整流电路

合集下载

电力电子技术课件-第3章 整流电路

电力电子技术课件-第3章 整流电路

Rid
2U2 sinwt
(3-2)
b)
图3-3 b) VT处于导通状态
在VT导通时刻,有wt=a,id=0,这是式(3-2)的初 始条件。求解式(3-2)并将初始条件代入可得
id
2U 2
sin(a
R (wta )
)e wL
Z
2U2 sin(wt ) (3-3)
Z
式中,Z
R2
(wL)2,
u
d
变且波形近似为一条水平线。
O i
d
iO
VT 1,4
I
d
wt
☞u2过零变负时,由于电感
I
d
的作用VT1、VT4仍有电流id,并
w t 不关断。
i
O
VT
2,3
I
d
wt
☞wt=p+a时刻,触发VT2和
O i
2
I
d
w t VT3,VT2和VT3导通,VT1和
O
I
u
d
VT 1,4
w t VT4承受反压关断,流过VT1和
二. 阻感负载
3、基本数量关系
√流过晶闸管的电流平均值IdT和有效值IT分别为:
I dT
p a 2p
Id
(3-5)
IT
1
2p
p a
I
2 d
d
(wt
)
p a 2p
Id
(3-6)
√续流二极管的电流平均p 值 aIdDR和有效值IDR分别为
I dDR 2p I d
(3-7)
I DR
1
2p
2p a p
pa R
R
1 sin 2a p a

第2章 整流电路(单相)

第2章 整流电路(单相)

a)
图2-3 单相半波可控整流 电路的分段线性等效电路 a)VT处于关断状态 b)VT处于导通状态
当VT处于通态时,如下方程成立:
VT L
di L d Rid dt
2U 2 sin wt
(2-2)
u
2
R
初始条件:ωt= α ,id=0。求解式(2-2)并 将初始条件代入可得
id 2U 2 sin( a )e Z
2 1 d d d VT d VD
R
VT
性负载加续流二极管)
a)
u2 b) O ud c)
w t1
wt
O id
d) O i VT e) O i VD
R
wt
Id
wt
Id p-a p+a
wt
f) O u VT
g) O
wt
wt
π点,u2=0,uAK=0, 电源电压自然过零, 晶闸管承零压而关断,续流管开始导通。 电源电压负半波(π ~2π 区间: u2 uAK<0,晶闸管承受反向电压而关断, 负载两端的输出电压仅为续流二极管的 管压降,有续流电流,续流二极管一直 导通到下一周期晶闸管导通。 L储存的能量保证了电流id在L-R-VDR 回路中流通,此过程通常称为续流。 1)控制角α与导通角θ 的关系 α+θ =1800 2)移项范围 移项范围与单相半 波可控整流电路电阻性负载相同为 0~1800.
可控整流电路 的主元件在采 用晶闸管时, 其控制方式都 采用相位控制, 故这类整流电 路又称之为相 控整流。
2.1.1
一 电阻性负载
单相半波可控整流电路
(Single Phase Half Wave Controlled Rectifier)

电力电子技术整流电路.

电力电子技术整流电路.
1 cos U d 0.45U 2 2
cos 2 60 1 0.21 0.45 220
U d 60V
78o
U 2 220 V
180o 78o 102o
U U2
1 sin 2 123.4V 4 2

单相半控桥带阻感负载的情况
在u2正半周,u2经VT1和VD4向负载供电。
u2 过零变负时,因电感作用电流不再流经变压器二次绕组, 而是由VT1和VD3续流。
在u2负半周触发角a时刻触发VT2,VT2导通,u2经VT2和VD3向 负载供电。 u2过零变正时,VD4导通,VD3关断。VT2和VD4续流,ud又为 零。

失控现象及解决办法
当a 突然增大至180或触发脉冲丢失时,会发生一个晶闸
管持续导通而两个二极管轮流导通的情况,这使ud成为正
弦半波,其平均值保持恒定,称为失控。 为避免这种情况的发生,可在负载侧并联一个续流二极管,感应 电势经续流二极管续流,而不再经过VT1和VD3,这样就可以使VT1 恢复阻断能力,
1 cos( ) 2
O ud
wt wt wt
Id Id
输出平均电流Id为:
Id Ud R
I d
O id i VTO i VD1 i VTO i VD 2 i VDO
3 R 4
Id Id

wt
晶闸管和续流二极管的平均电流分别为:
I VT
wt
Id
Id 2
R
w t1
w t
I. 感性负载加上续流二极管后 其输出平均电压Ud的波形与 阻性负载相同;
w t
Id
w t

整流电路大全

整流电路大全

整流电路大全9.3.7 正、负极性全波整流电路及故障处理如图9-24所示是能够输出正、负极性单向脉动直流电压的全波整流电路。

电路中的T1是电源变压器,它的次级线圈有一个中心抽头,抽头接地。

电路由两组全波整流电路构成,VD2和VD4构成一组正极性全波整流电路,VD1和VD3构成另一组负极性全波整流电路,两组全波整流电路共用次级线圈。

图9-24 输出正、负极性直流电压的全波整流电路1.电路分析方法关于正、负极性全波整流电路分析方法说明下列2点:(1)在确定了电路结构之后,电路分析方法和普通的全波整流电路一样,只是需要分别分析两组不同极性全波整流电路,如果已经掌握了全波整流电路的工作原理,则只需要确定两组全波整流电路的组成,而不必具体分析电路。

(2)确定整流电路输出电压极性的方法是:两二极管负极相连的是正极性输出端(VD2和VD4连接端),两二极管正极相连的是负极性输出端(VD1和VD3连接端)。

2.电路工作原理分析如表9-28所示是这一正、负极性全波整流电路的工作原理解说。

表9-28 正、负极性全波整流电路的工作原理解说3.故障检测方法关于这一电路的故障检测方法说明下列几点:(1)如果正极性和负极性直流输出电压都不正常时,可以不必检查整流二极管,而是检测电源变压器,因为几只整流二极管同时出现相同故障的可能性较小。

(2)对于某一组整流电路出现故障时,可按前面介绍的故障检测方法进行检查。

这一电路中整流二极管中的二极管VD1和VD3、VD2和VD4是直流电路并联的,进行在路检测时会相互影响,所以准确的检测应该将二极管脱开电路。

4.电路故障分析如表9-29所示是正、负极性全波整流电路的故障分析。

表9-29 正、负极性全波整流电路的故障分析9.3.8 正极性桥式整流电路及故障处理桥式整流电路是电源电路中应用量最大的一种整流电路。

如图9-25所示是典型的正极性桥式整流电路,VD1~VD4是一组整流二极管,T1是电源变压器。

整流电路的原理

整流电路的原理

整流电路的原理整流电路是一种将交流电转换为直流电的电路。

在现代的电子设备中,由于需要使用直流电,因此整流电路的应用很广泛。

本文将介绍整流电路的原理。

一、整流电路基本构成整流电路通常由四个基本元件组成:变压器、二极管、滤波电容器和负载。

变压器是将交流电转换为所需电压的必要元件,它可以将高压低流量的交流电转换成低压大流量的交流电。

二极管是整流电路中最重要的元件,它可以使电流单向流动。

二极管只有在正向电压作用下才能导电,在反向电压作用下则会发生击穿而烧坏。

滤波电容器可以减小电压的波动,使输出电压更加稳定,并滤掉电路中的高频噪声。

负载是整流电路的最后一个元素,它能够消耗电路输出的电能。

二、整流电路工作原理整流电路的工作原理非常简单,它通过二极管只允许正半周电压通过的特性,将输入的交流电转换为单向的脉冲电压,然后再通过滤波电容器将电压波动降低,从而得到更加稳定的直流电。

如果将一个桥式整流电路连接到高压交流电源上,输入电压的正半周电流将通过一组二极管,而负半周电流则通过另一组二极管,最后输出的电压将近似于直流电压。

这种转换原始的交流电为直流电的过程称为整流。

三、整流电路的分类1. 单相半波整流电路单相半波整流电路如图1所示,它只有一个二极管,用于将交流电转换为单向的电流。

由于只有一半的电压被利用,因此它的效率较低。

图1 单相半波整流电路2. 单相全波整流电路单相全波整流电路如图2所示,它包括四个二极管,在每个半周期内都会采用负载电压输出。

这种电路比半波整流电路更加有效,因为负载电压的峰值会比半波整流电路的峰值高一倍。

图2 单相全波整流电路3. 三相桥式整流电路三相桥式整流电路如图3所示,它包括六个二极管,是一种经常用于高功率应用中的电路。

图3 三相桥式整流电路四、整流电路的应用整流电路广泛应用于电子设备中,例如手机充电器、数码相机、电动车充电器等。

在交流电网中,整流电路也被用于变压器、电机驱动器、大型电容器充电器以及其他类似的设备中。

整流电路PPT课件

整流电路PPT课件
直流输出电压平均值为:
U d 2 1 2 U 2 sitn ( d t)2 2 U 2 ( 1 co ) 0 s .4 U 2 5 1 c 2o(s 3-1)
直流输出电压平均值为:
U d 2 1 2 U 2 sitn ( d t)2 2 U 2( 1 co ) 0 s .4 U 2 5 1 c 2o(s 3-1)
ug
0
ud
0
uVT
0
VT
uVT u d
2
分析时认为晶闸管为理想器件。
id
晶闸管开通关断条件。
R
T为整流变压器,其二次电压为:
u2 2U2si nt
t
① 在电源的正半周,晶闸管VT t ② 承受正向电压。在被触发导通
③ 前,晶闸管处于正向阻断状态, t ④ 电源电压全部加在晶闸管上,
⑤ 负载上的电压为零,流过负载 ⑥ 的电流也为零。
3.1.1 单相半波可控整流电路 3.1.2 单相桥式全控整流电路 3.1.4 单相桥式半控整流电路
3.1.1 单相半波可控整流电路 3.1.2 单相桥式全控整流电路 3.1.4 单相桥式半控整流电路
■整流电路(Rectifier)是电力电子电路中出现最早 的一种,它的作用是将交流电能变为直流电能供给直 流用电设备。
0
u VT 1, 4
0
i2
0
当电源电压下降至零时,负 载电流id也降至零,VT1、 t VT4自然关断。
在电源电压的正半周,晶闸 t 管VT2、VT3始终承受反向电
压而处于截止状态。
t
图3-5 单相桥式全控整流带电阻负载时的电路及波形
ud id
0
u VT 1, 4
③ 在u2的负半周,b点电位高于

整流、滤波、稳流、稳压电路工作原理;

整流、滤波、稳流、稳压电路工作原理;

一、整流电路的工作原理整流电路是将交流电信号转换成直流电信号的电路。

其工作原理主要通过二极管的导通和截止来实现。

在正半周的电压周期内,二极管处于导通状态,电流可以顺利通过;而在负半周的电压周期内,二极管处于截止状态,电流无法通过。

这样,交流电信号经过整流电路后,就可以转化为直流电信号输出。

二、滤波电路的工作原理滤波电路是用来去除整流后直流电信号中的脉动成分,使得输出的电压更加平稳。

其主要原理是通过电容器的充放电来吸收和释放交流电信号中的高频脉动成分。

在充电时,电容器可以吸收一部分脉动成分;在放电时,电容器则会释放出积累的电荷,从而使输出的电压更加稳定。

三、稳流电路的工作原理稳流电路是为了在负载变化时,仍然能够保持输出电流恒定的电路。

其原理是通过负反馈控制电路的工作点,使得在负载变化时,电路可以自动调整输出电流,从而避免因负载变化而导致的输出电流波动。

四、稳压电路的工作原理稳压电路是为了在输入电压波动时,能够保持输出电压恒定的电路。

其工作原理主要包括串联稳压和并联稳压两种方式。

串联稳压是通过调整输出电压与输入电压之间的电压差,以维持输出电压稳定;而并联稳压则是通过电容器和电感器等元件来减小输入电压的波动,从而实现输出电压的稳定。

五、结论整流、滤波、稳流、稳压电路是电子电路中常见的几种基本电路,它们通过不同的原理和组合方式,可以实现对交流电信号的转换和处理,从而得到稳定的直流电信号输出。

在实际应用中,这些电路通常会被应用于各种电子设备和电源系统中,起到了至关重要的作用。

对这些电路的工作原理有深入的了解,对于电子工程领域的从业者来说,是非常重要的。

六、整流、滤波、稳流、稳压电路在电子设备中的应用上文我们已经介绍了整流、滤波、稳流、稳压电路的工作原理,接下来我们将重点谈谈这些电路在电子设备中的应用。

1. 整流电路的应用整流电路是将交流电信号转换成直流电信号的关键电路之一,广泛应用于各种电源设备和电子设备中。

第二章整流电路

第二章整流电路

第2章整流电路1、单相桥式全控整流电路,U2=100V,负载中R=2Ω,L值极大,当α=30°时,要求:①作出u d、i d、和i2的波形;②求整流输出平均电压U d、电流I d,变压器二次电流有效值I2;③考虑安全裕量,确定晶闸管的额定电压和额定电流。

2、单相桥式全控整流电路,U2=100V,负载中R=2Ω,L值极大,反电势E=60V,当=30︒时,要求:①作出u d、i d和i2的波形;②求整流输出平均电压U d、电流I d,变压器二次侧电流有效值I2;③考虑安全裕量,确定晶闸管的额定电压和额定电流。

3、三相桥式全控整流电路,U2=100V,带电阻电感负载,R=5Ω,L值极大,当=60︒时,要求:①画出u d、i d和i VT1的波形;②计算U d、I d、I dT和I VT。

4、单相全控桥,反电动势阻感负载,R=1Ω,L=∞,E=40V,U2=100V,L B=0.5mH,当=60︒时求U d、I d与的数值,并画出整流电压u d的波形。

5、三相半波可控整流电路,反电动势阻感负载,U2=100V,R=1Ω,L=∞,L B=1mH,求当=30︒时、E=50V时U d、I d、的值并作出u d与i VT1和i VT2的波形。

6、三相桥式不可控整流电路,阻感负载,R=5Ω,L=∞,U2=220V,X B=0.3Ω,求U d、I d、I VD、I2和的值并作出u d、i VD和i2的波形。

7、三相全控桥,反电动势阻感负载,E=200V,R=1Ω,L=∞,U2=220V,=60︒,当①L B=0和②L B=1mH情况下分别求U d、I d的值,后者还应求并分别作出u d与i T的波形。

8、单相桥式全控整流电路,其整流输出电压中含有哪些次数的谐波?其中幅值最大的是哪一次?变压器二次侧电流中含有哪些次数的谐波?其中主要的是哪几次?9、三相桥式全控整流电路,其整流输出电压中含有哪些次数的谐波?其中幅值最大的是哪一次?变压器二次侧电流中含有哪些次数的谐波?其中主要的是哪几次?…10、12脉波、24脉波整流电路的整流输出电压和交流输入电流中各含哪些次数的谐波?11、使变流器工作于有源逆变状态的条件是什么?12、什么是逆变失败?如何防止逆变失败?13、单相桥式全控整流电路、三相桥式全控整流电路中,当负载分别为电阻负载或电感负载时,要求的晶闸管移相范围分别是多少?。

课件4----整流电路

课件4----整流电路
整流电路是电源电路中的核心部分,它的作用是将交流电压通过 整流二极管转换成单向脉动性的直流电压,整流是将交流电压转换成 直流电压过程中的关键一步。 无论什么类型的电源电路,都需要整流电路来完成交流电至直流 电的转换。整流电路的类型比较少,但具体电路的变化比较多,电子 电路中基本的整流电路有半波整流电路、全波整流电路和桥式整流电 路。
上一页 下一页 返回
上一页 下一页 返回
3.图解单相桥式整流电路
电 路 名 称
单相桥式整 流电路
电路原理图
波 形 图
单相桥式整流电路的变压器次级绕组不用设中心抽头,但要 用四只整流二极管。从整流电路的输出电压波形中可以看出,通 过桥式整流电路,可以将交流电压转换成单向脉动性的直流电压 ,这一电路作用同全波整流电路一样,也是将交流电压的负半周 转到正半周来。
工作原理
上一页 下一页 返回
图1-2-7 单相桥式整流电路波形图
上一页 下一页 返回
课题2
整流电路的应用
图1-2-8 单相桥式整流电路的电流通路
上一页 下一页 返回
(2)负载RL上直流电压和电流的计算
在单相桥式整流电路中,交流电在一个周期内的两个半波都有 同方向的电流流过负载,因此在同样的U2时,该电路输出的电流和电 压均比半波整流大一倍。 输出电压为:UL≈0.9U2 依据负载RL上的电压UL求得整流变压器副边电压:
流过负载RL的直流电流平均值:
上一页 下一页 返回
(3)整流二极管上的电流和最大反向电压
在桥式整流电路中,由于每只二极管只有半周是导 通的,所以流过每只二极管的平均电流只有负载电流的一 半,即
在单相桥式整流电路中,每只二极管承受的最大反向电 压也是u2的峰值,即

整流电路的概念

整流电路的概念

整流电路的概念整流电路概念整流电路是指将交流电转化为直流电的电路。

在电力系统中,交流电是主要的供电形式,但在很多电器设备中,需要使用直流电才能正常工作。

因此,通过整流电路能够将交流电转化为直流电,以满足电器设备的使用需求。

类型整流电路可以分为以下几种类型:•单相半波整流电路:–只有一个半周的交流电流通过折线的方法转化为直流电流。

–低成本、简单实现,但整流效率较低。

•单相全波整流电路:–通过桥式整流电路,将两个半周的交流电流转化为直流电流。

–整流效率较高,普遍应用于家庭电器和电子设备中。

•三相全波整流电路:–由三相交流电源通过整流器组成,将交流电转化为直流电。

–在工业领域得到广泛应用,如大型电机驱动系统。

原理整流电路的工作原理基于二极管的单向导电特性。

在单相半波整流电路中,交流电输入后,通过单个二极管将正半周的交流电流导通,而阻断负半周的交流电流,从而形成直流输出。

在单相全波整流电路中,桥式整流器由四个二极管组成,交流电输入后,正负半周的交流电流都能够导通,从而形成直流输出。

在三相全波整流电路中,利用三相交流电源的相位差,通过整流器实现了更加稳定和高效的整流。

应用整流电路在各个领域都有广泛的应用,包括:•家庭电器:电视、冰箱、洗衣机等使用直流电的家用电器•电子设备:手机充电器、电脑适配器等直流电供应设备•工业驱动器:用于控制和驱动电机,如变频器、伺服驱动器等整流电路的设计和实现对于保证电器设备的正常工作和提高能量利用效率都具有重要作用。

设计要点设计整流电路需要考虑以下几个要点:1.选择合适的整流器元件:常见的整流器元件有二极管、可控硅等,根据需求选择适当的元件。

2.考虑负载和电流需求:根据所驱动的负载和所需的电流大小来选择合适的整流电路。

3.控制电压波动:通过滤波电路降低输出直流电压的纹波,确保电压的稳定性。

4.防止过流和过热:采用过流保护和过热保护措施,确保整流电路的安全稳定运行。

优势和挑战整流电路的优势包括:•能够将交流电转化为直流电,满足电器设备的使用需求。

整流电路总结

整流电路总结

整流电路总结整流电路是将沟通电能变为直流电能供应直流用电设备。

它可以从各个角度进行分类,主要的分类方法有:按组成的器件可分为不行控、半控、全控三种;按电路结构可以分为桥式电路和零式电路;按沟通输入相数可分为单相电路和多相电路,其中多相电路在实际应用中乂以三相电路居多。

1单相整流与三相整流区分及其应用单相整流与三相整流区分如下表lo由上表可知,单相整流沟通输入相数为,三相整流沟通输入相数为3;单相整流输出电压波形幅度大,三相整流输出电压波形幅度小。

单相整流主要应用于小功率场合,三相整流应用于大功率场合。

例如某用电设备一相电流为60A,电线要用10平方(皇米)以上,分开三相则每相为20A, 电线用4平方就可以了。

2半波、全波和桥式整流各自的特点和区分以单相整流电路为例。

单相半波整流电路有如下特点:①电路简洁,使用器件少;②无滤波电路时,整流电压的直流重量较小,最大为0.45"2;③整流电压脉动大;④变压器利用率低。

单相全波整流电路有如下特点:①使用的整流器件比半波整流时多一倍,变压器带中心抽头;②无滤波电路时,整流电压的直流重量较小,最大为0.9,2;③整流电压脉动较小,比半波整流小一倍;④变压器利用率比半波整流高;⑤整流器件所受的反向电压较高。

三相桥式整流电路又如下特点:①使用的整流器件比全波多一倍②无滤波电路时,整流电压的直流重量较小,最大为2.34“2;③整流电压脉动与全波整流相同;④每个整流器件所受到的反向电压为电源电压峰值;⑤变压器利用率较全波整流高。

上述三种电路中,由于单相半波整流电路中变压器二次侧存在直流重量,会造成变压器贴心直流磁化,影响变压器的正常工作。

在其余两种整流电路上不存在直流磁化现象。

从图1典型的磁化曲线上可以看出:当磁场的强度增加时,磁芯被磁化的程度是随着增加的,但当接着减小磁场强度时,磁化的程度并不从上升时的曲线关系返回,而是当磁场强度降到。

时还有剩磁。

这叫磁滞现象,必需用反向施加磁图1基本磁化曲线当磁场强度很大时磁化的程度不再随着磁场强度的增高而增高可,这叫做磁饱和现象。

十例常见经典整流电路

十例常见经典整流电路

图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益。

图2优点是匹配电阻少,只要求R1=R2。

图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3。

图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点。

图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计。

图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K。

图8的电阻匹配关系为R1=R2。

图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称。

图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性。

图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡。

精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态。

结论:虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种。

电力电子技术-第三章--单相整流讲解

电力电子技术-第三章--单相整流讲解

3.1.1 单相半波可控整流电路
(Single Phase Half Wave Controlled Rectifier)
1. 电阻负载的工作情况
在工业生产中,某些负载基本上是电阻性的, 如电阻加热炉、电解和电镀等。
电阻性负载的特点是电压与电流成正比,波形 相同并且同相位,电流可以突变。 • 1. 工作原理 • 首先假设以下几点: • (1) 开关元件是理想的,即开关元件(晶闸管)导通 时,通态压降为零,关断时电阻为无穷大; • 一般认为晶闸管的开通与关断过程瞬时完成。 • (2) 变压器是理想的,即变压器漏抗为零,绕组的 电阻为零、励磁电流为零。
id 的连续波形每周期分为两 段:u2过零前一段流经SCR, 时宽为π-α;之后一段流经 VDR ,时宽为π+α。由两器 件电流拼合而成。
若近似认为id为一条水平线,恒为Id,则有
SCR 平均值: I a I
dVT
2 d
(2-5)
SCR 有效值:
IVT
1
2
a
I
d2d
(t
在ωt=0到α期间,晶闸管uAK大于零, 但门极没有触发信号,处于正向关断状
态,输出电压、电流都等于零。
在ωt=α时,门极有触发信号,晶闸管 被触发导通,负载电压ud= u2。 在ωt1时刻,触发VT使其开通,u2加 于负载两端,id从0开始增加。这时,交 流电源一方面供给电阻R消耗的能量, 另一方面供给电感L吸收的磁场能量。
)

a 2
I
(2-6)
d
VDR 平均值: VDR 有效值:
a IdVDR 2 Id
(2-7)
IVDR
1
2
2 a

整流电路知识点总结

整流电路知识点总结

整流电路知识点总结一、整流电路的概念。

1. 定义。

- 整流电路是将交流电转换为直流电的电路。

其基本原理是利用二极管等具有单向导电性的电子元件,使交流电的正半周或负半周通过,从而在负载上得到单方向的脉动直流电。

2. 作用。

- 在电子设备中,许多电路需要直流电源供电,如电子计算机、通信设备、各种电子仪器等。

而市电提供的是交流电,整流电路就是将交流市电转换为适合这些设备使用的直流电的关键电路部分。

二、常见的整流电路类型。

(一)半波整流电路。

1. 电路结构。

- 由一个二极管和负载电阻组成。

交流电源的一端连接二极管的阳极,另一端连接负载电阻的一端,负载电阻的另一端与二极管的阴极相连。

2. 工作原理。

- 在交流电源的正半周时,二极管处于正向偏置状态,电流可以通过二极管流经负载电阻,在负载电阻上产生电压降。

而在交流电源的负半周时,二极管处于反向偏置状态,电流不能通过二极管,负载电阻上没有电流通过。

这样,在负载电阻上就得到了单向的脉动直流电压,其输出电压的波形是输入交流电压正半周的一部分,负半周被削去,所以称为半波整流。

3. 输出电压计算。

- 设输入交流电压的有效值为U_2,则半波整流电路输出电压的平均值U_O 为U_O=0.45U_2。

4. 优缺点。

- 优点:电路简单,使用的元件少,成本低。

- 缺点:输出电压脉动大,直流成分低,电源利用率低,只利用了交流电源的半个周期。

(二)全波整流电路。

1. 电路结构。

- 有两种常见结构,一种是使用两个二极管和一个中心抽头的变压器;另一种是使用四个二极管组成的桥式整流电路。

- 在中心抽头变压器全波整流电路中,变压器的次级绕组有中心抽头,将次级绕组分为两个相等的部分。

两个二极管分别连接在次级绕组的两端与负载电阻之间,且二极管的阴极连接在一起作为输出的正极,变压器中心抽头作为输出的负极。

- 桥式整流电路由四个二极管D1 - D4组成。

交流电源的两端分别连接到桥式电路的一对对角线上,负载电阻连接在另外一对对角线上。

第2章整流电路-单相整流电路

第2章整流电路-单相整流电路

ud id
t1

uT1,4
t
t
i2
t
图2-5 单相桥式全控整流电路电阻负载 时电路及波形
§2
§2.1
单相桥式全控整流电路
电阻性负载
ud id
(1 cos )
数量关系
⑴ 输出直流电压的平均值Ud :
Ud 1
t1



2U 2 sin td (t )
2U 2

uT1,4
负载:是各种工业设备,在讨论整流电路的原理时,各种负载
可等效为电阻性负载、电感性负载、反电动势负载等。 控制电路:包括功率器件的触发(驱动)电路和闭环控制电路 等,它是实现整流电路正常工作、达到预定目标的控制环节。
概 述

按交流电源的相数划分,整流电路又分为单相可控 整流电路和三相可控整流电路。 本章介绍单相可控整流电路并假定功率开关元件是理 想的(即导通压降为零、关断漏电流为零、开关时间为 零)。
2.1 单相可控整流电路
1 2 3 4 单相半波可控整流电路 单相桥式全控整流电路
单相桥式半控整流电路
晶闸管触发电路
基础知识预习
周期 T 、频率 f 、角频率 、角度 的关系:
T 1 / f 2 f t
电流电压的平均值与有效值:平均值为一个周期内瞬时值的积分 再平均;有效值为一个周期内瞬时值平方的积分再平均后再开方 (称方均根)。 直流电的平均值与有效值相等。周期性变化 的电压或电流用有效值来标定,其含义是从 作功角度上讲,有效值等同于相同幅值的直 流电压或电流。对于正弦波交流电,半周平 均值为有效值的 0.900倍,有效值是峰值的 0.707 倍。
u2 u1

常见的整流电路

常见的整流电路

常见的整流电路整流电路是将交流电信号转换为直流电信号的电路。

在实际应用中,整流电路被广泛应用于各种类型的电子设备中,包括家庭用品、工业设备和汽车等。

常见的整流电路包括单相半波整流、单相全波整流、三相半波整流和三相全波整流等。

一、单相半波整流1.1 原理单相半波整流电路是最简单的一种整流电路,它由一个二极管和一个负载组成。

当二极管导通时,它会将正弦波的上升部分传递给负载,而下降部分则被截断。

当二极管截止时,负载上没有输出信号。

1.2 特点单相半波整流电路具有以下特点:(1)输出直流信号具有较大的脉动性。

(2)效率较低。

(3)适用于小功率负载。

二、单相全波整流2.1 原理单相全波整流电路由两个二极管和一个中心引线组成。

它可以将正弦波的上升和下降部分都传递给负载,从而提高了效率并减少了输出信号的脉动性。

2.2 特点单相全波整流电路具有以下特点:(1)输出直流信号具有较小的脉动性。

(2)效率较高。

(3)适用于中等功率负载。

三、三相半波整流3.1 原理三相半波整流电路由三个二极管和一个负载组成。

它可以将正弦波的上升部分传递给负载,而下降部分则被截断。

当一个二极管导通时,其他两个二极管都处于截止状态。

3.2 特点三相半波整流电路具有以下特点:(1)输出直流信号具有较大的脉动性。

(2)效率较低。

(3)适用于小功率负载和需要使用三相电源的设备。

四、三相全波整流4.1 原理三相全波整流电路由六个二极管和一个中心引线组成。

它可以将正弦波的上升和下降部分都传递给负载,从而提高了效率并减少了输出信号的脉动性。

4.2 特点三相全波整流电路具有以下特点:(1)输出直流信号具有较小的脉动性。

(2)效率较高。

(3)适用于大功率负载和需要使用三相电源的设备。

五、总结整流电路是将交流电信号转换为直流电信号的电路,常见的整流电路包括单相半波整流、单相全波整流、三相半波整流和三相全波整流等。

每种整流电路都有自己独特的特点和适用范围。

在实际应用中,我们需要根据具体情况选择合适的整流电路。

整流电路

整流电路

整流电路百科名片整流电路(rectifying circuit)把交流电能转换为直流电能的电路。

大多数整流电路由变压器、整流主电路和滤波器等组成。

它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。

整流电路通常由主电路、滤波器和变压器组成。

20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。

滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。

变压器设置与否视具体情况而定。

变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。

目录整流电路-简介对整流电路的意义有一下总结:整流电路-分类方式按组成的器件1按电路结构按变压器二次侧电流的方向1按控制方式1按引出方式的不同1整流电路-作用原理一、半波整流电路1二、全波整流电路1三、桥式整流电路整流电路-元件选择展开编辑本段整流电路-简介整流电路的作用是将交流降压电路输出的电压较低的交流电转换成单向脉动性直流电,这就是交流电的整流过程,整流电路主要由整流二极管组成。

经过整流电路之后的电压已经不是交流电压,而是一种含有直流电压和交流电压的混合电压,习惯上称单向脉动性直流电压。

编辑本段对整流电路的意义有一下总结:1、电源电路中的整流电路主要有半波整流电路、全波整流电路和桥式整流三种,倍压整流电路用于其它交流信号的整流,例如用于发光二极管电平指示器电路中,对音频信号进行整流。

2、前三种整流电路输出的单向脉动性直流电特性有所不同,半波整流电路输出的电压只有半周,所以这种单向脉动性直流电主要成分仍然是50Hz的,因为输入交流市电的频率是50Hz,半波整流电路去掉了交流电的半周,没有改变单向脉动性直流电中交流成分的频率;全波和桥式整流电路相同,用到了输入交流电压的正、负半周,使频率扩大在倍为100Hz,所以这种单向脉动性直流电的交流成分主要成分是100Hz的,这是因为整流电路将输入交流电压的一个半周转换了极性,使输出的直流脉动性电压的频率比输入交流电压提高了一倍,这一频率的提高有利于滤波电路的滤波。

第三章 整流电路

第三章 整流电路

c) 0 i2 d) 0
ωt
ωt
2-19
3.1.2 单相桥式全控整流电路
2)带阻感负载的工作情况 ) 假设电路已工作于稳态,id 的平 均值不变。 假设负载电感很大,负载电流id 连续且波形近似为一水平线。
u2过零变负时,晶闸管VT1和VT4 并不关断。 至 ωt=π+α 时 刻 , 晶 闸 管 VT1 和 VT4关断,VT2和VT3两管导通。 VT2 和VT3 导通后,VT1 和VT4 承 受反压关断,流过VT1和VT4的电 流迅速转移到VT2和VT3上,此过 程称换相 换相,亦称换流 换流。 换相 换流
第3章 章
3.1 3.2 3.3 3.4 3.5 3.6 3.7
整流电路
单相可控整流电路 三相可控整流电路 变压器漏感对整流电路的影响 电容滤波的不可控整流电路 整流电路的谐波和功率因数 大功率可控整流电路 整流电路的有源逆变工作状态
3.8 晶闸管直流电动机系统 3.9 相控电路的驱动控制 本章小结
2U2 sinωtd(ωt) =
2 2
π
U2 cosα = 0.9U2 cosα (3-15)
2
晶闸管移相范围为0~90°。 ° 晶闸管承受的最大正反向电压均为 电流的平均值和有 id i VT O
1,4
ωt
ωt
Id Id Id Id Id
晶闸管导通角θ与a无关,均为180°。
2-1
第3章 章
整流电路:
整流电路·引言 整流电路 引言
出现最早的电力电子电路,将交流电变为直流电。
整流电路的分类: 整流电路的分类
按组成的器件可分为不可控 半控 全控 不可控、半控 全控三种。 不可控 半控、全控 按电路结构可分为桥式电路 零式电路。 桥式电路和零式电路 桥式电路 零式电路。 按交流输入相数分为单相电路 多相电路。 单相电路和多相电路 单相电路 多相电路。 按变压器二次侧电流的方向是单向或双向,又分为 单拍电路和双拍电路 单拍电路 双拍电路。 双拍电路
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章整流电路主要内容:单相可控整流电路的工作原理、波形分析及计算,续流二极管的作用及有关波形分析。

三相半波整流电路的波形分析及计算。

三相全控桥的工作原理、波形分析及计算。

整流变压器原、附边绕组电流有效值及容量计算。

带平衡电抗器的双反星性大功率整流电路工作原理及波形分析。

变压器漏抗对整流电路的影响。

电路中谐波的产生、组成及抑制方法。

整流电路的谐波和功率因数。

整流电路的有源逆变工作原理及实施逆变的条件,逆变颠覆及防止措施。

触发脉冲与主回路电压的同步,移相工作原理。

重点:单相可控整流电路的工作原理、波形分析及计算。

三相半波整流电路的波形分析及计算。

三相全控桥的工作原理、波形分析及计算。

变压器漏抗对整流电路的影响。

电路中谐波的产生、组成及抑制方法。

整流电路的谐波和功率因数。

整流电路的有源逆变工作原理及实施逆变的条件,逆变颠覆及防止措施。

触发脉冲与主回路电压的同步,移相工作原理。

难点:三相半波整流电路的波形分析及计算。

三相全控桥的工作原理、波形分析及计算。

整流电路的有源逆变工作原理及实施逆变的条件,逆变颠覆及防止措施。

触发脉冲与主回路电压的同步,移相工作原理。

基本要求:掌握单相各、三相半波、三相全控整流电路在不同性质负载下的工作原理及波形分析,控制角移相范围,电流有效值、平均值的计算,对相位控制触发脉冲的基本要求。

理解以带平衡电抗器的双反星性电路为代表的大功率整流电路工作原理。

掌握变压器漏抗对整流电路的影响。

了解电路中谐波的产生、组成及拟制方法。

掌握整流电路的谐波和功率因数。

掌握整流电路的有源逆变工作状态及实施逆变的条件,逆变状态时的能量分析及其物理概念;掌握三相桥式逆变电路对触发脉冲的要求,逆变颠覆及防止措施。

掌握触发脉冲与主回路电压的同步问题,移相工作原理及移相范围,了解集成触发器的工作原理及应用。

整流电路:出现最早的电力电子电路,将交流电变为直流电;按组成的器件可分为不可控、半控、全控三种;按电路结构可分为桥式电路和零式电路;按交流输入相数分为单相电路和多相电路;按变压器二次侧电流的方向是单向或双向,又分为单拍电路和双拍电路。

1 单相可控整流电路主要内容:单相可控整流电路的工作原理、波形分析及计算,续流二极管的作用及有关波形分析。

重点:单相可控整流电路的工作原理、波形分析及计算。

基本要求:掌握单相控整流电路在不同性质负载下的工作原理及波形分析,控制角移相范围,电流有效值、平均值的计算,对相位控制触发脉冲的基本要求。

整流电路:出现最早的电力电子电路,将交流电变为直流电。

(1)单相桥式半波整流电路a 、带电阻负载的工作情况Single Phase Half Wave Controlled Rectifier.变压器T 起变换电压和隔离的作用。

电阻负载的特点:电压与电流成正比,两者波形相同结合图2-1进行工作原理及波形分析。

几个概念的解释:U d 为脉动直流,波形只在U 2正半周内出现,故称“半波”整流。

采用了可控器件晶闸管,且交流输入为单相,故该电路为单相半波可控整流电路。

U d 波形在一个电源周期中只脉动1次,故该电路为单脉波整流电路。

几个重要的基本概念:触发延迟角:从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度,用a 表示,也称触发角或控制角。

导通角:晶闸管在一个电源周期中处于通态的电角度称为,用θ表示。

基本数量关系。

直流输出电压平均值为:(2-1)VT 的a 移相范围为180°。

这种通过控制触发脉冲的相位来控制直流输出电压大小的方式称为相位控制方式,简称相控方式。

直流回路的平均电流为:2cos 145.02α+==R U R U I d d (2-2)回路中的电流有效值为:παπαπωαππα22sin 41sin 221222-+=⎪⎪⎭⎫ ⎝⎛===⎰R U t d R U I I I R T (2-3)由式2. 2、式2. 3可得流过晶闸管的电流波形系数:)cos 1(2)(42sin 2ααππαπ+-+==d f I I K (2-4) 图2-1 单相半波可控整流电路及波形电源供给的有功功率为:UI R I P R ==2 (2-5)其中U 为R 上的电压有效值: ()παπαπωωπ22sin 41sin 221222-+==⎰U t d t U U电源侧的输入功率为:I U S S 22==功率因素为:παπαπφ22sin 41cos 22-+===U R I S P (2-6) 当α=0时22cos =α,α越大,cos α越低,α=π。

可见,尽管是电阻负载,电源的功率因素也不为1。

这是单相半波电路的缺陷。

例2-1 单相半波可控整流电路,电阻负载,由220V 交流电源直接供电。

负载要求的最高平均电压为60V ,相应平均电流为20A ,试选择晶闸管元件,并计算在最大输出情况下的功率因数。

解:(1)先求出最大输出时的控制角α,根据式(2-1)可得:212.0122045.0602145.02cos 2=-⨯⨯=-=U U d α 8.77=α (2)求回路中的电流有效值,根据式(2-4)可得:AI I I I K T d f 2.412006.206.222=⨯====(3)求晶闸管两端承受的正、反向峰值电压U m :V U U m 31122== (4)选择晶闸管:晶闸管通态平均电流,可按下式计算与选择:A I A I I AV T T AV T 505.52~4.3957.1)2~5.1()()(===取 晶闸管电压定额可按下式计算与选择:V U U m TE 933~6223~2==)(取 1000=TN U V可选用KP50-10型晶闸管。

(5)由式(2-6)计算最大输出情况下功率因数: b 带阻感负载的工作情况:562.0cos 22===U R I S P ϕ阻感负载的特点:电感对电流变化有抗拒作用,使得流过电感的电流不能发生突变。

电力电子电路的一种基本分析方法。

通过器件的理想化,将电路简化为分段线性电路,分段进行分析计算。

对单相半波电路的分析可基于上述方法进行:当VT处于断态时,相当于电路在VT处断开,i d=0。

当VT处于通态时,相当于VT短路。

图2-3 单相半波可控整流电路的分段线性等效电路a) VT处于关断状态 b) VT处于导通状态图2-2 带阻感负载的单相半波电路及其波形为避免U d太小,在整流电路的负载两端并联续流二极管与没有续流二极管时的情况比较,在u2正半周时两者工作情况一样。

当u2过零变负时,VD R导通,u d为零。

此时为负的u2通过VD R向VT施加反压使其关断,L储存的能量保证了电流i d在L-R-VD R回路中流通,此过程通常称为续流。

续流期间u d为0,u d中不再出现负的部分。

数量关系若近似认为i d为一条水平线,恒为I d,则有:(2-5)(2-6)(2-7)(2-8)单相半波可控整流电路的特点简单,但输出脉动大,变压器二次侧电流中含直流分量,造成变压器铁芯直流磁化实际上很少应用此种电路。

分析该电路的主要目的在于利用其简单易学的特点,建立起整流电路的基本概念。

图2-4 单相半波带阻感负载有续流二极管的电路及波形(2)单相桥式全控整流电路单相整流电路中应用较多的a带电阻负载的工作情况工作原理及波形分析见图2-5:VT1和VT4组成一对桥臂,在u2正半周承受电压u2,得到触发脉冲即导通,当u2过零时关断;VT2和VT3组成另一对桥臂,在u2正半周承受电压-u2,得到触发脉冲即导通,当u2过零时关断。

数量关系:(2-9)a角的移相范围为180°。

(2-10)(2-11)(2-12)(2-13)(2-14)不考虑变压器的损耗时,要求变压器的容量为S =U 2I 2 。

b 带阻感负载的工作情况为便于讨论,假设电路已工作于稳态,i d 的平均值不变。

假设负载电感很大,负载电流i d 连续且波形近似为一水平线u 2过零变负时,由于电感的作用晶闸管VT 1和VT 4中仍流过电流i d ,并不关断。

至ωt=π+ a 时刻,给VT 2和VT 3加触发脉冲,因VT 2和VT 3本已承受正电压,故两管导通。

VT 2和VT 3导通后,u 2通过VT 2和VT 3分别向VT 1和VT 4施加反压使VT 1和VT 4关断,流过VT 1和VT 4的电流迅速转移到VT 2和VT 3上,此过程称换相,亦称换流。

(2-15)晶闸管移相范围为90°。

晶闸管承受的最大正反向电压均为22U 。

图2-5 单相全控桥式带电阻负载时的电路及波形晶闸管导通角θ与a无关,均为180°。

变压器二次侧电流i2的波形为正负各180°的矩形波,其相位由a角决定,有效值I2=I d。

图2-6 单相全控桥带阻感负载时的电路及波形c 带反电动势负载时的工作情况在|u2|>E时,才有晶闸管承受正电压,有导通的可能,导通之后,u d=u2,,直至|u2|=E,i d即降至0使得晶闸管关断,此后u d=E与电阻负载时相比,晶闸管提前了电角度δ停止导电,δ称为停止导电角。

(2-16)图2-7 单相桥式全控整流电路接反电动势—电阻负载时的电路及波形在a角相同时,整流输出电压比电阻负载时大。

如图2-7b所示i d波形在一周期内有部分时间为0的情况,称为电流断续。

与此对应,若i d波形不出现为0的点的情况,称为电流连续。

当触发脉冲到来时,晶闸管承受负电压,不可能导通。

为了使晶闸管可靠导通,要求触发脉冲有足够的宽度,保证当wt=δ时刻有晶闸管开始承受正电压时,触发脉冲仍然存在。

这样,相当于触发角被推迟为δ。

负载为直流电动机时,如果出现电流断续则电动机的机械特性将很软。

为了克服此缺点,一般在主电路中直流输出侧串联一个平波电抗器,用来减少电流的脉动和延长晶闸管导通的时间。

这时整流电压u d的波形和负载电流i d的波形与电感负载电流连续时的波形相同,u d的计算公式亦一样。

为保证电流连续所需的电感量L可由下式求出:(2-17)图2-8 单相桥式全控整流电路带反电动势负载串平波电抗器,电流连续的临界情况(3)单相全波可控整流电路图2-9 单相全波可控整流电路及波形单相全波与单相全控桥从直流输出端或从交流输入端看均是基本一致的。

两者的区别:(1)单相全波中变压器结构较复杂,绕组及铁芯对铜、铁等材料的消耗多;(2)单相全波只用2个晶闸管,比单相全控桥少2个,相应地,门极驱动电路也少2个;但是晶闸管承受的最大电压为,是单相全控桥的2倍;(3)单相全波导电回路只含1个晶闸管,比单相桥少1个,因而管压降也少1个从上述(2)、(3)考虑,单相全波电路有利于在低输出电压的场合应用。

(4)单相桥式半控整流电路图2-10 单相桥式半控整流电路,有续流二极管,阻感负载时的电路及波形单相全控桥中,每个导电回路中有2个晶闸管,为了对每个导电回路进行控制,只需1个晶闸管就可以了,另1个晶闸管可以用二极管代替,从而简化整个电路。

相关文档
最新文档