变力做功的计算
变力做功的计算
变力做功的计算 Prepared on 22 November 2020变力做功的计算公式适用于恒力功的计算,对于变力做功的计算,一般有以下几种方法。
一、微元法对于变力做功,不能直接用进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F是恒力,用求出每一小段内力F所做的功,然后累加起来就得到整个过程中变力所做的功。
这种处理问题的方法称为微元法,这种方法具有普遍的适用性。
但在高中阶段主要用于解决大小不变、方向总与运动方向相同或相反的变力的做功问题。
例1. 用水平拉力,拉着滑块沿半径为R的水平圆轨道运动一周,如图1所示,已知物块的质量为m,物块与轨道间的动摩擦因数为。
求此过程中摩擦力所做的功。
图1思路点拨:由题可知,物块受的摩擦力在整个运动过程中大小不变,方向时刻变化,是变力,不能直接用求解;但是我们可以把圆周分成无数小微元段,如图2所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果。
图2正确解答:把圆轨道分成无穷多个微元段,摩擦力在每一段上可认为是恒力,则每一段上摩擦力做的功分别为,,…,,摩擦力在一周内所做的功。
误点警示:对于此题,若不加分析死套功的公式,误认为位移s=0,得到W=0,这是错误的。
必须注意本题中的F是变力。
小结点评:对于变力做功,一般不能用功的公式直接进行计算,但有时可以根据变力的特点变通使用功的公式。
如力的大小不变而方向总与运动方向相同或相反时,可用计算该力的功,但式子中的s不是物体运动的位移,而是物体运动的路程。
[发散演习]如图3所示,某个力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向任何时刻与作用点处的切线方向保持一致。
则转动半圆,这个力F做功多少图3答案:。
二、图象法在直角坐标系中,用纵坐标表示作用在物体上的力F,横坐标表示物体在力的方向上的位移s。
如果作用在物体上的力是恒力,则其F-s图象如图4所示。
如何求变力做功
F 图1如何求变力做功在高中阶段求变力做功的问题是很常见的。
既可以运用公式W=FScos α来求解,又可以运用动能定理、功能原理等来求解。
对于具体问题要具体分析。
为此笔者在教学中总结了以下几种方法。
一、运用公式W=FScos α求解在不知物体初、末位置的速度时,就无法运用动能定理或功能原理求解,只有将变力转化为恒力,依据功的定义式W=FScos α求解。
例1 如图1所示,某个力F 作用于半径为R 的圆盘, 力F 的大小不变,但方向始终与过力的作用点的圆盘的切线 一致,则转动圆盘一周该力做多少功。
分析与解 在转动转盘一周过程中,力F 的方向时刻变化,但每一瞬时力F 总是与该瞬时的速度同向(切线方向),既F 在每瞬时与转盘转过的极小位移∆s 同向。
这样,无数瞬时的极小位移∆s 1,∆s 2,∆s 3…∆s n 都与当时的F 方向同向。
因而在转动一周过程中,力F 做的功应等于在各极小位移段所做功的代数和。
即W=F ∆s 1+F ∆s 2+…F ∆s n= F(∆s 1+∆s 2+∆s 3+…∆s n )=F 2πR当变力始终与速度在同一直线上或成某一固定角度时可把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W=FScos α计算功,而且变力所做功等于变力在各小段所做功之和。
再者,若问题中的变力与位移成线形关系,即F=ks+b ,其F-s 图象如图2所示。
则图中阴影部分的面积大小在数值上等于变力所做功的大小,即W=)(21221s s F F -+。
也就是说,变力F 由F 1线形地变化到F 2的过程中所做的功等于该过程的平均力221F F F +=-所做的功。
二、用动能定理求解动能定理告诉我们,外力对物体所做的功等于物体动能的变化,即W 外 =∆E K ,W 外系指物体受到的所有外力对物体所做功的代数和,∆E K 是物体动能的变化量。
例2 如图3所示,质量为m 的物块在半径为R 的半球形容器中从上部边缘A 由静止起下滑,滑到最底点B时对容器底部的压力为2mg 。
变力做功的六种常见计算方法
变力做功的六种常见计算方法s,但是学生在应用在高中阶段,力做功的计算公式是W=FScoα时,只会计算恒力的功,对于变力的功,高中学生是不会用的。
下面介绍六种常用的计算变力做功的方法,希望对同学们有所启发。
方法一:用动能定理求若物体的运动过程很复杂,但是如果它的初、末动能很容易得出,而且,除了所求的力的功以外,其他的力的功很好求,可选用此法。
例题1:如图所示。
质量为m的物体,用细绳经过光滑的小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个数值F时,转动半径为R;拉力逐渐减小到0.25F时,物体仍然做匀速圆周运动,半径为2R,求外力对物体所做的功的大小。
解析:当拉力为F时,小球做匀速圆周运动,F提供向心力,则F=mv12/2R。
此题中,当半径由R2/R;当拉力为0.25F时,0.25F=mv2变为2R的过程中,拉力F为变力,由F变为2F,我们可以由动能定2=0.25RF。
理,求2—0.5mv2得外力对物体所做的功的大小W=0.5mv1方法二:用功率的定义式求若变力做功的功率和做功时间是已知的,则可以由W=Pt来求解变力的功。
例题2:质量为m=500吨的机车,以恒定的功率从静止出发,经过时间t=5min在水平路面上行使了s=2.25km,速度达到最大值v=54km/h。
假设机车受到的阻力为恒力。
求机车在运动中受到的阻力大小。
解析:机车先做加速度减小的变加速直线运动,再做匀速直线运动。
所以牵引力F先减小,最后,F恒定,而且跟阻力f平衡,此时有功率P=Fv=fv。
在变加速直线运动阶段,牵引力是变力,它在此阶段所作的功可以由w=Pt来求。
由动能定理,Pt—fs=0.5mv2—0,把P=Fv=fv代入得,阻力f=25000N。
方法三:平均力法如果变力的变化是均匀的(力随位移线性变化),而且方向不变时,可以把变力的平均值求出后,将其当作恒力代入定义式即可。
例题3:如图所示。
轻弹簧一端与竖直墙壁连接,另一端与一质量为m的木块相连,放在光滑的水平面上,弹簧的劲度系数为k,开始时弹簧处于自然状态。
变力做功的计算
根据动能定理,子弹减少的动能用于克服阻力做功,有
②
③
①②③联立求解得 。
解法二:设阻力与深度间的比例系数为k,Ff=ks。由于Ff随位移是线性变化的,所以Ff的平均值为
。
根据动能定理,有
①
②
①②联立求解得 。
小结点评:若力随位移按一次方函数关系变化时,求功时可用平均作用力来代替这个变力,用恒力功的公式求功,也可用F-s图象求功;若力随位移的变化不是一次函数关系,则可用图象求功,而不能用平均值求功。
[发散演习]
如图3所示,某个力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向任何时刻与作用点处的切线方向保持一致。则转动半圆,这个力F做功多少?
图3
答案:31.4J。
二、图象法
在直角坐标系中,用纵坐标表示作用在物体上的力F,横坐标表示物体在力的方向上的位移s。如果作用在物体上的力是恒力,则其F-s图象如图4所示。经过一段时间物体发生的位移为s0,则图线与坐标轴所围成的面积(阴影面积)在数值上等于力对物体做的功W=Fs,s轴上方的面积表示力对物体做正功(如图4(a)所示),s轴下方的面积表示力对物体做负功(如图4(b)所示)。
图5
例2.子弹以速度 射入墙壁,入射深度为h。若子弹在墙中受到的阻力与深度成正比,欲使子弹的入射深度为2h,求子弹的速度应增大到多少?
思路点拨:阻力随深度的变化图象如图6所示,由图象求出子弹克服阻力做的功,再由动能进行求解。
图6
正确解答:解法一:设射入深度为h时,子弹克服阻力做功W1;射入深度为2h时,子弹克服阻力做功W2。由图6可知
。物体的位移 。在这一过程中弹力的功在数值上等于图8中梯形OADC的面积,即 ,所以物块的最大动能为
变力做功的六种常见计算方法
变力做功的六种常见计算方法变力做功是指当力的大小和方向随着对象运动的位置而变化时,力对物体所做的功。
下面将介绍六种常见的计算变力做功的方法。
1.通过力的曲线面积计算功:当力的大小和方向随着位置的变化而变化时,可以通过绘制力与位置的曲线图,然后计算曲线下的面积来求得所做的功。
2.利用求和法计算功:将运动过程划分成若干个小的位移段,对每个位移段内力的大小和方向保持不变,然后通过求和法计算每个位移段上力所做的功,最后将所有位移段上力所做的功相加得到总功。
3.应用积分法计算功:对力和位移变化连续的问题,可以利用微积分中的积分法来计算变力做功。
通过计算力在位移方向上的积分,即对力关于位移的函数进行积分,来得到变力做功的结果。
4.利用功率和时间计算功:如果已知物体在一段时间内所受到的平均力和物体的平均速度,可以利用功率和时间的关系来计算功。
功率定义为单位时间内做功的大小,根据功率公式P=W/t,其中W是做功的大小,t是时间,可以通过已知的其它量来计算功。
5.利用速度和质量计算功:在一些特定的情况下,可以利用物体的速度和质量来计算变力做功。
根据力学中的动能定理,物体的动能变化等于外力所做的功,其中动能定义为 K=1/2 mv^2,其中 m 是质量, v 是速度。
6.利用万有引力计算功:当物体受到的力是万有引力时,可以利用万有引力公式来计算变力做功。
万有引力公式为F=GmM/r^2,其中F是力,m和M是物体的质量,G 是万有引力常数,r是两物体之间的距离。
通过将力乘以物体的位移并将结果进行积分,可以得到变力做功的计算结果。
这些是常见的计算变力做功的方法,根据具体问题的条件和要求,选择适合的方法来计算变力做功。
变力做功的六种常见计算方法
变力做功的六种常见计算方法第一种方法是曲线切线式。
在物体沿曲线运动的情况下,可以通过计算力的切线分量与物体速度的乘积来确定变力做功的大小。
具体计算方法是,首先需要确定物体在其中一时刻的速度,然后取该时刻的力的切线分量(即与物体速度方向相同的力的分量),最后将该切线分量与物体速度的乘积相乘,即可得到变力做功的大小。
第二种方法是常力法。
在物体受到一定的恒定力作用下,可以通过计算力与物体位移方向的夹角的余弦值再乘上力的大小来确定变力做功的大小。
具体计算方法是,首先需要确定力的大小,然后确定物体的位移方向与力的方向之间的夹角,最后将位移方向与力的方向之间夹角的余弦值乘以力的大小,即可得到变力做功的大小。
第三种方法是分力法。
当物体受到多个力的作用时,可以通过计算各个力的分力与物体位移方向之间的夹角的余弦值再分别乘上各个分力的大小来确定变力做功的大小,然后将各个分力的做功求和即可得到变力做功的总大小。
第四种方法是连续变力法。
在物体受到连续变化的力作用下,可以通过将力的大小关于物体位移的函数表示出来,然后对该函数进行积分来确定变力做功的大小。
具体计算方法是,首先需要确定力对物体位移的函数关系式,然后对该函数进行积分,最后得到的积分值即为变力做功的大小。
第五种方法是有功做功法。
在物体受到非保守力作用下,可以通过计算力的非保守分量与物体位移的乘积再加上势能变化的大小来确定变力做功的大小。
具体计算方法是,首先需要确定力的保守分量与非保守分量,然后将非保守分量与位移的乘积相加,再加上势能变化的大小,即可得到变力做功的大小。
第六种方法是负功做功法。
在物体受到反向力作用下,可以通过计算该反向力的绝对值与物体位移的乘积再乘上负一来确定变力做功的大小。
具体计算方法是,首先需要确定反向力的大小,然后将反向力的绝对值与位移的乘积相乘,并将结果乘以负一,即可得到变力做功的大小。
综上所述,变力做功的六种常见计算方法分别是曲线切线式、常力法、分力法、连续变力法、有功做功法和负功做功法。
变力做功的六种常见计算方法
变力做功的六种常见计算方法在高中阶段,力做功的计算公式是W=FScosα,但是学生在应用时,只会计算恒力的功,对于变力的功,高中学生是不会用的。
下面介绍六种常用的计算变力做功的方法,希望对同学们有所启发。
方法一:用动能定理求若物体的运动过程很复杂,但是如果它的初、末动能很容易得出,而且,除了所求的力的功以外,其他的力的功很好求,可选用此法。
例题1:如图所示。
质量为m的物体,用细绳经过光滑的小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个数值F时,转动半径为R;拉力逐渐减小到0。
25F时,物体仍然做匀速圆周运动,半径为2R,求外力对物体所做的功的大小.解析:当拉力为F时,小球做匀速圆周运动,F提供向心力,则F=mv12/R;当拉力为0。
25F时,0.25F=mv22/2R。
此题中,当半径由R 变为2R的过程中,拉力F为变力,由F变为2F,我们可以由动能定理,求得外力对物体所做的功的大小W=0。
5mv12—0。
5mv22=0。
25RF.方法二:用功率的定义式求若变力做功的功率和做功时间是已知的,则可以由W=Pt来求解变力的功。
例题2:质量为m=500吨的机车,以恒定的功率从静止出发,经过时间t=5min在水平路面上行使了s=2。
25km,速度达到最大值v=54km/h。
假设机车受到的阻力为恒力。
求机车在运动中受到的阻力大小。
解析:机车先做加速度减小的变加速直线运动,再做匀速直线运动。
所以牵引力F先减小,最后,F恒定,而且跟阻力f平衡,此时有功率P=Fv=fv。
在变加速直线运动阶段,牵引力是变力,它在此阶段所作的功可以由w=Pt来求。
由动能定理,Pt—fs=0。
5mv2—0,把P=Fv=fv代入得,阻力f=25000N.方法三:平均力法如果变力的变化是均匀的(力随位移线性变化),而且方向不变时,可以把变力的平均值求出后,将其当作恒力代入定义式即可.例题3:如图所示。
轻弹簧一端与竖直墙壁连接,另一端与一质量为m的木块相连,放在光滑的水平面上,弹簧的劲度系数为k,开始时弹簧处于自然状态。
(完整)求解变力做功的十种方法
求解变力做功的十种方法功是高中物理的重要概念,对力做功的求解也是高考物理的重要考点,恒力的功可以用公式直接求解,但变力做功就不能直接求解了,需要通过一些特殊的方法,本文结合具体的例题,介绍十种解决变力做功的方法.一. 动能定理法例1. 一质量为m 的小球,用长为L 的轻绳悬挂于O 点,小球在水平力F 作用下,从平衡位置P 点很缓慢地移到Q 点,如图1所示,此时悬线与竖直方向夹角为θ,则拉力F 所做的功为:( )A :θcos mgLB :)cos 1(θ-mgL C.:θsi n FL D:θcos FL分析:在这一过程中,小球受到重力、拉力F 、和绳的弹力作用,只有重力和拉力做功,由于从平衡位置P 点很缓慢地移到Q 点.,小球的动能的增量为零。
那么就可以用重力做的功替代拉力做的功。
解:由动能定理可知:0=-G F W W )cos 1(θ-==mgL W W G F故B 答案正确。
小结:如果所研究的物体同时受几个力的作用,而这几个力中只有一个力是变力,其余均为恒力,且这些恒力所做的功和物体动能的变化量容易计算时,利用动能定理可以求变力做功是行之有效的。
二。
微元求和法例2. 如图2所示,某人用力F 转动半径为R 的转盘,力F 的大小不变,但方向始终与过力的作用点的转盘的切线一致,则转动转盘一周该力做多少功。
解:在转动转盘一周过程中,力F 的方向时刻变化,但每一瞬时力F 总是与该瞬时的速度同向(切线方向),即F 在每瞬时与转盘转过的极小位移∆∆∆s s s 123、、……∆s n 都与当时的F 方向同向,因而在转动一周过程中,力F做的功应等于在各极小位移段所做功的代数和,即:W F s F s F s F s F s s s s F Rn n =++++=++++=()()∆∆∆∆∆∆∆∆1231232……·π小结:变力始终与速度在同一直线上或成某一固定角度时,可化曲为直,把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W Fs =cos θ计算功,而且变力所做功应等于变力在各小段所做功之和。
求变力做功的几种方法
求变力做功的几种方法功的计算在中学物理中占有十分重要的地位,中学阶段所学的功的计算公式W=FScosa只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可用,本文对变力做功问题进行归纳总结如下:一、等值法等值法即若某一变力的功和某一恒力的功相等,则可以同过计算该恒力的功,求出该变力的功。
而恒力做功又可以用W=FScosa计算,从而使问题变得简单。
例1、如图1,定滑轮至滑块的高度为h,已知细绳的拉力为F牛(恒定),滑块沿水平面由A点前进s米至B点,滑块在初、末位置时细绳与水平方向夹角分别为α和β。
求滑块由A点运动到B点过程中,绳的拉力对滑块所做的功。
分析:设绳对物体的拉力为T,显然人对绳的拉力F等于T。
T在对物体做功的过程中大小虽然不变,但其方向时刻在改变,因此该问题是变力做功的问题。
但是在滑轮的质量以及滑轮与绳间的摩擦不计的情况下,人对绳做的功就等于绳的拉力对物体做的功。
而拉力F的大小和方向都不变,所以F做的功可以用公式W=FScosa直接计算。
由图可知,在绳与水平面的夹角由α变到β的过程中,拉力F的作用点的位移大小为:二、微元法当物体在变力的作用下作曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,且力与位移的方向同步变化,可用微元法将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和。
例2 、如图2所示,某力F=10牛作用于半径R=1米的转盘的边缘上,力F的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F做的总功应为:A0焦耳B20π焦耳C 10焦耳D20焦耳分析:把圆周分成无限个小元段,每个小元段可认为与力在同一直线上,故ΔW=FΔS,则转一周中各个小元段做功的代数和为W=F×2πR=10×2πJ=20πJ,故B正确。
三、平均力法如果力的方向不变,力的大小对位移按线性规律变化时,可用力的算术平均值(恒力)代替变力,利用功的定义式求功。
[求解变力做功的五种方法]变力做功
[求解变力做功的五种方法]变力做功1.微元法适用于大小不变的力所做功的计算,此种情况可以通过分割求和的物理方法来求变力的功。
把曲线运动分成若干小段,每一小段上都可认为是恒力做功,再累计求和。
计算时由于力的大小不变,在累加时可以提出来,剩下的各小段累加得到的结果就等于物体通过的总路程。
我们可以通过力与物体通过的路程及其夹角的乘积来计算这一情况下大小不变的力所做功的问题。
如图所示,某个力F=10N作用于半径为R=1m的转盘的边缘上,力F的大小保持不变,但方向保持在任何时刻均与作用点的切线一致,则转动一周这个力做的总功为()。
A.0JB.20JC.10JD.20J解析:分段计算功,然后用求和的方法求变力所做的功。
可以把圆弧分成1、2、3。
,总功W=F1+ F2+ F3+。
= F(1+2+3+。
)= F·2R=20J。
故答案为:B。
2.平均法对方向不变、大小随位移发生线性变化(即力与位移成一次函数关系)的力做功问题,可以通过平均力来计算这种变力的功。
这种方法也可以用来求解弹簧的弹力做的功。
用铁锤把小铁钉钉入木板,设木板对钉子的阻力与钉进木板的深度成正比。
已知铁锤第一次将钉子钉进d,如果铁锤第二次敲钉子时对钉子做的功与第一次相同,那么,第二次钉子进入木板的深度是多少?解析:钉子钉入木板过程中随着深度的增加,阻力成正比地增加,这属于变力做功问题。
由于力与深度成正比,可将变力等效为恒力来处理。
.据题意可得第一次打击有:;第二次打击有:。
由以上两式可得。
用图象法求解变力做功问题在F—图象中,图线与坐标轴围成的面积表示功。
对于方向不变,大小随位移线性变化的力,作出F—图象,求出图线与坐标轴所围成的面积,就求出了变力所做的功。
一立方体木块,边长0.2m,放在水池中,恰在此时有一半浮出水面而处于静止状态,若池深1m,用力将木块慢慢推至池底,在这一过程必须对木块做多少功?(水的密度)解析:木块的重力。
作出整个过程的F-图象,梯形面积即为变力的功,有。
求变力做功的十种方法
变力做功的十种方法河南省信阳高级中学 陈庆威功是高中物理的重要概念,对力做功的求解也是高考物理的重要考点,恒力的功可以用公式θcos FS W =直接求解,但变力做功就不能直接用公式了,这里总结了一些求变力做功的方法,希望能对读者有帮助。
一. 动能定理法例1. 如图所示,质量为m 的物体从A 点沿半径为R 的粗糙半球内表面以的速度开始下滑,到达B 点时的速度变为,求物体从A 运动到B 的过程中,摩擦力所做的功是多少?【解析】物体由A 滑到B 的过程中,受重力G 、弹力和摩擦力三个力的作用,因而有,即,式中为动摩擦因数,v 为物体在某点的速度,为物块与球心的连线与竖直方向的夹角。
分析上式可知,物体由A 运动到B 的过程中,摩擦力是变力,是变力做功问题,根据动能定理有,在物体由A 运动到B 的过程中,弹力不做功;重力在物体由A 运动到C 的过程中对物体所做的正功与物体从C 运动到B 的过程中对物体所做的负功相等,其代数和为零。
因此,物体所受的三个力中摩擦力在物体由A 运动到B 的过程中对物体所做的功,就等于物体动能的变化量,则有:即 可见,如果所研究的物体同时受几个力的作用,而这几个力中只有一个力是变力,其余均为恒力,且这些恒力所做的功和物体动能的变化量容易计算时,此类方法解决问题是行之有效的。
【点评】利用动能定理可以求变力做功,但不能用功的定义式直接求变力功,并且用动能定理只要求始末状态,不要求中间过程。
这也是动能定理比牛顿运动定律优越的一个方面。
二. 微元法对于变力做功,不能直接用θcos FS W =进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F 是恒力,用θcos FS W =求出每一小段内力F 所做的功,然后累加起来就得到整个过程中变力所做的功。
这种处理问题的方法称为微元法,具有普遍的适用性。
例2. 用水平拉力,拉着滑块沿半径为R 的水平圆轨道运动一周,如图所示,已知物块的质量为m ,物块与轨道间的动摩擦因数为μ。
求解变力做功的八种方法
求解变力做功的八种方法在物理学中,做功是指力对物体施加作用力并使其产生位移的过程中所做的功。
而当作用力是变化的时候,求解变力做功就变得相对复杂。
本文将介绍八种常用的方法来求解变力做功问题,帮助读者更好地理解这一物理概念。
一、分割法分割法是将变力分割成多个小的力,然后分别计算每个小力在相应的位移上所做的功,再将它们累加起来。
通过将变力离散化,我们可以近似所需求解的变力做功。
二、辅助函数法辅助函数法是将变力关于位移进行积分,得到一个辅助函数,再通过求导的方法求解变力做功。
这个方法需要对变力进行积分和求导,适用于一些特殊的变力情况。
三、力的分解法力的分解法是将变力分解成两个简化的力,一般是平行和垂直于位移的力,然后分别计算每个简化力在相应的位移上所做的功,再将它们相加。
通过将变力进行分解,我们可以将复杂的问题简化为分别求解两个力的功的问题。
四、动能定理法动能定理法利用了动能的变化与外力做功的关系,即外力做功等于物体动能的变化。
通过对物体的动能变化进行分析,我们可以求解变力做功的问题。
五、引入势函数法引入势函数法是将变力与势函数建立联系,通过势函数的导函数来求解变力做功。
这个方法需要找到一个合适的势函数,适用于一些具有简单势函数形式的变力情况。
六、平均值法平均值法是将变力近似为一个平均力,然后计算该平均力在整体位移上所做的功。
虽然这种方法只是对变力做功的近似,但在一些情况下可以提供一个比较准确的结果。
七、图形法图形法是通过绘制力与位移之间的图形来求解变力做功。
通过图形分析,我们可以计算图形下的面积或曲线的积分,进而得到变力做功的值。
八、牛顿第二定律法牛顿第二定律法利用了牛顿第二定律与功的关系,即力乘以位移等于质量乘以加速度乘以位移。
通过将力进行分解,我们可以将变力做功的问题转化为求解加速度和位移的问题。
综上所述,以上八种方法是常用的求解变力做功的方法。
在实际问题中,根据具体情况选择合适的方法求解变力做功问题,可以帮助我们更好地理解力学中的变力概念,并解决具体的物理问题综合上述八种方法,我们可以看出,求解变力做功问题的方法有多种多样,每种方法在不同情况下都有其适用性和限制性。
变力做功的计算
变力做功的计算公式适用于恒力功的计算,对于变力做功的计算,一般有以下几种方法。
一、微元法对于变力做功,不能直接用进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F是恒力,用求出每一小段内力F所做的功,然后累加起来就得到整个过程中变力所做的功。
这种处理问题的方法称为微元法,这种方法具有普遍的适用性。
但在高中阶段主要用于解决大小不变、方向总与运动方向相同或相反的变力的做功问题。
例1. 用水平拉力,拉着滑块沿半径为R的水平圆轨道运动一周,如图1所示,已知物块的质量为m,物块与轨道间的动摩擦因数为。
求此过程中摩擦力所做的功。
图1思路点拨:由题可知,物块受的摩擦力在整个运动过程中大小不变,方向时刻变化,是变力,不能直接用求解;但是我们可以把圆周分成无数小微元段,如图2所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果。
图2正确解答:把圆轨道分成无穷多个微元段,摩擦力在每一段上可认为是恒力,则每一段上摩擦力做的功分别为,,…,,摩擦力在一周内所做的功。
误点警示:对于此题,若不加分析死套功的公式,误认为位移s=0,得到W=0,这是错误的。
必须注意本题中的F是变力。
小结点评:对于变力做功,一般不能用功的公式直接进行计算,但有时可以根据变力的特点变通使用功的公式。
如力的大小不变而方向总与运动方向相同或相反时,可用计算该力的功,但式子中的s不是物体运动的位移,而是物体运动的路程。
[发散演习]如图3所示,某个力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向任何时刻与作用点处的切线方向保持一致。
则转动半圆,这个力F做功多少?图3答案:31.4J。
二、图象法在直角坐标系中,用纵坐标表示作用在物体上的力F,横坐标表示物体在力的方向上的位移s。
如果作用在物体上的力是恒力,则其F-s图象如图4所示。
经过一段时间物体发生的位移为s0,则图线与坐标轴所围成的面积(阴影面积)在数值上等于力对物体做的功W =Fs,s轴上方的面积表示力对物体做正功(如图4(a)所示),s轴下方的面积表示力对物体做负功(如图4(b)所示)。
关于变力做功的计算
关于变力做功的计算高中物理力学中关于功的计算是一个比较重要的内容,尤其是利用能量的观点解决动力学问题时都要涉及到功的计算。
而功的定义式W=FLcosα是我们非常熟悉的公式,但高中阶段对于此公式只限于计算恒力做功问题,可是有些时候往往会遇到变力做功的计算问题,那么对于变力做功又该如何求解呢?一、等效替代法在有些物理问题中往往会遇到机动车辆以恒定功率由静止启动的问题,这类问题中涉及到的机车牵引力的功是一个变力做功问题,这类问题中如果机动车的功率和运行时间已知,我们就可以借助功与功率的关系式W=Pt来计算牵引力的功;如果运行时间未知,但其它力做功情况已知,我们就可以借助动能定理来计算牵引力的功。
例:如图所示是某中学科技小组制作的利用太阳能驱动小车的装置.当太阳光照射到小车上方的光电板时,光电板中产生的电流经电动机带动小车前进。
若小车在平直的公路上以初速度v0开始加速行驶,经过时间t,前进了距离l,达到最大速度vm,设此过程中电动机功率恒为额定功率P,受的阻力恒为Ff,则此过程中电动机所做的功为()。
A.Ffvmt B.PtC.Ff t D.mvm2/2-mv02/2+Ffl解析:汽车从速度v0到最大速度vm过程中,由动能定理可知:W-Ffl=mvm2/2-mvv2/2,解得:W=mvm2/2-mv02/2+Ffl,故D正确;W=Pt,故B正确;当F=Ff时速度达到最大值,vm=PFf,W=Pt=Ffvmt,故A正确。
故选ABD。
二、图像法图像问题是物理中的常见问题,有些功的计算的问题中题目会给出力随位移变化的图像,然后让根据图像来求解该力的功。
这类问题一看图像就是变力做功,此时我们就要充分挖掘图像中的隐含信息,如图线的斜率、截距、图线与横轴所围图形的面积等的物理意义,从而找到解题的突破口。
例:如图甲所示,静置于光滑水平面上坐标原点处的小物块,在水平拉力F作用下,沿x轴方向运动,拉力F随物块所在位置坐标x的变化关系如图乙所示,图线为半圆,则小物块运动到x0处时拉力F做的总功为()。
求解变力做功问题的五种方法
求解变力做功问题的五种方法在高中阶段,应用做功公式W=FScosα来解题时,公式中F只能是恒力。
如果F是变力,就不能直接应用公式W=FScosα来求变力做功问题。
但是题目中又经常出现变力做功问题,下面介绍五种求解变力做功问题的方法。
一:将变力做功转化为恒力做功来求解我们知道变力做功不可以直接用公式W=FScosα来计算,但有些情况下,将变力转化成恒力做功,就可以用公式直接求解。
例题1:如图1所示,人用大小不变的力F拉着放在光滑平面上的物体,开始时与物体相连的绳子和水平面间的夹角是α,当拉力F作用一段时间后,绳子与水平面的夹角是β,图中的高度是h,求绳子拉力T对物体所做的功,(绳的质量,滑轮的质量和绳与滑轮之间的摩擦均不计)。
分析与解答:在物体向右运动过程中,绳子拉力T是一个变力,是变力做功问题。
但是拉力T大小等于力F的大小,且力F是恒力。
因此,求绳子拉力T对物体所做的功就等于力F所做的功。
由图可知,力F的作用点移动的位移大小为:ΔS=S1-S2。
则:W T=W F=FΔS=F(S1-S2)=Fh(1/sinα-1/sinβ).二:用动能定理来求解我们知道,动能定理的内容:外力对物体所做的功等于物体动能的增量。
如果我们研究物体所受的外力中只有一个是变力,其他力都是恒力,而且这些力做功比较容易求,就可以用动能定理来求变力做功。
例题2:如图2所示,质量为2kg的物体从A点沿半径为R的粗糙半球内表面以10m/s 的速度开始下滑,到达B点时的速度变为2m/s,求物体从A点运动到B点的过程中,摩擦力所做的功是多少?分析及解答:物体从A点运动到B点的过程中,受到重力G、弹力N和摩擦力f三个力作用,在运动过程中,摩擦力f的方向和大小都发生改变,因此摩擦力f是变力,是变力做功问题。
物体从A点运动到B点的过程中,弹力N不做功,重力G做功为零。
物体所受的三个力中摩擦力在物体从A点运动到B点的过程中对物体所做的功,就等于物体动能的变化量,则W外=W f=ΔE k=1/2mV B2-1/2mV A2=-96(J).三:用机械能守恒定律来求解我们知道,物体只受重力和弹力作用或只有重力和弹力做功时,系统的机械能守恒。
求变力做功的六种方法
求变力做功的六种方法-CAL-FENGHAI.-(YICAI)-Company One1求变力做功的六种方法都匀市民族中学:王方喜在高中阶段求变力做功问题,既是学生学习和掌握的难点,也是教师教学的难点。
本文举例说明了在高中阶段求变力做功的常用方法,比如微元累积(求和)法、平均力等效法、功率的表达式PtW=、F-x图像、用动能定理、等效代换法等来求变力做功。
一、运用微元积累(求和)法求变力做功求変力做功还可以用微元累积法,把整个过程分成极短的很多段,在极短的每一段里,力可以看成是恒力,则可用功的公式求每一段元功,再求每一小段上做的元功的代数和。
由此可知,求摩擦力和阻力做功,我们可以用力乘以路程来计算。
用微元累积法的关键是如何选择恰当的微元,如何对微元作恰当的物理和数学处理,微元累积法对数学知识的要求比较高。
例1如图1-1所示,某人用力F转动半径为R的转盘,力F的大小不变,但方向始终与过力的作用点的转盘的切线一致,则转动转盘一周该力做多少功.图1-1【分析与解答】在转动转盘一周过程中,力F的方向时刻变化,但每一瞬时力F总是与该瞬时的速度同向(切线方向),即F在每瞬时与转盘转过的极小位移Δs同向.这样,无数瞬时的极小位移Δs1,Δs2,Δs3…Δsn都与当时的F方向同向.因而在转动一周过程中,力F做的功应等于在各极小位移段所做功的代数和.即W=FΔs1+FΔs2+…FΔsn=F(Δs1+Δs2+Δs3+…Δsn)? =F2πR【总结】变力始终与速度在同一直线上或成某一固定角度时,可把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W=FLcosθ计算功,而且变力所做功应等于变力在各小段所做功之和。
【检测题1-1】如图1-2所示,有一台小型石磨,某人用大小恒为F、方向始终与磨杆垂直的力推磨,设施力点到固定转轴的距离为L,在使磨转动一周的过程中,推力做了多少功图1-2【检测题1-2】小明将篮球以10 m/s的初速度,与水平方向成30°角斜向上抛出,被篮球场内对面的小虎接到,小明的抛球点和小虎的接球点离地面的高度都为 1.8 m.由于空气阻力的存在,篮球被小虎接到时的速度是6 m/s.已知篮球的质量m=0.6 kg,g取10 m/s2.求:(1)全过程中篮球克服空气阻力做的功;(2)如果空气阻力恒为5 N,篮球在空中飞行的路程.二、运用平均力等效法求变力做功当力的方向不变,而大小随位移线性..变化时(即F=kx+b),可先求出力的算术平均值221FFF+=,再把平均值当成恒力,用功的计算式求解。
变力做功的计算【范本模板】
变力做功的计算公式适用于恒力功的计算,对于变力做功的计算,一般有以下几种方法.一、微元法对于变力做功,不能直接用进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F是恒力,用求出每一小段内力F所做的功,然后累加起来就得到整个过程中变力所做的功。
这种处理问题的方法称为微元法,这种方法具有普遍的适用性.但在高中阶段主要用于解决大小不变、方向总与运动方向相同或相反的变力的做功问题.例1. 用水平拉力,拉着滑块沿半径为R的水平圆轨道运动一周,如图1所示,已知物块的质量为m,物块与轨道间的动摩擦因数为。
求此过程中摩擦力所做的功。
图1思路点拨:由题可知,物块受的摩擦力在整个运动过程中大小不变,方向时刻变化,是变力,不能直接用求解;但是我们可以把圆周分成无数小微元段,如图2所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果。
图2正确解答:把圆轨道分成无穷多个微元段,摩擦力在每一段上可认为是恒力,则每一段上摩擦力做的功分别为,,…,,摩擦力在一周内所做的功。
误点警示:对于此题,若不加分析死套功的公式,误认为位移s=0,得到W=0,这是错误的。
必须注意本题中的F是变力。
小结点评:对于变力做功,一般不能用功的公式直接进行计算,但有时可以根据变力的特点变通使用功的公式。
如力的大小不变而方向总与运动方向相同或相反时,可用计算该力的功,但式子中的s不是物体运动的位移,而是物体运动的路程。
[发散演习]如图3所示,某个力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向任何时刻与作用点处的切线方向保持一致。
则转动半圆,这个力F做功多少?图3答案:31。
4J。
二、图象法在直角坐标系中,用纵坐标表示作用在物体上的力F,横坐标表示物体在力的方向上的位移s。
如果作用在物体上的力是恒力,则其F-s图象如图4所示。
经过一段时间物体发生的位移为s0,则图线与坐标轴所围成的面积(阴影面积)在数值上等于力对物体做的功W =Fs,s轴上方的面积表示力对物体做正功(如图4(a)所示),s轴下方的面积表示力对物体做负功(如图4(b)所示)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分 析 : 该 题 中虽 然 F 的 大 小 不 变 , 方 向不 断 改 变 , 在 但 F
是 变 力 , 能 用 力 和 位 移 直 接 相 乘 , 们 可 以 采 用 微 元 分 割 不 我 法 , 整 个 运 动过 程分 割成 个 微 元 过 程 , 槽 道 AB 分 割 成 把 把
都 很 薄 , 的半 径 为 R, 为 h 桶 的 上 缘 处 在 湖 面 下 深 为 H 桶 高 ,
处, 如果 用 轻 绳 将 它 缓 慢 地 向 上 提 , 到 桶 的 底 面 刚 离 开 水 直
面 , 不 计 水 的 阻力 , 上 提过 程 中拉 力 所 做 的功 . 若 求 分 析 : 据 题 意 , 出 拉 力 F 与位 移 S的 图 像 如 闭 4所 根 作
图 2
的 为Fs 一 ) 功 ( + .
6 利 用 压 强 与体 积 的 乘 积 求解 变 力做 功 . 例 6 成 年 人正 常心 跳每 分钟 约 7 次 , 次血 液循 环 中左心 5 一 室 的血压 ( 可看 作心 脏压 送血 液 的压强 ) 的平 均值 为1 3 ×1 a . 7 0P ,
分 析 : 车加 速 过 程 中 的力 为 变 力 , 根 据 题 意 可 知 , 列 但 列
5 将 变 力做 功 转 化 为恒 力做 功 . 例 5 如 图 5所 示 , 量 质 为 M 的滑 块 放 在 光 滑 的 水 平 面 上 , 块 上 固 定 着 一 定 滑 滑 轮, 滑轮 的 大 小 不 计 , 滑 轮 定
÷ 7 g r p h. R
F l
图 1
C. l 1 c s ) mg ( 一 o O
D. ( 一 c s ) Fl 1 o O
一
分 析 : F 属 于 变 力 , 以无 法 用 w —F 来 求 解 , 据 动 力 所 s 根 能 定 理 有 w 一 0 即 W F mg ( 一c s ) 0 所 以 W F , — l 1 oO 一 , 一
一
型
w一
作者单位 : 江苏 省 宿 迁 市 马 陵 中学
平 面上 , 一 弯 曲 的 槽 道 AB, 有 槽 道 有 半 径 为 R/ 2和 R 的 两
个 半圆组成 , 用 大小 恒为 F 现 的 拉 力 将 一 光 滑 小 球 从 A 点 沿槽道拉至 B点 , 若拉 力 F的 方 向时 时 刻 刻 均 与 小 球 运 动
方 向一 致 , 此 过 程 中 拉 力 所 则 做的功为多少?
车 的功 率 是 恒 定 的 , 列 车 做 功 为 W, P , 人 数 据 后 可 得 故 一 t带
W F一 3 6 1 . . × 0J
离 地 面 的 高 度 为 h 当人 用 恒 , 力 F 拉 绳 的 一 端 , 块 向 右 滑
图5
3 用 微 元法 求变 力做 功 .
运 动 的位 移 为 S 连 接 两 个 滑 轮 的 绳子 与水 平 面 的夹 角 由 变 ,
示 , 图 线 所 围 的 面 积 就 是 拉 力 所 做 的 功 ,即 W 一 该
1
球 在 水 平 力 F 的 作 用 下 , 平 衡 位 置 从 P 点 很 缓 慢 地 移 到 Q 点 , 力 F 所 做 则
的功为( ) .
B. c O Fl os A.mgl o O c s
・
课Hale Waihona Puke 解 读 21年第 1 02 期
中掌{数理他 . } f 掌所版
变 力做 功 的计 算
一 王 利
在 高 中 阶段 , 变 力 做 功 是 学 生 解 题 过 程 中 遇 到 的一 个 求
难 点 , 在 对 变 力 做 功 的 题 型 和解 题方 法 做 一 归 纳 和 分 析 . 现 1 利 用 动 能 定 理 求 解 变 力 做 功 . 例 1 如 图 1所 示 , 质 量 为 m 一 的小 球 用 长 为 z的 轻 绳 系 于 0 点 , 小
; 每一个微元中 , 在
F, F作 用 下 位 移 为 . 在
一
图6
拉 力 F 可 视 为 恒 力 , 道 可 视 为 直 线 , 力 F 做 的 元 功 为 轨 拉 △ —F S F . w △ :
H
次 心 跳 中 左 心 室 做 功 W F — 一 l
PS — P 一 1 3 × 1 × 7 l .7 0 0× 1 J 0 9 9 . 0 = . 5J
gl 1 c s ), 案 为 C. ( 一 o0 答
[ 二
图4
2 利 用 功 率 求 解 变 力 做 功 .
图3
例 2 一 列 车 的质 量 为 5 0 0 k , 平 直 的轨 道 上 以 . ×1 g 在 额 定 功 率 3 0 k 加 速 行 驶 , 速 度 由 lm/ 加 速 到 所 能 达 00 W 当 O s 到 的最 大 速 度 3m/ 0 s时 , 用 了 2 n 则 在 这 段 时 间 内列 车 共 mi, 牵 引 力做 的功 是 多 少 ?
如 果 在 某 一 过 程 中摩 擦 力 大小 不 变 , 向 变 化 , 们 可 以 方 我 用 微 元 法 求 摩 擦 力 的 功 . 摩 擦 力 有 同 样 特 点 的 力 也 可 以用 与
此方法计算 .
例 3 如 图 2所 示 , 水 在
为 0在 此 过 程 中 , 在 此 过 程 中 绳子 的拉 力对 M 做 的 功 . , 求 分析 : 用 在 B点 的绳 子 对 M 的拉 力 T 一 F F oa 拉 作 ” + cs. 力 F 作用 下 , 绳 子 相 连 接 的 物 体 M 将 会 向 右 运 动 , 将 会 与 角 变 大, 变 小 , 样 求 绳 子 的拉 力对 M 做 的 功 呢 ? 我 们 可 以 怎 将 丁 M做 功 转 化 为 恒 力 F 做 功 , 向 右运 动 的 位 移 为 S, 的 M F 作 用点 c会 向右 运 动 s + 一 即 可 求 出 绳子 拉 力对 M 做
, 为 正 功 . A 到 B 过 程 中拉 力 F 所 且 由
右心 室一 次心跳 中做功 Wz 一÷ w . 解得 平 均 功 率 P=
1 4 8W . .35
做 的总功 w —n w 一÷ n F . △ R
4 利 用 图 像 求 解 变 力 做 功 .
例 4 如 图 3 示 , 只 盛 满 水 的 圆 柱 形 水 桶 , 底 和 壁 所 一 桶
3
左 、 心室 收缩 时射 出 的血量 约 为 7m 右 心 室对 肺 动脉 的 压力 右 0 L,
约为左心室的÷ , 据此估算心脏工作的平均功率.
7R c
管横面霎, 受的力 — 一 的截积 液到压为 — 为血 S
管 的
个小段 , 每- I 段 的 的 长度 为 A = 1 , S