111A B C C ;延长11C B 交x 轴于点2A ,作正方形2221A B C C …按这样 的规律进行下去,第3个正方形的面积为________;第n 个正方形的面积为___________(用含n 的代数式表示).【答案】4235)(,22235-⎪⎭⎫ ⎝⎛n【例32】如图所示,111()P x y ,、222()P x y ,,……()n n n P x y ,在函数4y x=(0x >)的图象上,11OP A ∆,212P A A ∆,323P A A ∆…1n n n P A A -∆都是等腰三角形,斜边1OA 、12A A …1n n A A -,都在x 轴上, 则1_____y =,12______n y y y ++⋅⋅⋅+=【答案】2 , 2n【例33】如图所示,直线1+=x y 与y 轴交于点1A ,以1OA 为边作正方形111OA B C ,然后延长11C B 与直线1+=x y 交于点2A ,得到第一个梯形112AOC A ;再以12C A 为边作正方形1222C A B C ,同样延长22C B 与直线1+=x y 交于点3A 得到第二个梯形2123A C C A ;,再以23C A 为边作正方形2333C A B C ,延长33C B ,得到第三个梯形;……则第2个梯形2123A C C A 的面积是 ;第n (n 是正整数)个梯形的面积是 (用含n 的式子表示).3(-2)k 23(2)k s k-n =3n =5……n =4① ② ③ ④C 2B 2A 2C 1B 1A 1DC B AO yx【答案】6;2n 2223-⨯或1n 423-⨯【例34】在平面直角坐标系中,我们称边长为1且顶点的横纵坐标均为整数的正方形为单位格点 正方形,如图,菱形ABCD 的四个顶点坐标分别是(80)-,,(04),,(80),,(04)-,,则菱形ABCD 能覆盖的单位格点正方形的个数是_______个;若菱形n n n n A B C D 的四个顶点坐标分别为(20)-,n , (0),n ,(20),n ,(0)-,n (n 为正整数), 则菱形n n n n A B C D 能覆盖的单位格点正方形的 个数为_________(用含有n 的式子表示).【答案】单位格点个数为48,单位格点个数为n n 442-【例35】在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形1111A B C D 、2222A B C D 、3333A B C D 每个正方形四条边上的整点的个数.按此规律推算出正方形10101010A B C D 四条边上的整点共有 个.【答案】80【例36】对于每个正整数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于n A ,n B 两点,若n n A B 表示这两点间的距离,则n n A B = (用含n 的代数式表示);112220112011A B A B A B +++的值为 .【答案】()20122011,11+n nyxOD 1D 2D 3C 1C 2C 3B 1B 2B 3A 3A 2A 1123-1-2-3-3-2-1321-8-448ODC BAyx。

中考数学突破训练之压轴60题(深圳卷)

中考数学突破训练之压轴60题(深圳卷)

中考数学突破训练之压轴60题(深圳卷)一、选择题(共15小题)1.(2014•深圳)如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=()A.1 B.3﹣C.﹣1 D.4﹣22.(2013•深圳)如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则sinα的值是()A.B.C.D.3.(2012•深圳)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM 上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.644.(2011•深圳)如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为()A.:1 B.:1 C.5:3 D.不确定5.(2010•深圳)如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=6.(2009•深圳)如图,已知点A,B,C,D均在已知圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10cm.图中阴影部分的面积为()A.cm2 B.(π﹣)cm2C.cm2D.cm27.(2014•坪山新区模拟)如图,在Rt△ABC中,∠C=90°,AC=8,BC=4,分别以AC、BC为直径画半圆,则图中阴影部分的面积为()A.20π﹣16 B.10π﹣32 C.10π﹣16 D.20π﹣1328.(2014•宝安区二模)如图,将半径为6的⊙O沿AB折叠,与AB垂直的半径OC交于点D且CD=2OD,则折痕AB的长为()A.B.C.6 D.9.(2009•乐山)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA=()A.B.C.D.210.(2009•鄂州)已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移动,则当PA+PD取最小值时,△APD中边AP上的高为()A.B.C.D.311.(2013•龙岗区模拟)如图,在△ABC中,AB=AC,∠BAC=90°,点D为线段BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF,CF交DE于点P.若AC=,CD=2,则线段CP的长()A.1 B.2 C.D.12.(2011•本溪)如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P、Q分别是AD 和AE上的动点,则DQ+PQ的最小值()A.2 B.4 C.2 D.413.(2013•宝安区一模)如图,已知抛物线l 1:y=﹣x2+2x与x轴分别交于A、O两点,顶点为M.将抛物线l1关于y轴对称到抛物线l2.则抛物线l2过点O,与x轴的另一个交点为B,顶点为N,连接AM、MN、NB,则四边形AMNB的面积()A.3 B.6 C.8 D.1014.(2012•龙岗区模拟)如图所示的二次函数y=ax2+bx+c的图象中,刘星同学观察得出了下面四条信息:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.你认为其中正确的有()A.4个B.3个C.2个D.1个15.(2011•宝安区一模)如图,已知抛物线与x轴分别交于A、B两点,顶点为M.将抛物线l1沿x轴翻折后再向左平移得到抛物线l2.若抛物线l2过点B,与x轴的另一个交点为C,顶点为N,则四边形AMCN的面积为()A.32 B.16 C.50 D.40二、填空题(共15小题)16.(2014•深圳)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有_________ .17.(2013•深圳)如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形;…按这样的规律下去,第6幅图中有_________ 个正方形.18.(2012•深圳)如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为_________ .19.(2011•深圳)如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC的解析式为,则tanA的值是_________ .20.(2009•深圳)刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(m,﹣2m)放入其中,得到实数2,则m= _________ .21.(2008•广州)对于平面内任意一个凸四边形ABCD,现从以下四个关系式①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是_________ .22.(2014•坪山新区模拟)如图,已知直线l:y=x,过点A(0,1)作轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…按此作法继续下去,则点A2014的坐标为___ ______ .(提示:∠BOX=30°)23.(2014•龙岗区模拟)如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上.顶点B的坐标为(6,),点C的坐标为(1,0),点P为斜边OB上的一个动点,则PA+PC的最小值为_________ .24.(2014•宝安区二模)如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=4,BC=6.将腰CD以D为旋转中心逆时针旋转90°至DE,连接AE,则△ADE的面积是_________ .25.(2014•深圳一模)如图,一段抛物线:y=﹣x(x﹣4)(0≤x≤4),记为C1,它与x轴交于点O,A1:将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于A3;…如此进行下去,直至得C10,若P(37,m)在第10段抛物线C10上,则m= _________ .26.(2011•宁波)正方形的A1B1P1P2顶点P1、P2在反比例函数y=(x>0)的图象上,顶点A1、B1分别在x轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2,顶点P3在反比例函数y=(x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为_________ .27.(2013•福田区一模)如图所示,在⊙O中,点A在圆内,B、C在圆上,其中OA=7,BC=18,∠A=∠B=60°,则tan∠OBC=_________ .28.(2013•宝安区一模)四边形ABCD、AEFG都是正方形,当正方形AEFG绕点A逆时针旋转45°时,如图,连接DG、BE,并延长BE交DG于点H,且BH⊥DG与H.若AB=4,AE=时,则线段BH的长是_________ .29.(2012•深圳二模)如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是_________ .30.(2012•宝安区二模)如图,梯形ABCD中,AD∥BC,BE平分∠ABC,且BE⊥CD于E,P是BE上一动点.若BC=6,CE=2DE,则|PC﹣PA|的最大值是_________ .三、解答题(共30小题)31.(2014•深圳)如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.32.(2014•深圳)如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.(1)求⊙M的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP﹣AP|最大.33.(2013•深圳)如图1,直线AB过点A(m,0),B(0,n),且m+n=20(其中m>0,n>0).(1)m为何值时,△OAB面积最大?最大值是多少?(2)如图2,在(1)的条件下,函数的图象与直线AB相交于C、D两点,若,求k的值.(3)在(2)的条件下,将△OCD以每秒1个单位的速度沿x轴的正方向平移,如图3,设它与△OAB的重叠部分面积为S,请求出S与运动时间t(秒)的函数关系式(0<t<10).34.(2013•深圳)如图1,过点A(0,4)的圆的圆心坐标为C(2,0),B是第一象限圆弧上的一点,且BC⊥AC,抛物线y=x2+bx+c经过C、B两点,与x轴的另一交点为D.(1)点B的坐标为(_________ ,_________ ),抛物线的表达式为_________ ;(2)如图2,求证:BD∥AC;(3)如图3,点Q为线段BC上一点,且AQ=5,直线AQ交⊙C于点P,求AP的长.35.(2012•深圳)如图,在平面直角坐标系中,直线l:y=﹣2x+b(b≥0)的位置随b的不同取值而变化.(1)已知⊙M的圆心坐标为(4,2),半径为2.当b= _________ 时,直线l:y=﹣2x+b(b≥0)经过圆心M;当b= _________ 时,直线l:y=﹣2x+b(b≥0)与⊙M相切;(2)若把⊙M换成矩形ABCD,其三个顶点坐标分别为:A(2,0)、B(6,0)、C(6,2).设直线l扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式.36.(2012•深圳)如图,已知△ABC的三个顶点坐标分别为A(﹣4,0)、B(1,0)、C(﹣2,6).(1)求经过A、B、C三点的抛物线解析式;(2)设直线BC交y轴于点E,连接AE,求证:AE=CE;(3)设抛物线与y轴交于点D,连接AD交BC于点F,试问以A、B、F为顶点的三角形与△ABC相似吗?37.(2011•深圳)如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y 轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G,H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD?若存在,求出点T的坐标;若不存在,请说明理由.39.(2010•深圳)如图1所示,以点M(﹣1,0)为圆心的圆与y轴,x轴分别交于点A,B,C,D,直线y=﹣x﹣与⊙M相切于点H,交x轴于点E,交y轴于点F.(1)请直接写出OE,⊙M的半径r,CH的长;(2)如图2所示,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;(3)如图3所示,点K为线段EC上一动点(不与E,C重合),连接BK交⊙M于点T,弦AT交x轴于点N.是否存在一个常数a,始终满足MN•MK=a,如果存在,请求出a的值;如果不存在,请说明理由.40.(2010•深圳)如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(﹣2,0),B(﹣1,﹣3).(1)求抛物线的解析式;(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;(3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P的坐标.41.(2009•深圳)如图,在直角坐标系中,点A的坐标为(﹣2,0),连接OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号).42.(2009•深圳)如图,在平面直角坐标系中,直线l:y=﹣2x﹣8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连接PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.43.(2015•深圳一模)如图,已知抛物线y=ax2+bx+c过A(3,3.5)、B(4,2)、C(0,2)三点,点P 是x轴上的动点.(1)求抛物线的解析式;(2)如图甲所示,连接AC、CP、PB、BA,是否存在点P,使四边形ABPC为等腰梯形?若存在,求出点P的坐标;若不存在,说明理由;(3)点H是题中抛物线对称轴l上的动点,如图乙所示,求四边形AHPB周长的最小值.44.(2014•坪山新区模拟)如图1,在平面直角坐标系中,直线α:y=﹣x﹣与坐标轴分别交于A,C两点,(1)求点A的坐标及∠CAO的度数;(2)点B为直线y=﹣上的一个动点,以点B为圆心,AC长为直径作⊙B,当⊙B与直线α相切时,求B点的坐标;(3)如图2,当⊙B过A,O,C三点时,点E是劣弧上一点,连接EC,EA,EO,当点E在劣弧上运动时(不与A,O两点重合),的值是否发生变化?如果不变,求其值,如果变化,说明理由.45.(2014•龙岗区模拟)如图,在平面直角坐标系中,▱ABCD的顶点A、B、C的坐标分别为A(0,4)、B(1,4)、C(0,1),将▱ABCD绕点C沿顺时针方向旋转90°,得到▱A′B′CD′,A′D′与BC相交于点E.(1)求经过点D、A、A′的抛物线的函数关系式;(2)求▱ABCD与▱A′B′CD′的重叠部分(即△CED’)的面积;(3)点P是抛物线上点A、A′之间的一动点,是否存在点P使得△APA′的面积最大?若存在,求出△APA′的最大面积,及此时点P的坐标;若不存在,请说明理由.46.(2014•宝安区二模)已知:如图1,在平面直角坐标系中,⊙P的圆心P(3,0),半径为5,⊙P与抛物线y=ax2+bx+c(a≠0)的交点A、B、C刚好落在坐标轴上.(1)求抛物线的解析式;(2)点D为抛物线的顶点,经过C、D的直线是否与⊙P相切?若相切,请证明;若不相切,请说明理由;(3)如图2,点F是点C关于对称轴PD的对称点,若直线AF交y轴于点K,点G为直线PD上的一动点,则x轴上是否存在一点H,使C、G、H、K四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由.47.(2014•福田区模拟)如图所示,对称轴是x=﹣1的抛物线与x轴交于A、B(1,0)两点,与y轴交于点C(3,0),作直线AC,点P是线段AB上不与点A、B重合的一个动点,过点P作y轴的平行线,交直线AC于点D,交抛物线于点E,连结CE、OD.(1)求抛物线的函数表达式;(2)当P在A、O之间时,求线段DE长度s的最大值;(3)连接AE、BC,作BC的垂直平分线MN分别交抛物线的对称轴x轴于F、N,连接BF、OF,若∠EAC=∠OFB,求点P的坐标.48.(2013•龙岗区模拟)如图,Rt△OAB如图所示放置在平面直角坐标系中,直角边OA与x轴重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB绕点O逆时针旋转90°,点B旋转到点C的位置,一条抛物线正好经过点O,C,A三点.(1)求该抛物线的解析式;(2)在x轴上方的抛物线上有一动点P,过点P作x轴的平行线交抛物线于点M,分别过点P,点M作x 轴的垂线,交x轴于E,F两点,问:四边形PEFM的周长是否有最大值?如果有,请求出最值,并写出解答过程;如果没有,请说明理由.(3)如果x轴上有一动点H,在抛物线上是否存在点N,使O(原点)、C、H、N四点构成以OC为一边的平行四边形?若存在,求出N点的坐标;若不存在,请说明理由.49.(2013•龙岗区模拟)如图,已知点A(2,0)、B(﹣1,0),C是y轴的负半轴上一点,且OA=OC,抛物线经过A、B、C三点.(1)此抛物线的关系式.(2)在对称轴右侧的抛物线上是否存在点P,使△PBC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.(3)Q是抛物线上一点,过点Q作指点BC的垂线,垂足为D,若△QDB与△BOC相似,请求点Q的坐标.50.(2013•宝安区一模)如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心P位置,并求圆心P坐标;(3)若D是抛物线上一动点,是否存在点D,使以P、B、C、D为顶点的四边形是梯形?如果存在,请直接写出满足条件的点D的坐标;如果不存在,请说明理由.51.(2012•龙岗区二模)如图1,等腰梯形ABCD中,AD∥BC,AB=CD=,AD=5,BC=3.以AD 所在的直线为x轴,过点B且垂直于AD的直线为y轴建立平面直角坐标系.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的函数表达式;(2)设(1)中的抛物线与BC交于点E,P是该抛物线对称轴上的一个动点(如图2):①若直线PC把四边形AOEB的面积分成相等的两部分,求直线PC的函数表达式;②连接PB、PA,是否存在△PAB是直角三角形?若存在,求出所有符合条件的点P的坐标,并直接写出相应的△PAB的外接圆的面积;若不存在,请说明理由.52.(2007•玉溪)如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在y轴上.(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.53.(2012•盐田区二模)已知:如图,在平面直角坐标系xOy中,以点P(2,)为圆心的圆与y轴相切于点A,与x轴相交于B、C两点(点B在点C的左边).(1)求经过A、B、C三点的抛物线的解析式;(2)在(1)中的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的.如果存在,请直接写出所有满足条件的M点的坐标;如果若不存在,请说明理由;(3)如果一个动点D自点P出发,先到达y轴上的某点,再到达x轴上某点,最后运动到(1)中抛物线的顶点Q处,求使点D运动的总路径最短的路径的长.54.(2009•云南)已知在平面直角坐标系中,四边形OABC是矩形,点A、C的坐标分别为A(3,0)、C (0,4),点D的坐标为D(﹣5,0),点P是直线AC上的一动点,直线DP与y轴交于点M.问:(1)当点P运动到何位置时,直线DP平分矩形OABC的面积,请简要说明理由,并求出此时直线DP的函数解析式;(2)当点P沿直线AC移动时,是否存在使△DOM与△ABC相似的点M,若存在,请求出点M的坐标;若不存在,请说明理由;(3)当点P沿直线AC移动时,以点P为圆心、半径长为R(R>0)画圆,所得到的圆称为动圆P.若设动圆P的直径长为AC,过点D作动圆P的两条切线,切点分别为点E、F.请探求是否存在四边形DEPF的最小面积S,若存在,请求出S的值;若不存在,请说明理由.注:第(3)问请用备用图解答.55.(2013•南沙区一模)如图1,已知抛物线y=x2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=2OA=4.(1)求该抛物线的函数表达式;(2)设P是(1)中抛物线上的一个动点,以P为圆心,R为半径作⊙P,求当⊙P与抛物线的对称轴l及x 轴均相切时点P的坐标.(3)动点E从点A出发,以每秒1个单位长度的速度向终点B运动,动点F从点B出发,以每秒个单位长度的速度向终点C运动,过点E作EG∥y轴,交AC于点G(如图2).若E、F两点同时出发,运动时间为t.则当t为何值时,△EFG的面积是△ABC的面积的?56.(2013•济宁)如图1,在平面直角坐标系中,O为坐标原点,P是反比例函数y=(x>0)图象上任意一点,以P为圆心,PO为半径的圆与坐标轴分别交于点A、B.(1)求证:线段AB为⊙P的直径;(2)求△AOB的面积;(3)如图2,Q是反比例函数y=(x>0)图象上异于点P的另一点,以Q为圆心,QO为半径画圆与坐标轴分别交于点C、D.求证:DO•OC=BO•OA.57.(2007•梅州)如图,直角梯形ABCD中,AB∥CD,∠A=90°,AB=6,AD=4,DC=3,动点P从点A 出发,沿A→D→C→B方向移动,动点Q从点A出发,在AB边上移动.设点P移动的路程为x,点Q移动的路程为y,线段PQ平分梯形ABCD的周长.(1)求y与x的函数关系式,并求出x,y的取值范围;(2)当PQ∥AC时,求x,y的值;(3)当P不在BC边上时,线段PQ能否平分梯形ABCD的面积?若能,求出此时x的值;若不能,说明理由.58.(2008•济南)已知:如图,直线y=﹣x+4与x轴相交于点A,与直线y=x相交于点P.(1)求点P的坐标;(2)请判断△OPA的形状并说明理由;(3)动点E从原点O出发,以每秒1个单位的速度沿着O、P、A的路线向点A匀速运动(E不与点O,A 重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B,设运动t秒时,矩形EBOF与△OPA重叠部分的面积为S.求:①S与t之间的函数关系式.②当t为何值时,S最大,并求出S的最大值.59.(2011•泉州)如图,在直角坐标系中,点A的坐标为(0,8),点B(b,t)在直线x=b上运动,点D、E、F分别为OB、0A、AB的中点,其中b是大于零的常数.(1)判断四边形DEFB的形状.并证明你的结论;(2)试求四边形DEFB的面积S与b的关系式;(3)设直线x=b与x轴交于点C,问:四边形DEFB能不能是矩形?若能.求出t的值;若不能,说明理由.60.(2009•河北)某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B 型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数 1 2 0B型板材块数 2 m N设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B 两种型号的板材刚好够用.(1)上表中,m= _________ ,n= _________ ;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?。

深圳中考数学二轮复习题型一重难选填突破专题2创新题型课件

深圳中考数学二轮复习题型一重难选填突破专题2创新题型课件

10.(2021·佛山模拟)如图,在四边形 ABCD 中,点 E,F 分别是
AB,CD 的中点,过点 E 作 AB 的垂线,过点 F 作 CD 的垂线,两垂线
交于点 G,连接 AG,BG,CG,DG,且∠AGD=∠BGC.若 AD,BC 所在直
线互相垂直, AD 的值为 2
.
EF
谢谢观看
Thank you for watching
则线段 EF 的最小值是 2 2 .
3.(2021·沙 坪 模 拟 ) 如 图 , 菱 形 ABCD 的 边 长 为 9, 面 积 为 18 3,P、E 分别为线段 BD、BC 上的动点,则 PE+PC 的最小值 为 23 .
4.(2019·无锡)如图,在△ABC 中,AB=AC=5,BC=4 5,D 为边 AB 上一动点(B 点除外),以 CD 为一边作正方形 CDEF,连接 BE,则
OD 交于点 M.已知 AD∶OB=2∶3,△AMD 的面积为 4.若反比例
函数 y=xk的图象恰好经过点 M,则 k 的值为( B )
A.257
B.554
C.558
D.12
12.(2021·宿迁)如图,点 A,B 在反比例函数 y=xk(x>0)的图 象上,延长 AB 交 x 轴于 C 点,若△AOC 的面积是 12,且点 B 是
轴于点 E,若△BCE 的面积为 7,则 k 的值为 14 .
16.(2021·深圳模拟)如图,点 B 在反比例函数 y=xk(x<0)的 图象上,点 A 在 y 轴上,AB∥x 轴,点 D 为 x 轴上一动点,过点
B 作 BC∥AD,交 y 轴于点 C,若 S△ACD=4,则 k 的值为 -8 .
+4 的图象与 x 轴、y 轴分别相交于点 B,点 A,以线段 AB 为边

初三中考数学选择填空压轴题

初三中考数学选择填空压轴题

中考数学选择填空压轴题一、动点问题1.如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点, 且∠ACD=45°,DF ⊥AB 于点F,EG ⊥AB 于点G,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是( )2.如图,A ,B ,C ,D 为圆O 的四等分点,动点P 从圆心O 出发,沿O —C —D —O 路线作匀速运动,设运动时间为x (s ).∠APB=y(°),右图函数图象表示y 与x 之间函数关系,则点M 的横坐标应为 .3.如图,AB 是⊙O 的直径,且AB=10,弦MN 的长为8,若弦MN 的两端在圆上滑动时, 始终与AB 相交,记点A 、B 到MN 的距离分别为h 1,h 2,则|h 1-h 2| 等于( ) A 、5 B 、6 C 、7 D 、84.如图,已知Rt △ABC 的直角边AC =24,斜边AB =25,一个以点P 为圆心、半径为1的圆在△ABC 内部沿顺时针方向滚动,且运动过程中⊙P 一直保持与△ABC 的边相切,当点P 第一次回到它的初始位置时所经过路径的长度是( ) A.563 B. 25 C. 1123D. 565.在ABC △中,12cm 6cm AB AC BC D ===,,为BC 的中点,动点P 从B 点出发,以每秒1cm 的速度沿B A C →→的方向运动.设运动时间为t ,那么当t = 秒时,过D 、P 两点的直线将ABC △的周长分成两个部分,使其中一部分是另一部分的2倍.6.如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果Q 点从A 点出发,沿图中所示方向按A→B→C→D→A 滑动到A 止,同时点R 从B 点出发,沿图中所示方向按B→C→D→A→B 滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为( )A .2B .4π-C .πD .π1-7.如图,矩形ABCD 中,3AB cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,且2EF BE =,则AFC S =△( )2cm . A .8 B .9 C .8 3 D .9 38.△ABC 是⊙O 的内接三角形,∠BAC=60°,D 是的中点,AD =a,则四边形ABDC 的面积为 .在梯形ABCD中,9.如图,A B CQRM DADCE F G B AB D BP BBBB B90614AD BC ABC AD AB BC ∠====∥,°,,,点M 是线段BC 上一定点,且MC =8.动点P 从C 点出发沿C D A B →→→的路线运动,运动到点B 停止.在点P 的运动过程中,使PMC △为等腰三角形的点P 有 个10.如图在边长为2的正方形ABCD 中,E ,F ,O 分别是AB ,CD ,AD 的中点,以O 为圆心,以OE 为半径画弧是上的一个动点,连结OP ,并延长OP 交线段BC 于点K ,过点P 作⊙O 的切线,分别交射线AB 于点M ,交直线BC 于点G . 若3=BMBG,则BK ﹦ . 二、面积与长度问题1.如图,△ABC 是直角边长为a 的等腰直角三角形,直角边AB 是半圆O 1的直径,半圆O 2过C 点且与半圆O 1相切,则图中阴影部分的面积是( )A .2367a π- B .2365a π- C .2367a D .2365a2.如图,在x 轴上有五个点,它们的横坐标依次为l ,2,3,4,5.分别过这些点作x 轴的垂线与三条直线y=ax ,y=(a+1)x ,y=(a+2)x 相交,其中a>0.则图中阴影部分的面积是( ) A .12.5 B .25 C .12.5a D .25a 3.如图,在反比例函数2y x=(0x >)的图象上,有点1234P P P P ,,,,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为123S S S ,,,则123S S S ++= .4.已知, A 、B 、C 、D 、E 是反比例函数16y x=(x>0)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图5所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是 (用含π的代数式表示)5.如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,xyOP 1P 2P 3P 41 234AODBFKE GM C KyxO P 1P 2P 3 P4P 5A 1 A 2 A 3 A 4 A 5ADEPBC ABCDN M过点A 1、A 2、A 3、A 4、A 5分别作x 轴的垂线与反比例函数()20y x x =≠的图象相交于点P 1、P 2、P 3、P 4、P 5,得直角三角形(阴影部分)并设 其面积分别为12345S S S S S 、、、、,则5S 的值为 .6.如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去了7个小正方体),所得到的几何体的表面积是( ) A .78B .72C .54D .487.如图,平行于y 轴的直线l 被抛物线y =2112x +、y =2112x -所截.当直线l 向右平移3个单位时,直线l 被两条抛物线所截得的线段扫过的图形面积为平方单位.8.如图,在Rt ABC △中,9042C AC BC ===∠°,,,分别以AC 、BC 为直径画半圆,则图中阴影部分的面积为 .(结果保留π)9.如图,Rt ABC △中,90ACB ∠=o,30CAB ∠=o,2BC =,O H ,分别为边AB AC , 的中点,将ABC △绕点B 顺时针旋转120o 到11A BC △的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为( ) A .77π338- B .47π338+ C .π D .4π33+ 10.如图,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( ) A .23 B .26C .3D .6图,在锐角ABC △中,11.如4245AB BAC =∠=,°,BAC ∠的平分线交于点D M N ,、分别是AD和AB 上的动点,则BCBM MN +的最小值是___________ .12.如图,在矩形ABCD 中,AB =3,AD =4,点P 在AD 上,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE +PF 等于( ) A.75 B.125 C.135 D.145中,E 是BC 边上一点,形ABCD 13.正方以E 为为半径的半圆与以A 为圆圆心、ECAH BO C ADBC E FPA D FCBOEEFD CBA心,AB 为半径的圆弧外切,则sin EAB ∠的值为( )A .43B .34C .45D .3514.在Rt △ABC 内有边长分别为,,a b c 的三个正方形,则,,a b c 满足关系式 . 15.一张等腰三角形纸片,底边长l5cm ,底边上的高长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( ) A .第4张 B .第5张 C.第6张 D .第7张16.如图,等腰△ABC 中,底边a BC =,︒=∠36A ,ABC ∠的平分线交AC 于D ,BCD ∠的平分线交BD 于E ,设215-=k ,则=DE ( ) A .a k 2B .a k 3C .2k aD .3ka17.如图,直径分别为CD 、CE 的两个半圆相切于点C ,大半圆M 的弦AB 与小半圆N 相切于点F ,且AB ∥CD ,AB=4,设弧CD 、弧CE 的长分别为x 、y ,线段ED 的长为z ,则z (x+y )= .三、多结论问题1.如图,在Rt△ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论:①△AED ≌△AEF ; ②△ABE ∽△ACD ; ③BE DC DE +=; ④222BE DC DE +=其中一定正确的是( ) A .②④ B .①③ C .②③ D .①④2.如图,在等腰Rt△ABC 中,∠C =90o ,AC =8,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD =CE ,连接DE 、DF 、EF 。

2023深圳中考数学填空压轴题

2023深圳中考数学填空压轴题

2023年深圳市中考数学填空题压轴题一、题目1. 若一条直线通过点(2,4)且斜率为3/4,则该直线的方程为__________。

2. 若(x+3)是多项式f(x) = x^3 + ax^2 + 3x + b的一个因式,那么a+b的值为__________。

3. 已知a+b=6, a^2+b^2=20, 求a,b的值__________。

4. 将一个直径为10cm的圆切成6个相等的扇形,每一个扇形的面积为__________。

二、解题思路1. 求直线方程的方法有很多,可以使用点斜式、斜截式等方法,通过给出的点和斜率进行计算,得到直线的方程式。

2. 根据多项式的因式定理,当(x+3)是多项式f(x) = x^3 + ax^2 + 3x + b的一个因式时,将(x+3)代入多项式中,得到方程并进行求解,得到a,b的值。

3. 利用平方差公式将a^2+b^2进行展开,然后将已知条件代入方程进行求解,得到a,b的值。

4. 将圆切成6个相等的扇形,可以得到每个扇形的角度,再根据扇形的面积公式进行计算,得到每个扇形的面积。

三、解题步骤1. 利用点斜式:y-y1 = k(x-x1),代入点(2,4)和斜率3/4,得到直线方程为y-4 = 3/4(x-2),化简得到直线方程为y=3/4x+2。

2. 将x+3代入多项式f(x) = x^3 + ax^2 + 3x + b中,得到方程x^3 + ax^2 + 3x + b = (x+3)q(x),化简得到方程a=3,b=-9,所以a+b=6。

3. 将a+b=6代入a^2+b^2=20中,得到a^2+2ab+b^2=36,化简得到a^2+b^2=20,代入已知条件进行求解,得到a=2,b=4。

4. 求圆的面积S:S = πr^2,圆的半径r=10/2=5cm,每个扇形的角度θ=360°/6=60°,扇形的面积为S=1/6πr^2θ=1/6×3.14×5^2×60°= 39.25cm^2。

深圳市福田区中考二模数学填空压轴题

深圳市福田区中考二模数学填空压轴题

深圳市福田区中考二模数学填空压轴题
《深圳市福田区中考二模数学填空压轴题啊》
哎呀呀,提到深圳市福田区中考二模数学填空压轴题,我就想起我那次考试的经历啊。

当时,我拿到试卷,一路做下来还算顺利,可做到那个填空压轴题的时候,我一下子就傻眼啦!那题就好像故意跟我作对似的,怎么看都看不明白。

我就盯着那题,感觉那几个数字和图形都在跟我玩捉迷藏,我越着急越找不到头绪。

我心里那个急呀,就像有只小猫在抓挠一样。

我在草稿纸上画呀画呀,写了一堆乱七八糟的式子,可还是没搞清楚。

我就想啊,这题咋这么难呢,出题老师是不是故意为难我们这些可怜的学生呀!
我当时就感觉自己像是在一个迷宫里,怎么都走不出来。

脑袋都快想破了,还是没找到答案。

我都有点想放弃了,可又不甘心,毕竟这可是重要的考试呀。

最后,我实在没办法了,只好瞎蒙了一个答案。

考完试后,我还一直惦记着那道题呢,想着要是再给我一次机会,我一定要把它搞明白。

现在想想,那道深圳市福田区中考二模数学填空压轴题可真是让我印象深刻呀,估计这辈子都忘不了啦!哈哈!。

备考2021年中考:深圳地区数学中考常考压轴题型集训(附答案)

备考2021年中考:深圳地区数学中考常考压轴题型集训(附答案)

深圳地区中考常考压轴题型集训一.选择题1.如图,边长为1的菱形ABCD绕点A旋转,当B、C两点恰好落在扇形AEF的弧EF上时,弧BC的长度等于()A.B.C.D.2.如图所示,点P(3a, a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=3.如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为()A.:1 B.:1 C.5:3 D.不确定4.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A .6B .12C .32D .645.如图,已知l 1∥l 2∥l 3,相邻两条平行直线间的距离相等,等腰直角△ABC 中,∠ACB =90°,三角形的三个顶点分别在这三条平行直线上,则sin α的值是( )A .B .C .D .6.如图,已知四边形ABCD 为等腰梯形,AD ∥BC ,AB =CD ,AD =,E 为CD 中点,连接AE ,且AE =2,∠DAE =30°,作AE ⊥AF 交BC 于F ,则BF =( )A .1B .3﹣C .﹣1D .4﹣27.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG ;②GB =2AG ;③△GDE ∽△BEF ;④S △BEF =.在以上4个结论中,正确的有( )A .1B .2C .3D .48.如图,CB =CA ,∠ACB =90°,点D 在边BC 上(与B 、C 不重合),四边形ADEF 为正方形,过点F 作FG ⊥CA ,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论: ①AC =FG ;②S △FAB :S 四边形CBFG =1:2;③∠ABC =∠ABF ;④AD 2=FQ •AC , 其中正确的结论的个数是( )A .1B .2C .3D .49.如图,正方形ABCD 的边长是3,BP =CQ ,连接AQ ,DP 交于点O ,并分别与边CD ,BC 交于点F ,E ,连接AE ,下列结论:①AQ ⊥DP ;②OA 2=OE •OP ;③S △AOD =S 四边形OECF ;④当BP =1时,tan ∠OAE =,其中正确结论的个数是( )A .1B .2C .3D .410.如图,A 、B 是函数y =上两点,P 为一动点,作PB ∥y 轴,PA ∥x 轴,下列说法正确的是( )①△AOP ≌△BOP ;②S △AOP =S △BOP ;③若OA =OB ,则OP 平分∠AOB ;④若S △BOP =4,则S △ABP=16A .①③B .②③C .②④D .③④二.填空题11.要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A 、B 到它的距离之和最短?小聪根据实际情况,以街道旁为x 轴,建立了如图所示的平面直角坐标系,测得A 点的坐标为(0,3),B 点的坐标为(6,5),则从A 、B 两点到奶站距离之和的最小值是 .12.观察表一,寻找规律.表二,表三分别是从表一中选取的一部分,则a+b的值为.表一:0 1 2 3 …1 3 5 7 …2 5 8 11 …3 7 11 15 ………………表二:1114a表三:11 1317 b13.如图所示,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,航行半小时后到达B处,此时观测到灯塔M在北偏东30°方向上,那么该船继续航行分钟可使渔船到达离灯塔距离最近的位置.14.如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC 的解析式为,则tan A的值是.15.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为.16.如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形…按这样的规律下去,第7幅图中有个正方形.17.如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k=.18.如图,四边形ABCO是平行四边形,OA=2,AB=6,点C在x轴的负半轴上,将▱ABCO 绕点A逆时针旋转得到▱ADEF,AD经过点O,点F恰好落在x轴的正半轴上,若点D在反比例函数y=(x<0)的图象上,则k的值为.19.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=.三.解答题20.如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.(1)求证:BD是⊙O的切线;(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为8,cos∠BFA=,求△ACF的面积.21.如左图,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),OB =OC,tan∠ACO=.(1)求这个二次函数的表达式.(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.(4)如图,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.22.如图,AB是⊙O的直径,AB=10,DC切⊙O于点C,AD⊥DC,垂足为D,AD交⊙O于点E.(1)求证:AC平分∠BAD;(2)若sin∠BEC=,求DC的长.23.已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1).(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式.(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E.①当△BDE是等腰三角形时,直接写出此时点E的坐标.②又连接CD、CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.24.如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(﹣2,0),B(﹣1,﹣3).(1)求抛物线的解析式;(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;(3)在第(2)问的结论下,抛物线上的点P使S△PAD =4S△ABM成立,求点P的坐标.25.如图1所示,以点M(﹣1,0)为圆心的圆与y轴,x轴分别交于点A,B,C,D,直线y=﹣x﹣与⊙M相切于点H,交x轴于点E,交y轴于点F.(1)请直接写出OE,⊙M的半径r,CH的长;(2)如图2所示,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;(3)如图3所示,点K为线段EC上一动点(不与E,C重合),连接BK交⊙M于点T,弦AT交x轴于点N.是否存在一个常数a,始终满足MN•MK=a,如果存在,请求出a的值;如果不存在,请说明理由.26.如图1,已知在⊙O中,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB并延长DB交⊙O于点E,连接AE.(1)求证:AE是⊙O的直径;(2)如图2,连接EC,⊙O半径为5,AC的长为4,求阴影部分的面积之和.(结果保留π与根号)27.如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y 轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G,H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M 作MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD?若存在,求出点T的坐标;若不存在,请说明理由.28.如图,已知△ABC的三个顶点坐标分别为A(﹣4,0)、B(1,0)、C(﹣2,6).(1)求经过A、B、C三点的抛物线解析式;(2)设直线BC交y轴于点E,连接AE,求证:AE=CE;(3)设抛物线与y轴交于点D,连接AD交BC于点F,试问以A、B、F为顶点的三角形与△ABC相似吗?(4)若点P为直线AE上一动点,当CP+DP取最小值时,求P点的坐标.29.如图,在平面直角坐标系中,直线l:y=﹣2x+b(b≥0)的位置随b的不同取值而变化.(1)已知⊙M的圆心坐标为(4,2),半径为2.当b=时,直线l:y=﹣2x+b(b≥0)经过圆心M;当b=时,直线l:y=﹣2x+b(b≥0)与⊙M相切;(2)若把⊙M换成矩形ABCD,其三个顶点坐标分别为:A(2,0)、B(6,0)、C(6,2).设直线l扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式.30.如图1,过点A(0,4)的圆的圆心坐标为C(2,0),B是第一象限圆弧上的一点,且BC⊥AC,抛物线y=x2+bx+c经过C、B两点,与x轴的另一交点为D.(1)点B的坐标为(,),抛物线的表达式为;(2)如图2,求证:BD∥AC;(3)如图3,点Q为线段BC上一点,且AQ=5,直线AQ交⊙C于点P,求AP的长.31.如图1,直线AB过点A(m,0),B(0,n),且m+n=20(其中m>0,n>0).(1)m为何值时,△OAB面积最大?最大值是多少?(2)如图2,在(1)的条件下,函数的图象与直线AB相交于C、D两点,若,求k的值.(3)在(2)的条件下,将△OCD以每秒1个单位的速度沿x轴的正方向平移,如图3,设它与△OAB的重叠部分面积为S,请求出S与运动时间t(秒)的函数关系式(0<t<10).32.如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.(1)试判断BE与FH的数量关系,并说明理由;(2)求证:∠ACF=90°;(3)连接AF,过A、E、F三点作圆,如图2,若EC=4,∠CEF=15°,求的长.33.如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG 与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.34.如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC =3S△EBC?若存在求出点F的坐标,若不存在请说明理由.35.如图,抛物线y=ax2+2x﹣3与x轴交于A、B两点,且B(1,0)(1)求抛物线的解析式和点A的坐标;(2)如图1,点P是直线y=x上的动点,当直线y=x平分∠APB时,求点P的坐标;(3)如图2,已知直线y=x﹣分别与x轴、y轴交于C、F两点,点Q是直线CF下方的抛物线上的一个动点,过点Q作y轴的平行线,交直线CF于点D,点E在线段CD 的延长线上,连接QE.问:以QD为腰的等腰△QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.36.如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC =S△ABD?若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.37.已知抛物线,顶点为A,且经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.参考答案一.选择题1.解:连接AC,可得AB=BC=AC=1,则∠BAC=60°,根据弧长公式,可得弧BC的长度等于=,故选C.2.解:由于函数图象关于原点对称,所以阴影部分面积为圆面积,则圆的面积为10π×4=40π.因为P(3a,a)在第一象限,则a>0,3a>0,根据勾股定理,OP==a.于是π=40π,a=±2,(负值舍去),故a=2.P点坐标为(6,2).将P(6,2)代入y=,得:k=6×2=12.反比例函数解析式为:y=.故选:D.3.解:连接OA、OD,∵△ABC与△DEF均为等边三角形,O为BC、EF的中点,∴AO⊥BC,DO⊥EF,∠EDO=30°,∠BAO=30°,∴OD:OE=OA:OB=:1,∵∠DOE+∠EOA=∠BOA+∠EOA即∠DOA=∠EOB,∴△DOA∽△EOB,∴OD:OE=OA:OB=AD:BE=:1.故选:A.4.解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A 4B4=8B1A2=8,A 5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故选:C.5.解:如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(A AS),∴CD=BE=1,在Rt△ACD中,AC===,在等腰直角△ABC中,AB=AC=×=,∴sinα==.故选:D.6.解:如图,延长AE交BC的延长线于G,∵E为CD中点,∴CE=DE,∵AD∥BC,∴∠DAE=∠G=30°,在△ADE和△GCE中,,∴△ADE≌△GCE(AAS),∴CG=AD=,AE=EG=2,∴AG=AE+EG=2+2=4,∵AE⊥AF,∴AF=AG tan30°=4×=4,GF=AG÷cos30°=4÷=8,过点A作AM⊥BC于M,过点D作DN⊥BC于N,则MN=AD=,∵四边形ABCD为等腰梯形,∴BM=CN,∵MG=AG•cos30°=4×=6,∴CN=MG﹣MN﹣CG=6﹣﹣=6﹣2,∵AF⊥AE,AM⊥BC,∴∠FAM=∠G=30°,∴FM=AF•sin30°=4×=2,∴BF=BM﹣MF=6﹣2﹣2=4﹣2.故选:D.7.解:由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正确;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,③错误;S△GBE=×6×8=24,S△BEF=•S△GBE==,④正确.故选:C.8.解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠GAF+∠AFG=90°,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB =FB•FG=S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;或:AD2表示正方形的面积;连接AQ,FQ×AC=FQ×AB=FQ×GF=△AFQ面积的2倍(FQ 为底,GF为高)=△AFQ面积的2倍(AF为底,AD为高)=正方形的面积,所以结论4是对的故选:D.9.解:∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正确;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD•OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE•OP;故②错误;在△CQF与△BPE中,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF与△DCE中,,∴△ADF≌△DCE,∴S△ADF ﹣S△DFO=S△DCE﹣S△DOF,即S△AOD =S四边形OECF;故③正确;∵BP=1,AB=3,∴AP=4,∵△PBE∽△PAD,∴,∴BE=,∴QE=,∵△QOE∽△PAD,∴,∴QO=,OE=,∴AO=5﹣QO=,∴tan∠OAE==,故④正确,故选:C.10.解:∵点P是动点,∴BP与AP不一定相等,∴△BOP与△AOP不一定全等,故①不正确;设P(m,n),∴BP∥y轴,∴B(m,),∴BP=|﹣n|,∴S△BOP=|﹣n|×m=|12﹣mn| ∵PA∥x轴,∴A(,n),∴AP=|﹣m|,∴S△AOP=|﹣m|×n=|12﹣mn|,∴S△AOP =S△BOP,故②正确;如图,过点P作PF⊥OA于F,PE⊥OB于E,∴S△AOP =OA×PF,S△BOP=OB×PE,∵S△AOP =S△BOP,∴OB×PE=OA×PF,∵OA=OB,∴PE=PF,∵PE⊥OB,PF⊥OA,∴OP是∠AOB的平分线,故③正确;如图1,延长BP交x轴于N,延长AP交y轴于M,∴AM⊥y轴,BN⊥x轴,∴四边形OMPN是矩形,∵点A,B在双曲线y=上,∴S△AMO =S△BNO=6,∵S△BOP=4,∴S△PMO =S△PNO=2,∴S矩形OMPN=4,∴mn=4,∴m=,∴BP=|﹣n|=|3n﹣n|=2|n|,AP=|﹣m|=,∴S△APB=AP×BP=×2|n|×=8,故④错误;∴正确的有②③,故选:B.二.填空题(共9小题)11.解:点A关于x轴的对称点A1的坐标是(0,﹣3),过点B向x轴作垂线与过A1和x轴平行的直线交于C,则A1C=6,BC=8,∴A1B==10∴从A、B两点到奶站距离之和的最小值是10.故填10.12.解:表二从竖行看,下边的数应比上面的数大3,∴a=14+3=17.表三从竖行看,下边的数比上边的数大6,那么后面那行下边的数就该比上边的数大7.∴b=13+7=20∴a+b的值为37.13.解:作MN⊥AB于N.易知:∠MAB=30°,∠MBN=60°,则∠BMA=∠BAM=30°.设该船的速度为x,则BM=AB=0.5x.Rt△BMN中,∠MBN=60°,∴BN=BM=0.25x.故该船需要继续航行的时间为0.25x÷x=0.25小时=15分钟.14.解:根据三角形内心的特点知∠ABO=∠CBO,∵已知点C、点B的坐标,∴OB=OC,∠OBC=45°,∠ABC=90°可知△ABC为直角三角形,BC=2,∵点A在直线AC上,设A点坐标为(x, x﹣1),根据两点距离公式可得:AB2=x2+,AC2=(x﹣2)2+,在Rt△ABC中,AB2+BC2=AC2,解得:x=﹣6,y=﹣4,∴AB=6,∴tan A===.故答案为:.15.解法一:如图1所示,过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF为等腰直角三角形,∵OC=6,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=6,∴FB=OM=OF﹣FM=6﹣5=1,则BC=CF+BF=6+1=7.故答案为:7.解法二:如图2所示,过点O作OM⊥CA,交CA的延长线于点M;过点O作ON⊥BC于点N.易证△OMA≌△ONB,∴OM=ON,MA=NB.∴O点在∠ACB的平分线上,∴△OCM为等腰直角三角形.∵OC=6,∴CM=ON=6.∴MA=CM﹣AC=6﹣5=1,∴BC=CN+NB=6+1=7.故答案为:7.16.解:观察图形发现第一个有1个正方形,第二个有1+4=5个正方形,第三个有1+4+9=14个正方形,…第n个有: n(n+1)(2n+1)个正方形,第7个有1+4+9+16+25+36+49=140个正方形,故答案为:140.17.解:∵△BCE的面积为8,∴,∴BC•OE=16,∵点D为斜边AC的中点,∴BD=DC,∴∠DBC=∠DCB=∠EBO,又∠EOB=∠ABC,∴△EOB∽△ABC,∴,∴AB•OB•=BC•OE∴k=AB•BO=BC•OE=16.故答案为:16.18.解:如图所示:过点D作DM⊥x轴于点M,由题意可得:∠BAO=∠OAF,AO=AF,AB∥OC,则∠BAO=∠AOF=∠AFO=∠OAF,故∠AOF=60°=∠DOM,∵OD=AD﹣OA=AB﹣OA=6﹣2=4,∴MO=2,MD=2,∴D(﹣2,﹣2),∴k=﹣2×(﹣2)=4.故答案为:4.19.解:如图作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ,∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,∴2x+3x=3,∴x=,∴AP=5x=3.故答案为3.三.解答题(共18小题)20.(1)证明:连接BO,方法一:∵AB=AD∴∠D=∠ABD∵AB=AO∴∠ABO=∠AOB又在△OB D中,∠D+∠DOB+∠ABO+∠ABD=180°∴∠OBD=90°,即BD⊥BO∴BD是⊙O的切线;方法二:∵AB=AO,BO=AO∴AB=AO=BO∴△ABO为等边三角形∴∠BAO=∠ABO=60°∵AB=AD∴∠D=∠ABD又∠D+∠ABD=∠BAO=60°∴∠ABD=30°∴∠OBD=∠ABD+∠ABO=90°,即BD⊥BO∴BD是⊙O的切线;方法三:∵AB=AD=AO∴点O、B、D在以OD为直径的⊙A上∴∠OBD=90°,即BD⊥BO∴BD是⊙O的切线;(2)解:∵∠C=∠E,∠CAF=∠EBF∴△ACF∽△BEF∵AC是⊙O的直径∴∠ABC=90°在Rt△BFA中,cos∠BFA=∴=8又∵S△BEF∴S=18.△ACF21.解:(1)方法一:由已知得:C(0,﹣3),A(﹣1,0),将A、B、C三点的坐标代入,得:,解得:,所以这个二次函数的表达式为:y=x2﹣2x﹣3,方法二:由已知得:C(0,﹣3),A(﹣1,0),设该表达式为:y=a(x+1)(x﹣3),将C点的坐标代入得:a=1,所以这个二次函数的表达式为:y=x2﹣2x﹣3;(注:表达式的最终结果用三种形式中的任一种都不扣分)(2)方法一:存在,F点的坐标为(2,﹣3),理由:易得D(1,﹣4),所以直线CD的解析式为:y=﹣x﹣3,∴E点的坐标为(﹣3,0),由A、C、E、F四点的坐标得:AE=CF=2,AE∥CF,∴以A、C、E、F为顶点的四边形为平行四边形,∴存在点F,坐标为(2,﹣3),方法二:易得D(1,﹣4),所以直线CD的解析式为:y=﹣x﹣3,∴E点的坐标为(﹣3,0),∵以A、C、E、F为顶点的四边形为平行四边形,∴F点的坐标为(2,﹣3)或(﹣2,﹣3)或(﹣4,3),代入抛物线的表达式检验,只有(2,﹣3)符合,∴存在点F,坐标为(2,﹣3).(3)如图,①当直线MN在x轴上方时,设圆的半径为R(R>0),则N(R+1,R),代入抛物线的表达式,解得,②当直线MN在x轴下方时,设圆的半径为r(r>0),则N(r+1,﹣r),代入抛物线的表达式,解得,∴圆的半径为或.(4)过点P 作y 轴的平行线与AG 交于点Q , 易得G (2,﹣3),直线AG 为y =﹣x ﹣1. 设P (x ,x 2﹣2x ﹣3),则Q (x ,﹣x ﹣1), PQ =﹣x 2+x +2.S △APG =S △APQ +S △GPQ =(﹣x 2+x +2)×3 当x =时,△APG 的面积最大此时P 点的坐标为(,﹣),S △APG 的最大值为.22.(1)证明:连接OC ,由DC 是切线得OC ⊥DC ;又AD ⊥DC ,∴AD ∥OC ,∴∠DAC =∠ACO .又由OA =OC 得∠BAC =∠ACO ,∴∠DAC =∠BAC .即AC 平分∠BAD .(2)解:方法一:∵AB为直径,∴∠ACB=90°又∵∠BAC=∠BEC,∴BC=AB•sin∠BAC=AB•sin∠BEC=6.∴AC=.又∵∠DAC=∠BAC=∠BEC,且AD⊥DC,∴CD=AC•sin∠DAC=AC•sin∠BEC=.方法二:∵AB为直径,∴∠ACB=90°.又∵∠BAC=∠BEC,∴BC=AB•sin∠BAC=AB•sin∠BEC=6.∴.又∵∠DAC=∠BAC,∠D=∠ACB=90°,∴△ADC∽△ACB,,即,解得.23.解:(1)设OA的长为x,则OB=5﹣x;∵OC=2,AB=5,∠BOC=∠AOC=90°,∠OAC=∠OCB;∴△AOC∽△COB,∴OC2=OA•OB∴22=x(5﹣x)…(1分)解得:x1=1,x2=4,∵OA<OB,∴OA=1,OB=4;…(2分)∴点A、B、C的坐标分别是:A(﹣1,0),B(4,0),C(0,2);(注:直接用射影定理的,不扣分)方法一:设经过点A、B、C的抛物线的关系式为:y=ax2+bx+2,将A、B、C三点的坐标代入得…(3分)解得:a=,b=,c=2所以这个二次函数的表达式为:…(4分)方法二:设过点A、B、C的抛物线的关系式为:y=a(x+1)(x﹣4)…(3分)将C点的坐标代入得:a=所以这个二次函数的表达式为:…(4分)(注:表达式的最终结果用三种形式中的任一种都不扣分)(2)①当△BDE是等腰三角形时,点E的坐标分别是:,,.…1+1+(1分)(注:符合条件的E点共有三个,其坐标,写对一个给1分)②如图1,连接OP,S△CDP =S四边形CODP﹣S△COD=S△COP+S△ODP﹣S△COD…(8分)==m+n﹣2==…(9分)∴当m=时,△CDP的面积最大.此时P点的坐标为(,),S△CDP的最大值是.…(10分)另解:如图2、图3,过点P作PF⊥x轴于点F,则S△CDP =S梯形COFP﹣S△COD﹣S△DFP…(8分)==m+n﹣2 ==…(9分)∴当m=时,△CDP的面积最大.此时P点的坐标为(,),S△CDP的最大值是.(注:只回答有最大面积,而没有说明理由的,不给分;点P的坐标,或最大面积计算错误的,扣(1分);其他解法只要合理,酌情给分.)24.解:(1)由题意可得:,解得;∴抛物线的解析式为:y=x2﹣4;(2)由于A、D关于抛物线的对称轴(即y轴)对称,连接BD.则BD与y轴的交点即为M点;设直线BD的解析式为:y=kx+b(k≠0),则有:,解得;∴直线BD的解析式为y=x﹣2,点M(0,﹣2);(3)设BC与y轴的交点为N,则有N(0,﹣3);∴MN=1,BN=1,ON=3;S△ABM =S梯形AONB﹣S△BMN﹣S△AOM=(1+2)×3﹣×2×2﹣×1×1=2;∴S△PAD =4S△ABM=8;由于S△PAD=AD•|y p|=8,即|y p|=4;当P点纵坐标为4时,x2﹣4=4,解得x=±2,∴P1(﹣2,4),P2(2,4);当P点纵坐标为﹣4时,x2﹣4=﹣4,解得x=0,∴P3(0,﹣4);故存在符合条件的P点,且P点坐标为:P1(﹣2,4),P2(2,4),P3(0,﹣4).25.解:(1)∵直线y=﹣x﹣中,令y=0,则x=﹣5,即OE=5;令x=0,则y=﹣,故F点坐标为(0,﹣),∴EF==,∵M(﹣1,0),∴EM=4,∵∠E=∠E,∠AOE=∠EHM,∴△EMH∽△EFO,∴=,即=,∴r=2;∵CH是RT△EHM斜边上的中线,∴CH=EM=2.(2)连接DQ、CQ.∵∠CHP=∠D,∠CPH=∠QPD,∴△CHP∽△QDP.∴CH:DQ=HP:PD=2:3,∴DQ=3.∴cos∠QHC=cos∠D=.(3)如图3,连接AK,AM,延长AM,与圆交于点G,连接TG,则∠GTA=90°,∴∠MAN+∠4=90°,∵∠3=∠4∴∠MAN+∠3=90°由于∠BKO+∠3=90°,故∠BKC=∠MAN;而∠BKC=∠AKC,∴∠AKC=∠2,在△AMK和△NMA中,∠AKC=∠MAN;∠AMK=∠NMA,故△MAK∽△MNA,=;即:MN•MK=AM2=4,故存在常数a,始终满足MN•MK=a,常数a=4.26.(1)证明:连接CB,AB,CE,∵点C为劣弧AB上的中点,∴CB=CA,又∵CD=CA,∴AC=CD=BC,∵Rt△斜边上的中线等于斜边的一半,∴∠ABD=90°,∴∠ABE=90°,即弧AE的度数是180°,∴AE是⊙O的直径;(2)解:∵AE是⊙O的直径,∴∠ACE=90°,∵AE=10,AC=4,∴根据勾股定理得:CE=2,∴S阴影=S半圆﹣S△ACE=12.5π﹣×4×2=12.5π﹣4.27.解:(1)设抛物线的解析式为:y=a(x﹣1)2+4,∵点B的坐标为(3,0).∴4a+4=0,∴a=﹣1,∴此抛物线的解析式为:y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)存在.抛物线的对称轴方程为:x=1,∵点E的横坐标为2,∴y=﹣4+4+3=3,∴点E(2,3),∴设直线AE的解析式为:y=kx+b,∴,∴,∴直线AE的解析式为:y=x+1,∴点F(0,1),∵D(0,3),∴D与E关于x=1对称,作F关于x轴的对称点F′(0,﹣1),连接EF′交x轴于H,交对称轴x=1于G,四边形DFHG的周长即为最小,设直线EF′的解析式为:y=mx+n,∴,解得:,∴直线EF′的解析式为:y=2x﹣1,∴当y=0时,2x﹣1=0,得x=,即H(,0),当x=1时,y=1,∴G(1,1);∴DF=2,FH=F′H==,DG==,∴使D、G,H、F四点所围成的四边形周长最小值为:DF+FH+GH+DG=2+++=2+2;(3)存在.∵BD==3,设M(c,0),∵MN∥BD,∴,即=,∴MN=(1+c),DM=,要使△DNM∽△BMD,需,即DM2=BD•MN,可得:9+c2=3×(1+c),解得:c=或c=3(舍去).当x=时,y=﹣(﹣1)2+4=.∴存在,点T的坐标为(,).28.方法一:解:(1)设函数解析式为:y=ax2+bx+c,由函数经过点A(﹣4,0)、B(1,0)、C(﹣2,6),可得,解得:,故经过A、B、C三点的抛物线解析式为:y=﹣x2﹣3x+4;(2)设直线BC的函数解析式为y=kx+b,由题意得:,解得:,即直线BC的解析式为y=﹣2x+2.故可得点E的坐标为(0,2),从而可得:AE==2,CE==2,故可得出AE=CE;(3)相似.理由如下:设直线AD的解析式为y=kx+b,则,解得:,即直线AD的解析式为y=x+4.联立直线AD与直线BC的函数解析式可得:,解得:,即点F的坐标为(﹣,),则BF==,又∵AB=5,BC==3,∴=,=,∴=,又∵∠ABF=∠CBA,∴△ABF∽△CBA.故以A、B、F为顶点的三角形与△ABC相似.方法二:(1)略.(2)略.(3)若△ABF∽△ABC,则,即AB2=BF×BC,∵A(﹣4,0),D(0,4),∴l AD:y=x+4,l BC:y=﹣2x+2,∴l AD与l BC的交点F(﹣,),∴AB=5,BF=,BC=3,∴AB2=25,BF×BC=×3=25,∴AB2=BF×BC,又∵∠ABC=∠ABC,∴△ABF∽△ABC.。

深圳中考数学真题模拟题分类汇编05 选择压轴重点题(解析版)

深圳中考数学真题模拟题分类汇编05 选择压轴重点题(解析版)

专题05选择压轴重点题一、单选题A .1:3B .1:2【答案】B 【分析】根据圆周角定理,切线的性质以及等腰三角形的判定和性质,全等三角形的判定及性质进行计算即可.∵DE 是圆O 的直径.∴90 DCE DCA .∵BC 与圆O 相切.∴90BCO .A.4B.3【答案】BA.39B.13【答案】A【分析】如图1,取EF的中点O,连接OB得点G在∠ABC的平分线上,当CG⊥BG等腰直角三角形,证明△EGB≌△FGC,可得根据含30度角的直角三角形可得AD,进而可得结论.∵四边形ABCD是矩形,∴∠ABC=90°∵O是EF的中点,∴OB=OE=OF∵∠EGF=90°,O是EF的中点,∴OG=OE=OF∴OB=OG=OE=OF∴B,E,G,在以O为圆心的圆上,∴∠EBG=∠EFG,∵∠EGF=90°,EG=FG,∴∠GEF=∠GFE=45°∴∠EBG=45°∴BG平分∠ABC,∴点G在∠ABC的平分线上,当CG⊥BG时,CG最小,此时,如图2,∵BG平分∠ABC,∴∠ABG=∠GBC=12∠ABC=45°,∵CG⊥BG∴△BCG是以BC为斜边的等腰直角三角形,∴BG=CG∵∠EGF=∠BGC=90°A.14B.12【答案】C【分析】根据正方形的性质可证得BHA.2ab aB.2bb a【答案】DA.523 B.5【答案】A【分析】连接OF,根据切线的性质得到推出OBF是等腰直角三角形,得到A.5B.4【答案】C【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系逐一判断即可【详解】解:①由抛物线对称轴为直线A.94B【答案】A【分析】先根据菱形的性质得到的两实数根,A.①②③【答案】B【分析】连接,利用全等三角形的判定与性质得到【点睛】本题主要考查了解直角三角形,直角三角形的性质,勾股定理,相似三角形的判定与性质平行线的判定与性质,平行线分线段成比例定理,等腰直角三角形的判定与性质,本题是网格题,熟练掌握网格的特性是解题的关键.A.42B根据题意可得:PA x轴, 四边形OAPF为矩形,∵点C在直线y x 上, 设点C的坐标为 m m,A.4 3【答案】B【分析】连接AC的长,进而确定出 ,∵AB CD∴H为AB的中点,即∵AG是O 的切线,∴90OAG AHOA.1B.2【答案】D≌【分析】①连接OC,证OADA .1个B .【答案】C 【分析】延长CD 至H ,使利用SAS 证明EAF EAH ≌ 求出90AMG ,可判断∵四边形ABCD 是正方形,∴4AB BC CD DA ,90ABF C ADC ADH ,∴ABF ADH ≌,∴AF AH ,BAF DAH ,AFB H ,∵45EAF ,∴45BAF DAE DAH DAE ,即45EAF EAH ,又AE AE ,∴ SAS EAF EAH ≌△△,∴EF EH ED DH ED BF ,①正确;∵45EAF ,90BAD ,∴45BAG DAE ,∵ABG DAE ,∴45BAG ABG ,∴45AGM BAG ABG ,∴18090AAMG EAF AGM ,∴BN AE ,②正确;设BF DH x ,A.17B.【答案】B【分析】连接BD,作BE AC进而求得DE,BE,BD,于E,连接连接BD,作BE AC∵,DAB CAB,BD BC,BC BD在斜边A.403B.8【答案】C【分析】连接OE,由角平分线的性质,等腰三角形的性质的推出AOE△ ABC,得到AO:ABBE∵平分ABC,ABE CBE,OE OB∵,OEB ABE,A.4【答案】C【分析】过点F分别作,过点在正方形ABCD 中,AB ∴2212AC AB BC ∵13AF AC ,∴42AF ,A .5B .2【答案】B 【分析】先求出点 ,8,00,4A B ,可得得tan 2OP D DP ,从而得到DP33A....∴△APQ 的面积为:S 此时,25PC t ,BQ tA.56B.【答案】AA.6B.【答案】B【分析】过点I作IG AB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年深圳中考数学突破训练之填空选择
压轴题
中考数学突破训练之压轴
一、选择题(共15小题)
1.(2014•深圳)如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且
AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=()
A .1 B

3﹣C

﹣1
D

4﹣
2
2.(2013•深圳)如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则s inα的值是()
A .B

C

D

3.(2012•深圳)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()
A .6 B

12 C

32 D

64
4.(2011•深圳)如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为()
A

:1 B

:1
C

5:3 D

不确定
5.(2010•深圳)如图所示,点P(3a,a)是反比例函数
y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()
A .y=B

y=C

y=D

y=
6.(2009•深圳)如图,已知点A,B,C,D均在已知圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10cm.图中阴影部分的面积为()
A

cm2B


π﹣
)cm2
C

cm2
D

cm2
7.(2014•坪山新区模拟)如图,在Rt△ABC中,∠C=90°,AC=8,BC=4,分别以AC、BC为直径画半圆,则图中阴影部分的面积为()
A .20π﹣16 B

10π﹣32 C

10π﹣16 D

20π﹣132
8.(2014•宝安区二模)如图,将半径为6的⊙O沿AB折叠,
与AB垂直的半径OC交于点D且CD=2OD,则折痕AB的长为()
A .B

C

6 D

9.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA=()
A .B

C

D

2
10.已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移动,则当PA+PD取最小值时,△APD中边AP上的高为()
A .B

C

D

3
11.(2013•龙岗区模拟)如图,在△ABC中,AB=AC,∠BAC=90°,点D为线段BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF,CF交
DE于点P.若AC=,CD=2,则线段CP的长()
A .1 B

2 C

D

12.(2011•本溪)如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值()
A .2 B

4 C

2D

4
13.(2013•宝安区一模)如图,已知抛物线l1:y=﹣x2+2x与x轴分别交于A、O 两点,顶点为M.将抛物线l1关于y轴对称到抛物线l2.则抛物线l2过点O,与x轴的另一个交点为B,顶点为N,连接AM、MN、NB,则四边形AMNB的面积()
A 3
B 6 C8 D10
....
14.如图所示的二次函数y=ax2+bx+c的图象中,刘星同学观察得出了下面四条信息:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.你认为其中正确的有()
A .4个B

3个C

2个D

1个
15.(2011•宝安区一模)如图,已知抛物线
与x轴分别交于A、B两点,顶点为M.将抛物线l1沿x轴翻折后再向左平移得到抛物线l2.若抛物线l2过点B,与x轴的另一个交点为C,顶点为N,则四边形AMCN的面积为()
A .32 B

16 C

50 D

40
二、填空题(共15小题)
16.(2014•深圳)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有.
17.(2013•深圳)如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形;…按这样的规律下去,第6幅图中有个正方形.
18.(2012•深圳)如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,
OC=6,则另一直角边BC的长为.
19.(2011•深圳)如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC的解析式为
,则tanA的值是.
20.(2009•深圳)刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(m,﹣2m)放入其中,得到实数2,则m= .
21.(2008•广州)对于平面内任意一个凸四边形ABCD,现从以下四个关系式①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是.
22.(2014•坪山新区模拟)如图,已知直线l:
y=x,过点A(0,1)作轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直
线l于点B1,过点B1作直线l的垂线交y轴于点A2;…按此作法继续下去,则点A2014的坐标为.(提示:∠BOX=30°)
23.(2014•龙岗区模拟)如图,在平面直角坐标系中,Rt△OAB的顶点A在x 轴的正半轴上.顶点B的坐标为(6,
),点C的坐标为(1,0),点P为斜边OB上的一个动点,则PA+PC的最小值为.
24.(2014•宝安区二模)如图,直角梯形ABCD中,AD∥BC,AB⊥BC,
AD=4,BC=6.将腰CD以D为旋转中心逆时针旋转90°至DE,连接AE,则△ADE的面积是.
25.(2014•深圳一模)如图,一段抛物线:y=﹣x(x﹣4)(0≤x≤4),记为
C1,它与x轴交于点O,A1:
将C1绕点A1旋转180°得C2,交x轴于点A2;
将C2绕点A2旋转180°得C3,交x轴于A3;

如此进行下去,直至得C10,若P(37,m)在第10段抛物线C10上,则
m= .
26.正方形的A1B1P1P2顶点P1、P2在反比例函数
y=(x>0)的图象上,顶点A1、B1分别在x轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2,顶点P3在反比例
函数y=(x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为.
27.(2013•福田区一模)如图所示,在⊙O中,点A在圆内,B、C在圆上,其中OA=7,BC=18,∠A=∠B=60°,则tan∠OBC= .
28.(2013•宝安区一模)四边形ABCD、AEFG都是正方形,当正方形AEFG 绕点A逆时针旋转45°时,如图,连接DG、BE,并延长BE交DG于点H,且
BH⊥DG与H.若AB=4,AE=时,则线段BH的长是.
29.(2012•深圳二模)如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,
PB=.下列结论:①△APD≌△AEB;
②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形
=4+.其中正确结论的序号
ABCD
是.
30.(2012•宝安区二模)如图,梯形ABCD中,AD∥BC,BE平分∠ABC,且BE⊥CD于E,P是BE上一动点.若BC=6,CE=2DE,则|PC﹣PA|的最大值是.
参考答案
1-5D.D.C.A.D.6-10B.C.B.D.C.11-15A.C.A.C.A.
16.485 .17.9118.7 .19. .20.m= 3或﹣1 .21..22.(0,
42014) .23..24.4 .25.m= ﹣3 .26.
(+1,
﹣1)..27.
.28.
.29. ①③⑤.30..。

相关文档
最新文档