柱坐标与球坐标讲解
柱坐标变换和球坐标变换一样吗为什么
柱坐标变换和球坐标变换一样吗为什么在数学和物理学中,柱坐标变换和球坐标变换是两种常见的坐标系变换方法。
虽然柱坐标和球坐标都是常用的三维坐标系,但它们在定义、表示和应用上有着明显的区别。
首先,让我们简单介绍一下柱坐标变换和球坐标变换的定义。
柱坐标系是由一个径向距离、一个方位角和一个高度组成的坐标系。
在柱坐标系中,一个点的位置由径向距离r、方位角$\\theta$和高度z确定。
而球坐标系是由一个径向距离、一个极角和一个方位角组成的坐标系。
在球坐标系中,一个点的位置由径向距离r、极角$\\phi$和方位角$\\theta$确定。
尽管柱坐标变换和球坐标变换都涉及到三个坐标参数的变换,但它们之间的区别在于坐标系的不同表示方式。
柱坐标系更适合用于描述圆柱体或圆锥体的几何形状,而球坐标系更适合用于描述球体或球面的几何结构。
在数学和物理学中,柱坐标变换和球坐标变换在坐标系变换、积分变换、微分方程变换等方面有着不同的应用。
柱坐标变换常用于处理圆柱形状的问题,如气缸体积计算、柱坐标系下的极限等;而球坐标变换更适合处理球体形状的问题,如球坐标系下的梯度、散度、旋度计算等。
综上所述,柱坐标变换和球坐标变换虽然都是三维坐标系的表示方法,但由于其定义、应用和特点的不同,二者并不完全相同。
柱坐标系更适用于描述圆柱形状的问题,而球坐标系更适用于描述球体形状的问题。
因此,根据具体问题的特点和要求,选择不同的坐标系进行变换和计算,能更有效地解决问题并获得准确的结果。
希望通过这篇文档能够帮助读者更好地理解柱坐标变换和球坐标变换之间的区别和联系,从而在实际问题中更加灵活地运用不同的坐标系进行分析和计算。
柱坐标与球坐标的区别
柱坐标与球坐标的区别在数学和物理学领域中,柱坐标和球坐标是描述空间中点位置的两种常见方法。
它们在表示和计算上有一些重要的区别,下面将介绍柱坐标和球坐标的基本概念以及它们之间的不同之处。
柱坐标柱坐标系统是三维笛卡尔坐标系的一种扩展,通常用来描述平面内的点的位置。
柱坐标系由三个坐标$(r, \\theta, z)$组成,其中r表示点到z轴的距离,$\\theta$表示点在x−y平面上的极角,z表示点在z轴上的高度。
具体而言,$(r, \\theta,z)$可以通过以下关系转换为笛卡尔坐标(x,y,z):$$ \\begin{align*} x &= r\\cos(\\theta),\\\\ y &= r\\sin(\\theta),\\\\ z &= z.\\end{align*} $$球坐标球坐标系统是另一种表示三维空间中点的方法,通常用来描述球面坐标或空间点的位置。
球坐标系也由三个坐标$(r, \\theta, \\phi)$组成,其中r表示点到原点的距离,$\\theta$表示点在x−y平面上的极角,$\\phi$表示点到z轴正方向的夹角。
球坐标系转换为笛卡尔坐标系的关系如下:$$ \\begin{align*} x &= r\\sin(\\phi)\\cos(\\theta),\\\\ y &=r\\sin(\\phi)\\sin(\\theta),\\\\ z &= r\\cos(\\phi). \\end{align*} $$ 区别与比较柱坐标和球坐标之间的主要区别在于坐标系的选择和坐标值的表示。
柱坐标主要适用于描述轴对称的物体或问题,如圆柱体或旋转体问题;而球坐标更适合描述球对称的问题,如球体或球壳问题。
柱坐标中的极角$\\theta$通常是一个平面内的角度,而球坐标中的两个角度$\\phi$和$\\theta$则涉及到空间的倾斜和旋转角度。
球面坐标系和柱面坐标系的定义及其应用
球面坐标系和柱面坐标系的定义及其应用球面坐标系和柱面坐标系是数学中关键的方法,经常用来描述和解决一些几何和物理问题,它们与直角坐标系、极坐标系一样,是一种坐标系的表示方式。
一、球面坐标系球面坐标系是以球面为基础的坐标系,它是由半径、极角和方位角确定的。
坐标轴上的点对应着球面上的一个点,可以用三个参数(r、θ、φ)来描述它的位置。
其中,r是从坐标原点到球面上某一点的距离,是一个实数;θ是竖直方向的极角,它的范围在0到π之间;φ是水平方向的方位角,它的范围在0到2π之间。
坐标系的原点是球心,竖直方向的坐标轴是与地球赤道垂直的轴线,水平方向的坐标轴则是经过原点和北极点的轴线。
球面坐标系在物理学和天文学等领域应用广泛,例如测量地球上某一点的纬度和经度、描述电磁场的分布等。
二、柱面坐标系柱面坐标系是一种由高度、半径和角度确定的坐标系,它通常用来描述长方形坐标系缺陷的问题。
柱面坐标系可以是圆柱面坐标系或斜柱面坐标系,但都表示同样的信息。
在圆柱坐标系中,一点的坐标为(r,θ,z),其中r表示离坐标轴的距离,θ表示与x轴的夹角,z表示高度。
而在斜柱面坐标系中,一点的坐标为(r,θ,z'),其中r和θ用同样的方式表示,z'是某个平面内的高度。
只有当某一平面中的z'为零时,斜柱面坐标系才与圆柱坐标系相同。
类似于球面坐标系的应用,圆柱坐标系和斜柱坐标系在物理学、工程学和计算机图形学等领域中有广泛的应用。
例如在计算机图形学中,柱面坐标系被用来描述某些对象的形状和运动,在计算机辅助设计(CAD)中,也被用来表示机械元件的三维空间位置。
总的来说,球面坐标系和柱面坐标系是一组非常实用的工具,它们有助于我们更好地理解和描述现实世界中的各种问题。
了解和掌握这些坐标系的基础和应用,有助于我们更好地应用它们来解决实际问题。
柱坐标和球坐标
柱坐标和球坐标柱坐标和球坐标是数学中常用的两种坐标系,它们在描述空间中点的位置时有各自的特点和应用。
本文将介绍柱坐标和球坐标的定义、表示方法以及它们之间的转换关系。
柱坐标柱坐标是三维空间中表示点位置的坐标系之一。
柱坐标通常使用径向距离r、极角 $\\theta$ 和高度z来描述一个点的位置。
在柱坐标系中,点 $(r, \\theta,z)$ 表示距离原点的长度为r,与x轴正向的夹角为 $\\theta$,高度为z的点。
柱坐标系下,点 $(r, \\theta, z)$ 与直角坐标系下的点(x,y,z)之间的关系可以用以下公式表示:$$ \\begin{aligned} x &= r \\cdot \\cos(\\theta) \\\\ y &= r \\cdot\\sin(\\theta) \\\\ z &= z \\end{aligned} $$球坐标球坐标是另一种用于表示三维空间中点位置的坐标系。
球坐标通常使用球径ρ、极角 $\\phi$ 和方位角 $\\theta$ 来描述点的位置。
在球坐标系中,点$(ρ, \\phi,\\theta)$ 表示距离原点的长度为ρ,与z轴正向的夹角为 $\\phi$,与x轴正向的夹角为 $\\theta$ 的点。
球坐标系下,点$(ρ, \\phi, \\theta)$ 与直角坐标系下的点(x,y,z)之间的关系可以用以下公式表示:$$ \\begin{aligned} x &= ρ \\cdot \\sin(\\phi) \\cdot \\cos(\\theta) \\\\ y &= ρ \\cdot \\sin(\\phi) \\cdot \\sin(\\theta) \\\\ z &= ρ \\cdot \\cos(\\phi)\\end{aligned} $$柱坐标和球坐标之间的转换要将柱坐标转换为球坐标,可以使用以下公式:$$ \\begin{aligned} ρ &= \\sqrt{r^2 + z^2} \\\\ \\phi &=\\arctan\\left(\\frac{r}{z}\\right) \\\\ \\theta &= \\theta \\end{aligned} $$ 类似地,要将球坐标转换为柱坐标,可以使用以下公式:$$ \\begin{ali gned} r &= ρ \\cdot \\sin(\\phi) \\\\ z &= ρ \\cdot \\cos(\\phi) \\\\ \\theta &= \\theta \\end{aligned} $$应用和总结柱坐标和球坐标在不同的场景中有着广泛的应用,例如在物理学、工程学和计算机图形学领域。
圆柱坐标和球坐标
圆柱坐标和球坐标
在数学和物理学中,圆柱坐标和球坐标是描述空间中点的两种常见坐标系。
它
们为描述不同形状和结构的对象提供了有效的工具,促进了对于三维空间中各种问题的研究与理解。
圆柱坐标
圆柱坐标是通过一个点到某个固定平面的垂直距离(高度)、一个从平面的固
定轴线到点的投影距离和从固定轴线到点的方向角三个参数来描述空间中的点。
通常用(ρ, φ, z)表示一个点的坐标,其中ρ代表点在固定平面上到原点的距离,φ
表示点到固定轴线的方向角,z表示点在垂直于平面的高度。
在圆柱坐标系中,点的坐标可以通过以下公式转换为直角坐标系:
x = ρ * cos(φ)
y = ρ * sin(φ)
z = z
圆柱坐标系常被应用于描述圆柱体或者沿着某个轴无限延伸的体。
球坐标
球坐标是通过一个点到原点的距离(半径)、与固定轴线的夹角(极角)、和
与某个平面的夹角(方位角)这三个参数来描述三维空间中的点。
一般用(r, θ, φ)来表示一个点的球坐标,其中r是点到原点的距离,θ是点到正轴的极角,φ是点
到参考平面的方位角。
球坐标系与直角坐标系之间的转换公式如下:
x = r * sin(θ) * cos(φ)
y = r * sin(θ) * sin(φ)
z = r * cos(θ)
球坐标系适合描述以原点为中心,半径不同的球体或者球面等几何体。
总结来看,圆柱坐标系主要适用于圆柱体或沿着某轴无限延伸的物体的描述,
而球坐标系更适用于球体或球面等对称几何体的描述。
通过这两种坐标系,我们可以更清晰地描述和理解三维空间中各种复杂的几何结构和物理现象。
三重积分中的柱坐标与球坐标
三重积分中的柱坐标与球坐标在数学中,三重积分是一种用来计算三维空间内物体特定属性(例如体积、质量、质心等)的重要工具。
传统的笛卡尔坐标系在解决一些问题时并不总是方便,于是人们引入了柱坐标和球坐标系,这两种坐标系在三重积分中有着特殊的应用。
本文将介绍三重积分中的柱坐标与球坐标,以及它们的计算方法和在实际问题中的应用。
一、柱坐标中的三重积分柱坐标是一种常见的极坐标系,它由径向$r$、极角$\theta$和高度$z$三个变量构成。
在三重积分中,柱坐标系的转换公式为:$$x = r\cos\theta$$$$y = r\sin\theta$$$$z = z$$$$dV = r\,dr\,d\theta\,dz$$其中$dV$表示体积元素,$r$的范围为$r_1 \leq r \leq r_2$,$\theta$的范围为$\theta_1 \leq \theta \leq \theta_2$,$z$的范围为$z_1 \leq z \leq z_2$。
对于函数$f(x, y, z)$在柱坐标系下的三重积分,则有:$$\iiint\limits_{\Omega} f(x, y, z) dV = \int\limits_{z_1}^{z_2}\int\limits_{\theta_1}^{\theta_2} \int\limits_{r_1}^{r_2} f(r\cos\theta,r\sin\theta, z) r\,dr\,d\theta\,dz$$柱坐标系的三重积分常用于具有柱对称性的问题,例如计算柱体的体积、质心等属性。
它将空间问题简化为平面问题,使得计算更加便捷高效。
二、球坐标中的三重积分球坐标是另一种常见的极坐标系,它由径向$r$、极角$\theta$和方位角$\phi$三个变量构成。
在三重积分中,球坐标系的转换公式为:$$x = r\sin\phi\cos\theta$$$$y = r\sin\phi\sin\theta$$$$z = r\cos\phi$$$$dV = r^2\sin\phi\,dr\,d\theta\,d\phi$$其中$dV$表示体积元素,$r$的范围为$r_1 \leq r \leq r_2$,$\theta$的范围为$\theta_1 \leq \theta \leq \theta_2$,$\phi$的范围为$\phi_1 \leq \phi \leq \phi_2$。
柱坐标与球坐标系简介
柱坐标与球坐标系简介
在数学和物理学中,柱坐标和球坐标系是描述三维空间中点的两种常用坐标系。
它们为研究三维问题提供了方便的工具,可以使问题的表达和求解更加简洁。
柱坐标系
柱坐标系是一种用圆柱形式来描述三维空间中的点的坐标系。
在柱坐标系中,
一个点的位置由距离原点的长度、与正向x轴的夹角和z坐标组成。
通常用(r, θ, z)来表示一个点的坐标,其中r表示点到原点的距离,θ表示点在x-y平面上的极角,z表示点在z轴上的坐标。
柱坐标系在求解具有轴对称性的问题时特别有用,例如旋转体的体积和表面积
的计算等问题。
球坐标系
球坐标系是通过球坐标来描述三维空间中的点的坐标系。
在球坐标系中,一个
点的位置由距离原点的长度、与正向z轴的夹角和在x-y平面上的极角组成。
通常用(r, θ, φ)来表示一个点的坐标,其中r表示点到原点的距离,θ表示点在x-y平面上的极角,φ表示点在z轴上的极角。
球坐标系常常用于处理具有球对称性或球体几何的问题,例如电场和磁场的计
算等。
它也在计算机图形学和三维建模中被广泛应用。
无论是柱坐标系还是球坐标系,它们都是解决特定类型的问题时十分有效的工具。
通过灵活运用这两种坐标系,我们可以更好地理解和分析三维空间中的问题,为实际问题的求解提供更多的可能性和方法。
柱坐标和球坐标系给了我们描述空间中点位置的不同视角,为解决相关问题提
供了更多的数学工具。
通过学习和掌握这两种坐标系的原理和应用,我们可以在数学和物理领域中更加灵活地处理复杂的三维问题。
柱坐标系与球坐标系-高中数学知识点讲解
柱坐标系与球坐标系
1.柱坐标系与球坐标系
【知识点的认识】
1.柱坐标系
如图所示,建立空间直角坐标系Oxyz.设P 是空间任意一点.它在Oxy 平面上的射影为Q,用(ρ,θ)(ρ≥0,0≤θ<2π)表示点Q 在平面Oxy 上的极坐标,这时点P 的位置可用有序数组(ρ,θ,z)(z∈R)表示.
建立了空间的点与有序数组(ρ,θ,z)之间的一种对应关系,把建立上述对应关系的坐标系叫做柱坐标系,有序数组(ρ,θ,z)叫做点P 的柱坐标,记作P(ρ,θ,z),其中ρ≥0,0≤θ<2π,z∈R.
2.球坐标系
建立如图所示的空间直角坐标系Oxyz.设P 是空间任意一点,连接OP,记|OP|=r,OP 与Oz 轴正向所夹的角为φ.
设P 在Oxy 平面上的射影为Q,Ox 轴按逆时针方向旋转到OQ 时所转过的最小正角为θ.这样点P 的位置就可以用有序数组(r,φ,θ)表示.这样,空间的点与(r,φ,θ)之间建立了一种对应关系.把建立上述对应关系的坐标系叫做球坐标系(或空间极坐标系).
有序数组(r,φ,θ)叫做点P 的球坐标,记做P(r,φ,θ),其中r≥0,0≤φ≤π,0≤θ<2π).
1/ 1。
圆柱坐标和球坐标的区别
圆柱坐标和球坐标的区别在数学和物理学中,圆柱坐标和球坐标是常用的坐标系。
它们与笛卡尔坐标系相比,有着不同的表示方法和应用场景。
本文将介绍圆柱坐标和球坐标的定义、表示方式以及它们之间的区别。
圆柱坐标圆柱坐标是由一个径向距离、一个极角和一个高度组成的坐标系。
在圆柱坐标中,我们使用$(r, \\theta, z)$来表示一个点,其中r表示径向距离,$\\theta$表示极角,z表示高度。
下面是圆柱坐标系的示意图:z|||______ x///y圆柱坐标系使用极坐标$(r, \\theta)$来表示平面上的点,其中r表示点到原点的距离,$\\theta$表示点与正向x轴之间的夹角。
z表示点在垂直于平面的高度。
在圆柱坐标系中,坐标变换公式如下:$$ x = r \\cos(\\theta) \\\\ y = r \\sin(\\theta) \\\\ z = z $$球坐标球坐标是由一个径向距离、一个极角和一个方位角组成的坐标系。
在球坐标中,我们使用$(r, \\theta, \\phi)$来表示一个点,其中r表示径向距离,$\\theta$表示极角,$\\phi$表示方位角。
下面是球坐标系的示意图:y|\\| \\| \\| \\| \\z ____|_____\\ x/ | // | // | // | // | // |// |球坐标系使用极坐标$(r, \\theta)$来表示与原点的平面上的点,在该点上再使用一个角$\\phi$来确定点的位置。
其中r表示点到原点的距离,$\\theta$表示点与正向z轴之间的夹角,$\\phi$表示点在平面上的投影与x轴之间的夹角。
在球坐标系中,坐标变换公式如下:$$ x = r \\sin(\\theta) \\cos(\\phi) \\\\ y = r \\sin(\\theta) \\sin(\\phi) \\\\ z = r \\cos(\\theta) $$区别圆柱坐标和球坐标之间的区别在于对于点的表示方式和应用场景的不同。
圆柱坐标系和球坐标系的区别
圆柱坐标系和球坐标系的区别圆柱坐标系(Cylindrical Coordinate System)和球坐标系(Spherical Coordinate System)是一种常用的数学坐标系统,用于描述三维空间中的点。
它们各自有其独特的特点和应用领域,下面将介绍这两种坐标系的区别。
圆柱坐标系(Cylindrical Coordinate System)圆柱坐标系是一种三维坐标系,其中一个坐标轴用于表示点到原点的直线距离,另外两个坐标轴用于表示点所在平面上的位置。
圆柱坐标系由以下三个坐标组成:•径向坐标(r):表示点到原点的距离。
•极角(θ):表示点到原点的连线与某一固定方向之间的夹角。
•高度(z):表示点在垂直于该平面并与原点相交的直线上的位置。
圆柱坐标系常用于柱状或圆柱体的描述,例如,圆柱坐标系可以用于描述喷管的形状、涡轮机的叶片等。
在工程和物理学领域中,圆柱坐标系的优势在于它们能够简化问题的分析和求解,特别是在涉及到旋转对称性的情况下。
球坐标系(Spherical Coordinate System)球坐标系也是一种三维坐标系,其中一个坐标轴用于表示点到原点的距离,另外两个坐标轴用于表示点所在球面上的位置。
球坐标系由以下三个坐标组成:•径向坐标(r):表示点到原点的距离。
•极角(θ):表示点到原点的连线与某一固定方向之间的夹角。
•方位角(φ):表示点所在的经度。
球坐标系常用于球体或球形物体的描述,例如,天文学中常使用球坐标系来描述星体的位置和运动。
球坐标系在物理学和数学中也被广泛应用,因为它们能够简化球对称问题的表示和解决。
圆柱坐标系和球坐标系的区别圆柱坐标系和球坐标系在表示三维空间中的点时有一些主要的区别:1.表示范围不同:圆柱坐标系中,径向坐标(r)和高度(z)可以取任意实数值,极角(θ)可以取0到360度或0到2π弧度的值。
而球坐标系中,径向坐标(r)通常为非负实数,极角(θ)通常取0到180度或0到π弧度的值,方位角(φ)通常取0到360度或0到2π弧度的值。
柱坐标和球坐标简介
设 C1 的球坐标为(r, φ, θ), 其中 r≥0,0≤φ≤π, 0≤θ<2π, 由 x=rsin φcos θ,y= rsin φ sin θ, z=rcos φ, 得 r= x2+y2+z2= 12+ 22+12=2. 2 π 由 z=rcos φ,∴cos φ= ,φ= 2 4 y π 又 tan θ= =1,∴θ=4, x π π 从而点 C1 的球坐标为(2,4,4)
【思路探究】 可把两点坐标均化为空间直角坐标,再
用空间两点间的距离公式求距离.
【自主解答】 设 P1 的直角坐标为 P1(x1,y1,z1), x1=2 3sin πcos π=3 2, 3 4 2 π π 3 2 则y1=2 3sin sin = , 3 4 2 π z1=2 3cos 3= 3, 3 2 3 2 ∴P1 的直角坐标为( 2 , 2 , 3).
四
柱坐标系与球坐标系简介
课标 解读
1.了解柱坐标系、球坐标系的意 义,能用柱坐标系、球坐标系 刻画简单问题中的点的位置. 2.知道柱坐标、球坐标与空间 直角坐标的互化关系与公式, 并用于解题.
1.柱坐标系
图 1-4-1 如图 1-4-1 所示, 建立空间直角坐标系 Oxyz. 设 P 是空 间 任 意 一 点 . 它 在 Oxy 平 面 上 的 射 影 为 Q , 用 (ρ , θ)(ρ≥0,0≤θ<2π)表示点 Q 在平面 Oxy 上的极坐标, 这时点 P 的位置可用有序数组(ρ,θ,z)(z∈R)表示.
3.空间直角坐标与柱坐标的转化 空间点 P(x,y,z)与柱坐标(ρ,θ,z)之间的变换公式为 x=ρcos θ, y=ρsin θ, z=z . 4.空间直角坐标与球坐标的关系 空间点 P(x,y,z)与球坐标(r,φ,θ)之间的变换公式为
柱坐标和球坐标转换关系
柱坐标和球坐标转换关系柱坐标和球坐标是在数学和物理学中常用的两种坐标系,它们之间的转换关系是非常重要且有用的。
在三维空间中,我们常常需要在这两种坐标系之间进行转换,以便更方便地描述和计算各种物理量。
本文将介绍柱坐标和球坐标之间的转换关系。
柱坐标和球坐标的定义首先,我们来简单地回顾一下柱坐标和球坐标的定义。
•在二维平面上,柱坐标由极径 r 和极角θ 组成,通常用(r, θ) 来表示一个点的坐标。
•在三维空间中,柱坐标由极径 r、极角θ 和高度 z 组成,通常用(r, θ, z) 来表示一个点的坐标。
而球坐标则由径向距离 r、极角θ 和方位角φ 组成,通常用(r, θ, φ) 来表示一个点的坐标。
柱坐标和球坐标之间的转换关系接下来,我们将介绍柱坐标和球坐标之间的转换关系。
从柱坐标到球坐标的转换对于给定的柱坐标(r, θ, z),我们可以将其转换为球坐标 (rho, theta, phi)。
其中,rho 表示球坐标中的径向距离,theta 表示球坐标中的极角,phi 表示球坐标中的方位角。
转换公式如下:rho = sqrt(r^2 + z^2)theta = arctan(r / z)phi = θ从球坐标到柱坐标的转换同样地,对于给定的球坐标 (rho, theta, phi),我们可以将其转换为柱坐标(r, θ, z)。
转换公式如下:r = rho * sin(theta)z = rho * cos(theta)θ = phi结语在物理学和工程学中,柱坐标和球坐标之间的转换关系有着广泛的应用。
通过熟练掌握这些转换关系,我们可以更加方便地描述和计算三维空间中的各种问题。
希望本文能够对你有所帮助,让你对柱坐标和球坐标之间的转换关系有更深入的理解。
球坐标和柱坐标的转换
球坐标和柱坐标的转换球坐标和柱坐标是三维空间中常用的坐标系,它们和直角坐标系是相互转换的。
本文将介绍球坐标和柱坐标的定义以及它们之间的转换方法。
球坐标球坐标系是一种描述空间中点的坐标系,它用半径(r)、极角(θ)和方位角(φ)来描述点的位置。
半径(r)表示点到坐标系原点的距离,极角(θ)表示点与z轴的夹角,方位角(φ)表示点在xy平面的投影与x轴的夹角。
球坐标的坐标表示为:(x, y, z) = (r * sinθ * cosφ, r * sinθ * sinφ, r * cosθ)柱坐标柱坐标系是一种描述空间中点的坐标系,它用半径(ρ)、极角(θ)和高度(z)来描述点的位置。
半径(ρ)表示点到柱坐标系极轴的距离,极角(θ)表示点与柱坐标极轴的夹角,高度(z)表示点在z轴上的坐标。
柱坐标的坐标表示为:(x, y, z) = (ρ * cosθ, ρ * sinθ, z)球坐标转换为柱坐标球坐标系和柱坐标系之间的转换是通过数学公式进行的。
球坐标转换为柱坐标的公式如下:ρ = r * sinθz = r * cosθ柱坐标转换为球坐标柱坐标转换为球坐标的公式如下:r = √(ρ^2 + z^2)θ = arctan(ρ / z)总结球坐标和柱坐标是三维空间中常用的坐标系,它们的转换可以通过数学公式进行。
球坐标由三个参数(半径、极角和方位角)表示,柱坐标由三个参数(半径、极角和高度)表示。
通过球坐标转换为柱坐标,可以得到柱坐标系中的坐标值,同样地,通过柱坐标转换为球坐标,可以得到球坐标系中的坐标值。
以上是球坐标和柱坐标的定义以及它们之间的转换方法的介绍。
了解球坐标和柱坐标的概念及其转换方法,有助于我们更好地理解和应用三维空间中的坐标系统。
柱坐标和球坐标公式
柱坐标和球坐标公式
在数学和物理学中,柱坐标和球坐标是表示空间中点的两种常用坐标系。
这两种坐标系是笛卡尔坐标系的重要扩展,能够更好地描述三维空间中的点的位置。
柱坐标
柱坐标是三维空间中的一种坐标系,通常用来描述点相对于原点的位置。
在柱坐标系中,一个点的位置由径向(r)、极角(θ)和高度(z)三个坐标值来确定。
柱坐标系和笛卡尔坐标系之间的转换关系如下: - x = r * cos(θ) - y = r * sin(θ) - z = z
其中,r表示点到z轴的距离,θ表示点在xy平面内的极角,z表示点在z轴上的高度。
球坐标
球坐标是另一种常用的三维空间坐标系,用来描述点相对于原点的位置。
球坐标系由径向(r)、极角(θ)和方位角(φ)三个坐标值来确定一个点的位置。
球坐标系和笛卡尔坐标系之间的转换关系如下: - x = r * sin(θ) * cos(φ) - y = r * sin(θ) * sin(φ) - z = r * cos(θ)
其中,r表示点到原点的距离,θ表示点到正z轴的倾角,φ表示点在xy平面上的旋转角度。
柱坐标和球坐标的应用
柱坐标和球坐标在物理学、工程学和计算机图形学等领域有着广泛的应用。
例如,在物理学中,利用柱坐标和球坐标可以更方便地描述和计算力、电场等的分布情况;在工程学中,柱坐标和球坐标可以简化对结构的分析和设计;在计算机图形学中,通过柱坐标和球坐标可以更加自然地进行三维建模和渲染。
总的来说,柱坐标和球坐标是解决三维空间中点位置描述问题的有力工具,它们为研究人员和工程师提供了更多的选择和便利。
通过深入理解柱坐标和球坐标的原理和转换关系,可以更好地应用它们解决实际问题。
高中数学知识点精讲精析 柱坐标系和球坐标系
3 柱坐标系和球坐标系
1.球坐标系
球坐标是一种三维坐标。
设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,φ,θ来确定,其中r为原点O与点P间的距离,θ为有向线段与z轴正向所夹的角,φ为从正z轴来看自x轴按逆时针方向转到有向线段的角,这里M为点P在xOy面上的投影。
这样的三个数r,φ,θ叫做点P的球面坐标,这里r,φ,θ的变化范围为
0 ≤ r < +∞,
0 ≤φ≤ 2π,
0 ≤θ≤ π.
r = 常数,即以原点为心的球面;
θ= 常数,即以原点为顶点、z轴为轴的圆锥面;
φ= 常数,即过z轴的半平面。
其中
x=rsinθcosφ
y=rsinθsinφ
z=rcosθ
在球坐标系中,沿基矢方向的三个线段元为:
dl(r)=dr, dl(θ)=rdθ, dl(φ)=rsinθdφ
球坐标的面元面积是:
dS=dl(θ)* dl(φ)=r^2*sinθdθdφ
体积元的体积为:
dV=dl(r)*dl(θ)*dl(φ)=r^2*sinθdrdθdφ
2.柱坐标系
如右图所示,柱坐标系中的三个坐标变量是r、φ、z。
与直角坐标系相同,柱坐标系中也有一个z变量。
各变量的变化范围是:0 ≤ r < +∞,
0 ≤φ≤ 2π
-∞<z<+∞
其中
x=rcosφ
y=rsinφ
z=z。
柱坐标系与球坐标系简介
极径、极角,只是比平面极坐标多了一个量,即点在空间中的高度. -15-
四 柱坐标系与球坐标系简介
目标导航
Z Z D 知识梳理 HISHISHULI
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
题型一 题型二 题型三 题型四 题型五
【变式训练3】 经过若干个固定和流动的地面遥感观测站监测
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
2.球坐标系 (1)定义:建立空间直角坐标系Oxyz.设P是空间任意一点,连接OP, 记|OP|=r,OP与Oz轴正向所夹的角为φ.设点P在Oxy平面上的射影 为点Q,Ox轴按逆时针方向旋转到OQ时所转过的最小正角为θ.这样 点P的位置就可以用有序数组(r,φ,θ)表示.这样,空间的点与有序数 组(r,φ,θ)之间建立了一种对应关系,把建立上述对应关系的坐标系 叫做球坐标系(或空间极坐标系),有序数组(r,φ,θ)叫做点P的球坐标, 记作P(r,φ,θ),其中r≥0,0≤φ≤π,0≤θ<2π. (2)空间点P的直角坐标(x,y,z)与球坐标(r,φ,θ)之间的变换关系
的极坐标.这时点P的位置可用有序数组(ρ,θ,z)(z∈R)表示.这样,我
们建立了空间的点与有序数组(ρ,θ,z)之间的一种对应关系.把建立
上述对应关系的坐标系叫做柱坐标系,有序数组(ρ,θ,z)叫做点P的柱
坐标,记作P(ρ,θ,z),其中ρ≥0,0≤θ<2π,-∞<z<+∞.
(2)空间点P的直角坐标(x,y,z)与柱坐标(ρ,θ,z)之间的变换公式
3
解:设点 M 的直角坐标为(x,y,z),则由互化公式可得,
球坐标系和柱坐标系
球坐标系和柱坐标系球坐标系和柱坐标系是空间解析几何中常用的坐标系,它们可以用来描述三维空间中的点的位置和方向。
本文将介绍球坐标系和柱坐标系的定义、坐标变换以及其在不同领域的应用。
一、球坐标系球坐标系是一种三维坐标系,用来描述三维空间中的点的位置。
它由径向距离r、极角θ和方位角φ来确定一个点的坐标。
径向距离r表示点到坐标原点的距离,极角θ表示点与正z轴的夹角,方位角φ表示点在x-y平面上投影与正x轴的夹角。
在球坐标系中,一个点的坐标可以表示为(r,θ,φ)。
坐标变换公式如下:```x = r * sinθ * cosφy = r * sinθ * sinφz = r * cosθ```球坐标系常见于物理学、天文学和计算机图形学等领域的问题求解。
物理学中常用球坐标系描述粒子在空间中的位置和动量,能够简化很多问题的求解过程。
在天文学中,球坐标系可以用来描述星体的位置和运动轨迹。
二、柱坐标系柱坐标系是另一种常见的三维坐标系,适用于平面内与柱面有关的问题。
柱坐标系由极径ρ、极角θ和高度z来确定一个点的坐标。
极径ρ表示点到z轴的距离,极角θ表示点在x-y平面上的投影与正x轴的夹角,高度z表示点在z轴上的坐标。
柱坐标系中,一个点的坐标可以表示为(ρ,θ,z)。
坐标变换公式如下:```x = ρ * cosθy = ρ * sinθz = z```柱坐标系常见于物理学、工程学和流体力学等领域的问题求解。
在工程学中,柱坐标系常用于描述圆柱形结构的变形和应力分布,能够更直观地理解和解决与柱面相关的工程问题。
在流体力学中,柱坐标系可以用来描述圆柱形容器中的流体流动规律。
综上所述,球坐标系和柱坐标系是在三维空间中描述点的位置和方向的常用坐标系。
它们各自具有独特的特点和应用场景,在不同领域的问题求解中发挥着重要作用。
熟练掌握球坐标系和柱坐标系的定义和坐标变换公式,对于解决相关问题具有重要意义。
柱坐标系与球坐标变换的区别
柱坐标系与球坐标变换的区别
柱坐标系和球坐标系是空间中两种常见的坐标系,它们在描述三维空间中的点和表示向量方向时有着不同的应用。
本文将讨论柱坐标系和球坐标系之间的区别。
柱坐标系
柱坐标系是一种通过极径、极角和高度来定位三维空间中的点的坐标系统。
通常用(r, θ, z)表示,其中: - r 代表点到 z 轴的距离; - θ 代表点在 xy 平面上的极角; - z 代表点在 z 轴上的高度。
柱坐标系常用于描述旋转对称结构的问题,计算方便,适合于涉及圆柱对称性的问题。
球坐标系
球坐标系是一种通过径向距离、极角和方位角来定位三维空间中的点的坐标系统。
通常用(ρ, φ, θ)表示,其中: - ρ 代表点到原点的距离; - φ 代表点在 xy 平面上的极角; - θ 代表点在 xy 平面上的方位角。
球坐标系常用于描述球面和球对称结构的问题,适合于球对称的物理问题和数学问题。
区别
柱坐标系和球坐标系之间的主要区别在于坐标系的基本参数和应用领域有所不同: 1. 参数区别: - 柱坐标系使用极径、极角和高度作为坐标参数; - 球坐标系使用径向距离、极角和方位角作为坐标参数。
2. 应用领域区别: - 柱坐标系适合于描述旋转对称结构的问题,如圆柱体、圆锥体等; - 球坐标系适合于描述球面和球对称结构的问题,如球体、球壳等。
综上所述,柱坐标系和球坐标系在参数表示和应用领域上有着明显的区别。
选择合适的坐标系,能够更有效地描述和解决不同类型的三维空间中的几何问题。
球坐标系与柱坐标系
4.1.3球坐标系与柱坐标系1.球坐标系、柱坐标系的理解.2.球坐标、柱坐标与直角坐标的互化.[基础·初探]1.球坐标系与球坐标(1)在空间任取一点O作为极点,从O点引两条互相垂直的射线Ox和Oz作为极轴,再规定一个长度单位和射线Ox绕Oz轴旋转所成的角的正方向,这样就建立了一个球坐标系.图4-1-5(2)设P是空间一点,用r表示OP的长度,θ表示以Oz为始边,OP为终边的角,φ表示半平面xOz到半平面POz的角,则有序数组(r,θ,φ)就叫做点P 的球坐标,其中r≥0,0≤θ≤π,0≤φ<2π.2.直角坐标与球坐标间的关系图4-1-6若空间直角坐标系的原点O,Ox轴及Oz轴,分别与球坐标系的极点、Ox 轴及Oz轴重合,就可以得到空间中同一点P的直角坐标(x,y,z)与球坐标(r,θ,φ)之间的关系,如图4-1-6所示.x 2+y 2+z 2=r 2, x =r sin_θcos_φ, y =r sin_θsin_φ, z =r cos_θ. 3.柱坐标系建立了空间直角坐标系O -xyz 后,设P 为空间中任意一点,它在xOy 平面上的射影为Q ,用极坐标(ρ,θ)(ρ≥0,0≤θ<2π)表示点Q 在平面xOy 上的极坐标,这时点P 的位置可以用有序数组(ρ,θ,z )(z ∈R )表示,把建立上述对应关系的坐标系叫柱坐标系,有序数组(ρ,θ,z )叫做点P 的柱坐标,记作P (ρ,θ,z ),其中ρ≥0,0≤θ<2π,z ∈R .图4-1-74.直角坐标与柱坐标之间的关系⎩⎨⎧x =ρcos θ,y =ρsin θ,z =z .[思考·探究]1.空间直角坐标系和柱坐标系、球坐标系有何联系和区别?【提示】 柱坐标系和球坐标系都是以空间直角坐标系为背景,柱坐标系中一点在平面xOy 内的坐标是极坐标,竖坐标和空间直角坐标系的竖坐标相同;球坐标系中,则以一点到原点的距离和两个角(高低角、极角)刻画点的位置.空间直角坐标系和柱坐标系、球坐标系都是空间坐标系,空间点的坐标都是由三个数值的有序数组组成.2.在空间的柱坐标系中,方程ρ=ρ0(ρ0为不等于0的常数),θ=θ0,z =z 0分别表示什么图形?【提示】 在极坐标中,方程ρ=ρ0(ρ0为不等于0的常数)表示圆心在极点,半径为ρ0的圆,方程θ=θ0(θ0为常数)表示与极轴成θ0角的射线.而在空间的柱坐标系中,方程ρ=ρ0表示中心轴为z 轴,底半径为ρ0的圆柱面,它是上述圆周沿z 轴方向平行移动而成的.方程θ=θ0表示与zOx 坐标面成θ0角的半平面.方程z =z 0表示平行于xOy 坐标面的平面,如图所示.常把上述的圆柱面、半平面和平面称为柱坐标系的三族坐标面.[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:_____________________________________________________ 解惑:_____________________________________________________ 疑问2:_____________________________________________________ 解惑:_____________________________________________________(1)已知点M 的球坐标为⎝ ⎛⎭⎪⎫2,3π4,3π4,则点M 的直角坐标为________.(2)设点M 的柱坐标为⎝ ⎛⎭⎪⎫2,π6,7,则点M 的直角坐标为________.【自主解答】 (1)设M (x ,y ,z ), 则x =2sin 3π4·cos 3π4=-1,y =2×sin 3π4×sin 3π4=1, z =2×cos 3π4=- 2.即M 点坐标为(-1,1,-2). (2)设M (x ,y ,z ), 则x =2×cos π6=3, y =2×sin π6=1,z =7. 即M 点坐标为(3,1,7).【答案】 (1)(-1,1,-2) (2)(3,1,7) [再练一题]1.(1)已知点P 的柱坐标为⎝ ⎛⎭⎪⎫4,π3,8,则它的直角坐标为________.(2)已知点P 的球坐标为⎝ ⎛⎭⎪⎫4,3π4,π4,则它的直角坐标为________.【解析】 (1)由变换公式得: x =4cos π3=2, y =4sin π3=23,z =8.∴点P 的直角坐标为(2,23,8). (2)由变换公式得:x =r sin θcos φ=4sin 3π4cos π4=2, y =r sin θsin φ=4sin 3π4sin π4=2, z =r cos θ=4cos 3π4=-2 2. ∴它的直角坐标为(2,2,-22).【答案】 (1)(2,23,8) (2)(2,2,-22)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,如图4-1-8建立空间直角坐标系A —xyz ,Ax 为极轴,求点C 1的直角坐标、柱坐标以及球坐标.图4-1-8【思路探究】 解答本题根据空间直角坐标系、柱坐标系以及球坐标系的意义和联系计算即可.【自主解答】 点C 1的直角坐标为(1,1,1), 设点C 1的柱坐标为(ρ,θ,z ),球坐标为(r ,φ,θ), 其中ρ≥0,r ≥0,0≤φ≤π,0≤θ<2π, 由公式⎩⎪⎨⎪⎧ x =ρcos θ,y =ρsin θ,z =z及⎩⎪⎨⎪⎧x =r sin φcos θ,y =r sin φsin θ,z =r cos φ得⎩⎨⎧ρ=x 2+y 2,tan θ=yx (x ≠0)及⎩⎨⎧r =x 2+y 2+z 2,cos φ=zr ,得⎩⎪⎨⎪⎧ρ=2,tan θ=1及⎩⎨⎧r =3,cos φ=33,结合图形得θ=π4,由cos φ=33得tan φ= 2.∴点C 1的直角坐标为(1,1,1),柱坐标为(2,π4,1),球坐标为(3,φ,π4), 其中tan φ=2,0≤φ≤π.化点M 的直角坐标(x ,y ,z )为柱坐标(ρ,θ,z )或球坐标(r ,θ,φ),需要对公式⎩⎨⎧x =ρcos θ,y =ρsin θ,z =z以及⎩⎨⎧x =r sin θcos φ,y =r sin θsin φ,z =r cos θ进行逆向变换,得到⎩⎪⎨⎪⎧ρ=x 2+y 2,tan θ=yx(x ≠0),z =z以及⎩⎪⎨⎪⎧r =x 2+y 2+z 2,tan φ=y x (x ≠0),cos θ=zr .提醒 在由三角函数值求角时,要先结合图形确定角的范围再求值.[再练一题]2.(1)设点M 的直角坐标为(1,1,1),求它在柱坐标系中的坐标. (2)设点M 的直角坐标为(1,1,2),求它的球坐标.【导学号:98990006】【解】(1)设M 的柱坐标为(ρ,θ,z ),则有⎩⎪⎨⎪⎧1=ρcos θ,1=ρsin θ,z =1,解之得ρ=2,θ=π4.因此,点M 的柱坐标为⎝ ⎛⎭⎪⎫2,π4,1.(2)由坐标变换公式,可得 r =x 2+y 2+z 2=12+12+(2)2=2.由r cos θ=z =2, 得cos θ=2r =22,θ=π4.又tan φ=y x =1,φ=π4(M 在第一象限), 从而知M 点的球坐标为⎝ ⎛⎭⎪⎫2,π4,π4. [真题链接赏析](教材第17页习题4.1第16题)建立适当的球坐标系或柱坐标系表示棱长为3的正四面体的四个顶点.结晶体的基本单位称为晶胞,如图4-1-9(1)是食盐晶胞的示意图(可看成是八个棱长为12的小正方体堆积成的正方体).图形中的点代表钠原子,如图4-1-9(2),建立空间直角坐标系O -xyz 后,试写出下层钠原子所在位置的球坐标、柱坐标.(1) (2)图4-1-9【命题意图】 本题以食盐晶胞为载体,主要考查柱坐标系及球坐标系在确定空间点的位置中的应用.【解】 下层的原子全部在xOy 平面上,它们所在位置的竖坐标全是0,所以这五个钠原子所在位置的球坐标分别为(0,0,0),⎝ ⎛⎭⎪⎫1,π2,0,⎝ ⎛⎭⎪⎫2,π2,π4,⎝ ⎛⎭⎪⎫1,π2,π2,⎝ ⎛⎭⎪⎫22,π2,π4; 它们的柱坐标分别为(0,0,0),(1,0,0),⎝ ⎛⎭⎪⎫2,π4,0,⎝ ⎛⎭⎪⎫1,π2,0,⎝ ⎛⎭⎪⎫22,π4,0.1.已知点A 的柱坐标为(1,0,1),则点A 的直角坐标为________. 【解析】 由点A 的柱坐标为(1,0,1)知,ρ=1,θ=0,z =1,故x =ρcos θ=1,y =ρsin θ=0,z =1,所以直角坐标为(1,0,1).【答案】 (1,0,1)2.设点M 的直角坐标为(-1,-1,2),则它的球坐标为________. 【解析】 由坐标变换公式,r =x 2+y 2+z 2=2.cos θ=z r =22,θ=π4.∵tan φ=yx =1, ∴φ=54π.故M 的球坐标为⎝ ⎛⎭⎪⎫2,π4,5π4.【答案】 ⎝ ⎛⎭⎪⎫2,π4,5π43.已知点P 的柱坐标为⎝ ⎛⎭⎪⎫2,π4,5,点B 的球坐标为⎝ ⎛⎭⎪⎫6,π3,π6,这两个点在空间直角坐标系中点的坐标分别为________.【导学号:98990007】【解析】 设P (x ,y ,z ),则x =2cos π4=1, y =2sin π4=1,z =5,∴P (1,1,5).设B (x ,y ,z ),则x =6sin π3cos π6=6×32×32=364,y =6sin π3sin π6=6×32×12=324,z =6·cos π3=6×12=62. 故B (364,324,62).【答案】 P (1,1,5),B (364,324,62)4.把A (4,π6,2)、B (3,π4,-2)两点的柱坐标化为直角坐标,则两点间的距离为________.【解析】 点A 化为直角坐标为A (23,2,2),点B 化为直角坐标为B ⎝ ⎛⎭⎪⎫322,322,-2. AB 2=⎝ ⎛⎭⎪⎫23-3222+⎝ ⎛⎭⎪⎫2-3222+(2+2)2=12+92-66+4+92-62+16=41-6(6+2).所以AB =41-6(6+2). 【答案】41-6(6+2)我还有这些不足:(1)_____________________________________________________ (2)_____________________________________________________ 我的课下提升方案:(1)_____________________________________________________ (2)_____________________________________________________。
球坐标系与柱坐标系
【答案】 (1)(2,2 3,8) (2)(2,2,-2 2)
上一 页
返回 首页
下一 页
将点的直角坐标化为柱坐标或球坐标 已知正方体ABCD-A1B1C1D1的棱长为1,如图4-1-8建立空间直角坐标 系A—xyz,Ax为极轴,求点C1的直角坐标、柱坐标以及球坐标.
【思路探究】 义和联系计算即可.
(1)设M(x,y,z),
3À 3À 则x=2sin 4 ·cos 4 =-1, 3À 3À y=2×sin 4 ×sin 4 =1, 3À z=2×cos 4 =- 2. 即M点坐标为(-1,1,- 2).
上一 页
返回 首页
下一 页
(2)设M(x,y,z), À 则x=2×cos 6= 3, À y=2×sin 6=1,z=7. 即M点坐标为( 3,1,7).
3 2 3 2 B , ,- 2 . 2 2
AB
2
= 2
9 9 3 2 3 2 2 2 2 3- 2 + 2- 2 +(2+2) =12+ 2 -6 6 +4+ 2 -6 2 +16=41
图4-1-8 解答本题根据空间直角坐标系、柱坐标系以及球坐标系的意
上一 页
返回 首页
下一 页
【自主解答】
点C1的直角坐标为(1,1,1),
设点C1的柱坐标为(Á,¸ ,z),球坐标为(r,Æ ,¸ ), 其中Á≥0,r≥0,0≤Æ ≤À ,0≤¸ <2À , x=Ácos ¸ , 由公式y=Ásin ¸ , z=z cos ¸ , x=rsin Æ sin ¸ , 及y=rsin Æ z=rcos Æ
上一 页 返回 首页 下一 页
[质疑·手记] 预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:_____________________________________________________ 解惑:_____________________________________________________ 疑问2:_____________________________________________________ 解惑:_____________________________________________________
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
费马
1629年以前,费马便着手重写公元前 三世纪古希腊几何学家阿波罗尼奥斯 失传的《平面轨迹》一书。他用代数 方法对阿波罗尼奥斯关于轨迹的一些 失传的证明作了补充,对古希腊几何 学,尤其是阿波罗尼奥斯圆锥曲线论 进行了总结和整理,对曲线作了一般 研究.并于1630年用拉丁文撰写了仅有 八页的论文《平面与立体轨迹引论》
英国格林威治天文台
本初子午线
笛卡尔在创建直角坐标系的基础上, 创造了用代数方法来研究几何图形的 数学分支——解析几何。他的设想是: 只要把几何图形看成是动点的
运动轨迹,就可以把几何图形看成是由具有某 种共同特性的点组成的。比如,我们把圆看成 是一个动点对定点O作等距离运动的轨迹,也就 可以把圆看作是由无数到定点O的距离相等的点 组成的。我们把点看作是留成图形的基本元素, 把数看成是组成方程的基本元素,只要把点和 数挂上钩,也就可以把几何和代数挂上钩.
ห้องสมุดไป่ตู้
空间直角坐标系
柱坐标系 球坐标系
思考 1.请利用球坐标系说明人们如何确定地面上 一点的位置.
2.举例说明球坐标系在日常生活中的应用.
本初子午线又称“首子午线”或“零子午线”,是 地球上计算经度的起算经线.在1884年,国际经度 会议决定,以通过英国格林尼治天文埃里中星仪的 经线为本初子午线,作为全球经度的起算经线.
午 线
立空间坐标系,得到r,,
赤道
建立空间直角坐标系Oxyz.设P是空间任意一点,连
接OP,记|OP|=r,OP与Oz轴正向所夹的角为.设P在
Oxy平面上的射影为Q,Ox轴按逆时针方向旋转到
OQ时所转过的最小正角.这样点P的位置就可以用
有序数组(r,,)表示.
z
空间的点与有序数组(r,,) 之间建立一种对应关系
(r,,)为P的球坐标
r≥0,0≤≤,0≤<2
x
P(r,,)
r
O
y
Q
球坐标系(或空间极坐标系)
球坐标在地理学,天文学中有广泛应用
球坐标中的角称为被测点P(r,,)的方位角 90-称为高低角.
z
P(r,,) r
O
y
Q
x
数轴 平面直角坐标系 平面极坐标系 联系形与数的桥梁
复习 圆的极坐标方程 直线的极坐标方程
问题提出 平面直角坐标系
y
O
x
空间直角坐标系
极坐标 极坐标
柱坐标
在圆形体育场内,如何确定看台上某个座位 的位置?
将圆形体育馆自正东方向起,按逆时针方向等分为 十二个扇形区域,顺次记为一区,二区……十二区.
圆形体育场第一排与体育场中心O的距离为300m, 每相邻两排的间距为1m,每层看台的高度为0.6m. 现在需要确定第九区第三排正中的位置A,如何描 述这个位置?
示点Q在平面Oxy上的极坐标,点P位置可用有序数
组(,,z)叫做点P的柱坐标,记作P(,,z),其中≥0,
0≤<2,-∞<z<∞
又称为 半极坐
标
x
z
P(,,z)
z
O
Q
y
思考
给定一个底面半径为r,高为h的圆柱,建立柱坐 标系,利用柱坐标描述圆柱侧面以及底面上点 的位置.
z
h
Or x
y
球坐标系 如何确定航 天器某一时 刻的位置?
航天器到地面距离r, 经度和纬度90-
用有序数组 (r,,)表示
如何建立坐标系?
在赤道平面上,选取地球
球心O为极点,以O为端
点且与零子午线相交的
射线Ox为极轴,建立平面
极坐标系.在此基础上,取 零
以O为端点且经过北极 子
的射线Oz为另一极轴,建
以圆形体育场中心O为极点,选 取以O为端点且过正东入口的 射线Ox为极轴,在地平面上建 立极坐标系.
z
A
302,
17
12
,1.8
A 17 12
1.8m 302Om
x
建立空间直角坐标系Oxyz.设P是空间任意一点.它
在Oxyz平面上的射影为Q,用(,)(≥0,0≤<2)表