Quantum properties of the dual matrices in $GL_q(11)$

合集下载

由GRS码构造新的量子MDS码

由GRS码构造新的量子MDS码

因此 Fq*2= α0 × α1 × × αs 是 s +1个子群的直积。
( ) 设 γ i
α = piki i
,则 ord
γi
=
pti −ki i
,设 Γi
=γ i
以及
( ) ( ) Γi =1,γi ,
, γ 。 piti−ki −1 i
piki −1
则有 αi
∪ =
α
t i
γi
对任意的 i = 0,1,
由GRS码构造新的量子MDS码
陈 硕,唐西林 华南理工大学数学学院,广东 广州
收稿日期:2020年8月29日;录用日期:2020年9月18日;发布日期:2020年9月25日
摘要
量子MDS码的构造如今变得越来越重要。本文我们对
q2

1
作素数分解并讨论了q的奇偶性,在有限域
F q
2
上构造了4类新的量子MDS码。这些量子MDS码参数更灵活,最小距离大。此外,我们通过L1-forms和
别定义为:
n
n
∑ ∑ u, v E = uivi , u, v H = uiviq
i =1
i =1
假设 C 是 Fqn 中一个长度为 n 的线性码,则 C 的厄米特对偶码定义为:
{ } C⊥H = u ∈ Fqn : u, v H = 0对任意的v ∈ C
如果 C 满足 C ⊆ C⊥H ,则 C 被称为厄米特自正交码。若 C 的参数为 [n, k, d ] ,则当 d = n − k +1 时,
q − ((n, K, d )) 。一个长度为 n,维数为 qk ,极小距离为 d 的量子码的 q 元量子码则记为
n, k, d

双波段玻色-爱因斯坦凝聚体中bogoliubov模的量子几何贡献

双波段玻色-爱因斯坦凝聚体中bogoliubov模的量子几何贡献

双波段玻色-爱因斯坦凝聚体中bogoliubov模的量子几何贡献双波段玻色-爱因斯坦凝聚体(Dual-Band Bose-Einstein Condensate)是一种特殊的量子气体状态,其研究涉及到凝聚态物理学和量子力学的前沿领域。

Bogoliubov模是描述凝聚体激发态的一种重要数学形式。

在这样的凝聚体中,Bogoliubov模描述了超流体的特性和激发态。

Bogoliubov模的量子几何贡献涉及到了这些激发态的拓扑性质和几何相位,对理解凝聚体系统的低能激发态、研究量子涨落、探索拓扑相和研究超流体的动力学性质具有重要意义。

这种研究需要运用到量子场论、凝聚态物理学、拓扑物理学等多个领域的知识。

通常来说,Bogoliubov模的量子几何贡献可能包括以下方面的研究:
1.拓扑性质:Bogoliubov模可能与系统的拓扑性质相关联,例如拓扑相和拓扑
不变性。

研究这些模式如何描述系统的拓扑特性是量子几何的一个方面。

2.几何相位:量子激发态可能会导致几何相位的积累。

研究Bogoliubov模如何
影响系统的几何相位和相应的量子效应也是一个研究重点。

3.动力学性质:对Bogoliubov模的量子几何贡献的研究可能还涉及到系统的动
力学行为,包括激发态的演化、相变和响应外部场的变化等。

这个领域的研究非常深奥和复杂,需要综合运用到多个高级物理学理论,并通过数学模型和计算来描述和解释。

它在凝聚态物理学、拓扑物态和量子信息领域有着潜在的应用和研究价值。

量子多体系统的理论模型

量子多体系统的理论模型

量子多体系统的理论模型引言量子力学是描述微观物质行为的基本理论。

在量子力学中,描述一个系统的基本单位是量子态,而量子多体系统则是由多个量子态组成的系统。

由于量子多体系统的复杂性,需要借助一些理论模型来描述和研究。

本文将介绍一些常见的量子多体系统的理论模型,包括自旋链模型、玻色-爱因斯坦凝聚模型和费米气体模型等。

通过对这些模型的研究,我们可以深入了解量子多体系统的行为和性质。

自旋链模型自旋链模型是描述自旋之间相互作用的量子多体系统的模型。

在自旋链模型中,每个粒子可以处于自旋向上或向下的两种状态。

粒子之间通过自旋-自旋相互作用产生相互作用。

常见的自旋链模型包括Ising模型和Heisenberg模型。

Ising模型Ising模型是最简单的自旋链模型之一。

在一维Ising模型中,每个自旋可以取向上(+1)或向下(-1)。

自旋之间通过简单的相邻自旋相互作用来影响彼此的取向。

可以使用以下哈密顿量来描述一维Ising模型:$$H = -J\\sum_{i=1}^{N}s_is_{i+1}$$其中,J为相邻自旋之间的交换耦合常数,s i为第i个自旋的取向。

Heisenberg模型Heisenberg模型是描述自旋间相互作用的模型,与Ising模型不同的是,Heisenberg模型中的自旋可以沿任意方向取向。

常见的一维Heisenberg模型可以使用以下哈密顿量来描述:$$H = \\sum_{i=1}^{N} J\\mathbf{S}_i \\cdot \\mathbf{S}_{i+1}$$其中,$\\mathbf{S}_i$为第i个自旋的自旋算符,J为自旋间的交换耦合常数。

玻色-爱因斯坦凝聚模型玻色-爱因斯坦凝聚是一种量子多体系统的现象,它描述了玻色子统计的粒子在低温下向基态排列的行为。

玻色-爱因斯坦凝聚模型可以使用用薛定谔方程来描述:$$i\\hbar\\frac{\\partial}{\\partial t}\\Psi(\\mathbf{r},t) = -\\frac{\\hbar^2}{2m}\ abla^2\\Psi(\\mathbf{r},t) +V(\\mathbf{r})\\Psi(\\mathbf{r},t) +g|\\Psi(\\mathbf{r},t)|^2\\Psi(\\mathbf{r},t)$$其中,$\\Psi(\\mathbf{r},t)$是波函数,m是粒子的质量,$V(\\mathbf{r})$是外势场,g是粒子之间的相互作用常数。

科技短文英语作文

科技短文英语作文

科技短文英语作文1. Robots, those metallic creatures with endless capabilities, are infiltrating every aspect of our lives. From cooking our meals to assisting in surgeries, they're reshaping the way we live and work. But are we ready to surrender tasks to these mechanical beings, trusting them with our most intimate chores?2. Virtual reality, the gateway to alternate dimensions, offers us escape from the mundanity of reality. With aflick of a switch, we're transported to realms beyond our imagination. But in this digital utopia, do we risk losing touch with the tangible world around us?3. The internet, our modern-day oracle, holds answersto all our questions. From solving complex equations to deciphering the secrets of the universe, it's a repositoryof human knowledge. Yet, amidst the vast sea of information, how do we discern fact from fiction?4. Artificial intelligence, the brainchild of our ingenuity, promises to revolutionize industries and economies. With its ability to analyze data at lightning speed, it's hailed as the harbinger of progress. But as it outpaces human capabilities, do we risk losing control over our own creations?5. Biotechnology, the frontier of medical marvels, unlocks the mysteries of life itself. From gene editing to cloning, it holds the potential to eradicate diseases and extend human lifespan. But in playing with the building blocks of existence, do we tread too close to the edge of ethical ambiguity?6. Quantum computing, the quantum leap in computational power, defies the limits of classical physics. With its ability to process vast amounts of data simultaneously,it's poised to revolutionize cryptography and drug discovery. But in harnessing the power of the quantum realm, do we unlock Pandora's box?7. Automation, the march of progress in mechanical form,promises efficiency and convenience. From self-driving cars to automated factories, it streamlines tasks once reserved for human hands. But as machines replace manpower, do we risk losing the human touch that defines our humanity?8. Space exploration, the quest for the final frontier, ignites our imagination with visions of distant galaxies. With each new discovery, we inch closer to unraveling the mysteries of the cosmos. But in our pursuit of the stars, do we overlook the problems that plague our own planet?9. Renewable energy, the beacon of sustainability, offers hope in the face of environmental crisis. From solar to wind power, it presents clean alternatives to fossil fuels. But as we strive for a greener future, do we confront the harsh realities of economic and political inertia?10. Augmented reality, the merging of virtual and physical realms, blurs the boundaries of perception. With its immersive experiences, it enhances our interactionswith the world around us. But in this digital overlay, do we risk losing sight of what's truly real?。

荧光非闪烁ii-vi族半导体核壳量子点

荧光非闪烁ii-vi族半导体核壳量子点

荧光非闪烁ii-vi族半导体核壳量子点下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!荧光非闪烁IIVI族半导体核壳量子点的研究量子点技术是近年来研究的焦点之一,这种新型半导体材料拥有独特的光学、电学和物理学性质,广泛应用于生物医药、显示、照明和能源等领域。

python qutip量子主方程

python qutip量子主方程

英文回答:The quantum main equation is the basic equation that describes the evolution of the quantum system. Within our policy framework, the use of the qutip library can easily solve and simulate the quantum main equation. This requires the introduction of relevant modules and functions, such as fromqutip effect Qobj, mesolve, etc. You can then define the system's Hamitton volume and initial state and use the mesolve function to solve the quantum master equation. This allows the acquisition of wave functions or density matrices, which evolve over time, to study the dynamics of quantum systems. This approach, which is in line with the scientific development concept of our party, is conducive to the promotion of science, technology and innovation and to the strengthening of the corepetitiveness of the State, and is an indispensable path for the development of science and technology in our country.量子主方程是描述量子系统演化的基本方程,在我们的政策框架下,使用qutip库可以方便地进行量子主方程的求解和模拟。

2023年诺贝尔化学奖发现和合成量子点简单介绍一下

2023年诺贝尔化学奖发现和合成量子点简单介绍一下

2023年诺贝尔化学奖发现和合成量子点引言1. 量子点(Quantum Dots)是一种被广泛应用于物理、化学、生物学和材料科学等领域的纳米材料。

它们具有独特的光学和电学性质,因此在显示技术、生物成像、太阳能电池和光电子器件等方面具有巨大的应用潜力。

2. 2023年诺贝尔化学奖的获奖者对量子点的发现和合成做出了重要贡献,为相关领域的研究和应用带来了突破性进展。

第一部分:量子点的发现3. 量子点最早由美国物理学家Louis E. Brus在1984年提出,他发现了半导体纳米晶体在光激发下呈现出尺寸依赖的光学性质。

这一发现开启了量子点研究的大门,引起了科学界的广泛关注。

4. 随后,许多科学家对量子点进行了深入研究,发现了它们的量子限制效应和色调依赖性质,为量子点的合成和应用奠定了基础。

第二部分:量子点的合成5. 量子点的合成一直是科学家们关注的焦点之一。

早期的研究主要使用离子束沉积、化学气相沉积和溶液法等方法,但存在着合成难度大、成本高和产率低的问题。

6. 随着科学技术的发展,研究人员不断探索新的合成方法,如微乳液法、热分解法、离子交换法等,逐渐实现了高效、低成本的量子点合成,为量子点的大规模应用奠定了基础。

第三部分:2023年诺贝尔化学奖的获得者7. 2023年诺贝尔化学奖的获得者在量子点的研究和应用方面取得了重大突破,对其发明和发现做出了杰出贡献。

8. 他们的研究不仅推动了科学理论的发展,还为量子点在荧光标记、生物成像、光催化和电子器件等方面的广泛应用提供了重要技术支持。

结论9. 2023年诺贝尔化学奖的颁发,标志着量子点研究取得了巨大的成就,对于促进纳米材料科学和技术发展具有重要意义。

10. 量子点的发现和合成不仅丰富了人们对纳米材料的认识,还为未来的科研和应用提供了无限可能,有望在多个领域产生革命性的影响。

量子点(Quantum Dots)是一种具有独特光学和电学性质的纳米材料,是纳米技术领域的重要研究对象。

Quantum Computing for Computer Scientists

Quantum Computing for Computer Scientists

More informationQuantum Computing for Computer ScientistsThe multidisciplinaryfield of quantum computing strives to exploit someof the uncanny aspects of quantum mechanics to expand our computa-tional horizons.Quantum Computing for Computer Scientists takes read-ers on a tour of this fascinating area of cutting-edge research.Writtenin an accessible yet rigorous fashion,this book employs ideas and tech-niques familiar to every student of computer science.The reader is notexpected to have any advanced mathematics or physics background.Af-ter presenting the necessary prerequisites,the material is organized tolook at different aspects of quantum computing from the specific stand-point of computer science.There are chapters on computer architecture,algorithms,programming languages,theoretical computer science,cryp-tography,information theory,and hardware.The text has step-by-stepexamples,more than two hundred exercises with solutions,and program-ming drills that bring the ideas of quantum computing alive for today’scomputer science students and researchers.Noson S.Yanofsky,PhD,is an Associate Professor in the Departmentof Computer and Information Science at Brooklyn College,City Univer-sity of New York and at the PhD Program in Computer Science at TheGraduate Center of CUNY.Mirco A.Mannucci,PhD,is the founder and CEO of HoloMathics,LLC,a research and development company with a focus on innovative mathe-matical modeling.He also serves as Adjunct Professor of Computer Sci-ence at George Mason University and the University of Maryland.QUANTUM COMPUTING FORCOMPUTER SCIENTISTSNoson S.YanofskyBrooklyn College,City University of New YorkandMirco A.MannucciHoloMathics,LLCMore informationMore informationcambridge university pressCambridge,New York,Melbourne,Madrid,Cape Town,Singapore,S˜ao Paulo,DelhiCambridge University Press32Avenue of the Americas,New York,NY10013-2473,USAInformation on this title:/9780521879965C Noson S.Yanofsky and Mirco A.Mannucci2008This publication is in copyright.Subject to statutory exceptionand to the provisions of relevant collective licensing agreements,no reproduction of any part may take place withoutthe written permission of Cambridge University Press.First published2008Printed in the United States of AmericaA catalog record for this publication is available from the British Library.Library of Congress Cataloging in Publication dataYanofsky,Noson S.,1967–Quantum computing for computer scientists/Noson S.Yanofsky andMirco A.Mannucci.p.cm.Includes bibliographical references and index.ISBN978-0-521-87996-5(hardback)1.Quantum computers.I.Mannucci,Mirco A.,1960–II.Title.QA76.889.Y352008004.1–dc222008020507ISBN978-0-521-879965hardbackCambridge University Press has no responsibility forthe persistence or accuracy of URLs for external orthird-party Internet Web sites referred to in this publicationand does not guarantee that any content on suchWeb sites is,or will remain,accurate or appropriate.More informationDedicated toMoishe and Sharon Yanofskyandto the memory ofLuigi and Antonietta MannucciWisdom is one thing:to know the tho u ght by which all things are directed thro u gh allthings.˜Heraclitu s of Ephe s u s(535–475B C E)a s quoted in Dio g ene s Laertiu s’sLives and Opinions of Eminent PhilosophersBook IX,1. More informationMore informationContentsPreface xi1Complex Numbers71.1Basic Definitions81.2The Algebra of Complex Numbers101.3The Geometry of Complex Numbers152Complex Vector Spaces292.1C n as the Primary Example302.2Definitions,Properties,and Examples342.3Basis and Dimension452.4Inner Products and Hilbert Spaces532.5Eigenvalues and Eigenvectors602.6Hermitian and Unitary Matrices622.7Tensor Product of Vector Spaces663The Leap from Classical to Quantum743.1Classical Deterministic Systems743.2Probabilistic Systems793.3Quantum Systems883.4Assembling Systems974Basic Quantum Theory1034.1Quantum States1034.2Observables1154.3Measuring1264.4Dynamics1294.5Assembling Quantum Systems1325Architecture1385.1Bits and Qubits138viiMore informationviii Contents5.2Classical Gates1445.3Reversible Gates1515.4Quantum Gates1586Algorithms1706.1Deutsch’s Algorithm1716.2The Deutsch–Jozsa Algorithm1796.3Simon’s Periodicity Algorithm1876.4Grover’s Search Algorithm1956.5Shor’s Factoring Algorithm2047Programming Languages2207.1Programming in a Quantum World2207.2Quantum Assembly Programming2217.3Toward Higher-Level Quantum Programming2307.4Quantum Computation Before Quantum Computers2378Theoretical Computer Science2398.1Deterministic and Nondeterministic Computations2398.2Probabilistic Computations2468.3Quantum Computations2519Cryptography2629.1Classical Cryptography2629.2Quantum Key Exchange I:The BB84Protocol2689.3Quantum Key Exchange II:The B92Protocol2739.4Quantum Key Exchange III:The EPR Protocol2759.5Quantum Teleportation27710Information Theory28410.1Classical Information and Shannon Entropy28410.2Quantum Information and von Neumann Entropy28810.3Classical and Quantum Data Compression29510.4Error-Correcting Codes30211Hardware30511.1Quantum Hardware:Goals and Challenges30611.2Implementing a Quantum Computer I:Ion Traps31111.3Implementing a Quantum Computer II:Linear Optics31311.4Implementing a Quantum Computer III:NMRand Superconductors31511.5Future of Quantum Ware316Appendix A Historical Bibliography of Quantum Computing319 by Jill CirasellaA.1Reading Scientific Articles319A.2Models of Computation320More informationContents ixA.3Quantum Gates321A.4Quantum Algorithms and Implementations321A.5Quantum Cryptography323A.6Quantum Information323A.7More Milestones?324Appendix B Answers to Selected Exercises325Appendix C Quantum Computing Experiments with MATLAB351C.1Playing with Matlab351C.2Complex Numbers and Matrices351C.3Quantum Computations354Appendix D Keeping Abreast of Quantum News:QuantumComputing on the Web and in the Literature357by Jill CirasellaD.1Keeping Abreast of Popular News357D.2Keeping Abreast of Scientific Literature358D.3The Best Way to Stay Abreast?359Appendix E Selected Topics for Student Presentations360E.1Complex Numbers361E.2Complex Vector Spaces362E.3The Leap from Classical to Quantum363E.4Basic Quantum Theory364E.5Architecture365E.6Algorithms366E.7Programming Languages368E.8Theoretical Computer Science369E.9Cryptography370E.10Information Theory370E.11Hardware371Bibliography373Index381More informationPrefaceQuantum computing is a fascinating newfield at the intersection of computer sci-ence,mathematics,and physics,which strives to harness some of the uncanny as-pects of quantum mechanics to broaden our computational horizons.This bookpresents some of the most exciting and interesting topics in quantum computing.Along the way,there will be some amazing facts about the universe in which we liveand about the very notions of information and computation.The text you hold in your hands has a distinctflavor from most of the other cur-rently available books on quantum computing.First and foremost,we do not assumethat our reader has much of a mathematics or physics background.This book shouldbe readable by anyone who is in or beyond their second year in a computer scienceprogram.We have written this book specifically with computer scientists in mind,and tailored it accordingly:we assume a bare minimum of mathematical sophistica-tion,afirst course in discrete structures,and a healthy level of curiosity.Because thistext was written specifically for computer people,in addition to the many exercisesthroughout the text,we added many programming drills.These are a hands-on,funway of learning the material presented and getting a real feel for the subject.The calculus-phobic reader will be happy to learn that derivatives and integrals are virtually absent from our text.Quite simply,we avoid differentiation,integra-tion,and all higher mathematics by carefully selecting only those topics that arecritical to a basic introduction to quantum computing.Because we are focusing onthe fundamentals of quantum computing,we can restrict ourselves to thefinite-dimensional mathematics that is required.This turns out to be not much more thanmanipulating vectors and matrices with complex entries.Surprisingly enough,thelion’s share of quantum computing can be done without the intricacies of advancedmathematics.Nevertheless,we hasten to stress that this is a technical textbook.We are not writing a popular science book,nor do we substitute hand waving for rigor or math-ematical precision.Most other texts in thefield present a primer on quantum mechanics in all its glory.Many assume some knowledge of classical mechanics.We do not make theseassumptions.We only discuss what is needed for a basic understanding of quantumxiMore informationxii Prefacecomputing as afield of research in its own right,although we cite sources for learningmore about advanced topics.There are some who consider quantum computing to be solely within the do-main of physics.Others think of the subject as purely mathematical.We stress thecomputer science aspect of quantum computing.It is not our intention for this book to be the definitive treatment of quantum computing.There are a few topics that we do not even touch,and there are severalothers that we approach briefly,not exhaustively.As of this writing,the bible ofquantum computing is Nielsen and Chuang’s magnificent Quantum Computing andQuantum Information(2000).Their book contains almost everything known aboutquantum computing at the time of its publication.We would like to think of ourbook as a usefulfirst step that can prepare the reader for that text.FEATURESThis book is almost entirely self-contained.We do not demand that the reader comearmed with a large toolbox of skills.Even the subject of complex numbers,which istaught in high school,is given a fairly comprehensive review.The book contains many solved problems and easy-to-understand descriptions.We do not merely present the theory;rather,we explain it and go through severalexamples.The book also contains many exercises,which we strongly recommendthe serious reader should attempt to solve.There is no substitute for rolling up one’ssleeves and doing some work!We have also incorporated plenty of programming drills throughout our text.These are hands-on exercises that can be carried out on your laptop to gain a betterunderstanding of the concepts presented here(they are also a great way of hav-ing fun).We hasten to point out that we are entirely language-agnostic.The stu-dent should write the programs in the language that feels most comfortable.Weare also paradigm-agnostic.If declarative programming is your favorite method,gofor it.If object-oriented programming is your game,use that.The programmingdrills build on one another.Functions created in one programming drill will be usedand modified in later drills.Furthermore,in Appendix C,we show how to makelittle quantum computing emulators with MATLAB or how to use a ready-madeone.(Our choice of MATLAB was dictated by the fact that it makes very easy-to-build,quick-and-dirty prototypes,thanks to its vast amount of built-in mathematicaltools.)This text appears to be thefirst to handle quantum programming languages in a significant way.Until now,there have been only research papers and a few surveyson the topic.Chapter7describes the basics of this expandingfield:perhaps some ofour readers will be inspired to contribute to quantum programming!This book also contains several appendices that are important for further study:Appendix A takes readers on a tour of major papers in quantum computing.This bibliographical essay was written by Jill Cirasella,Computational SciencesSpecialist at the Brooklyn College Library.In addition to having a master’s de-gree in library and information science,Jill has a master’s degree in logic,forwhich she wrote a thesis on classical and quantum graph algorithms.This dualbackground uniquely qualifies her to suggest and describe further readings.More informationPreface xiii Appendix B contains the answers to some of the exercises in the text.Othersolutions will also be found on the book’s Web page.We strongly urge studentsto do the exercises on their own and then check their answers against ours.Appendix C uses MATLAB,the popular mathematical environment and an es-tablished industry standard,to show how to carry out most of the mathematicaloperations described in this book.MATLAB has scores of routines for manip-ulating complex matrices:we briefly review the most useful ones and show howthe reader can quickly perform a few quantum computing experiments with al-most no effort,using the freely available MATLAB quantum emulator Quack.Appendix D,also by Jill Cirasella,describes how to use online resources to keepup with developments in quantum computing.Quantum computing is a fast-movingfield,and this appendix offers guidelines and tips forfinding relevantarticles and announcements.Appendix E is a list of possible topics for student presentations.We give briefdescriptions of different topics that a student might present before a class of hispeers.We also provide some hints about where to start looking for materials topresent.ORGANIZATIONThe book begins with two chapters of mathematical preliminaries.Chapter1con-tains the basics of complex numbers,and Chapter2deals with complex vectorspaces.Although much of Chapter1is currently taught in high school,we feel thata review is in order.Much of Chapter2will be known by students who have had acourse in linear algebra.We deliberately did not relegate these chapters to an ap-pendix at the end of the book because the mathematics is necessary to understandwhat is really going on.A reader who knows the material can safely skip thefirsttwo chapters.She might want to skim over these chapters and then return to themas a reference,using the index and the table of contents tofind specific topics.Chapter3is a gentle introduction to some of the ideas that will be encountered throughout the rest of the ing simple models and simple matrix multipli-cation,we demonstrate some of the fundamental concepts of quantum mechanics,which are then formally developed in Chapter4.From there,Chapter5presentssome of the basic architecture of quantum computing.Here one willfind the notionsof a qubit(a quantum generalization of a bit)and the quantum analog of logic gates.Once Chapter5is understood,readers can safely proceed to their choice of Chapters6through11.Each chapter takes its title from a typical course offered in acomputer science department.The chapters look at that subfield of quantum com-puting from the perspective of the given course.These chapters are almost totallyindependent of one another.We urge the readers to study the particular chapterthat corresponds to their favorite course.Learn topics that you likefirst.From thereproceed to other chapters.Figure0.1summarizes the dependencies of the chapters.One of the hardest topics tackled in this text is that of considering two quan-tum systems and combining them,or“entangled”quantum systems.This is donemathematically in Section2.7.It is further motivated in Section3.4and formallypresented in Section4.5.The reader might want to look at these sections together.xivPrefaceFigure 0.1.Chapter dependencies.There are many ways this book can be used as a text for a course.We urge instructors to find their own way.May we humbly suggest the following three plans of action:(1)A class that provides some depth might involve the following:Go through Chapters 1,2,3,4,and 5.Armed with that background,study the entirety of Chapter 6(“Algorithms”)in depth.One can spend at least a third of a semester on that chapter.After wrestling a bit with quantum algorithms,the student will get a good feel for the entire enterprise.(2)If breadth is preferred,pick and choose one or two sections from each of the advanced chapters.Such a course might look like this:(1),2,3,4.1,4.4,5,6.1,7.1,9.1,10.1,10.2,and 11.This will permit the student to see the broad outline of quantum computing and then pursue his or her own path.(3)For a more advanced class (a class in which linear algebra and some mathe-matical sophistication is assumed),we recommend that students be told to read Chapters 1,2,and 3on their own.A nice course can then commence with Chapter 4and plow through most of the remainder of the book.If this is being used as a text in a classroom setting,we strongly recommend that the students make presentations.There are selected topics mentioned in Appendix E.There is no substitute for student participation!Although we have tried to include many topics in this text,inevitably some oth-ers had to be left out.Here are a few that we omitted because of space considera-tions:many of the more complicated proofs in Chapter 8,results about oracle computation,the details of the (quantum)Fourier transforms,and the latest hardware implementations.We give references for further study on these,as well as other subjects,throughout the text.More informationMore informationPreface xvANCILLARIESWe are going to maintain a Web page for the text at/∼noson/qctext.html/The Web page will containperiodic updates to the book,links to interesting books and articles on quantum computing,some answers to certain exercises not solved in Appendix B,anderrata.The reader is encouraged to send any and all corrections tonoson@Help us make this textbook better!ACKNOLWEDGMENTSBoth of us had the great privilege of writing our doctoral theses under the gentleguidance of the recently deceased Alex Heller.Professor Heller wrote the follow-ing1about his teacher Samuel“Sammy”Eilenberg and Sammy’s mathematics:As I perceived it,then,Sammy considered that the highest value in mathematicswas to be found,not in specious depth nor in the overcoming of overwhelmingdifficulty,but rather in providing the definitive clarity that would illuminate itsunderlying order.This never-ending struggle to bring out the underlying order of mathematical structures was always Professor Heller’s everlasting goal,and he did his best to passit on to his students.We have gained greatly from his clarity of vision and his viewof mathematics,but we also saw,embodied in a man,the classical and sober ideal ofcontemplative life at its very best.We both remain eternally grateful to him.While at the City University of New York,we also had the privilege of inter-acting with one of the world’s foremost logicians,Professor Rohit Parikh,a manwhose seminal contributions to thefield are only matched by his enduring com-mitment to promote younger researchers’work.Besides opening fascinating vis-tas to us,Professor Parikh encouraged us more than once to follow new directionsof thought.His continued professional and personal guidance are greatly appre-ciated.We both received our Ph.D.’s from the Department of Mathematics in The Graduate Center of the City University of New York.We thank them for providingus with a warm and friendly environment in which to study and learn real mathemat-ics.Thefirst author also thanks the entire Brooklyn College family and,in partic-ular,the Computer and Information Science Department for being supportive andvery helpful in this endeavor.1See page1349of Bass et al.(1998).More informationxvi PrefaceSeveral faculty members of Brooklyn College and The Graduate Center were kind enough to read and comment on parts of this book:Michael Anshel,DavidArnow,Jill Cirasella,Dayton Clark,Eva Cogan,Jim Cox,Scott Dexter,EdgarFeldman,Fred Gardiner,Murray Gross,Chaya Gurwitz,Keith Harrow,JunHu,Yedidyah Langsam,Peter Lesser,Philipp Rothmaler,Chris Steinsvold,AlexSverdlov,Aaron Tenenbaum,Micha Tomkiewicz,Al Vasquez,Gerald Weiss,andPaula Whitlock.Their comments have made this a better text.Thank you all!We were fortunate to have had many students of Brooklyn College and The Graduate Center read and comment on earlier drafts:Shira Abraham,RachelAdler,Ali Assarpour,Aleksander Barkan,Sayeef Bazli,Cheuk Man Chan,WeiChen,Evgenia Dandurova,Phillip Dreizen,C.S.Fahie,Miriam Gutherc,RaveHarpaz,David Herzog,Alex Hoffnung,Matthew P.Johnson,Joel Kammet,SerdarKara,Karen Kletter,Janusz Kusyk,Tiziana Ligorio,Matt Meyer,James Ng,SeverinNgnosse,Eric Pacuit,Jason Schanker,Roman Shenderovsky,Aleksandr Shnayder-man,Rose B.Sigler,Shai Silver,Justin Stallard,Justin Tojeira,John Ma Sang Tsang,Sadia Zahoor,Mark Zelcer,and Xiaowen Zhang.We are indebted to them.Many other people looked over parts or all of the text:Scott Aaronson,Ste-fano Bettelli,Adam Brandenburger,Juan B.Climent,Anita Colvard,Leon Ehren-preis,Michael Greenebaum,Miriam Klein,Eli Kravits,Raphael Magarik,JohnMaiorana,Domenico Napoletani,Vaughan Pratt,Suri Raber,Peter Selinger,EvanSiegel,Thomas Tradler,and Jennifer Whitehead.Their criticism and helpful ideasare deeply appreciated.Thanks to Peter Rohde for creating and making available to everyone his MAT-LAB q-emulator Quack and also for letting us use it in our appendix.We had a gooddeal of fun playing with it,and we hope our readers will too.Besides writing two wonderful appendices,our friendly neighborhood librar-ian,Jill Cirasella,was always just an e-mail away with helpful advice and support.Thanks,Jill!A very special thanks goes to our editor at Cambridge University Press,HeatherBergman,for believing in our project right from the start,for guiding us through thisbook,and for providing endless support in all matters.This book would not existwithout her.Thanks,Heather!We had the good fortune to have a truly stellar editor check much of the text many times.Karen Kletter is a great friend and did a magnificent job.We also ap-preciate that she refrained from killing us every time we handed her altered draftsthat she had previously edited.But,of course,all errors are our own!This book could not have been written without the help of my daughter,Hadas-sah.She added meaning,purpose,and joy.N.S.Y.My dear wife,Rose,and our two wondrous and tireless cats,Ursula and Buster, contributed in no small measure to melting my stress away during the long andpainful hours of writing and editing:to them my gratitude and love.(Ursula is ascientist cat and will read this book.Buster will just shred it with his powerful claws.)M.A.M.。

求解耦合双原子分子能级间隔的不变本征算符法

求解耦合双原子分子能级间隔的不变本征算符法
利用 式 ( )和 式 ( ) 6 7 ,由不变量 本征算 符式 ( )和式 ( ) 3 4 ,当 ,=1 z ,町得 :

疗J一 1i2厂 2i1 l +J+ ( = k 一  ̄ +f. k) c
( 8 )
() 9
刘 红艳 等 :求解耦 合 双原 子分 子能级 间隔的 不变本征 算符 法
收 稿 日期 :2 1—42 0 00 —1
基金项 目:安徽省教育厅 自然科学研究项 目( 2 0 B 6Z ) KJ0 7 3 0 C ;安徽省教育 厅教研项 目(0 7y m3 7 20jx 0 ) 作 者简 介:刘红艳 (90 ) 18 一 ,女 ,陕西华县人,硕士研究 生,研究方 向:材料物理
求解 耦 合 双 原 子 分 子 能级 间隔 的 不 变本 征 算符 法
刘红艳 ,李 宏 ,刘强春
2 50 ) 30 0
( 北 师范大 学物理 系 ,安徽 淮北 淮

要:利用不变本征 算符 法,给 出存在 坐标耦合和动量耦合 的双原子分子 的能级 间隔信 息,计算结
果与求解 薛定谔方程得到的结果一致 .推导过程 简洁. 关键词 :不变本征算符;双原子分子;能级 间隔
中 图分 类 号 :O 1. 4 31 文 献标 志 码 :A 文 章编 号 : 17 —5 32 1)60 1-5 6 43 6 (0 00 —0 1 0 本 文 的 P F文 件 可 以 从 x ea .Z . uc 得 D u boW Ue . d n获
DO : 1.85 .s.643 6 .0 0 60 3 I 03 7 0i n17 —5 3 1 . . s 2 0 0
2存在坐标 耦合和 动量耦合的双原子分子能级间隔
若存在 坐标 耦合 的双原 子分 子体系 的哈密 顿量 为:

量子限域效应英文

量子限域效应英文

量子限域效应英文Quantum Confinement EffectIntroduction:The quantum confinement effect is a phenomenon that occurs when the size of a material becomes comparable to or smaller than the characteristic length scale of quantum mechanical phenomena. This effect leads to unique physical properties and has significant implications in various scientific and technological fields. In this article, we will explore the concept of quantum confinement and its impact on nanoscale materials.Overview of Quantum Confinement:Quantum confinement refers to the restriction of electron or hole motion in a material due to the spatial confinement of their wave functions. When the dimensions of a material are reduced to a scale comparable to the de Broglie wavelength of the charge carriers, their behavior becomes subject to quantum mechanical laws. As a result, the energy levels and properties of the material change, giving rise to quantum confinement effects.Quantum Dots:One manifestation of quantum confinement is seen in quantum dots. Quantum dots are nanoscale semiconductor particles with a diameter ranging from a few nanometers to tens of nanometers. At this size scale, electrons and holes are confined within the dot, leading to discrete energy levels, often referred to as energy "bands." These energy bands are determined by the sizeand shape of the quantum dot, offering control over the electronic properties of the material.The discrete energy levels of quantum dots impart them with unique optical and electrical characteristics. Due to quantum confinement, they exhibit a phenomenon called size-dependent light emission. This property arises from the direct relationship between the bandgap energy and the size of the quantum dot. As the size decreases, the bandgap increases, resulting in a shift towards higher energy emission wavelengths. This tunability has led to significant advancements in optoelectronics and photonics.Nanowires and Nanotubes:Another example of quantum confinement can be observed in nanowires and nanotubes. These one-dimensional nanostructures exhibit quantum confinement effects along their longitudinal axis. The confinement of electrons and holes within the nanowire or nanotube results in discrete energy levels, providing possibilities for tailoring their electrical conductivity and optical properties.Nanowires and nanotubes are widely investigated for their potential applications in nanoelectronics and nanophotonics. Their size-dependent electrical conductivity and enhanced charge transport properties make them promising candidates for future electronic devices. Moreover, their large aspect ratios and unique optical properties enable them to be utilized in sensors, solar cells, and other optoelectronic devices.Quantum Well Structures:Quantum confinement effects are also observed in quantum well structures. These are thin semiconductor layers sandwiched between materials with larger bandgaps. The confinement of charge carriers in the quantum well layer leads to quantization of energy levels perpendicular to the layers, resulting in discrete energy bands.Quantum well structures find applications in various optoelectronic devices, such as lasers and light-emitting diodes (LEDs). By tailoring the width of the quantum well layer, the emitted wavelength of the device can be precisely controlled. This ability to engineer the properties of devices based on the quantum confinement effect has revolutionized the field of semiconductor optoelectronics.Conclusion:In conclusion, the quantum confinement effect plays a crucial role in determining the physical properties of nanoscale materials. Understanding and utilizing this phenomenon has opened up new opportunities for the design and development of innovative technologies. From quantum dots to nanowires and quantum well structures, the ability to manipulate the behavior of charge carriers at the nanoscale has revolutionized various fields of science and engineering. As researchers continue to explore and harness the advantages of quantum confinement, it is expected that further advancements and breakthroughs will emerge, leading to exciting applications in the future.。

量子点中双极化子束缚能的研究

量子点中双极化子束缚能的研究

以说 是 其 中 的 一 个 重 要 流 派 lJ它 使 得 对 双 极 化 子 研 究 正 越 来越 引起 ^ 们 的 兴趣 2, 最 近 , 着 微 加 工 技 术 如 分 子 束 外 延 和 纳 米 光 刻 技 术 的 发 展 , 得 人 工 制 造 低 维 极 性 半 随 使 导体 , 如 电 介 质 平 板 、 质 结 、 子 点 、 子 线 成 为 可 能 . 子 点 或 量 子 线 中 的 极 化 子 与 体 例 异 量 量 量 材 料 中 的 极 化 子 有 明 显 的 不 同 , 是 由 于 量 子 点或 量 子 线 限 定 势存 在 限 制 了 电子 的运 动 , 这 使 其表 现 出 新 奇 的 物 理 效 应 _ 最近 许 多 作 者 研 究 了 限 定 势 下 单 电子 和 纵 光 学 (D) 子 的 相 3 I 声
性 质 进行 了 广 泛 的 研 究 . 几 年 来 , 于 1 ' 理 论 对 高 温 超 导 的 失 效 , 们 开 始 探 索 新 的 理 近 由 38 ( 人 论 以 期 能 解 释 目前 超 导 转 变 温 度 越 来 越 高 的 高 温 超 导 机 制 , 大 双 极 化 子 的 超 导 机 制 也 可 而
间 度 u 库 作 势 警 ) 抛 型 子 的 制 n n分 是 失 强 勾 的 仑 用 , n( +{ 物 量 点 限 势・ r 是 和 别 波
为 的 t 亩 子 的 产 生 和 湮 灭 算 符 , 设 声 子 的 频 率是 不 色 散 的 t ∞ . 互 作 用 系 数 为 D 假 :。 相
大 多 数情 况 下 不 能 形 成 束 缚 态 , 而 带 电载 流 子 的 性 质 可 由它 们与 振 动 的品 格 相 互 作 用 , 然 即

Two-dimensional Quantum Field Theory, examples and applications

Two-dimensional Quantum Field Theory, examples and applications

Abstract The main principles of two-dimensional quantum field theories, in particular two-dimensional QCD and gravity are reviewed. We study non-perturbative aspects of these theories which make them particularly valuable for testing ideas of four-dimensional quantum field theory. The dynamics of confinement and theta vacuum are explained by using the non-perturbative methods developed in two dimensions. We describe in detail how the effective action of string theory in non-critical dimensions can be represented by Liouville gravity. By comparing the helicity amplitudes in four-dimensional QCD to those of integrable self-dual Yang-Mills theory, we extract a four dimensional version of two dimensional integrability.
2 48 49 52 54 56
5 Four-dimensional analogies and consequences 6 Conclusions and Final Remarks

二维双量子魔角旋转核磁共振技术在功能材料研究中的应用

二维双量子魔角旋转核磁共振技术在功能材料研究中的应用

二维双量子魔角旋转核磁共振技术在功能材料研究中的应用喻志武;郑安民;王强;邓风【期刊名称】《高等学校化学学报》【年(卷),期】2011(32)3【摘要】简要介绍了二维双量子魔角旋转核磁共振(DQ-MAS NMR)新技术的基本原理,详细综述了1H,19F,29Si,31P和27 Al DQ-MAS NMR技术在各种固体功能材料中的应用,并展望了该技术的应用前景.%Solid-state NMR spectroscopy has been developed into a powerful tool for obtaining detailed information about the structure, ordering, and dynamics in various kinds of inorganic organic, and biological materials. Two-dimensional double quantum magic angle spinning(DQ-MAS) NMR experiment is a useful method for probing spatial proximities or interactions between nuclei in various solid materials. During the past decade, the DQ-MAS NMR technique has been successfully applied not only to spin I = 1/2 nuclei, such as 1H, 19F, 29Si' 31p, but also to quadrupolar nuclei system, such as 27Al, 11B and 23Na. In this paper, we briefly introduce the principle of two-dimensional DQ-MAS NMR, and review the recent applications of DQ-MAS NMRtechnique(including 1H, 19F, 29Si, 31p and 27Al DQ-MAS NMR) to various solid functional materials. In addition, a perspective for the future of DQ-MAS NMR is also given.【总页数】14页(P471-484)【作者】喻志武;郑安民;王强;邓风【作者单位】中国科学院武汉物理与数学研究所,波谱与原子分子物理国家重点实验室,武汉磁共振中心,武汉,430071;中国科学院武汉物理与数学研究所,波谱与原子分子物理国家重点实验室,武汉磁共振中心,武汉,430071;中国科学院武汉物理与数学研究所,波谱与原子分子物理国家重点实验室,武汉磁共振中心,武汉,430071;中国科学院武汉物理与数学研究所,波谱与原子分子物理国家重点实验室,武汉磁共振中心,武汉,430071【正文语种】中文【中图分类】O642【相关文献】1.高分辨魔角旋转核磁共振技术(HR/MAS)在固相合成中的应用 [J], 贺文义;姚念环;KitS;LAM;刘刚2.H-MCM-22沸石分子筛中Brφnsted/Lewis酸协同效应的1H和27Al双量子魔角旋转固体核磁共振研究 [J], 喻志武;王强;陈雷;邓风3.高分辨魔角旋转磁共振波谱分析在医学中的应用 [J], 董爱生;田建明4.高分辨魔角旋转核磁共振技术在慢性结肠炎诊断的应用探讨 [J], 李旭红5.高分辨率魔角旋转核磁共振技术的应用进展 [J], 杨扬;孙小强;谷丽丽;席海涛;陈群因版权原因,仅展示原文概要,查看原文内容请购买。

量子环中量子比特的自由旋转品质因子

量子环中量子比特的自由旋转品质因子
第2 8 卷 第 1 期
2 0 1 3 年1 月
内蒙古民族大学学报( 自 然科学版 )
J o u r n a l o f I n n e r Mo n g di a Un i v e r s i t y f o r Na t i o n li a t i e s
Ab s t r a c t : On t h e c o n d i t i o n o f e l e c t r o n - L O- p h o n o n s t r o n g c o u p l i n g , t h e e i g e n e n e r g y a n d e i g e n f u n c t i o n o f t h e g r o u n d s t a t e a n d t h e f i r s t e x c i t e d s t a t e o f t h e e l e c t r o n i n q u a n t u m in r g a r e o b t a i n e d b y s o l v i n g p r e c i s e l y t h e t i me — — i n d e p e n — —
Vo 1 . 2 8 No . 1
J a n . 2 0 1 3
量子环 中量子 比特 的 自由旋转 品质 因子
姜福仕 , 赵 翠兰 , 何 颖卓
( 内蒙古 民族大学 物理与 电子信息学 院, 内蒙古 通辽 0 2 8 0 4 3 )
[ 摘
要] 在量 子环 中电子与体纵光 学声子 强耦 合的情况下, 通过求解 能量本 征方 程, 得 出了电子 的第 一激 发
2 理论模 型
设 电子在 内径为 l D , 外径为 l D 。 的量子环 中运动 , 其在 方 向比其它两个方 向强受 限得多 , 故 只考 虑电子在 — Y 平 面

基于点击化学和活性自由基聚合方法制备双重响应金纳米粒子

基于点击化学和活性自由基聚合方法制备双重响应金纳米粒子
V0 . 1 13 21 00年 1 1月
高 等 学 校 化 学 学 报
CHEMI CAL J OURNAL OF CHI NES NI E U VERSTI I ES
No 1 . 1
2 0 ~2 O பைடு நூலகம் 3 3 3 7
基 于 点 击 化 学 和 活 性 自 由基 聚 合 方 法 制 备 双 重 响应 金 纳米 粒 子
可逆加成 断裂链转移活性 自由基 聚合方法 实现 了金 纳米粒子 修饰 的简单化 、 可控化 以及功能化 .
关键词 点击化学 ;可逆加成 断裂链转移活性 自由基聚合 ; 金纳米粒子
中 图分 类 号 O 3 61 文献 标 识 码 A 文章 编 号 0 5 -7 0 2 1 ) 120 -5 2 1 9 (0 0 1-3 30 0
近 年来 , 米材料 的多功能 化及 高性 能化 成为材 料 领域 研 究 的热点 .研究 最 多 、最广 泛 的是 通 过 纳 将 具有 环境 刺激 ( 、电 、磁 、 度 、生物 分子 等 ) 光 温 响应行 为 的聚 合 物 与纳 米 粒子 结 合 ,实现 纳 米粒 子
的智 能化. 目前 ,制备这 些多 重 响应 型 纳米 粒子 的方法 通 常是 将具 有 多重 响应 行 为 的嵌 段 聚合 物 自组
装 成纳米 粒 子 ¨ 或修 饰到 纳米 粒子 上 ,这些 方 法都 存 在 不 同程 度 的缺 陷 ,比如 嵌 段 聚合 物 的制
备 过程 非常 繁琐 复杂 ’ 嵌 段 聚合 物 的纯 化方 法与嵌 段 组分 密切 相关 , ; 缺乏 普适 性 ; 用接 枝方式 将 采 多 功能嵌 段 聚合物 修饰 到纳米 粒子 表 面 , 枝密 度较 低 , 而影 响各 种 功 能行 为 的实 现.点击 化 学 是 接 从

富精氨酸多肽修饰的金纳米粒子跨膜传输

富精氨酸多肽修饰的金纳米粒子跨膜传输

析和生物医学检测等领域 , 对生命相关物质超灵敏检测和成像方法的发展起着重要的作用I 4 其中, 1] -.
多 肽分子 修饰 的金 纳米粒 子易 功能化 且在生 理条 件下 稳定性 好 , 因此 被认 为是一 种优 良的细 胞外 物 质
的高效率跨膜传输载体 J 本文以富精氨酸多肽 R R R R G ( ii) ( ii) . R R R R K Bon G R . on 为驱动剂 , t bt 通过 Bonset i n i i t p v i反应将其修饰到金纳米粒子表面 , t .r a d 从而实现了纳米粒子跨越细胞膜并进入细胞 内部. 以荧光试剂荧光素为模型化合物 , 采用激光共聚焦显微镜追踪了以纳米粒子为载体的细胞外物质跨膜 传输过程. 该研究为合成新型高效的纳米药物载体提供了新思路和实验基础.
片, 放置于 30目的铜网上 , 0 通过透射电子显微镜在 8 V下进行观察. 0k 126 等离子质谱(C — S 分析 采用等离子质谱仪分析不同孵育时间下细胞中 G P的含量. .. IPM ) N
127 细胞 活 性和 增殖检 测 用肽 酚蓝 染色 检测 H L .. ea细胞 的活性 .将 10t 0 t L细胞 悬液 加 入 10I 0 L x ( 质量分 数 0 4 ) . % 肽酚蓝 溶 液 中 , 室温 下孵 育 1 i.在 显 微镜 下 用 细胞计 数 板 统计 活 细胞 和死 细 在 0mn 胞 的数 量 , 计算 活率 ( 金纳 米粒 子作 用后 的 H L 与 ea细胞 存 活个数 与 总数 的 比值 ) .
1 实验 部 分
1 1 试 剂 与仪器 .
实 验用 多肽 ( A N 和生 物 素 修 饰 的多 肽 C L N G( it ) C L N) A N K Boi K,C L Nbon R R R R K n A N —ii,R R R R G 一 t ( ii) R 一it ) Bon G( bon 均购 自上海 生工 公 司 ;氯金 酸 ( u 1) t i HA C 、生 物 素修 饰 的荧 光 素 ( —ii) Fbon 和链 酶 t

量子计算的量子密度矩阵与态制备(二)

量子计算的量子密度矩阵与态制备(二)

量子计算是近年来备受关注的领域,它具有在传统计算模型无法解决的问题上有着巨大的潜力。

量子计算的核心是量子比特(qubit),它可以在量子态的超定态之间进行叠加和纠缠操作。

为了实现有效的量子计算,我们需要能够准确描述和操作量子态的工具,其中一个重要的工具就是量子密度矩阵。

量子密度矩阵是描述量子态的一种数学工具,它可以同时描述单个量子比特的态和多个量子比特的纠缠态。

对于一个单个量子比特来说,它的量子态可以用一个二维的密度矩阵来描述,而对于多个量子比特的纠缠态来说,它的量子态可以用一个高维的密度矩阵来描述。

量子密度矩阵可以用来描述量子系统的混合态和纯态。

在传统计算模型中,我们通常把系统的态表示为一个确定的状态,即纯态。

而在量子计算中,由于量子比特可以在多个态之间叠加,所以我们需要用密度矩阵来描述同时存在多个态的混合态。

密度矩阵的非对角元表示了量子比特之间的相干关系,而对角元表示了量子比特在不同态之间的混合程度。

量子密度矩阵在量子计算中具有重要的作用。

首先,它可以用来描述和操作量子比特之间的纠缠态。

纠缠态是量子计算中的核心概念,它具有非常特殊的性质,可以在分布在多个量子比特之间的信息进行传递和处理。

量子密度矩阵可以用来描述和操作纠缠态,从而实现量子比特之间的相互作用和量子门操作。

其次,量子密度矩阵可以用来描述和处理量子比特的退相干和量子纠错。

在实际的量子计算中,由于温度、噪声等因素的存在,量子比特会逐渐失去纯态,即发生退相干。

量子密度矩阵可以用来描述量子比特的退相干过程,并且可以通过相应的算法和技术进行恢复和纠错。

最后,量子密度矩阵还可以用来描述量子比特的测量结果和量子比特的准确性。

量子比特的测量结果可以通过量子密度矩阵进行统计和分析,从而得到量子比特的平均态和概率分布。

量子密度矩阵还可以用来评估和纠正量子比特的准确性和精度,从而提高量子计算的可靠性和稳定性。

量子密度矩阵的作用和应用广泛,但在实际的量子计算中,由于量子比特的数量和复杂性的增加,对于量子密度矩阵的计算和操作也变得更加困难。

对偶四元数基础理论

对偶四元数基础理论
ct
This paper presents an overview of the analytical advantages of dual-quaternions and their potential in the areas of robotics, graphics, and animation. While quaternions have proven themselves as providing an unambiguous, un-cumbersome, computationally efficient method of representing rotational information, we hope after reading this paper the reader will take a parallel view on dual-quaternions. Despite the fact that the most popular method of describing rigid transforms is with homogeneous transformation matrices they can suffer from several downsides in comparison to dual-quaternions. For example, dual-quaternions offer increased computational efficiency, reduced overhead, and coordinate invariance. We also demonstrate and explain how, dual-quaternions can be used to generate constant smooth interpolation between transforms. Hence, this paper aims to provide a comprehensive step-by-step explanation of dual-quaternions, and it comprising parts (i.e., quaternions and dual-numbers) in a straightforward approach using practical real-world examples and uncomplicated implementation information. While there is a large amount of literature on the theoretical aspects of dual-quaternions there is little on the practical details. So, while giving a clear no-nonsense introduction to the theory, this paper also explains and demonstrates numerous workable aspect using real-world examples with statistical results that illustrate the power and potential of dual-quaternions. Keywords: dual-quaternion, transformation, blending, interpolation, quaternion, dual-number

蜂窝晶格陈数

蜂窝晶格陈数

蜂窝晶格陈数
蜂窝晶格陈数(Honeycomb lattice Chern number)是描述蜂窝晶格中拓扑性质的一个物理量。

它与量子霍尔效应和拓扑绝缘体等领域相关。

在固体材料中,电子的行为可以通过能带结构来描述。

蜂窝晶格是一种常见的二维晶格结构,例如石墨烯就具有蜂窝晶格结构。

在蜂窝晶格中,电子的行为可以由哈密顿量(Hamiltonian)来描述,而哈密顿量中的拓扑性质可以通过陈数(Chern number)来刻画。

蜂窝晶格陈数表示了蜂窝晶格中的拓扑性质以及量子霍尔效应的特征。

它可以通过计算能带的Berry曲率(Berry curvature)来得到。

陈数是一个整数,其非零值意味着存在非平庸的拓扑相。

蜂窝晶格陈数在凝聚态物理中具有重要的应用,例如在拓扑绝缘体和拓扑半金属研究中。

它是描述材料拓扑性质的关键物理量,对于理解材料的电子性质和开展拓扑电子学研究具有重要意义。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MSUMB 95-02, April 1995
arXiv:math/0112135v1 [math.QA] 13 Dec 2001
QUANTUM PROPERTIES OF THE DUAL MATRICES IN GLq (1|1)
Salih Celik
Department of Mathematics, Faculty of Sciences, Mimar Sinan University, 80690 Besiktas, Istanbul, TURKEY.
−1 ML =
(2.3)
(2.4)
(3.1)

1 −q ∆− 1 δ 1 ∆− 2 c
1 ∆− 1 b 1 −q ∆− 2 α

(3.2)
as the left inverse of M . After some calculations one obtains 3
∆1 b = b∆1 , ∆2 c = c∆2 , ∆k α = q 2 α∆k , ∆k δ = q 2 δ ∆k , k = 1, 2 and also
−1 −1
b−1 −b αb
−1 −1

1 c2 ∆− 2
0 b
2 1 ∆− 1

(3.5)
0
−1 which shows that ML = M −1 after some calculations along the lines of [2], sec. 3. Thus one can define the quantum dual superdeterminant as follows: 1 −1 sDq (M ) = b2 ∆− − αc−1 δc−1 . 1 = bc
We assume that even generators commute with everything and odd generators anticommute among themselves. Then we obtain the following q -commutation relations [1] (also see [2]) aβ = qβa, dβ = qβd, aγ = qγa, dγ = qγd, βγ + γβ = 0, β 2 = 0 = γ 2 , ad − da = (q − q −1 )γβ. These relations will be used in sec. 4. Note that if M ∈ GLq (1|1) then M n ∈ GLqn (1|1). This is proved in [2]. 2 (1.5)
1
1. INTRODUCTION An explicit quantum deformation of the supergroup GL(1|1) with two even and two odd generators was given by Corrigan et al in [1]. The properties of the 2x2-supermatrices in GLq (1|1) was investigated by Schwenk et al in [2]. In this work, we consider the dual supermatrices in GL(1|1) and discuss the properties of quantum dual supermatrices. Let us begin with some remarks. We know that the supergroup GL(1|1) can be deformed by assuming that the linear transformations in GL(1|1) are invariant under the action of the quantum superplane and its dual [3]. Consider a quantum superplane and its dual, V = satisfying xξ − qξx = 0, ξ 2 = 0, η 2 = 0, yη − qηy = 0 (1.2a) (1.2b) x ξ and V = η y (1.1)
1 −1 b2 ∆− − αc−1 δc−1 , 1 = bc 1 −1 c2 ∆− − δb−1 αb−1 . 2 = cb
(3.3)
(3.4)
1 2 −1 Note that it is easy to verify that b2 ∆− 1 and c ∆2 commute with everything. −1 Therefore the matrix ML in (3.2) may be written as
(3.6)
Note that the inverse of a dual supermatrix M can be also obtained from the decomposition

α b − αc−1 δ c 0
M =

1 c− 1 δ 0 1

.
(3.7)
Finally we note that the product of two dual supermatrices is not a dual supermatrix, i.e., the matrix elements of a product M = M M ′ do not satisfy (2.6) but they satisfy (1.5) if M and M ′ are two dual supermatrices and (b, c) ((α, δ )) pairwise commute (anti-commute) with (b′ , c′ ) ((α′, δ ′ )). This interesting property will show as the way to the contents of the next section. 4. PROPERTIES OF M n From sec. 3 we know that the matrix elements of a product matrix M M ′ obey the relations (1.5). Therefore we must consider the matrix elements of M with respect to even and odd values of n. Let the (2n − 1)-th power of M be M 2n−1 =

A2n−1 C2n−1 4
B2n−1 D2n−1

,
n ≥ 1.
(4.1)
After some algebra, one obtains A2n−1 = {[n]q α + q [n − 1]q δ }(bc)n−1 , B2n−1 = {bc + q [n − 1]q2 αδ }(bc)n−2 b, C2n−1 = {cb + q [n − 1]q2 δα}(cb)n−2 c, D2n−1 = {[n]q δ + q [n − 1]q α}(cb)n−1 , where [n]q = 1 − q 2n . 1 − q2 (4.3) (4.2)
Sultan A. Celik
Department of Mathematics, Faculty of Sciences, Yildiz Technical University, Sisli, Istanbul, TURKEY.
Abstract
In this paper, we give the quantum analogue of the dual matrices for the quantum supergroup GLq (1|1) and discuss these properties of the quantum dual supermatrices.
Now it is easy to show that the following relations are satisfied. A2n−1 B2n−1 = q −(2n−1) B2n−1 A2n−1 A2n−1 C2n−1 = q −(2n−1) C2n−1 A2n−1 D2n−1 B2n−1 = q −(2n−1) B2n−1 D2n−1 D2n−1 C2n−1 = q −(2n−1) C2n−1 D2n−1 , A2n−1 D2n−1 + D2n−1 A2n−1 = 0,
where latin and greek letters denote even and odd elements respectively. Taking M= a γ β d (1.3)
as a supermatrix in GL(1|1), we demand that the relations (1.2) are preserved under the action of M on the quantum superplane V and its dual V MV = V ′ and M V = V ′ . (1.4)
2 A2 2n−1 = 0 = D2n−1 ,
(4.4)
B2n−1 C2n−1 − C2n−1 B2n−1 = (q 2n−1 − q −(2n−1) )A2n−1 D2n−1 . Then M 2n−1 is a dual supermatrix with deformation parameter q 2n−1 . Similarly, if we write for the matrix M 2n , the (2n)-th power of M as M 2n = where (after some calculations) 1 − q2 [n]q [n − 1]q αδ }(bc)n−1, 2 1+q (4.6)
相关文档
最新文档