高考数学公式大全
高中高考数学公式大全
高中高考数学公式大全1.代数公式- 二次方程根公式:若ax^2+bx+c=0 (a≠0),则 x=(-b±√(b^2-4ac))/(2a)。
-二次三项全解公式:若知二次三项完全分解为(x-a)(x-b)(x-c)=0,则x=a,b,c。
- 余弦和公式:cos(A±B)=cosAcosB∓sinAsinB。
- 余弦差公式:cos(A-B)=cosAcosB+sinAsinB。
- 正弦和公式:sin(A±B) = sinAcosB±cosAsinB。
- 正弦差公式:sin(A-B) = sinAcosB-cosAsinB。
- 二项式定理:(a+b)^n = C(n,0)a^n b^0+C(n,1)a^(n-1)b+C(n,2)a^n^(n-2)b^2+…+C(n,n)na^0 b^n。
2.几何公式-长方形面积公式:面积=长×宽。
-正方形面积公式:面积=边长×边长。
-圆面积公式:面积=πr^2-平行四边形面积公式:面积=底边×高。
-梯形面积公式:面积=(上底+下底)×高÷2-三角形面积公式:面积=底边×高÷2- 三角形余弦定理:c^2 = a^2 + b^2 - 2abcosC。
- 三角形正弦定理:sinA/a = sinB/b = sinC/c。
- 三角形正弦面积公式:面积 = (1/2)abSinC。
-三角形内切圆半径公式:r=面积/半周长。
3.数列和数列项公式-等差数列通项公式:an = a1 + (n-1)d。
-等差数列前n项和公式:Sn = (n/2)(a1 + an)。
-等差数列等差公式:dn = an+1 - an。
-等差数列求和公式:Sn=(2a1+(n-1)d)n/2-等比数列通项公式:an = a1 * q^(n-1)。
-等比数列前n项和公式:Sn=a1(1-q^n)/(1-q)。
数学高考公式
数学高考公式数学高考公式汇总如下:1. 二次函数的一般式:y=ax^2+bx+c。
2. 二次函数的顶点式:y=a(x-h)^2+k。
3. 二次函数的根与系数的关系:若Δ=b^2-4ac>0,则有两个不相等的实数根;若Δ=0,则有两个相等的实数根;若Δ<0,则无实数根。
4. 二次函数的对称轴:x=h。
5. 二次函数的顶点坐标:(h,k)。
6. 二次函数的图像开口方向:若a>0,则开口向上;若a<0,则开口向下。
7. 一次函数的斜率:k=(y2-y1)/(x2-x1)。
8. 一次函数的点斜式方程:y-y1=k(x-x1)。
9. 一次函数的截距式方程:y=kx+b。
10. 两直线垂直的判定条件:两直线斜率的乘积为-1。
11. 两直线平行的判定条件:两直线斜率相等。
12. 两点间距离公式:d=sqrt((x2-x1)^2+(y2-y1)^2)。
13. 等差数列通项公式:an=a1+(n-1)d。
14. 等差数列求和公式:Sn=(n/2)(a1+an)。
15. 等比数列通项公式:an=a1*r^(n-1)。
16. 等比数列求和公式(当r≠1):Sn=a1(1-r^n)/(1-r)。
17. 三角函数的正弦定理:a/sinA=b/sinB=c/sinC=2R(R为外接圆半径)。
18. 三角函数的余弦定理:c^2=a^2+b^2-2ab*cosC。
19. 三角函数的正切定理:tan(A-B)=(tanA-tanB)/(1+tanA*tanB)。
20. 三角函数的和差化积公式:sin(A±B)=sinA*cosB±cosA*sinB,cos(A±B)=cosA*cosB∓sinA*sinB。
21. 高斯-赛德尔消元法。
22. 矩阵乘法:设A为m×p矩阵,B为p×n矩阵,则AB为m×n矩阵,其中(A*B)ij=a(i,1)b(1,j)+…+a(i,p)b(p,j)。
高考数学公式大全(最全面_最详细)
高考数学公式大全(最全面,最详细)抛物线:y = ax *+ bx + c就是y等于ax 的平方加上 bx再加上 ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x+h)* + k就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3)面积=(pi)(r^2)周长=2(pi)r圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(二)椭圆面积计算公式椭圆面积公式: S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T 推导演变而来。
常数为体,公式为用。
椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式:sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式:sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍角公式:sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6) 八倍角公式:sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tan A^8)九倍角公式:sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))an9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*t anA^6+9*tanA^8)十倍角公式:sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sin A^4))cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))0A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+ 210*tanA^6-45*tanA^8+tanA^10)²万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^21*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有两个不相等的个实根b2-4ac<0 注:方程有共轭复数根公式分类公式表达式圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h图形周长面积体积公式长方形的周长=(长+宽)³2正方形的周长=边长³4长方形的面积=长³宽正方形的面积=边长³边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r已知三角形三边a、b、c,则S=√{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)| a b 1 |S△=1/2 * | c d 1 || e f 1 |【| a b 1 || c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3 其中Ma,Mb,Mc为三角形的中线长.平行四边形的面积=底³高梯形的面积=(上底+下底)³高÷2直径=半径³2 半径=直径÷2圆的周长=圆周率³直径=圆周率³半径³2圆的面积=圆周率³半径³半径长方体的表面积=(长³宽+长³高+宽³高)³2长方体的体积 =长³宽³高正方体的表面积=棱长³棱长³6正方体的体积=棱长³棱长³棱长圆柱的侧面积=底面圆的周长³高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积³高圆锥的体积=底面积³高÷3长方体(正方体、圆柱体)的体积=底面积³高平面图形名称符号周长C和面积S正方形 a—边长 C=4aS=a2长方形 a和b-边长 C=2(a+b)S=ab三角形 a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2?sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)³180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a³b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l³h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三角形相似(sss)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
高考数学必背公式大全
高考数学必背公式大全由于高中数学公式很多,同学们复习的时候不方便查阅,下面是给大家带来的高考必背数学公式,希望能帮助到大家!高考必背数学公式1两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosacos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatan b)ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga) 倍角公式tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa)) ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa)) 高考必背数学公式2和差化积1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b) /2)4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb等差数列1、等差数列的通项公式为:an=a1+(n-1)d (1)2、前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar 为Am,An的等差中项.,且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式.3、从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.和=(首项+末项)_项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项项数=(末项-首项)/公差+1等比数列1、等比数列的通项公式是:An=A1_q^(n-1)2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)且任意两项am,an的关系为an=am·q^(n-m)3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}4、若m,n,p,q∈N_,则有:ap·aq=am·an,等比中项:aq·ap=2ar ar则为ap,aq等比中项.记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项。
「高考数学公式定理大全」
「高考数学公式定理大全」1.初等代数- 分式性质:$\frac{a}{b}+\frac{c}{d}=\frac{ad+bc}{bd}$- 因式分解:差平方公式 $a^2 - b^2 = (a+b)(a-b)$,和差平方公式 $a^2+b^2=(a+b)^2-2ab$- 二次根式:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm 2\sqrt{ab}$,$(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})=a-b$- 二次方程:$ax^2+bx+c=0$,求根公式 $x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}$- 一次不等式:若$a>b$,则$ca>cb$($c>0$),若反号方向,不等号方向互换即可2.平面向量- 向量表示:$\vec{AB}=(x_2-x_1,y_2-y_1)$- 向量运算:加法 $\vec{a}+\vec{b}=(a_1+b_1,a_2+b_2)$,数乘$k\cdot \vec{a}=(ka_1,ka_2)$- 向量模长:$,\vec{AB},=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$ - 向量共线:若$\vec{a}=k\cdot \vec{b}$,则$\vec{a}$与$\vec{b}$共线- 向量垂直:若$\vec{a}\cdot \vec{b}=0$,则$\vec{a}$和$\vec{b}$垂直,其中$\vec{a}\cdot \vec{b}=a_1b_1+a_2b_2$3.空间几何- 距离公式:点P(x,y,z)到平面Ax+By+Cz+D=0的距离为 $d=\frac{,Ax+By+Cz+D,}{\sqrt{A^2+B^2+C^2}}$- 点到直线的距离:点P(x0,y0,z0)到直线Ax+By+Cz+D=0的距离为$d=\frac{,Ax_0+By_0+Cz_0+D,}{\sqrt{A^2+B^2+C^2}}$- 两直线关系:平行条件为$\frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2}$,垂直条件为$A_1A_2+B_1B_2+C_1C_2=0$4.三角函数- 基本关系:正弦定理 $\frac{a}{\sin A}=\frac{b}{\sinB}=\frac{c}{\sin C}=2R$,余弦定理 $a^2=b^2+c^2-2bc\cos A$ - 解三角形:已知三边a、b、c或三边两角及夹边等情况下,先确定角的类型,然后利用$S=\frac{1}{2}ab\sin C$公式计算面积,最后利用相关定理计算其他需要的长度或角度。
高考数学公式大全
高考数学公式大全一、代数公式:1.二次方程的求根公式:对于二次方程 $ax^2 + bx + c = 0$,其根可以由以下公式求得:$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$2.平方差公式:$(a+b)^2 = a^2 + 2ab + b^2$$(a-b)^2 = a^2 - 2ab + b^2$3.一元二次方程求解公式:对于一元二次方程 $ax^2 + bx + c = 0$,其根可以由以下公式求得:$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$4.一次函数方程的解法:对于一次函数方程 $y = kx + b$,其中 $k$ 为斜率,$b$ 为$y$ 轴截距,可以通过解方程 $kx + b = 0$ 求得直线与 $x$ 轴的交点和方程的解。
5.倍角公式:$\sin{2\theta} = 2\sin{\theta}\cos{\theta}$$\cos{2\theta} = \cos^2{\theta} - \sin^2{\theta} =2\cos^2{\theta} - 1 = 1 - 2\sin^2{\theta}$$\tan{2\theta} = \frac{2\tan{\theta}}{1-\tan^2{\theta}}$$\cot{2\theta} = \frac{\cot^2{\theta}-1}{2\cot{\theta}}$ 6.三角函数关系:$\sin^2{\theta} + \cos^2{\theta} = 1$$\tan{\theta} = \frac{\sin{\theta}}{\cos{\theta}}$$\cot{\theta} = \frac{\cos{\theta}}{\sin{\theta}}$$\sin{(\pi - \theta)} = \sin{\theta}$$\cos{(\pi - \theta)} = -\cos{\theta}$$\tan{(\pi - \theta)} = -\tan{\theta}$二、几何公式:1.圆的周长和面积:圆的半径为$r$,则其周长$C$和面积$A$分别为:$C = 2\pi r$$A = \pi r^2$2.直角三角形的勾股定理:直角三角形的两直角边分别为$a$和$b$,斜边长度为$c$,则满足勾股定理:$a^2+b^2=c^2$3.三角形的面积公式:设三角形的底为$b$,高为$h$,则其面积$S$可以用以下公式计算:$S = \frac{1}{2}bh$4.向量的模长和方向角公式:设二维向量 $\boldsymbol{a} = (x,y)$,其中 $x$ 为横坐标,$y$ 为纵坐标,其模长 $,\boldsymbol{a},$ 和方向角 $\theta$(与$x$ 轴的夹角)计算公式如下:$,\boldsymbol{a}, = \sqrt{x^2 + y^2}$$\theta = \arctan{\frac{y}{x}}$5.相似三角形的性质:设 $\triangle ABC$ 和 $\triangle A'B'C'$ 是相似三角形,则它们对应边长之间的比例关系为:$\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{AC}{A'C'}$6.空间几何平行、垂直关系判定公式:设直线 $l_1$ 和 $l_2$ 在空间中,其方向向量分别为$\boldsymbol{a}$ 和 $\boldsymbol{b}$,则有以下关系:$l_1 \perp l_2 \iff \boldsymbol{a} \cdot \boldsymbol{b} = 0$三、概率统计公式:1.排列公式:$A_n^m = \frac{n!}{(n-m)!}$2.组合公式:$C_n^m = \frac{n!}{m!(n-m)!}$3.二项式定理:$(a+b)^n = C_n^0 a^n b^0 + C_n^1 a^{n-1} b^1 + \cdots +C_n^n a^0 b^n$4.期望值公式:离散型随机变量$X$的期望值可以由以下公式计算:$E(X) = \sum{x \cdot P(X=x)}$连续型随机变量$X$的期望值可以由以下公式计算:$E(X) = \int{xf(x)dx}$其中,$P(X=x)$为离散型随机变量$X$取值为$x$的概率,$f(x)$为连续型随机变量$X$的概率密度函数。
高考数学必背公式整理
高考数学必背公式整理一、平面几何公式1. 直线的一般方程:Ax + By + C = 02. 两点间的距离公式:AB = √[(x2 - x1)² + (y2 - y1)²]3. 点到直线的距离公式:d = |Ax0 + By0 + C| / √(A² + B²)4. 两直线夹角的余弦公式:cosθ = (A₁A₂ + B₁B₂) / (√(A₁² + B₁²) √(A₂² + B₂²))5. 两直线平行的条件:A₁ / A₂ = B₁ / B₂ ≠ C₁ / C₂6. 两直线垂直的条件:A₁A₂ + B₁B₂ = 07. 两直线交点的坐标:x = (B₁C₂ - B₂C₁) / (A₁B₂ - A₂B₁),y = (A₂C₁ - A₁C₂) / (A₁B₂ - A₂B₁)二、立体几何公式1. 体积公式:长方体的体积 V = lwh,正方体的体积V = a³,圆柱的体积V = πr²h,圆锥的体积V = (1/3)πr²h,球体的体积 V = (4/3)πr³2. 表面积公式:长方体的表面积 S = 2lw + 2lh + 2wh,正方体的表面积 S = 6a²,圆柱的表面积S = 2πrh + 2πr²,圆锥的表面积S = πrl + πr²,球体的表面积S = 4πr²三、三角函数公式1. 余弦定理:c² = a² + b² - 2abcosC2. 正弦定理:a / sinA = b / sinB = c / sinC3. 三角恒等式:sin²θ + cos²θ = 1,1 + tan²θ = sec²θ,1 + cot²θ = csc²θ四、导数公式1. 基本导数:(xⁿ)' = nxⁿ⁻¹,(sinx)' = cosx,(cosx)' = -sinx,(tanx)' = sec²x,(cotx)' = -csc²x,(lnx)' = 1/x,(ex)' = ex2. 乘法法则:(uv)' = u'v + uv'3. 除法法则:(u/v)' = (u'v - uv') / v²4. 链式法则:(f(g(x)))' = f'(g(x)) * g'(x)五、积分公式1. 基本积分:∫xⁿdx = (xⁿ⁺¹) / (n⁺¹),∫sinxdx = -cosx,∫cosxdx = sinx,∫sec²xdx = tanx,∫csc²xdx = -cotx,∫1/xdx = ln|x|,∫exdx = ex2. 乘法法则:∫uvdx = ∫u'vdx + ∫uv'dx3. 替换法则:∫f(g(x))g'(x)dx = ∫f(u)du六、概率统计公式1. 排列公式:Aₙₙ = n! / (n - m)!2. 组合公式:Cₙₙ = n! / (m!(n - m)!)3. 二项式定理:(a + b)ⁿ = Cⁿ₀aⁿb⁰ + Cⁿ₁aⁿ⁻¹b¹ + ... + Cⁿₙa⁰bⁿ4. 期望公式:E(X) = Σ(xP(x))5. 方差公式:Var(X) = Σ(x²P(x)) - [E(X)]²以上是高考数学中常用的必背公式。
高考必记数学公式汇总
高考必记数学公式汇总1. 一元一次方程:ax + b = 0-解的公式:x=-b/a2. 一元二次方程:ax^2 + bx + c = 0- 解的公式:x = (-b ± √(b^2 - 4ac)) / (2a)3.三角函数:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:c^2 = a^2 + b^2 - 2abcosC- 正切定理:tanA = a/b4.平面几何:-点到直线的距离:d=,Ax+By+C,/√(A^2+B^2)-平行线的性质:两条直线的斜率相等-垂直线的性质:两条直线的斜率的乘积等于-15.统计与概率:-高斯分布:P(x)=(1/(√(2π)σ))*e^(-((x-μ)^2/(2σ^2))) - 期望值计算:E(x) = ∑(xi * P(xi))- 方差计算:Var(x) = ∑((xi - E(x))^2 * P(xi))6.矩阵:-矩阵乘法:若A是一个mxn的矩阵,B是一个nxp的矩阵,那么它们的乘积C是一个mxp的矩阵,其中C的第i行第j列元素为A的第i行与B的第j列的乘积之和。
7.三角函数补充:- 反正弦函数:sin^(-1)(x)- 反余弦函数:cos^(-1)(x)- 反正切函数:tan^(-1)(x)8.指数与对数函数:-指数函数的性质:a^m*a^n=a^(m+n)- 对数函数的性质:log(a) * log(b) = log(a*b)9.数列与数学归纳法:-等差数列通项公式:an = a1 + (n-1)d-等差数列求和公式:Sn = (n/2)(a1 + an)-等比数列通项公式:an = a1 * r^(n-1)-等比数列求和公式:Sn=a1*(1-r^n)/(1-r)10.导数与微分:- 基本导数公式:(常数)' = 0,(x^n)' = nx^(n-1),(e^x)' = e^x,(sinx)' = cosx,(cosx)' = -sinx-链式法则:(f(g(x)))'=f'(g(x))*g'(x)11.不等式与绝对值:-绝对值不等式性质:,a*b,=,a,*,b,a+b,≤,a,+,b- 一次不等式:ax + b > 0 (a ≠ 0)- 二次不等式:ax^2 + bx + c > 0 (a ≠ 0)这些是高考中常见的一些数学公式,掌握并熟练运用它们可以帮助你在数学考试中提高得分。
数学高考常用公式
数学高考常用公式1. 一次函数的标准方程:y = kx + b2. 一次函数的斜截式方程:y = mx + n3. 二次函数的标准方程:y = ax^2 + bx + c4. 二次函数的顶点坐标公式:x = -b / (2a), y = c - (b^2 / 4a)5. 二次函数的轴对称线方程:x = -b / (2a)6. 三角函数的和差化简公式:sin(A + B) = sinAcosB + cosAsinB, cos(A + B) = cosAcosB - sinAsinB7. 三角函数的倍角化简公式:sin2A = 2sinAcosA, cos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2A8. 三角函数的半角化简公式:sin(A / 2) = ±√[ (1 - cosA) / 2 ], cos(A / 2) = ±√[ (1 + cosA) / 2 ]9. 两角和的正弦公式:sin(A + B) = sinAcosB + cosAsinB10. 两角和的余弦公式:cos(A + B) = cosAcosB - sinAsinB11. 两角差的正弦公式:sin(A - B) = sinAcosB - cosAsinB12. 两角差的余弦公式:cos(A - B) = cosAcosB + sinAsinB13. 正弦定理:a / sinA = b / sinB = c / sinC14. 余弦定理:c^2 = a^2 + b^2 - 2abcosC15. 面积公式:S = 1/2ab sinC16. 等差数列前n项和公式:Sn = (n / 2)(a1 + an)17. 等差数列通项公式:an = a1 + (n - 1)d18. 等比数列前n项和公式:Sn = a1(1 - q^n) / (1 - q)19. 等比数列通项公式:an = a1q^(n - 1)20. 圆的周长公式:C = 2πr21. 圆的面积公式:S = πr^2。
高考数学公式总结大全
高考数学公式总结大全高考数学公式总结大全高考数学公式在备考中起到了至关重要的作用。
熟练掌握数学公式,能够为我们解题提供方便和效率。
下面是一份高考数学公式总结大全,供广大考生参考使用。
一、代数公式1. 二项式定理:$$(a+b)^n=\sum_{k=0}^{n}C_n^k \cdot a^{n-k} \cdot b^k$$2. 一元二次方程解的公式:$$x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}$$3. 二次根式:$$\sqrt{mn}=\sqrt{m}\sqrt{n}, \;\left(\frac{m}{n}\right)^{\frac{1}{2}}=\frac{\sqrt{m}}{\sqrt{n}} $$4. 分式:$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}, \;\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc}$$5. 指数幂:$$a^m \cdot a^n = a^{m+n}, \; \frac{a^m}{a^n} =a^{m-n}, \; (a^m)^n = a^{mn}$$6. 对数换底公式:$$\log_a{x}=\frac{\log_b{x}}{\log_b{a}}$$7. 三角函数:$$\sin{2x} = 2\sin{x}\cos{x}, \; \cos{2x} =\cos^2{x}-\sin^2{x}, \; \tan{x} = \frac{\sin{x}}{\cos{x}}$$8. 三角三倍角公式:$$\sin{3x} = 3\sin{x}-4\sin^3{x}, \; \cos{3x} = 4\cos^3{x}-3\cos{x}, \; \tan{3x} = \frac{3\tan{x}-\tan^3{x}}{1-3\tan^2{x}}$$9. 三角和差公式:$$\sin{(a \pm b)} = \sin{a}\cos{b} \pm\cos{a}\sin{b}, \; \cos{(a \pm b)} = \cos{a}\cos{b} \mp\sin{a}\sin{b}$$10. 对数运算:$$\log_a{(mn)} = \log_a{m}+\log_a{n}, \;\log_a{\left(\frac{m}{n}\right)} = \log_a{m}-\log_a{n}$$二、几何公式1. 三角形面积公式:$$S = \frac{1}{2}bh, \; S =\frac{1}{2}ab\sin{C}, \; S = \sqrt{s(s-a)(s-b)(s-c)}$$2. 三角形周长公式:$$C = a+b+c$$3. 三角形中位线定理:三条中线交于同一点,且该点距离三个顶点的距离分别为各边长度的一半。
高考数学所有公式大全
高考数学所有公式大全一、集合。
1. 集合的基本运算。
- 交集:A∩ B = {xx∈ A且x∈ B}- 并集:A∪ B={xx∈ A或x∈ B}- 补集:∁_U A={xx∈ U且x∉ A}(U为全集)2. 集合间的关系。
- 若A⊆ B,则A中的元素都在B中,n(A)≤ n(B)(n(A)表示集合A的元素个数)- 若A = B,则A⊆ B且B⊆ A二、函数。
1. 函数的定义域。
- 分式函数y = (f(x))/(g(x)),其定义域为g(x)≠0的x的取值范围。
- 偶次根式函数y=sqrt[n]{f(x)}(n为偶数),其定义域为f(x)≥0的x的取值范围。
2. 函数的单调性。
- 设x_1,x_2∈[a,b]且x_1 < x_2- 增函数:f(x_1),则y = f(x)在[a,b]上是增函数,其导数f^′(x)≥0(x∈(a,b))。
- 减函数:f(x_1)>f(x_2),则y = f(x)在[a,b]上是减函数,其导数f^′(x)≤0(x∈(a,b))。
3. 函数的奇偶性。
- 奇函数:f(-x)= - f(x),图象关于原点对称。
- 偶函数:f(-x)=f(x),图象关于y轴对称。
4. 一次函数y = kx + b(k≠0)- 斜率k=(y_2 - y_1)/(x_2 - x_1)5. 二次函数y=ax^2+bx + c(a≠0)- 对称轴x =-(b)/(2a)- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})- 当a>0时,函数图象开口向上,在x =-(b)/(2a)处取得最小值frac{4ac -b^2}{4a};当a < 0时,函数图象开口向下,在x=-(b)/(2a)处取得最大值frac{4ac -b^2}{4a}。
6. 指数函数y = a^x(a>0,a≠1)- 指数运算法则:a^m× a^n=a^m + n,frac{a^m}{a^n}=a^m - n,(a^m)^n=a^mn,(ab)^n=a^nb^n,((a)/(b))^n=frac{a^n}{b^n}- 当a > 1时,函数在R上单调递增;当0 < a<1时,函数在R上单调递减。
高考数学必备公式(常用)
高考数学必备公式(常用)高考数学必备公式一、正余弦定理正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径余弦定理:a2=b2+c2-2bc__cosA二、两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)三、倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a四、半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))五、和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB高三数学怎么提高1、小题专练防超时我们知道,数学试卷占据“半壁江山”的选择题和填空题,自然是三种题型(选择题、填空题、解答题)中的“大哥大”,能否在这两类题型上获取高分,对高考数学成绩影响重大。
高考数学公式大全
高考数学公式大全高考数学公式大全包括以下内容:一、几何几率:1. 几何比:S:边长或半径;C:周长或圆周长;A:面积或圆面积;P:面积比。
S:C = A:P; C/A = S/P2. 三角函数公式:sin A = a/ c;cos A = b/c;tan A =a/b;倍角公式:sin 2A = 2 sin A cos A;cos 2A =cos²A -sin ²A;tan 2A=2 tan A/(1-tan²A)二、微积分公式:1. 二次函数的对称性:y=ax²+bx+c的图象关于直线 y= ( -b/2a ) 的对称,即(-b/2a, 0)为图象的中心;2. 微分:基本微分公式:d(f+g)/dx = df/dx + dg/dx ; d(fg)/dx = fdg/dx + gdf/dx ;d(f-g)/dx = df/dx - dg/dx ;3. 极限:极限的定义:当x变化无限接近于某个值a时,当x=a时,函数y=f(x)的值可以通过极限符号来表示:limx→af(x) = L。
4. 微积分法则:幂级数法则:∫xn·dx=(xn+1)/ (n+1) + C ;指数函数法则:∫eax·dx=eax/ a + C;三、统计数学:1. 众数:一个数据集中出现次数最多的数据值;2. 概率:事件A发生的可能性/所有可能发生的事件可能性之和;3. 正态分布:用来估计一组数据的分布情况,常用的正态分布公式为:f(x)= (1/sqrt(2π)) e^[-0.5(x-μ)²/σ²] ;4. 方差:用来衡量样本数据的离散程度,表示各个样本数据和平均数之间的平均距离,可以用方差公式表示:σ² = ∑[(xi-μ)²/ n],其中xi为样本数据,μ为样本平均数,n为样本个数。
高考数学公式大全
高考数学公式大全1.平面几何公式:-正方形面积公式:$A=a^2$-长方形周长公式:$P=2l+2w$-正方形周长公式:$P=4a$- 圆的面积公式:$A = \pi r^2$- 圆的周长公式:$C = 2\pi r$-直角三角形勾股定理:$c^2=a^2+b^2$- 直角三角形正弦定理:$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$- 直角三角形余弦定理:$c^2 = a^2 + b^2 - 2ab\cos C$2.空间几何公式:- 空间直角坐标系距离公式:$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$- 三维空间球体的体积公式:$V = \frac{4}{3}\pi r^3$- 三维空间球体的表面积公式:$S = 4\pi r^2$-空间直线与平面垂直公式:$Ax+By+Cz+D=0$- 平面点到直线的距离公式:$d = \frac{,Ax_0 + By_0 + Cz_0 + D,}{\sqrt{A^2+B^2+C^2}}$3.数列与数学归纳法公式:-等差数列通项公式:$a_n=a_1+(n-1)d$-等差数列求和公式:$S_n = \frac{n}{2}(a_1 + a_n)$-等比数列求和公式:$S_n = \frac{a_1(q^n - 1)}{q - 1}$-数学归纳法:当证明一个命题对于任意正整数n成立时,可先证明命题对于n=1成立,然后假设对于n=k成立,再证明对于n=k+1也成立。
4.概率与统计公式:- 事件的概率公式:$P(A) = \frac{n(A)}{n(S)}$- 排列公式:$A_n^m = \frac{n!}{(n-m)!}$- 组合公式:$C_n^m = \frac{n!}{m!(n-m)!}$- 期望公式:$E(X) = \sum x_i \cdot P(x_i)$- 方差公式:$Var(X) = E(X^2) - [E(X)]^2$5.微积分公式:- 导数定义:$f'(x) = \lim_{{\Delta x \to 0}} \frac{{f(x +\Delta x) - f(x)}}{{\Delta x}}$- 导数的基本运算法则:$(cf(x))' = cf'(x)$、$(f(x) \pm g(x))' = f'(x) \pm g'(x)$、$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$、$(\frac{{f(x)}}{{g(x)}})' = \frac{{f'(x)g(x) -f(x)g'(x)}}{{g(x)^2}}$- 积分定义:$\int f(x)dx$- 不定积分的基本公式:$\int kdx = kx + C$、$\int x^n dx = \frac{{x^{n+1}}}{{n+1}} + C$、$\int \cos x dx = \sin x + C$、$\int \sin x dx = -\cos x + C$- 定积分的基本公式:$\int_a^b f(x)dx = F(b) - F(a)$,其中F'(x) = f(x)以上是高考数学的一些重要公式,掌握并熟练使用这些公式可以在考试中更高效地解题。
高中数学必背公式大全高考必考数学公式
高中数学必背公式大全高考必考数学公式1.二次方程的根与系数之间的关系:设二次方程 ax^2 + bx + c = 0(a ≠ 0)的根为 x1 和 x2,那么有以下关系式:x1+x2=-b/ax1*x2=c/a2.一元二次不等式的求解:设二次不等式 ax^2 + bx + c > 0(a ≠ 0)的解集为 S,那么有以下关系式:a>0时,S={x,x<x1或x>x2}a<0时,S={x,x1<x<x2}3.二次函数的顶点坐标:设二次函数 y = ax^2 + bx + c 的顶点坐标为 (h, k)那么有 h = -b/2a,k = f(h) = (4ac - b^2)/4a4.一次函数的斜率与函数图像的关系:设一次函数 y = mx + c 的斜率为 m,那么有以下关系式:m>0时,函数图像上升;m<0时,函数图像下降;m=0时,函数图像水平。
5.三角函数和三角公式:sin(A + B) = sinA * cosB + cosA * sinBcos(A + B) = cosA * cosB - sinA * sinBtan(A + B) = (tanA + tanB) / (1 - tanA * tanB)sin^2A + cos^2A = 1sin²θ + cos²θ = 16.幂函数的性质:若 a > 0 且a ≠ 1,则函数 y = ax^n (n 是整数)的性质如下:n>0时,函数图像单调递增;n<0时,函数图像单调递减;n为偶数时,函数图像关于y轴对称;n为奇数时,函数图像关于原点对称。
7.对数函数的性质:若 a > 0 且a ≠ 1,则函数 y = log_a(x) 的性质如下:a>1时,函数图像单调递增;0<a<1时,函数图像单调递减;函数图像过点(1,0),且以x轴为渐近线;log_a(a^b) = b8.指数函数的性质:若a>0且a≠1,则函数y=a^x的性质如下:a>1时,函数图像单调递增;0<a<1时,函数图像单调递减;函数图像过点(0,1),且a^0=1a^m*a^n=a^(m+n)9.排列组合公式:将n个物体排成一列,有以下公式:排列公式:从n个物体中任选m个物体的排列数为A(n,m)=n!/(n-m)!组合公式:从n个物体中任选m个物体的组合数为C(n,m)=n!/(m!*(n-m)!)10.三角函数的和差化积:sin(A + B) = sinA * cosB + cosA * sinBsin(A - B) = sinA * cosB - cosA * sinBcos(A + B) = cosA * cosB - sinA * sinBcos(A - B) = cosA * cosB + sinA * sinBtan(A + B) = (tanA + tanB) / (1 - tanA * tanB)tan(A - B) = (tanA - tanB) / (1 + tanA * tanB)这些公式是高中数学中的常用公式,掌握并熟练运用它们对于高考数学考试非常重要。
高中高考数学公式大全
高中高考数学公式大全1.代数公式:- 二次方程的根公式:对于二次方程ax²+bx+c=0,其根的公式为x=(-b±√(b²-4ac))/2a;- 韦达定理:对于三次方程ax³+bx²+cx+d=0,其根之和为-S₁/a,其根之积为S₃/a;-分式的倒数:若x是不等于0的实数,则x的倒数为1/x;- 二项式定理:(a+b)ⁿ的展开式为aⁿ+naⁿ⁻¹b+...+bⁿ;2.几何公式:-直角三角形的勾股定理:若a、b、c分别为直角三角形的两条直角边和斜边的长度,则a²+b²=c²;- 正弦定理:在三角形ABC中,a/sinA=b/sinB=c/sinC,其中a、b、c分别是三角形中对应的边,A、B、C分别是相对的角;- 余弦定理:在三角形ABC中,c²=a²+b²-2abcosC,其中a、b、c分别是三角形中对应的边,C是夹角;-长方形面积公式:长方形的面积等于长乘以宽;-圆的面积公式:圆的面积等于πr²,其中r为圆的半径;3.数列公式:-等差数列通项公式:如果数列{an}是等差数列,公差为d,首项为a₁,则其通项公式为an=a₁+(n-1)d;-等差数列前n项和公式:如果数列{an}是等差数列,公差为d,首项为a₁,前n项和为Sn,则其公式为Sn=(a₁+an)n/2;-等比数列通项公式:如果数列{an}是等比数列,公比为q,首项为a₁,则其通项公式为an=a₁qⁿ⁻¹;-等比数列前n项和公式:如果数列{an}是等比数列,公比为q≠1,首项为a₁,前n项和为Sn,则其公式为Sn=a₁(qⁿ-1)/(q-1);4.概率公式:-事件A的概率:P(A)=A事件发生的可能性/所有可能性;-互斥事件的概率:P(A或B)=P(A)+P(B);-相关事件的概率:P(A且B)=P(A)×P(B,A),其中P(B,A)为在事件A发生的条件下事件B发生的概率;5.导数公式:-基本函数的导数:-常数函数的导数为0;- 幂函数f(x)=xⁿ的导数为f'(x)=nxⁿ⁻¹;-指数函数f(x)=eˣ的导数为f'(x)=eˣ;- 对数函数f(x)=ln(x)的导数为f'(x)=1/x;-基本运算法则:-f(x)=u(x)±v(x)的导数为f'(x)=u'(x)±v'(x);-f(x)=c·u(x)的导数为f'(x)=c·u'(x),其中c为常数;-f(x)=u(x)·v(x)的导数为f'(x)=u'(x)·v(x)+u(x)·v'(x);-f(x)=u(x)/v(x)的导数为f'(x)=(u'(x)·v(x)-u(x)·v'(x))/v²(x);这仅仅是高中高考数学公式的部分内容,还有很多其他的公式。
高考数学公式大全
高考数学公式大全1. 二次方程的求根公式:对于二次方程$ax^2+bx+c=0$,其中$a\neq0$,它的根可以通过以下公式得出:$x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$2. 两点间距离公式:设平面上点A($x_1,y_1$)和点B($x_2,y_2$)的坐标,则点A与点B之间的距离为:$d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$3. 等差数列前n项和公式:设等差数列的首项为$a_1$,公差为$d$,前n项和为$S_n$,则$S_n$可以通过以下公式计算:$S_n=\frac{n}{2}(2a_1+(n-1)d)$4. 等比数列前n项和公式:设等比数列的首项为$a_1$,公比为$r$,前n项和为$S_n$,若$r\neq1$,则$S_n$可以通过以下公式计算:$S_n=\frac{a_1(1-r^n)}{1-r}$5. 平方差公式:对于任意实数$a$和$b$,有以下公式成立:$(a+b)^2=a^2+2ab+b^2$$(a-b)^2=a^2-2ab+b^2$6. 三角函数的和差化积公式:$\sin(A\pm B)=\sin A\cos B\pm\cos A\sin B$$\cos(A\pm B)=\cos A\cos B\mp\sin A\sin B$7. 二项式展开公式:对于任意实数$a$和$b$,以及正整数$n$,有以下公式成立:$(a+b)^n=\sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^{k}$,其中$\binom{n}{k}=\frac{n!}{k!(n-k)!}$表示组合数8. 正弦定理:对于任意三角形ABC,边长分别为$a$,$b$,$c$,以及对应的内角分别为$A$,$B$,$C$,有以下公式成立:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$9. 余弦定理:对于任意三角形ABC,边长分别为$a$,$b$,$c$,以及对应的内角分别为$A$,$B$,$C$,有以下公式成立:$c^2=a^2+b^2-2ab\cos C$10. 三角函数的倒数关系:$\sin(\frac{\pi}{2}-A)=\cos A$$\cos(\frac{\pi}{2}-A)=\sin A$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学公式大全 一、集合1.集合的运算符号:交集“I ”,并集“Y ”补集“C ”子集“⊆”2.非空集合的子集个数:n 2(n 是指该集合元素的个数)3.空集的符号为∅ 二、函数1.定义域(整式型:R x ∈;分式型:分母0≠;零次幂型:底数0≠;对数型:真数0>;根式型:被开方数0≥)2.偶函数:)()(x f x f -= 奇函数:0)()(=-+x f x f 在计算时:偶函数常用:)1()1(-=f f奇函数常用:0)0(=f 或0)1()1(=-+f f3.单调增函数:当在x 递增,y 也递增;当x 在递减,y 也递减 单调减函数:与增函数相反4.指数函数计算:nm nmaa a +=⋅;nm n m aa a -=÷;nm n m aa ⋅=)(;m n mn a a=;10=a指数函数的性质:x a y =;当1>a 时,x a y =为增函数; 当10<<a 时,x a y =为减函数 指数函数必过定点)1,0(5.对数函数计算:1log =aa ;0log 1=a ;nm an a m a ⋅=+log log log ;nm a na m a log log log =-; ma m an nlog log =;m a mannlog 1log =对数的性质:xa y log = ;当10<<a 时,xa y log =为减函数.当1>a 时,xa y log =为增函数对数函数必过定点)0,1( 6.幂函数:a x y =7.函数的零点:①)(x f y =的零点指0)(=x f②)(x f y =在),(b a 内有零点;则0)()(<•b f a f三、三角函数①计算:1cos sin 22=+αα;θθθtan cos sin = ②正负符号判断:“一全正,二正弦,三切,四余弦” ③和差公式:βαβαβαsin cos cos sin )sin(±=± βαββαsin sin cos cos )cos(μa =± βαβαβαtan tan 1tan tan )tan(•±=±μ④二倍角公式:αααcos sin 22sin •=;ααααα2222sin cos sin 211cos 22cos -=-=-= ααα2tan 1tan 2)2tan(-=;⑥诱导公式口诀“奇变偶不变;符号看象限。
”⑦如何将三角函数化为)sin()(ϕ+=wx A x f ;利用三角函数相关的公式三看:一看平方:)2cos 1(21cos );2cos 1(21sin 22αααα+=-=二看乘积:ααα2sin 21cos sin =•三看加减:)sin(cos sin 22ϕααα±+=±b a b a 其中a b =ϕtan ; 41πϕ=⇒=a b633πϕ=⇒=a b33πϕ=⇒=a b 特别强调当a<0时:)sin(cos sin 22ϕααα±+-=+b a b a ⑧三角函数 )sin(ϕ+=wx A y 的性质: ⑴单调增减区间:⎥⎦⎤⎢⎣⎡+-22,22ππππk k ↑ ⎥⎦⎤⎢⎣⎡++232,22ππππk k ↓ ⑵对称轴方程: 2ππ+=k x ;对称中心:)0,(πk⑶周期: w T π2=④max y 时,22;22min ππππ-=+=k x y k x 时: ⑸值域:[]A A ,- ⑥记死:两条相邻对称轴之间距离为2T两条相邻对称中心距离为2T 9.由图像求)sin(ϕ+=wx A y ,三步:第一步:由图找到振幅A 第二步:由图找到周期T ,然后由wT π2=求出w 具体值 第三步:代“特殊点”利用特殊角求出ϕ的值10.)sin(ϕ+=wx A y −−−−−→−个单位向左右平移a []ϕ+±=)(sin a x w A y 11.wx A y sin =−−−→−如何变成)sin(ϕ+=wx A y 平移wϕ个单位四、正余弦定理①边与角之间的转化:用正弦定理R A a 2sin =;R B b 2sin =;R Cc2sin = A R a sin 2=, B R b sin 2=,C R c sin 2= (把边转化为角)R a A 2sin = ,R b B 2sin =,RcC 2sin = (把角转化成边)②余弦定理:夹边夹边对边夹边夹边•+=2-cos 222θ③面积公式:B ac A bc C ab S ABC sin 21sin 21sin 21===∆ ④诱导公式:C B A sin )sin(=+ C B A cos )cos(-=+五、向量①),(11y x a =→ ),(22y x b =→ 则),(2121y y x x b a ++=+→→,),(2121y y x x b a --=-→→θcos 2121⋅•=+⋅=•→→→→b a y y x x b a②2121y x a +=212122y x a a +== →b 向量同理③→→b 与a 的夹角公式:222221212121cos yx yx y y x x +++=θ④002121=+⇒⊥=•⇒⊥→→→→y y x x b a b a b a 或者 ⑤0//1221=-⇒→→→→y x y x b a b a 共线与或者 ⑥()2wb a wb a ±=±λλ⑦单位向量指“模”为1:a a 则1=为单位向量 六、数列①后一项减去前一项的值为一个常数:d a a n n =--1 ②后一项除以前一项的值为一个常数:q a a n n=-1③等差数列通项公式:()d n a a n 11-+= 等比数列通项公式:11-=n n q a a ④等差数列求和公式:()()d n n nan a a s n n 21211-+=⨯+=等比数列求和公式:()qq a s nn --=111⑤111s a a s s n n n ==--且⑥等差数列中项公式:112-++=n n n a a a 等比数列中项公式:112-+•=n n n a a a ⑦求和公式:“分组求和 ”等比求和等差求和nn b b a a a a ++++++...b (21321)“裂项相消”⎪⎭⎫⎝⎛-•-=大小小大111n a“错位相减”:等比通项等差通项•七、统计以概率:①众数指“出现次数最多的那个数” 中位数指“从小排到大的中间那个数”②方差 []2212)(...)()(1x x x x x x ns n -++-+-=标准方差:2s ③频率;总数频数概率==频率组距组距频率=⨯各组频率之和=1④极差:极差=-min max⑤学会认茎叶图⑥分层抽样:第一步求出各组的比例 第二步用样本总数⨯比例=分组频数 ⑦回归方程当0>∧b 时,x 与y 正相关 当0<∧b 时,x 与y 负相关⑧))()()(())((22d c b a d b c a bc ad d c b a k ++++-+++=;二联表总 a b c d 总八、命题①原命题:否命题(条件和结论都否定);逆命题(条件和结论互换位置);逆否命题(将逆命题进行否定)②“或”∨⇒ “且”∧⇒ “非”⌝⇒p一真全真 ↓ 一假全假 ↓ 真假互换 ↓③B A ⊆则A 是B 充分不必要B A ⊇则A 是B 的必要不充分B A =则A 是B 的充要条件④全称量词:符号:∀ 存在量词:符号∃“ ∀”与 “ ∃” 相互否定,“所有” −−→←否定“存在 ” 九、导数①基本函数求导:1')(-•=m m nx m nx ;)0(1)(ln '>=x xx ;x x e e =')((本身) 0'=c (常数求导=0);x x cos )(sin '=;x x sin )(cos '-=②乘法求导:[])()()()()()('''x f x g x g x f x g x f ⋅+⋅=•;除法求导:)()()()()()()(2''x g x f x g x g x f x g x f -= ③复合求导:[][]→=)().()('''x g f x g x g f 这个公式记题型④斜率)(0'x f k = 切线方程:)(00x x k y y -=-⑤在a x =处取极值⇒0)('=a f⑥求单调区间:令0)('>x f 求单调增区间 .令0)('<x f ,求减区间⑦求极值方法:第一步,求导函数 第二步:求单调区间 第三步:作图由图求极值。
⑧求最值方法:同求极值方法一样,最后一步由给定区间取舍求最值十、解析几何1、直线 (1)直线斜率BAk x x y y k k -=--==;;tan 2121θ (2)直线的方程:点斜式:)(00x x k y y -=-;斜截式:b kx y += 截距式:)0,0(1≠≠=+b a bya x 一般式:0=++c By Ax (3)两条直线位置关系:2121//k k l l =⇒且21b b ≠; 12121-=•⇒⊥k k l l 或者02121=+B B A A (4)距离公式:点到直线距离公式:2200BA C By Ax d +++=两点间距离公式221221)()(y y x x d -+-=两条平行直线间的距离2221BA C C d +-=(5)直线恒过定点:(记题型) (6)直线与坐标围成三角形面积b a S 21=(a,b 指截距) (7)求两条直线的交点:联立方程组 (8)点关于直线对称:图形公式:11212-=--•-x x y y B A ,0222121=++•++•C y y B x x A ; 2、圆(1)圆的标准方程:222)()(r b y a x =-+- 圆心:),(b a ;半径:r 一般:022=++++F Ey Dx y x 圆心)2,2(ED --,)0(2422>-+=r FE D r参数方程:θθsin cos r b y r a x +=+=⇒参数方程→求最值(2)圆与直线的位置关系弦长公式:2222r d AB =+⎪⎭⎫ ⎝⎛ 图形:相切:2200BA c By Ax r d +++== 图形:相离:2200BA c By Ax r +++<图形:(3)圆与圆位置关系(记题型) 3、椭圆和双曲线①椭圆指一个动点到两个定点之间距离为)0(2>a a双曲线是指一个动点到两个定点之差为)0(2>±a a②椭圆和双曲线的基本性质(1)椭圆的长轴:a 2 ,a 为长半轴,短轴b 2,b 为短半轴 椭圆的焦距为:c 2 c 为半焦距(2)双曲线的实轴:a 2,a 为实半轴;虚轴:b 2,b 为虚半轴 双曲线的焦距为:c 2 c 为半焦距(3)椭圆的",,"c b a 的等量关系:222c b a += 双曲线的",,"c b a 的等量关系:222a b c += (4)椭圆和双曲线的离心率公式:ac e =(5)椭圆和双曲线的准线:c a x 2±=,ca y 2±=(6)椭圆没有渐进线:双曲线存在渐近线x a b y ±=(焦点x 轴)x bay ±=(焦点y 轴)(7)椭圆的标准方程:)(1)0(1)0(12222222222椭圆过两个点=+>>=+>>=+ny mx b a bx a y b a b y a x(8)双曲线的标准方程:)(1)0,0(1)0,0(12222222222双曲线过两点=+>>=->>=-ny mx b a bx a y b a b y a x十、抛物线1、抛物线是指一个动点到一个定点的距离等于这个动点到定直线的距离 如图: 公式:d PF =2、抛物线的方程:px y 22=,px y 22-=,py x 22=,py x 22-=。