为航天器热设计与质量控制所设计的便携式发射度测量系统
一种温度控制系统,航天器以及航天器温度控制的方法[发明专利]
专利名称:一种温度控制系统,航天器以及航天器温度控制的方法
专利类型:发明专利
发明人:童铁峰,靳书岩
申请号:CN201811492069.5
申请日:20181207
公开号:CN109324648A
公开日:
20190212
专利内容由知识产权出版社提供
摘要:本申请提出一种航天器,包括一种温度控制系统。
该温度控制系统包括:至少一个温度传感器,所述至少一个温度传感器中的每个温度传感器安装在被测量设备的一个测温点上,测量所述测温点的温度数据,所述被测量设备包括多个位于其他位置的目标温度控制点;加热系统,所述加热系统在通电状态下对所述被测量设备产生附加温度场;温度控制单元,所述温度控制单元在所述被测量设备工作状态下:接收所述至少一个温度传感器测得的所述至少一个测温点温度数据;基于预先存储的所述被测量设备在预设工作状态下的温度场模型,判断所述多个位于其他位置的目标温度控制点的温度;控制加热系统对所述被测量设备加热,调控所述目标温度控制点温度。
申请人:银河航天(北京)通信技术有限公司
地址:102445 北京市房山区辰光东路16号院4号楼11层1117
国籍:CN
代理机构:北京市一法律师事务所
代理人:刘荣娟
更多信息请下载全文后查看。
航天器热试验电缆自动测试装置的设计与实现
计算 机 测 量 与 控 制 .2017.25(9) 犆狅犿狆狌狋犲狉 犕犲犪狊狌狉犲犿犲狀狋 牔 犆狅狀狋狉狅犾
设计与应用
文章编号:1671 4598(2017)09 0250 04 DOI:10.16526/j.cnki.11-4762/tp.2017.09.064 中图分类号:TP2 文献标识码:A
收稿日期:2017 06 08; 修回日期:2017 06 12。 作者简 介:冯 尧 (1986 ),男,陕 西 人,硕 士 研 究 生,工 程 师,主 要 从事航天器热试验温度测量与控制相关技术方向的研究。
工进行测试,会存在测试漏项、覆盖性不全等质量隐患,轻 则影响测试进程,重则会导致设备烧毁,甚至任务失败。因 此如何快速、全面、准确的进行电缆导通和绝缘测试,是地 面试验测试亟需解决的难点。本文设计了一种地面电缆电性 能自动测试装置,该装置能够自动完成电缆的线间导通和绝 缘测试,不需要手动更换测试的接线端子,能够改进电缆测 试的自动化程度,显著提高工作效率和可靠性。
关键词:航天器热试验;测试电缆;导通和绝缘;自动化
犇犲狊犻犵狀犪狀犱犚犲犪犾犻狕犪狋犻狅狀狅犳犃狌狋狅犿犪狋犻犮犜犲狊狋犇犲狏犻犮犲犳狅狉犜犺犲狉犿犪犾 犜犲狊狋犆犪犫犾犲犳狅狉犛狆犪犮犲犮狉犪犳狋
FengYao,WuDongliang,LiaoTao,WangQingyu
(BeijingInstituteofSpacecraftEnvironmentandEngineering,Beijing 100094,China) 犃犫狊狋狉犪犮狋:Theautomatictestdevicebasedontherelaynetworkisdesignedandrealizedinordertosolvetheproblemofheavyhardwork andlowefficiencyintheprocessofthecontinuitytestandinsulationtestofthespacecraftthermaltestcable.Thesystemcontrolsthetest voltagegenerationandrelayswitchmodulebyEB3680,andreducethetesttimebyoptimizingthetesttimingcontrol.Themoduledesignof theinterfaceandrelayunitiscarriedouttocompletethehuman-computerinteraction,testresultinterpretation,dataprocessing,display andstoragebasedonVC+ + 6.0platform.Thedeviceachievesthehostcomputerandtestdevicedatatransmissionthroughthe USB- UART.Practicalapplicationshowsthatthedeviceisstable,automaticandwithshorttesttime,caneffectivelyimprovethetestefficiency andreliability. 犓犲狔狑狅狉犱狊:spacecraftthermaltest;testcable;conductionandinsulation;automatictest
航天器热控制PPT课件
.
19
9.2 航天器热设计
一、热设计的任务
根据航天器飞行任务的要求及航天器工作期间 所要经受的内、外热负荷的状况,采取各种热控制 措施来组织航天器内、外的热交换过程,保证航天 器在整个运行期间所有的仪器设备、生物和结构件 的温度水平都保持在规定的范围内。
.
20
9.2 航天器热设计
二、航天器热控技术的特点
.
24
9.2 航天器热设计
2. 适应变化大的热环境 ✓地面段:航天器发射前的温度在预定的范围内 ✓上升段:星内气体对流减小直至消失 ✓轨道段:辐射 ✓返回段:自然对流由无到有,外壳气动加热
.
25
9.2 航天器热设计
3. 提高通用性及应变能力
✓ 应该十分注重通用性设计。 ✓ 热控系统在整个飞行期间一直需要发挥功能,应具 备较强的适应能力,有较好的自动调节性能。
.
34
9.3 航天器热控制技术
(1) 涂料型涂层:应用最广。
有机白漆α:0.15-0.27,ε:0.86-0.95; 有机黑漆α:0.89-0.95,ε:0.88-0.96; 有机灰漆:介于白黑之间; 有机金属漆α:0.24-0.31,ε:近似为1
(2) 电化学涂层:
阳极氧化涂层:α:0.12-0.16,ε:0.6-0.8 铝光亮阳极氧化涂层、电镀
p : 仪器表面辐射率;
s : 蒙皮辐射率;
F p : 仪器辐射面积;
T p : 仪器辐射温度;
T
:蒙皮温度
s
改变蒙皮发射率来控制Tp: 热控百叶窗。
.
43
9.3 航天器热控制技术
辐射器 (高辐射率)
叶片 (低辐射率)
电动百叶窗原理
.
便携式2π粒子发射率测量系统研制
便携式2π粒子发射率测量系统研制贺海江;李泽西;梁珺成;侯胜利;杨志杰;杨豪【期刊名称】《核电子学与探测技术》【年(卷),期】2016(036)011【摘要】为满足现场测量需求,研制了便携式2π粒子发射率测量系统.系统基于流气式多丝正比计数器,设计了多道脉冲幅度分析处理模块,编制了上位机能谱测量软件,实现α、β平面源能谱的实时显示和能谱数据的离线分析处理,方便了β外推中的应用.实验结果表明:系统工作性能稳定,α能谱能量线性较好,实测发射率与标准值能够在不确定度范围内一致,结果偏差小于1%,能够满足2πα、2πβ粒子表面发射率准确测量的需求,为现场粒子发射率量值传递装置的建立奠定了基础.【总页数】6页(P1172-1177)【作者】贺海江;李泽西;梁珺成;侯胜利;杨志杰;杨豪【作者单位】中国地质大学(北京),地球物理与信息技术学院,北京 100083;中国计量科学研究院,北京 100029;中国计量科学研究院,北京 100029;南华大学,湖南衡阳421001;中国计量科学研究院,北京 100029;中国地质大学(北京),地球物理与信息技术学院,北京 100083;中国地质大学(北京),地球物理与信息技术学院,北京 100083;中国计量科学研究院,北京 100029;中国地质大学(北京),地球物理与信息技术学院,北京 100083【正文语种】中文【中图分类】TB98【相关文献】1.半球全发射率测量系统的研制 [J], 曹国霞;杨景发;徐景智;曹小兵2.华龙一号机组MPR200M便携式辐射测量系统的研制 [J], 任熠; 郭喜荣; 郭强3.便携式多功能钻孔成像测量系统的研制 [J], 刘耀波4.便携式非特异性腰痛测量系统研制 [J], 崔莉;周钧锴;王念;肖京;季宇宣;姜美驰5.便携式树木胸径测量系统的研制 [J], 孙林豪;方陆明;唐丽华;刘江俊因版权原因,仅展示原文概要,查看原文内容请购买。
便携式半球发射率测试仪设计
一
相 对标 准值 偏差 值
0 0 3
— 0 . O 2 0 . 0 4 相 对标 准值 偏差 值 0 0 4 0 0 2 — 0 0 2
经过 测试 并计算分 析 ,测量示 值与计 量部 门标 定数值 的误 差 均 在 ±1 %范围 以内 , 并且重复性好 , 满足测试要求 。
4 结论
套标准板包 含高发射率标准板和低发射率标 准板各一件 ,用 于
测试校准 。 高发射率标准板采用铝合 金并 氧化黑 色 , 用 于高发射率数值
校准 。低发射 率标 准板采用不锈钢并表 面抛光 ,用于低发射率数值校
准。 为保证测量精度 , 该测试仪提供 完全一 致的两套标 准板 即为 A套和
数 值。
3 测 量 误 差 分 析
该 测试仪采用辐射计法 为原理结合 相对 比较法 。辐 射计探 测器测
量高低辐射 区温差并输 出电压信号 ,该 电压信号 与被测 样品的半球发
射率呈线性关系。 通过 高、 低半球发射率标准板与被测样品输 出的 电压 信号大小相 比较 , 从而得出被测样 品的半球发射率数值 。
摘 要: 通过 合理设计 , 设计研 究了一种便 携式半球发射率测试仪 。该 文着重叙述 了测试仪 的测试 原理 、 结构组成、 测试过程及 测量精 度分析
等。此设 计研 究对材料 半球发射率 的测试及新材料 的研究有着十分重要的意义。
关键 词: 半球 发射率; 辐射计 法; 隔热涂料 ; 便携 式
半 球发射率是指热辐射体在半球 方向上的辐射 出射度与处 于相 同 温度的全辐射 体( 黑体 ) 的辐射 出射度 的 比值 , 体现 了材料在 特定温 度 下 相对黑体的辐射能 力。 它是材料的一个重要物理性能参数 , 是研究辐 射 热传递 、 衡 量材料质量等 问题指标之一 , 有助于新型材料 的研究 。 针对 目 前 测量接近常温条件下材料半 球发射率测试 的需求 ,如建 筑 隔热 涂料和航天器热控涂层等材料测 量 ,根据不同 的测量原理可分 为量热法 、 反 射率法 、 辐射计法等 。 考虑测试需求 、 便捷方便及仪器的性 价比, 故采用辐射计法为原理结合相对 比 较法, 设计研制 了一种便携 式
第二十四单元 信息传递【真题训练】(原卷版)
第二十四单元信息传递【真题训练】(原卷版)一、选择题1.(2021·广西贵港·中考真题)2020年11月24日4时30分,中国在文昌航天发射场,用长征五号遥五运载火箭成功发射探月工程嫦娥五号探测器,顺利将探测器送入预定轨道。
2020年12月17日,嫦娥五号任务轨道器与返回器分离,返回器携带月球样品返回地球。
下列说法正确的是()。
A.火箭升空过程中机械能不变;B.火箭升空过程中机械能转化为内能;C.控制中心是通过电磁波来控制嫦娥五号任务轨道器;D.嫦娥五号任务轨道器是通过超声波来控制返回器的2.(2021·浙江宁波市·中考真题)2020年7月23日,“天问一号”成功发射,奔向火星;至2021年5月15日(农历四月初四),携带“祝融号”火星车的着陆巡视器在火星着陆,我国成为首个在一次火星探测任务中完成“绕、落、巡”三项目标的国家。
下列描述错误的是()。
A.图甲中箭头所指的行星是火星;B.2021年5月15日,地球上看到的月相是下弦月;C.陨石撞击火星可以形成撞击坑D.“天问一号”拍摄的照片信息是以电磁波的形式传回地球的3.(2021·四川南充市·中考真题)2021年5月,“天问一号2探测器成功在火星着陆,下列有关“天问一号”的说法错误的是()。
A.“天问一号”与地面控制中心联系是通过电磁波传递信息;B.“天问一号”的太阳能电池板工作时将太阳能转化为电能;C.“天问一号”在着陆火星减速下降过程中机械能不变;D.“天问一号”轨道修正需要发动机点火工作,说明力可以改变物体的运动状态4.(2021·云南中考真题)近年,我国在信息、材料和能源等领域取得了辉煌的成绩,以下说法正确的是()。
A.量子计算机中的电子器件都是超导体制成的;B.“祝融号”火星车利用电磁波将信息传回地球;C.水力、风力、太阳能发电都是利用不可再生能源;D.核电站产生的核废料可以像生活垃圾那样被处理5.(2021·湖南岳阳市·中考真题)2021年5月15日,祝融号火星车成功降落在火星上,实现了中国航天史无前例的突破。
航天器热控制技术研究与优化设计
航天器热控制技术研究与优化设计在航天器的设计与制造过程中,热控制技术是至关重要的一环。
航天器在太空中面临着极端的温度条件,既有来自太阳的高温辐射,又有来自宇宙的低温环境。
良好的热控制技术能够确保航天器的正常运行,提高其可靠性和寿命。
航天器的热控制技术主要包括两个方面:热保护和热辐射。
热保护是指采取措施防止高温热量传递进入航天器内部,热辐射则是通过航天器表面散发出热量,确保航天器能够保持稳定的温度。
热保护是航天器热控制技术的关键环节之一。
在航天器离开地球进入太空之后,它将直接面对高温辐射。
太阳的高温辐射会直接照射到航天器的表面,导致航天器内部温度升高。
为了保护航天器内部设备和仪器不受高温的影响,需要采取一系列措施来降低热量传递。
例如,可以使用隔热材料来包裹航天器的外壁,以减少来自外部的高温辐射。
此外,还可以采用冷却系统,通过循环流体来吸收和散发热量。
热辐射是航天器热控制技术的另一个重要方面。
在太空中,航天器的表面会散发出热量,以保持自身的稳定温度。
然而,在宇宙的低温环境下,热辐射很容易引起航天器的过热或过冷,影响其正常运行。
因此,需要设计合适的热辐射系统来控制航天器的表面温度。
常见的热辐射系统包括热辐射板和热辐射涂层。
热辐射板在航天器表面安装一层铝或其他金属,用以散发热量。
而热辐射涂层则是在航天器表面涂覆一层特殊材料,能够吸收和辐射热量。
为了优化航天器的热控制技术,科学家们进行了大量的研究。
他们利用数值模拟和实验测试的方法,对热控制系统进行了优化设计。
通过模拟不同温度条件下的热量传递和散发过程,科学家们能够提前预测并解决可能出现的问题。
同时,他们还研究了不同材料的热辐射性能,以寻找更加高效的热辐射方案。
除了研究热控制技术本身,优化设计也是非常重要的一环。
航天器的结构和布局会直接影响热控制系统的效果。
科学家们通过改变航天器的结构和材料选择,实现对热控制技术的优化。
例如,他们可以调整航天器外壁的厚度和材料,以提高热保护效果。
微型航天器热控系统设计
2002年10月第13卷第5期装备指挥技术学院学报Journal of t he Academy of Equipment Command &T echnolog y October 2002Vol.13 No 5收稿日期:2002 05 08基金项目:国家教委骨干教师资助项目(2000 1027 01056133) 作者简介:向四桂(1970-),男,讲师,硕士.微型航天器热控系统设计向四桂 沈怀荣(装备指挥技术学院试验工程系,北京101416)摘 要:20世纪80年代中期以来,小卫星技术发展十分迅速,并带动了卫星向小型化发展。
介绍了微型航天器温度环境分析方法,使用简单热分析模型和整星热分析模型分析了某微型航天器的温度情况,并介绍了其热控系统设计方案。
关 键 词:微型航天器;热控系统;辐射中图分类号:V 423.4文献标识码:A 文章编号:CN11 3987/G3(2002)05 0044 03人造卫星热控制技术是控制卫星内部及外部环境热交换过程,使其热平衡温度处于要求范围内的技术,它是航天技术的重要组成部分[1]。
由用于卫星热控制的各种材料、部件和设备组成的卫星热控系统,是卫星各系统中十分重要的系统之一;其系统性能的优劣,可靠性的高低直接影响到其他系统的工作状态及卫星的工作寿命。
以华盛顿大学研制的Daw gstar 小卫星[2]为例,它是华盛顿大学与犹他州大学、维吉尼亚工业学院联合研制的一种小卫星,用于验证小总线技术、小卫星编队飞行以及太空中分布式卫星的性能。
为保证成功飞行,Daw gstar 的所有部件无论是否工作,其温度都必须控制在一定的范围之内。
而当卫星每90分钟绕轨道飞行一周时,由于各种因素的影响,卫星将经历不同的热量梯度。
这就要求为其设计一个热控子系统,以保证各部件在任何情况下都能正常工作。
1 最简单的热量分析模型在对Daw gstar 的热量情况进行详细分析之前,首先要估算其经历的最高温度(卫星处于一个最小的背阴轨道)和最低温度(卫星处于一个最大的背阴轨道),可以通过如图1所示的模型进行估算。
低轨道轻质星载一体化空间光学遥感器的热设计
低轨道轻质星载一体化空间光学遥感器的热设计低轨道轻质星载一体化空间光学遥感器的热设计是一项十分重要的任务,它涉及到航天器在极端环境下的热管理、热保护以及热控制等方面的问题。
本文将详细介绍低轨道轻质星载一体化空间光学遥感器的热设计,并从热扩散、热传导和热辐射等方面进行讨论。
对于低轨道轻质星载一体化空间光学遥感器的热设计来说,首先要考虑的是航天器在空间中的热辐射问题。
由于在低轨道上,航天器会暴露在强烈的太阳辐射下,因此需要设计合适的热控制机制,以保护光学组件不受过热的影响。
一种常见的热控制方案是使用反射率高的热控涂层来减少太阳辐射的吸收,从而降低光学组件的温度。
同时,还可以通过热辐射遮挡器等措施来限制太阳辐射的直接照射。
其次,对于低轨道轻质星载一体化空间光学遥感器的热设计来说,还需要考虑航天器的热扩散和热传导问题。
由于热量会在航天器内部扩散和传导,而光学组件对温度的稳定性要求非常高,因此需要设计合适的散热结构来实现热能的有效传导和扩散。
一种常用的方式是在航天器的壳体表面设置散热板,并通过导热材料将热能传导到散热板上,再通过辐射或传导的方式将热能释放到周围环境中。
此外,还需要合理设置航天器内部的温度控制系统,以保证光学组件的稳定性。
温度控制系统可以通过设置恒温器和温度传感器等设备,实时监测和调节航天器内部的温度。
同时,还可以通过控制电子设备的功耗来控制航天器的发热量,在一定程度上减少热量对光学组件的影响。
最后,低轨道轻质星载一体化空间光学遥感器的热设计还需要考虑太空环境中温度的极端变化。
由于航天器会在阴影和阳光下交替暴露,其温度可能会经历较大的变化,因此需要设计合适的热控制机制来应对这种极端情况。
一种常见的方式是使用热绝缘层来减少航天器与外界环境的热交换,从而保持光学组件的稳定温度。
综上所述,低轨道轻质星载一体化空间光学遥感器的热设计是一项复杂的任务,需要考虑多个方面的问题。
通过合适的热控制机制、温度控制系统和热绝缘层的设计,可以确保光学组件在极端环境下的稳定性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Design of a Portable Emittance Measurement Systemfor Spacecraft Thermal Design and Quality ControlH. Yamana1, S. Katsuki2, A. Ohnishi3, 5 and Y. Nagasaka41 School of Integrated Design Engineering, Keio University, 3-14-1, Hiyoshi, Y okohama, 223-8522, Japan.2 Specialty Chemicals & Products, Aerospace Materials, UBE Industries, LTD., 1978-10, Kogushi, Ube, Yamaguchi, 755-8633, Japan.3 Institute of Space and Astronautical Science (ISAS), Japan Aerospace and Exploration Agency (JAXA), 3-1-1, Yoshinodai, Sagamihara, Kanagawa, 229-8510, Japan.4 Department of System Design Engineering, Keio University, 3-14-1, Hiyoshi, Yokohama, 223-8522, Japan.5 To whom correspondence should be addressed. E-mail: ohnishi@isas.jaxa.jpABSTRACTThis paper reports the development of a portable hemispherical total emittance εH measurement system for spacecraft thermal design and quality control. The measurement principle is the reflective method, and the measurement system consists of a blackbody furnace, an integrating sphere, a thermopile and so on. A prototype εH measurement system was constructed and evaluated by comparing the measurement data with those obtained by the calorimetric method. From the evaluation results, it was confirmed that the measurement accuracy of this system is ±0.05. The systematic errors caused by the deviance from the restrictions of Kirchhoff’s law and by the characteristic of the integrating sphere were estimated and reduced or compensated. The prototype εH measurement system was improved for a portable system with higher measurement accuracy and higher measurement speed. To evaluate the validity of the portable system, the εH of variable thermal control materials were measured. The results by the portable system agreed well with those obtained by the calorimetric method.KEY WORDS: hemispherical total emittance, on-site measurement, portable system, quality control, reflective method,thermal control material, spacecraft thermal design.1. INTRODUCTIONThe accurate data of hemispherical total emittance εH of thermal control materials are required for thermal design of spacecraft. For more than two decades, our laboratory has developed several emittance measurement systems [1] which can be used in the laboratory for various purposes. Generally, for spacecraft thermal design, the εH of thermal control materials are referred to the values of the database [2-3] which was built by using these emittance measurement systems, and these data are considered to be constant before launch. However, there are possibilities that the values of εH of materials actually used for thermal design differ from those of the database, and that the qualities of thermal control materials change. The quality difference and change of the spacecraft materials cause critical problems in space flight mission, but on-site measurement before launch by using conventional measurement systems is difficult because of their large sizes or low accuracies. We have proposed to develop a portable εH measurement system with high accuracy, high measurement speed, light weight, and suitable for the following purposes.1.On-site measurement of εH change during assembling and preserving the spacecraftson the ground.2.Quality control in material fabricating for material research and development.As a first step of this study, a prototype εH measurement system has been developed and evaluated. This paper describes the details of prototype system and measurement results of emittance for various spacecraft materials. In addition, a portable εH measurement system for which the prototype system was improved and evaluation results are discussed.2. PRINCIPLEThe measurement principle is the reflective method. From the law of energy conservation, the relation between the directional spectral absorptanceα′ and theλρ′ for an opaque body is expressed as directional/hemispherical spectral reflectanceλ()()1,,,,,,=′+′sample sample T T φθλρφθλαλλ, (1)where λ is the wavelength of the incident light, θ is the incident angle, φ is the azimuth angle, and T sample is the temperature of the sample. Kirchhoff’s law for hemispherical total properties are expressed as()()sample H sample H T T αε=,(2)and be applied to give ()()1=+sample HH sample H T T ρε. (3) Eq. (3) is satisfied when either of the following restrictions is applied [4].1. The incident radiation is independent of angle and has a spectral distributionproportional to that of a blackbody at T sample .2. The incident radiation is independent of angle, and the sample has directional-graysurface.3. The incident radiation from each direction has spectral distribution proportional tothat of a blackbody at T sample , and the sample has diffuse-spectral surface.4. The sample has diffuse-gray surface.However, it is difficult to fulfill these restrictions and to measure the accurate hemispherical/hemispherical total reflectance ρHH by a portable system. Thus, we used an integrating sphere to detect the directional/hemispherical reflective intensity from a sample. The advantage in using the integrating sphere is that the directional/hemispherical reflectance ρDH can be treated equal to the hemispherical/hemispherical reflectance ρHH [5]. In addition, when the light source has a spectral distribution approximately proportional to that of a blackbody over wide wavelength range, and the temperature difference between the sample T sample and the light source T light is small, εH of the sample can be obtained by Eq. (3).3. PROTOTYPE MEASUREMENT SYSTEM3.1. System ComponentsThe schematic diagram of the prototype hemispherical total emittance εHFigure 1 Schematic diagram of prototype εH measurement system. ParabolicMirror Blackbody FurnaceShutterDC PowerIntegrating SpherePCThermopile MultimeterSample or Reference Amplifiermeasurement system is shown in Figure 1. This system consists of a blackbody furnace, a parabolic mirror coated with gold, an integrating sphere with a shutter, a thermopile (KRS-5 window) with an amplifier, and a data acquisition system. The incident light from the blackbody furnace irradiates a sample at an angle of 7 degrees in order to minimize the specular reflective energy loss [6]. The reflected light from the sample multiple reflects inside the integrating sphere, and the multiple reflected light is detected by the thermopile over the wavelength region from 0.6 to 42.0 µm, which covers 95 % of the total emissive power of the ideal blackbody at 300 K. The relation between the input infrared power and the output voltage of the thermopile with the amplifier has linearity, thus the output voltage is expressed as a linear function of the εH of the sample (see 3.2.).The spectral characteristic of the light source is the most important in the reflective method. The design of the light source requires the following performances:1. covers spectral distribution proportional to that of a blackbody and has high emittance over wide wavelength range2. low power supply control3. small size and light weightThe blackbody furnace which satisfies the above conditions was designed and constructed. The core of the blackbody furnace is cylindrical structure made of carbon,whose size is 9 mm in diameter and 45 mm length. The inner surface of the core is coated with black paint, which has spectral emittance of 0.94 in the wavelength region from 2 to 25 µm. Tantalum wire is coiled around the core, and the blackbody furnace is controlled at 450 K loading 8.4 W. When the temperature of the inner surface of the core is constant, the effective emittance εe of the blackbody furnace is expressed as [7] ()()[]()A a A a f A a bw bw bw e +−−−+=111εεεε, (4) ()[]2211black r D f += and ()]black r D A a 2121+=, where εbw is the emittance of the inside surface, D is the depth and r black is the diameter of the aperture of the core. From Eq. (4), the εe of the blackbody furnace used in the present work is more than 0.99.The integrating sphere is made of aluminum alloy and the inside surface is coated with gold. The inside diameter is 30 mm and it has three ports, the first-port (6 mm in diameter) is used for the input of light from the source, the second-port (6 mm in diameter) is used for setting the sample, and the third-port (4 mm in diameter) is used for the output of the reflected light from the sample into the detector.3.2. Measurement ProcedureThe detected energy of the thermopile E s 0 when the shutter is closed can be expressed as()()i I i s I s s E E E εε,,0+=, (5) where E s,I (εs ), E i,I (εi ) are emissive energy of the sample and the integrating sphere. On the other hand, the detected energy of the thermopile E s 1 when the shutter is opened can be expressed as()()()s R s i I i s I s s E E E E εεε,,,1++=, (6) where E s,R (εs ) is reflective energy of the sample. E s,R (εs ) is obtained by taking the difference between E s0 and E s1:()s R s s s E E E ε,01=−. (7)The intensity difference of voltage between the conditions when the shutter is closed and opened is represented as a linear function of E s,R (εs ). Therefore, by measuring temperatures and reflective intensities of two reference samples with known temperature dependence of low and high emittance, the calibration line is obtained. The emittance of the sample is obtained by measuring its reflective intensity:()()(){}()()h l h l l l h h s h h l l s s V V V T V T V T T T −−+−=εεεεε, (8)where ε is the hemispherical total emittance, T is the temperature, V is the intensity difference of voltage when the shutter is closed and opened, and the subscripts are the sample (s ) and the reference samples with low emittance (l ) and with high emittance (h ).3.3. Emittance Evaluation ResultsThe hemispherical total emittance of spacecraft materials were measured by the prototype εH measurement system and the calorimetric method. The measurement accuracy of the calorimetric method is 2.0 %, and a detailed explanation of this system is described in Ref. 1 and 3. To evaluate prototype system, aluminum coated polyimide (25 UPILEX-R/Al), Highly Oriented Graphite Sheet (HOGS) [8], and germanium coated-0.5-0.4-0.3-0.2-0.100.1I n t e n s i t y , V Time, s Figure 2 The time fluctuation in the intensities of the detector by prototype system.Table 1 Measurement results of emittance by prototype system.Measurement results of εHSample Present work Calorimetric method ∆εH25 UPILEX-R/Al 0.54 0.57 [2] -0.03HOGS 0.33 0.29 [8] +0.04 Ge/50RN/Al 0.64 0.69 -0.05aluminized polyimide (Ge/50RN/Al) were used as test samples. Aluminum deposited film (Al: εH = 0.05 @ 293 K) of low emittance and electrically conductive black polyimide (Black Kapton: εH = 0.80 @ 293 K) of high emittance were used as reference samples. In the present study, the reflective intensities of the samples were measured at room temperature and the emittance of the reference samples were obtained from data at 293 K. The time fluctuation in intensities of voltage of detector is shown in Figure 2 and the measurement results of emittance is shown in Table 1. In all samples, the results of the prototype system agreed within 0.05 with those of the calorimetric method.4. ESTIMATION OF SYSTEMATIC ERRORS4.1. Temperature Difference between Sample and Light SourceIn the reflective method, the incident light must have a spectral distribution proportional to that of a blackbody at sample temperature T sample because of the restrictions of Kirchhoff’s law. However, in the present prototype measurement system, the blackbody furnace as a light source is used at 450 K, and T sample is at room temperature. This difference between light source temperature T light and T sample (∆T ) causes systematic error. This systematic error ∆α is the difference between hemispherical total emittance and the hemispherical total absorptance of the sample, and it can be expressed as ()()(){}()()(){}(())∫∫∫∫⋅−−⋅−=−=∆λλλλλρλλλλλραααλλλλd T i d T i T d T i d T i T T T T T sample b sample b sample light b light b sample sample sample light sample ,,,1,,,1,,.(9)00.010.020.030.040.05∆α∆T 00.10.20.3∆α (M A X )∆T )Figure 3 The systematic error ∆α, which is the difference between hemispherical total emittance and the total hemispherical absorptance of the sample, versus the temperature difference between T light and T sample (∆T ) of Al, Black Kapton, 25 UPILEX-R/Al, HOGS (a) and imaginary assumed material which brings the error maximum (b) when sample temperature T sample is 300K.The values of ∆α of Al, Black Kapton, 25 UPILEX-R/Al and HOGS were estimated when sample temperature T sample is 300K. The spectral reflectance ρ(λ,T sample ) of the samples were measured by using the Fourier Transform Spectroscopy (Bio-Rad: FTS-60A/896) in the wavelength range from 1.6 to 100 µm, and the spectral emissive power of the blackbody i b λ(λ, T ) was calculated from Planck’s law. In addition, ∆α of the imaginary assumed material which brings the error maximum was estimated. The spectral reflectance of the imaginary assumed material ρim (λ) can be expressed as()()([]()([⎩⎨⎧≤>=samplelight samplelight im T i T i T i T i ,','0,','1λλλλλρ)], (10) where i’(λ, T ) are obtained by normalizing i b λ(λ, T ).∆α versus ∆T are shown in Figure 3. When light source temperature T light is 450K, the systematic error for spacecraft materials are less than 0.05. We have worked to reduce this error and were successful in conducting measurements at ∆T = 60K by a portable system hereinafter described (see 5.). As a result, this systematic error for these materials is less than 0.02.4.2. Characteristic of Integrating SphereThe ideal measurement relationship is for the ratio of radiance produced inside the sphere to be equal to the ratio of the reflectance for each material [9]:r s r s I I ρρ=. (11)Where I is the reflective intensity, ρ is the reflectance of the sample, and the subscripts are the sample (s ) and the reference sample (r ). However, the average reflectance of the sphere changes when the sample is substituted for the reference sample. The precise measurement equation for a substitution sphere is expressed ass r r s r s I I ρρρρ−−⋅=11, (12)()w pp p w w S S S S ∑∑+−=ρρρ, (13) where ρ is the average reflectance for the entire integrating sphere, S is the area, and the subscripts are the sphere surface (w ) and the sphere ports (p ).Figure 4 shows the relationship between the measurement reflectance and the actual reflectance in the present work by Eqs. (11) and (12) when the sphere surface and-0.03-0.02-0.0100.010.020.0300.20.40.60.81(M e a s u r e d -A c t u a l ) R e f l e c t a n c e o f S a m p l e Actual Reflectance of SampleFigure 4 The difference between the measurement reflectance and the actual reflectance in the present work when the sphere surface and samples are ideal diffuser.samples are ideal diffuser.The reflectance of the sphere surface ρw which was measured by using the FT-IR in the wavelength range from 1.6 to 100 µm is 0.93, and the reflectance of the port for input light and detector are 0. From this calculation result, the systematic error caused by the characteristic of the integrating sphere is less than ±0.03. This error is compensated in the portable system hereinafter described (see 5.) and can be reduced by increasing calibration points, decreasing the areas of the sphere ports and improving the reflective characteristic of the sphere surface.5. PORTABLE SYSTEMWe miniaturized and divided the present prototype measurement system into a measurement unit and an operating unit. The appearance and schematic diagram of a portable system are shown in Figures 5 and 6. The measurement unit consists of a blackbody furnace, a parabolic mirror, an integrating sphere with a shutter, a thermopile, three thermo-sensors and temperature control unit. The thermo-senosor1, 2 and 3 measure blackbody furnace temperature T light, room temperature T room, and sample temperature T sample respectively. By employing the temperature control unit and the thermo-sensor1 and 2, T light can be controlled at desired temperature (T room ~ 363K). By introducing the thermo-sensor3, the accurate εH of reference samples from knownOperating Unit Measurement UnitFigure 5 The appearance of the portable hemispherical total emittance measurement system.Integrating Sphere Temperature Control UnitThermo-Sensor 1Thermopile Blackbody FurnaceThermo-Sensor 2Control Unit Thermo-Sensor 3PreamplifierShutter LCD Operation ButtonPower Supply UnitT sampleT lightT roomMeasurement UnitOperating UnitParabolic MirrorFigure 6 The schematic diagram of the portable εH measurement system.temperature dependence data, and accurate calibration line could be obtained. The operating unit has a control unit with memories for data calculation and save, a power supply unit and a LCD display. The dimensions of the measurement unit are 88 mm by 134 mm by 78 mm, and the total weight is less than 2 kg. The measurement is completed within one to two minutes.The hemispherical total emittance of various spacecraft thermal controlmaterials were measured by using the portable system at room temperature. In this measurement, temperature of the blackbody furnace was controlled at 363K. Figure 7 shows the emittance results measured by the portable system versus by the calorimetric method. Only for 7 UPILEX-S/Al and 12 UPILEX-S/Al, the measurement results were compared with the calculation values in Ref. 10. The measurement results differences between the portable system and the calorimetric method were +0.03 and +0.07 for 25 UPILEX-R/Al and HOGS respectively, while these difference between the prototype system described in chapter 3 and the calorimetric method were -0.03 and +0.04. Although a slight deviation can be seen for low emissive materials, the over all results of the present portable system agreed well with the calorimetric method.0.20.40.60.81Emittance Measured by Calorimetric MethodE m i t t a n c e M e a s u r e d b y P o r t a b l e S y s t e mFigure 7 The comparison of measured εH conducted using the portable system and the calorimetric method for various thermal control materials.6. CONCLUSIONSThe development of a portable hemispherical total emittance εH measurementsystem was presented in this paper. The principle of this system was reflective method using the integrating sphere and the blackbody furnace. The systematic errors caused by the temperature difference between sample and light source and by the characteristic of the integrating sphere were estimated. To evaluate the portable εH measurement system, hemispherical total emittance for various spacecraft thermal control materials were measured and were compared with those obtained by the calorimetric method. For almost all materials, the results obtained by the portable system agreed well with those obtained by the calorimetric method.ACKNOWLEDGMENTSWe would like to thank S. Tachikawa of ISAS/JAXA, Ph.D. H. Nagano of KeioUniversity and J. Kimura of JST Corporation for their exciting discussions. Professor T. Makino of Kyoto University is gratefully acknowledged for helpful suggestions.REFERENCES1. A. Ohnishi, T. Hayashi and H. Nagano, 4th Japan Symposium on ThermophysicalProperties, (1983), pp.1-4. (in Japanese)2.JSTP, Handbook of Thermophysical properties, (YOKENDO, Tokyo, 1990),pp.324-325. (in Japanese)3. A. Ohnishi, ISAS RESEARCH NOTE, 113 (ISAS, 2000). (in Japanese)4.R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer 4th Edition, Taylor &Francis, (2002), pp.1-69.5. A. Parretta, H. Yakubu and F. Ferrazza, Optics Communications, 194:17 (2001).6. A. Ohnishi and T. Hayashi, Proc. Int. Symp., Toulouse, France, (1983), pp.467-470.7. A. Gouffe, Rev. Opt., 24:1 (1945).8.H. Nagano, A. Ohnishi and Y. Nagasaka, Journal of Thermophysiscs and HeatTransfer, 15:347 (2001).9. F. Grum and T. E. Wightman, Appl. Opt., 16:2775 (1977).10.K. Fukuzawa, A. Ohnishi and Y. Nagasaka, Transactions of the Japan Society forAeronautical and Space Sciences, 50:129 (2002).。