新北师大版初中八年级数学上册第七章复习
北师大版八年级上册数学复习题(经典)(最新整理)
第一章 勾股定理一、选择题1.等腰三角形的腰长为13cm ,底边长为10cm ,则面积为( ).A .30 cm 2B .130 cm 2C .120 cm 2D .60 cm 22.已知Rt △ABC 中,∠C =90°,若cm ,cm ,则Rt △ABC 的面积14=+b a 10=c 为( ).(A )24cm 2 (B )36cm 2 (C )48cm 2 (D )60cm 23.如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S 1,S 2,S 3,则S 1,S 2,S 3之间的关系是( ).(A ) (B )(C ) (D)无法确定321S S S >+321S S S =+321S S S <+4、以下列各组数为边长,能组成直角三角形的是()A .2,3,4B .10,8,4C .7,25,24D .7,15,125、已知一个Rt △的两边长分别为3和4,则第三边长的平方是( )A .25B .14C .7D .7或256、以面积为9 cm 2的正方形对角线为边作正方形,其面积为( )A .9 cm 2B .13 cm 2C .18 cm 2D .24 cm 27、如图,直角△ABC 的周长为24,且AB:AC=5:3,则BC=( )A .6B .8C .10D .128、如图,一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米,如果梯子的顶端下滑4米,那么梯子的底部在水平方向上滑动了( )A .4米B .6米C .8米D .10米9、将一根长24 cm 的筷子,置于底面直径为5cm 、高为12cm 的圆柱形水杯中,设筷子露在杯子外面的长为hcm ,则h 的取值范围是( )A .5≤h ≤12B .5≤h ≤24C .11≤h ≤12D .12≤h ≤2410、已知,如图,长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A .6cm 2B .8cm 2C .10cm 2D .12cm 2二:解答题11.一个长为10m 为梯子斜靠在墙上,梯子的顶端距地面的垂直高度为8m ,梯子的顶端下滑2m 后,底端滑动多少米?12.一棵9m 高的树被风折断,树顶落在离树根3m 之处,若要查看断痕,要从树底开始爬多高?13.折叠长方形ABCD 的一边AD ,使点D 落在BC 边的F 点处,若AB=8cm ,BC=10cm ,求EC 的长. 321S S S第二章 实数1一、填空题:1、的算术平方根是__________。
数学北师大版八年级上册 第七章 平行线的证明《三角形内角和定理》一等奖创新教案第2课时(含答案)
数学北师大版八年级上册第七章平行线的证明《三角形内角和定理》一等奖创新教案第2课时(含答案)第七章平行线的证明7.5 三角形内角和定理第2 课时一、教学目标1.掌握三角形内角和定理的两个推理,并能运用这些定理解决简单的问题.2.经历探索与证明的过程,进一步发展推理能力.3.在一题多解、一题多变中,积累解决几何问题的经验,提升解决问题的能力.二、教学重点及难点重点:了解并掌握三角形的外角的定义.难点:掌握三角形内角和定理的两个推论,利用这两个推论进行简单的证明和计算.三、教学用具多媒体课件,三角板、直尺。
四、相关资源《三角形外角》动画,《三角形其他外角》动画.五、教学过程【新知导入】△ABC内角的一条边与另一条边的反向延长线组成的角,称为△ABC的外角.请试着画出△ABC的其他外角.设计意图:外角概念探究意义不大,所以直接明晰这一概念,通过在图中标注其他外角,深化学生对外角概念的理解,同时,在图中标注其他外角的过程也为发现有关外角的结论做了铺垫.【合作探究】图中,∠ACD与其他角有什么关系?请证明你的结论.通过学生讨论,发现:定理三角形的一个外角等于和它不相邻的两个内角的和.定理三角形的一个外角大于任何一个和它不相邻的内角.已知:△ABC.求证:∠ACD=∠A+∠B,∠ACD>∠A,∠ACD>∠B.证明:∵∠A+∠B+∠ACB=180°(三角形内角和定理),∴∠A+∠B=180°-∠ACB(等式的性质),∵∠ACD+∠ACB=180°(平角的定义)∴∠ACD=180°-∠ACB(等式的性质)∴∠ACD=∠A+∠B(等量代换)∴∠ACD>∠A,∠ACD>∠B.在这里,我们通过三角形的内角和定理直接推导出两个新定理.像这样,由一个基本事实或定理直接推出的定理,叫做这个基本事实或定理的推论.推论可以当做定理使用.设计意图:希望发现有关外角的两个定理.可以对学生进行适当的引导,关系既可以是不等关系,也可以是等量关系.【典例精析】例1 已知,如图,在△ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∥BC分析:要证明AD∥BC,只需证明“同位角相等”或“内错角相等”或“同旁内角互补”.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠B=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAE=∠EAC(角平分线的定义)∴∠DAE=∠B(等量代换)∴AD∥BC(同位角相等,两直线平行)想一想,还有没有其他的证明方法呢?这个题还可以用“内错角相等,两直线平行”来证.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠C=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAC=∠EAC(角平分线的定义)∴∠DAC=∠C(等量代换)∴AD∥BC(内错角相等,两直线平行)还可以用“同旁内角互补,两直线平行”来证.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠C=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAC=∠EAC∴∠DAC=∠C(等量代换)∵∠B+∠BAC+∠C=180°∴∠B+∠BAC+∠DAC=180°即:∠B+∠DAB=180°∴AD∥BC(同旁内角互补,两直线平行)设计意图:例题的图形较复杂,可以给出分析过程,鼓励学生先自行解决,同时对有困难的学生给予必要的指导.“想一想”关注解决问题方法的多样化,通过多种解法,开拓学生思维.例2 如图,P是△ABC内的一点,求证:∠BPC>∠A.解析:由题意无法直接得出∠BPC>∠A,延长BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得证.证明:延长BP,交AC于D,∵∠BPC是△PDC的外角(外角定义),∴∠BPC>∠PDC(三角形的一个外角大于任何一个和它不相邻的内角).∵∠PDC是△ABD的外角(外角定义),∴∠PDC>∠A(三角形的一个外角大于任何一个和它不相邻的内角).∴∠BPC>∠A.方法总结:利用推论2证明角的大小时,两个角应是同一个三角形的内角和外角.若不是,就需借助中间量转化求证.设计意图:让学生复习“三角形的一个外角大于任何一个和它不相邻的内角”,同时体会某些不等关系的递推和论证过程.鼓励学生寻求多种解法,如还可以连接AP,并延长AP交BC于点D ,这时∠BPC 和∠A分别被分成了两个小角,用“三角形的一个外角大于任何一个和它不相邻的内角”可以证明.【课堂练习】1.判断下列命题的对错.(1)三角形的外角和是指三角形的所有外角的和. ()×(2)三角形的外角和等于它的内角和的2倍. ()√(3)三角形的一个外角等于两个内角的和. ()×(4)三角形的一个外角等于与它不相邻的两个内角的和.()√(5)三角形的一个外角大于任何一个内角. ()×(6)三角形的一个内角小于任何一个与它不相邻的外角.()√2.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( )CA.直角三角形B.锐角三角形C.钝角三角形D.无法确定3.如图所示,若∠A=32°,∠B=45°,∠C=38°,则∠DFE等于( )BA.120°B.115°C.110°D.105°4.如图,AB//CD,∠A=37°, ∠C=63°,那么∠F等于()A.26°B.63°C.37°D.60°5.如图,如果∠1=100°,∠2=145°,那么∠3等于( )A.110°B.160°C.137°D.115°解析:方法总结:三角形的外角等于与它不相邻的两个内角的和,而不是等于任意两个内角的和.6.如图,求证:(1)∠BDC>∠A.(2)∠BDC=∠B+∠C+∠A.证法一:(1)连接AD,并延长AD,如图,则∠1是△ABD的一个外角,∠2是△ACD的一个外角.∴∠1>∠3.∠2>∠4(三角形的一个外角大于任何一个和它不相邻的内角)∴∠1+∠2>∠3+∠4(不等式的性质)即:∠BDC>∠BAC.(2)连结AD,并延长AD,如图.则∠1是△ABD的一个外角,∠2是△ACD的一个外角.∴∠1=∠3+∠B∠2=∠4+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∴∠1+∠2=∠3+∠4+∠B+∠C(等式的性质)即:∠BDC=∠B+∠C+∠BAC证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则∠BDC是△CDE的一个外角.∴∠BDC>∠DEC.(三角形的一个外角大于任何一个和它不相邻的内角)∵∠DEC是△ABE的一个外角(已作)∴∠DEC>∠A(三角形的一个外角大于任何一个和它不相邻的内角)∴∠BDC>∠A(不等式的性质)(2)延长BD交AC于E,则∠BDC是△DCE的一个外角.∴∠BDC=∠C+∠DEC(三角形的一个外角等于和它不相邻的两个内角的和)∵∠DEC是△ABE的一个外角∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∴∠BDC=∠B+∠C+∠BAC(等量代换)设计意图:巩固三角形外角定理.六、课堂小结今天这节课你学到了什么知识?1.外角2.三角形的外角等于与它不相邻的两个内角的和3.三角形的一个外角大于任何一个和它不相邻的内角设计意图:通过对三角形外角及性质的学习,使学生的认识有进一步的升华,再一次体会证明格式的严谨,体会到数学的严密性.七、板书设计7.5 三角形内角和定理(2)1.外角2.三角形的外角等于与它不相邻的两个内角的和3.三角形的一个外角大于任何一个和它不相邻的内角。
新北师大版八年级数学上册学习效果检测试题及答案
新北师大版八年级第七章学习效果检测试题时间120分钟满分120分一•选择题(每小题3分,共30分)1.下列语句中,是命题的是()A.直线AB和CD垂直吗B.过线段AB的中点C画AB的垂线C.同旁内角不互补,两直线不平行口.连接人,B两点2.(河池)如图,AB〃CD, CB,DB,ND = 65°,则NABC 的大小是()A. 25°B. 35°C. 50°D. 65°3.(河北中考)一个正方形和两个等边三角形的位置如图所示,若/ 3 = 50°,则N1 + N2 等于()A. 90°B. 100°C. 130°D. 180°4.如图,已知AABC中,点D在AC上,延长BC至£,连接口£,则下列结论不成立的是()A.ZDCE>ZADBB.ZADB>ZDBCC.ZADB>ZACBD.ZADB>ZDEC5.如图,AB〃CD,直线EF交AB于点E,交CD于点F, EG平分NBEF,交 CD于点G,N1 = 50°,则N2等于()A.50°B.60C.65D.906 .如图,已知直线AB 〃CD, BE 平分NABC,且BE 交CD 于点D, ZCDE=150°,则NC 的度数为()适合条件NA M ^NB M ^NC 的三角形ABC 是() 23锐角三角形B .直角三角形C .钝角三角形D .都有可能 (梅州模拟)如图,在折纸活动中,小明制作了一张^ABC 纸片,点D,E 分别在边AB, AC 上,将4ABC 沿着DE 折叠压平,A 与A,重合.若NA=75°,则N1 + N2等于()置,/1 = 25°,则N2等于(二■填空题(每小题3分,共24分)A . 150°B .130°C . 120°D . 100°7. (德阳中考)如图 直线 a 〃b,NA=38°,N1 = 46°则NACB 的度数 A . 9. A . 150° B . 210° C . 105°D . 75° 10.(荆门模拟)已知直线L”) 一块含30°角的直角三角板如图所示放 A . 30° B . 35° C . 40° D . 45° 11.命题“对顶角相等”的条件是— ,结论是是()8..17 .已知等腰三角形的一腰上的高与另一腰的夹角为40°,则这个等腰三角形的顶角为—O18 .如图所示,AB=BC=CD=DE=EF=FG,N1 = 130°,则NA=14. 如图,已知NA=NF=40°,NC=ND = 70°,贝 l"ABD=,/CED (聊城质检)已知如图,在^ABC D 为 BC 上一点,/1 = /2,/3 = 15. , 所示的虚线处后绕点M 逆时针方向旋转22°,则三角板的斜边与射线OA 的夹角度.三■解答题供66分)19. (8 分)如图,NC=N1,N2 和ND 互余,BE±FD证:AB〃CD.20.(8分)一天,爸爸带着小刚到建筑工地去玩,看见有如图所示的人字架,爸爸说:“小刚,我考考你,这个人字架的夹角N1等于130°,你能求出N3比 N2大多少吗?”小刚马上得到了正确答案,他的答案是多少?请说明理由.21.(8分)如图,点A, C, B, D在同一条直线上,BE〃DF,NA=NF, AB= FD,求证:AE=FC.22.(10 分)如图,AABC 中,NBAC=90°,NABC=NACB,又NBDC=N BCD,且N1 = N2,求N3的度数.23.(10分)(利津质检)如图,4ABC中,D, E, F分别为三边BC, BA,AC 上的点,NB=NDEB,NC=NDFC.若NA=70°,求NEDF 的度数.25.(12分)(顺义区质检)【问题】如图①,在4ABC中,BE平分NABC,CE 平分NACB,若NA=80°,则NBEC=;若/人=/,则NBEC=图①图②图③图④【探究】(1)如图②,在4ABC中,BD, BE三等分/ABC, CD, CE三等分NACB.若NA =n°,则NBEC=;(2)如图③,O是NABC与外角NACD的平分线BO和CO的交点,试分析NBOC 和NA有怎样的关系?请说明理由;(3)如图④,O是外角NDBC与外角NBCE的平分线BO和CO的交点,则NBOC 与NA有怎样的关系?(只写结论,不需证明)参考答案一、选择题(每小题3分,共30分)1. ( C )2. ( A )3. ( B )4. ( A )5. ( C )6. ( C )7.( C )8. ( B )9. ( A )10. ( B )二、填空题(每小题3分,共24分)11.一两个角是对顶角_,相等.12. __64° . 13. __50° .14.ZABD=__70° ,ZCED=__110° .15. __120° . 16. __22° .17.__50° 或130° . 18.—竺一度.三、解答题(共66分)19.解:・・・/C=N1,・・・CF〃BE,又BE,FD,・・・CF,FD,・・・/CFD=90°, 贝|JN2+N BFD=90°,又N2+N D=90°,,・.N D=N BFD,则AB〃CD20.解:50°,因为N1 = 130。
初二数学上册知识点.复习及配套练习(新北师大版本)
.新北师大版八年级数学上册知识点复习第一章勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即 2 2 2a b c 。
2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。
2 2 23.勾股定理逆定理:如果三角形的三边长a,b,c 满足a b c ,那么这个三角形是2 2 2直角三角形。
满足a b c 的三个正整数称为勾股数。
第二章实数1.平方根和算术平方根的概念及其性质:(1)概念:如果 2x a,那么x 是a 的平方根,记作: a ;其中 a 叫做a 的算术平方根。
(2)性质:①当a≥0 时, a ≥0;当a <0时, a 无意义;②2a =a ;③ 2a a 。
2.立方根的概念及其性质:(1)概念:若(2)性质:①33 a ;x a ,那么x 是a 的立方根,记作:33 a3 a ;② 3 a a;③ 3 a = 3 a3.实数的概念及其分类:(1)概念:实数是有理数和无理数的统称;(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。
无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。
4.与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。
因此,数轴正好可以被实数填满。
a a5.算术平方根的运算律:(a ≥0,b ≥0);(a ≥0,b >0)。
a b a bb b第三章位置与坐标1.直角坐标系及坐标的相关知识。
2.点的坐标间的关系:如果点A、B横坐标相同,则AB ∥y 轴;如果点A、B 纵坐标相同,则AB∥x 轴。
3.将图形的纵坐标保持不变,横坐标变为原来的1倍,所得到的图形与原图形关于y 轴对称;将图形的横坐标保持不变,纵坐标变为原来的1倍,所得到的图形与原图形关于x 轴对称;将图形的横、纵坐标都变为原来的1倍,所得到的图形与原图形关于原点成中心对称。
北师大版数学八年级上册全册复习
例4 李老师让同学们讨论这样一个问题,如图1-3所示,有 一个长方体盒子,底面正方形的边长为2 cm,高为3 cm,在长
方体盒子下底面的A点处有一只蚂蚁,它想吃到上底面的F点处
的食物,则怎样爬行路程最短?最短路程是多少?
过了一会,李老师问同学们答案,甲生说:先由A点到B点, 再走对角线BF;乙生说:我认为应由A先走对角线AC,再走C到F 点;丙生说:将长方形ABCD与长方形BEFC展开成长方形AEFD, 利用勾股定理求AF的长;丁生说:将长方形ABCD与正方形CFGD 展开成长方形ABFG,利用勾股定理求AF的长.你认为哪位同学
则BF=BC+CF=3+2=5(cm),AB=2 cm,连接AF,在 Rt△ABF中,AF2=BF2+AB2=52+22=29≈5.392,
∴AF=5.39 cm.连接AC, ∵AF<AC+CF,
∴丁的方法比乙的好. 比较丙生与丁生的计算结果,知丙生的说法正确.
图1-4
图1-5
方法技巧
最短路径问题是勾股定理在立体几何中的应用,一般做法 是把长方体(或其他几何体)侧面展开,将立体图形问题转化为 平面图形问题,再根据两点之间线段最短,用勾股定理求解.
图1-19
15.一个棱长为6的木箱(如图1-20),一只苍蝇位于左面的壁 上,且到该面上两侧棱距离相等的A处.一只蜘蛛位于右面壁上 ,且到该面与上、下底面两交线的距离相等的B处.已知A到下 底面的距离AA′=4,B到一个侧面的距离BB′=4,则蜘蛛沿这 个立方体木箱的内壁爬向苍蝇的最短路程为多少?
在 Rt△ECF 中,有 EF2=a22+a42=156a2. 在 Rt△FDA 中,有 AF2=a22+a2=54a2.
在 Rt△ABE 中,有 BE=a-14a=34a,
北师大版初中数学八年级上册 第七章平行线的证明 复习、回顾与思考---手拉手模型的应用 课件
不一样的拿破仑
拿破仑·波拿巴----数学爱好者
十九世纪法国伟大的军事家、政治家,法兰 西第一帝国的缔造者。法兰西第一帝国皇帝。
拿破仑三角形
• 以任意三角形的三条边为边,向外构造三个等边三角形,则这三个等边三角 形的外接圆圆心(即外心)恰为另一个等边三角形的顶点。”该等边三角形 称为
如图两个等腰直角三角形ADC与EDG,连接AG,CE,二者相交于H. 证明:
C
(1)△ADG≌△CDE是否成立? (2)AG是否与CE相等? (3)AG与CE之间的夹角为多少度?
HG
A
D
E
(1)△ADG≌△CDE是否成立? (2)AG是否与CE相等? (3)AG与CE之间的夹角为度加以构造
数学之美突出地表现为:方法之美、思维之美、应 用之美
思维,人类智慧之花最美的花朵。
• 课后作业
1 在等腰三角形ABC中,∠BAC=90°, 内部有一点P,若∠APC=135°,试判断 线段PA、PB、PC之间的数量关系
过C作CP‘⊥CP,使CP'=CP,构造等腰直角三角 形手拉手模型。
• 已知△ABC中,∠ABC=45°,点E为AC上的一点,连接BE,在BC上找一点G,使 得AG=AB,AG交BE于点K .
• (2)如图②,过点A作AD⊥AE于点D,过D.E分别向AB所在的直线作垂线, 垂足分别为点M.N,且NE=AM,若D为BE的中点,证明: AG 5
DG 2
找模型:
.
如图等腰直角三角形ACB与正方形 CDEF,连接AF,BD, 二者相交于H. 证明: (1)△ACF≌△BCD是否成立? (2)AF是否与BD相等? (3)AF与BD间的夹角为多少度?
模型推广:
7章末复习八年级上册数学北师大版
2.如图所示,已知∠4=70°, ∠3=110°,∠1=46°, 求∠2的度数.
解:因为∠4=70°, ∠3=110°, 所以∠3+∠4=180°, 所以AB∥CD, 故∠2=180°-∠1.
3. 如图,已知AB∥CD,AD∥BC,∠A的2倍与∠C
的3倍互补,求∠A和∠D的度数.
解:因为AB//CD,所以 ∠A+ ∠D=180°.
解:AB//CD.理由如下: ∵ MN//EF(已知), ∴ ∠2=∠3(两直线平行,内错角相等). ∵ ∠1=∠2,∠3=∠4(已知), ∴ ∠1=∠2=∠3=∠4, ∴∠1+∠2=∠3+∠4. ∵ ∠ABC+∠1+∠2=180°,
∠BCD+∠3+∠4=180°(平角的性质), ∴ ∠ABC=∠BCD(等量代换). ∴ AB//CD(内错角相等,两直线平行).
7 章末复习
知识回顾
公理 两条直线被第三条直线所截,如果同位角相 等,那么这两条直线平行.
平行线判定定理:
定理 两条直线被第三条直线所截,如果内错角相等, 那么这两条直线平行. (内错角相等,两直线平行) 条件是:_两__条__直__线__被___第__三__条__直__线__所__截__,__内__错__角___相__等__, 结论是: __这___两__条__直__线__平__行____.
∴∠B=∠BEF.
∵AB//CD,∴EF//CD.
C
B
E
F
D
∴∠D =∠DEF.
∴∠B+∠D=∠BEF+∠DEF =∠DEB,
即∠B+∠D=∠DEB.
模型总结1:如图,AB∥CD,则:
A
BA
E
F
最新北师大版数学八年级上册第七章知识总结
知识点:1.推理证明的必要性:我们认识事物,可能有偏差,有时是“想当然”,过于草率,有时是“乱花迷人眼”,观察产生了错觉,但无论哪一种情况,没有严格的证明都是不能令人放心和信服的。
例1:当x 为任意实数时,542++x x 的值都大于零吗?2.检验数学结论是否正确的常用方法:检验数学结论常用的方法:实验验证法、举例反例、推理论证等。
例2:如果y x ,那么一定有x>y 吗?3.定义的概念:对一些名称和术语的含义加以描述,作出明确的规定,也就是给出它们的定义。
例3:下列语句属于定义的是( )A.两点确定一条直线B.两直线平行,同位角相等C.等角的补角相等D.线段是直线上的两点和两点间的部分4.命题的概念:判断一件事情的句子,叫做命题。
命题的定义包含两层含义:(1)命题必须是一个完整的句子,常为陈述句;(2)命题必须对某件事情作出肯定或否定的判断。
例4:下列语句中不是命题的是( )A.相等的角不是对顶角B.两直线平行,内错角相等C.两点之间线段最短D.过点O 作线段MN 的垂线5.命题的结构:每个命题都由条件和结论两部分组成,条件是已知的事项,结论是由已知事项推断出的事项。
一般地,命题都可以写成“如果……那么……”的形式,其中,“如果”引出的部分是条件,“那么”引出的部分是结论。
例5:下列各命题的条件是什么?结论是什么?(1)如果两个角相等,那么它们是对顶角;(2)若a >b ,b>c ,则a>c6.真命题、假命题、反例的概念:正确的命题称为真命题,不正确的命题称为假命题。
要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具备命题的结论,这种例子称为反例。
例6:判断下列命题是真命题还是假命题,若是假命题,请举一反例加以说明。
(1)两个角的和是180度,则这两个角是邻补角(2)同位角相等(3)如果22b a =,那么a=b7.公理、证明、定理的概念:公认的真命题称为公理。
北师大版初中数学八年级上册 第七章 平行线的证明复习、回顾与思考 教案
第七章平行线的证明回顾与思考教学目标1.复习本章的知识点,了解各知识点之间的关系,巩固所学的知识,并能用这些知识解决一些问题。
2.经历知识的总结过程,回顾知识点,发展形成知识结构的能力。
教学重点进一步理解和掌握本章的公理及定理,掌握证明的步骤与格式,在证明过程中发展初步的演绎推理能力。
教学难点掌握证明的方法及应用定理解决问题。
教学方法自主反思,归纳总结.教学教具直尺,三角板,量角器教学过程本节课设计了五个教学环节:知识回顾——做一做——想一想——试一试——反馈练习.第一环节知识回顾活动内容:1.什么是定义?什么是命题?命题由哪两部分组成?举例说明!2.平行线的性质定理与判定定理分别是什么?3.三角形内角和定理是什么?4.与三角形的外角相关有哪些性质?5.证明题的基本步骤是什么?活动目的:通过学生的回顾与思考,使学生对平行线的性质定理与判定定理,三角形内角和定理及三角形的外角的性质有一个更深层次的认识,为下一步的简易的逻辑推理作好知识准备. 注意事项:由于学生对于上述概念都有较长时间的学习,但知识点是零散的,因此有必要在学生头脑中形成一个清晰的知识网络,如:}⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⇒⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⇒⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⇒⎩⎨⎧⇒⇒⇒⇒⇒⇒结论题设部分条件结构反例假命题公理外角推论内角和定理三角形性质判定平行线应用证明推论定理真命题分类命题证明)()(第二环节 做一做 活动内容:1.下列语句是命题的有( )(1)两点之间线段最短;(2)向雷锋同志学习;(3)对顶角相等;(4)花儿在春天开放;(4)对应角相等的两个三角形是全等三角形;2.下列命题,哪些是真命题?哪些是假命题?如果是真命题,请写出条件与结论,如果是假命题,请举出反例.(1)同角的补角相等;(2)同位角相等,两直线平行;(3)若|a |=|b |,则a =b .3. 如图,AD 、BE 、CF 为△ABC 的三条角平分线,则:∠1+∠2+∠3=________.4. 用两个全等的等腰直角三角尺拼成四边形,则此四边形一定是_____。
北师大版八年级数学上册各章复习题
北南A 东第7题图八年级上册第一章《勾股定理》单元检测题一、选择题1、下列各组数中不能作为直角三角形的三边长的是 ( )A. 1.5, 2, 3;B. 7, 24, 25;C. 6 ,8, 10;D. 9, 12, 15. 2、直角三角形的两直角边分别为5厘米、12厘米,则斜边上的高是( ) A 、6厘米 B 、8厘米 C 、1380厘米 D 、1360厘米3、若等腰三角形腰长为10cm ,底边长为16 cm,那么它的面积为 ( )A. 48 cm 2B. 36 cm 2C. 24 cm 2D.12 cm 24、如图,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面 成30°夹角,这棵大树在折断前的高度为( )A .10米B .15米C .25米D .30米5、若一个直角三角形的一条直角边长是7cm ,另一条直角边比斜边短1cm ,则斜边长为 ( ) A.18 cm B.20 cm C.24 cm D.25 cm6、已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( )A 、25海里B 、30海里C 、35海里D 、40海里7.在△ABC 中,AB =12cm , AC =9cm ,BC=15cm ,下列关系成立的是( ) (A )B C A ∠+∠>∠ (B )B C A ∠+∠=∠ (C )B C A ∠+∠<∠ (D )以上都不对8.若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是( ) (A )直角三角形(B )等腰直角三角形(C )等腰三角形(D )以上结论都不对二、填空题9、在△ABC 中,∠C =90°,若 a =5,b =12,则 c = .10、如图,带阴影的正方形面积是 .11、如图,从电线杆离地面3米处向地面拉一条长为5米的拉线,这条拉线在地 面上距电线杆底端的距离是 。
北师大版八年级上册数学《为什么要证明》平行线的证明培优说课教学复习课件
几个黑点?
不 信 你 不 晕
韦德螺旋:这真是一个螺旋吗?【解析】英国视觉科学家、艺术家尼古拉 斯·韦德向我们展示了他的弗雷泽螺旋幻觉的变体形式。虽然图形看起来 像螺旋,但实际上它是一系列同心圆。
柱 子 是 圆 的 还 是 方 的
?
拓展创新
❖ 1 八(1)班有39位学生,他们每人将自己的学 号作为n的取值(n=1,2,3,…,39)代入式子 n2+n+41,结果发现n2+n+41的值都是质数,于 是他们猜想:“对于所有的自然数,式子 n2+n+41的值都是质数.”
探究新知
1.检验数学结论是否正确的常用方法:实验验证法、举出反例、推理论证. (1)实验验证法:通过做实验、测量、计算等手段验证结论正确与否.实 验验证法是最基本的方法.常用于检验一些比较直观、简单的结论. (2)举出反例:举出反例说明该结论不一定成立.多用于验证某结论是不是正 确的. (3)推理论证:是最可靠、最科学的方法.主要用来进行严格的推理论证, 既可以验证某结论是正确的,也可以验证某结论是不正确的. 2.检验数学结论的具体过程:
探究新知
4.下列判断是否正确? (1)从书架上抽出5本书,5本书都是数学书,因此书架上的书都是数学书. (2)有一条线段AB长3cm,另一条线段BC长2cm,那么AC长为5cm.
5.此次数学考试八年级九班全班65名学生没有不及格的。李妙是八年级九班
的一名学生,由此推断李妙考试
(填“及格”或“不及格”)。
C.小明在数学竞赛中一定能获奖
D.两张相片看起来佷像,则肯定照的是同一个人
探究新知
3.下列推理正确的是( ) A.弟弟今年13岁,哥哥比弟弟大6岁,到了明年,哥哥比弟弟只 大5岁了,因为弟弟明年比今年长大了1岁 B.如果a>b,b>c,那么a>c C.∠A与∠B相等,原因是它们看起来大小差不多 D.因为对顶角必然相等,所以相等的角也必是对顶角
北师大版八年级数学上册--第七章过关检测随堂练习 练习题(含答案)
第七章《平行线的证明》单元复习卷1一、选择题(每小题4分,共28分)1.下列命题为真命题的是( )A.若a2=b2,则a=b B.等角的补角相等C.有两边及一角分别相等的两个三角形全等 D.若x甲=x乙,s甲2>s乙2,则甲组数据更稳定2.如图1,下列不能判定l1∥l2的是( )A.∠1=∠3 B.∠2+∠4=180°C.∠4=∠5 D.∠2=∠3图 1 图 2图3,把一块含有45°角的三角尺的两个顶点放在直尺的对边上.如果∠1°,那么∠2的度数是( )A.15° B.20°C.25°D.30°4.如图3所示,直线a,b被直线c所截,若a∥b,∠1=∠2,∠3=40°,则∠4的度数为( ) A.40° B.50°C.70°D.80°5.如图4,CF是△ABC的外角∠ACM的平分线,且CF∥AB,∠ACF=50°,则∠B的度数为( ) A.80° B.60°C.50°D.40°图4 图5 图66.根据光的反射定律,射到平面镜上的光线及被反射出的光线与平面镜的夹角相同.如图7-Z-5所示,已知∠AOB的两边OA,OB均为平面镜,∠AOB=36°,在OB上有一个点E,从点E射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠CDE的度数是( )A.36° B.72°C.108°D.144°7.将一副三角尺按图7-Z-6放置,则下列结论:①∠1=∠3;②若∠2=30°,则AC∥DE;③若∠2=30°,则BC∥AD;④若∠2=30°,则∠4=∠C.其中正确的有( )A.①②③B.①②④ C.③④D.①②③④二、填空题(每小题4分,共20分)8.如图7,直线a,b被直线c所截,若满足__________,则a,b平行(写出一个即可).图7-Z-77-8所示,AB∥CD,∠1=60°,FG平分∠EFD,则EGF°.图7Z-810.如图7-Z-9所示,P是△ABC内一点,连接BP并延长交AC于点D,连接PC,把∠1,∠2,∠A按从大到小的顺序排列为____________.图7-Z-911.如图7-Z-10,在△ABC中,∠B=40°,∠C=30°,D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E处,若DE∥AB,则∠ADC的度数为________.7-Z-1012.如图7-Z-11,将△ABC沿DE,EF折叠,顶点A,B均落在点O处,且EA与EB重合于线段EO处,若∠CDO+∠CFO=88°,则∠C的度数为________.7-Z-11三、解答题(共52分)13.(6分)如图7-Z-12,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.图7-Z-1214.(10分)将一副三角尺拼成如图7-Z-13所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.图7-Z-1315.(10分)如图7-Z-14,在△ABC中,∠A∶∠ABC∶∠ACB=3∶4∶5,BD,CE分别是边AC,AB上的高,BD,CE相交于点H,求∠BHC的度数.图7-Z-1416.(12分)如图7-Z-15,点E在线段CD上,AE,BE分别平分∠DAB和∠CBA,∠AEB=90°,设AD=x,BC=y,且(x-3)2+|y-4|=0.(1)求AD和BC的长;(2)你认为AD和BC有怎样的位置关系?并证明你的结论.图7-Z-1517.(14分)探究与发现:如图7-Z-16①,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED.(1)当∠BAD=60°时,求∠CDE的度数;(2)当点D在边BC(点B,C除外)上运动时,试猜想∠BAD与∠CDE的数量关系,并说明理由;(3)深入探究:如图②,若∠B=∠C,但∠C≠45°,其他条件不变,试探究∠BAD与∠CDE的数量关系.图7-Z-16教师详解详析1.[解析] B A.若a2=b2,则a=±b,此选项错误;B.等角的补角相等,此选项正确;C.有两边及其夹角分别相等的两个三角形全等,本选项中的一角不一定是相等两边的夹角,故本选项错误;D.若x甲=x乙,s甲2>s乙2,则乙组数据更稳定,此选项错误.故选B.2.D 3.C 4.C5.[解析] C ∵CF是∠ACM的平分线,∴∠FCM=∠ACF=50°.∵CF∥AB,∴∠B=∠FCM=50°.故选C.6.[解析] C ∵DC∥OB,∴∠ADC=∠AOB=36°.∵入射角等于反射角,∴∠ADC=∠ODE=36°.∴∠CDE=180°-∠ADC-∠ODE=108°.7.[解析] B ∵∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,故①正确.∵∠2=30°,∴∠1=60°.又∵∠E=60°,∴∠1=∠E.∴AC∥DE,故②正确.∵∠2=30°,∴∠1+∠2+∠3=150°.又∵∠C=45°,∴∠C+∠1+∠2+∠3=195°≠180°.∴BC与AD不平行,故③错误.∵∠2=30°,∴AC∥DE.∴∠4=∠C,故④正确.故选B.8.∠1=∠2或∠2=∠3或∠3+∠4=180°(答案不唯一)9.3010.[答案] ∠1>∠2>∠A[解析] 根据∠2是△ABD的外角,∠1是△PDC的外角,结合三角形外角的性质比较角的大小.11.110°12.46°13.解:∵EF∥BC,∴∠BAF=180°-∠B=100°.∵AC平分∠BAF,∴∠CAF=12∠BAF=50°.∵EF∥BC,∴∠C=∠CAF=50°. 14.解:(1)证明:如图.∵CF平分∠DCE,∴∠1=∠2=12∠DCE.∵∠DCE=90°,∴∠1=45°.又∵∠3=45°,∴∠1=∠3.∴CF∥AB(内错角相等,两直线平行).(2)∵∠D=30°,∠1=45°,∴∠DFC=180°-30°-45°=105°.15.解:∵∠A∶∠ABC∶∠ACB=3∶4∶5,设∠A=3α,∠ABC=4α,∠ACB=5α,∴3α+4α+5α=180°,解得α=15°.∴∠ABC=60°,∠ACB=75°.在△DBC中,由∠BDC=90°,知∠DBC=180°-90°-75°=15°.在△ECB中,由∠CEB=90°,知∠ECB=180°-90°-60°=30°.在△BHC中,∠BHC=180°-15°-30°=135°. 16.解:(1)∵(x-3)2+|y-4|=0,∴x-3=0,y-4=0,解得x=3,y=4,即AD=3,BC=4.(2)AD∥BC.证明:∵AE,BE分别平分∠DAB和∠CBA,∴∠DAE=∠EAB,∠CBE=∠EBA.∵∠AEB=90°,∴∠EAB+∠EBA=90°.∴∠DAE+∠CBE=90°.∴∠EAB+∠EBA+∠DAE+∠CBE=90°+90°=180°,即∠DAB+∠ABC=180°. ∴AD∥BC.17.解:(1)∵∠B=∠C=45°,∴∠BAC=90°.∵∠ADC是△ABD的外角,∴∠ADC=∠BAD+∠B=105°.∵∠DAE=∠BAC-∠BAD=30°,∴∠ADE=∠AED=75°.∴∠CDE=∠ADC-∠ADE=105°-75°=30°.(2)∠BAD=2∠CDE.理由如下:设∠BAD=x,则∠ADC=∠BAD+∠B=45°+x.∵∠DAE=∠BAC-∠BAD=90°-x.∴∠ADE=∠AED=90°+x2.∴∠CDE=∠ADC-∠ADE=45°+x-90°+x2=12x.∴∠BAD=2∠CDE.(3)设∠BAD=x,则∠ADC=∠BAD+∠B=∠B+x. ∵∠DAE=∠BAC-∠BAD=180°-2∠B-x,∴∠ADE=∠AED=∠B+12 x.∴∠CDE=∠ADC-∠ADE=∠B+x-(∠B+12x)=12x.∴∠BAD=2∠CDE.。
北师大版初中数学八年级上册 第七章 平行线的证明复习题 ——探究三角形内外角平分线夹角 课件
∠A+∠P=( C)
A.70° B.80°
C.90° D.100°
2. 如图所示,BE平分∠ABC,CE平分∠ACM,CE交BF 的延长线于点E,请你判断∠ACE与∠ABE的大小关系 , 并证明。
课后作业:
3.如图,在△ABC中,∠A=52°,∠ABC与∠ACB的角平
分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此 类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C 的度数是( )
∠A1CD的平分线交于点A2,得∠A2;…以此类推得到∠A2019,
则∠A2019的度数是
.
课前问题
2、如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、 ∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE 分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ, 则∠F=__1_5_°__.
CE平分∠ACM,
∴∠ECM=
1∠ACM, 2
1 ∠CBE=2
∠ABC.
∵∠ACM=∠A+∠ABC,
∠ECM=∠E+∠CBE,
∴∴∠ ∠EE+=∠1∠CBAE. =12
(∠A+∠ABC)=1∠A+1∠ABC.
2
2
2
类型3 一个内角平分线与一个外角平分线的夹角
【方法归纳】
三角形的一个内角平分线与一个外角平分线 交于一点,所形成的夹角的度数等于第三角度数 的一半。
如图,在△ABC中,∠ABC与∠ACB的平分
线相交于点D,则∠BDC=90°+1 ∠A.
2
变式训练:
1.(大庆中考)如图,在△ABC中,∠A=40°,D点是∠ABC和
∠ACB平分线的交点,则∠BDC= —11—0—°— .
浦口区第三中学八年级数学上册 第七章 平行线的证明知识归纳 北师大版
《第七章平行线的证明》知识归纳【要点梳理】要点一、定义、命题及证明1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义.2.命题:判断一件事情的句子,叫做命题. 要点诠释:(1)每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项. (2)正确的命题称为真命题,不正确的命题称为假命题. (3)公认的真命题叫做公理. (4) 经过证明的真命题称为定理.3.证明: 在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这种演绎推理的过程称为证明. 要点诠释:(1)实验、观察、操作所得出的结论不一定都正确,必须推理论证后才能得出正确的结论.(2)证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事实、定理等.(3)判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.要点二、平行线的判定与性质1.平行线的判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行. (2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性). (3)在同一平面内,垂直于同一直线的两条直线平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行. 2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.要点三、三角形的内角和定理及推论三角形的内角和定理:三角形的内角和等于180°.推论:(1)三角形的一个外角等于和它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.要点诠释:(1)由一个公理或定理直接推出的真命题,叫做这个公理或定理的推论.(2)推论可以当做定理使用.第4课时等边三角形的判定1.理解等边三角形的两个判定定理及其证明.2.理解含有30°角的直角三角形的性质及其证明.3.能利用等边三角形的两个判定定理解决一些简单的问题.重点等边三角形判定定理及含30°角的直角三角形的性质定理的发现与证明.难点含30°角的直角三角形性质定理的探索与证明.一、复习导入1.等腰三角形的性质有哪些?2.等腰三角形的判定定理是什么?师:等边三角形作为一种特殊的等腰三角形,具有哪些性质呢?如何判定一个三角形是等边三角形呢?二、探究新知1.等边三角形的判定定理师:一个三角形满足什么条件时是等边三角形?一个等腰三角形满足什么条件时是等边三角形?处理方式:学生自主探究等腰三角形成为等边三角形的条件,并交流汇报各自的结论,教师适时要求学生给出相对规范的证明,概括出等边三角形的判别条件,并引导学生总结出下表:性质判定的条件等边三角形等边对等角“三线合一”即等边三角形顶角平分线、底边上的中线、高线互相重合等边三角形三个角都相等,且每个角都是60°有一个角是60°的等腰三角形三个角都相等的三角形是等边三角形2.含30°角的直角三角形的性质定理师:我们还学习过直角三角形,今天我们研究一个特殊的直角三角形——含30°角的直角三角形.师:用两个含30°角的全等的三角尺,你能拼成一个怎样的三角形?能拼出一个等边三角形吗?并说明理由.解:能拼出一个等边三角形.方法1:∵△ABD≌ACD,∴AB =AC.又∵Rt △ABD 中,∠BAD =30°,∴∠ABD =60°,∴三角形ABC 是等边三角形.方法2:∵∠B=∠C=60,∠BAC =∠BAD+∠CAD=30°+30°=60°,∴∠B =∠C=∠BAC=60°,即△ABC 是等边三角形.师:在你所拼得的等边三角形中,有哪些线段存在相等关系?有哪些线段存在倍数关系?你能得到什么结论?说说你的理由.处理方式:如果学生不能很快得出30°角所对直角边是斜边的一半,教师可以要求学生思考其中哪些线段直接存在倍数关系,并在将三角板分开,思考从中可以得到什么结论.然后在学生得到该结论的基础上,再证明该定理.定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.已知:如图,在Rt △ABC 中,∠C =90°,∠BAC =30°.求证:BC =12AB.分析:从三角尺的拼摆过程中得到启发,延长BC 至点D ,使CD =BC ,连接AD. 证明:延长BC 至点D ,使CD =BC ,连接AD(如图所示).∵∠ACB =90°,∠BAC =30°,∴∠B =60°.∵∠ACB =90°,∴∠ACD =90°.∵AC =AC ,∴△ABC ≌△ADC(SAS ).∴AB =AD(全等三角形的对应边相等).∴△ABD 是等边三角形(有一个角是60°的等腰三角形是等边三角形).∴BC =12BD =12AB. 三、举例分析例 等腰△ABC 的底角为15°,腰长为2a ,求腰上的高CD 的长.分析:在Rt △ADC 中,AC =2a ,观察图形可以发现∠DAC 是△ABC 的一个外角,而∠DAC=2×15°=30°,根据在直角三角形中,30°角所对的直角边是斜边的一半,可求出CD.解:∵∠ABC=∠ACB=15°,∴∠DAC =∠ABC+∠ACB=15°+15°=30°.∴CD =12AC =12×2a= a(在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半).四、练习巩固1.下列命题:①有两个角相等的三角形是等边三角形;②有一个外角是120°的等腰三角形是等边三角形;③三个外角都相等的三角形是等边三角形;④有一边上的高也是这边上的中线的等腰三角形是等边三角形.其中正确的有________.(填序号)2.在△ABC 中,∠C =90°,∠B =30°,AC =1,求AB ,BC 的长.五、课堂小结通过本节课的学习,你有什么收获?六、课外作业1.教材第12页“随堂练习”.2.教材第12~13页习题1.4第1~5题.本节课的难点在于探究直角三角形中,30°角所对的直角边等于斜边的一半,由于设计了三角板操作的实践活动,有效地突破了难点,因而,课堂上学生思维非常灵活,方法多样,取得了较好的效果.2平方根第1课时算术平方根【知识与技能】1.了解数的算术平方根的概念,会用根号表示一个数的算术平方根.2.根据求一个数的算术平方根与平方是互逆运算,会利用这个互逆运算关系求某些非正负数的算术平方根.【过程与方法】经历求一个数的算术平方根与平方的互逆关系,提高学生逆向思维方法.【情感态度】学生动脑、动口,积极参与教学活动,培养他们对数学的好奇心和求知欲.【教学重点】了解算术平方根的概念,性质,会用根号表示一个正数的算术平方根.【教学难点】理解算术平方根的概念、性质.一、创设情境,导入新课上节课我们学习了无理数、了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如在a2=2中,2是有理数,而a是无理数.在前面我们学过若x2=a,则a叫x的平方,反过来x叫a的什么呢?本节课我们就来一起研究这个问题.【教学说明】从平方入手,为学生下面学习算术平方根找到了突破口,让他们对算术平方根的求法与开平方这种互逆的关系形成了初步认识.二、思考探究,获取新知算术平方根的概念和求法.下面请大家根据勾股定理,结合图形完成填空:x2= ,y2= ,z2= ,w2=请大家分析一下,x、y、z、w中哪些是有理数?哪些是无理数?【教学说明】回忆勾股定理得到一个数的平方是一个正数,为下面给出算术平方根的概念作了开端.【归纳结论】因为没有任何整数或分数的平方等于2,3,5,所以x、y、w不是有理数,而是无理数,即2,35因为22=4.所以z=2,是有理数.若一个正数x的平方等于a,即x2=a,则这个正数x就叫做a的算术平方根.记为a”读作“根号a”.这就是算术平方根的定义.特别地规定0的算术平方根是0,即0=0.下面我们根据算术平方根的定义求一些数的算术平方根.例1求下列各数的算术平方根:(1)900;(2)1;(3)49/64;(4)14.通过上面的例题,大家思考一下,我们在求算术平方根时是借助于哪一种运算来求的?【教学说明】学生很容易看出一个正数的平方与求算术平方根是互为逆运算,有利于对算术平方根概念的理解.【答案】解:(1)因为302=900,所以900的算术平方根是30900;(2)因为12=1,所以1的算术平方根是1,即1=1;(3)因为(7/8)2=49/64,所以49/64的算术平方根是7/84964=7/8;(4)1414【归纳结论】在求算术平方根时是借助于平方来求的.在例题中的步骤采取语言叙述和符号表示相互补充的做法,目的是让大家在计算中进一步体会一个正数的平方与求算术平方根是互为逆运算,在以后的步骤中可以简化.三、运用新知,深化理解1.填空题.(15,则这个数是 .(2)49的算术平方根是 . (3)正数 的平方为144/25,719 的算术平方根为 . (4)(-1.44)2的算术平方根为 .(5)81 的算术平方根为 ,004. =2.求下列各数的算术平方根,并用符号表示出来:(1)(7.4)2;(2)(-3.9)2;(3)2.25;(4)124. 3.自由下落的物体的高度h (米)与下落时间t (秒)的关系为h=4.9t 2.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?【教学说明】学生独立完成,加深对算术平方根概念的理解,强化了算术平方根的求法和表示方法.【答案】1.(1)5;(2)2/3;(3)12/5,4/3;(4)1.44;(5)3,0.2.2.(1)274().=7.4;(2)()239.-=3.9;(3)225. =1.5;(4)124 =3/2. 3.解:将h=19.6代入公式h=4.9t 2得t 2=4,所以t=4 =2(秒) 即铁球到达地面需要2秒.四、师生互动,课堂小结本节课你学习了哪些新知识?还有什么困难?请与同学们交流.【教学说明】教师引导学生回顾所学知识,加深印象.找出不足,共同提高.2.完成练习册中本课时相应练习.本节课从一个数的平方入手,用逆向思维求一个数的算术平方根,学生容易接受,解决问题起来应该说是得心应手,但要注意算术平方根的符号表示方法.。
最新北师大版八年级数学上册第七章集体备课教案含教学反思和思维导图
第七章平行线的证明1 为什么要证明【知识与技能】1.经历观察、归纳、验证等活动过程,在活动中体会到观察、实验、归纳所得到的结论未必可靠,初步感受证明的必要性.2.发展学生的推理意识.【过程与方法】通过观察、猜想、验证、归纳等方法让学生多角度思考问题、解决问题.【情感态度与价值观】让学生明白仅仅依靠实验、观察、归纳是不够的,必须进行有根有据的证明,培养学生科学严谨的学习态度.体会观察、实验、归纳所得到的结论未必可靠,初步感受证明的必要性.感受证明的必要性.多媒体课件.教材第162页“做一做”上方的问题.【教学说明】让学生通过观察、实验、归纳等方法初步体会得到的结论是否正确.一、思考探究,获取新知验证结论的正确性.做一做:教材第162页“做一做”.【教学说明】(1)中让学生体会数学教学中从特殊到一般的思想方法;(2)中利用先猜想再验证的方法;培养学生从不同的角度来用不同的数学方法解决实际问题.【归纳结论】实验、观察、归纳得到的结论可能正确,也可能不正确.因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有根有据的证明.二、运用新知,深化理解1.最近有很长一段时间没有下雨了.并且今天是艳阳高照,那么晚上不会下雨,这个判断是的.(填“正确”或“不正确”)2.下列说法不正确的是()A.若∠1=∠2,则∠1与∠2是对顶角.B.若∠1与∠2是对顶角,则∠1=∠2.C.若直线a∥b,a⊥c,则b⊥c.D.若∠1+∠3=90°,∠2+∠3=90°,则∠1=∠2.3.如图,甲沿着ACB由A到B,乙沿着ADEFB由A到B,同时出发,速度相等,则()A.甲先到B.乙先到C.甲乙同时到D.不确定4.在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点,连结EF,EF 与AD和BC有怎样的位置关系和数量关系?你的结论对所有的梯形都成立吗?5.当a=1,b=2时,12+22>2×1×2;当a=-1,b=3时,(-1)2+32>2×(-1)×3;当a=-12,b=-3时,(-12)2+(-3)2>2×(-12)×(-3).于是猜想:对于任意实数总有a2+b2>2ab成立.这个结论正确吗?说明理由.【教学说明】让学生独立完成,检查学生对于所学知识的掌握程度,根据反馈的情况适当查漏补缺,有困难的学生采用互相交流的形式得出结论.【答案】1.不正确; 2.A; 3.C4.EF∥AD∥BC.EF=12(AD+BC).这个结论对所有的梯形都成立.证明:连结AF并延长交BC的延长线于点G.∵AD∥BC,∴∠D=∠FCG,∠DAF=∠G,又∵F是CD的中点,∴DF=CF,∴△ADF≌△GCF(AAS),∴AD=CG,AF=GF.又∵E是AB的中点,∴AE=BE,∴EF=12BG=12(BC+CG)=12(BC+AD).5.解:不正确.当a=b时,a2+b2=2ab,找得到实数a、b,如a=b=1,使得a2+b2=2ab 成立,因为对于任意的实数a、b都有a2+b2-2ab=(a-b)2≥0成立,所以a2+b2≥2ab 成立,而不是a2+b2>2ab.通过这节课的学习,经过实验、观察、归纳得到的结论都正确吗?在上面的问题中,你是怎样判断一个结论是否正确?说说你的经验与困惑,与同学交流.【教学说明】让学生大胆发言,进行知识的提炼和归纳总结,与同学交换意见相互补充,利于共同提高.1.P111.学生的直观判断、实验操作得出的结论可能带有极大的片面性.数学是一门科学,讲究的是周密的计算和合乎逻辑的推理证明,不能想当然,让学生在学习过程中不断去体会.第七章平行线的证明2 定义与命题【知识与技能】1.了解定义、命题的概念.2.能分清命题的组成,会判断一个命题的真假,学会用反例说明一个命题是假命题.【过程与方法】通过讨论、探究、交流等形式,使学生在辩论中获得知识体验.【情感态度与价值观】在学习过程中培养学生敢于怀疑、大胆探究的品质.命题的概念及真假的判断.对于命题的条件和结论不十分明显,改写成“如果……那么……”形式.多媒体课件.(1)阅读新华社酒泉2013年6月11日这篇报导:神舟十号载人飞船于6月11日上午发射,……神舟十号飞船搭乘两名航天员,执行多天飞行任务.按计划,飞船将从中国酒泉卫星发射中心发射升空,运行在轨道倾角42.4°,近地点高度为200千米,远地点高度为347千米的椭圆轨道上,实施变轨后,进入343千米的圆轨道.要读懂这段报道,你认为要知道哪些名称和术语的含义?(2)什么叫做平行线?(在同一平面内永不相交的两条直线叫做平行线).什么叫做物质的密度?(单位体积内所含某一物质的质量叫做密度).【教学说明】用熟悉的背景和提出的两个问题引入,为下面给出定义的概念得以顺理成章.一、思考探究,获取新知问题1:从以上两个问题中,你能得出什么是定义吗?并举例说明.【教学说明】通过思考、归纳得出定义的概念,并利用学生举例的形成加深对概念的理解与掌握.【归纳结论】证明时,为了交流的方便,必须对某些名称和术语形成共同的认识.为此,就要对名称和术语的含义加以描述,作出明确的规定,也就是给出它们的定义.2.命题问题2:下面的语句中,哪些语句对事情做了判断?哪些没有?与同学们交流.(1)任何一个三角形一定有一个角是直角;(2)对顶角相等;(3)无论n为怎样的自然数,式子n2-n+11的值都是质数;(4)如果两条直线都和第三条直线平行,那么这两条直线也互相平行;(5)你喜欢数学吗?(6)作线段AB=CD.【教学说明】通过讨论、交流让学生对命题形成初步认识,安排了不是命题的问题参入,让学生逐步体会一个句子是不是命题的关键是对一件事情是否作出判断.【归纳结论】判断一件事情的句子叫做命题.如果一个句子没有对某件事情作出任何判断,那么它就不是命题.问题3:观察下列命题,你能发现这些命题有什么共同的特征?与同学们交流.(1)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等;(2)如果a=b,那么a2=b2;(3)如果两个三角形中有两边和一个角分别相等,那么这两个三角形全等.【教学说明】学生通过观察、思考得出命题是由两部分组成的,并掌握它们各自的概念,进一步加深了命题的理解.【归纳结论】一般地,每个命题都由条件和结论两部分组成.条件是已知的事项,结论是由已知事项推出的事项.命题通常可以写成“如果……那么……”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论.问题4:指出下列各命题的条件和结论,其中哪些命题是错误的?你是如何判断的?与同学们交流.(1)如果两个角相等,那么它们是对顶角;(2)如果a≠b,b≠c,那么a≠c;(3)全等三角形的面积相等;(4)如果室外气温低于0℃,那么地面上的水一定会结冰.【教学说明】进一步加深对命题组成的理解,同时学会利用自己学的知识对命题做出正确的判断.【归纳结论】正确的命题称为真命题,不正确的命题称为假命题.要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例.二、运用新知,深化理解1.命题:“垂直于同一条直线的两条直线平行”的条件是,结论是.2.若a2=b2,则a=b.这个命题是命题(填“真”或“假”).3.下列语句不是命题的有()个①相等的角是直角;②两点之间线段最短;③煤球是白色的;④连线A、B 两点.A.0B.1C.2D.34.下列句子哪些是命题?是命题的判断真假.①对顶角相等;②画一个角等于已知角;③两直线平行,同位角相等;④a,b两直线平行吗?⑤鸟是动物;⑥若a2=4,求a的值;⑦若|a|=|b|,则a=b.【教学说明】由学生自主完成,通过练习,使学生对知识的理解由浅入深,从感性上升到理性,及时反馈,便于发现问题、解决问题、提高课堂效率.提高45分钟的质量.【答案】1.两条直线垂直于同一条直线,这两条直线平行;2.假;3.B;4.命题有:①③⑤⑦;真命题有:①③⑤;假命题有:⑦.1.师生共同回顾定义、命题、条件、结论、真命题、假命题和反例的概念等知识点.2.谈谈你对本节课的收获.【教学说明】使学生对本节课的知识有一个完整的认识,进一步形成知识网络.不断对知识进行提炼和归纳,有助于概念的理解.1.P113.本节课概念比较多,千万不要死记硬背,在教学中要利用实例帮助理解记忆.对于命题中的条件和结论不很明显的改写成“如果……那么……”的形式有些困难,这方面有待今后不断强化提升.第七章平行线的证明3 平行线的判定【知识与技能】1.理解并掌握平行线的判定方法.2.经历探索直线平行的条件的过程,并能运用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”进行简单的证明.【过程与方法】经过观察、想象、推理、交流等活动,进一步加强学生空间观念、推理能力和有条理的表述能力.【情感态度与价值观】在活动中培养学生良好的习惯、与他人合作交流、主动参与的意识,在独立思考的同时也能够认同他人.探索两直线平行的条件.运用直线平行的判定方法解决问题.多媒体课件.前面我们探索过两直线平行的哪些判别条件?利用“同位角相等,两直线平行”这个基本事实,你能证明它们吗?试试看.【教学说明】通过复习旧知识的形式,为本节课进一步学习直线平行的条件做准备.两条直线被第三条直线所截,形成的角中,有同位角、内错角和同旁内角.同位角相等,两直线平行,那么利用内错角、同旁内角的关系,能否判定两直线平行?【教学说明】这个问题的提出,直截了当地切入本节课的中心内容,通过学生的猜想、讨论,引起学生的探究欲望.一、思考探究,获取新知1.内错角相等,两直线平行.问题1:如右图,∠1与∠2是什么位置关系?问题2:当∠1=∠2时,直线a、b有什么关系?为什么?【教学说明】通过观察、思考、讨论培养学生分析图形的能力,感受转化的思想.由未知转化为已知,把已知条件转化为以前学过的旧知识,从而达到解决问题的目的.为了给学生一个清晰的证明过程,教师展示如下:证明:∵∠1=∠2(已知),∠1=∠3(对顶角相等).∴∠3=∠2(等量代换).∴a∥b(同位角相等,两直线平行).2.同旁内角互补,两直线平行.问题1:如右图,∠2与∠3是什么位置关系?问题2:当∠2+∠3=180°时,直线a、b有什么关系?为什么?【教学说明】让学生自己口述,培养学生的口语表达能力和推理论证的能力.在思考探究的过程中,体会判断两条直线平行的条件.这个证明的过程,教师可以引导学生自己书写.【归纳结论】已给的基本事实、定义和已经证明的定理以后都可以作为依据,用来证明新的结论.二、运用新知,深化理解1.已知:如图,∠1=76°,要使a∥b,则∠3= .2.若a∥b,b∥c,则a c ;若a⊥b,a⊥c,则b c.3.如图,直线a、b被直线c所截,以下四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°,④∠4=∠7,其中能判定a∥b的是()A.①②B.①③C.①④D.③④4.如图,直线EF交AB、CD于N、M,且∠EMC=65°,∠MNB=115°,则下列结论正确的是()A.AE∥DFB.AB∥CDC.∠A=∠DD.∠E=∠F.5.如图,填空.(1)由∠A+∠ADC=180°,可得∥.(2)由∠DBC=∠BCE,可得∥.(3)由∠A=∠CBE,可得∥.【教学说明】学生自主完成,加深对所学两个定理的理解与记忆和检测学生对知识的掌握情况,有困难的学生教师及时给予点拨和强化指导.【答案】1.104°;2.∥,∥;3.A;4.B;5.(1)DC AE;(2)BD CE;(3)AD BC1.到目前为止,你有多少种判定两条直线平行的方法?与大家共享.2.学习过程中你有哪些疑惑?请与同学们交流.【教学说明】通过小结的形式让学生在大脑中对平行线的判定方法形成知识体系,培养学生归纳总结的能力和综合运用的能力.1.P115.学生对于三线八角的掌握比较牢固.根据角之间的关系判断哪两条直线平行很准确.由于刚学书写证明过程,还有不少学生的逻辑推理能力不强,在今后的训练中不断完善.第七章平行线的证明4 平行线的性质【知识与技能】经历探索平行线的性质的过程,初步掌握平行线的性质,并能用性质进行简单的推理和计算.【过程与方法】在学习过程中进一步培养学生的推理能力.发展学生的空间观念.【情感态度与价值观】培养学生的唯物主义观点,使学生逐步养成言之有据的习惯.平行线性质的探索及性质的理解.运用平行线的性质和判定结合去解决问题.多媒体课件.现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补,判定两条直线平行的三种方法.在这一节课里:大家把思维的指向反过来:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?【教学说明】了解学生的认知基础,让全体学生对前一节的内容进行回顾,并为新课程的学习做准备.一、思考探究,获取新知平行线的性质及其证明.问题1:我们已经探索过平行四边形的性质,两直线平行,同位角相等,那它如何证明呢?【教学说明】给学生留有充分的探索和交流的空间,鼓励学生利用多种方法探索,这对于发展学生的空间观念,理解平行线的性质是十分重要的.此题的证明可以让学生感受反证法.问题2:利用上面的定理,你能证明其他两条性质吗?试一试!【教学说明】培养学生的逻辑思维能力以及严谨的治学态度,逐步锻炼学生的推理能力,并进一步巩固对定理的理解及语言的规范,感受成功的喜悦,树立学习数学的信心.问题3:例已知:如图,b∥a,c∥a,∠1,∠2,∠3是直线a、b、c被直线d截出的同位角.求证:b∥c.【教学说明】利用平行线的性质进行有关的证明,逐步培养学生的推理论证能力.发展他们的数学思维和空间观念.【归纳结论】平行于同一条直线的两条直线平行.讨论:完成一个命题的证明,需要哪些主要环节?与同学们交流.【教学说明】通过学生交流、讨论,帮助他们形成知识体系,为以后的证明提供了很好的方法.二、运用新知,深化理解1.如图,已知∠1=100°,∠2=80°,∠3=105°,则∠4= .2.如图,AB∥CD∥EF,则∠A+∠ACE+∠E= .3.如图BD平分∠ABC,ED∥BC,则图中相等的角共有()A.2对B.3对C.4对D.5对4.如图,已知AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,∠1=40°.求∠2的度数.5.如图,已知A、B、C同在一条直线上,D、E、F同在一条直线上,且∠A=∠F,∠C=∠D,判断AE与BF的位置关系,并说明理由.【教学说明】通过对练习的处理,培养学生的口语表达能力和逻辑推理能力.使学生逐步学会运用推理的方法去证明问题,在具体的问题情境中能自觉地运用转化的思想去解决问题.对学习有困难的学生教师及时给予指导和点拨.【答案】1.105°;2.360°;3.D.4.解:∵AB∥CD,∴∠BEF=180°-∠1=180°-40°=140°.又∵EG平分∠BEF,∴∠3=12∠BEF=12×140°=70°.∵AB∥CD,∴∠2=∠3=70°.5.AE∥BF.证明:∵∠C=∠D,∴DF∥AC.∴∠A=∠1,∵∠A=∠F,∴∠1=∠F.∴AE∥BF.本节课主要是平行线性质定理的推理,重在培养学生的逻辑思维能力和规范的推理过程的表述.再到平行线的性质与判定的综合运用,加深对所学知识的认识,提高运用知识解决实际问题的能力.在证明的过程中,图形有着至关重要的辅助作用.1.P117.本节课主要是平行线性质定理的推理,重在培养学生的逻辑思维能力和规范的推理过程的表述.再到平行线的性质与判定的综合运用,加深对所学知识的认识,提高运用知识解决实际问题的能力.在证明的过程中,图形有着至关重要的辅助作用.第七章平行线的证明课时1 三角形内角和【知识与技能】学会用逻辑推理的方法对三角形的内角和定理重新研究证明,并能利用三角形的内角和解决有关问题.【过程与方法】感受探索三角形内角和定理的证明过程,培养学生有条理地思考问题和合乎情理地表达问题的能力.通过渗透“化归”的数学思想,培养学生解决数学问题的基本方法.【情感态度与价值观】通过师生共同探究活动确认“三角形内角和是180°”,培养学生的概括、总结能力,激发学生探索问题的兴趣和体会学习数学的价值.三角形内角和定理的证明和利用三角形内角和进行有关的证明与计算.用不同的方法证明三角形内角和定理.多媒体课件.我们知道,任意一个三角形的内角和等于180°,怎样证明这个结论的正确性呢?小学中我们通过测量的方法进行过验证,但我们不可能对所有的三角形进行验证,有没有一种能证明任意三角形的内角和等于180°的方法呢?【教学说明】通过问题引入,激发学生的学习兴趣,同时使学生认识到,测量的方法只能进行有限次的验证,并不能对所有三角形进行验证,所以必须寻找一种能说明所有三角形的内角和是180°的方法,为后面的证明做准备.一、思考探究,获取新知三角形内角和定理的证明.思考:(1)如图,如果我们只把∠A移到了∠1的位置,你能证明这个结论吗?如果不移动∠A,那么你还有什么方法可以达到同样的效果?(2)根据前面给出的基本事实和定理,你能用自己的语言说说这一结论的证明思路吗?你能用比较简洁的语言写出这一证明过程吗?与同学们交流.【教学说明】使学生从对三角形内角和的感性认识上升到理性认识,由于学生刚刚接触证明,并且还需添加辅助线,所以教师必须要有规范的示范,通过讲练结合,使学生逐步掌握推理的方法步骤.【归纳结论】三角形的内角和等于180°.思考:(1)你还能用其他方法证明三角形内角和定理吗?(2)如果把三角形三个角“凑”到A处,过点A作直线PQ∥BC(如图),他的想法可行吗?如果可行,你能写出证明过程吗?与同学们交流.【教学说明】让学生尝试模仿用另外的方法证明三角形内角和是180°,从而培养学生多角度分析问题和解决问题的能力,学生的推理能力和证明方法再次得到深化.运用所学的知识,你能解决下面的问题吗?例如图,在△ABC中,∠B=38°,∠C=62°,AD是△ABC的角平分线,求∠ADB的度数.【教学说明】通过例题,要让学生体会三角形内角和定理在角的求值问题中的应用.注意向学生分析解决问题的思路和方法.二、运用新知,深化理解1.在△ABC中,∠A=80°,∠B-∠C=40°,则∠C= .2.∠A=∠B+∠C,则这个三角形是.3.直角三角形两锐角的平分线相交所成的角的度数为()A.45°B.135°C.45°或135°D.都不对4.若△ABC的一个内角是另一个内角的23,也是第三个内角的45,则它的三个内角的度数为()A.30°,60°,90°B.40°,60°,80°C.48°,52°,80°D.48°,72°,60°5.如图,AD、AE分别为△ABC的高线和角平分线,且∠B=35°,∠C=45°,求∠DAE的度数.【教学说明】让学生自主完成,加深对三角形内角和定理的理解和检验学生运用的情况,第5题教师可以引导,对有困难的学生及时帮助、纠正强化.【答案】1.30°;2.直角三角形;3.C;4.D.5.解:在△ABC中,∠B=35°,∠C=45°,∴∠BAC=180°-(35°+45°)=100°.又∵AE平分∠BAC,∴∠CAE=12∠BAC=12×100°=50°.在△ACD中,∠ADC=90°,∠C=45°,∴∠CAD=90°-45°=45°.∴∠DAE=∠CAE-∠CAD=50°-45°= 5°.你掌握了哪些证明三角形内角和定理的方法?在证明的过程中遇到了哪些困难?请与大家共同交流.【教学说明】帮助学生回顾本节课的证明方法、加深对三角形内角和定理的理解和掌握,便于灵活熟练的运用.1.P120.通过让学生动手实践、自主探究、合作交流的学习方式,教师的主导作用和学生的主体作用得到充分的展示,学生感受到学习的快乐,体会到探究与发现带来的乐趣.特别是证明方法的多样性让不同的学生有不同的发展,交流更是一种互补.第七章平行线的证明课时2 三角形的外角【知识与技能】1.了解三角形的外角.2.知道三角形的一个外角等于与它不相邻的两个内角的和,一个外角大于与它不相邻的任何一个内角.3.学会运用简单的道理来计算三角形相关的角.【过程与方法】培养学生的实践能力和观察总结能力.【情感态度与价值观】在学习的过程中,体验主动探究的成功与快乐.三角形外角的性质.运用三角形外角性质进行有关计算时能准确地推理.多媒体课件.(1)什么是三角形的内角?它是由什么组成的?(2)三角形的内角和定理的内容是什么?【教学说明】为本节课进一步学习与三角形有关的角做准备.一、思考探究,获取新知三角形内角和定理的推论.△ABC内角的一条边与另一条边的反向延长线组成的角,称为△ABC的外角.如图,∠1是△ABC的外角.问题1:你能在图中画出△ABC的其他外角吗?∠1与其他角有什么关系?能证明你的结论吗?【教学说明】结合图形,学生通过观察、思考、讨论等一系列活动,既巩固了对概念的理解,又让学生进行证明,培养了学生的推理论证能力.【归纳结论】三角形内角和定理的推论:①三角形的一个外角等于与它不相邻的两个内角的和;②三角形的一个外角大于任何一个与它不相邻的内角.你能运用所学的知识解决下面的问题吗?问题2:(1)已知:在△ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∥BC.(2)已知如图,P是△ABC内一点,连接PB、PC.求证:∠BPC>∠A.你们的证明方法一样吗?与大家共同交流.【教学说明】学生的讨论、交流、解决问题的过程,也是一个培养学生发散思维与创新能力的过程,它不受教师点拨的思维定势的影响,可以自由发挥学生的思维灵活性.二、运用新知,深化理解1.如图,已知AB∥CD,∠C=75°,∠A=30°,则∠E= .2.如图,△ABC中,∠B=∠C,FD⊥BC,∠AFD=158°,则∠EDF的度数等于.3.一个三角形的一个外角小于与它相邻的内角,则这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.无法确定4.如图所示,在△ABC中,E、F分别在AB、AC上,则下列各式不能成立的是()A.∠BOC=∠2+∠6+∠AB.∠2=∠5-∠AC.∠5=∠1+∠4D.∠1=∠ABC+∠45.如图,△ABC的外角平分线与BA的延长线交于D点.求证:∠BAC>∠B.6.已知△ABC中,D是BC上的一点,且∠1=∠2,∠3=∠4,∠BAC=78°,求∠DAC的度数.【教学说明】独立完成有助于教师及时了解学生对本节课内容的掌握情况,根据实际有针对性地进行矫正强化.同时也培养了学生自主学习的习惯.【答案】1.45°;2.68°;3.C; 4.C.5.证明:∵∠BAC为△ADC的外角,∴∠BAC>∠1.又∵∠1=∠2,∴∠BAC>∠2.又∵∠2为△BCD的外角,∴∠2>∠B.∴∠BAC>∠B.6.解:∵∠3=∠1+∠2,∠1=∠2,∴∠3=2∠2.又∵∠4=∠3,∴∠4=2∠2.设∠2=x°,则∠4=2x°,在△ABC中,x°+2x°+78°=180°,解得x°=34°.∴∠3=∠4=68°.∴∠DAC=180°-(∠3+∠4)=180°-136°=44°.1.师生共同回顾三角形外角的概念及三角形内角和定理的两个推论等知识.2.谈谈你的收获,还存在哪些不足?【教学说明】引导学生回顾所学知识,加深概念和定理的理解,还可以帮助学生形成知识体系,前后联系,领悟方法.1.P121.本节课学习了三角形内角和定理的两个推论,学生可能对第一个推论在理解上出现偏差,教师可以适当强调.在计算角的度数、证明两个角相等或角的和差倍分时,常常用到了三角形内角和定理及推论,在遇到证明角不等的时候常用到推论2,为学生的计算和证明指明了方向.。
北师大版八年级数学上册知识点总结复习
北师大版八年级数学上册知识点总结复习Revised on July 13, 2021 at 16:25 pm八年级上第一章 勾股定理1、勾股定理:在直角三角形中两直角边的平方和等于斜边的平方.. a 2+b 2=c 2a 、b 为直角边;c 为斜边2、 勾股定理逆定理:如果三角形的三边a 、b 、c 满足a 2+b 2=c 2;那么这个三角形是直角三角形..a 、b 为直角边;c 为斜边3、会利用勾股定理解题第二章 实数1、有理数;无理数概念:有理数:任何有限小数和无限循环小数都是有理数..无理数:无限不循环小数叫做无理数..正有理数 有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、平方根如果一个数的平方等于a;那么这个数就叫做a 的平方根或二次方跟..一个数有两个平方根;他们互为相反数;零的平方根是零;负数没有平方根.. 正数a 的平方根记做“a ±”..3、算术平方根正数a 的正的平方根叫做a 的算术平方根;记作“a ”..正数和零的算术平方根都只有一个;零的算术平方根是零..a a ≥0 0≥a==a a 2 ;注意a 的双重非负性:-a a <0 a ≥04、立方根如果一个数的立方等于a;那么这个数就叫做a 的立方根或a 的三次方根.. 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零..注意:33a a -=-;这说明三次根号内的负号可以移到根号外面..5、有效数字一个近似数四舍五入到哪一位;就说它精确到哪一位;这时;从左边第一个不是零的数字起到右边精确的数位止的所有数字;都叫做这个数的有效数字..6、科学记数法:把一个数写做n a 10⨯±的形式;其中101<≤a ;n 是整数;这种记数法叫做科学记数法..7、二次根式的计算法则: 1)0()(2≥=a a a2==a a 23)0,0(≥≥•=b a b a ab4)0,0(≥≥=b a ba b a 注:计算时应化为最简二次根式;也就是不能再开根为止..第三章 位置与坐标1、如何确定位置:知道方向和距离2、平面直角坐标:3、轴对称与坐标变换1轴对称图形如果一个图形沿某一条直线折叠;直线两旁的部分能够互相重合; 这个图形就叫做轴对称图形;这条直线就是它的对称轴.有的轴对称图形的对称轴不止一条;如圆就有无数条对称轴.2 轴对称有一个图形沿着某一条直线折叠;如果它能够与另一个图形重合; 那么就说这两个图形关于这条直线对称;这条直线叫做对称轴;折叠后重合的点是对应点;叫做对称点.两个图形关于直线对称也叫做轴对称.3坐标的对称:a 关于X 轴对称;x 值不变;y 值互为相反数;b 关于Y 轴对称;y 值不变;x 值互为相反数;c 关于原点对称;xy 的值都互为相反数..第四章 一次函数1、一次函数的定义一般地;形如y=kx+bk;b 是常数;且k ≠0的函数;叫做一次函数;其中x 是自变量..当b=0时;一次函数y=kx;又叫做正比例函数..234、会利用一次函数解题第五章 二元一次方程组1、二元一次方程含有两个未知数;并且未知项的最高次数是1的整式方程叫做二元一次方程;它的一般形式是ax+by+c=0;a 、b 、c 为常数2、二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值;叫做二元一次方程的一个解..3、二元一次方程组两个或两个以上二元一次方程合在一起;就组成了一个二元一次方程组.. 4二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值;叫做二元一次方程组的解..5、二元一次方程组的解法1代入法2加减法6、三元一次方程把含有三个未知数;并且含有未知数的项的次数都是1的整式方程..7、三元一次方程组由三个或三个以上一次方程组成;并且含有三个未知数的方程组;叫做三元一次方程组..8、二元一次方程组与一次函数之间的关系二元一次方程组的解及为两个一次函数的交点坐标..9、会利用二元一次方程组解决实际问题..第六章 数据的分析1、平均数的概念1平均数:一般地;如果有n 个数,,,,21n x x x 那么;)(121n x x x n x +++=叫做这n 个数的平均数;x 读作“x 拔”..2加权平均数:如果n 个数中;1x 出现1f 次;2x 出现2f 次;…;k x 出现k f 次这里n f f f k =++ 21;那么;根据平均数的定义;这n 个数的平均数可以表示为nf x f x f x x k k ++=2211;这样求得的平均数x 叫做加权平均数;其中k f f f ,,,21 叫做权..2、平均数的计算方法1定义法当所给数据,,,,21n x x x 比较分散时;一般选用定义公式:)(121n x x x nx +++= 2加权平均数法:当所给数据重复出现时;一般选用加权平均数公式:nf x f x f x x k k ++=2211;其中n f f f k =++ 21.. 3、众数在一组数据中;出现次数最多的数据叫做这组数据的众数..4、中位数将一组数据按大小依次排列;把处在最中间位置的一个数据或最中间两个数据的平均数叫做这组数据的中位数..5、方差的概念在一组数据,,,,21n x x x 中;各数据与它们的平均数x 的差的平方的平均数;叫做这组数据的方差..通常用“2s ”表示;即6、标准差方差的算数平方根叫做这组数据的标准差;用“s ”表示;即第七章 平行线的证明1、定义:一般地;用来说明一个名词或者一个术语的意义的句子叫做定义.2、命题:判断一件事情的句子;叫做命题.要点诠释:1每个命题都由题设、结论两部分组成;题设是已知事项;结论是由已知事项推出的事项.2正确的命题称为真命题;不正确的命题称为假命题.3公认的真命题叫做公理.4经过证明的真命题称为定理.3、证明: 在很多情况下;一个命题的正确性需要经过推理;才能作出判断;这种演绎推理的过程称为证明.要点诠释:1实验、观察、操作所得出的结论不一定都正确;必须推理论证后才能得出正确的结论.2证明中的每一步推理都要有根据;不能“想当然”;这些根据可以是已知条件;学过的定义、基本事实、定理等.3判断一个命题是正确的;必须经过严格的证明;判断一个命题是假命题;只需列举一个反例即可.4、平行线的判定判定方法1:同位角相等;两直线平行.判定方法2:内错角相等;两直线平行.判定方法3:同旁内角互补;两直线平行.要点诠释:根据平行线的定义和平行公理的推论;平行线的判定方法还有:1平行线的定义:在同一平面内;如果两条直线没有交点不相交;那么两直线平行. 2如果两条直线都平行于第三条直线;那么这两条直线平行平行线的传递性.3在同一平面内;垂直于同一直线的两条直线平行.4平行公理:经过直线外一点;有且只有一条直线与这条直线平行.5、平行线的性质性质1:两直线平行;同位角相等;性质2:两直线平行;内错角相等;性质3:两直线平行;同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论;平行线的性质还有:1若两条直线平行;则这两条直线在同一平面内;且没有公共点.2如果一条直线与两条平行线中的一条直线垂直;那么它必与另一条直线垂直.6、三角形的内角和定理:三角形的内角和等于180°.推论:1三角形的一个外角等于和它不相邻的两个内角的和.2三角形的一个外角大于任何一个和它不相邻的内角.要点诠释:1由一个公理或定理直接推出的真命题;叫做这个公理或定理的推论.2推论可以当做定理使用.。
新北师大版八年级数学上册第七章平行线的证明知识点复习
AB E P DC F平行线的证明知识点复习知识点1:命题(1)判断一件事情的句子,叫_____________. _______的命题是真命题,不正确的命题是___________.(2)公认的真命题称为____________,经过证明的真命题称为_____________.典型练习:1:判断下列命题是真命题还是假命题,如果是假命题,举出一个反例:①.若a>b ,则ba 11 . ②.两个锐角的和是锐角.③.同位角相等,两直线平行. ④.一个角的邻补角大于这个角. ⑤.两个负数的差一定是负数.2.甲、乙、丙、丁四个小朋友在院里玩球,忽听“砰”的一声,球击中了李大爷家的窗户.李大爷跑出来查看,发现一块窗户玻璃被打裂了.李大爷问:“是谁闯的祸?”甲说:“是乙不小心闯的祸.” 乙说:“是丙闯的祸.”丙说:“乙说的不是实话.” 丁说:“反正不是我闯的祸.”如果这四个小朋友中只有一个人说了实话,请你帮李大爷判断一下,究竟是谁闯的( )A.甲B. 乙C.丙D.丁知识点2:平行线(1).平行线的判定:公理:____________相等,两直线平行. 判定定理1:___________相等,两直线平行.判定定理2:_______________,两直线平行. 定理:平行于同一直线的两直线___________.(2).平行线的性质公理:两直线平行,同位角___________. 性质定理1:两直线平行,内错角_________.性质定理2:两直线平行,同旁内角__________.典型练习:1、已知如图∠1=∠2,BD 平分∠ABC ,求证:AB//CD2.已知:BC//EF ,∠B=∠E ,求证:AB//DE 。
3、小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零 件,要求AB ∥CD ,∠BAE=35°,∠AED=90°.小明发现工人师傅只是量出∠BAE=35°,∠AED=90°后,又量了∠EDC=55°,于是他就说AB 与CD 肯定是平行的,你知道什么原因吗?4.如图,某湖上风景区有两个观望点A,C和两个度假村B,D.度假村D在C的正西方向,度假村B在C的南偏东30°方向,度假村B到两个观望点的距离都等于2km.(1)求道路CD与CB的夹角;(2)如果度假村D到C是直公路,长为1km,D到A是环湖路,度假村B到两个观望点的总路程等于度假村D到两个观望点的总路程.求出环湖路的长;(3)根据题目中的条件,能够判定DC∥AB吗?若能,请写出判断过程;若不能,请你加上一个条件,判定DC∥AB.5.与平行线有关的探究题(1)、利用平行线的性质探究:如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①②③④四个部分,规定线上各点不属于任何部分.当动点P落在某个部分时,连接PA、PB,构成∠PAC、∠APB、∠PBD三个角.当动点P落在第①部分时,小明同学在研究∠PAC、∠APB、∠PBD三个角的数量关系时,利用图1,过点P 作PQ∥BD,得出结论:∠APB=∠PAC+∠PBD.请你参考小明的方法解决下列问题:(1)当动点P落在第②部分时,在图2中画出图形,写出∠PAC、∠APB、∠PBD三个角的数量关系;(2)当动点P落在第③、第○4部分时,在图3、图4中画出图形,探究∠PAC、∠APB、∠PBD之间的数量关系,写出结论并选择其中一种情形加以证明.知识点三:三角形的内角和外角(1)三角形内角和定理:三角形的内角和等于__________.(2) 定理:三角形的一个外角等于和它不相邻的____________________.(3) 定理:三角形的一个外角大于任何一个和它____________________.典型练习:1.如下几个图形是五角星和它的变形.(1)图(1)中是一个五角星,求∠A+∠B+∠C+∠D+∠E;(2)图(2)中的点A向下移到BE上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?说明你的结论的正确性;(3)把图(2)中的点C向上移到BD上时,如图(3)所示,五个角的和(即∠CAD+∠B+ ∠ACE+∠D+∠E)有无变化?说明你的结论的正确性.2..认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC 中,O 是∠AB C 与∠ACB 的平分线BO 和CO 的交点,通过分析发现∠BOC =90°+21∠A,理由如下: ∵BO 和CO 分别是∠ABC 和∠ACB 的角平分线,∴∠1=21∠ABC ,∠2=21∠ACB ∴∠1+∠2=21(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°—∠A∴∠1+∠2=21(180°—∠A )=90°—21∠A ∴∠BOC=180°—(∠1+∠2)=180°—(90°—21∠A ) ∴∠BOC=90°+21∠A 探究2:如图2,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系? 请说明理由.探究3:如图3,O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?(只写结论,不需证明)综合测试题:一、填空题1.如上图,AD ∥BC ,AC 与BD 相交于O ,则图中相等的角有_____对.2.如上右图,已知AB ∥CD ,∠1=100°,∠2=120°,则∠α=_____.3.如右图,DAE 是一条直线,DE ∥BC ,则∠BAC =_____.4.“一次函数y=kx-2,当k>0时,y 随x 的增大而增大”是一个_______命题(填“真”或“假”)二、选择题1.下列命题正确的是( )A.内错角相等B.相等的角是对顶角C.三条直线相交 ,必产生同位角、内错角、同旁内角D.同位角相等,两直线平行2.两平行直线被第三条直线所截,同位角的平分线( )A.互相重合B.互相平行C.互相垂直D.相交3. 下列句子中,不是命题的是( )A.三角形的内角和等于180度;B.对顶角相等;C.过一点作已知直线的平行线;D.两点确定一条直线.4.如右图,已知∠1=∠B ,∠2=∠C ,则下列结论不成立的是( )A.AD ∥BCB.∠B =∠CC.∠2+∠B =180°D.AB ∥CD5.如右图,若AB∥CD,则∠A、∠E、∠D之间的关系是( )A.∠A+∠E+∠D=180°B.∠A-∠E+∠D=180°C.∠A+∠E-∠D=180°D.∠A+∠E+∠D=270°三、解答题1.如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.2.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系,为什么?3.如图,如图,在三角形ABC中,∠C=70°,∠B=38°,AE是∠BAC的平分线,AD⊥BC于D.(1)求∠DAE的度数;(2)判定AD是∠EAC的平分线吗?说明理由.(3)若∠C=α°,∠B=β°,试猜想∠DAE与∠C—∠B有何关系,并证明你的猜想.∠DAE的度数.(∠C>∠B)4.如图,y轴的负半轴平分∠AOB,P为y轴负半轴上的一动点,过点P作x轴的平行线分别交OA、OB 于点M、N.(1)如图1,MN⊥y轴吗?为什么?(2)如图2,当点P在y轴的负半轴上运动到AB与y轴的交点处,其他条件都不变时,等式∠APM=(∠OBA﹣∠A)是否成立?为什么?(3)当点P在y轴的负半轴上运动到图3处(Q为BA、NM的延长线的交点),其他条件都不变时,试问∠Q、∠OAB、∠OBA之间是否存在某种数量关系?若存在,请写出其关系式,并加以证明;若不存在,请说明理由.。
新北师大版数学八年级上册复习知识点完整版
新北师大版数学八年级上册复习知识点HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】新北师大版八年级上数学第一章到第七章知识点总结第一章 勾股定理【主要知识】1、勾股定理:直角三角形的两直角边的平方和等于_______________。
如果用b a ,和c 分别表示直角三角形的两直角边和斜边,那么________________【注】①直角三角形;②找准斜边、直角边。
2、(1)勾股定理的逆定理:如果三角形的三边长c b a ,,满足_____________,那么这个三角形是直角三角形。
(2)勾股数:满足222c b a =+的三个正整数,称为______________。
3、勾股定理的应用1、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( )A .26B .18C .20D .212、在下列数组中,能构成一个直角三角形的有( )①10,20,25;②10,24,25;③9,80,81;④8;15;17A 、4组B 、3组C 、2组D 、1组3、三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是( ).A 、钝角三角形B 、锐角三角形C 、直角三角形D 、等边三角形4、下列各组数:①,,;②9,12,16;③4,5,6;④a 8,a 15,a 17(0≠a ); ⑤9,40,41。
其中是勾股数的有( )组A 、1B 、2C 、3D 、45、将Rt △ABC 的三边都扩大为原来的2倍,得△A ’B ’C ’,则△A ’B ’C ’为( )A 、 直角三角形B 、锐角三角形C 、钝角三角形D 、无法确定6、在Rt △ABC 中,∠C =90°,∠B =45°,c =10,则a 的长为( )A :5B :10C :25D :57、已知a 、b 、c 是三角形的三边长,如果满足2(6)100a c --=,则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数:无限不循环小数叫做无理数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章平行线的证明
一、填空题(每空3分,共42分)
1、“两直线平行,同位角互补”是命题(填真、假)
2、把命题“对顶角相等”改写成“如果…那么…”的形式
3、如图所示,∠1+ ∠2=180°,若∠3=50°,则∠4=
4、如图所示,△ABC中,∠ACD=115°,∠B=55°,则∠A= , ∠ACB=
5、在△ABC中,∠C=90°,若∠A=30°,则∠B=
6、在△ABC中,∠B—∠C=40°,则∠C= ,∠B=
7、在三角形中,最多有个锐角,至少有个锐角,最多有个钝角(或直角)
8、△ABC的三个外角度数比为3∶4∶5,则它的三个外角度数分别为
9、在△ABC中,∠ABC和∠ACB的平分线交于点I, 若∠A=60°,则∠BIC=
10、已知如图,平行四边形ABCD中,E为AB上一点,DE与AC交于点F,AF∶FC=3∶7,则AE∶EB=
二、选择题(每小题3分,共18分)
11、下列命题是真命题的是()A、同旁内角互补B、直角三角形
的两锐角互余C、三角形的一个外角等于它的两个内角之和D、三角形的一个外角大于内角
12、下列语句为命题的是()A 、你吃过午饭了吗?B、过点A 作直线MN C、同角的余角相等D、红扑扑的脸蛋
13、命题“垂直与同一条直线的两条直线互相平行”的题设是()
A、垂直
B、两条直线
C、同一条直线
D、两条直线垂直于同一条直线
14、已知△ABC的三个内角度数比为2∶3∶4,则个三角形是()
A、锐角三角形
B、直角三角形
C、钝角三角形
D、等
腰三角形
15、如图,一个任意的五角星,它的五个内角的度数和为()
A、90°
B、180°
C、360°
D、
120°
16、如图,AB∥EF,∠C=90°,则α、β、γ的关系为()
A、β=α+γ
B、α+β+γ=180°
C、β+γ-α=90°
D、
α+β-γ=90°
三、完型填空(每空2分,共8分)
17、已知如图,在△ABC中,CH是外角∠ACD的平分线,BH是∠ABC的平分线。
求证:∠A= 2∠H
证明:∵∠ACD是△ABC的一个外角,
∴∠ACD=∠ABC+∠ A ( )
∠2是△BCD 的一个外角,
∠2=∠1+∠H ( ) ∵CH 是外角∠ACD 的平分线,BH 是∠ABC 的平分线
∴∠1= 21∠ABC ,∠2= 2
1∠ACD ( ) ∴∠A =∠ACD-∠ABC= 2 (∠2 - ∠1) (等式的性质) 而 ∠H=∠2 - ∠1 (等式的性质)
∴∠A= 2∠H ( )
四、解答题(每题8分,共 32分)
18、已知如图,在△ABC 中,∠1是它的一个外角,E 为边AC 上一点,延长BC 到D ,连接DE 。
求证:∠1 > ∠2
19、求证:两条直线平行,同旁内角的角平分线互相垂直。
(提示:先画图,写出已知,求证,然后进行证明)
20、已知如图,O是四边形ABCD的两条对角线的交点,过
点O作OE∥CD,交AD于E,作OF∥BC,交AB于F,
连接EF。
求证:EF∥BD
21、已知如图,AB∥DE。
(1)、猜测∠A、∠ACD、∠D有什么关系,并证明你的结论。
(2)、若点C向右移动到线段AD的右侧,此时∠A、∠ACD、∠D之间的关系,仍然满足(1)中的结论吗?若符合请你证明,若不符,请你写出正确的结论并证明。
要求画出相应的图形。