2019-2020学年八年级上数学期中试卷有答案-(苏科版) (1)

合集下载

2019-2020学年重庆八中八年级(上)期中数学试卷(含答案)

2019-2020学年重庆八中八年级(上)期中数学试卷(含答案)

2019-2020学年重庆八中八年级(上)期中数学试卷一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的框涂黑.1.(4分)(2019秋•沙坪坝区校级期中)下列算式中,正确的是()A.3=3B.C.D.=32.(4分)(2019秋•沙坪坝区校级期中)下列条件中,不能判断△ABC为直角三角形的是()A.a2=3,b2=4,c2=5B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=1:2:33.(4分)(2019秋•沙坪坝区校级期中)下列方程中是二元一次方程的有()①﹣m=12;②z+1;③=1;④mn=7;⑤x+y=6zA.1个B.2个C.3个D.4个4.(4分)(2019春•南关区期中)如图,直线y1=kx+2与y2=x+b交于点P,点P的横坐标是1,则关于x的不等式kx+2>x+b的解集是()A.x<0B.x<1C.0<x<1D.x>15.(4分)(2019秋•沙坪坝区校级期中)若A(m+2n,2m﹣n)关于x轴对称点是A1(5,5),则P(m,n)的坐标是()A.(﹣1,﹣3)B.(1,﹣3)C.(﹣1,3)D.(1,3)6.(4分)(2019秋•沙坪坝区校级期中)已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的边长分别为9cm和12cm,则正方形③的边长为()A.3cm B.13cm C.14cm D.15cm7.(4分)(2019秋•沙坪坝区校级期中)若方程组的解中x与y互为相反数,则m的值为()A.﹣2B.﹣1C.0D.18.(4分)(2019秋•沙坪坝区校级期中)如图,将一根长27厘米的筷子,置于高为11厘米的圆柱形水杯中,且筷子露在杯子外面的长度最少为(27﹣)厘米,则底面半径为()厘米.A.6B.3C.2D.129.(4分)(2019秋•沙坪坝区校级期中)有一长、宽、高分别是5cm,4cm,4cm的长方体木块,一只蚂蚁沿如图所示路径从顶点A处在长方体的表面爬到长方体上和A相对的中点B处,则需要爬行的最短路径长为()A.cm B.cm C.cm D.cm 10.(4分)(2019秋•沙坪坝区校级期中)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.已知AB=15,Rt△ABC的周长为15+9,则CD的长为()A.5B.C.9D.6二、填空题:(本大题3个小题,每小题4分,共12分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)(2019秋•沛县期中)直角三角形的两条直角边长分别是3cm、4cm,则斜边长是cm.12.(4分)(2020春•丛台区校级期中)函数y=(m﹣2)x|m|﹣1+5是y关于x的一次函数,则m=.13.(4分)(2019秋•沙坪坝区校级期中)已知实数x,y满足y=+2,则(y ﹣x)2011的值为.三、解答题:(本大题共5小题,14题8分,15,16,17,18各10分,共48分)14.(8分)(2019秋•沙坪坝区校级期中)(1)(2)15.(10分)(2019秋•沙坪坝区校级期中)数学课上,静静将一副三角板如图摆放,点A,B,C三点共线,其中∠F AB=∠ECD=90°,∠D=45°,∠F=30°,且DE∥AC.(1)若AB=2,BF=4.求AF的长.(2)若ED=4,求BC的长.16.(10分)(2019秋•沙坪坝区校级期中)探究函数y=|x﹣1|﹣2的图象和性质.静静根据学习函数的经验,对函数y=|x﹣1|﹣2的图象进行了探究,下面是静静的探究过程,请补充完成:(1)化简函数解析式,当x<1时,y=,当x≥1时,y=.(2)根据(1)的结果,完成下表,并补全函数y=|x﹣1|﹣2图象;(3)观察函数图象,请写出该函数的一条性质:.17.(10分)(2019秋•沙坪坝区校级期中)已知函数y=kx+b(k≠0)图象经过点A(﹣2,1),点B(1,).(1)求直线AB的解析式;(2)若在直线AB上存在点C,使S△ACO=S△ABO,求出点C坐标.18.(10分)(2019秋•沙坪坝区校级期中)小华是花店的一名花艺师,她每天都要为花店制作普通花束和精致花束,她每月工作20天,每天工作8小时,她的工资由基本工资和提成工资两部分构成,每月的基本工资为1800元,另每制作一束普通花束可提2元,每制作一束精致花束可提5元.她制作两种花束的数量与所用时间的关系见下表:请根据以上信息,解答下列问题:(1)小华每制作一束普通花束和每制作一束精致花束分别需要多少分钟?(2)2019年11月花店老板要求小华本月制作普通花束的总时间x不少于3000分钟且不超过5000分钟,则小华该月收入W最多是多少元?此时小华本月制作普通花束和制作精致花束分别是多少束?四、选填题(本大题共5小题,每小题4分,共20分)请将每小题的答案直接填在答题卡中对应的横线上、19.(4分)(2020春•韩城市期末)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,﹣1),…,按照这样的运动规律,点P第17次运动到点()A.(17,1)B.(17,0)C.(17,﹣1)D.(18,0)20.(4分)(2019秋•沙坪坝区校级期中)如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则重叠部分△DEF的面积是()cm2.A.15B.12C.7.5D.621.(4分)(2019秋•沙坪坝区校级期中)半期考试来临,元元到文具店购买考试用的铅笔,签字笔和钢笔,其中铅笔每支8元,签字笔每支10元,钢笔每支20元,若他一共用了122元,那么他最多能买钢笔支.22.(4分)(2019秋•沙坪坝区校级期中)如图,Rt△ABC中,∠CAB=90°,△ABD是等腰三角形,AB=BD=4,CB⊥BD,交AD于E,BE=1,则AC=.23.(4分)(2019秋•沙坪坝区校级期中)A、B两地之间有一条直线跑道,甲,乙两人分别从A,B同时出发,相向而行匀速跑步,且乙的速度是甲速度的90%.当甲,乙分别到达B地,A地后立即调头往回跑,甲的速度保持不变,乙的速度提高20%(仍保持匀速前行).甲,乙两人之间的距离y(米)与跑步时间x(分钟)之间的关系如图所示,则他们在第二次相遇时距B地米.五、解答题:(本大题共三小题,24题10分、25题8分,26题12分,共30分)24.(10分)(2019秋•沙坪坝区校级期中)材料:对于平面直角坐标系中的任意两点M1(x1,y1),M2(x2,y2),我们把d=叫做M1,M2两点间的距离公式,记作d(M1,M2).如A(﹣2,3),B(2,5)则A,B两点的距离为d(A,B)=.请根据以上阅读材料,解答下列问题:(1)当A(a,1),B(﹣1,4)的距离d(A,B)=5时,求出a的值.(2)若在平面内有一点C(x0,y0),使有最小值,求出它的最小值和此时x0的范围.(3)若有最小值,请直接写出最小值.25.(8分)(2019秋•沙坪坝区校级期中)已知,如图,∠BAC=∠DAE=90°,且AD=AE,AC=AB.其中B、E、D共线且DE交AC于F.(1)如图1,若E为BD的中点,且DC=,求AB的长;(2)如图2,若DE=BE,过点E作EG⊥AE交AB于点G,求证:AB+BG=BC.26.(12分)(2019秋•沙坪坝区校级期中)如图,直线L1:y=﹣x+3与x轴,y轴分别交于A,B两点,若将直线l1向右平移2个单位得到直线L2,L2与x轴,y轴分别交于C,D两点.(1)求点D的坐标;(2)如图1,若点M是直线L2上一动点,且MN⊥L1,NH⊥x轴,连接BM,求BM+MN+NH 的最小值及此时点N的坐标;(3)如图2,将线段AB绕点C顺时针旋转90°得到线段A′B′,延长线段A′B′得到直线L3,线段A′B′在直线L3上移动,当以点C、A′、B′构成的三角形是等腰三角形时,直接写出点A′的坐标.2019-2020学年重庆八中八年级(上)期中数学试卷参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的框涂黑.1.(4分)(2019秋•沙坪坝区校级期中)下列算式中,正确的是()A.3=3B.C.D.=3【分析】根据二次根式的加减法对A、B进行判断;根据完全平方公式对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、原式=2,所以A选项错误;B、与不能合并,所以B选项错误;C、原式=3﹣2+2=5﹣2,所以C选项正确;D、原式==,所以D选项错误.故选:C.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.(4分)(2019秋•沙坪坝区校级期中)下列条件中,不能判断△ABC为直角三角形的是()A.a2=3,b2=4,c2=5B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=1:2:3【分析】根据三角形内角和定理,以及勾股定理逆定理分别进行分析可得答案.【解答】解:A、3+4=7≠5,利用勾股定理逆定理判定△ABC不为直角三角形,故此选项符合题意;B、32+42=52,根据勾股定理的逆定理可判断△ABC是直角三角形,故此选项不合题意;C、根据三角形内角和定理可以计算出∠C=90°,△ABC为直角三角形,故此选项不合题意;D、根据三角形内角和定理可以计算出∠A=30°,∠B=60°,∠C=90°,可判定△ABC不是直角三角形,故此选项不合题意.故选:A.【点评】此题主要考查了勾股定理逆定理,判断三角形是否为直角三角形可利用勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.(4分)(2019秋•沙坪坝区校级期中)下列方程中是二元一次方程的有()①﹣m=12;②z+1;③=1;④mn=7;⑤x+y=6zA.1个B.2个C.3个D.4个【分析】利用二元一次方程的定义判断即可.【解答】解:①﹣m=12,不是整式方程,不符合题意;②y=z+1,是二元一次方程,符合题意;③=1,不是整式方程,不符合题意;④mn=7,是二元二次方程,不符合题意;⑤x+y=6z,是三元一次方程,不符合题意,故选:A.【点评】此题考查了二元一次方程的定义,熟练掌握二元一次方程的定义是解本题的关键.4.(4分)(2019春•南关区期中)如图,直线y1=kx+2与y2=x+b交于点P,点P的横坐标是1,则关于x的不等式kx+2>x+b的解集是()A.x<0B.x<1C.0<x<1D.x>1【分析】观察函数图象得到当x<1时,函数y1=kx+2的图象都在y2=x+b的图象上方,所以不等式kx+2>x+b的解集为x<1;【解答】解:当x<1时,kx+2>x+b,即不等式kx+2>x+b的解集为x<1.故选:B.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了在数轴上表示不等式的解集.5.(4分)(2019秋•沙坪坝区校级期中)若A(m+2n,2m﹣n)关于x轴对称点是A1(5,5),则P(m,n)的坐标是()A.(﹣1,﹣3)B.(1,﹣3)C.(﹣1,3)D.(1,3)【分析】关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.直接利用关于x轴对称点的性质得出m,n的值,进而得出答案.【解答】解:∵A(m+2n,2m﹣n)关于x轴对称点是A1(5,5),∴m+2n=5,2m﹣n=﹣5,解得m=﹣1,n=3,∴P(m,n)的坐标是(﹣1,3).故选:C.【点评】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.6.(4分)(2019秋•沙坪坝区校级期中)已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的边长分别为9cm和12cm,则正方形③的边长为()A.3cm B.13cm C.14cm D.15cm【分析】根据正方形的性质就可以得出∠EAB=∠EBD=∠BCD=90°,BE=BD,∠AEB =∠CBD,就可以得出△ABE≌△CDB,得出AE=BC,AB=CD,由勾股定理就可以得出BE的值,进而得出结论.【解答】解:∵四边形①、②、③都是正方形,∴∠EAB=∠EBD=∠BCD=90°,BE=BD,∴∠AEB+∠ABE=90°,∠ABE+∠DBC=90°,∴∠AEB=∠CBD.在△ABE和△CDB中,,∴△ABE≌△CDB(AAS),∴AE=BC=9cm,AB=CD=12cm.∴AE2=81,CD2=144.∴AB2=63.在Rt△ABE中,由勾股定理,得BE2=AE2+AB2=81+144=225,∴BE=15.故选:D.【点评】本题考查的是勾股定理,正方形的性质的运用,正方形的面积公式的运用,三角形全等的判定及性质的运用,解答时证明△ABE≌△CDB是关键.7.(4分)(2019秋•沙坪坝区校级期中)若方程组的解中x与y互为相反数,则m的值为()A.﹣2B.﹣1C.0D.1【分析】根据x与y互为相反数,得到x=﹣y,代入方程组第一个方程求出y的值,进而求出x的值,确定出m的值即可.【解答】解:根据题意得:,解得:,代入得:3(m+1)+3=6,解得:m=0,故选:C.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.8.(4分)(2019秋•沙坪坝区校级期中)如图,将一根长27厘米的筷子,置于高为11厘米的圆柱形水杯中,且筷子露在杯子外面的长度最少为(27﹣)厘米,则底面半径为()厘米.A.6B.3C.2D.12【分析】首先得出杯子内筷子的长度,再根据勾股定理求得圆柱形水杯的直径,即可求出底面半径.【解答】解:27﹣(27﹣)=(厘米),筷子,圆柱的高,圆柱的直径正好构成直角三角形,=6(厘米),6÷2=3(厘米).故底面半径为3厘米.故选:B.【点评】此题主要考查了勾股定理的应用,正确得出杯子内筷子的长度是解决问题的关键.9.(4分)(2019秋•沙坪坝区校级期中)有一长、宽、高分别是5cm,4cm,4cm的长方体木块,一只蚂蚁沿如图所示路径从顶点A处在长方体的表面爬到长方体上和A相对的中点B处,则需要爬行的最短路径长为()A.cm B.cm C.cm D.cm【分析】根据勾股定理即可得到结论.【解答】解:如图,AB==,∴需要爬行的最短路径长为,故选:A.【点评】此题考查最短路径问题,解题的关键是明确线段最短这一知识点,然后把立体的长方体放到一个平面内,求出最短的线段.10.(4分)(2019秋•沙坪坝区校级期中)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB 于D.已知AB=15,Rt△ABC的周长为15+9,则CD的长为()A.5B.C.9D.6【分析】由已知条件得出AC+BC=9,由勾股定理得出AC2+BC2=AB2=152=225,求出AC×BC=90,由三角形面积即可得出答案.【解答】解:如图所示:∵Rt△ABC的周长为15+9,∠ACB=90°,AB=15,∴AC+BC=9,AC2+BC2=AB2=152=225,∴(AC+BC)2=(9)2,即AC2+2AC×BC+BC2=405,∴2AC×BC=405﹣225=180,∴AC×BC=90,∵AB×CD=AC×BC,∴CD===6;故选:D.【点评】本题考查了勾股定理,三角形的面积公式,完全平方公式,三角形的周长的计算,熟记直角三角形的性质是解题的关键.二、填空题:(本大题3个小题,每小题4分,共12分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)(2019秋•沛县期中)直角三角形的两条直角边长分别是3cm、4cm,则斜边长是5cm.【分析】根据勾股定理解答即可.【解答】解:∵直角三角形的两条直角边长分别是3cm、4cm,则∴斜边长=cm,故答案为:5【点评】此题考查勾股定理,关键是根据如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2解答.12.(4分)(2020春•丛台区校级期中)函数y=(m﹣2)x|m|﹣1+5是y关于x的一次函数,则m=﹣2.【分析】根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,即可得出m的值.【解答】解:根据一次函数的定义可得:m﹣2≠0,|m|﹣1=1,由|m|﹣1=1,解得:m=﹣2或2,又m﹣2≠0,m≠2,则m=﹣2.故答案为:﹣2.【点评】本题主要考查了一次函数的定义,难度不大,注意基础概念的掌握.13.(4分)(2019秋•沙坪坝区校级期中)已知实数x,y满足y=+2,则(y ﹣x)2011的值为﹣1.【分析】直接利用二次根式有意义的条件进而分析得出答案.【解答】解:∵与都有意义,∴x=3,则y=2,故(y﹣x)2011=﹣1.故答案为:﹣1.【点评】此题主要考查了二次根式有意义的条件,正确得出x的值是解题关键.三、解答题:(本大题共5小题,14题8分,15,16,17,18各10分,共48分)14.(8分)(2019秋•沙坪坝区校级期中)(1)(2)【分析】(1)根据二次根式的乘法法则和平方差公式计算;(2)先把方程组整理为,然后利用加减消元法解方程组.【解答】解:(1)原式=++12﹣1=9+3+12﹣1=23;(2)方程组整理为,②﹣①得4x=8,解得x=2,把x=2代入①得2﹣4y=﹣2,解得y=1,所以原方程组的解为.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.也考查了解二元一次方程组.15.(10分)(2019秋•沙坪坝区校级期中)数学课上,静静将一副三角板如图摆放,点A,B,C三点共线,其中∠F AB=∠ECD=90°,∠D=45°,∠F=30°,且DE∥AC.(1)若AB=2,BF=4.求AF的长.(2)若ED=4,求BC的长.【分析】(1)在直角△AFB中,利用勾股定理求得AF的长度;(2)如图,过点E作EG⊥AC于点G,构造等腰直角△EGC.在直角△EDC中,根据勾股定理求得EC的长度;然后在直角△EGC中,再次利用勾股定理求得GC的长度,在直角△EGB中,求得BG的长度,则BC=GC﹣GB.【解答】(1)解:如图,直角△AFB中,∠F AB=90°,AB=2,BF=4.由勾股定理知,AF===2;(2)解:如图,过点E作EG⊥AC于点G,则AF∥EG.∵∠F=30°,∴∠BEG=30°.∴BG=BE.∵∠ECD=90°,∠D=45°,∴∠DEC=∠D=45°.∴EC=CD.∴ED=EC.又ED=4,∴EC=2.∵DE∥AC,∴∠ECG=∠DEC=45°.∴∠GEC=∠GCE=45°.∴EG=CG.∴EC=GC,即2=GC.∴GC=2.在直角△BGE中,由勾股定理知BG2+EG2=BE2,即BG2+22=4BG2.∴BG=.∴BC=GC﹣GB=2﹣.【点评】考查了勾股定理和含30度角的直角三角形.注意图中辅助线的作法,通过作辅助线,构造直角三角形,方可利用勾股定理求得相关线段的长度.16.(10分)(2019秋•沙坪坝区校级期中)探究函数y=|x﹣1|﹣2的图象和性质.静静根据学习函数的经验,对函数y=|x﹣1|﹣2的图象进行了探究,下面是静静的探究过程,请补充完成:(1)化简函数解析式,当x<1时,y=﹣x﹣,当x≥1时,y=x﹣.(2)根据(1)的结果,完成下表,并补全函数y=|x﹣1|﹣2图象;(3)观察函数图象,请写出该函数的一条性质:当x≥1时,y随x的增大而增大.【分析】(1)根据绝对值的性质化简即可.(2)利用描点法取点,画出图形即可.(3)观察图象解答即可(答案不唯一).【解答】解:(1)化简函数解析式,当x<1时,y=(1﹣x)﹣2=﹣x﹣,当x≥1时,y=(x﹣1)﹣2=x﹣,故答案为﹣x﹣,x﹣.(2)当x<1时,y=(1﹣x)﹣2=﹣x﹣,当x=0时,y=﹣,当x=﹣1时,y=﹣1,故答案为0,﹣1.﹣,﹣1,函数图象如图所示:(3)观察图象可知:当x≥1时,y随x的增大而增大.故答案为:当x≥1时,y随x的增大而增大.【点评】本题考查一次函数的性质,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.17.(10分)(2019秋•沙坪坝区校级期中)已知函数y=kx+b(k≠0)图象经过点A(﹣2,1),点B(1,).(1)求直线AB的解析式;(2)若在直线AB上存在点C,使S△ACO=S△ABO,求出点C坐标.【分析】(1)根据点A、B的坐标利用待定系数法求出一次函数的解析式,此题得解.(2)根据题意得到C是线段AB的中点,或A是线段AC的三等分点,且C点在A点的左侧,即可求得C的坐标.【解答】解:(1)∵一次函数y=kx+b的图象经过点A(﹣2,1)、点B(1,).∴,解得:.∴这个一次函数的解析式为:y=x+2.(2)如图,∵C在直线AB上,且S△ACO=S△ABO,∴C是线段AB的中点,或A是线段AC的三等分点,且C点在A点的左侧,∵A(﹣2,1),B(1,).∴C(﹣,)或(﹣,);【点评】本题考查了待定系数法求一次函数解析式,熟练掌握利用待定系数法求一次函数解析式的方法是解题的关键.18.(10分)(2019秋•沙坪坝区校级期中)小华是花店的一名花艺师,她每天都要为花店制作普通花束和精致花束,她每月工作20天,每天工作8小时,她的工资由基本工资和提成工资两部分构成,每月的基本工资为1800元,另每制作一束普通花束可提2元,每制作一束精致花束可提5元.她制作两种花束的数量与所用时间的关系见下表:请根据以上信息,解答下列问题:(1)小华每制作一束普通花束和每制作一束精致花束分别需要多少分钟?(2)2019年11月花店老板要求小华本月制作普通花束的总时间x不少于3000分钟且不超过5000分钟,则小华该月收入W最多是多少元?此时小华本月制作普通花束和制作精致花束分别是多少束?【分析】(1)设小华每制作一束普通花束需要m分钟,每制作一束精致花束需要n分钟,根据小华制作两种花束的数量与所用时间的关系表,即可得出关于m,n的二元一次方程组,解之即可得出结论;(2)根据小华本月的总收入=基本工资+制作花束的数量×每束的提成,即可得出W关于x的函数关系式,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设小华每制作一束普通花束需要m分钟,每制作一束精致花束需要n 分钟,依题意,得:,解得:.答:小华每制作一束普通花束需要10分钟,每制作一束精致花束需要20分钟.(2)20×8×60=9600(分钟).依题意,得:W=1800+2×+5×=﹣+4200(3000≤x≤5000).∵﹣<0,∴W的值随x值的增大而减小,∴当x=3000时,W取得最大值,最大值为4050元.3000÷10=300(束),(9600﹣3000)÷20=330(束).答:小华该月收入W最多是4050元,此时小华本月制作普通花束300束,制作精致花束330束.【点评】本题考查了二元一次方程组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出W关于x 的函数关系式.四、选填题(本大题共5小题,每小题4分,共20分)请将每小题的答案直接填在答题卡中对应的横线上、19.(4分)(2020春•韩城市期末)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,﹣1),…,按照这样的运动规律,点P第17次运动到点()A.(17,1)B.(17,0)C.(17,﹣1)D.(18,0)【分析】令P点第n次运动到的点为P n点(n为自然数).列出部分P n点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1)”,根据该规律即可得出结论.【解答】解:令P点第n次运动到的点为P n点(n为自然数).观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,﹣1),P4(4,0),P5(5,1),…,∴P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1).∵17=4×4+1,∴P第17次运动到点(17,1).故选:A.【点评】本题考查了规律型中的点的坐标,属于基础题,难度适中,解决该题型题目时,根据点的变化罗列出部分点的坐标,根据坐标的变化找出变化规律是关键.20.(4分)(2019秋•沙坪坝区校级期中)如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则重叠部分△DEF的面积是()cm2.A.15B.12C.7.5D.6【分析】根据翻折变换可得AE=A′E,∠A′=∠C=90°,即可利用勾股定理求得DE 的长,进而求解.【解答】解:长方形ABCD中,AB=CD=3,AD=9,∠C=90°根据翻折可知:∠A′=∠C=90°,A′D=DC=3,A′E=AE,设AE=A′E=x,则DE=9﹣x,在Rt△A′ED中,根据勾股定理,得(9﹣x)2=x2+32,解得x=4,∴DE=9﹣x=5,∴S△DEF=DE•CD=×5×3=7.5(cm2).故选:C.【点评】本题考查了翻折变换、三角形的面积、矩形的性质,解决本题的关键是利用翻折的性质.21.(4分)(2019秋•沙坪坝区校级期中)半期考试来临,元元到文具店购买考试用的铅笔,签字笔和钢笔,其中铅笔每支8元,签字笔每支10元,钢笔每支20元,若他一共用了122元,那么他最多能买钢笔4支.【分析】设购买x支钢笔,y支铅笔,z支签字笔,根据他一共用了122元,列出方程,将x用含y和z的式子表示出来,分别对y和z取值验证,即可得解.【解答】解:设购买x支钢笔,y支铅笔,z支签字笔,依题意,得:20x+8y+10z=122∴x==由题意可知x,y,z均为正整数∴当y=1,z=1时,x=5.2,不符合题意;当y=2,z=1时,x=4.8,不符合题意;当y=3,z=1时,x=4.4,不符合题意;当y=2,z=2时,由奇偶性可知,分子为奇数,不符合题意;当y=4,z=1时,x=4,符合题意.故答案为:4.【点评】本题考查了代数式变形在实际问题中的应用,根据题意正确列式并分类讨论,是解题的关键.22.(4分)(2019秋•沙坪坝区校级期中)如图,Rt△ABC中,∠CAB=90°,△ABD是等腰三角形,AB=BD=4,CB⊥BD,交AD于E,BE=1,则AC=.【分析】根据等腰三角形的性质得到∠BAE=∠BDE,根据等式的性质得到∠CAE=∠DEB,求得AC=EC,根据勾股定理列方程即可得到结论.【解答】解:∵AB=BD=4,∴∠BAE=∠BDE,∵CB⊥BD,∴∠DBE=∠CAB=90°,∴∠DEB=90°﹣∠D,∠CAE=90°﹣∠BAD,∴∠CAE=∠DEB,∵∠AEC=∠DEB,∴∠CAE=∠CEA,∴AC=EC,∵BE=1,∴BC=AC+1,∵AC2+AB2=BC2,∴AC2+42=(AC+1)2,∴AC=,故答案为:.【点评】本题考查了直角三角形的性质,等腰三角形的性质,勾股定理,证得AC=CE 是解题的关键.23.(4分)(2019秋•沙坪坝区校级期中)A、B两地之间有一条直线跑道,甲,乙两人分别从A,B同时出发,相向而行匀速跑步,且乙的速度是甲速度的90%.当甲,乙分别到达B地,A地后立即调头往回跑,甲的速度保持不变,乙的速度提高20%(仍保持匀速前行).甲,乙两人之间的距离y(米)与跑步时间x(分钟)之间的关系如图所示,则他们在第二次相遇时距B地米.【分析】观察函数图象,可知甲用9分钟到达B地,由速度=路程÷时间可求出甲的速度,结合甲、乙速度间的关系可求出乙的初始速度及乙加速后的速度,利用时间=路程÷速度可求出乙到达A地时的时间,设乙从返回到第二次相遇跑了t分钟,根据题意列方程解答即可.【解答】解:甲的速度为2700÷9=300(米/分钟),乙的初始速度为300×90%=270(米/分钟),乙到达A地时的时间为2700÷270=10(分钟),乙加速后的速度为270×(1+20%)=324(米/分钟).设乙从返回到相遇跑了t分钟,根据题意得:(300+324)t=2700﹣300×(10﹣9),解得:t=,∴他们在第二次相遇时距B地2700﹣300×()=(米),故答案为:.【点评】本题考查了一次函数的应用以及一元一次方程的应用,通过解方程求出两人第二次相遇的时间是解题的关键.五、解答题:(本大题共三小题,24题10分、25题8分,26题12分,共30分)24.(10分)(2019秋•沙坪坝区校级期中)材料:对于平面直角坐标系中的任意两点M1(x1,y1),M2(x2,y2),我们把d=叫做M1,M2两点间的距离公式,记作d(M1,M2).如A(﹣2,3),B(2,5)则A,B两点的距离为d(A,B)=.请根据以上阅读材料,解答下列问题:(1)当A(a,1),B(﹣1,4)的距离d(A,B)=5时,求出a的值.(2)若在平面内有一点C(x0,y0),使有最小值,求出它的最小值和此时x0的范围.(3)若有最小值,请直接写出最小值.【分析】(1)根据两点间距离公式构建方程即可解决问题.(2)求的最小值,相当于求点(x0,y0)到点(﹣4,4)和点(2,4)的距离和的最小值.(3)由=,推出3y=4时,这个式子有最小值,最小值为3,因为+=+=+,求出+的最小值即可解决问题.【解答】解:(1)由题意:(a+1)2+(1﹣4)2=52,解答a=3或﹣5.(2)求的最小值,相当于求点(x0,y0)到点(﹣4,4)和点(2,4)的距离和的最小值,观察图象可知最小值=6,此时﹣4≤x0≤2.(3)∵=,∴3y=4时,这个式子有最小值,最小值为3,∴+=+,求出+的最小值即可解决问题,求+,相当于求点(2x,3)到点(4,1)和点(0,0)的距离和的最小值,这个最小值==,∴原式的最小值=+3.【点评】本题考查勾股定理,非负数的性质,两点间的距离公式,最短问题等知识,解题的关键是学会用转化的思想思考问题,学会利用数形结合的思想解决问题.25.(8分)(2019秋•沙坪坝区校级期中)已知,如图,∠BAC=∠DAE=90°,且AD=AE,AC=AB.其中B、E、D共线且DE交AC于F.(1)如图1,若E为BD的中点,且DC=,求AB的长;(2)如图2,若DE=BE,过点E作EG⊥AE交AB于点G,求证:AB+BG=BC.【分析】(1)只要证明△DAC≌△EAB,推出CD=EB,∠ACD=∠ABE,由∠CFD=∠AFB,推出∠CDF=∠F AB=90°,再求出CD、BD,利用勾股定理求出BC即可解决问题.(2)如图2中,延长AE交BC于J.想办法证明C=CJ,BJ=BG即可解决问题.【解答】解:(1)如图1中,∵△ABC和△ADE均为等腰直角三角形,∴∠BAC=∠EAD=90°,AB=AC,AE=AD=1,∴∠EAB=∠DAC,∴△DAC≌△EAB,∴CD=EB=,∠ACD=∠ABE,∵∠CFD=∠AFB,∴∠CDF=∠F AB=90°,∵DE=EB=CD=,∴BC===,∴AB=AC=BC=.(2)如图2中,延长AE交BC于J.∵DE=BE,DE=AE,∴AE=EB,∴∠EAB=∠EBA,∵∠DEA=45°=∠EAB+∠EBA,∵EF=BE,∠BAF=90°,∴∠EAB=∠EBA=∠EBC=22.5°,∴∠CAE=67.5°,∴∠CJA=180°﹣∠CAJ﹣∠ACJ=67.5°,∴∠CAJ=∠CJA,∴CA=CJ=CB,∵EG⊥AE,∴∠AEG=∠GEJ=90°,∴∠AGE=90°﹣22.5°=67.5°,∵∠AGE=∠EBG+∠GEB,∴∠BEG=45°=∠BEJ,∵BE=BE,∠EBJ=∠EBG,∴△EBJ≌△EBG(ASA),∴BG=BJ,∴BC=CJ+BJ=AB+BG.【点评】本题考查等腰直角三角形的性质、全等三角形的判定和性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.26.(12分)(2019秋•沙坪坝区校级期中)如图,直线L1:y=﹣x+3与x轴,y轴分别交于A,B两点,若将直线l1向右平移2个单位得到直线L2,L2与x轴,y轴分别交于C,D两点.(1)求点D的坐标;(2)如图1,若点M是直线L2上一动点,且MN⊥L1,NH⊥x轴,连接BM,求BM+MN+NH 的最小值及此时点N的坐标;(3)如图2,将线段AB绕点C顺时针旋转90°得到线段A′B′,延长线段A′B′得到直线L3,线段A′B′在直线L3上移动,当以点C、A′、B′构成的三角形是等腰三角形时,直接写出点A′的坐标.。

2019-2020学年江苏省徐州市八年级(上)期中数学试卷试题及答案(解析版)

2019-2020学年江苏省徐州市八年级(上)期中数学试卷试题及答案(解析版)

2019-2020学年江苏省徐州市八年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.下列大学的校徽图案是轴对称图形的是( )A .清华大学B .北京大学C .中国人民大学D .浙江大学2.16的算术平方根是( )A .8B .8-C .4D .4±3.已知等腰ABC ∆中,120A ∠=︒,则底角的大小为( )A .60︒B .30︒或120︒C .120︒D .30︒4.在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在ABC ∆的( )A .三边中线的交点B .三边垂直平分线的交点C .三条角平分线的交点D .三边上高的交点 5.如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是( )A .ASAB .SASC .SSSD .AAS6.下列等式成立的是( )A 5=±B 3=C 4=-D .0.6=±7.下列三角形中,不是直角三角形的是( )A .ABC ∆中,ABC ∠=∠-∠B .ABC ∆中,::1:2:3a b c =C .ABC ∆中,222a c b =-D .ABC ∆中,三边的长分别为22m n +,22m n -,2(0)mn m n >>8.如图是由11个等边三角形拼成的六边形,若最小等边三角形的边长为a ,最大等边三角形的边长为b ,则a 与b 的关系为( )A .3b a =B .5b a =C .133b a =D .92b a = 二、选择题(每小题4分,共32分)9.直角三角形斜边上的中线长为5cm ,则斜边长为 cm .10.如图,在ABC ∆和DEF ∆中,点B ,F ,C ,E 在同一直线上,BF CE =,//AB DE ,请添加一个条件,使ABC DEF ∆≅∆,这个添加的条件可以是 (只需写一个,不添加辅助线).11.如图,在Rt ABC ∆中,90A ∠=︒,ABC ∠的平分线BD 交AC 于点D ,3AD =,则点D 到边BC 的距离 .12.已知等腰三角形的周长为16cm ,其中一边长为4cm ,则该等腰三角形的腰长是 cm .13.若29a =1=-,则a b -的值是 .14.如图,在Rt ABC ∆中,90B ∠=︒,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知35C ∠=︒,则BAE ∠的度数为 ︒.15.如图,已知ABC ∆中,90ABC ∠=︒,AB BC ==,三角形的顶点在相互平行的三条直线1l 、2l 、3l 上,且2l 、3l 之间的距离为2,则1l 、2l 之间的距离为 .16.如图的实线部分是由Rt ABC ∆经过两次折叠得到的,首先将Rt ABC ∆沿BD 折叠,使点C 落在斜边上的点C '处,再沿DE 折叠,使点A 落在DC '的延长线上的点A '处.若图中90C ∠=︒,3DE cm =,4BD cm =,则DC '的长为 .三、解答题(本大题共9小题,共84分)17.求下列各式的x 的值(1)24121x =;(2)3(2)8x -=-18.利用网格作图,(1)请你在图①中画出线段AB 关于线段CD 所在直线成轴对称的图形;(2)请你在图②中添加一条线段,使图中的3条线段组成一个轴对称图形.请画出所有情形.19.已知:如图,ABC ∆中,90A ∠=︒,现要在AC 边上确定一点D ,使点D 到BA 、BC 的距离相等.(1)请你按照要求,在图上确定出点D 的位置(尺规作图,不写作法,保留作图痕迹);(2)若10BC =,8AB =,则AC = ,AD = (直接写出结果).20.已知:如图点O在射线AP上,1215∠=︒.B∠=∠=︒,AB AC=,40(1)求证:ABO ACO∆≅∆;(2)求POC∠的度数.21.已知:如图,90∠=∠=︒,M,N分别是AC,BD的中点.求证:MN BD⊥.ABC ADC22.已知:如图,BE CD=,==,BC DA⊥垂足为E,8BE DE(1)求证:BEC DEA∆≅∆;(2)若MN是边AD的垂直平分线,分别交AD、CD于M、N,且5CE=,求AEN∆的周长.23.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯13=,梯子底端离墙角的距离AB m=.5BO m(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A 下滑4m 到点C ,那么梯子的底部B 在水平方向上滑动的距离4BD m =吗?为什么?24.如图,在长方形ABCD 中,5AB =,13AD =,点E 为BC 上一点,将ABE ∆沿AE 折叠,使点B 落在长方形内点F 处,连接DF 且12DF =.(1)试说明:ADF ∆是直角三角形;(2)求BE 的长.25.如图(1),7AB cm =,AC AB ⊥,BD AB ⊥垂足分别为A 、B ,5AC cm =.点P 在线段AB 上以2/cm s 的速度由点A 向点B 运动,同时,点Q 在射线BD 上运动.它们运动的时间为()t s (当点P 运动结束时,点Q 运动随之结束).(1)若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP ∆与BPQ ∆是否全等,并判断此时线段PC 和线段PQ 的位置关系,请分别说明理由;(2)如图(2),若“AC AB ⊥,BD AB ⊥”改为“60CAB DBA ∠=∠=︒”,点Q 的运动速度为/xcm s ,其他条件不变,当点P 、Q 运动到某处时,有ACP ∆与BPQ ∆全等,求出相应的x 、t 的值.2019-2020学年江苏省徐州市八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.下列大学的校徽图案是轴对称图形的是( )A .清华大学B .北京大学C .中国人民大学D .浙江大学【解答】解:A 、不是轴对称图形,本选项错误;B 、是轴对称图形,本选项正确;C 、不是轴对称图形,本选项错误;D 、不是轴对称图形,本选项错误.故选:B .2.16的算术平方根是( )A .8B .8-C .4D .4±【解答】解:2(4)16±=,16∴的算术平方根是4,故选:C .3.已知等腰ABC ∆中,120A ∠=︒,则底角的大小为( )A .60︒B .30︒或120︒C .120︒D .30︒【解答】解:在等腰ABC ∆中,120A ∠=︒,A ∴∠为等腰三角形的顶角,B C ∴∠=∠,120A ∠=︒,30B C ∴∠=∠=︒;故选:D .4.在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在ABC ∆的( )A .三边中线的交点B .三边垂直平分线的交点C .三条角平分线的交点D .三边上高的交点 【解答】解:三角形的三条垂直平分线的交点到三角形三个顶点的距离相等, ∴凳子应放在ABC ∆的三条垂直平分线的交点最适当.故选:B .5.如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是( )A .ASAB .SASC .SSSD .AAS【解答】解:小周书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他根据的定理是:两角及其夹边分别相等的两个三角形全等()ASA .故选:A .6.下列等式成立的是( )A 5=±B 3=C 4=-D .0.6=±【解答】解:A 、原式5=,不符合题意;B 、原式3=-,不符合题意;C 、原式|4|4=-=,不符合题意;D 、原式0.6=±,符合题意,故选:D .7.下列三角形中,不是直角三角形的是( )A .ABC ∆中,ABC ∠=∠-∠B .ABC ∆中,::1:2:3a b c =C .ABC ∆中,222a c b =-D .ABC ∆中,三边的长分别为22m n +,22m n -,2(0)mn m n >>【解答】解:A 、ABC ∆中,A B C ∠=∠-∠,是直角三角形,故此选项不合题意; B 、ABC ∆中,::1:2:3a b c =,设三边长为:x ,2x ,3x ,由222(2)(3)x x x +≠,故此三角形不是直角三角形,符合题意;C 、ABC ∆中,222a c b =-,符合勾股定理逆定理,是直角三角形,故此选项不合题意;D 、ABC ∆中,三边的长分别为22m n +,22m n -,2(0)mn m n >>,则2222222()(2)()m n mn m n -+=+,是直角三角形,故此选项不合题意; 故选:B .8.如图是由11个等边三角形拼成的六边形,若最小等边三角形的边长为a ,最大等边三角形的边长为b ,则a 与b 的关系为( )A .3b a =B .5b a =C .133b a =D .92b a = 【解答】解:设第二个小的等边三角形的边长为x ,则第三个小的等边三角形的边长为:x a +,第四个小的等边三角形的边长为:2x a +,最大的个小的等边三角形的边长3b x a =+, 又3b x =,33x x a ∴=+,32x a ∴=, 932b x a ∴==, 故选:D .二、选择题(每小题4分,共32分)9.直角三角形斜边上的中线长为5cm ,则斜边长为 10 cm .【解答】解:直角三角形中斜边上的中线等于斜边的一半,∴斜边长2510cm =⨯=.10.如图,在ABC ∆和DEF ∆中,点B ,F ,C ,E 在同一直线上,BF CE =,//AB DE ,请添加一个条件,使ABC DEF ∆≅∆,这个添加的条件可以是 AB ED = (只需写一个,不添加辅助线).【解答】解:添加AB ED =,BF CE =,BF FC CE FC ∴+=+,即BC EF =,//AB DE ,B E ∴∠=∠,在ABC ∆和DEF ∆中AB ED B E CB EF =⎧⎪∠=∠⎨⎪=⎩,()ABC DEF SAS ∴∆≅∆,故答案为:AB ED =.11.如图,在Rt ABC ∆中,90A ∠=︒,ABC ∠的平分线BD 交AC 于点D ,3AD =,则点D 到边BC 的距离 3 .【解答】解:过点D 作DE BC ⊥交BC 于点E ,如图所示:,90A∠=︒,DA AB∴⊥,又BD是ABC∠的平分线,DA DE∴=,又3AD=,3DE∴=,即点D到边BC的距离是3,故答案为3.12.已知等腰三角形的周长为16cm,其中一边长为4cm,则该等腰三角形的腰长是6cm.【解答】解:①4cm是腰长时,底边为:16428cm-⨯=,三角形的三边长分别为4cm、4cm、8cm,448+=,∴不能组成三角形,②4cm是底边长时,腰长为:1(164)62cm ⨯-=,三角形的三边长分别6cm、6cm、4cm,能组成三角形,综上所述,该等腰三角形的腰长是6cm.故答案为:6.13.若29a=1=-,则a b-的值是4或2-.【解答】解:29a=1=-,3a∴=±,1b=-,当3a=时,原式3(1)4=--=,当3a=-时,原式3(1)2=---=-,故答案为:4或2-14.如图,在Rt ABC∆中,90B∠=︒,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知35C∠=︒,则BAE∠的度数为20︒.【解答】解:ED 是AC 的垂直平分线,AE CE ∴=,35EAC C ∴∠=∠=︒,在Rt ABC ∆中,90B ∠=︒,9055BAC C ∴∠=︒-∠=︒,20BAE BAC EAC ∴∠=∠-∠=︒.故答案为:20.15.如图,已知ABC ∆中,90ABC ∠=︒,AB BC ==,三角形的顶点在相互平行的三条直线1l 、2l 、3l 上,且2l 、3l 之间的距离为2,则1l 、2l 之间的距离为 1 .【解答】解:设1l 、2l 之间的距离为x ,过A 作3AG l ⊥于G ,过C 作3CH l ⊥于H ,由题意得:2AG =,2CH x =+,90ABC ∠=︒,90ABG CBH ∴∠+∠=︒,90ABG GAB ∠+∠=︒,CBH GAB ∴∠=∠,AB BC =,90AGB BHC ∠=∠=︒,()AGB BHC AAS ∴∆≅∆,2BH AG ∴==,2BG HC x ==+,222AB AG BG =+,2134(2)x ∴=++,解得:1x =,5x =(不合题意舍去),1l ∴、2l 之间的距离为1.16.如图的实线部分是由Rt ABC ∆经过两次折叠得到的,首先将Rt ABC ∆沿BD 折叠,使点C 落在斜边上的点C '处,再沿DE 折叠,使点A 落在DC '的延长线上的点A '处.若图中90C ∠=︒,3DE cm =,4BD cm =,则DC '的长为 5.【解答】解:ABC ∆是直角三角形,90C ∴∠=︒,由折叠的性质得:12BDC BDC CDC '∠=∠'=∠,12ADE A DE ADA ''∠=∠=∠,90BCD C ∠=∠=︒,1180902BDE BDC A DE '∴∠=∠+∠'=⨯︒=︒,DC AB '⊥,5()BE cm ∴===,BDE ∆的面积1122BE DC DE BD '=⨯=⨯, 3412()55DE BD DC cm BE ⨯⨯'∴===; 故答案为:125cm . 三、解答题(本大题共9小题,共84分)17.求下列各式的x 的值(1)24121x =;(2)3(2)8x -=-【解答】解:(1)24121x =,21214x ∴=, 112x ∴=±; (2)3(2)8x -=-,22x ∴-=-,0x ∴=;18.利用网格作图,(1)请你在图①中画出线段AB 关于线段CD 所在直线成轴对称的图形;(2)请你在图②中添加一条线段,使图中的3条线段组成一个轴对称图形.请画出所有情形.【解答】解:(1)、(2)如图所示:.19.已知:如图,ABC ∆中,90A ∠=︒,现要在AC 边上确定一点D ,使点D 到BA 、BC 的距离相等.(1)请你按照要求,在图上确定出点D 的位置(尺规作图,不写作法,保留作图痕迹);(2)若10BC =,8AB =,则AC = 6 ,AD = (直接写出结果).【解答】解:(1)如图,点D 即为所求.(2)作DH BC ⊥于H .在Rt ABC ∆中,10BC =,8AB =,6AC ∴===, BD 平分ABC ∠,ABD HBD ∴∠=∠,90A DHB ∠=∠=︒,BD BD =,()ABD HBD AAS ∴∆≅∆,8AB BH ∴==,AD DH =,设AD DH x ==,在Rt CDH ∆中,222CD DH CH =+,222(6)2x x ∴-=+,83x ∴=, 83AD ∴=, 故答案为6,83. 20.已知:如图点O 在射线AP 上,1215∠=∠=︒,AB AC =,40B ∠=︒.(1)求证:ABO ACO ∆≅∆;(2)求POC ∠的度数.【解答】(1)证明:在ABO ∆与ACO ∆中12AB AC AO AO =⎧⎪∠=∠⎨⎪=⎩,()ABO ACO SAS ∴∆≅∆;(2)解:ABO ACO ∆≅∆,40C B ∴∠=∠=︒,2154055POC C ∴∠=∠+∠=︒+︒=︒.21.已知:如图,90ABC ADC ∠=∠=︒,M ,N 分别是AC ,BD 的中点.求证:MN BD ⊥.【解答】证明:如图,连接BM 、DM ,90ABC ADC ∠=∠=︒,M 是AC 的中点,12BM DM AC ∴==, 点N 是BD 的中点,MN BD ∴⊥.22.已知:如图,BE CD ⊥垂足为E ,8BE DE ==,BC DA =,(1)求证:BEC DEA ∆≅∆;(2)若MN 是边AD 的垂直平分线,分别交AD 、CD 于M 、N ,且5CE =,求AEN ∆的周长.【解答】(1)证明:BE CD⊥,90BEC DEA∴∠=∠=︒,在Rt BEC∆与Rt DEA∆中BE DE BC DA=⎧⎨=⎩,Rt BEC Rt DEA(HL)∴∆≅∆;(2)解:Rt BEC Rt DEA∆≅∆,5AE CE∴==,MN是边AD的垂直平分线,AN DN∴=,AEN∴∆的周长5813AN EN AE AE DN EN AE DE=++=++=+=+=.23.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯13AB m=,梯子底端离墙角的距离5BO m=.(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离4BD m=吗?为什么?【解答】解:(1)AO DO⊥,AO∴==,12m =,∴梯子顶端距地面12m 高;(2)滑动不等于4m ,4AC m =,8OC AO AC m ∴=-=,OD ∴===,54BD OD OB ∴=-=->,∴滑动不等于4m .24.如图,在长方形ABCD 中,5AB =,13AD =,点E 为BC 上一点,将ABE ∆沿AE 折叠,使点B 落在长方形内点F 处,连接DF 且12DF =.(1)试说明:ADF ∆是直角三角形;(2)求BE 的长.【解答】解:(1)根据折叠可知:5AB AF ==,13AD =,12DF =,22212513+=,即222FD AF AD +=,根据勾股定理的逆定理,得ADF ∆是直角三角形.(2)设BE x =,则EF x =,根据折叠可知:90AFE B ∠=∠=︒,90AFD ∠=︒,180DFE ∴∠=︒,D ∴、F 、E 三点在同一条直线上,12DE x ∴=+,13CE x =-,5DC AB ==,在Rt DCE ∆中,根据勾股定理,得222DE DC EC =+,即222(12)5(13)x x +=+-,解得1x =.答:BE 的长为125.如图(1),7AB cm =,AC AB ⊥,BD AB ⊥垂足分别为A 、B ,5AC cm =.点P 在线段AB 上以2/cm s 的速度由点A 向点B 运动,同时,点Q 在射线BD 上运动.它们运动的时间为()t s (当点P 运动结束时,点Q 运动随之结束).(1)若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP ∆与BPQ ∆是否全等,并判断此时线段PC 和线段PQ 的位置关系,请分别说明理由;(2)如图(2),若“AC AB ⊥,BD AB ⊥”改为“60CAB DBA ∠=∠=︒”,点Q 的运动速度为/xcm s ,其他条件不变,当点P 、Q 运动到某处时,有ACP ∆与BPQ ∆全等,求出相应的x 、t 的值.【解答】解:(1)ACP BPQ ∆≅∆,AC AB ⊥,BD AB ⊥90A B ∴∠=∠=︒2AP BQ ==,5BP ∴=,BP AC ∴=,在ACP ∆和BPQ ∆中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,ACP BPQ ∴∆≅∆;(2)存在x 的值,使得ACP ∆与BPQ ∆全等, ①若ACP BPQ ∆≅∆,则AC BP =,AP BQ =,可得:572t =-,2t xt = 解得:2x =,1t =;②若ACP BQP ∆≅∆,则AC BQ =,AP BP =,可得:5xt =,272t t =- 解得:207x =,74t =.。

江苏省苏州市八年级数学上学期期中试卷(含解析) 苏科版-苏科版初中八年级全册数学试题

江苏省苏州市八年级数学上学期期中试卷(含解析) 苏科版-苏科版初中八年级全册数学试题

某某省某某市2016-2017学年八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个2.16的平方根是()A.4 B.±4 C.D.±3.与三角形三个顶点距离相等的点,是这个三角形的()A.三条中线的交点B.三条角平分线的交点C.三条高的交点 D.三边的垂直平分线的交点4.在,﹣,0.,,,(﹣1)0,﹣,0.1010010001…等数中,无理数的个数为()A.1 B.2 C.3 D.45.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10 B.5,12,13 C.9,40,41 D.7,9,126.已知等腰三角形的两边长分别为3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或187.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④ B.②③ C.①②④D.①③④8.如图,在△ABC中,CD⊥AB于点D,BE⊥AC于点E,F为BC的中点,DE=5,BC=8,则△DEF的周长是()A.21 B.18 C.13 D.159.如图,长方形ABCD中,AB=9,BC=6,将长方形折叠,使A点与BC的中点F重合,折痕为EH,则线段BE的长为()A.B.4 C.D.510.如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50° B.60° C.70° D.80°二、填空题(本大题共8小题,每小题3分,共24分)11.的平方根是.×104,它是精确到位.13.已知等腰三角形的一个内角等于50°,则它的底角是°.14.若一正数的两个平方根分别是2a﹣1与2a+5,则这个正数等于.15.已知△ABC的三边长a、b、c满足,则△ABC一定是三角形.16.如图,DE是△ABC中AC边上的垂直平分线,若BC=9,AB=11,则△EBC的周长为.17.如图,E为正方形ABCD边AB上一点,BE=3AE=3,P为对角线BD上一个动点,则PA+PE 的最小值是.18.如图,由4个小正方形组成的田字格,△ABC的顶点都是小正方形的顶点,在田字格上能画出与△ABC成轴对称,且顶点都在小正方形顶点上的三角形的个数共有个.三、解答题19.(8分)计算或化简:(1)()2﹣﹣(2)+(1﹣)0﹣(﹣)﹣1.20.(8分)求下列各式中x的值:(1)(x﹣1)3+27=0;(2)9(x﹣1)2=16.21.(5分)已知5x﹣1的平方根是±3,4x+2y+1的立方根是1,求4x﹣2y的平方根.22.(5分)作图题:如图,校园有两条路OA、OB,在交叉口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你用直尺和圆规画出灯柱的位置点P.(保留作图痕迹)23.(5分)如图网格图中,每个小正方形的边长均为1,每个小格的顶点叫做格点.(1)请在图1中,画一个格点三角形,使它的三边长都是有理数;(2)请在图2中,画一个格点三角形,使它的三边长都是无理数;(3)图3中的△ABC的面积为.24.(5分)已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?25.(6分)如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.26.(6分)阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来.于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为在的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)如果的小数部分为a,的整数部分为b,求a+b﹣的值.(2)已知10+=2x+y,其中x是整数,且0<y<1,求3x﹣y的值.27.(8分)如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒4cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.2016-2017学年某某省某某市八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此可知只有第三个图形不是轴对称图形.【解答】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选:C.【点评】本题考查了轴对称与轴对称图形的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.16的平方根是()A.4 B.±4 C.D.±【考点】平方根.【分析】直接利用平方根的定义计算即可.【解答】解:∵±4的平方是16,∴16的平方根是±4.故选B【点评】此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.3.与三角形三个顶点距离相等的点,是这个三角形的()A.三条中线的交点B.三条角平分线的交点C.三条高的交点 D.三边的垂直平分线的交点【考点】线段垂直平分线的性质.【分析】可分别根据线段垂直平分线的性质进行思考,首先满足到A点、B点的距离相等,然后思考满足到C点、B点的距离相等,都分别在各自线段的垂直平分线上,于是答案可得.【解答】解:如图:∵OA=OB,∴O在线段AB的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,∵OA=OC,∴O在线段AC的垂直平分线上,又三个交点相交于一点,∴与三角形三个顶点距离相等的点,是这个三角形的三边的垂直平分线的交点.故选:D.【点评】此题考查了线段垂直平分线的性质;题目比较简单,只要熟知线段垂直平分线的性质即可.分别思考,两两满足条件是解答本题的关键.4.在,﹣,0.,,,(﹣1)0,﹣,0.1010010001…等数中,无理数的个数为()A.1 B.2 C.3 D.4【考点】无理数;零指数幂.【分析】由于无理数就是无限不循环小数,利用无理数的概念即可判定选择项.【解答】解:无理数为:,﹣,,0.1010010001…;故选D【点评】此题要熟记无理数的概念及形式.初中X围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10 B.5,12,13 C.9,40,41 D.7,9,12【考点】勾股数.【分析】根据勾股定理的逆定理对四个答案进行逐一判断即可.【解答】解:A、∵62+82=102=100,∴能构成直角三角形;B、52+122=132=169,∴能构成直角三角形;C、92+402=412=1681,∴能构成直角三角形;D、∵72+92≠122,∴不能构成直角三角形.故选D.【点评】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.6.已知等腰三角形的两边长分别为3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或18【考点】等腰三角形的性质;三角形三边关系.【分析】由于等腰三角形的两边长分别是3和6,没有直接告诉哪一条是腰,哪一条是底边,所以有两种情况,分别利用三角形的周长的定义计算即可求解.【解答】解:∵等腰三角形的两边长分别是3和6,∴①当腰为6时,三角形的周长为:6+6+3=15;②当腰为3时,3+3=6,三角形不成立;∴此等腰三角形的周长是15.故选C.【点评】此题主要考查了三角形的周长的计算,也利用了等腰三角形的性质,同时也利用了分类讨论的思想.7.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④ B.②③ C.①②④D.①③④【考点】估算无理数的大小;算术平方根;无理数;实数与数轴;正方形的性质.【分析】先利用勾股定理求出a=3,再根据无理数的定义判断①;根据实数与数轴的关系判断②;利用估算无理数大小的方法判断③;利用算术平方根的定义判断④.【解答】解:∵边长为3的正方形的对角线长为a,∴a===3.①a=3是无理数,说法正确;②a可以用数轴上的一个点来表示,说法正确;③∵16<18<25,4<<5,即4<a<5,说法错误;④a是18的算术平方根,说法正确.所以说法正确的有①②④.故选C.【点评】本题主要考查了勾股定理,实数中无理数的概念,算术平方根的概念,实数与数轴的关系,估算无理数大小,有一定的综合性.8.如图,在△ABC中,CD⊥AB于点D,BE⊥AC于点E,F为BC的中点,DE=5,BC=8,则△DEF的周长是()A.21 B.18 C.13 D.15【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半求出DF、EF,再根据三角形的周长的定义解答.【解答】解:∵CD⊥AB,F为BC的中点,∴DF=BC=×8=4,∵BE⊥AC,F为BC的中点,∴EF=BC=×8=4,∴△DEF的周长=DE+EF+DF=5+4+4=13.故选C.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,是基础题,熟记性质并准确识图是解题的关键.9.如图,长方形ABCD中,AB=9,BC=6,将长方形折叠,使A点与BC的中点F重合,折痕为EH,则线段BE的长为()A.B.4 C.D.5【考点】翻折变换(折叠问题).【分析】根据折叠的性质得到EF=AE=9﹣BE,由线段中点的性质得到BF=BC=3,根据勾股定理列方程即可得到结论.【解答】解:∵将长方形折叠,使A点与BC的中点F重合,∴EF=AE=9﹣BE,∵BF=BC=3,在Rt△BEF中,EF2=BE2+BF2,即(9﹣BE)2=BE2+32,解得:BE=4.故选B.【点评】本题考查了翻折变换﹣折叠问题,勾股定理,熟记折叠的性质是解题的关键.10.如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50° B.60° C.70° D.80°【考点】轴对称-最短路线问题.【分析】据要使△AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′E+∠A″=∠HAA′=50°,进而得出∠AEF+∠AFE=2(∠AA′E+∠A″),即可得出答案.【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,∵∠C=50°,∴∠DAB=130°,∴∠HAA′=50°,∴∠AA′E+∠A″=∠HAA′=50°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=50°,∴∠EAF=130°﹣50°=80°,故选:D.【点评】本题考查的是轴对称﹣最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出E,F的位置是解题关键.二、填空题(本大题共8小题,每小题3分,共24分)11.的平方根是±.【考点】平方根.【分析】由=3,再根据平方根定义求解即可.【解答】解:∵ =3,∴的平方根是±.故答案为:±.【点评】本题主要考查平方根与算术平方根,掌握平方根定义是关键.×104,它是精确到百位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】×104精确到百位.故答案为百.【点评】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.13.已知等腰三角形的一个内角等于50°,则它的底角是50°或65°°.【考点】等腰三角形的性质.【分析】等腰三角形的两个底角相等,已知一个内角是50°,则这个角可能是底角也可能是顶角.要分两种情况讨论.【解答】解:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°.故答案是:50°或65°.【点评】本题考查了等腰三角形的性质,分类讨论是正确解答本题的关键.14.若一正数的两个平方根分别是2a﹣1与2a+5,则这个正数等于9 .【考点】平方根.【分析】根据正数的两个平方根互为相反数列方程求出a,再求出一个平方根,然后平方即可.【解答】解:∵一正数的两个平方根分别是2a﹣1与2a+5,∴2a﹣1+2a+5=0,解得a=﹣1,∴2a﹣1=﹣2﹣1=﹣3,∴这个正数等于(﹣3)2=9.故答案为:9.【点评】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.15.已知△ABC的三边长a、b、c满足,则△ABC一定是等腰直角三角形.【考点】等腰直角三角形;非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根;勾股定理的逆定理.【分析】先根据非负数的性质求出a、b、c的值,再根据三角形的三边关系进行判断即可.【解答】解:∵△ABC的三边长a、b、c满足,∴a﹣1=0,b﹣1=0,c﹣=0,∴a=1,b=1,c=.∵a2+b2=c2,∴△ABC一定是等腰直角三角形.【点评】本题考查的知识点是:一个数的算术平方根与某个数的绝对值以及另一数的平方的和等于0,那么算术平方根的被开方数为0,绝对值里面的代数式的值为0,平方数的底数为0及勾股定理的逆定理.16.如图,DE是△ABC中AC边上的垂直平分线,若BC=9,AB=11,则△EBC的周长为20 .【考点】线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质得到EA=EC,根据三角形的周长公式计算即可.【解答】解:∵DE是AC边上的垂直平分线,∴EA=EC,∴△EBC的周长=BC+BE+EC=BC+BE+EA=BC+AB=20.故答案为:20.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.如图,E为正方形ABCD边AB上一点,BE=3AE=3,P为对角线BD上一个动点,则PA+PE 的最小值是 5 .【考点】轴对称-最短路线问题.【分析】连接EC,则EC的长就是PA+PE的最小值.【解答】解:连接EC.∵BE=3AE=3,∴AB=4,则BC=AB=4,在直角△BCE中,CE===5.故答案是:5.【点评】本题考查了轴对称,理解EC的长是PA+PE的最小值是关键.18.如图,由4个小正方形组成的田字格,△ABC的顶点都是小正方形的顶点,在田字格上能画出与△ABC成轴对称,且顶点都在小正方形顶点上的三角形的个数共有 4 个.【考点】利用轴对称设计图案.【分析】因为顶点都在小正方形上,故可分别以大正方形的两条对角线AB、EF及MN、CH为对称轴进行寻找.【解答】解:分别以大正方形的两条对角线AB、EF及MN、CH为对称轴,作轴对称图形:则△ABM、△ANB、△EHF、△EFC都是符合题意的三角形,故答案为:4.【点评】此题考查了利用轴对称涉及图案的知识,关键是根据要求顶点在格点上寻找对称轴,有一定难度,注意不要漏解三、解答题19.计算或化简:(1)()2﹣﹣(2)+(1﹣)0﹣(﹣)﹣1.【考点】实数的运算;零指数幂;负整数指数幂.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用零指数幂、负整数指数幂法则,以及二次根式性质计算即可得到结果.【解答】解:(1)原式=4+3﹣10=﹣3;(2)原式=2+1+2=2+3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.求下列各式中x的值:(1)(x﹣1)3+27=0;(2)9(x﹣1)2=16.【考点】立方根;平方根.【分析】根据平方根和立方根的定义解答.【解答】解:(1)(x﹣1)3+27=0,解得:x=﹣2;(2)9(x﹣1)2=16,解得:或x=﹣.【点评】本题主要考查了平方根和立方根的概念,关键是根据平方根和立方根的定义计算.21.已知5x﹣1的平方根是±3,4x+2y+1的立方根是1,求4x﹣2y的平方根.【考点】立方根;平方根.【分析】根据平方根的定义可得5x﹣1=9,计算出x的值;再根据立方根定义可得4x+2y+1=1,进而计算出y的值,然后可得4x﹣2y的值,再算平方根即可.【解答】解:∵5x﹣1的算术平方根为3,∴5x﹣1=9,∴x=2,∵4x+2y+1的立方根是1,∴4x+2y+1=1,∴y=﹣4,∴4x﹣2y=4×2﹣2×(﹣4)=16,∴4x﹣2y的平方根是±4.【点评】此题主要考查了立方根和平方根,关键是掌握如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根;如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.22.作图题:如图,校园有两条路OA、OB,在交叉口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你用直尺和圆规画出灯柱的位置点P.(保留作图痕迹)【考点】作图—应用与设计作图.【分析】直接作出线段DC的垂直平分线,再作出∠AOB的平分线,进而得出其交点即可.【解答】解:如图所示:点P即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.23.如图网格图中,每个小正方形的边长均为1,每个小格的顶点叫做格点.(1)请在图1中,画一个格点三角形,使它的三边长都是有理数;(2)请在图2中,画一个格点三角形,使它的三边长都是无理数;(3)图3中的△ABC的面积为.【考点】勾股定理.【分析】由于正方形的边长为1,连接铬点的线段,可通过勾股定理计算出其边长.根据题目要求,3、4、5符合(1)要求的三角形,例如、3、2符合(2)要求的三角形.(3)三角形的面积=矩形的面积﹣3个小直角三角形的面积.【解答】解:(1)(2)如右图所示.(3)三角形的面积=22﹣2×﹣﹣=故答案为:【点评】本题考查了铬点三角形、勾股定理及三角形的面积公式.知道3、4、5能组成三角形,会把不规则的图形转化成规则图形求面积是解决本题的关键.24.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?【考点】勾股定理的应用.【分析】仔细分析题目,需要求得四边形的面积才能求得结果.连接BD,在直角三角形ABD 中可求得BD的长,由BD、CD、BC的长度关系可得三角形DBC为一直角三角形,DC为斜边;由此看,四边形ABCD由Rt△ABD和Rt△DBC构成,则容易求解.【解答】解:连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132BC2=122,而122+52=132,即BC2+BD2=CD2,∴∠DBC=90°,S四边形ABCD=S△BAD+S△DBC=,==36.所以需费用36×200=7200(元).【点评】通过勾股定理由边与边的关系也可证明直角三角形,这样解题较为简单.25.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.【考点】全等三角形的判定与性质;角平分线的性质.【分析】(1)求出∠E=∠DFC=90°,根据全等三角形的判定定理得出Rt△BED≌Rt△CFD,推出DE=DF,根据角平分线性质得出即可;(2)根据全等三角形的性质得出AE=AF,BE=CF,即可求出答案.【解答】(1)证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,∴在Rt△BED和Rt△CFD中∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)解:∵Rt△BED≌Rt△CFD,∴AE=AF,CF=BE=4,∵AC=20,∴AE=AF=20﹣4=16,∴AB=AE﹣BE=16﹣4=12.【点评】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.26.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来.于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为在的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)如果的小数部分为a,的整数部分为b,求a+b﹣的值.(2)已知10+=2x+y,其中x是整数,且0<y<1,求3x﹣y的值.【考点】估算无理数的大小;算术平方根.【分析】(1)根据题意得出a=﹣2,b=5,代入可得;(2)由2=且3<<4知13<10+<14,从而得出x=、y=﹣3,再代入计算即可.【解答】解:(1)根据题意得:a=﹣2,b=5,则原式=﹣2+5﹣=3;(2)∵2=,且3<<4,∴13<10+<14,∴2x=13,y=10+﹣13=﹣3,即x=,则3x﹣y=3×﹣(﹣3)=﹣2.【点评】此题主要考查了无理数的估算能力,解题关键是估算无理数的整数部分和小数部分,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.27.如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒4cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.【考点】三角形综合题;角平分线的性质;等腰三角形的判定与性质;勾股定理的应用;三角形中位线定理.【分析】(1)设存在点P,使得PA=PB,此时PA=PB=4t,PC=8﹣4t,根据勾股定理列方程即可得到t的值;(2)过P作PE⊥AB,设CP=x,根据角平分线的性质和勾股定理列方程式进行解答即可;(3)分类讨论:当CP=CB时,△BCP为等腰三角形,若点P在AC上,根据AP的长即可得到t的值,若点P在AB上,根据P移动的路程易得t的值;当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,根据等腰三角形的性质得BD=CD,则可判断PD为△ABC的中位线,则AP=AB=5,易得t的值;当BP=BC=6时,△BCP为等腰三角形,易得t的值.【解答】解:(1)∵△ABC中,∠ACB=90°,AB=10cm,BC=6cm,∴由勾股定理得AC==8,如图,连接BP,当PA=PB时,PA=PB=4t,PC=8﹣4t,在Rt△PCB中,PC2+CB2=PB2,即(8﹣4t)2+62=(4t)2,解得:t=,∴当t=时,PA=PB;(2)解:如图1,过P作PE⊥AB,又∵点P恰好在∠BAC的角平分线上,且∠C=90°,AB=10cm,BC=6cm,∴CP=EP,∴△ACP≌△AEP(HL),∴AC=8cm=AE,BE=2,设CP=x,则BP=6﹣x,PE=x,∴Rt△BEP中,BE2+PE2=BP2,即22+x2=(6﹣x)2解得x=,∴CP=,∴CA+CP=8+=,∴t=÷4=(s);(3)①如图2,当CP=CB时,△BCP为等腰三角形,若点P在CA上,则4t=8﹣6,解得t=(s);②如图3,当BP=BC=6时,△BCP为等腰三角形,∴AC+CB+BP=8+6+6=20,∴t=20÷4=5(s);③如图4,若点P在AB上,CP=CB=6,作CD⊥AB于D,则根据面积法求得CD=4.8,在Rt△BCD中,由勾股定理得,BD=3.6,∴PB=2BD=7.2,∴CA+CB+BP=8+6+7.2=21.2,÷4=5.3(s);④如图5,当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,则D为BC的中点,∴PD为△ABC的中位线,∴AP=BP=AB=5,∴AC+CB+BP=8+6+5=19,∴t=19÷4=(s);综上所述,t为s时,△BCP为等腰三角形.【点评】本题以动点问题为背景,考查了等腰三角形的判定与性质、角平分线的性质、勾股定理、三角形面积的计算以及全等三角形的判定与性质等知识的综合应用,熟练掌握等腰三角形的判定与性质,进行分类讨论是解决问题的关键.解题时需要作辅助线构造直角三角形以及等腰三角形.。

2019-2020学年江苏省镇江市句容市八年级(上)期中数学试卷解析版

2019-2020学年江苏省镇江市句容市八年级(上)期中数学试卷解析版

2019-2020学年江苏省镇江市句容市八年级(上)期中数学试卷一、填空题(每小题2分,共24分)1.如果等腰三角形的顶角等于50°,那么它的底角为°.2.已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是.3.如图,如果图中的两个三角形全等,根据图中所标数据,可以推理得到∠α=.4.如图,已知∠B=∠E,AB=DE,要推得△ABC≌△DEF,若以“SAS”为依据,添加的条件是.5.图中直角三角形未知边b的长度是.6.如图,△ACF≌△ADE,AC=6,AF=2,则CE的长.7.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C=.8.等腰△ABC中,AB=AC,AD平分∠BAC,若AB=5cm、BC=6cm,则AD=cm.9.如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E,若OD=8,OP=10,则PE=.10.如图,AD是△ABC的中线,∠ADC=60°,BC=6,把△ABC沿直线AD折叠,点C落在C′处,连接BC′,那么BC′的长为.11.如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为.12.如图,Rt△ABC的周长为30cm,面积为30cm2,以AB、AC为边向外作正方形ABPQ和正方形ACMN.则这两个正方形的面积之和为cm2二、选择(每小题3分,共21分)13.下列是我国一些银行的手机银行的图标中,其中是轴对称图形的是()A.B.C.D.14.如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是()A.2,3,4B.3,4,6C.5,12,13D.4,6,715.如图,∠BAD=∠BCD=90°,AB=CB,据此可以证明△BAD≌△BCD,证明的依据是()A.AAS B.ASA C.SAS D.HL16.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC一定全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙17.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,以O为圆心,OP长为半径画弧交BC于点D,连接PD,如果PO=PD,那么AP的长是()A.5B.8C.7D.618.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=BE B.EC=BE C.BC=EC D.AE=EC19.如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,AB、CD交于F,若AE=6,AD=8,则AF的长为()A.5B.C.D.6三、解答题20.如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.21.如图,D是△ABC的BC边上的一点,AD=BD,∠ADC=80°.(1)求∠B的度数;(2)若∠BAC=70°,判断△ABC的形状,并说明理由.22.已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.23.作图:(1)如图1,△ABC在边长为1的正方形网格中:①画出△ABC关于直线l轴对称的△DEF(其中D、E、F是A、B、C的对应点)②直接写出△DEF的面积平方单位.(2)如图2,在四边形ABCD内找一点P,使得点P到AB、AD的距离相等,并且点P到点B、C的距离也相等.(用直尺与圆规作图,不写作法,保留作图痕迹).24.如图,在△ABC中,AC=21,BC=13,D是AC边上一点,AD=16,BD=12,DE⊥AB,E为垂足,求线段DE的长.25.学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:如图,小亮将升旗的绳子拉直到末端刚好接触地面,测得此时绳子末端距旗杆底端1米,然后将绳子末端拉直到距离旗杆5m处,测得此时绳子末端距离地面高度为1m,如果设旗杆的高度为x米(滑轮上方的部分忽略不计),求x的值.26.已知:如图,点B、C、E三点在同一条直线上,CD平分∠ACE,∠DBM=∠DAN,DM⊥BE于M,DN⊥AC 于N.(1)求证:△BDM≌△ADN;(2)若AC=7,BC=3,则CM的长=.27.如图,AB⊥BC,射线CM⊥BC,且AB=7cm,BC=22cm,点P是线段BC(不与点B、C重合)上的动点,过点P作DP⊥AP交射线CM于点D,连结AD.(1)如图1,当BP=时,△ADP是等腰直角三角形.(2)如图2,若P是BC的中点,求证:DP平分∠ADC.(3)若△PDC是等腰三角形,作点B关于AP的对称点B′,连结B′D,则B′D=cm.2019-2020学年江苏省镇江市句容市八年级(上)期中数学试卷参考答案与试题解析一、填空题(每小题2分,共24分)1.【解答】解:∵等腰三角形的顶角等于50°,又∵等腰三角形的底角相等,∴底角等于(180°﹣50°)×=65°.故答案为:65.2.【解答】解:当腰为3时,3+3=6,∴3、3、6不能组成三角形;当腰为6时,3+6=9>6,∴3、6、6能组成三角形,该三角形的周长为=3+6+6=15.故答案为:15.3.【解答】解:∵两个三角形全等,长度为3的边是对应边,∴长度为3的边对的角是对应角,∴∠α=67°.4.【解答】解:∵∠B=∠E,AB=DE∴要利用SAS,则还缺少一边即:BC=EF,故答案为:BC=EF5.【解答】解:由勾股定理可得:b=,故答案为:12.6.【解答】解:∵△ACF≌△ADE,∴AE=AF,∴AC﹣AE=AC﹣AF,∴CE=AC﹣AF=6﹣2=4.故答案为:4.7.【解答】解:∵△ABD中,AB=AD,∠B=70°,∴∠B=∠ADB=70°,∴∠ADC=180°﹣∠ADB=110°,∵AD=CD,∴∠C=(180°﹣∠ADC)÷2=(180°﹣110°)÷2=35°,故答案为:35°8.【解答】解:∵AB=AC,AD平分∠BAC,∴BD=BC=3,AD⊥BC,由勾股定理得,AD==4(cm),故答案为:4.9.【解答】解:∵OD=8,OP=10,PD⊥OA,∴由勾股定理得,PD===6,∵∠AOC=∠BOC,PD⊥OA,PE⊥OB,∴PE=PD=6.故答案为:6.10.【解答】解:根据题意:BC=6,D为BC的中点;故BD=DC=3.有轴对称的性质可得:∠ADC=∠ADC′=60°,DC=DC′=3,∠BDC′=60°,故△BDC′为等边三角形,故BC′=3.故答案为:3.11.【解答】解:在Rt△ABC中,AB==10,根据折叠的性质可知:AE=AB=10,DE=BD∵AC=8∴CE=AE﹣AC=2在Rt△CDE中,DE2=CD2+CE2.∴BD2=(BC﹣BD)2+CE2.∴BD2=(6﹣BD)2+4∴BD=故答案为12.【解答】解:∵Rt△ABC的周长为30cm,面积为30cm2,∴b+c=30﹣a,bc=60,∴(b+c)2=b2+c2+2bc=a2+120=(30﹣a)2,解得:a=13,∴两个正方形的面积之和为b2+c2=a2=169cm2,故答案为:169.二、选择(每小题3分,共21分)13.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.14.【解答】解:A、22+32≠42,根据勾股定理的逆定理不是直角三角形,故此选项错误;B、32+42≠62,根据勾股定理的逆定理不是直角三角形,故此选项错误;C、122+52=132,根据勾股定理的逆定理是直角三角形,故此选项正确;D、42+62≠72,根据勾股定理的逆定理不是直角三角形,故此选项错误.故选:C.15.【解答】解:∵∠BAD=∠BCD=90°,∴△BAD和△BCD均为直角三角形.∵,∴△BAD≌BCD(HL).16.【解答】解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选:B.17.【解答】解:连接OD,∵PO=PD,∴OP=DP=OD,∴∠DPO=60°,∵等边△ABC,∴∠A=∠B=60°,AC=AB=9,∴∠OP A=∠PDB=∠DP A﹣60°,∴△OP A≌△PDB,∵AO=3,∴AO=PB=3,∴AP=6.故选:D.18.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:A.19.【解答】解:连接BD,∵CA=CB,CE=CD,∠ECA=90°﹣∠ACD=∠DCB,∴△ECA≌△DCB(SAS),∴DB=AE=6,∠CDB=∠E=45°,∴∠EDB=ADC+CDB=90°,在Rt△ABD中,AD=8,DB=6,则:AB=10,在Rt△ABC中,AB=10,则:BC=10•sin45°=5,在Rt△ECD中,ED=AE+AD=14,则:DC=7,∵∠CDB=45°=∠FBC,∠DCB=∠DCB,∴△CBF∽△CDB,∴,即:,解得:BF=,AF=AB﹣BF=,故选:B.三、解答题20.【解答】证明:∵在△ABC和△EDC中,,∴△ABC≌△EDC(ASA).21.【解答】解:(1)∵在△ABD中,AD=BD,∴∠B=∠BAD,∵∠ADC=∠B+∠BAD,∠ADC=80°,∴∠B=∠ADC=40°;(2)△ABC是等腰三角形.理由:∵∠B=40°,∠BAC=70°,∴∠C=180°﹣∠B﹣∠BAC=70°,∴∠C=∠BAC,∴BA=BC,∴△ABC是等腰三角形.22.【解答】证明:连接AC,∵△ABC中,AB=BC,∴∠BCA=∠BAC.又∵∠BAD=∠BCD,∠BCD=∠BCA+∠ACD,∠BAD=∠BAC+∠CAD;∴∠CAD=∠ACD.∴AD=CD(等角对等边).23.【解答】解:(1)①如图所示,△DEF即为所求;②△DEF的面积为4×5﹣×1×5﹣×1×4﹣×3×4=9.5,故答案为:9.5;(2)如图2所示,点P即为所求.24.【解答】解:CD=21﹣16=5,∵DC2+BD2=52+122=169,BC=132=169,∴DC2+BD2=BC2,∴△BCD是直角三角形,且∠BDC=90°,在Rt△ADB中,由勾股定理,得AB=20,在Rt△ADB中,AB×DE=AD×BD,即×20×DE=×16×12,解得DE=.故线段DE的长是.25.【解答】解:设旗杆高度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m根据勾股定理得,绳长的平方=x2+12,右图,根据勾股定理得,绳长的平方=(x﹣1)2+52,∴x2+12=(x﹣1)2+52,解得x=12.5.答x值为12.526.【解答】解:(1)∵CD平分∠ACE,DM⊥BE,DN⊥AC,∴DN=DM∵∠DBM=∠DAN,∠AND=∠BMD,ND=DM,∴Rt△ADN≌Rt△BDM(AAS);(2)∵DC=DC,DN=DM∴Rt△DCN≌Rt△DCM(HL)∴CM=CN∵Rt△ADN≌Rt△BDM∴BM=AN∵AC=AN+CN=BM+CM=BC+CM+CM=7∴3+2CM=7∴CM=2故答案为227.【解答】解:(1)当BP=15cm时,△ADP是等腰直角三角形,∵∠APD=90°,∴∠APB+∠DPC=90°,∵∠ABP=90°,∴∠APB+∠BAP=90°,∴∠BAP=∠CPD,∵BP=15,∴PC=BC﹣BP=7,∴AB=PC,在△ABP和△PCD中,,∴△ABP≌△PCD(ASA),∴P A=PD,又DP⊥AP,∴△ADP是等腰直角三角形,故答案为:15cm;(2)延长线段AP、DC交于点E,在△ABP和△ECP中,,∴△DP A≌△DPE(ASA),∴P A=PE,又DP⊥AP,∴DA=DE,∴∠ADP=∠EDP,即DP平分∠ADC;(3)连接B′A,B′P,延长AB′交CD于H,∵△PDC是等腰三角形,∴∠DPC=45°,∴∠APB=45°,∴BP=AB=7,∴CP=CD=15,∵△ABP为等腰直角三角形,B关于AP的对称点B′,∴四边形ABPB′为矩形,∴B′P=AB=7,AH⊥CD,∴四边形B′PCH为矩形,∴B′H=PC=15,DH=DC﹣CH=8,在Rt△DB′H中,=17(cm),故答案为:17.。

2019-2020学年武汉市汉阳区八年级上期中数学试卷(有答案)

2019-2020学年武汉市汉阳区八年级上期中数学试卷(有答案)

.2019-2020学年湖北省武汉市汉阳区八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)下列“表情图”中,属于轴对称图形的是(中,属于轴对称图形的是( )A .B .C .D .2.(3分)下列四个图形中,线段BE 是△ABC 的高的是(的高的是( )A .B .C .D .3.(3分)下列长度的三条线段能组成三角形的是(分)下列长度的三条线段能组成三角形的是( ) A .1,2,3 B .1,,3 C .3,4,8 D .4,5,6 4.(3分)一定能确定△ABC ≌△DEF 的条件是(的条件是( ) A .∠A=∠D ,AB=DE ,∠B=∠E B .∠A=∠E ,AB=EF ,∠B=∠D C .AB=DE ,BC=EF ,∠A=∠DD .∠A=∠D ,∠B=∠E ,∠C=∠F5.(3分)如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是(书本上完全一样的三角形,那么聪聪画图的依据是( )A .SSSB .SASC .ASAD .AAS6.(3分)已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为(,则这个等腰三角形的周长为( ) A .11 B .16 C .17 D .16或17 7.(3分)如图,在△ABC 中,AB=AC ,BD 平分∠ABC 交AC 于点D ,AE ∥BD 交CB 的延长线于点E .若∠E=35°,则∠BAC 的度数为(的度数为( )A .40°B .45°C .60°D .70°8.(3分)如图,在△ABC 中,AB=AC ,AB 的垂直平分线交边AB 于D 点,交边AC 于E 点,若△ABC 与△EBC 的周长分别是40,24,则AB 为(为( )A .8B .12C .16D .20 9.(3分)如图,四边形ABCD 是直角梯形,AB ∥CD ,AD ⊥AB ,点P 是腰AD 上的一个动点,要使PC +PB 最小,则点P 应该满足(应该满足( )A .PB=PCB .PA=PDC .∠BPC=90°D .∠APB=∠DPC10.(3分)在平面直角坐标系中,已知A (0,2),B (2,0),若在坐标轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是(的个数是( ) A .6B .7C .8D .9二、填空题(每题3分,共18分)11.(3分)已知点P 关于x 轴的对称点P 1的坐标是(2,1),则点P 的坐标是的坐标是 . 12.(3分)如图,将三角形纸板的直角顶点放在直尺的一边上,∠1=20°,∠2=40°,则∠3的度数是度数是.13.(3分)如图,在△ABC 中,AB=AC ,AE ⊥AB 交BC 于点E ,∠BAC=120°,AE=3,则BC 的长是长是.14.(3分)如果一个等腰三角形一条腰上的高等于另一腰的一半,则该等腰三角形的底角的度数度数.15.(3分)在△ABC 中,AB=2cm ,AC=4cm ,则BC 边上的中线AD 的取值范围是的取值范围是 . 16.(3分)请你仔细观察图中等边三角形图形的变换规律,写出你发现关于等边三角形内一点到三边距离的数学事实:点到三边距离的数学事实:.三、解答题(共8道小题,共72分)17.(8分)一个多边形的内角和是外角和的2倍,则这个多边形是几边形? 18.(8分)如图,点B 、E 、C 、F 在同一直线上,BE=CF ,AB=DE ,AC=DF . 求证:AB ∥DE .19.(8分)如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F . (1)∠ABC=40°,∠A=60°,求∠BFD 的度数; (2)直接写出∠A 与∠BFD 的数量关系.20.(8分)如图,在平面直角坐标系中,A (﹣1,5),B (﹣1,0),C (﹣4,3).(1)在图中作出△ABC 关于直线m (直线m 上各点的横坐标都为﹣2)对称的图形△A 1B 1C 1;(2)线段BC 上有一点P (﹣,),直接写出点P 关于直线m 对称的点的坐标; (3)线段BC 上有一点M (a ,b ),直接写出点M 关于直线m 对称的点的坐标.21.(8分)如图△ABC是等边三角形.(1)请按要求完成图形,分别作∠ABC,∠ACB的平分线,交点为O;再分别作OB,OC的垂直平分线分别交BC于点D,E;(2)在(1)的条件下,判断△ODE的形状,并证明你的结论.22.(10分)如图,在△ABC中,∠ACB=90°,∠A=30°.(1)教材中有这样的结论:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.请结合图1,证明该结论;(2)若将图2分割成三个全等的三角形,请你画出图形,并简单描述辅助线的作法.23.(10分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三等分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.24.(12分)(1)问题解决:如图,在四边形ABCD中,∠BAD=α,∠BCD=180°﹣α,BD平分∠ABC.;个性质是①如图1,若α=90°,根据教材中一个重要性质直接可得AD=CD,这个性质是②在图2中,求证AD=CD;(2)拓展探究:根据(1)的解题经验,请解决如下问题:如图3,在等腰△ABC中,∠BAC=100°,BD平分∠ABC,求证BD+AD=BC.2019-2020学年湖北省武汉市汉阳区八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列“表情图”中,属于轴对称图形的是(中,属于轴对称图形的是( )A. B. C. D.【解答】解:A不属于轴对称图形,故错误;B不属于轴对称图形,故错误;C不属于轴对称图形,故错误;D属于轴对称图形,故正确;故选:D.2.(3分)下列四个图形中,线段BE是△ABC的高的是(的高的是( )A. B.C.D.【解答】解:线段BE是△ABC的高的图是选项D.故选D.3.(3分)下列长度的三条线段能组成三角形的是(分)下列长度的三条线段能组成三角形的是( )A .1,2,3 B.1,,3 C.3,4,8 D.4,5,6【解答】解:A、1+2=3,不能组成三角形,故本选项错误;B、1+<3,不能组成三角形,故本选项错误;C、3+4<8,不能组成三角形,故本选项错误;D、4+5>6,能组成三角形,故本选项正确.故选D.4.(3分)一定能确定△ABC≌△DEF的条件是(的条件是( )A.∠A=∠D,AB=DE,∠B=∠E B.∠A=∠E,AB=EF,∠B=∠DC.AB=DE,BC=EF,∠A=∠D D.∠A=∠D,∠B=∠E,∠C=∠F【解答】解:A 、根据ASA 即可推出△ABC ≌△DEF ,故本选项正确;B 、根据∠A=∠E ,∠B=∠D ,AB=DE 才能推出△ABC ≌△DEF ,故本选项错误; C 、根据AB=DE ,BC=EF ,∠B=∠E 才能推出△ABC ≌△DEF ,故本选项错误;D 、根据AAA 不能推出△ABC ≌△DEF ,故本选项错误; 故选A .5.(3分)如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是(书本上完全一样的三角形,那么聪聪画图的依据是( )A .SSSB .SASC .ASAD .AAS【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形. 故选:C .6.(3分)已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为(,则这个等腰三角形的周长为( ) A .11 B .16 C .17 D .16或17【解答】解:①6是腰长时,三角形的三边分别为6、6、5, 能组成三角形,周长=6+6+5=17;②6是底边时,三角形的三边分别为6、5、5, 能组成三角形, 周长=6+5+5=16.综上所述,三角形的周长为16或17. 故选D .7.(3分)如图,在△ABC 中,A B=AC ,BD 平分∠ABC 交AC 于点D ,AE ∥BD 交CB 的延长线于点E .若∠E=35°,则∠BAC 的度数为(的度数为( )A.40° B.45° C.60° D.70°【解答】解:∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选:A.8.(3分)如图,在△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点,若)为(△ABC与△EBC的周长分别是40,24,则AB为(A.8 B.12 C.16 D.20【解答】解:∵DE是AB的垂直平分线,∴AE=BE;∵△ABC的周长=AB+AC+BC,△EBC的周长=BE+EC+BC=AE+EC+BC=AC+BC,∴△ABC的周长﹣△EBC的周长=AB,∴AB=40﹣24=16.故选:C.9.(3分)如图,四边形ABCD是直角梯形,AB∥CD,AD⊥AB,点P是腰AD上的一个动点,)应该满足(要使PC+PB最小,则点P应该满足(A.PB=PC B.PA=PD C.∠BPC=90° D.∠APB=∠DPC【解答】解:如图,作点C关于AD的对称点E,连接BE交AD于P,连接CP.根据轴对称的性质,得∠DPC=∠EPD,根据对顶角相等知∠APB=∠EPD,所以∠APB=∠DPC.故选D.10.(3分)在平面直角坐标系中,已知A(0,2),B(2,0),若在坐标轴上取点C,使△ABC 为等腰三角形,则满足条件的点C的个数是()的个数是(A.6 B.7 C.8 D.9【解答】解:如图所示:当AB=AC时,符合条件的点有3个;当BA=BC时,符合条件的点有3个;当点C在AB的垂直平分线上时,符合条件的点有一个.故符合条件的点C共有7个.故选:B .二、填空题(每题3分,共18分)11.(3分)已知点P 关于x 轴的对称点P 1的坐标是(2,1),则点P 的坐标是的坐标是 (2,﹣1) . 【解答】解:点P 关于x 轴的对称点P 1的坐标是(2,1),则点P 的坐标是(2,﹣1), 故答案为:(2,﹣1).12.(3分)如图,将三角形纸板的直角顶点放在直尺的一边上,∠1=20°,∠2=40°,则∠3的度数是度数是 20° .【解答】解:由题意得:∠4=∠2=40°; 由三角形外角的性质得:∠4=∠1+∠3, ∴∠3=∠4﹣∠1=40°﹣20°20°=20°=20°, 故答案为:20°.13.(3分)如图,在△ABC 中,AB=AC ,AE ⊥AB 交BC 于点E ,∠BAC=120°,AE=3,则BC 的长是长是 9 .【解答】解:过点A 作AF ⊥BC 交BC 于F ,∵AB=AC ,∠BAC=120°,∴∠B=∠C=30°,BC=2BF , 在Rt △BAE 中, AB=AE•cot30°=3×=3,在Rt △AF B 中,BF BF=AB•cos30°=3=AB•cos30°=3×=, ∴BC=2BF=2×=9, 故答案为:9.14.(3分)如果一个等腰三角形一条腰上的高等于另一腰的一半,则该等腰三角形的底角的度数度数 15°或75° .【解答】解:解:(1)当等腰三角形是锐角三角形时,腰上的高在三角形内部,如图,BD 为等腰三角形ABC 腰AC 上的高,并且BD=AB ,根据直角三角形中30°角的对边等于斜边的一半的逆用,可知顶角为30°,此时底角为75°;(2)当等腰三角形是钝角三角形时,腰上的高在三角形外部,如图,BD 为等腰三角形ABC 腰AC 上的高,并且BD=AB ,根据直角三角形中30°角的对边等于斜边的一半的逆用,可知顶角的邻补角为30°,此时顶角是150°, 底角为15°.故答案为:15°或75°.15.(3分)在△ABC 中,AB=2cm ,AC=4cm ,则BC 边上的中线AD 的取值范围是的取值范围是 1cm <AD <3cm .【解答】解:延长AD 到E ,使AD=DE ,连接BE , ∵AD 是△ABC 的中线, ∴BD=CD ,在△ADC 与△EDB 中, ∵,∴△ADC ≌△EDB , ∴EB=AC ,根据三角形的三边关系定理:4cm ﹣2cm <AE <4cm +2cm , ∴1cm <AD <3cm ,故答案为:1cm <AD <3cm .16.(3分)请你仔细观察图中等边三角形图形的变换规律,写出你发现关于等边三角形内一点到三边距离的数学事实:点到三边距离的数学事实: 等边三角形内任意一点到三边的距离之和等于该等边三角形的高 .【解答】解:由图可知,等边三角形里任意一点到三边的距离和等于它的高.三、解答题(共8道小题,共72分)17.(8分)一个多边形的内角和是外角和的2倍,则这个多边形是几边形? 【解答】解:设这个多边形的边数为n ,∴(n ﹣2)•180•180°°=2×360°, 解得:n=6.故这个多边形是六边形.18.(8分)如图,点B 、E 、C 、F 在同一直线上,BE=CF ,AB=DE ,AC=DF . 求证:AB ∥DE .【解答】证明:∵BE=CF , ∴BC=EF ,在△ABC 和△DEF 中,,∴△ABC ≌△DEF (SSS ), ∴∠B=∠DEF , ∴AB ∥DE .19.(8分)如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F . (1)∠ABC=40°,∠A=60°,求∠BFD 的度数; (2)直接写出∠A 与∠BFD 的数量关系.【解答】解:(1)∵∠ABC=40°,∠A=60°, ∴∠ACB=180°﹣40°﹣60°60°=80°=80°, ∵∠B 、∠C 的平分线BE ,CD 相交于点F ,∴∠BFD=∠FBC +∠FCB=∠ABC +∠ACB=20°+40°40°=60°=60°.(2)∵∠B 、∠C 的平分线BE ,CD 相交于点F ,∴∠BFD=∠FBC +∠FCB=∠ABC +∠ACB=(∠ABC +∠ACB )=(180°﹣∠A )=90°﹣∠A .20.(8分)如图,在平面直角坐标系中,A (﹣1,5),B (﹣1,0),C (﹣4,3).(1)在图中作出△ABC 关于直线m (直线m 上各点的横坐标都为﹣2)对称的图形△A 1B 1C 1;(2)线段BC 上有一点P (﹣,),直接写出点P 关于直线m 对称的点的坐标; (3)线段BC 上有一点M (a ,b ),直接写出点M 关于直线m 对称的点的坐标.【解答】解:(1)如图所示,(2)线段BC 上有一点P (﹣,),点P 关于直线m 对称的点的坐标是(﹣,), (3)线段BC 上有一点M (a ,b ),点M 关于直线m 对称的点的坐标是(﹣4﹣a ,b ).21.(8分)如图△ABC是等边三角形.(1)请按要求完成图形,分别作∠ABC,∠ACB的平分线,交点为O;再分别作OB,OC的垂直平分线分别交BC于点D,E;(2)在(1)的条件下,判断△ODE的形状,并证明你的结论.【解答】解:(1)如图,(2)△ODE为等边三角形.理由如下:∵△ABC是等边三角形.∴∠ABC=∠ACB=60°,∵OB平分∠ABC,OC平分∠AC B,∴∠OBC=∠ABC=30°,∠OCB=∠ACB=30°,∵OB,OC的垂直平分线分别交BC于点D,E,∴DB=DO,EC=EO,∴∠ODB=∠DBO=30°,∠EOC=∠ECO=30°,∴∠ODE=∠ODB+∠DBO=60°,∠OED=∠EOC+∠ECO=60°,∴△ODE为等边三角形.22.(10分)如图,在△ABC中,∠ACB=90°,∠A=30°.(1)教材中有这样的结论:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.请结合图1,证明该结论;(2)若将图2分割成三个全等的三角形,请你画出图形,并简单描述辅助线的作法.【解答】解:(1)证法一:如答图所示,延长BC到D,使CD=BC,连接AD,易证AD=AB,∠BAD=60°.∴△ABD为等边三角形,∴AB=BD,∴BC=CD=AB,即BC=AB.证法二:如答图所示,取AB的中点D,连接DC,有CD=AB=AD=DB,∴∠DCA=∠A=30°,∠BDC=∠DCA+∠A=60°.∴△DBC为等边三角形,∴BC=DB=AB,即BC=AB.证法三:如答图所示,在AB 上取一点D ,使BD=BC , ∵∠B=60°,∴△BDC 为等边三角形,∴∠DCB=60°,∠ACD=90°﹣∠DCB=90°﹣60°60°=30°=30°=30°==∠A .∴DC=DA ,即有BC=BD=DA=AB ,∴BC=AB .证法四:如图所示,作△ABC 的外接圆⊙D ,∠C=90°,AB 为⊙O 的直径, 连DC 有DB=DC ,∠BDC=2∠A=2×30°=60°, ∴△DBC 为等边三角形,∴BC=DB=DA=AB ,即BC=AB .(2)如图2,作∠ACB 平分线交AC 于点D ,作DE ⊥AB 于点E , 则△ADE ≌△BDE ≌△BDC由作图知∠DBC=∠DBE=∠A=30°,∠AED=∠BED=∠C=90°, ∴AD=BD ,∴AE=BE=AB , 又∵BC=AB , ∴AE=BE=BC ,在△ADE 、△BDE 、△BDC 中,∵,∴△ADE≌△BDE≌△BDC.23.(10分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三等分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.【解答】解:(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=,可得2x=,解得:x=36°,则∠A=36°;(2)如图所示:(3)如图所示:①当AD=AE 时, ∵2x +x=30°+30°, ∴x=20°; ②当AD=DE 时, ∵30°+30°+2x +x=180°, ∴x=40°;综上所述,∠C 为20°或40°的角.24.(12分)(1)问题解决:如图,在四边形ABCD 中,∠BAD=α,∠BCD=180°﹣α,BD 平分∠ABC .①如图1,若α=90°,根据教材中一个重要性质直接可得AD=CD ,这个性质是,这个性质是 角平分线上的点到角的两边距离相等点到角的两边距离相等 ; ②在图2中,求证AD=CD ;(2)拓展探究:根据(1)的解题经验,请解决如下问题:如图3,在等腰△ABC 中,∠BAC=100°,BD 平分∠ABC ,求证BD +AD=BC .【解答】解:(1)①根据角平分线的性质定理可知AD=CD . 所以这个性质是角平分线上的点到角的两边距离相等. 故答案为角平分线上的点到角的两边距离相等. ②如图2中,作DE ⊥BA 于E ,DF ⊥BC 于F .∵BD平分∠EBF,DE⊥BE,DF⊥BF,∴DE=DF,∵∠BAD+∠C=180°,∠BAD+∠EAD=180°,∴∠EAD=∠C,∵∠E=∠DFC=90°,∴△DEA≌△DFC,∴DA=DC.(2)如图3中,在BC时截取BK=BD,BT=BA,连接DK.∵AB=AC,∠A=100°,∴∠ABC=∠C=40°,∵BD平分∠ABC,∴∠DBK=∠ABC=20°,∵BD=BK,∴∠BKD=∠BDK=80°,∵∠BKD=∠C+∠KDC,∴∠KDC=∠C=40°,∴DK=CK,∵BD=BD,BA=BT,∠DBA=∠DBT,∴△DBA≌△DBT,∴AD=DT,∠A=∠BTD=100°,∴∠DTK=∠DKT=80°,∴DT=DK=CK,∴BD+AD=BK+CK=BC.。

安徽省2019-2020学年八年级上学期期中数学试卷 (有解析)

安徽省2019-2020学年八年级上学期期中数学试卷 (有解析)

安徽省2019-2020学年八年级上学期期中数学试卷一、选择题(本大题共10小题,共40.0分)1.日常生活中,我们会看到很多标志,在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2.以下列各组线段为边,能组成三角形的是()A. 2、2、4B. 8、6、3C. 2、6、3D.11、4、63.如图,AD是△ABC的外角∠CAE的平分线,∠B=40°,∠DAE=55°,则∠ACB的度数是()A. 70°B. 80°C. 100°D. 110°4.点M(5,−4)关于y轴的对称点的坐标是A. (5,4)B. (−5,−4)C. (−5,4)D.(−4,5)5.如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A. 16cmB. 13cmC. 19cmD. 10cm6.如图,A、B、C、D在一条直线上,MB=ND,∠MBA=∠D,添加下列某一条件后不能判定△ABM≌△CDN的是()A. ∠M=∠NB. AB=CDC. AM=CND.AM//CN7.在△ABC中,AD是BC边上的高,BE平分∠ABC交AD于点E,AB=8,DE=3,则△ABE的面积是()A. 24B. 12C. 16D. 118.如图,在△ABC中,∠ABC=100°,AM=AN,CB=CN,则∠MNB的度数是()A. 20°B. 40°C. 60°D. 80°9.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A. 50°B. 70°C. 75°D.80°10.如图,△ABC和△BED都是等边三角形,BC=10,BD=9,则△ADE的周长为()A. 19B. 20C. 27D. 30二、填空题(本大题共4小题,共20.0分)11.等腰三角形的一边长为3,另一边长为6,则该三角形的周长是______.12.如图,线段AC,BD相交于点O,且OA=OC,OB=OD,则AB和CD的位置关系是.若AB=6cm,则CD=.13.如图,△ABC为等边三角形,点D为边AB的中点,DE⊥BC于点E,若BE=2,则AC的长为________.14.如图,在△ABC中,AD⊥BC于D,BF与AD相交于E.若AD=BD,BE=AC,BC=8cm,DC=3cm,则AE=______,∠BFC=______.三、解答题(本大题共9小题,共90.0分)15.如图,在△ABC中,AD是高,BE是角平分线,AD,BE交于点F,∠C=30°,∠BFD=70°,求∠BAC的度数.16.如图,已知AB=CD,AD=CB,求证:△ABD≌△CDB.17.如图,已知A、B两点在直线l的同一侧,根据题意,尺规作图.(1)在(图1)直线l上找出一点P,使PA=PB.(2)在(图2)直线l上找出一点P,使PA+PB的值最小.(3)在(图3)直线l上找出一点P,使PA−PB的值最大.18.如图,已知AB=DC,∠ABC=∠DCB,E为AC、BD的交点.求证:AC=DB.19.如图,一艘渔船以16海里/小时的速度由西向东航行,上年10点在A处测得海中小岛C在北偏东60°方向上,10点30分航行到B处,在B处测得小岛C在东北方向上.(1)求小岛C到航线的距离(结果保留到整数,参考数据:√2≈1.4,√3≈1.7);(2)小岛C周围10海里内有暗礁,如果渔船不改变航线继续向东航行,那么它有没有触礁的危险?判断并说明理由.20.已知,如图所示,CE⊥AB与E,BF⊥AC与F,且BD=CD.求证:(1)△BDE≌△CDF;(2)点D在∠BAC的角平分线上.21.如图,△ABC为等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD于点Q.(1)求证:∠BPQ=60°;(2)若PQ=3,PE=1,求AD的长.22.在▵ABC中,AE平分且;(1)如果点F与点A重合,且∠C=50°,∠B=30°,求∠EFD的度数;(2)如果点F在线段AE上(不与点A重合),如图2,问∠EFD与∠C−∠B有怎样的数量关系?并说明理由。

2019-2020学年山东省德州市禹城市八年级(上)期中数学试卷(解析版)

2019-2020学年山东省德州市禹城市八年级(上)期中数学试卷(解析版)

2019-2020学年山东省德州市禹城市八年级(上)期中数学试卷一、选择题(本大题共12个小题得小题4分,共18分.在每小题余出的四个选理中,以有一项是符合题目要求的)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.下面各组线段中,能组成三角形的是()A.5,11,6B.8,8,16C.10,5,4D.6,9,143.如图,是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°4.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC5.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OA对称,P2与P于OB对称,则△P1OP2的形状一定是()A.直角三角形B.等边三角形C.底边和腰不相等的等腰三角形D.钝角三角形6.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD =8,则点P到BC的距离是()A.8B.6C.4D.27.如图,在△ABC中,AB=AC,∠ABC=75°,E为BC延长线上一点,∠ABC与∠ACE 的平分线相交于点D.则∠D的度数为()A.15°B.17.5°C.20°D.22.5°8.△ABC中,∠ABC与∠ACB的平分线相交于I,且∠BIC=130°,则∠A的度数是()A.40°B.50°C.65°D.80°9.如图,直线a、b、c、d互不平行,对它们截出的一些角的数量关系描述错误的是()A.∠1+∠6=∠2B.∠4+∠5=∠2C.∠1+∠3+∠6=180°D.∠1+∠5+∠4=180°10.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A.30°B.40°C.50°D.60°11.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°12.如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CB′=∠ACB,④AB =A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题(每小题4分,共24分)13.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是.14.点A(3,﹣2)关于x轴对称的点的坐标是.15.等腰三角形的一个角为50°,那么它的一个底角为.16.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.17.如图所示,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,若DE=2,则EC =.18.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QP A全等,则AP =.三、解答题(共78分)19.(9分)如图,在直角坐标系中,先描出点A(1,3),点B(4,1).(1)描出点A关于x轴的对称点A1的位置,写出A1的坐标;(2)用尺规在x轴上找一点C,使AC+BC的值最小(保留作图痕迹);(3)用尺规在x轴上找一点P,使P A=PB(保留作图痕迹).20.(9分)如图,△ABC是等腰三角形,AB=AC,∠A=36°.(1)尺规作图:作∠B的角平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)判断△DBC是否为等腰三角形,并说明理由.21.如图,CA=CD,∠BCE=∠ACD,BC=EC,求证:∠A=∠D.22.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.23.如图,在等边△ABC中,点E为边AB上任意一点,点D在边CB的延长线上,且ED =EC.(1)当点E为AB的中点时(如图1),则有AE DB(填“>”“<”或“=”);(2)猜想AE与DB的数量关系,并证明你的猜想.24.(1)阅读理解:如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是;(2)问题解决:如图2,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF.25.如图①,已知等腰直角△ABC中,BD为斜边上的中线,E为DC上的一点,且AG⊥BE于G,AG交BD于F.(1)求证:AF=BE;(2)如图②,若点E在DC的延长线上,其它条件不变,①的结论还能成立吗?若不能,请说明理由;若能,请予以证明.2019-2020学年山东省德州市禹城市八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12个小题得小题4分,共18分.在每小题余出的四个选理中,以有一项是符合题目要求的)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选:C.2.下面各组线段中,能组成三角形的是()A.5,11,6B.8,8,16C.10,5,4D.6,9,14【解答】解:A、∵5+6=11,∴不能组成三角形,故A选项错误;B、∵8+8=16,∴不能组成三角形,故B选项错误;C、∵5+4<10,∴不能组成三角形,故C选项错误;D、∵6+9>14,∴能组成三角形,故D选项正确.故选:D.3.如图,是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°【解答】解:∵图中是三个等边三角形,∴∠1=180°﹣60°﹣∠ABC=120°﹣∠ABC,∠2=180°﹣60°﹣∠ACB=120°﹣∠ACB,∠3=180°﹣60°﹣∠BAC=120°﹣∠BAC,∵∠ABC+∠ACB+∠BAC=180°,∴∠1+∠2+∠3=360°﹣180°=180°,故选:D.4.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;故选:C.5.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OA对称,P2与P于OB对称,则△P1OP2的形状一定是()A.直角三角形B.等边三角形C.底边和腰不相等的等腰三角形D.钝角三角形【解答】解:∵P为∠AOB内部一点,点P关于OA、OB的对称点分别为P1、P2,∴OP=OP1=OP2且∠P1OP2=2∠AOB=60°,∴△OP1P2是等边三角形.故选:B.6.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD =8,则点P到BC的距离是()A.8B.6C.4D.2【解答】解:过点P作PE⊥BC于E,∵AB∥CD,P A⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴P A=PE,PD=PE,∴PE=P A=PD,∵P A+PD=AD=8,∴P A=PD=4,∴PE=4.故选:C.7.如图,在△ABC中,AB=AC,∠ABC=75°,E为BC延长线上一点,∠ABC与∠ACE 的平分线相交于点D.则∠D的度数为()A.15°B.17.5°C.20°D.22.5°【解答】解:∵AB=AC,∴∠ACB=∠ABC=75°,∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4=37.5°,∵∠ACE=180°﹣∠ACB=105°,∴∠2=52.5°,∴∠BCD=75°+52.5°=127.5°,∴∠D=180°﹣∠3﹣∠BCD=15°.故选:A.8.△ABC中,∠ABC与∠ACB的平分线相交于I,且∠BIC=130°,则∠A的度数是()A.40°B.50°C.65°D.80°【解答】解:∵∠BIC=130°,∴∠EBC+∠FCB=180°﹣∠BIC=180°﹣130°=50°,∵BE、CF是△ABC的角平分线,∴∠ABC+∠ACB=2(∠EBC+∠FCB)=2×50°=100°,∴∠A=180°﹣100°=80°.故选:D.9.如图,直线a、b、c、d互不平行,对它们截出的一些角的数量关系描述错误的是()A.∠1+∠6=∠2B.∠4+∠5=∠2C.∠1+∠3+∠6=180°D.∠1+∠5+∠4=180°【解答】解:A、∠1+∠6与∠2没有关系,结论不成立,故本选项正确;B、由三角形的外角性质,∠4+∠5=∠2成立,故本选项错误;C、由三角形的内角和定理与对顶角相等,∠1+∠3+∠6=180°成立,故本选项错误;D、由三角形的内角和定理与对顶角相等,∠1+∠5+∠4=180°成立,故本选项错误.故选:A.10.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A.30°B.40°C.50°D.60°【解答】解:∵ED是AC的垂直平分线,∴AE=CE∴∠EAC=∠C,又∵∠B=90°,∠BAE=10°,∴∠AEB=80°,又∵∠AEB=∠EAC+∠C=2∠C,∴∠C=40°.故选:B.11.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°【解答】解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.12.如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CB′=∠ACB,④AB =A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确结论的个数是()A.1个B.2个C.3个D.4个【解答】解:①②③为条件,根据SAS,可判定△BCA≌△B′CA′;可得结论④;①②④为条件,根据SSS,可判定△BCA≌△B′CA′;可得结论③;①③④为条件,SSA不能证明△BCA≌△B′CA′.②③④为条件,SSA不能证明△BCA≌△B′CA′.最多可以构成正确结论2个.故选:B.二、填空题(每小题4分,共24分)13.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是三角形的稳定性.【解答】解:给凳子加了两根木条之后形成了三角形,所以“这样凳子就比较牢固了”的数学原理是:三角形的稳定性,故答案为:三角形的稳定性.14.点A(3,﹣2)关于x轴对称的点的坐标是(3,2).【解答】解:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为:(3,2).15.等腰三角形的一个角为50°,那么它的一个底角为50°或65°.【解答】解:(1)当这个内角是50°的角是顶角时,则它的另外两个角的度数是65°,65°;(2)当这个内角是50°的角是底角时,则它的另外两个角的度数是80°,50°;所以这个等腰三角形的底角的度数是50°或65°.故答案是:50°或65°.16.一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.17.如图所示,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,若DE=2,则EC =8.【解答】解:∵AB=AC,∠A=120°,∴∠B=∠C=30°,∵DE垂直平分AB,∴BE=AE,∴∠B=∠BAE=30°,∴∠EAC=90°,∴AE CE=2DE=4,∴CE=2AE=8,故答案为:818.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QP A全等,则AP=6或12.【解答】解:①当AP=CB时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QP A中,,∴Rt△ABC≌Rt△QP A(HL),即AP=BC=6;②当P运动到与C点重合时,AP=AC,在Rt△ABC与Rt△QP A中,,∴Rt△QAP≌Rt△BCA(HL),即AP=AC=12,∴当点P与点C重合时,△ABC才能和△APQ全等.综上所述,AP=6或12.故答案为:6或12.三、解答题(共78分)19.(9分)如图,在直角坐标系中,先描出点A(1,3),点B(4,1).(1)描出点A关于x轴的对称点A1的位置,写出A1的坐标(1,﹣3);(2)用尺规在x轴上找一点C,使AC+BC的值最小(保留作图痕迹);(3)用尺规在x轴上找一点P,使P A=PB(保留作图痕迹).【解答】解:(1)如图所示:A1的坐标(1,﹣3);故答案为:(1,﹣3);(2)如图所示:点C即为所求;(3)如图所示:点P即为所求.20.(9分)如图,△ABC是等腰三角形,AB=AC,∠A=36°.(1)尺规作图:作∠B的角平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)判断△DBC是否为等腰三角形,并说明理由.【解答】解:(1)如图所示:BD即为所求;(2)∵AB=AC,∴∠ABC=∠C,∵∠A=36°,∴∠ABC=∠ACB=(180°﹣36°)÷2=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠BDC=36°+36°=72°,∴BD=BC,∴△DBC是等腰三角形.21.如图,CA=CD,∠BCE=∠ACD,BC=EC,求证:∠A=∠D.【解答】证明:∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,即∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴∠A=∠D.22.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.【解答】证明:如图,连接AD,在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,又∵DE⊥AB,DF⊥AC,∴DE=DF.23.如图,在等边△ABC中,点E为边AB上任意一点,点D在边CB的延长线上,且ED =EC.(1)当点E为AB的中点时(如图1),则有AE=DB(填“>”“<”或“=”);(2)猜想AE与DB的数量关系,并证明你的猜想.【解答】解:(1)如图1,∵△ABC是等边三角形,点E是AB的中点,∴CE平分∠ACB,CE⊥AB,∴∠ACB=60°,∠BEC=90°,AE=BE,又∵ED=EC,∴∠D=∠ECB=30°,∴∠DEC=120°,∴∠DEB=120°﹣90°=30°,∴∠D=∠DEB=30°,∴BD=BE=AE,即AE=DB.故答案为:=.(2)当点E为AB上任意一点时,如图2,AE与DB的大小关系不会改变.理由如下:过E作EF∥BC交AC于F,∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°,∴△AEF是等边三角形,∴AE=EF=AF,∵∠ABC=∠ACB=∠AFE=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°,∵DE=EC,∴∠D=∠ECD,∴∠BED=∠ECF,在△DEB和△ECF中,,∴△DEB≌△ECF(AAS),∴BD=EF=AE,即AE=BD24.(1)阅读理解:如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是2<AD<8;(2)问题解决:如图2,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF.【解答】解:(1)如图1所示:延长AD至E,使DE=AD,连接BE,∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,∵,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为:2<AD<8;(2)如图2所示:延长FD至点M,使DM=DF,连接BM、EM,同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF.25.如图①,已知等腰直角△ABC中,BD为斜边上的中线,E为DC上的一点,且AG⊥BE于G,AG交BD于F.(1)求证:AF=BE;(2)如图②,若点E在DC的延长线上,其它条件不变,①的结论还能成立吗?若不能,请说明理由;若能,请予以证明.【解答】证明:(1)∵△ABC是等腰三角形,BD为斜边上的中线,∴BD=AD AC,∠ADB=90°,∴∠1+∠GAD=90°,∵AG⊥BE于G,∴∠2+∠DBE=90°,∵∠1=∠2,∴∠DAF=∠DBE,在△AFD和△BED中,,∴△AFD≌△BED(ASA),∴AF=BE;(2)①的结论还能成立;∵△ABC是等腰三角形,BD为斜边上的中线,∴BD=AD AC,∠ADB=90°,∴∠DBE+∠DEB=90°,∵AG⊥BE于G,∴∠GBF+∠F=90°,∵∠DBE=∠GBF,∴∠F=∠DEB,在△AFD和△BED中,,∴△AFD≌△BED(AAS),∴AF=BE;。

2019-2020学年江苏省南京市鼓楼区八年级上学期期中数学试卷 (学生版+解析版)

2019-2020学年江苏省南京市鼓楼区八年级上学期期中数学试卷  (学生版+解析版)

2019-2020学年江苏省南京市鼓楼区八年级(上)期中数学试卷一、选择题(共8小题).1.有些国家的国旗设计成了轴对称图形,观察如图代表国旗的图案,你认为是轴对称图形的有()A.4个B.3个C.2个D.1个2.在实数﹣,,0,﹣,2.161161161…,中,无理数有()A.1个B.2个C.3个D.4个3.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16B.18C.20D.16或204.以下列数组为边长的三角形中,能构成直角三角形的是()A.5,12,13B.8,15,16C.9,16,25D.12,15,20 5.下列说法中,正确的有()A.只有正数才有平方根B.27的立方根是±3C.立方根等于﹣1的实数是﹣1D.1的平方根是16.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()A.6B.5C.4D.37.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的角平分线,则图中的等腰三角形有()A.5个B.4个C.3个D.2个8.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x、y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.其中说法正确的是()A.①②B.①②③C.①②④D.①②③④二、填空题(共10小题,每小题2分,共20分)9.由四舍五入法得到的近似数2.5×103精确到位.10.16的平方根为;(﹣4)3的立方根是.11.若,则x﹣y=.12.如图中有6个条形方格图,图上由实线围成的图形与(1)是全等形的有.13.如图,△ABC中,DE是AC的垂直平分线,AB=5,BC=7,则△ABD的周长是.14.已知等腰三角形的一个外角等于110°,则它的顶角是°.15.如图,在3×3的正方形网格中,则∠1+∠2+∠3+∠4=°.16.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于点E、点D.若∠BAC=130°,那么∠EAD=.17.如图,在四边形ABCD中,AB=AC=BD,AC与BD相交于O,且AC⊥BD.①AB∥CD;②△ABD≌△BAC;③AB2+CD2=AD2+CB2;④∠ACB+∠BDA=135°.其中结论正确的是(填序号).18.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为.三、解答题(共9小题,共64分)19.计算:(1)﹣(2)()2+|1﹣|+()0.20.求下列各式中的x的值(1)4x2﹣9=0(2)64(x+1)3=﹣125.21.已知:如图,C是AB的中点,AE=BD,∠A=∠B.求证:∠ACE=∠BCD.22.如图,在△ABC中,AB=5,AC=13,AD是边BC上的中线,E在AD的延长线上,AD=ED=6,求△ABC的面积.23.如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.24.如图(1)是用硬板纸做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c,请你开动脑筋,将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图,并用这个图形证明勾股定理;(2)假设图(1)中的直角三角形有若干个,你能运用图(1)中所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼后的示意图(无需证明)25.阅读理解:求的近似值.小明的方法:设=10+x,其中0<x<1,则105=(10+x)2,即105=100+20x+x2.∵0<x<1∴0<x2<1,∴105≈100+20x,解之得x≈0.25,即的近似值为10.25,小莉的方法:设=11﹣y,其中0<y<1,则105=(11﹣y)2,即105=121﹣22y+y2,∵0<y<1∴0<y2<1,∴105≈121﹣22y,解之得y≈0.73,即的近似值为10.27.【反思比较】你认为的方法更接近.(填“小明”或“小莉”)【深入思考】下面关于x与y之间的数量关系A.x+y>1 B.x+y=1 C.x+y<1 D.无法确定你认为正确的是.请说明理由.26.(1)我们已经如道:在△ABC中,如果AB=AC,则∠B=∠C,下面我们继续研究:如图①,在△ABC中,如果AB>AC,则∠B与∠C的大小关系如何?为此,我们把AC 沿∠BAC的平分线翻折,因为AB>AC,所以点C落在AB边的点D处,如图②所示,然后把纸展平,连接DE.接下来,你能推出∠B与∠C的大小关系了吗?试写出说理过程.(2)如图③,在△ABC中,AE是角平分线,且∠C=2∠B.求证:AB=AC+CE.(3)在(2)的条件下,若点P,F分别为AE、AC上的动点,且S△ABC=15,AB=8,则PF+PC的最小值为.27.如图,已知等边△ABC,点D为△ABC内的一点,连接DA、DB、DC,∠ADB=120°.以CD为边向CD上方作等边△CDE,连接AE(0°<∠ACE<60°).(1)求证:△BDC≌△AEC.(2)若DC=2n,AD=AE,则△ADE的面积为.(3)若DA=n2+1,DB=n2﹣1,DC=2n(n为大于1的整数).求证:DA2+DC2=AC2.参考答案一、选择题(共8小题,每小题2分,共16分)1.有些国家的国旗设计成了轴对称图形,观察如图代表国旗的图案,你认为是轴对称图形的有()A.4个B.3个C.2个D.1个解:根据轴对称的概念可知:加拿大国旗、瑞士国旗是轴对称图形,符合题意;澳大利亚国旗、乌拉圭国旗都不是轴对称图形,不符合题意.故选:C.2.在实数﹣,,0,﹣,2.161161161…,中,无理数有()A.1个B.2个C.3个D.4个解:在实数﹣,,0,﹣,2.161161161…,中,无理数有﹣,﹣,一共2个.故选:B.3.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16B.18C.20D.16或20解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选:C.4.以下列数组为边长的三角形中,能构成直角三角形的是()A.5,12,13B.8,15,16C.9,16,25D.12,15,20解:A、∵52+122=132,∴A正确;B、∵82+152≠162,∴B错误;C、∵92+162≠252,∴C错误;D、∵122+152≠202,∴D错误;故选:A.5.下列说法中,正确的有()A.只有正数才有平方根B.27的立方根是±3C.立方根等于﹣1的实数是﹣1D.1的平方根是1解:A、只有正数才有平方根,错误,0的平方根是0,故本选项错误;B、27的立方根是3,故本选项错误;C、立方根等于﹣1的实数是﹣1正确,故本选项正确;D、1的平方根是±1,故本选项错误.故选:C.6.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()A.6B.5C.4D.3解:过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∴S△ABC=×4×2+AC×2=7,解得AC=3.故选:D.7.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的角平分线,则图中的等腰三角形有()A.5个B.4个C.3个D.2个解:共有5个.(1)∵AB=AC∴△ABC是等腰三角形;(2)∵BD、CE分别是∠ABC、∠BCD的角平分线∴∠EBC=∠ABC,∠ECB=∠BCD,∵△ABC是等腰三角形,∴∠EBC=∠ECB,∴△BCE是等腰三角形;(3)∵∠A=36°,AB=AC,∴∠ABC=∠ACB=(180°﹣36°)=72°,又BD是∠ABC的角平分线,∴∠ABD=∠ABC=36°=∠A,∴△ABD是等腰三角形;同理可证△CDE和△BCD是等腰三角形.故选:A.8.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x、y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.其中说法正确的是()A.①②B.①②③C.①②④D.①②③④解:由题意,①﹣②得2xy=45 ③,∴2xy+4=49,①+③得x2+2xy+y2=94,∴(x+y)2=94,∴①②③正确,④错误.故选:B.二、填空题(共10小题,每小题2分,共20分)9.由四舍五入法得到的近似数2.5×103精确到百位.解:2.5×103精确到百位.故答案是:百.10.16的平方根为±4;(﹣4)3的立方根是﹣4.解:16的平方根为±4;(﹣4)3的立方根是﹣4.故答案为:±4、﹣4.11.若,则x﹣y=5.解:根据题意得,x﹣3=0,y+2=0,解得x=3,y=﹣2,x﹣y=3﹣(﹣2)=3+2=5.故答案为:5.12.如图中有6个条形方格图,图上由实线围成的图形与(1)是全等形的有(2),(3),(6).解:由图可知,图上由实线围成的图形与(1)是全等形的有(2),(3),(6),故答案为:(2),(3),(6),13.如图,△ABC中,DE是AC的垂直平分线,AB=5,BC=7,则△ABD的周长是12.解:∵DE是AC的垂直平分线,∴DA=DC.∵AB=5,BC=7,∴△ABD的周长=AB+BD+DA=AB+BD+DC=AB+BC=12,故答案为:12.14.已知等腰三角形的一个外角等于110°,则它的顶角是70或40°.解:①若110°是顶角的外角,则顶角=180°﹣110°=70°;②若110°是底角的外角,则底角=180°﹣110°=70°,那么顶角=180°﹣2×70°=40°.故它的顶角是70°或40°.故答案为:70或40.15.如图,在3×3的正方形网格中,则∠1+∠2+∠3+∠4=180°.解:∵∠1和∠4所在的三角形全等,∴∠1+∠4=90°,∵∠2和∠3所在的三角形全等,∴∠2+∠3=90°,∴∠1+∠2+∠3十∠4=180°.故答案为:180.16.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于点E、点D.若∠BAC=130°,那么∠EAD=80°.解:∵∠BAC=130°,∴∠B+∠C=50°,∵DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∴∠DAE=∠BAC﹣(∠DAB+∠EAC)=∠BAC﹣(∠B+∠C)=80°.故答案为:80°17.如图,在四边形ABCD中,AB=AC=BD,AC与BD相交于O,且AC⊥BD.①AB∥CD;②△ABD≌△BAC;③AB2+CD2=AD2+CB2;④∠ACB+∠BDA=135°.其中结论正确的是③④(填序号).解:在四边形ABCD中,∠ABD与∠BAC不一定相等,故①AB∥CD;②△ABD≌△BAC都不一定成立,∵AC⊥BD,∴Rt△CDH中,CD2=DH2+CH2;Rt△ABH中,AB2=AH2+BH2;Rt△ADH中,AD2=DH2+AH2;Rt△BCH中,BC2=CH2+BH2;∴AB2+CD2=AD2+CB2,故③正确;∵AC⊥BD,∴∠ABH+∠BAH=90°,又∵AB=AC=BD,∴等腰△ABC中,∠ACB=(180°﹣∠BAC),等腰△ABD中,∠ADB=(180°﹣∠ABD),∴∠ACB+∠BDA=(180°﹣∠BAC)+(180°﹣∠ABD)=180°﹣(∠ABH+∠BAH)=180°﹣45°=135°,故④正确.故答案为:③④.18.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为 4.8.解:设CD与BE交于点G,∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=8,由折叠的性质可知△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=8,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,设AP=EP=x,则PD=GE=6﹣x,DG=x,∴CG=8﹣x,BG=8﹣(6﹣x)=2+x,根据勾股定理得:BC2+CG2=BG2,即62+(8﹣x)2=(x+2)2,解得:x=4.8,∴AP=4.8,故答案为:4.8.三、解答题(共9小题,共64分)19.计算:(1)﹣(2)()2+|1﹣|+()0.解:(1)原式=5﹣(﹣3)=5+3=8;(2)原式=3+﹣1+1=3+.20.求下列各式中的x的值(1)4x2﹣9=0(2)64(x+1)3=﹣125.解:(1)移项4x2=9,系数化为1,x2=,x=±;(2)(x+1)3=﹣,x+1=﹣,x=﹣.21.已知:如图,C是AB的中点,AE=BD,∠A=∠B.求证:∠ACE=∠BCD.【解答】证明:∵C是AB的中点,∴AC=BC,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴∠ACE=∠BCD.22.如图,在△ABC中,AB=5,AC=13,AD是边BC上的中线,E在AD的延长线上,AD=ED=6,求△ABC的面积.解:∵AD是边BC上的中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴AB=CE=5,∵AE=AD+ED=12,AC=13,CE=5,∴AE2+CE2=AC2,∴△ACE是直角三角形,∴△ABC的面积=△ACE的面积=×5×12=30.23.如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.解:(1)∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=60°﹣∠CDB=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE.(2)∵△ACD≌△BCE,∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.24.如图(1)是用硬板纸做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c,请你开动脑筋,将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图,并用这个图形证明勾股定理;(2)假设图(1)中的直角三角形有若干个,你能运用图(1)中所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼后的示意图(无需证明)【解答】解解:(1)如图所示,是梯形;由上图我们根据梯形的面积公式可知,梯形的面积=(a+b)(a+b).从上图我们还发现梯形的面积=三个三角形的面积,即ab+ab+c2.两者列成等式化简即可得:a2+b2=c2;(2)画边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边.25.阅读理解:求的近似值.小明的方法:设=10+x,其中0<x<1,则105=(10+x)2,即105=100+20x+x2.∵0<x<1∴0<x2<1,∴105≈100+20x,解之得x≈0.25,即的近似值为10.25,小莉的方法:设=11﹣y,其中0<y<1,则105=(11﹣y)2,即105=121﹣22y+y2,∵0<y<1∴0<y2<1,∴105≈121﹣22y,解之得y≈0.73,即的近似值为10.27.【反思比较】你认为小明的方法更接近.(填“小明”或“小莉”)【深入思考】下面关于x与y之间的数量关系A.x+y>1 B.x+y=1 C.x+y<1 D.无法确定你认为正确的是B.请说明理由.解:我认为小明的方法更接近.故答案为小明.因为10+x=11﹣y,所以x+y=1,故答案为B.26.(1)我们已经如道:在△ABC中,如果AB=AC,则∠B=∠C,下面我们继续研究:如图①,在△ABC中,如果AB>AC,则∠B与∠C的大小关系如何?为此,我们把AC 沿∠BAC的平分线翻折,因为AB>AC,所以点C落在AB边的点D处,如图②所示,然后把纸展平,连接DE.接下来,你能推出∠B与∠C的大小关系了吗?试写出说理过程.(2)如图③,在△ABC中,AE是角平分线,且∠C=2∠B.求证:AB=AC+CE.(3)在(2)的条件下,若点P,F分别为AE、AC上的动点,且S△ABC=15,AB=8,则PF+PC的最小值为.解:(1)∠C>∠B,理由如下:∵点C落在AB边的点D处,∴∠ADE=∠C,∵AC沿∠BAC的平分线翻折,∠ADE为△EDB的一个外角,∴∠ADE=∠B+∠DEB,∴∠ADE>∠B,即:∠C>∠B;(2)如图3,在AB上截取AD=AC,连接DE,∵AE是角平分线,∴∠BAE=∠CAE.在△ADE和△ACE中,∴△ADE≌△ACE(SAS),∴∠ADE=∠C,DE=CE.∵∠ADE=∠B+∠DEB,且∠C=2∠B.∴∠B=∠DEB,∴DB=DE,∵AB=AD+DB,AD=AC,DB=DE=CE.∴AB=AC+CE.(3)如图4,在AB上截取AH=AF,连接CH,∵AH=AF,∠HAP=∠F AP,AP=AP,∴△AHP≌△AFP(SAS),∴HP=PF,∴PF+PC=PH+PC,∴点P在线段CH上,且CH⊥AB时,PF+PC的值最小,∵S△ABC=15=×AB×CH,AB=8,∴CH=,∴PF+PC的最小值为,故答案为:.27.如图,已知等边△ABC,点D为△ABC内的一点,连接DA、DB、DC,∠ADB=120°.以CD为边向CD上方作等边△CDE,连接AE(0°<∠ACE<60°).(1)求证:△BDC≌△AEC.(2)若DC=2n,AD=AE,则△ADE的面积为n2.(3)若DA=n2+1,DB=n2﹣1,DC=2n(n为大于1的整数).求证:DA2+DC2=AC2.解:(1)∵△ABC是等边三角形,∴∠ACB=60°,BC=AC,∵△CDE是等边三角形,∴∠DCE=60°,CD=CE,∴∠BCA=∠DCE=60°,∴∠BCD=∠ACE,∴△BDC≌△AEC(SAS);(2)如图,由(1)知,△BDC≌△AEC,∴∠CBD=∠CAE,BD=AE,∵AE=AD,∴BD=AD,∴∠ABD=∠BAD,∵∠ADB=120°,∴∠ABD=∠BAD=30°,∵△ABC是等边三角形,∴∠BAC=∠ABC=60°,∴∠CBD=∠ABC﹣∠ABD=30°,∠CAD=∠BAC﹣∠DAB=30°,∴∠CAE=∠CBD=30°,∴∠DAE=∠CAD+∠CAE=60°,∵AD=AE,∴△ADE是等边三角形,∴AD=DE,∠ADE=60°,∵△CDE是等边三角形,∴DE=CD=2n,∴AD=2n,过点E作EF⊥AD于F,在Rt△DEF中,DF=DE=n,根据勾股定理得,EF==n,∴S△ADE=AD•EF=×2n×n=n2,故答案为:n2;(3)∵△CDE是等边三角形,∴∠CED=60°,DE=DC=2n∵△BDC≌△AEC,∴∠AEC=∠BDC,AE=DB,EC=DC,∵DB=n2﹣1,∴AE=n2﹣1,∴AE2+DE2=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2=DA2,∴△ADE是以AD为斜边的直角三角形,∴∠AED=90°,∴∠AEC=∠AED+∠CED=150°,∴∠BDC=∠AEC=150°,∵∠ADB=120°,∴∠ADC=360°﹣∠ADB﹣∠BDC=90°,在Rt△ACD中,AD2+CD2=AC2.。

安徽省芜湖市繁昌县2019-2020学年八年级上学期期中数学试卷 (有解析)

安徽省芜湖市繁昌县2019-2020学年八年级上学期期中数学试卷 (有解析)

安徽省芜湖市繁昌县2019-2020学年八年级上学期期中数学试卷一、选择题(本大题共10小题,共40.0分)1.如图,下列结论不正确的是()A. ∠B>∠AFEB. ∠FEC>∠BC. ∠B+∠ACB<180°D. ∠B+∠BFD=180°−∠D2.下列判断中正确的是()A. 全等三角形是面积相等的三角形B. 面积相等的三角形都是全等的三角形C. 等边三角形都是面积相等的三角形D. 面积相等且斜边相等的直角三角形都是全等直角三角形3.如图,已知AB=CB,若根据“SAS”判定△ABD≌△CBD,需要补充的一个条件是()A. ∠A=∠CB. ∠ADB=∠CDBC. ∠ABD=∠CBDD. BD=BD4.如图,点P是∠BOA的平分线OC上一点,PE⊥OB于点E.已知PE=3,则点P到OA的距离是()A. 6B. 5C. 4D. 35.如图所示.已知线段a,b,c(a>b+c),求作线段AB,使AB=a−b−c.下面利用尺规作图正确的是()A.B.C.D.6.已知点A(a,−3),B(4,b)关于y轴对称,则a+b的值为()A. 1B. −7C. 7D. −17.若一个多边形的每个外角都等于60°,则它的内角和等于()A. 180°B. 720°C. 1080°D. 540°8.如图,在△ABC中,AF平分∠BAC,AC垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C为()A. 24°B. 30°C. 21°D.40°9.一个等腰三角形的两边长分别为2和5,则它的周长为()A. 7B. 9C. 12D. 9或1210.如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=()A. 25°B. 27°C. 30°D. 45°二、填空题(本大题共4小题,共20.0分)11.小明在穿衣镜里看到身后墙上电子钟显示,则此时实际时刻为______ .12.如图,在△ABC中,∠ACB=58°,若P为△ABC内一点,且∠1=∠2,则∠BPC=______ .13.如果点P(m,1−2m)关于x轴对称的点Q在第四象限,则m的取值范围是______ .14.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有____对全等三角形三、计算题(本大题共1小题,共8.0分)15.已知:△ABC中,∠ABC和∠ACB的平分线BD,CE相交于点O,∠ABC=40°,∠ACB=80°,求∠BOC的度数.四、解答题(本大题共8小题,共82.0分)16.已知一个多边形的每个内角都比相邻外角的3倍还多20°,求这个多边形的边数.17.在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点为______;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)画出△AOB关于x轴的对称图形△A2O2B2,并写出点A2的坐标.18.在△ABC中,AD是BC边上的中线,点E是AD中点,过点E作垂线交BC于点F,已知BC=10,的面积为12,求EF的长.19.如图,△ABC≌△DEF,∠A=33°,∠E=57°,CE=5cm.(1)求线段BF的长;(2)试判断DF与BE的位置关系,并说明理由.20.如图,BD是∠ABC的平分线,AB=BC,点E在BD上,连接AE,CE,DF⊥AE,DG⊥CE,垂足分别是F,G.(1)求证:△ABE≌△CBE;(2)求证:DF=DG.21.已知:如图,△ABC是等边三角形,BD⊥AC,E是BC延长线上的一点,且∠CED=30°.(1)求证:DB=DE.(2)在图中过D作DF⊥BE交BE于F,若CF=3,求△ABC的周长.22.如图,点C是线段AB上除点A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边△ACD和等边△BCE,连接AE交DC于M,连接BD交CE于N,连接MN.(1)求证:AE=BD;(2)求证:MN//AB.23.如图,△ABC是等边三角形,AE=CD,BE交AD于点P,求∠DPB的度数.-------- 答案与解析 --------1.答案:A解析:本题考查的是三角形外角的性质和三角形内角和定理,熟知三角形的一个外角大于和它不相邻的任何一个内角是解答此题的关键.根据三角形外角的性质和三角形内角和定理对各选项进行逐一分析即可.A、∵∠AFE是△BDF的外角,∴∠AFE>∠B,故本选项错误;B、∵∠AFE是△BDF的外角,∴∠AFE>∠B,同理∠AED>∠AFE,故∠AED>∠B.∵∠AED=∠FEC,∴∠FEC>∠B,故本选项正确;C、∵∠B+∠ACB+∠A=180°,∴∠B+∠ACB<180°,故本选项正确;D、∵∠B+∠BFD+∠D=180°,∴∠B+∠BFD=180°−∠D,故本选项正确.故选A.2.答案:D解析:此题主要考查了全等图形,熟练应用全等三角形判定方法是解题关键.利用全等三角形的判定方法得出答案即可.解:A.全等三角形是面积相等的三角形,说法错误;B.面积相等的三角形都是全等的三角形,说法错误;C.等边三角形都是面积相等的三角形,说法错误;D.面积相等斜边相等的直角三角形都是全等直角三角形,根据斜边相等,则其斜边上的高线相等,则可得出直角边相等,则直角三角形是全等直角三角形,此选项正确.故选D.3.答案:C解析:解:如图,∵在△ABD与△CBD中,AB=CB,BD=BD,∴添加∠ABD=∠CBD时,可以根据SAS判定△ABD≌△CBD,故选:C.利用公共边BD以及AB=CB,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.4.答案:D解析:本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.过点P作PF⊥OA于F,根据角平分线上的点到角的两边的距离相等可得PF=PE.解:如图,过点P作PF⊥OA于F,∵OC是∠BOA的平分线,PE⊥OB,∴PF=PE=3.故选D.5.答案:D解析:本题考查尺规作图,根据图形观察分析即可得出结果.解:A.错误,图中AB=a+b+c;B.错误,图中AB=a+b−c;C.错误,图中AB=a+b−b−c=a−c;D.正确.故选D.6.答案:B解析:略7.答案:B解析:解:设多边形的边数为n,∵多边形的每个外角都等于60°,∴n=360°÷60°=6,∴这个多边形的内角和=(6−2)×180°=720°.故选:B.由一个多边形的每个外角都等于60°,根据n边形的外角和为360°计算出多边形的边数n,然后根据n边形的内角和定理计算即可.本题考查了n边形的内角和定理:n边形的内角和=(n−2)⋅180°;也考查了n边形的外角和为360°.8.答案:A解析:解:∵DE是AC的垂直平分线,∴EA=EC,∴∠EAC=∠C,∴∠FAC=∠EAC+19°,∵AF平分∠BAC,∴∠FAB=∠EAC+19°,∵∠B+∠BAC+∠C=180°,∴70°+2(∠C+19°)+∠C=180°,解得,∠C=24°,故选:A.根据线段的垂直平分线的性质得到EA=EC,得到∠EAC=∠C,根据角平分线的定义、三角形内角和定理计算即可.本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.9.答案:C解析:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解:若2为腰长,5为底边长,由于2+2<5,则三角形不存在;若5为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故选C.10.答案:B解析:本题主要考查了全等三角形的判定和全等三角形的性质.通过全等证得∠ABD=∠CBD是解决本题的关键.根据题意中的条件判定△ADB≌△CDB和△ADB≌△CDE,根据全等三角形的性质可得∠ABD=∠CBD和∠E=∠ABD,即:∠E=∠ABD=∠CBD,又因为∠ABC=∠ABD+∠CBD=54°,所以∠E=×∠ABC,代入∠ABC的值可求出∠E的值.∠ABD=∠CBD=12解:在△ADB和△CDB,∵BD=BD,∠ADB=∠CDB=90°,AD=CD∴△ADB≌△CDB(SAS),∴∠ABD=∠CBD,又∵∠ABC=∠ABD+∠CBD=54°,×∠ABC=27°.∴∠ABD=∠CBD=12在△ADB和△EDC中,∵AD=CD,∠ADB=∠EDC=90°,BD=ED,∴△ADB≌△CDE(SAS),∴∠E=∠ABD.∴∠E=∠ABD=∠CBD=27°.所以,本题应选择B.11.答案:15:51解析:解:根据镜面对称的性质,分析可得题中所显示的时刻与15:51成轴对称,所以此时实际时刻为15:51.故答案为:15:51.利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.12.答案:122°解析:解:∵∠1+∠PCB=∠ACB=58°,又∵∠1=∠2,∴∠2+∠PCB=58°,∵∠BPC+∠2+∠PCB=180°,∴∠BPC=180°−58°=122°.故答案为122°.由于∠1+∠PCB=68°,则∠2+∠PCB=68°,再根据三角形内角和定理得∠BPC+∠2+∠PCB= 180°,所以∠BPC=180°−68°=112°.本题考查了三角形内角和定理:三角形内角和是180°.13.答案:0<m<12解析:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.先判断出点P在第一象限,再根据第一象限内点的横坐标与纵坐标都是正数列出不等式组,然后求解即可.解:∵点P(m,1−2m)关于x轴对称的点Q在第四象限,∴点P在第一象限,∴{m>01−2m>0,.解得0<m<12故答案为:0<m<1.214.答案:3解析:本题考查了角平分线的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.由OP平分∠MON,PE⊥OM于E,PF⊥ON于F,得到PE=PF,∠1=∠2,证得△AOP≌△BOP,再根据△AOP≌△BOP,得出AP=BP,于是证得△EOP≌△FOP,Rt△AEP≌Rt△BFP.解:如图所示:∵OP平分∠MON,PE⊥OM于E,PF⊥ON于F,∴PE=PF,∠1=∠2,在△AOP与△BOP中,{OA=OB ∠1=∠2 OP=OP,∴△AOP≌△BOP(SAS),∴AP=BP,在△EOP与△FOP中,{∠1=∠2∠OEP=∠OFP=90°OP=OP,∴△EOP≌△FOP(AAS),在Rt△AEP与Rt△BFP中,{PA=PBPE=PF,∴Rt△AEP≌Rt△BFP(HL).∴图中有3对全等三角形.故答案为3.15.答案:解:∵∠ABC和∠ACB的平分线BD,CE相交于点O,∠ABC=40°,∠ACB=80°,∴∠DBC=12∠ABC=20°,∠ECB=12∠ACB=40°,∴∠BOC=180°−∠DBC−∠ECB=180°−20°−40°=120°.解析:先利用角平分线的定义求出∠DBC和∠ECB的度数,再运用△BOC的内角和是180°,求解∠BOC 的度数.本题考查三角形内角和定理、角平分线的定义等知识,解题的关键是熟练掌握三角形内角和定理,属于中考常考题型.16.答案:解:设多边形的一个外角为α,则与其相邻的内角等于3α+20°,由题意,得(3α+20)+α=180°,解得α=40°.即多边形的每个外角为40°.又∵多边形的外角和为360°,∴多边形的外角个数=36040=9,∴多边形的边数为9,∴这个多边形的边数是9.解析:本题考查了多边形的内角和定理,外角和定理,多边形内角与外角的关系,运用方程求解比较简便.设多边形的一个外角为α,则与其相邻的内角等于3α+20°,根据内角与其相邻的外角的和是180度列出方程,求出α的值,再由多边形的外角和为360°,求出此多边形的边数为360°÷α.17.答案:解:(1)(−3,2);(2)如图所示:(3)如图所示;A2(1,−3).解析:本题考查作图−轴对称变换、平移变换及平移和轴对称中的坐标变换等知识,解题的关键是学会作对称点,理解平移实质是点平移,属于中考常考题型.(1)先确定点B的坐标,再确定B点关于y轴的对称点坐标即可.(2)分别把A、B、O三点向左平移3个单位得到A1、B1、O1即可.(3)分别作出A、B、O三点关于x轴的对称点即可.解:(1)∵B(3,2),∴B点关于y轴的对称点坐标为(−3,2);故答案为(−3,2).(2)见答案.(3)见答案.18.答案:解:∵AD是BC边上的中线,△ABD的面积为12,∴△ADC的面积=12,∵点E是AD中点,∴△CDE的面积=6,又∵BC=10,AD是BC边上的中线,∴DC=5,∴EF=2S△EDCDC =2×65=2.4.解析:此题考查三角形面积问题,关键是根据三角形的中线把三角形分成面积相等的两部分解答.根据三角形的中线的性质和三角形面积公式进行解答.19.答案:解:(1)∵△ABC≌△DEF,∴BC=EF,∴BC+CF=EF+CF,即BF=CE=5cm;(2)DF⊥BE.理由:∵△ABC≌△DEF,∠A=33°,∴∠A=∠D=33°,∵∠D+∠E+∠DFE=180°,∠E=57°,∴∠DFE=180°−57°−33°=90°,∴DF⊥BE.解析:本题考查了全等三角形的性质和三角形内角和定理,能灵活运用全等三角形的性质进行推理是解此题的关键.(1)根据全等三角形的性质得出BC=EF,求出EC=BF即可;(2)根据全等三角形的对应角相等可得到∠A=∠D=33°,根据三角形内角和定理求出∠DFE的度数,即可得出答案.20.答案:证明:(1)∵BD平分∠ABC,∴∠ABD=∠DBC,在△ABE和△CBE中,{AB=BC∠ABE=∠CBE BE=BE,∴△ABE≌△CBE(SAS).(2)∵△ABE≌△CBE,∴∠AEB=∠CEB,∴∠AED=∠CED,即ED平分∠AEC,又∵DF⊥AE,DG⊥EC,∴DF=DG.解析:此题主要考查了全等三角形的判定与性质和角平分线的性质(1)首先根据SAS证明△ABE≌△CBE,(2)由△ABE≌△CBE进而得出∠AEB=∠CED,再利用角平分线的性质即可得出DF=DG.21.答案:(1)证明:∵△ABC是等边三角形,BD⊥AC,∴∠ABC=∠ACB=60°,∠ABD=∠CBD所以∠DBC=30°.又∵CE=CD,∠CED=30°.∴∠CDE=∠CED=30°∴∠DBC=∠CED=30°,∴DB=DE(等角对等边);(2)解:如图,∵DF⊥BE交BE于F,∴∠DFC=90°,∵等边三角形ABC中,∠BCD=60°,∴∠CDF=30°,∵CF=3,∴DC=6,∵等边三角形ABC中,BD⊥AC∴AD=CD,∴AC=12,∴△ABC的周长=3AC=36.解析:此题主要考查等边三角形的性质,等腰三角形的判定与性质,含30度角的直角三角形的性质,关键是根据等边三角形的性质及三角形外角的性质进行解答.(1)根据等边三角形的性质得到∠ABC=∠ACB=60°,∠DBC=30°,再根据角之间的关系求得∠DBC=∠CED,根据等角对等边即可得到DB=DE;(2)根据直角三角形中,30°的锐角所对的直角边等于斜边的一半推出DC=6,进而得AC=12,即可求得△ABC的周长.22.答案:证明:(1)∵△ACD和△BCE是等边三角形,∴AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,∵∠DCA=∠ECB=60°,∴∠DCA+∠DCE=∠ECB+∠DCE,∠ACE=∠DCB,在△ACE与△DCB中,∵{AC=DC∠ACE=∠DCB CE=CB,∴△ACE≌△DCB,∴AE=BD;(2)∵由(1)得,△ACE≌△DCB,∴∠CAM=∠CDN,∵∠ACD=∠ECB=60°,而A、C、B三点共线,∴∠DCN=60°,在△ACM与△DCN中,∵{∠MAC=∠NDCAC=DC∠ACM=∠DCN=60°,∴△ACM≌△DCN(ASA),∴MC=NC,∵∠MCN=60°,∴△MCN为等边三角形,∴∠NMC=∠DCN=60°,∴∠NMC=∠DCA,∴MN//AB.解析:(1))先由△ACD和△BCE是等边三角形,可知AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,故可得出∠DCA+∠DCE=∠ECB+∠DCE,∠ACE=∠DCB,根据SAS定理可知△ACE≌△DCB,由全等三角形的性质即可得出结论;(2)由(1)中△ACE≌△DCB,可知∠CAM=∠CDN,再根据∠ACD=∠ECB=60°,A、C、B三点共线可得出∠DCN=60°,由全等三角形的判定定理可知,△ACM≌△DCN,故MC=NC,再根据∠MCN= 60°可知△MCN为等边三角形,故∠NMC=∠DCN=60°故可得出结论.本题考查的是等边三角形的判定与性质及全等三角形的判定与性质,根据题意判断出△ACE≌△DCB,△ACM≌△DCN是解答此题的关键.23.答案:解:∵AE=CD,∴CE=BD,∵∠ABD=∠BCE,AB=BC,∴△ABD≌△CBE,故∠BAD=∠CBE,∵∠ABD+∠BAD+∠ADB=180°,∠CBE+∠ADB+∠BPD=180°,∴∠DPB=∠ABD,∵∠ABD=60°,∴∠DPB=60°.解析:本题考查了等边三角形内角为60°的性质,考查了三角形内角和为180°的性质,考查了全等三角形的证明和对应角相等的性质,本题中求证△ABD≌△CBE是解题的关键.易证△ABD≌△CBE,得∠BAD=∠CBE,根据∠ABD+∠BAD+∠ADB=180°,∠EBD+∠ADB+∠BPD=180°,可证∠BPD=∠ABD,即可解题.。

2019-2020学年江苏省无锡市惠山区阳山中学八年级(上)期中数学试卷(解析版)

2019-2020学年江苏省无锡市惠山区阳山中学八年级(上)期中数学试卷(解析版)

2019-2020学年江苏省无锡市惠山区阳山中学八年级第一学期期中数学试卷注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5 毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5 毫米黑色墨水签字笔描黑.一、选择题(共10题,每小题3分,满分30分.)1.2017年6月北京国际设计周面向社会公开征集“二十四节气”标识系统设计,以期通过现代设计的手段,尝试推动我国非物质文化遗产创新传承与发展.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是()A.B.C.D.2.在实数5,,,中,无理数是()A.5B.C.D.3.下列说法正确的是()A.=±1B.1 的立方根是±1C.一个数的算术平方根一定是正数D.9 的平方根是±34.两边长分别为3、7的等腰三角形的周长为()A.13B.17C.13或17D.以上都不对5.下列条件中,不能判断△ABC为直角三角形的是()A.a2=1,b2=2,c2=3B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:56.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 7.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米8.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩“抢凳子”游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A.三边中垂线的交点B.三边中线的交点C.三条角平分线的交点D.三边上高的交点9.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,已知正方形A、B、C的面积依次为2、4、3,则正方形D的面积为()A.8B.9C.27D.4510.如图,已知长方形ABCD的边长AB=16cm,BC=12cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD 上由点D向C点运动.则当△BPE与△CQP全等时,时间t为()A.1s B.3s C.1s或3s D.2s或3s二、填空题(本大题共8小题,共8空,每空2分,共16分.)11.16的算术平方根是.12.若一个直角三角形的两直角边长分别为12、5,则其斜边长为.13.等腰△ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是cm.14.如图示,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.15.如图,在△ABC和△EDB中,∠C=∠EBD=90°,点E在AB上.若△ABC≌△EDB,AC=4,BC=3,则AE=.16.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草.则他们仅仅少走了步路.(假设2步为1米)17.如图,△ABC的边BC的垂直平分线MN交AC于D,若△ADB的周长是10cm,AB=4cm,则AC=cm.18.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为.三、解答题(本大题共8小题,共54分.)19.计算:(1)计算:(﹣1)2019﹣2﹣2+;(2)(2016﹣π)0﹣+|﹣2|.20.解方程:(1)16x2﹣9=0;(2)(2x﹣1)3=﹣27.21.已知某正数的平方根是2a﹣7和a+4,b﹣12的立方根为﹣2.(1)求a、b的值;(2)求a+b的平方根.22.在4×4的方格中有三个同样大小的正方形如图摆放,请你在图1﹣图3中的空白处添加一个正方形方格(涂黑),使它与其余三个正方形组成的新图形是一个轴对称图形.23.如图,点A、B、D、E在同一直线上,AD=EB,BC∥DF,∠C=∠F.求证:AC=EF.24.如图,在△ABC中,∠B=90°,AB=4,BC=8.(1)在BC上求作一点P,使PA+PB=BC;(尺规作图,不写作法,保留作图痕迹)(2)求BP的长.25.有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送6m(水平距离BC=6m)时,秋千的踏板离地的垂直高度BF=3m,秋千的绳索始终拉得很直,求绳索AD的长度?26.已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.参考答案一、选择题(本大题共10题,每小题3分,满分30分.)1.2017年6月北京国际设计周面向社会公开征集“二十四节气”标识系统设计,以期通过现代设计的手段,尝试推动我国非物质文化遗产创新传承与发展.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解即可.解:A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、是轴对称图形,本选项正确.故选:D.2.在实数5,,,中,无理数是()A.5B.C.D.【分析】根据无理数是无限不循环小数,可得答案.解:在实数5,,,中,无理数,故选:C.3.下列说法正确的是()A.=±1B.1 的立方根是±1C.一个数的算术平方根一定是正数D.9 的平方根是±3【分析】根据立方根、算术平方根的定义进行选择即可.解:A、=1,故错误;B、1 的立方根是1,故错误;C、0的算术平方根是0,故错误;D、9 的平方根是±3,故正确;故选:D.4.两边长分别为3、7的等腰三角形的周长为()A.13B.17C.13或17D.以上都不对【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和7,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解:(1)若3为腰长,7为底边长,由于3+3<7,则三角形不存在;(2)若7为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为7+7+3=17.故选:B.5.下列条件中,不能判断△ABC为直角三角形的是()A.a2=1,b2=2,c2=3B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5【分析】根据三角形内角和定理,以及勾股定理逆定理分别进行分析可得答案.解:A、可利用勾股定理逆定理判定△ABC为直角三角形,故此选项不合题意;B、根据勾股定理的逆定理可判断△ABC是直角三角形,故此选项不合题意;C、根据三角形内角和定理可以计算出∠A=90°,△ABC为直角三角形,故此选项不合题意;D、根据三角形内角和定理可以计算出∠A=45°,∠B=60°,∠C=75°,可判定△ABC不是直角三角形,故此选项符合题意;故选:D.6.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 【分析】利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故A不符合题意;B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合题意;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故C不符合题意;D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故D不符合题意.故选:B.7.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC==10m,故选:B.8.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩“抢凳子”游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A.三边中垂线的交点B.三边中线的交点C.三条角平分线的交点D.三边上高的交点【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.解:∵三角形的三条边的垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC的三边中垂线的交点最适当.故选:A.9.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,已知正方形A、B、C的面积依次为2、4、3,则正方形D的面积为()A.8B.9C.27D.45【分析】设正方形D的面积为x,根据图形得出方程2+4=x﹣3,求出即可.解:设正方形D的面积为x,∵正方形A、B、C的面积依次为2、4、3,∴根据图形得:2+4=x﹣3,解得:x=9,故选:B.10.如图,已知长方形ABCD的边长AB=16cm,BC=12cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD 上由点D向C点运动.则当△BPE与△CQP全等时,时间t为()A.1s B.3s C.1s或3s D.2s或3s【分析】分别利用:①当EB=PC时,△BPE≌△CQP,②当BP=CP时,△BEP≌△CQP,进而求出即可.解:①当EB=PC时,△BPE≌△CQP,∵AB=16cm,AE=6cm,∴BE=10cm,∴PC=10cm,∵CB=12cm,∴BP=2cm,∵点P从点B出发在线段BC上以2cm/s的速度向点C向运动,∴时间为:2÷2=1s;②当BP=CP时,△BEP≌△CQP,设x秒时,BP=CP,由题意得:2x=12﹣2x,解得:x=3,故选:C.二、填空题(本大题共8小题,共8空,每空2分,共16分.)11.16的算术平方根是4.【分析】根据算术平方根的定义即可求出结果.解:∵42=16,∴=4.故答案为:4.12.若一个直角三角形的两直角边长分别为12、5,则其斜边长为13.【分析】由两个直角边的长度,利用勾股定理可求出斜边的长度,此题得解.解:=13.故答案为:13.13.等腰△ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是8cm.【分析】利用等腰三角形的“三线合一”的性质得到BD=BC=6cm,然后在直角△ABD 中,利用勾股定理求得高线AD的长度.解:如图,AD是BC边上的高线.∵AB=AC=10cm,BC=12cm,∴BD=CD=6cm,∴在直角△ABD中,由勾股定理得到:AD===(8cm).故答案是:8.14.如图示,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是5.【分析】根据角平分线的性质求出DE,根据三角形的面积公式计算即可.解:作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,DE⊥AB,DC=2,AB=5,∴DE=DC=2,∴△ABD的面积=×AB×DE=5,故答案为:5.15.如图,在△ABC和△EDB中,∠C=∠EBD=90°,点E在AB上.若△ABC≌△EDB,AC=4,BC=3,则AE=1.【分析】根据勾股定理求出AB,根据全等得出BE=AC=4,即可求出答案.解:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC≌△EDB,∴BE=AC=4,∴AE=5﹣4=1,故答案为:1.16.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草.则他们仅仅少走了8步路.(假设2步为1米)【分析】在Rt△ABC中,利用勾股定理求出AB的长,根据2步为1米,即可得出少走的步数.解:∵∠C=90°,AC=6m,BC=8m,∴AB==10(m),则(8+6﹣10)×2=8,∴他们仅仅少走了8步,故答案为:8.17.如图,△ABC的边BC的垂直平分线MN交AC于D,若△ADB的周长是10cm,AB=4cm,则AC=6cm.【分析】根据线段的垂直平分线性质得出CD=BD,求出△ADB的周长AD+DB+AB=AC+AB=10cm,求出即可.解:∵MN是线段BC的垂直平分线,∴CD=BD,∵△ADB的周长是10cm,∴AD+BD+AB=10cm,∴AD+CD+AB=10cm,∴AC+AB=10cm,∵AB=4cm,∴AC=6cm,故答案为:6.18.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为 4.8.【分析】设设CD与BE交于点G,AP=x,证明△ODP≌△OEG,根据全等三角形的性质得到OP=OG,PD=GE,根据翻折变换的性质用x表示出PD、OP,根据勾股定理列出方程,解方程即可.解:设CD与BE交于点G,∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=8,由折叠的性质可知△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=8,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,设AP=EP=x,则PD=GE=6﹣x,DG=x,∴CG=8﹣x,BG=8﹣(6﹣x)=2+x,根据勾股定理得:BC2+CG2=BG2,即62+(8﹣x)2=(x+2)2,解得:x=4.8,∴AP=4.8,故答案为:4.8.三、解答题(本大题共8小题,共54分.)19.计算:(1)计算:(﹣1)2019﹣2﹣2+;(2)(2016﹣π)0﹣+|﹣2|.【分析】(1)直接利用有理数的乘方运算法则以及负整数指数的性质和二次根式的性质分别化简,再利用有理数的加减运算法则计算得出答案;(2)直接利用零指数幂的性质以及绝对值的性质和二次根式的性质分别化简,再利用有理数的加减运算法则计算得出答案.解:(1)原式=﹣1﹣+2=;(2)=1﹣2+2﹣=1﹣.20.解方程:(1)16x2﹣9=0;(2)(2x﹣1)3=﹣27.【分析】(1)先求得x2的值,然后依据平方根的定义求解即可;(2)依据立方根的定义可求得2x﹣1=﹣3,然后再解方程即可.解:(1)由题意得:x2=,x=±.(2)由立方根的定义可知2x﹣1=﹣3,解得:x=﹣1.21.已知某正数的平方根是2a﹣7和a+4,b﹣12的立方根为﹣2.(1)求a、b的值;(2)求a+b的平方根.【分析】利用正数的平方根有两个,且互为相反数列出方程,求出方程的解即可得到a 的值,根据立方根的定义求出b的值,根据算术平方根的定义求出a+b的算术平方根.解:(1)由题意得,2a﹣7+a+4=0,解得:a=1,b﹣12=﹣8,解得:b=4;(2)a+b=5,a+b的平方根为.22.在4×4的方格中有三个同样大小的正方形如图摆放,请你在图1﹣图3中的空白处添加一个正方形方格(涂黑),使它与其余三个正方形组成的新图形是一个轴对称图形.【分析】利用轴对称图形的性质分别得出符合题意的答案.解:如图所示:.23.如图,点A、B、D、E在同一直线上,AD=EB,BC∥DF,∠C=∠F.求证:AC=EF.【分析】根据BC∥DF证得∠CBD=∠FDB,利用利用等角的补角相等证得∠ABC=∠EDF,然后根据AD=EB得到AB=ED,利用AAS证明两三角形全等即可.【解答】证明:∵AD=EB∴AD﹣BD=EB﹣BD,即AB=ED又∵BC∥DF,∴∠CBD=∠FDB∴∠ABC=∠EDF在△ABC和△EDF中,∵∴△ABC≌△EDF,∴AC=EF.24.如图,在△ABC中,∠B=90°,AB=4,BC=8.(1)在BC上求作一点P,使PA+PB=BC;(尺规作图,不写作法,保留作图痕迹)(2)求BP的长.【分析】(1)作线段AC的中垂线,其与BC的交点即为所求;(2)设BP=x,则PA=CP=8﹣x,根据AB2+BP2=AP2求解可得.解:(1)如图所示,点P即为所求.(2)设BP=x,则CP=8﹣x,由(1)中作图知AP=CP=8﹣x,在Rt△ABP中,由AB2+BP2=AP2可得42+x2=(8﹣x)2,解得:x=3,所以BP=3.25.有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送6m(水平距离BC=6m)时,秋千的踏板离地的垂直高度BF=3m,秋千的绳索始终拉得很直,求绳索AD的长度?【分析】设秋千的绳索长为xm,根据题意可得AC=(x﹣2)m,利用勾股定理可得x2=62+(x﹣2)2.解:设秋千的绳索长为xm,根据题意可列方程为:x2=62+(x﹣2)2,解得:x=10,答:绳索AD的长度是10m.26.已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.【分析】(1)直接根据勾股定理求出BC的长度;(2)当△ABP为直角三角形时,分两种情况:①当∠APB为直角时,②当∠BAP为直角时,分别求出此时的t值即可;(3)当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP时,分别求出BP的长度,继而可求得t值.解:(1)在Rt△ABC中,BC2=AB2﹣AC2=52﹣32=16,∴BC=4(cm);(2)由题意知BP=tcm,①当∠APB为直角时,点P与点C重合,BP=BC=4cm,即t=4;②当∠BAP为直角时,BP=tcm,CP=(t﹣4)cm,AC=3cm,在Rt△ACP中,AP2=32+(t﹣4)2,在Rt△BAP中,AB2+AP2=BP2,即:52+[32+(t﹣4)2]=t2,解得:t=,故当△ABP为直角三角形时,t=4或t=;(3)①当AB=BP时,t=5;②当AB=AP时,BP=2BC=8cm,t=8;③当BP=AP时,AP=BP=tcm,CP=(4﹣t)cm,AC=3cm,在Rt△ACP中,AP2=AC2+CP2,所以t2=32+(4﹣t)2,解得:t=,综上所述:当△ABP为等腰三角形时,t=5或t=8或t=.。

2019-2020学年江苏省南京市民办育英第二外国语学校八年级(上)期中数学试卷(解析版)

2019-2020学年江苏省南京市民办育英第二外国语学校八年级(上)期中数学试卷(解析版)

2019-2020学年江苏省南京市民办育英第二外国语学校八年级第一学期期中数学试卷一、选择题(共8小题,每小题2分,共16分)1.下面四个图形中,属于轴对称图形的是()A.B.C.D.2.以下列各组数据为边长作三角形,其中能组成直角三角形的是()A.3,5,3B.4,6,8C.7,24,25D.6,12,133.等腰三角形一边长为6,另一边长为2,则此三角形的周长为()A.10B.14C.14或10D.184.如果等腰三角形有一个内角为70°,则其底角的度数是()A.55°B.70°C.55°或70°D.不确定5.如图,在△ABC中,BD平分∠ABC,ED∥BC,已知AB=3,AD=1,则△AED的周长为()A.2B.3C.4D.56.如图,在Rt△ABC中,∠ACB=90°,∠A=65°,CD⊥AB,垂足为D,E是BC的中点,连接ED,则∠EDC的度数是()A.25°B.30°C.50°D.65°7.点D、E、F在△ABC外,且∠CAB=∠D=∠E=∠F,∠CBA=∠BAD=∠BCE=∠CAF,则与△ABC全等的三角形有()A.0个B.1个C.2个D.3个8.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和二、填空题(本大题共10小题,每空2分,共20分。

)9.如图所示的五角星是轴对称图形,它的对称轴共有条.10.如图,已知△ABC≌△ADC,∠BAC=40°,∠ACD=23°,那么∠D=.11.如图,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使Rt△ABC≌Rt△DCB,你添加的条件是.12.如图,已知AB=AC,AB=5,BC=3,以A、B两点为圆心,大于AB的长为半径画圆弧,两弧相交于点M,N,连接MN与AC相交于点D,则△BDC的周长为.13.如图,P、Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,则∠ABC的大小等于度.14.如图,一圆柱高为8cm,底面周长为12cm,蚂蚁在圆柱表面爬行,从点A爬到点B的最短路程是cm.15.如图,O为线段AB的中点,AB=4cm,P1、P2、P3、P4到点O的距离分别是1cm、2cm、2.8cm、1.7cm,这四个点中能与A、B构成直角三角形的顶点是.16.若一个直角三角形满足其中一个内角是另一个内角的2倍,并且最短边长为1,则斜边长的平方为.17.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等?18.如图,Rt△ABC中,∠ACB=90°,AB=5,BC=3,将斜边AB绕点A顺时针旋转90°至AB',连接B′C,则△AB′C的面积为.三、解答题(本大题共8小题,共64分。

江苏省常州市金坛区2019-2020学年八年级上学期期中数学试卷 (有解析)

江苏省常州市金坛区2019-2020学年八年级上学期期中数学试卷 (有解析)

江苏省常州市金坛区2019-2020学年八年级上学期期中数学试卷一、选择题(本大题共8小题,共16.0分)1.下列说法正确的是()A. 全等的两个图形可以由其中一个经过轴对称变换得到B. 轴对称变换得到的图形与原图形全等C. 轴对称变换得到的图形可以由原图形经过一次平移得到D. 轴对称变换中的两个图形,每一对点所连线段都被这两个图形之间的直线垂直平分2.如图,点P是∠AOB的角平分线OC上一点,PD⊥OA,垂足为点D,PD=2,M为OP的中点,则点M到射线OB的距离为()B. 1C. √2D. 2A. 123.如图,△ABC≌△ADE,∠B=20°,∠E=110°,则∠EAD的度数为()A. 80°B. 70°C. 50°D. 130°4.如图,∠BAC=120°.若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是()A. 30°B. 40°C. 50°D.60°5.如图,在△ABC中,AB=AC,BD是∠ABC的角平分线,若∠ABD=32°,则∠A等于().A. 32°B. 52°C. 64°D. 72°6.如图,△ABC中,AB=AC,D是BC边的中点,点E与点D关于AB对称,连接AE、BE,分别延长AE、CB交于点F,若∠F=48°,则∠C的度数是()A. 21°B. 52°C. 69°D. 74°7.如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD的长等于()A. 5B. 6C. 7D. 88.如图,∠AOB=30°,OC为∠AOB内部一条射线,点P为射线OC上一点,OP=4,点M、N分别为OA、OB边上动点,则△MNP周长的最小值为A. 2B. 4C. 2√3D. 4√3二、填空题(本大题共10小题,共20.0分)9.若等腰三角形的一个内角为100°,则它的底角为______.10.已知△ABC是等腰三角形,它的周长为20cm,一条边长6cm,那么腰长是_____.11.如图,等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为______.12.如果三角形的三边分别为√2,√6,2,那么这个三角形的最大角的度数为______.13.如图,BO平分∠CBA,CO平分∠ACB,且MN//BC,若AB=12,△AMN的周长为29,则AC的长是______.14.如图,点A、F、C、D在同一直线上,AF=DC,BC//EF,要判定△ABC≌△DEF,还需要添加一个条件,你添加的条件是___________.15.在△ABC中,∠ACB=90°,AC=BC=3,延长BA至点D,使AD=AB,连接CD,以CD为直角边作等腰直角△CDE,使∠DCE=90°,连接AE,则AE长为______.16.如图,在△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠DAE=15°,∠B=35°,则∠C=_____°.17.如图,已知CD=6m,AD=8m,∠ADC=90°,BC=24m,AB=26m.图中阴影部分的面积=______.18.如图,△ABC内有一点D,且DA=DB=DC.若∠DAB=20°,∠DAC=30°,则∠BDC=_________.三、解答题(本大题共7小题,共64.0分)19.用直尺和圆规按下列要求作图:(不写作法,保留作图痕迹)(1)作出△ABC关于直线l对称的△DEF;(2)如图(2):在3×3网格中,已知线段AB、CD,以格点为端点再画1条线段,使它与AB、CD组成轴对称图形.(画出所有可能情况)20.如图,点E、F在AB上,且AF=BE,AC=BD,AC//BD.求证:∠C=∠D.21.在直角三角形ABC中,∠ACB=90°,CF=CB,将线段CD绕点C按顺时针方向旋转90°后得到CE,连接EF。

2020~2021学年度第一学期期中考试八年级数学试卷

2020~2021学年度第一学期期中考试八年级数学试卷

2020~2021学年第一学期期中考试八年级数学试卷注意事项:1.本试卷考试时间为100分钟,试卷满分120分.考试形式闭卷.2.答题前,务必将自己的学校、班级、姓名、准考证号填写在试卷相应位置.3.解答本试卷所有试题不得使用计算器.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在题后括号内)1.下列倡导节约的图案中,属于轴对称图形的是……………………………………【▲】A B C D2. 8A.2B.2 C.4 D.83.下列长度的三条线段能组成直角三角形的是……………………………………【▲】A.3,4,5 B.2,3,4 C.4,6,7 D.5,11,124.等腰三角形一边长为6,另一边长为2,则此三角形的周长为…………………【▲】A.10或14 B.10 C.14 D.185.如图,△ABC≌△ADE,点E在BC边上,∠AED=80°,则∠CAE的度数为【▲】A.80°B.60°C.40°D.20°6.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=5,CF=3,则BD的长是…………………………………………………………………………………【▲】A.0.5 B.1 C.2 D.1.57.如图,∠ACD是△ABC的外角,CE平分∠ACB,交AB于E,CF平分∠ACD,且EF∥BC 交AC、CF于M、F,若EM=3,则CE2+CF2的值为……………………………【▲】A.36B.9C. 6D.188.如图,在△ABC中,∠C=90°,点O是∠CAB、∠ACB平分线的交点,且BC=4cm,AB=5cm,则点O到边AB的距离为……………………………………………………………【▲】A.1cm B.2cm C.3cm D.4cm二、填空题(本大题共有10小题,每小题2分,共20分.不需写出解答过程,请将答案直接写在题中横线上)9.等边三角形是一个轴对称图形,它有▲条对称轴.第5题图第6题图第7题图ADM FAED E FA10.如果一个正数的两个平方根分别为3m +4和2-m ,则这个数是 ▲ .11.如图,已知∠ABC =∠DCB ,增加下列条件:①AB =CD ;②AC =DB ;③∠A =∠D ;④∠ABO =∠DCO .能判定△ABC ≌△DCB 的是 ▲ .(填正确答案的序号)12.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的依据是 ▲ .13.等腰三角形一腰上的高与另一腰的夹角为20°,则这个等腰三角形底角是 ▲ °.14.如图,已知△ABC 是等边三角形,点B 、C 、D 、F 在同一直线上,CD =CE ,DF =DG ,则∠F = ▲ °.15.如图,在△ABC 中,ED ∥BC ,∠ABC 和∠ACB 的平分线分别交ED 于点G 、F ,若BE =3,CD =4,ED =6,则FG 的长为 ▲ .16.如图是由9个小等边三角形构成的图形,其中已有两个被涂黑,若再涂黑一个,则整个被涂黑的图案构成轴对称图形的方法有 ▲ 种.17.如图,在△ABC 中,AB 的垂直平分线EF 交BC 于点E ,交AB 于点F ,D 是线段CE的中点,AD ⊥BC 于点D .若∠B =36°,BC =8,则AB 的长为 ▲ .18. 如图,长方形ABCD 中,∠A =∠ABC =∠BCD =∠D =90°,AB =CD =5,AD =BC =13,点E 为射线AD 上的一个动点,若△ABE 与△A ′BE 关于直线BE 对称,当△A ′BC 为直角三角形时,AE 的长为 ▲ .三、解答题(本大题共有9小题,共76分.请在答题区域内作答,解答时应写出必要的文字说明、推理过程或演算步骤)19.(本题满分8分) 求下列各等式中x 的值:(1)(x+3)2-21=0; (2)29+(x-5)3=2.(此处答题无效)第8题图 第11题图 第12题图 O C A A D B CO A B C D E F A B C D E A′′第17题图 第18题图 A B D E F G 第14题图 第15题图 第16题图 G F A B DE20.(本题满分6分)如图,AD ⊥AB ,DE ⊥AE ,BC ⊥AE ,垂足分别为A 、E 、C ,且AD =AB .求证:△AED ≌△BCA .(此处答题无效)21.(本题满分8分)如图,点E 、F 分别为线段AC 上的两个点,且DE ⊥AC 于点E ,BF⊥AC 于点F ,若AB =CD ,AE =CF ,BD 交AC 于点M . 求证:(1)AB ∥CD ;(2)点M 是线段EF 的中点.(此处答题无效)22. (本题满分8分)如图,AB =AC 、点D 、E 分别在AB 、AC 上,且AD =AE ,BE 、CD 交于点O . 求证:AO 垂直平分BC .(此处答题无效)23.(本题满分8分)如图,在△ABC 中,AD 平分∠BAC ,点E 在AC 的垂直平分线上.(1) 若AB =5,BC =7,求△ABE 的周长; (2) 若∠B =57°,∠DAE =15°,求∠C 的度数.(此处答题无效)24.(本题满分8分)如图,在△ABC 中,AB =AC ,AD ⊥BC ,BE ⊥AC ,垂足分别为D 、E ,且AB =2AE ,求∠EDC 的度数.(此处答题无效) A B C D E M A B C E D F A B C OAB CD E E B A25.(本题满分8分)苏科版《数学》八年级上册第35页第2题,介绍了应用构造全等三角形的方法测量了池塘两端A 、B 两点的距离.星期天,爱动脑筋的小刚同学用下面的方法也能够测量出家门前池塘两端A 、B 两点的距离. 他是这样做的:选定一个点P ,连接P A 、PB ,在P A 上取一点C ,恰好有P A =14m ,PB =13m ,PC =5m , BC =12m ,他立即确定池塘两端A 、B 两点的距离为15m . 小刚同学测量的结果正确吗?为什么?(此处答题无效)26.(本题满分10分)如图,Rt △ABC 中,∠A =90°.(1) 利用圆规和直尺,在图中∠A 的内部找一个点P ,使点P 到AB 、AC 的距离相等,且PB =PC .(不写作法,保留作图痕迹)(2)若BC 的垂直平分线交直线AB 于点E ,AC =12、AB =8.求AE 的长.(此处答题无效)27.(本题满分12分)问题探究 如图1,在△ABC 中,点D 是BC 的中点,DE ⊥DF ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF .①BE 、CF 与EF 之间的关系为:BE +CF ▲ EF ;(填“>”、“=”或“<”)②若∠A =90°,探索线段BE 、CF 、EF 之间的等量关系,并加以证明.问题解决 如图2,在四边形ABDC 中,∠B +∠C =180°,DB =DC ,∠BDC =130°,以D为顶点作∠EDF =65°,∠EDF 的两边分别交AB 、AC 于E 、F 两点,连接EF ,探索线段BE 、CF 、EF 之间的数量关系,并加以证明.(此处答题无效)AC图1 备用图 图2A DBC E F A ED F A B CD E F八年级数学期中试卷答案及评分说明一、选择题1~4 BBAC 5~8 DCAA二、填空题9.3 10.25 11.①③④ 12.根据“SSS”证得△COM≌△CON,得到∠AOC=∠BOC 13. 70或35 14.15° 15. 1 16.3 17.8 18. 1或25三、解答题19. (1) ∵(x+3)2-21=0,(x+3)2=21,∴x+3=x=,∴x-3或x-3;……4分(2) ∵29+(x-5)3=2,(x-5)3=-27,∴x-5=-3,∴x=2. ……4分20.∵DE⊥AE,BC⊥AE,∴∠ACB=∠E=90°,即∠B+∠BAC=90°.又∵AD⊥AB,∴∠DAC+∠BAC=90°,∴∠DAC=∠B,……2分∴在△AED与△BCA中,∠ACB=∠E,∠B=∠DAC,AB=AD,……4分∴△AED≌△BCA. ……6分21. (1)∵AE=CF,∴AE+EF=CF+ EF,即AF=CE,……1分在Rt△AFB和Rt△CED中,AB=CD,AF=CE,∴Rt△AFB≌△Rt CED,……3分∴∠A=∠C,……4分∴AB∥CD……5分;(2)由(1)得:Rt△AFB≌△Rt CED,∴BF=DE,……6分在Rt△BFM和Rt△DEM中,∠BFM=∠DEM=90°,∠BMF=∠DME,BF=DE,∴△BFM≌△DEM,…7分∴ME=MF,即点M是线段EF的中点.……8分(其他解法参照给分)22. ∵AB=AC、∴点O在线段BC的垂直平分线上……1分∵在△ABE与△ACD中,AE=AD,∠A=∠A,AC=AB,∴△ABE≌△ACD,∴∠ABE=∠ACD,......4分∵ AB=AC,∴∠ABC=∠ACB,∴∠OBC=∠OCB,∴BO=CO,∴点O在线段BC的垂直平分线上 (7)分∴AO垂直平分BC ……8分(其他解法参照给分)23. (1)∵点E在AC的垂直平分线上,∴EA=EC,∴△ABE的周长为AB+BE+AE=AB+BE+EC=AB+BC=12 (3)分(2) 由(1)得:EA=EC,∴∠EAC=∠C,∴∠DAC=∠C+15°,∵ AD平分∠BAC,∴∠DAB=∠DAC=∠C+15°,∵∠B+∠BAC+∠C=180°,∴ 57°+∠C+15°+∠C+15°+∠C=180°,解得∠C=31°.……8分(其他解法参照给分)24.取AB的中点F,连接EF. ……1分∵BE⊥AC,即∠AEB=90°,∴EF=12AB=AF,又∵AB=2AE,∴AE=AF=EF,即△AEF是等边三角形,∴∠BAC=60°. ……3分∵AB=AC,∴△ABC是等边三角形,∴∠ABC=60°.∵BE⊥AC,∴∠CBE=12∠ABC=30°,BD=CD. (5)分∵BE⊥AC,即∠AEC=90°,∴ED=12BC=BD,∴∠CBE=∠BED=30°,∴∠EDC=∠CBE+∠BED =60° (8)(其他方法参照给分)F ED C B A25.小刚同学测量的结果是正确的. ……1分理由如下:∵PC=5m ,PB=13m ,BC=12m ,∴PC 2+CB 2=PB 2,∴△PBC 是直角三角形,且∠PCB =90°,4分 ∴∠ACB=90°,在Rt △ABC 中,AB 2= AC 2+CB 2,AC=PA-PC=9m ,BC=12m ,∴AB=15m ,……7分 因此,小刚同学测量的结果是正确的. ……8分26.(1)如图,点P 即为所求PE A B C;……3分(2)AE=x ,连接EC .……4分 ∵ EF 垂直平分线段BC ,∴EB=EC=AE+AB=8+x ,……5分 在Rt △ACE 中,AE 2+AC 2=EC 2,……7分 ∴x 2+122=(x+8)2,解得x=5,……9分 ∴ AE=5,即AE 的长为5. ……10分27. 问题探究 ①>……2分②线段BE 、CF 、EF 之间的等量关系为:BE 2+CF 2=EF 2.……3分证明:∵∠A=90°,∴∠B+∠ACB=90°,延长ED 到点G ,使DG=ED ,连结GF ,GC ,∵ED ⊥DF ,∴EF=GF ,∵D 是BC 的中点,∴BD=CD ,在△BDE 和△CDG 中,ED =GD ,∠BDE =∠GDC ,BD =CD ,△DBE ≌△DCG ,……4分EF=GF ,∴BE=CG ,∠B=∠GCD ,∴AB ∥CG ,∴∠GCD+∠ACB=90°,即∠GCF=90°,∴Rt △CFG 中,CF 2+GC 2=GF 2,∴BE 2+CF 2=EF 2;……7分(2)线段BE 、CF 、EF 之间的数量关系为:EF=BE+CF. ……7分理由:延长AC 到G ,使CG=BE ,∵∠B+∠ACD=180°,∠ACD+∠DCG=180°,∴∠B=∠DCG ,在△DBE 和△DCG 中,BE =GC ,∠B =∠DCG ,BD =CD ,∴△DBE ≌△DCG ,∴DE=DG ,∠BDE=∠CDG , (9)∵∠BDC=130°,∠EDF=65°,∴∠BDE+∠CDF=65°,∴∠CDG+∠CDF=65°,∴∠EDF=∠GDF,在△EDF和△GDF中,DE=DG,∠EDF=∠GDF,DF=DF,∴△EDF≌△GDF,∴EF=GF,……11分∵GF=CG+CF,∴GF=BE+CF,∴EF=BE+CF.……12分如图,Rt△ABC中,AB=AC=3,点D是AB上一点,以CD为边作等边△CDE,使A、E位于BC异侧.当D 点从A点运动到B点,E点运动的路径长为 3。

山东省济宁市任城区2019-2020学年八年级(上)期中数学试卷含解析

山东省济宁市任城区2019-2020学年八年级(上)期中数学试卷含解析

2019-2020学年八年级(上)期中数学试卷一.选择题(共9小题)1.若分式有意义,则x应满足的条件是()A.x≠0 B.x≥3 C.x≠3 D.x≤32.下列各式中不是分式的是()A.B.C.D.3.下列由左到右的变形中属于因式分解的是()A.24x2y=3x•8xy B.m2﹣2m﹣3=m(m﹣2)﹣3C.m2﹣2m﹣3=(m﹣3)(m+1)D.(x+3)(x﹣3)=x2﹣94.某校5名同学在“国学经典颂读”比赛中,成绩(单位:分)分别是86,95,97,90,88,这组数据的中位数是()A.97 B.90 C.95 D.885.利用因式分解计算:2100﹣2101=()A.﹣2 B.2 C.2100D.﹣21006.把分式(x+y≠0)中的x,y都扩大3倍,那么分式的值()A.扩大为原来的3倍B.缩小为原来的C.扩大为原来的9倍D.不变7.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):则被遮盖的两个数据依次是()A.80,80 B.81,80 C.80,2 D.81,28.从甲地到乙地有两条同样长的路,一条是平路,另一条的是上山,是下山,如果上山的速度为平路速度的,平路速度是下山速度的,那么从甲地到乙地()A.走山路快B.走平路快C.走山路与平路一样快D.哪个快不能确定9.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是()A.0 B.1 C.2 D.3二.填空题(共5小题)10.已知x2+4mx+16能用完全平方公式因式分解,则m的值为.11.一组数据2.2,3.3,4.4,11.1,a.其中整数a是这组数据中的中位数,则这组数据的平均数是.12.若,则=.13.关于x的方程的解为x=1,则a=.14.观察以下等式第1个等式:第2个等式:第3个等式:第4个等式:第5个等式:……按照以上规律,写出你猜想的第n个等式:.(用含n的等式表示).三.解答题(共2小题)15.分解因式(1)a2b﹣b;(2)﹣2x3+12x2﹣18x.16.计算下列各题(1).(2).17.解分式方程(1).(2).18.为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 8890 97 95 90 95 88(1)根据上述数据,将下列表格补充完整.整理、描述数据:数据分析:样本数据的平均数、众数和中位数如下表得出结论:(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为分.数据应用:(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.19.学习了因式分解的知识后,老师提出了这样一个向题:设n为整数,则(n+7)2﹣(n﹣3)2的值一定能被20整除吗?若能,请说明理由;若不能,请举出一个反例.你能解答这个问题吗?20.先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值.(﹣)÷21.如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)用含m,n的代数式表示所有裁剪线(图中虚线部分)的长度之和;(2)观察图形,发现代数式2m2+5mn+2n2可以因式分解为;(3)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求(m+n)2的值.22.为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.23.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案与试题解析一.选择题(共9小题)1.若分式有意义,则x应满足的条件是()A.x≠0 B.x≥3 C.x≠3 D.x≤3【分析】本题主要考查分式有意义的条件:分母≠0.【解答】解:∵x﹣3≠0,∴x≠3.故选:C.2.下列各式中不是分式的是()A.B.C.D.【分析】根据分式的定义对四个选项进行逐一分析即可.【解答】解:A、分母中含有未知数,故是分式,故本选项错误;B、分母中不含有未知数,故不是分式,故本选项正确;C、分母中含有未知数,故是分式,故本选项错误;D、分母中含有未知数,故是分式,故本选项错误.故选:B.3.下列由左到右的变形中属于因式分解的是()A.24x2y=3x•8xy B.m2﹣2m﹣3=m(m﹣2)﹣3C.m2﹣2m﹣3=(m﹣3)(m+1)D.(x+3)(x﹣3)=x2﹣9【分析】根据因式分解的定义,逐个判断,得到正确结论.【解答】解:选项B和D都是和的形式,不是因式分解,选项A不是多项式的积的形式,不是因式分解;因为选项C是整式积的形式,符合因式分解的定义.故选:C.4.某校5名同学在“国学经典颂读”比赛中,成绩(单位:分)分别是86,95,97,90,88,这组数据的中位数是()A.97 B.90 C.95 D.88【分析】先将题中的数据按照从小到大的顺序排列,然后根据中位数的概念求解即可.【解答】解:将小明所在小组的5个同学的成绩重新排列为:86、88、90、95、97,所以这组数据的中位数为90分,故选:B.5.利用因式分解计算:2100﹣2101=()A.﹣2 B.2 C.2100D.﹣2100【分析】提取公因式2100,整理并计算即可.【解答】解:2100﹣2101=2100﹣2100•2=2100(1﹣2)=﹣2100.故选:D.6.把分式(x+y≠0)中的x,y都扩大3倍,那么分式的值()A.扩大为原来的3倍B.缩小为原来的C.扩大为原来的9倍D.不变【分析】把分式中的x换成3x,y换成3y,然后根据分式的基本性质进行化简即可.【解答】解:(x+y≠0)中的x,y都扩大3倍,那么分式的值扩大3倍,故选:A.7.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):则被遮盖的两个数据依次是()A.80,80 B.81,80 C.80,2 D.81,2【分析】根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.【解答】解:根据题意得:80×5﹣(81+77+80+82)=80(分),则丙的得分是80分;众数是80,故选:A.8.从甲地到乙地有两条同样长的路,一条是平路,另一条的是上山,是下山,如果上山的速度为平路速度的,平路速度是下山速度的,那么从甲地到乙地()A.走山路快B.走平路快C.走山路与平路一样快D.哪个快不能确定【分析】本题中无路程量,可设为1;根据路程与速度、时间的等量关系可得代数式,解可得答案.【解答】解:设从甲地到乙地的路程为1,平路速度为x,则上山速度为x,下山的速度为2x,则走平路所用的时间:,走山路所用时间:+=;故选:C.9.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是()A.0 B.1 C.2 D.3【分析】根据题目中的式子,可以求得a﹣b、a﹣c、b﹣c的值,然后对所求式子变形,利用完全平方公式进行解答.【解答】解:∵a=2018x+2018,b=2018x+2019,c=2018x+2020,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,∴a2+b2+c2﹣ab﹣ac﹣bc=====3,故选:D.二.填空题(共5小题)10.已知x2+4mx+16能用完全平方公式因式分解,则m的值为±2 .【分析】利用完全平方公式的结构特征判断就确定出m的值.【解答】解:∵关于x的多项式x2﹣4mx+16能用完全平方公式进行因式分解,∴m=±2,故答案为:±2.11.一组数据2.2,3.3,4.4,11.1,a.其中整数a是这组数据中的中位数,则这组数据的平均数是 5 .【分析】先利用中位数的定义得到a=4,然后根据平均线的计算方法计算这组数据的平均数.【解答】解:∵整数a是这组数据中的中位数,∴a=4,∴这组数据的平均数=(2.2+3.3+4.4+4+11.1)=5.故答案为5.12.若,则= 2 .【分析】灵活运用完全平方和公式的变形,x2+y2=(x+y)2﹣2xy,直接代入计算即可.【解答】解:∵,∴=(x+)2﹣2=4﹣2=2.故应填:2.13.关于x的方程的解为x=1,则a=﹣3 .【分析】根据方程的解的定义,把x=1代入方程,即可得到一个关于a的方程,即可求解.【解答】解:根据题意得:=,去分母得:4(2a+3)=3(a﹣1),解得:a=﹣3.故答案是:﹣3.14.观察以下等式第1个等式:第2个等式:第3个等式:第4个等式:第5个等式:……按照以上规律,写出你猜想的第n个等式:.(用含n的等式表示).【分析】根据已知等式得出规律即可.【解答】解:第1个等式:第2个等式:第3个等式:第4个等式:第5个等式:……第n个等式为:,故答案为:三.解答题(共2小题)15.分解因式(1)a2b﹣b;(2)﹣2x3+12x2﹣18x.【分析】(1)首先提取公因式,进而利用平方差公式进行分解即可;(2)首先提取公因式,进而利用完全平方公式进行分解即可【解答】解:(1)a2b﹣b=b(a2﹣1)=b(a+1)(a﹣1);(2)﹣2x3+12x2﹣18x=﹣2x(x2﹣6x+9)=﹣2x(x﹣3)2.16.计算下列各题(1).(2).【分析】(1)根据分式的运算法则即可求出答案;(2)根据分式的运算法则即可求出答案;【解答】解:(1)原式=b(a﹣b)•=ab2;(2)原式=•=;17.解分式方程(1).(2).【考点】B3:解分式方程.【专题】522:分式方程及应用;66:运算能力.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:2x+4=3x,解得:x=4,经检验x=4是分式方程的解;(2)去分母得:x2+2x﹣1=x2﹣4,解得:x=﹣1.5,经检验x=﹣1.5是分式方程的解.18.为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 8890 97 95 90 95 88(1)根据上述数据,将下列表格补充完整.整理、描述数据:数据分析:样本数据的平均数、众数和中位数如下表得出结论:(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为91 分.数据应用:(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.【考点】V5:用样本估计总体;W2:加权平均数;W4:中位数;W5:众数.【专题】542:统计的应用.【分析】(1)由题意即可得出结果;(2)由20×50%=10,结合题意即可得出结论;(3)由20×30%=6,即可得出结论.【解答】解:(1)由题意得:90分的有5个;97分的有3个;出现次数最多的是90分,∴众数是90分;故答案为:5;3;90;(2)20×50%=10,如果该校想确定七年级前50%的学生为“良好”等次,则“良好”等次的测评成绩至少定为91分;故答案为:91;(3)估计评选该荣誉称号的最低分数为97分;理由如下:∵20×30%=6,∴估计评选该荣誉称号的最低分数为97分.19.学习了因式分解的知识后,老师提出了这样一个向题:设n为整数,则(n+7)2﹣(n﹣3)2的值一定能被20整除吗?若能,请说明理由;若不能,请举出一个反例.你能解答这个问题吗?【考点】54:因式分解﹣运用公式法.【专题】512:整式;66:运算能力.【分析】直接利用平方差公式将原式变形进而得出答案.【解答】解:(n+7)2﹣(n﹣3)2=[(n+7)+(n﹣3)][(n+7)﹣(n﹣3)]=10(2n+4)=20(n+2),故(n+7)2﹣(n﹣3)2的值一定能被20整除.20.先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值.(﹣)÷【考点】6D:分式的化简求值.【专题】513:分式.【分析】先化简分式,然后将x的值代入计算即可.【解答】解:原式=[﹣]÷=[﹣]÷=•=x+2∵x﹣2≠0,x﹣4≠0,∴x≠2且x≠4,∴当x=﹣1时,原式=﹣1+2=1.21.如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)用含m,n的代数式表示所有裁剪线(图中虚线部分)的长度之和;(2)观察图形,发现代数式2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);(3)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求(m+n)2的值.【考点】59:因式分解的应用.【专题】11:计算题.【分析】(1)根据整式的加减混合运算法则计算;(2)根据图形的面积的不同的表示方法解答;(3)变形完全平方公式,代入计算即可.【解答】解:(1)图中所有裁剪线(虚线部分)长度之和为:2(m+2n)+2(2m+n)=6m+6n =6(m+n);(2)2m2+5mn+2n2可以因式分解为:(m+2n)(2m+n),故答案为:(m+2n)(2m+n);(3)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49.22.为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.【考点】B7:分式方程的应用.【专题】522:分式方程及应用.【分析】设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由时间关系“甲校师生比乙校师生晚1小时到达目的地”列出方程,解方程即可.【解答】解:设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由题意得:,解得:x=60,经检验,x=60是所列方程的解,则1.5x=90,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.23.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】12:应用题.【分析】(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.【解答】解:(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意有=,解得:x=30.经检验,x=30是原方程的解,x+10=30+10=40.答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元.(2)设他们可购买y棵乙种树苗,依题意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11,∵y为整数,∴y最大为11.答:他们最多可购买11棵乙种树苗.。

2019-2020学年菏泽市单县八年级上期中数学试卷(有答案)(已纠错)

2019-2020学年菏泽市单县八年级上期中数学试卷(有答案)(已纠错)

2019-2020学年山东省菏泽市单县八年级(上)期中数学试卷一、选择题(每题3分,共30分)1.(3分)下列图形中对称轴最多的是()A.圆B.正方形C.等腰三角形D.线段2.(3分)如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠23.(3分)如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是()A.1 B.2 C.3 D.44.(3分)已知∠AOB=30°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,则△P1OP2是()A.含30°角的直角三角形B.顶角是30°的等腰三角形C.等边三角形D.等腰直角三角形5.(3分)如图:等边三角形ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.60°D.75°6.(3分)∠AOB的平分线上一点P到OA的距离为5,Q是OB上任一点,则()A.PQ>5 B.PQ≥5 C.PQ<5 D.PQ≤57.(3分)如图,DE是△ABC中AC边的垂直平分线,若BC=9厘米,AB=11厘米,则△EBC的周长为()厘米.A.16 B.18 C.20 D.288.(3分)分式值为0,则x应满足()A.x=﹣1 B.x=1 C.x=±1 D.x=﹣29.(3分)下列约分中,正确的是()A.=x3B.=0C.D.10.(3分)计算:的结果为()A.1 B. C. D.二、填空题(每题3分,共30分)11.(3分)如图,点E,F分别在∠CAB的边AC,AB上,若AB=AC,AE=AF,BE与CF交于点D.给出结论:①△ABE≌△ACF;②BD=DE;③△BDF≌△CDE;③点D在∠BAC的平分线上其中正确的结论有(填写序号)12.(3分)如果一个等腰三角形的一个外角等于40°,则该等腰三角形的底角的度数是.13.(3分)下列式子①,②,③,④中,是分式的有个.14.(3分)点M(﹣2,1)关于x轴对称的点N的坐标是.15.(3分)如图,∠DAB=∠EAC=60°,AB=AD,AC=AE,BE和CD相交于O,AB和CD相交于P,则∠DOE的度数是°.16.(3分)用直尺和圆规作一个角等于已知角的示意图如下,则要说明∠D′O′C′=∠DOC,需要证明△D′O′C′≌△DOC,则这两个三角形全等的依据是(写出全等的简写).17.(3分)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,∠CMD=35°,则∠MAB是度.18.(3分)化简÷的结果是.19.(3分)若,则的值是.20.(3分)在等边三角形ABC中,AD是BC边上的高,E为AC的中点P为AD上一动点,若AD=12,则PC+PE的最小值为.三、解答题:(21--25题每题8分,26--27题每题10分共60分)21.(8分)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.试判断线段AE与CD的关系,并说明理由.22.(8分)如图已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE ⊥直线m,垂足分别为点D、E.若BD=4,CE=6,试求DE的长.23.(8分)已知:如图,AB=AC,D是AB上一点,DE⊥BC于点E,ED的延长线交CA的延长线于点F.求证:△ADF是等腰三角形.24.(8分)如图,∠ABC的平分线BF与∠ACG的平分线CF相交于点F,过点F作DE∥BC交AC于E,若BD=8,DE=3,求CE的长.25.(8分)计算(1)(1﹣)2÷(2)•﹣÷.26.(10分)将分式(x﹣)÷化简,然后请你给x选择一个合适的值代入求值.27.(10分)如图,在四边形ABCD中,∠C=∠B=90°,M为CB的中点,且DM平分∠ADC,(1)AM平分∠DAB吗?为什么?(2)线段AD,AB,DC有怎样的数量关系,说明理由.2019-2020学年山东省菏泽市单县八年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)下列图形中对称轴最多的是()A.圆B.正方形C.等腰三角形D.线段【解答】解:A、圆的对称轴有无数条,它的每一条直径所在的直线都是它的对称轴;B、正方形的对称轴有4条;C、等腰三角形的对称轴有1条;D、线段的对称轴有2条.故图形中对称轴最多的是圆.故选:A.2.(3分)如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠2【解答】解:A、当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;C、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B、当BF=ED,∴BE=DF,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;D、当∠1=∠2,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),故此选项错误;故选:C.3.(3分)如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则C H的长是()A.1 B.2 C.3 D.4【解答】解:在△ABC中,AD⊥BC,CE⊥AB,∴∠AEH=∠ADB=90°;∵∠EAH+∠AHE=90°,∠DHC+∠BCH=90°,∵∠EHA=∠DHC(对顶角相等),∴∠EAH=∠DCH(等量代换);∵在△BCE和△HAE中,∴△AEH≌△CEB(AAS);∴AE=CE;∵EH=EB=3,AE=4,∴CH=CE﹣EH=AE﹣EH=4﹣3=1.故选:A.4.(3分)已知∠AOB=30°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,则△P1OP2是()A.含30°角的直角三角形B.顶角是30°的等腰三角形C.等边三角形D.等腰直角三角形【解答】解:∵P为∠AOB内部一点,点P关于OA、OB的对称点分别为P1、P2,∴OP=OP1=OP2且∠P1OP2=2∠AOB=60°,∴故△P1OP2是等边三角形.故选:C.5.(3分)如图:等边三角形ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.60°D.75°【解答】解:∵等边△ABC,∴∠ABD=∠C,AB=BC,在△ABD与△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°,∴∠APE=∠ABE+∠BAD=60°,∴∠APE=60°.故选:C.6.(3分)∠AOB的平分线上一点P到OA的距离为5,Q是OB上任一点,则()A.PQ>5 B.PQ≥5 C.PQ<5 D.PQ≤5【解答】解:∠AOB的平分线上一点P到OA的距离为5则P到OB的距离为5因为Q是OB上任一点,则PQ≥5故选:B.7.(3分)如图,DE是△ABC中AC边的垂直平分线,若BC=9厘米,AB=11厘米,则△EBC的周长为()厘米.A.16 B.18 C.20 D.28【解答】解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=10,∴△EBC的周长=BC+BE+CE=11厘米+9厘米=20厘米,故选:C.8.(3分)分式值为0,则x应满足()A.x=﹣1 B.x=1 C.x=±1 D.x=﹣2【解答】解:∵分式值为0,∴x2﹣1=0,(x﹣1)(x+2)≠0,解得:x=﹣1.故选:A.9.(3分)下列约分中,正确的是()A.=x3B.=0C.D.【解答】解:A、=x4,故本选项错误;B、=1,故本选项错误;C、==,故本选项正确;D、=,故本选项错误;故选:C.10.(3分)计算:的结果为()A.1 B. C. D.【解答】解:===1,故选A.二、填空题(每题3分,共30分)11.(3分)如图,点E,F分别在∠CAB的边AC,AB上,若AB=AC,AE=AF,BE与CF交于点D.给出结论:①△ABE≌△ACF;②BD=DE;③△BDF≌△CDE;③点D在∠BAC的平分线上其中正确的结论有①③④(填写序号)【解答】解:在△CAF和△BAE中,∵,∴△CAF≌△BAE(SAS),即△ABE≌△ACF,∴①正确;∵根据已知不能推出BD=DE,∴②错误;∵△ABE≌△ACF,∴∠C=∠B,∵AC=AB,AE=A F,∴CE=BF,在△CED和△BFD中,∵,∴△CED≌△BFD(AAS),∴③正确;连接AD,∵△CED≌△BFD,∴DE=DF,在△EAD和△FAD中,∵,∴△EAD≌△FAD(SSS),∴∠EAD=∠FAD,即D在∠BAC的角平分线上,∴④正确;故答案为:①③④.12.(3分)如果一个等腰三角形的一个外角等于40°,则该等腰三角形的底角的度数是20°.【解答】解:∵三角形相邻的内外角互补∴这个内角为140°∵三角形的内角和为180°∴底角不能为140°∴底角为20°.故填20°.13.(3分)下列式子①,②,③,④中,是分式的有①③个.【解答】解:①,③,是分式,故答案为:①③14.(3分)点M(﹣2,1)关于x轴对称的点N的坐标是N(﹣2,﹣1).【解答】解:根据题意,M与N关于x轴对称,则其横坐标相等,纵坐标互为相反数;所以N点坐标是(﹣2,﹣1).故答案为:(﹣2,﹣1).15.(3分)如图,∠DAB=∠EAC=60°,AB=AD,AC=AE,BE和CD相交于O,AB和CD相交于P,则∠DOE的度数是120°.【解答】解:∵∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠BAC+∠EAC,∴∠DAC=∠EAB,在△ADC和△AEB中,,∴△ADC≌△AEB(SAS),∴∠E=∠ACD,又∵∠AFE=∠OFC,∴∠EAF=∠COF=60°,∴∠DOE=120°.故答案为:120.16.(3分)用直尺和圆规作一个角等于已知角的示意图如下,则要说明∠D′O′C′=∠DOC,需要证明△D′O′C′≌△DOC,则这两个三角形全等的依据是SSS(写出全等的简写).【解答】解:OC=O′C′,OD=O′D′,CD=C′D′,从而可以利用SSS判定其全等.故填SSS.17.(3分)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,∠CMD=35°,则∠MAB是35度.【解答】解:如图,过点M作MN⊥AD于N,∵∠C=90°,DM平分∠ADC,∴MC=MN,∴∠CMD=∠NMD,∵M是BC的中点,∴MB=MC,∴MB=MN,又∵∠B=90°,∴AM是∠BAD的平分线,∠AMB=∠AMN,∵∠CMD=35°,∴∠AMB=(180°﹣35°×2)=55°,∴∠MAB=90°﹣∠AMB=90°﹣55°=35°.故答案为:3518.(3分)化简÷的结果是2x.【解答】解:原式=•=2x.故答案为2x.19.(3分)若,则的值是6.【解答】解:由,可以得到:a﹣b=﹣4ab,∴=.故的值是6.20.(3分)在等边三角形ABC中,AD是BC边上的高,E为AC的中点P为AD上一动点,若AD=12,则PC+PE的最小值为12.【解答】解:如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵AD=12,点E是边AC的中点,∴AD=BE=12,∴PE+PC的最小值是12.故答案为12,三、解答题:(21--25题每题8分,26--27题每题10分共60分)21.(8分)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.试判断线段AE与CD的关系,并说明理由.【解答】解:AE=CD,AE⊥CD,理由:延长AE交CD于M,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS),∴AE=CD,∠AEB=∠BDC,∵∠ABC=90°,∴∠DAE+∠AEB=90°,∴∠DAE+∠BDC=90°,∴∠AMD=90°,∴AM⊥CD.22.(8分)如图已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE ⊥直线m,垂足分别为点D、E.若BD=4,CE=6,试求DE的长.【解答】解:∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵BD⊥m,∴∠BDA=90°,∴∠DBA+∠BAD=90°,∴∠DBA=∠CAE,在△ABD和△CAE中,∴△DBA≌△EAC(AAS),∴AE=DB,AD=CE,∵BD=4,CE=6,∴DE=DA+AE=CE+BD=10.23.(8分)已知:如图,AB=AC,D是AB上一点,DE⊥BC于点E,ED的延长线交CA的延长线于点F.求证:△ADF是等腰三角形.【解答】解:∵AB=AC,∴∠B=∠C(等边对等角),∵DE⊥BC于E,∴∠FEB=∠FEC=90°,∴∠B+∠EDB=∠C+∠EFC=90°,∴∠EFC=∠EDB(等角的余角相等),∵∠EDB=∠ADF(对顶角相等),∴∠EFC=∠A DF,∴△ADF是等腰三角形.24.(8分)如图,∠ABC的平分线BF与∠ACG的平分线CF相交于点F,过点F作DE∥BC交AC于E,若BD=8,DE=3,求CE的长.【解答】解:∵BF、CF分别平分∠ABC、∠ACB的外角,∴∠DBF=∠CBF,∠FCE=∠FCM,∵DE∥BC,∴∠DFB=∠CBF,∠EF C=∠FCM,∴∠DBF=∠DFB,∠FCE=∠EFC,∴BD=FD,EF=CE,∴BD﹣CE=FD﹣EF=DE,∴EF=DF﹣DE=BD﹣DE=8﹣3=5,∴EC=5.故答案为5.25.(8分)计算(1)(1﹣)2÷(2)•﹣÷.【解答】解:(1)(1﹣)2÷=×=(2)•﹣÷=﹣==126.(10分)将分式(x﹣)÷化简,然后请你给x选择一个合适的值代入求值.【解答】解:(x﹣)÷=(﹣)×=×=x+1,当x=3时,原式=4.27.(10分)如图,在四边形ABCD中,∠C=∠B=90°,M为CB的中点,且DM平分∠ADC,(1)AM平分∠DAB吗?为什么?(2)线段AD,AB,DC有怎样的数量关系,说明理由.【解答】解:(1)AM是平分∠DAB.理由:作ME⊥AD于点E,∴∠AEM=∠DEM=90°.∵DM平分∠ADC,∴∠EDM=∠CDM./ ∵∠C=∠B=90°,∴∠B=∠AEM.∠DEM=∠C.∴ME=MC.∵M是BC的中点,∴BM=CM.∴BM=EM.在Rt△AEM和Rt△ABM中,∴Rt△AEM≌Rt△ABM(HL),∴∠EAM=∠BAM,∠AME=∠AMB,∴AM是平分∠DAB;(2)AD=CD+AB.理由:如图2,延长DM、AB相交于点F,∵M是BC的中点,∴CM=BM.∵AB∥CD,∴∠C=∠B,∠CDM=∠F.在△DCM和△FBM中,,∴△DCM≌△FBM(AAS),∴CD=BF,DM=FM.∵AM⊥DM,∴AD=AF.∵AF=AB+BF,∴AF=AB+CD,∴AD=AB+CD./。

2022-2023学年全国初中八年级上数学苏科版期中试卷(含解析)

2022-2023学年全国初中八年级上数学苏科版期中试卷(含解析)

2022-2023学年全国八年级上数学期中试卷考试总分:158 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )1. 第届冬季奥林匹克运动会,将于年月在我国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部分图形,其中不是轴对称图形的是 A. B. C. D.2. 下列各组数中不能作为直角三角形的三边长的是( )A.,,B.,,C.,,D.,,2420222()1.52381517681091215AB =FD,AC =FE,BD =CE △ABC △FDE3. 如图,,则和( )A.一定全等B.一定不全等C.可能全等D.无法确定4. 如图,点,,,共线, ,添加一个条件,不能判定的是( )A.B.C.D.5. 直角三角形的两条直角边为,,则这个直角三角形斜边上的中线长为( )A.B.C.D.6. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为,较短直角边长为.若,大正方形的面积为,则小正方形的边长为 ( )AB =FD,AC =FE,BD =CE △ABC △FDE B F C E ∠B =∠E,BF =EC △ABC ≅△DEF AB =DE∠A =∠DAC =DFAC//FD3452.53.54.5a b ab =825A.B.C.D. 7. 已知直线,一块含角的直角三角板如图放置,,则( )A.B.C.D.8. 小颖在做下面的数学作业时,因钢笔漏墨水,不小心将部分字迹污损了,作业过程如下(涂黑部分即为污损部分):如图,平分,,试说明:. 理由:因为平分,所以,又因为,所以,故,所以. 小颖思考:污损部分应分别是以下四项中的两项:①;②;③;④.那么她补出来的部分应是A.①④B.②③C.①②D.③④卷II (非选择题)9643//l 1l 230∘∠1=25∘∠2=30∘35∘40∘45∘OP ∠AOB MN //OB OM =MN OP ∠AOB MN //OB ∠1=∠3OM =MN ∠1=∠2∠2=∠3∠3=∠4∠1=∠4( )二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )9. 如图所示的网格是正方形网格,图形的各个顶点均为格点,则________.10. 如图,已知,要说明,还要添加的条件为________,它们全等的依据是________(写出一条即可).11. 如图,中,,以为直径的与交于点,若点为的中点,则的长为________.12. 如图,在四边形中,,则的取值范围是________.13. 直角三角形的三边长为连续偶数,则这三个数分别为________,斜边上的高为________.14. 如图,在中, ,是边的垂直平分线, ,,则的周长是________.∠1+∠2=AB =AD △ABC ≅△ADC △ABC AC =BC =5,AB =6AB ⊙O AC D E BD DE ABCD ∠B =∠D =,∠A =,AB =490∘60∘AD △ABC AB =AC DE AC AB =8cm BC =6cm △BCD cm15. 如果一个等腰三角形一腰上的高与另一腰的夹角为,那么这个等腰三角形的底角度数为________.16. 在中,,,,在上取一点.使,过点作交的延长线于点,若,则________.三、 解答题 (本题共计 11 小题 ,每题 10 分 ,共计110分 )17. 如图,已知,,,,求的度数和的长.18. 如图,中,已知,,分别是,延长线上的点,且.求证:.19.如图,用四个一样的一个直角边分别为、 斜边为的直角三角形可以拼成一个正方形,可以用两种方法求出中间正方形的面积:50∘Rt △ABC ∠ACB =90∘BC =2cm CD ⊥AB AC E EC =BC E EF ⊥AC CD F EF =5cm AB =cm △ABC ≅△DEF ∠A =30∘∠B =50∘BF =2∠DFE EC △ABC AB =AC D E CB BC DB =CE ∠D =∠E a b (b >a)c S S =方法:先求出中间正方形的边长,直接得出: __________;方法:用大正方形的面积减去四个三角形的面积:__________;由上述两种方法求得的同一正方形的面积相等,由此可以得到、、之间存在着关系为:________.20. 如图,某工厂到直线公路的距离为千米,与该公路上车站的距离为千米,现要在公路边上建一个物品中转站,使,求物品中转站与车站之间的距离.21. 某地有两个村庄,,和两条相交叉的公路,,现计划修建一个物资仓库,希望仓库到两个村庄的距离相等,到两条公路的距离也相等,请你确定该点.22. 如图,中,是的垂直平分线,的周长为,的周长为,求的长.23. 如图,在正方形网格上的一个,且每个小正方形的边长为(其中点,,均在网格上).(1)作关于直线的轴对称图形;(2)在上画出点,使得最小;1S =2S =a b c A l AB 6D 10C CA =CD M N OA OB △ABC DE AC △ABC 21cm △ABD 13cm AE △ABC 1A B C △ABC MN △A'B'C'MN P PA +PC △ABC(3)求出的面积.24. 在如图所示的三角形纸片中,,把沿折叠,当点落在四边形内部的点处时,求的度数.25. 如图,于点于点与相交于点,连接线段恰好平分.求证:.26. 如图,在中,,点是边上一点,,若,,求的长.27. 如图,在中,,以为直径作,分别交于点,交的延长线于点,过点作于点,连接交线段于点.求证:是的切线;若,求阴影部分的面积;若,求证:为的中点.△ABC ABC ∠A =40∘△ABC DE A BCDE A ′∠1+∠2BD ⊥AC D,CE ⊥AB E,BD CE O AO,AO ∠BAC OB =OC Rt △ABC ∠C =90∘D BC AD =BD AB =8BD =5CD △ABC AB =AC AB ⊙O BC D CA E D DH ⊥AC H DE OA F (1)DH ⊙O (2)AB =4,∠ABD =30∘(3)=FD EF 32A EH参考答案与试题解析2022-2023学年全国八年级上数学期中试卷一、 选择题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )1.【答案】D【考点】轴对称图形【解析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:是轴对称图形,故此选项错误;是轴对称图形,故此选项错误;是轴对称图形,故此选项错误;不是轴对称图形,故此选项正确.故选.2.【答案】A【考点】勾股数【解析】分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形.【解答】解:、∵,∴,,不能构成直角三角形.、∵,∴,,能构成直角三角形;、∵,∴,,能构成直角三角形;、∵,∴,,能构成直角三角形.故选.3.A B C D D A +≠1.522232 1.523B +=8215217281517C +=62821026810D +=9212215291215A【答案】A【考点】全等三角形的判定【解析】此题暂无解析【解答】此题暂无解答4.【答案】C【考点】全等三角形的判定【解析】此题暂无解析【解答】此题暂无解答5.【答案】B【考点】勾股定理直角三角形斜边上的中线【解析】此题暂无解析【解答】解:∵两直角边分别为,,∴斜边,43==5+4232−−−−−−√×5=2.51∴斜边上的中线长.故选.6.【答案】D【考点】勾股定理【解析】由题意可知:中间小正方形的边长为:,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:,∵每一个直角三角形的面积为:,∴,∴,∴.故选.7.【答案】B【考点】三角形的外角性质平行线的性质【解析】先根据三角形外角的性质求出的度数,再由平行线的性质得出的度数,由直角三角形的性质即可得出结论.【解答】解:如图,=×5=2.512B a −b a −b ab =×81212=44×ab +(a −b 12)2=25(a −b)2=25−16=9a −b =3D ∠3∠4∠3△ADG∵是的外角,∴,∵,∴,∵,∴,∴.故选.8.【答案】C【考点】平行线的性质角平分线的定义【解析】由角平分线,首先想到它分得的两个角相等,可能是;由,可得内错角相等,同位角相等.再结合结论,可知是经等量代换得到.故问题解决.【解答】解:∵平分,∴.∵,∴.故选.二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )9.【答案】【考点】全等三角形的性质【解析】直接利用网格得出对应角=,进而得出答案.【解答】解:如图所示,∠3△ADG ∠3=∠A +∠1=+=30∘25∘55∘//l 1l 2∠3=∠4=55∘∠4+∠EFC =90∘∠EFC =−=90∘55∘35∘∠2=35∘B ∠1=∠2MN //OB∠1=∠3OP ∠AOB ∠1=∠2MN //OB ∠2=∠3C 45∘∠1∠3由题意可得:,则.故答案为:.10.【答案】(答案不唯一),(答案不唯一)【考点】全等三角形的判定【解析】要说明,现有,公共边,需第三边对应相等,于是答案可得.【解答】解:添加条件.∵在和中,,,,∴.故答案为:(答案不唯一);(答案不唯一).11.【答案】【考点】角平分线的性质【解析】此题暂无解析【解答】此题暂无解答12.【答案】∠1=∠3∠1+∠2=∠2+∠3=45∘45∘DC =BC SSS △ABC ≅△ADC AB =AD AC =AC DC =BC △ABC △ADC AB =AD AC =AC DC =BC △ABC ≅△ADC(SSS)DC =BC SSS 65–√52<AD <8【考点】直角三角形的性质勾股定理含30度角的直角三角形【解析】【解答】解:如图,延长交的延长线于,作于.在中,∵,,∴,在中,,∴的取值范围为.故答案为:.13.【答案】,,,【考点】勾股定理三角形的面积【解析】根据连续偶数相差是,设中间的偶数是,则另外两个是,根据勾股定理和面积公式即可解答.【解答】解:根据连续偶数相差是,设中间的偶数是,则另外两个是,,根据勾股定理,得:,,BC AD E BF ⊥AD F Rt △ABE ∠E =30∘AB =4AE =2AB =8Rt △ABF AF =AB =212AD 2<AD <82<AD <868102452x x −2,x +22x x −2x +2+=(x −2)2x 2(x +2)2−4x +4+=+4x +4x 2x 2x 2−8x =02,,解得或(不符合题意,应舍去),∴,,所以这三个数分别为,,;斜边上的高为:.故答案为:,,;.14.【答案】【考点】线段垂直平分线的性质【解析】要求的周长,知道,只要求得即可,根据线段垂直平分线的性质得,于是,答案可得.【解答】解:∵为边的垂直平分线,∴,∵, ,∴的周长为.故答案为:.15.【答案】或【考点】等腰三角形的性质【解析】根据题意,等腰三角形一腰上的高与另一腰的夹角为,分两种情况讨论,①如图一,当一腰上的高在三角形内部时,即=时,②如图二,当一腰上的高在三角形外部时,即=时;根据等腰三角形的性质,解答出即可.【解答】①如图,−8x =0x 2x (x −8)=0x =8x =0x −2=6x +2=106810=6×810245*********△BCD BC =6cm BD +CD AD =CD CD +BD =AD +BD =AB DE AC AD =CD AB =8cm BC =6cm △BCD CD +BD +BC =AD +BD +CD =AB +BC =14(cm)1470∘20∘50∘∠ABD 50∘∠ABD 50∘∵是等腰三角形,,,,∴在直角中,,∴;②如图二,∵是等腰三角形,,,,∴在直角中,,又∵,,∴.故答案为:或.16.【答案】【考点】全等三角形的性质与判定勾股定理【解析】证明进而得到再在中由勾股定理即可求解.【解答】解:因为,所以,因为,所以,所以,又因为,,所以,所以,在中,.故答案为:.△ABC BD ⊥AC ∠ADB =90∘∠ABD =50∘△ABD ∠A =−=90∘50∘40∘∠C =∠ABC ==−180∘40∘270∘△ABC BD ⊥AC ∠ADB =90∘∠ABD =50∘△ABD ∠BAD =−=90∘50∘40∘∠BAD =∠ABC +∠C ∠ABC =∠C ∠C =∠ABC ===∠BAD 240220∘70∘20∘29−−√△ABC ≅ΔFCEF =AC =5Rt △ABC ∠ACB =90∘∠ECF +∠DCB =90∘CD ⊥AB ∠DCB +∠B =90∘∠ECF =∠B BC =CE ∠FEC =∠ACB =90∘△ABC ≅△FCE (ASA)EF =CA =5cm Rt △ABC AB ===cm A +B C 2C 2−−−−−−−−−−√+5222−−−−−−√29−−√29−−√三、 解答题 (本题共计 11 小题 ,每题 10 分 ,共计110分 )17.【答案】解:∵,,∴.∵,∴,,∴,即.∵,∴.【考点】全等三角形的性质【解析】根据三角形的内角和等于求出的度数,然后根据全等三角形对应角相等即可求出,全等三角形对应边相等可得,然后推出.【解答】解:∵,,∴.∵,∴,,∴,即.∵,∴.18.【答案】证明:如图,作的中线,∴.在与中,∴,∴.∵,∴,∴.在与中,∠A =30∘∠B =50∘∠ACB =−∠A −∠B =−−=180∘180∘30∘50∘100∘△ABC ≅△DEF ∠DFE =∠ACB =100∘EF =BC EF −CF =BC −CF EC =BF BF =2EC =2180∘∠ACB ∠DFE EF =BC EC =BF ∠A =30∘∠B =50∘∠ACB =−∠A −∠B =−−=180∘180∘30∘50∘100∘△ABC ≅△DEF ∠DFE =∠ACB =100∘EF =BC EF −CF =BC −CF EC =BF BF =2EC =2△ABC AG BG =CG △ABG △ACG AB =AC,AG =AG,BG =CG,△ABG ≅△ACG(SSS)∠AGB =∠AGC DB =CE DB +BG =CE +CG DG =EG △AGD △AGE AG =AG,∴,∴.【考点】全等三角形的性质与判定【解析】由已知条件,根据判定,根据全等三角形的对应角相等,从而得到.【解答】证明:如图,作的中线,∴.在与中,∴,∴.∵,∴,∴.在与中,∴,∴.19.【答案】,,【考点】勾股定理【解析】直接求出小正方形的边长,然后求面积,再用勾股定理即可求解. AG =AG,∠AGD =∠AGE,DG =EG,△AGD ≅△AGE(SAS)∠D =∠E SAS △ABD ≅△ACE ∠D =∠E △ABC AG BG =CG △ABG △ACG AB =AC,AG =AG,BG =CG,△ABG ≅△ACG(SSS)∠AGB =∠AGC DB =CE DB +BG =CE +CG DG =EG △AGD △AGE AG =AG,∠AGD =∠AGE,DG =EG,△AGD ≅△AGE(SAS)∠D =∠E −2ab +b 2a 2−2ab c 2=+c 2a 2b 2【解答】解:方法:;方法:;关系:,即.故答案为:;;.20.【答案】解:∵于,千米,千米,∴(千米).设千米,则千米,千米,在中,,即,,解得:.答:物品中转站与车站之间的距离为千米.【考点】勾股定理的应用【解析】无【解答】解:∵于,千米,千米,∴(千米).设千米,则千米,千米,在中,,即,,解得:.答:物品中转站与车站之间的距离为千米.21.【答案】解:仓库在 的平分线和的垂直平分线的交点上和 的邻补角平分线和的垂直平分线的交点上.如图:1S =(b −a =−2ab +)2b 2a 22S =−ab ×4=−2ab c 212c 2−2ab +=−2ab b 2a 2c 2=+c 2a 2b 2−2ab +b 2a 2−2ab c 2=+c 2a 2b 2AB ⊥l B AB =6AD =10BD ===8A −A D 2B 2−−−−−−−−−−√−10262−−−−−−−√CD =x CB =(8−x)CA =CD =x Rt △ABC C =B +A A 2C 2B 2=(8−x +x 2)262=64+−16x +x 2x 262x =6.25 6.25AB ⊥l B AB =6AD =10BD ===8A −A D 2B 2−−−−−−−−−−√−10262−−−−−−−√CD =x CB =(8−x)CA =CD =x Rt △ABC C =B +A A 2C 2B 2=(8−x +x 2)262=64+−16x +x 2x 262x =6.25 6.25D ∠AOB OE MN ∠AOB OE MN理由是:在 的角平分线上,∴到两条公路的距离相等.又∵在 的垂直平分线上,,∴ 为所求同理可得出: 也符合要求.【考点】作图—尺规作图的定义线段垂直平分线的性质角平分线的性质【解析】此题暂无解析【解答】解:仓库在 的平分线和的垂直平分线的交点上和 的邻补角平分线和的垂直平分线的交点上.如图:理由是:在 的角平分线上,∴到两条公路的距离相等.又∵在 的垂直平分线上,,∴ 为所求同理可得出: 也符合要求.22.【答案】.D ∠AOB D D MN ∴DM =DN D .D ′D ∠AOB OE MN ∠AOB OE MN .D ∠AOB D D MN ∴DM =DN D .D ′AC解:∵是的垂直平分线,∴,,∵的周长为,∴,∵的周长为,∴,∴,∴.【考点】线段垂直平分线的性质【解析】首先进出,然后求出即可求解.【解答】解:∵是的垂直平分线,∴,,∵的周长为,∴,∵的周长为,∴,∴,∴.23.【答案】如图,为所作;如图,点为所作;的面积==.【考点】作图-轴对称变换DE AC AD =DC AE =CE =AC 12△ABC 21cm AB +BC +AC =21cm △ABD 13cm AB +BD +AD =AB +BD +DC =AB +BC =13cm AC =8cm AE =4cm AB +BC +AC =21cmAC =8cm DE AC AD =DC AE =CE =AC 12△ABC 21cm AB +BC +AC =21cm △ABD 13cm AB +BD +AD =AB +BD +DC =AB +BC =13cm AC =8cm AE =4cm △A'B'C'P △ABC 3×4−×1×6−×4×6轴对称——最短路线问题【解析】此题暂无解析【解答】此题暂无解答24.【答案】解:由题意,得∴在四边形中,,又,,∴【考点】全等三角形的判定【解析】此题暂无解析【解答】解:由题意,得∴在四边形中,,又,,∴25.【答案】证明:于点,于点恰好平分,,,,.【考点】角平分线的性质全等三角形的应用∠=∠A =A ′40∘EAD A ′∠EA +∠DA =−=A ′A ′360∘80∘280∘∠1+∠EA =A ′180∘∠2+∠DA =A ′180∘∠1+∠2=−(∠EA +∠DA)360∘A ′A ′=80∘∠=∠A =A ′40∘EAD A ′∠EA +∠DA =−=A ′A ′360∘80∘280∘∠1+∠EA =A ′180∘∠2+∠DA =A ′180∘∠1+∠2=−(∠EA +∠DA)360∘A ′A ′=80∘∵BD ⊥AC D CE ⊥AB E,AO ∠BAC ∴OE =OD,∠BEO =∠CDO =90∘∵∠BOE =∠COD ∴△BOE ≅△COD (ASA)∴OB =OC【解析】此题暂无解析【解答】证明:于点,于点恰好平分,,,,.26.【答案】解:设,则,即,∴,即,,∴的长为.【考点】勾股定理【解析】【解答】解:设,则,即,∴,即,,∴的长为.27.【答案】证明:连接,如图所示,∵,∴是等腰三角形,①,在中,∵,∴②,由①②得:,∵BD ⊥AC D CE ⊥AB E,AO ∠BAC ∴OE =OD,∠BEO =∠CDO =90∘∵∠BOE =∠COD ∴△BOE ≅△COD (ASA)∴OB =OC CD =x A −C =A −B D 2D 2B 2C 2−=−(5+x 52x 282)225−=64−25−10x −x 2x 210x =14x =1.4CD 1.4m CD =x A −C =A −B D 2D 2B 2C 2−=−(5+x 52x 282)225−=64−25−10x −x 2x 210x =14x =1.4CD 1.4m (1)OD OB =OD △ODB ∠OBD =∠ODB △ABC AB =AC ∠ABC =∠ACB ∠ODB =∠OBD =∠ACB OD //AC∴,∵,∴,∴是的切线;解:连接,如图所示,∵为的直径,∴,∵,∴,∴阴影部分的面积.证明:在中,,由可知:,∴是等腰三角形,∵,∵,∴,∴,设,,∵,,∴,∴,∴,∵,,∴,∴,∴,∴是的中点.【考点】相似三角形的性质与判定圆周角定理切线的判定等腰三角形的判定与性质【解析】(1)根据同圆的半径相等和等边对等角证明:,则,是圆的切线;(2)如图,先证明,得是等腰三角形,证明,则,设,,可得,根据等腰三角形三线合一得:,从而得结论;OD //AC DH ⊥AC DH ⊥OD DH ⊙O (2)AD AB ⊙O ∠ADB =90∘∠BAD =,AB =430∘AD =2,BD =23–√=×π−×2×2=2π−21222123–√3–√(3)⊙O ∵∠E =∠B ∴(1)∠E =∠B =∠C △EDC =FD EF 32AE //OD △AEF ∼△ODF ==FD EF OD AE 32OD =3x AE =2x AO =BO OD //AC BD =CD AC =2OD =6x EC =AE +AC =2x +6x =8x ED =DC DH ⊥EC EH =CH =4x AH =EH −AE =4x −2x =2x AE =AH A EH ∠ODB =∠OBD =∠ACB DH ⊥OD DH O 2∠E =∠B =∠C △EDC △AEF ∽△ODF ==FD EF OD AE 32OD =3x AE =2x EC =8x EH =CH =4x ⊙O OD =OB =r DF =OD =r(3)如图,设的半径为,即,证明,则,,证明,列比例式为:,则列方程可求出的值.【解答】证明:连接,如图所示,∵,∴是等腰三角形,①,在中,∵,∴②,由①②得:,∴,∵,∴,∴是的切线;解:连接,如图所示,∵为的直径,∴,∵,∴,∴阴影部分的面积.证明:在中,,由可知:,∴是等腰三角形,∵,∵,∴,∴,设,,∵,,∴,∴,∴,∵,,∴,∴,2⊙O r OD =OB =r DF =OD =r DE =DF +EF =r +1BD =CD =DE =r +1△BFD ∽△EFA =EF FA BF FD r (1)OD OB =OD △ODB ∠OBD =∠ODB △ABC AB =AC ∠ABC =∠ACB ∠ODB =∠OBD =∠ACB OD //AC DH ⊥AC DH ⊥OD DH ⊙O (2)AD AB ⊙O ∠ADB =90∘∠BAD =,AB =430∘AD =2,BD =23–√=×π−×2×2=2π−21222123–√3–√(3)⊙O ∵∠E =∠B ∴(1)∠E =∠B =∠C △EDC =FD EF 32AE //OD △AEF ∼△ODF ==FD EF OD AE 32OD =3x AE =2x AO =BO OD //AC BD =CD AC =2OD =6x EC =AE +AC =2x +6x =8x ED =DC DH ⊥EC EH =CH =4x AH =EH −AE =4x −2x =2x AE =AH∴,∴是的中点.AE =AH A EH。

苏科版初二上数学期中试卷

苏科版初二上数学期中试卷

一、选择题(每题4分,共20分)1. 下列各数中,不是有理数的是()A. 0.5B. -πC. 1/3D. √42. 下列等式中,正确的是()A. √9 = 3B. √16 = -4C. (-3)^2 = 9D. (-2)^3 = -83. 若a=2,b=-3,则下列表达式中值为负的是()A. a+bB. a-bC. abD. a/b4. 下列函数中,是二次函数的是()A. y = x^2 + 2x + 1B. y = 2x + 3C. y = x^3 + 2D. y = √x5. 下列各式中,正确表示方程(x+2)^2 = 9的解集的是()A. x = 1 或 x = -5B. x = 3 或 x = -1C. x = 1 或 x = 3D. x = -1 或 x = -5二、填空题(每题4分,共20分)6. 已知x=5,则3x-2的值为______。

7. 若a=2,b=-3,则a^2 + b^2的值为______。

8. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数为______。

9. 若x-2是方程x^2-3x+2=0的解,则x的值为______。

10. 已知函数y=2x+1,当x=3时,y的值为______。

三、解答题(共60分)11. (12分)计算下列各式的值:(1)(a+3)^2 - (a-3)^2(2)(2x-1)^2 + (3x+2)^212. (12分)解下列方程:(1)3x^2 - 6x + 2 = 0(2)(x+1)(x-2) = 013. (12分)已知函数y=x^2+2x-3,求:(1)当x=2时,y的值;(2)函数的对称轴方程。

14. (12分)在△ABC中,∠A=60°,∠B=45°,AB=6cm,求:(1)△ABC的面积;(2)AC的长度。

15. (12分)某校组织学生参加数学竞赛,共有50名学生参加。

已知参加竞赛的学生中,有40%的学生获得了奖项,其中有20%的学生获得了一等奖,30%的学生获得了二等奖,其余的学生获得了三等奖。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019~2020学年第一学期八年级数学学科期中检测卷班级______姓名______ 学号______一、选择题(本大题共6小题,每小题2分,共12分)1.下面四个美术字中可以看作轴对称图形的是( )A.B.C.D.2.下列各组线段能构成直角三角形的一组是( ) A .5cm ,9cm ,12cm B .7cm ,12cm ,13cm C .30cm ,40cm ,50cmD .3cm ,4cm ,6cm3.如图,已知图中的两个三角形全等,则∠1等于( )A .50°B .58°C .60°D .72°4.如图,AC =AD ,BC =BD ,则下面说法一定正确的是( )A .AB 垂直平分CDB .CD 垂直平分ABC .AB 与CD 互相垂直平分D .CD 平分∠ACB5.如图,在△ABC 中,分别以点A 和点B 为圆心,大于AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD .若△ADC 的周长为14,BC =8,则AC 的长为( ) A .5 B .6C .7D .86.如图,在△ABC 中,CD ⊥AB 于点D ,BE ⊥AC 于点E ,F 为BC 的中点,DE =5,BC =8,则△DEF 的周长是( ) A .21B .18C .13D .15二、填空题(本大题共10小题,每小题2分,共20分)7.等腰三角形的对称轴是 . 8.直角三角形的斜边长是5,一直角边是3,则此三角形的周长是 . 9.等腰三角形ABC 的周长为8cm ,其中腰长AB=3cm ,则BC = cm .10.如图,∠1=∠2,要利用“AAS ”得到△ABD ≌△ACD ,需要增加的一个条件(第3题)(第4题)ABDF CE(第6题)(第5题)A(第 10 题) (第 11 题) (第 12 题)11.如图,Rt △ABC 中,∠C =90○,∠ABC 的平分线交AC 于点P ,PD ⊥AB ,垂足为D ,若PD =2,则PC = .12.如图,△ABC ≌△ADE ,若∠C =35°,∠D =75°,∠DAC =25°,则∠BAD = °.13.如图,一个直径为8cm 的杯子,在它的正中间竖直放一根筷子,筷子露出杯子外1cm ,当筷子倒向杯壁时(筷子底端不动),筷子顶端刚好触到杯口,则筷子长度为 cm .14.观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数: .(第 13 题) (第15题) (第 16题)15.如图,已知∠AOB =30°,点P 在∠AOB 内部,点P 1与点P 关于OA 对称,点P 2与点P 关于OB 对称,连接P 1P 2交OA 、OB 于E 、F ,则∠EPF = °.16.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF ∥BC 交AB 于点E ,交AC 于点F ,过点O 作OD ⊥AC 于点D ,下列四个结论:①BE =EF -CF ;②A BOC ∠+=∠2190 ;③点O 到△ABC 各边的距离相等;④设OD=m ,AE+AF=n ,则mn S AEF 21=∆,其中正确的结论是 .(填所有正确的序号)三、解答题(本大题共10小题,共68分)17.(6分)已知:如图,点E 、F 在线段BD 上,BE =DF ,AB ∥CD ,∠A=∠C .求证:△ABF ≌△CDE .18.(6分)如图,网格中的△ABC 与△DEF 为轴对称图形. (1)利用网格线作出△ABC 与△DEF 的对称轴l ;(2)结合所画图形,在直线l 上画出点P ,使P A +PC 最小; (3)如果每一个小正方形的边长为1,请直接写出△ABC 的 面积= .19.(6些基本的尺规作图,这些特殊的角也能用尺规作出.下面请各位同学开动脑筋,只用直尺和圆规完成下列作图.已知:如图,射线OA .求作:∠AOB ,使得∠AOB 在射线OA 的上方,且∠AOB =45°(保留作图痕迹,不写作法).20.(6分)证明:有两个角相等的三角形是等腰三角形.已知: O(第17题)22.(8分)如图,△ABC 为等边三角形,BD 平分∠ABC 交AC 于点D ,DE ∥BC 交AB 于点E . (1)求证:△ADE 是等边三角形. (2)求证:AE =21AB .23.(6分)如图,折叠长方形纸片ABCD ,使点D 落在边BC 上的点F 处,折痕为AE .已知该纸片宽AB =3cm ,长BC =5cm .求EC 的长.24.(6分)如图,已知△ABC 的角平分线BD 与∠ACB 的外角平分线交于点D ,DE ∥BC 交AB 于点E ,交AC 于点F .求证:BE −CF =EF . (第21题)(第23题) A B F C E D (第22题)AE DBCA(第24题)25.(8分)在△ABC中,∠BAC=90°,AB=AC.点D从点B出发沿射线BC移动,以AD为边在AB的右侧作△ADE,且∠DAE=90°,AD=AE.连接CE.(1)如图1,若点D在BC边上,则∠BCE=º;(2)如图2②若BC=图1图2(第25题)26.(9分)【新知学习】如果一个三角形有一边上的中线等于这条边的一半,那么我们就把这样的三角形叫做“智慧三角形”. 【简单运用】(1)下列三个三角形,是智慧三角形的是 (填序号);(2)如图,已知等边三角形ABC ,请用刻度尺在该三角形边上找出所有满足条件的点D ,使△ABD 为“智慧三角形”,并写出作法;【深入探究】(3)如图,在正方形ABCD 中,点E 是BC 的中点,F 是CD 上一点,且CF =41CD ,试判断△AEF 是否为“智慧三角形”,并说明理由;【灵活应用】(4)如图,等边三角形ABC 边长5cm .若动点P 以1cm /s 的速度从点A 出发,沿△ABC 的边AB -BC -CA 运动.若另一动点Q 以2cm /s 的速度从点B 出发,沿边BC -CA -AB 运动,两点同时出发,当点Q 首次回到点B 时,两点同时停止运动.设运动时间为t (s ),那么t 为 (s )时,△PBQ 为“智慧三角形”. 68 77888 60º123A CB AFEDCBA P2018~2019学年度第一学期期中质量调研测试八年级数学评分标准一、选择题(本大题共6小题,每题2分,共12分)7.顶角平分线所在直线(答案不唯一);8.12;9.2或3;10.∠B =∠C;11.2;12.45;13.8.5;14.13,84,85 ;15.120;16.①②③4.三、解答题(本大题共10小题,共68分)17.(6分)∴BE+EF=DF+EF即BF=DE…………………2分∵AB∥CD∴∠B=∠D…………………3分在△ABF和△CDE中∠A=∠C.∠B=∠DBF=DE∴△ABF≌△CDE(AAS)…………………6分18.(6(2(3)19.(6正确作图求证:△ABC 是等腰三角形. …………………2分 证明:作△ABC 的角平分线AD .…………………3分得∠BAD=∠CAD在△ABD 和△ACD 中 ∠B=∠C∠BAD=∠CAD AD =AD∴△BAD ≌△CAD (AAS )…………………5分∴AB=AC∴△ABC 是等腰三角形 …………………6分 ∴∠A =∠ABC =∠C =60° …………………1分 ∵DE ∥BC∴∠AED =∠ABC =60º,∠ADE =∠C =60º…………………2分 ∴∠AED =∠ADE =∠A =60º∴△ADE 是等边三角形 …………………4分 (2)∵△ABC 为等边三角形∴AB =BC =AC∵AB =BC ,BD 平分∠ABC ∴AD =21AC …………………6分 ∵△ADE 是等边三角形 ∴AE =AD ∴AE =21AB …………………8分 (方法不唯一)23.(6分)(第21题)(第22题)AED BC∵∠B =90°∴ AB 2+BF 2= AF 2, ∵AB =3cm ,AF =5cm∴BF =4cm ,∵BC =5cm ,∴FC =1cm …………………3分 ∵∠C =90°,∴ EC 2+FC 2= EF 2 设EC =x ,则DE =EF=3-x∴(3-x )2=12+x 2…………………5分∴ x =34…………………6分24.(6分)证明:∵BD 平分∠ABC∴∠ABD =∠CBD …………………1分 ∵DE ∥BC∴∠EDB =∠CBD …………………2分 ∴∠ABD =∠EDB …………………3分 ∴DE =BE …………………4分 同理可证 DF =CF …………………5分 ∵EF =DE ﹣DF∴EF =BE ﹣CF …………………6分25.(8分)解:(1)90…………………2分 (2)①不发生变化. ∵AB =AC ,∠BAC =90°∴∠ABC =∠ACB =45°…………………3分 ∵∠BAC =∠DAE =90°∴∠BAC +∠DAC =∠DAE +∠DAC ∴∠BAD =∠CAE …………………4分 在△ACE 和△ABD 中AC=AB∠CAE=∠BAD AE =AD∴△ACE ≌△ABD …………………5分 ∴∠ACE =∠ABD =45°∴∠BCE =∠BCA +∠ACE =45°+45°=90°A BGCDEF(第24题)AEDCB图1AE②1174…………………8分 26.(9分)(1)①…………………1分(2)用刻度尺分别量取AC 、BC 的中点D 1、D 2.点D 1、D 2即为所求.…………………3分 (正确画出一个点并写出作法得1分)(3)△AEF 是“智慧三角形”…………………4分 理由如下:如图,设正方形的边长为4a ∵E 是BC 的中点 ∴BE =EC =2a ∵CF =41CD ∴FC =a ,DF =4a ﹣a =3a …………………5分 在Rt △ABE 中,AE 2=(4a )2+(2a )2=20a 2 在Rt △ECF 中,EF 2=(2a )2+a 2=5a 2 在Rt △ADF中,AF 2=(4a )2+(3a )2=25a 2∴AE 2+EF 2=AF 2∴△AEF 是直角三角形,∠AEF =90°∵直角三角形斜边AF 上的中线等于AF 的一半 ∴△AEF 为“智慧三角形”…………………7分 (4)1,25,425,7…………………9分A F EDCB。

相关文档
最新文档