直线宇圆 补习题

合集下载

直线与圆的位置关系练习题及参考答案

直线与圆的位置关系练习题及参考答案

直线与圆的位置关系练习题及参考答案一、选择题1. 在平面上,已知点A(4,-2),圆心O(1,3),半径R=5. 则点A与圆的位置关系是:A. A在圆内B. A在圆上C. A在圆外答案: A. A在圆内2. 已知直线L的方程为2x - 3y = 6,圆C的方程为x^2 + y^2 = 25.则直线L与圆C的位置关系是:A. 直线L与圆C相切B. 直线L与圆C相交于两点C. 直线L与圆C不相交答案: B. 直线L与圆C相交于两点3. 在平面上,已知两个圆C1与C2,圆C1的半径为3,圆心坐标为(1,1),圆C2的半径为2,圆心坐标为(-2,-3). 则两个圆的位置关系是:A. 两个圆相交于两点B. 两个圆内切C. 两个圆相离答案: C. 两个圆相离二、填空题1. 已知圆C的半径为2,圆心坐标为(3,5). 则圆心到原点的距离是______.答案: sqrt(3^2 + 5^2) = sqrt(34)2. 在平面上,已知直线L的方程为y = 2x + 1,圆C的半径为4,圆心坐标为(-1,2). 则直线L与圆C的位置关系可以表示为______.答案: (x+1)^2 + (y-2)^2 = 16三、解答题1. 如图所示,在平面上有一个圆C,其圆心坐标为(2,3),半径为4. 请写出圆C的方程,并确定点A(-3,4)与圆C的位置关系。

解答:圆C的方程为:(x-2)^2 + (y-3)^2 = 16点A(-3,4)与圆C的位置关系可以通过计算点A到圆心的距离来判断。

点A到圆心的距离为:distance = sqrt((-3-2)^2 + (4-3)^2) = sqrt(25) = 5比较点A到圆C的距离与圆的半径的关系:若 distance < 4,则点A在圆内;若 distance = 4,则点A在圆上;若 distance > 4,则点A在圆外。

因为 distance = 5 > 4,所以点A在圆外。

2025年高考数学一轮复习-直线与圆-专项训练【含答案】

2025年高考数学一轮复习-直线与圆-专项训练【含答案】

2025年高考数学一轮复习-直线与圆-专项训练一、基本技能练1.过点A(1,2)的直线在两坐标轴上的截距之和为零,则该直线方程为()A.x-y+1=0B.x+y-3=0C.2x-y=0或x+y-3=0D.2x-y=0或x-y+1=02.已知圆C:x2+y2=r2(r>0),直线l:x+3y-2=0,则“r>3”是“直线l与圆C 相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知O为坐标原点,直线l:y=kx+(2-2k)上存在一点P,使得|OP|=2,则k 的取值范围为()A.[3-2,3+2]B.(-∞,2-3]∪[2+3,+∞)C.[2-3,2+3]D.(-∞,3-2]∪[3+2,+∞)4.已知直线l:ax+by=1是圆x2+y2-2x-2y=0的一条对称轴,则ab的最大值为()A.1 4B.1 2C.1D.25.过点P(5,1)作圆C:x2+y2+2x-4y+1=0的割线l交圆C于A,B两点,点C 到直线l的距离为1,则PA→·PB→的值是()A.32B.33C.6D.不确定6.已知直线x+y+1=0与x+2y+1=0相交于点A,过点A的直线l与圆M:x2+y2+4x=0相交于点B,C,且∠BMC=120°,则满足条件的直线l的条数为() A.0 B.1C.2D.37.已知两条直线l1:2x-3y+2=0,l2:3x-2y+3=0,有一动圆(圆心和半径都在变动)与l1,l2都相交,并且l1,l2被截在圆内的两条线段的长度分别是定值26,24,则动圆圆心的轨迹方程为()A.(y-1)2-x2=65B.x2-(y-1)2=65C.y2-(x+1)2=65D.(x+1)2-y2=658.已知M是圆C:x2+y2=1上一个动点,且直线l1:mx-ny-3m+n=0与直线l2:nx+my-3m-n=0(m,n∈R,m2+n2≠0)相交于点P,则|PM|的取值范围是()A.[3-1,23+1]B.[2-1,32+1]C.[2-1,22+1]D.[2-1,33+1]9.(多选)已知直线l1:(a+1)x+ay+2=0,l2:ax+(1-a)y-1=0,则()A.l1恒过点(2,-2)B.若l1∥l2,则a2=12C.若l1⊥l2,则a2=1D.当0≤a≤1时,直线l2不经过第三象限10.(多选)如图,O为坐标原点,B为y轴正半轴上一点,矩形OABC为圆M的内接四边形,OB为直径,|OC|=3|OA|=3,过直线2x+y-4=0上一点P作圆M 的两条切线,切点分别为E,F,则下列结论正确的是()A.圆M的方程为x2+(y-1)2=1B.直线AB的斜率为2C.四边形PEMF的最小面积为2D.PA→·PC →的最小值为4511.已知直线l 1:y =(2a 2-1)x -2与直线l 2:y =7x +a 平行,则a =________.12.过点M (0,-4)作直线与圆C :x 2+y 2+2x -6y +6=0相切于A ,B 两点,则直线AB 的方程为________.二、创新拓展练13.(多选)已知圆C 1:(x -3)2+(y -1)2=4,C 2:x 2+(y +3)2=1,直线l :y =k (x -1),点M ,N 分别在圆C 1,C 2上.则下列结论正确的有()A.圆C 1,C 2没有公共点B.|MN |的取值范围是[1,7]C.过N 作圆C 1的切线,则切线长的最大值是42D.直线l 与圆C 1,C 2都有公共点时,k ≥2314.(多选)过点P (1,1)的直线与圆C :(x -2)2+y 2=9交于A ,B 两点,线段MN 是圆C 的一条动弦,且|MN |=42,则()A.△ABC 面积的最大值为92B.△ABC 面积的最大值为14C.|AB |的最小值为27D.|PM →+PN →|的最小值为22-215.在平面直角坐标系xOy 中,圆x 2+y 2=1交x 轴于A ,B 两点,且点A 在点B 的左侧,若直线x +3y +m =0上存在点P ,使得|PA |=2|PB |,则实数m 的取值范围为________.16.在平面直角坐标系xOy 中,过点A (0,-3)的直线l 与圆C :x 2+(y -2)2=9相交于M ,N 两点,若S △AON =65S △ACM ,则直线l 的斜率为________.参考答案与解析一、基本技能练1.答案D解析当直线过原点时,满足题意,方程为y=2x,即2x-y=0;当直线不过原点时,设方程为xa+y-a=1,∵直线过(1,2),∴1a-2a=1,∴a=-1,∴方程为x-y+1=0,故选D.2.答案A解析由题意知圆心(0,0)到直线x+3y-2=0的距离d=|-2|1+3=1,当r>3时,直线与圆相交,当直线与圆相交,则d=1<r,故“r>3”是“直线l与圆C相交”的充分不必要条件.故选A.3.答案C解析点O(0,0)到直线l:y=kx+(2-2k)的距离d=|2-2k| k2+1.由题意得坐标原点到直线l距离d≤|OP|,所以|2-2k|k2+1≤2,解得2-3≤k≤2+3,故k的取值范围为[2-3,2+3],故选C.4.答案A解析圆x2+y2-2x-2y=0的圆心为(1,1),直线l:ax+by=1是圆x2+y2-2x-2y=0的一条对称轴.可得a+b=1,则ab =14,当且仅当a =b =12时,取等号.所以ab 的最大值为14,故选A.5.答案B解析由题意,可得向量PA →与PB →共线且方向相同,圆C 的圆心为(-1,2),半径为2,如图所示,其中PD 为切线,根据切割线定理,则PA →·PB →=|PA →|·|PB →|=|PD →|2=|PC →|2-|CD →|2=62+12-22=33.故选B.6.答案B解析由题意得点A (-1,0),圆M :x 2+y 2+4x =0的标准方程为(x +2)2+y 2=4,圆心(-2,0),半径r =2,由∠BMC =120°,可得圆心M 到直线l 的距离d =1,直线l 过点A (-1,0),当直线l 的斜率不存在时,直线l 的方程为x =-1,圆心M 到直线l 的距离d =1,符合题意;当直线l 的斜率存在时,设直线l 的方程为y =k (x +1),即kx -y +k =0.圆心M (-2,0)到直线l 的距离d =|-2k -0+k |k 2+1=|-k |k 2+1=1,此方程无解.故满足条件的直线l 的条数为1,故选B.7.答案D解析设动圆圆心P (x ,y ),半径为r ,则P 到l 1的距离d 1=|2x -3y +2|13,P 到l 2的距离d 2=|3x -2y +3|13,因为l 1,l 2被截在圆内的两条线段的长度分别是定值26,24.∴2r 2-d 21=26,2r 2-d 22=24,化简后得r 2-d 21=169,r 2-d 22=144,相减得d 22-d 21=25,将d 1,d 2代入距离公式后化简可得(x +1)2-y 2=65,故选D.8.答案B解析依题意,直线l 1:m (x -3)-n (y -1)=0恒过定点A (3,1),直线l 2:n (x -1)+m (y -3)=0恒过定点B (1,3),显然直线l 1⊥l 2,因此,直线l 1与l 2交点P 的轨迹是以线段AB 为直径的圆,其方程为:(x -2)2+(y -2)2=2,圆心N (2,2),半径r 2=2,而圆C 的圆心C (0,0),半径r 1=1,如图:|NC |=22>r 1+r 2,所以两圆外离,由圆的几何性质得:|PM |min =|NC |-r 1-r 2=2-1,|PM |max =|NC |+r 1+r 2=32+1,所以|PM |的取值范围是[2-1,32+1].故选B.9.答案BD解析l 1:(a +1)x +ay +2=0⇔a (x +y )+x +2=0,+y =0,+2=0,=-2,=2,即直线恒过点(-2,2),故A不正确;若l1∥l2,则有(a+1)(1-a)=a2,解得a2=12,经检验满足条件,故B正确;若l1⊥l2,则有a(a+1)+a(1-a)=0,解得a=0,故C不正确;若直线l2恒过点(1,1)且不经过第三象限,则当1-a≠0时,aa-1<0,解得0<a<1,当a=1时,直线l2:x=1,也不过第三象限,当a=0时,直线l2:y=1,也不过第三象限,综上可知,当0≤a≤1时,直线l2不经过第三象限,故D正确.10.答案AD解析由题意可得圆M的直径|OB|=2,线段OB的中点即为圆M的圆心,所以圆M的方程为x2+(y-1)2=1,故A正确;易知∠AOB=π3,从而可得∠xOC=π3,所以直线OC的斜率为k OC=tan π3=3,由AB∥OC可得直线AB的斜率为k AB=k OC=3,故B错误;连接PM,可得Rt△PME≌Rt△PMF,所以四边形PEMF的面积为S=2S Rt△PME=|ME|·|PE|=|PE|=|PM|2-1,当直线PM与直线2x+y-4=0垂直时,|PM|最小,即|PM|min=|2×0+1-4|5=355,所以S min=255,故C错误;因为PA→·PC→=(PM→+MA→)·(PM→+MC→)=(PM→+MA→)·(PM→-MA→)=PM→2-MA→2=PM→2-1≥95-1=45,故D正确.故选AD.11.解析∵两直线平行,a2-1=7,≠-2,解得a=2.12.答案x-7y+18=0解析圆C的标准方程为(x+1)2+(y-3)2=4,圆心为C(-1,3),半径为2,由圆的切线的性质可得MA⊥AC,则|MA|=|MC|2-22=(-1-0)2+(3+4)2-22=46,所以,以点M为圆心、以|MA|为半径的圆M的方程为x2+(y+4)2=46,将圆M的方程与圆C的方程作差并化简可得x-7y+18=0.因此直线AB的方程为x-7y+18=0.二、创新拓展练13.答案AC解析圆C1的圆心C1(3,1),半径r1=2,圆C2的圆心C2(0,-3),半径r2=1.对于选项A,圆心距d=(0-3)2+(-3-1)2=5>r1+r2,所以圆C1,C2外离,选项A正确;对于选项B,|MN|的最小值为d-(r1+r2)=2,最大值为d+(r1+r2)=8,选项B 错误;对于选项C,连接C1C2与圆C2交于点N(外侧交点),过N作圆C1的切线,切点为P,此时|NP|最长,在Rt△C1PN中,|NP|=(d+r2)2-r21=62-22=42,选项C 正确;对于选项D,直线l方程化为kx-y-k=0,圆心C1到直线l的距离|2k-1|k2+1≤2,解得k≥-3 4,圆心C2到直线l的距离|3-k|k2+1≤1,解得k≥43所以直线l与圆C1,C2都有公共点时,k≥43,选项D错误.故选AC.14.答案BCD解析设圆心C到直线AB的距离为d,由题意得0≤d ≤2,|AB |=29-d 2,则S △ABC =12|AB |·d =12×29-d 2·d =9d 2-d 4当d 2=2时,(S △ABC )max =14,故A 错误,B 正确;由0≤d ≤2,|AB |=29-d 2知|AB |min =29-2=27,C 正确;过圆心C 作CE ⊥MN 于点E ,则点E 为MN 的中点,又|MN |=42,则|CE |=9-8=1,即点E 的轨迹为圆(x -2)2+y 2=1.因为|PM →+PN →|=2|PE →|,且|PE →|min =|PC |-1=2-1,所以|PM →+PN →|的最小值为22-2,故D 正确.因此应选BCD.15.答案-133,1解析由题意得A (-1,0),B (1,0),设P (x ,y ),则由|PA |=2|PB |,得(x +1)2+y 2=2(x-1)2+y 2,+y 2=169,+y 2=169与直线x +3y +m =0有交点,即|53+m |2≤43,解得-133≤m ≤1.故实数m 的取值范围为-133,1.16.答案±3147解析由题意得C (0,2),直线MN 的斜率存在,设M (x 1,y 1),N (x 2,y 2),直线MN 的方程为y =kx -3,与x 2+(y -2)2=9联立,得(k 2+1)x 2-10kx +16=0,Δ=100k 2-64(k 2+1)=36k 2-64>0,得k 2>169,x 1+x 2=10k k 2+1,x 1x 2=16k 2+1.因为S △AON =65S △ACM ,所以12×3×|x 2|=65×12×|2-(-3)|×|x 1|,则|x 2|=2|x 1|,于是x 2=2x 1,x 1=10kk 2+1,x 21=16k 2+1两式消去x 1得k 2=187,满足Δ>0,所以k =±3147.。

高二数学直线与圆专题复习

高二数学直线与圆专题复习

高二数学直线与圆专题复习卷一、选择题1.已知圆22:210C x y y +--=上任一点(,)P x y ,其坐标均使不等式x y m ++≥0恒成立,则实数m 的取值范围是( )A.[1,)+∞B.(]-∞,1C.[3,)-+∞D. (]-∞,-32. 直线3y kx =+与圆22(3)(2)4x y -+-=相交于M N 、两点,若23MN ≥k 的取值范围是( ). A.3,04⎡⎤-⎢⎥⎣⎦ B.[)3,0,4⎛⎤-∞-⋃+∞ ⎥⎝⎦ C.33⎡⎢⎣⎦ D.2,03⎡⎤-⎢⎥⎣⎦3.已知圆的方程为22680x y x y +--=,设该圆过点(3,5)的最长弦和最短弦分别AC BD 和,则四边形ABCD 的面积为( ) A.1066 C.30664.已知圆221:(1)(1)1C x y ++-=,圆2C 与圆1C 关于直线10x y --=对称, 则圆2C 的方程为( ).A.22(2)(2)1x y ++-=B.22(2)(2)1x y -++=C.22(2)(2)1x y +++=D.22(2)(2)1x y -+-=5.已知M (-1,0),N (1,0),在直线340x y m -+=上存在点P ,满足0PM PN ⋅=,则m 的取值范围是( ).A.(,5][5,)-∞-⋃+∞B. (,25][25,)-∞-⋃+∞C.[5,5]-D. [25,25]-6.已知直线ax +by +c =0(abc ≠0)与圆x 2+y 2=1相切,则三条边长分别为|a |,|b |,|c |的三角形( )A.是锐角三角形B.是直角三角形C.是钝角三角形D.不存在二、填空题7. 自点A (-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线m 所在直线与圆224470x y x y +--+=相切,则光线l 与m 所在直线方程为__________.8 .设直线ax -y +3=0与圆22(1)(2)4x y -+-=相交于A ,B 两点,且弦AB 的长为a = .9. 已知直线:60l x y -+=与圆22:(1)(1)2C x y -+-=,则C 上各点到l 距离的最小值为__________.10. 已知圆M 与圆2220x y x +-=相外切,并且与直线0x +=相切于点(3,Q ,则圆M 的方程为__________.11. 如果圆()22()4x a y a -+-=上总存在两个点到原点的距离为1,则实数a 的取值范围是 .12.设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,则+m n 的取值范围是13.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 .14.若曲线1C :2220x y x +-=与曲线2C :()0y y mx m --=有四个不同的交点,则实数m 的取值范围是15.与直线2x+y-1=0关于点(1,0)对称的直线的方程是16.圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是17.已知{(,)|0}M x y y y ==≠,{(,)|}N x y y x b ==+,若M N ≠∅,则b 的取值范围是18.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短路径是19.设圆222(3)(5)(0)x y r r -++=>上有且仅有两个点到直线4320x y --=的距离等于1,则圆半径r 的取值范围是 .20.已知直线1:sin 10l x y θ+-=,2:2sin 10l x y θ++=,若12//l l ,则θ= .三、解答题21.已知圆22:1O x y +=和定点(2,1)A ,由圆O 外一点(,)P a b 向圆O 引切线PQ ,切点为Q ,且满足PQ PA =.(1).求实数,a b 间满足的等量关系;(2).求线段PQ 长的最小值;(3).若以P 为圆心所作的圆P 与圆O 有公共点,试求半径取值最小时,圆P 的方程.22.设圆满足:①截y 轴所得弦长为2;②被x3:1;③圆心到直线:20l x y -=的距离为,求该圆的方程.23.、已知直线l :kx -y -3k =0,圆M :x 2+y 2-8x -2y +9=0(1)求证:直线l 与圆M 必相交;(2)当圆M 截l 所得弦最短时,求k 的值,并求l 的直线方程。

高中数学—直线与圆及答案(基础+巩固+综合练习)

高中数学—直线与圆及答案(基础+巩固+综合练习)

第七章直线与圆基础练习一、选择题1. 直线0=++c by ax 同时要经过第一、第二、第四象限,则c b a 、、应满足( ) A . 0,0<>bc ab B . 0,0ab bc <> C . 0,0>>bc abD . 0,0<<bc ab2. 如果直线02012=-+=++y x y ax 与直线互相垂直,那么a 的值等于( )A . 1B . 31-C . 32-D .2-3. 若直线023022=--=++y x y ax 与直线 平行,那么系数a 等于( )A . 3-B . 6-C . 23-D .32 4. 点P(5a +1,12a )在圆(x -1)2+y 2=1的内部,则a 的取值范围是( )A . 113a <B . 1-13a >C . 11-1313a << D . 113a <或1-13a > 5. 点P 在直线x +y -4=0上,O 为原点,则|OP|的最小值是( )A . 2B . 6C . 22D . 106. 圆x 2+y 2-4x +2y +c =0与y 轴交于A 、B 两点,圆心为P ,若∠APB=900,则c 的值是( )A . -3B . 3C . 22D . 8二、填空题7. 过点(1,3)-且平行于直线032=+-y x 的直线方程为 . 8. 方程x 2+y 2-x +y +k =0表示一个圆,则实数k 的取值范围为 . 9. 直线(2)(21)(34)0m x m y m +----=,不管m 怎样变化恒过点 .10. 已知(1P -是圆{cos sin x r y r θθ==(θ为参数,02)θπ≤<上的点,则圆的普通方程为 .过P 点的圆的切线方程是 . 三、解答题11. 求直线()23--=x y 截圆422=+y x 所得的弦长.12. 求半径为1,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.13. 已知直线x +y =a 与圆x 2+y 2=4交于A 、B 两点,O 是坐标原点,向量OA →、OB →满足OA OB OA OB +=-,求实数a 的值.14. 圆()2211y x +=-被直线0x y -=分成两段圆弧,求较短弧长与较长弧长之比.15. 平行于直线2x+5y-1=0的直线l与坐标轴围成的三角形面积为5,求直线l的方程.巩固提高题一、选择题1. 点)5,0(到直线x y 2=的距离为()A .25B .5C .23D .25 2. 三直线102,1034,082=-=+=++y x y x y ax 相交于一点,则a 的值是()A .2-B .1-C .0D .13. 直线0943=--y x 与圆422=+y x 的位置关系是() A .相交且过圆心 B .相切C .相离D .相交但不过圆心4. 若过点(4,0)的直线l 与曲线22+y -4+3=0x x 有公共点,则直线l 的斜率的取值范围为( )A. ]3333-[, B .(-∞,33]∪,33[+∞)C .(3333-,) D . -,-33∞⋃∞()()5. 若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y -2=0距离等于1,则半径r 取值范围是()A .(4,6)B .[4,6)C .(4,6]D .[4,6] 6. 过点A (1,4),且横纵截距的绝对值相等的直线共有( )A .1条B .2条C .3条D .4条 二、填空题7. 设直线1:60l x my ++=和2:(2)320l m x y m -++=,当m =_______时1l ∥2l ;当m =________时1l ⊥2l ;当m _________时1l 与2l 相交;当m =_________时1l 与2l重合.8. 圆12222=+y x 与直线sin 10(,2x y R πθθθ+-=∈≠k π+,)k z ∈的位置关系为 .9. 若直线30ax by +-=与圆22410x y x ++-=切于点(1,2)P -,则ab 的值____. 10. 点A(4,5)关于直线l 的对称点为B(-2,7),则l 的方程是 . 三、解答题11. 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.12. 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.13. 已知圆C :22(1)5x y +-=,直线l :10mx y m -+-=.①求证:对m R ∈,直线l 与圆C 总有两个不同的交点;②设l 与圆C 交于A 、B 两点,若AB =l 的斜率.14. (1)求经过点A(5,2),B(3,2),圆心在直线2x-y-3=0上圆方程;(2)设圆上的点A(2,3)关于直线x+2y=0的对称点仍在这个圆上,且与直线x-y+1=0相交的弦长为22,求圆方程.15. 在直角坐标系xOy 中,以坐标原点为圆心的圆与直线:4x =相切。

高三一轮复习 直线与圆全章 练习(3套)+易错题+答案

高三一轮复习 直线与圆全章 练习(3套)+易错题+答案

第十章直线与圆第1节直线及直线方程一、选择题1.直线l:xsin 30°+ycos 150°+1=0的斜率是( A )(A) (B) (C)- (D)-解析:设直线l的斜率为k,则k=-=.2.在等腰三角形AOB中,|AO|=|AB|,点O(0,0),A(1,3),点B在x轴的正半轴上,则直线AB的方程为( D )(A)y-1=3(x-3) (B)y-1=-3(x-3)(C)y-3=3(x-1) (D)y-3=-3(x-1)解析:因为|AO|=|AB|,所以直线AB的斜率与直线AO的斜率互为相反数,所以k AB=-k OA=-3,所以直线AB的方程为y-3=-3(x-1).3.已知点A(1,3),B(-2,-1).若直线l:y=k(x-2)+1与线段AB相交,则k的取值范围是( D )(A)[,+∞) (B)(-∞,-2](C)(-∞,-2]∪[,+∞) (D)[-2,]解析:易知直线l恒过定点P(2,1),如图所示.若l与线段AB相交,则k PA≤k≤k PB,因为k PA=-2,k PB=,所以-2≤k≤.故选D.4.平面直角坐标系中,与直线y=2x+1关于点(1,1)对称的直线方程是( D )(A)y=2x-1 (B)y=-2x+1(C)y=-2x+3 (D)y=2x-3解析:在直线y=2x+1上任取两个点A(0,1),B(1,3),则点A关于点(1,1)对称的点为(2,1),点B关于点(1,1)对称的点为(1,-1),所以所求对称直线的方程为y=2x-3.5.已知直线ax+y-1=0与直线x+ay-1=0互相垂直,则a等于( D )(A)1或-1 (B)1 (C)-1 (D)0解析:因为直线ax+y-1=0与直线x+ay-1=0互相垂直,所以a×1+a×1=0⇒a=0,故选D.6.若直线l 1:x-2y+m=0(m>0)与直线l2:x+ny-3=0之间的距离是,则m+n等于( A )(A)0 (B)1 (C)-1 (D)2解析:因为直线l1:x-2y+m=0(m>0)与直线l2:x+ny-3=0之间的距离为,所以所以n=-2,m=2或m=-8(舍去).故m+n=0.二、填空题7.若ab>0,且A(a,0),B(0,b),C(-2,-2)三点共线,则ab的最小值为.解析:根据A(a,0),B(0,b)确定的直线的方程为+=1,又C(-2,-2)在该直线上,故+=1,所以-2(a+b)=ab.又ab>0,所以a<0,b<0,所以ab=-2(a+b)≥4,可得≤0(舍去)或≥4,故ab≥16,当且仅当a=b=-4时取等号.故ab的最小值为16.答案:168.设直线l的方程为(a+1)x+y+2-a=0(a∈R).(1)若l在两坐标轴上截距相等,则l的方程为;(2)若l不经过第二象限,则实数a的取值范围为.解析:(1)当直线经过原点时,该直线在x轴和y轴上的截距均为零,此时a=2,直线l的方程为3x+y=0;当直线不经过原点时,即a≠2,截距存在且均不为0,所以=a-2,即a+1=1,所以a=0,直线l的方程为x+y+2=0.综上,l的方程为3x+y=0或x+y+2=0.(2)l的方程可化为y=-(a+1)x+a-2,由题意得所以a≤-1. 答案:(1)3x+y=0或x+y+2=0 (2)(-∞,-1]9.过点A(1,2)且与原点距离最大的直线的方程为.解析:由题易知所求直线与OA垂直,因为k OA=2,所以所求直线方程为y-2=-(x-1),即x+2y-5=0.答案:x+2y-5=010.已知两直线l1:(3+m)x+4y=5-3m,l2:2x+(5+m)y=8,若l1∥l2,则m= ;若l1⊥l2,则m= .解析:若l1∥l2,则=≠,即m=-7或m=-1(舍去),所以m=-7.若l1⊥l2,则(3+m)×2+4(5+m)=0,即m=-.答案:-7 -11.若实数x,y满足x+y-4≥0,则z=x2+y2+6x-2y+10的最小值为.解析:因为z=x2+y2+6x-2y+10=(x+3)2+(y-1)2表示的几何意义是区域内的点(x,y)到(-3,1)的距离的平方,所以所求最小值为(-3,1)到直线x+y-4=0的距离的平方,即为()2=18.答案:1812.与直线l1:y=2x+3关于直线l:y=x+1对称的直线l2的方程为.解析:由解得直线l1与l的交点坐标为(-2,-1).又易知直线l2的斜率存在,故可设直线l2的方程为y+1=k(x+2),即kx-y+2k-1=0.在直线l上任取一点(1,2),由题可知点(1,2)到直线l1,l2的距离相等,所以由点到直线的距离公式得=,解得k=(k=2舍去),故直线l2的方程为x-2y=0.答案:x-2y=0三、解答题13.设直线l的方程为(a+1)x+y-2-a=0(a∈R).(1)若直线l在两坐标轴上的截距相等,求直线l的方程;(2)若a>-1,直线l与x,y轴分别交于M,N两点,O为坐标原点,求△OMN 面积取最小值时,直线l的方程.解:(1)当直线l经过坐标原点时,该直线在两坐标轴上的截距都为0,此时a+2=0,解得a=-2,此时直线l的方程为-x+y=0,即x-y=0.当直线l不经过坐标原点,即a≠-2时,若a≠-1.则由直线在两坐标轴上的截距相等可得=2+a,解得a=0,此时直线l的方程为x+y-2=0;若a=-1,则y=1,不符合条件.所以直线l的方程为x-y=0或x+y-2=0.(2)由直线方程可得M(,0),N(0,a+2).因为a>-1,所以S△OMN=××(2+a)=×=[(a+1)++2]≥×[2+2]=2,当且仅当a+1=,即a=0时,等号成立.故当△OMN面积最小时,直线l的方程为x+y-2=0.14.已知直线l:x-2y+8=0和两点A(2,0),B(-2,-4).点P为直线l上一点.(1)求使|PA|+|PB|最小的点P的坐标;(2)求使||PB|-|PA||最大的点P的坐标.解:(1)设A关于直线l对称的点为A′(m,n),则解得故A′(-2,8).P为直线l上的一点,则|PA|+|PB|=|PA′|+|PB|≥|A′B|,当且仅当B,P,A′三点共线时,|PA|+|PB|取得最小值|A′B|,故点P即为直线A′B与直线l的交点,解得故所求点P的坐标为(-2,3).(2)易知A,B两点在直线l的同侧,且P是直线l上的一点,则||PB|-|PA||≤|AB|,当且仅当A,B,P三点共线时,||PB|-|PA||取得最大值|AB|,故点P即为直线AB与直线l的交点.又直线AB的方程为y=x-2,由得故所求点P的坐标为(12,10).15.已知直线l经过直线2x+y-5=0与x-2y=0的交点P.(1)点A(5,0)到直线l的距离为3,求直线l的方程;(2)求点A(5,0)到直线l的距离的最大值.解:(1)因为经过两已知直线交点的直线系方程为(2x+y-5)+λ(x-2y)=0,即(2+λ)x+(1-2λ)y-5=0,所以=3,解得λ=或λ=2.所以直线l的方程为x=2或4x-3y-5=0.(2)由解得交点P(2,1),如图,过P作任一直线l,设d为点A到直线l的距离,则d≤|PA|(当l⊥PA时等号成立).所以d max=|PA|=.第2节圆的方程一、选择题1.已知圆M的方程为x2+y2-8x+6y=0,则下列说法中不正确的是( C )(A)圆M的圆心为(4,-3)(B)x轴被圆M截得的弦长为8(C)圆M的半径为25(D)y轴被圆M截得的弦长为6解析:圆M的标准方程为(x-4)2+(y+3)2=25,圆心坐标为(4,-3),半径为5.显然选项C不正确.2.已知圆x2+y2-2x+my-4=0上两点M,N关于直线2x+y=0对称,则圆的半径为( B )(A)9 (B)3 (C)2(D)2解析:根据圆的几何特征,可知直线2x+y=0经过圆的圆心(1,-).将圆心坐标代入直线方程解得m=4,即圆的方程为x2+y2-2x+4y-4=0,配方得(x-1)2+(y+2)2=32,故圆的半径为3.3.若a为实数,则圆(x-a)2+(y+2a)2=1的圆心所在的直线方程为( A )(A)2x+y=0 (B)x+2y=0(C)x-2y=0 (D)2x-y=0解析:圆的圆心坐标为(a,-2a),由消去参数a得2x+y=0. 4.圆x2+y2-4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的和是( C )(A)30 (B)18(C)10(D)5解析:由圆x2+y2-4x-4y-10=0知圆心坐标为(2,2),半径为3,圆心(2,2)到直线x+y-14=0的距离d==5>3,直线和圆相离,则圆上的点到直线x+y-14=0的最大距离为d+3=8,最小距离为d-3=2,故最大距离与最小距离的和为10.5.直线x+y-2=0与圆(x-1)2+(y-2)2=1相交于A,B两点,则弦|AB|等于( D )(A) (B) (C) (D)解析:因为圆心(1,2)到直线x+y-2=0的距离d=,所以|AB|=2=.6.已知A,B,C是圆O:x2+y2=1上不同的三个点,且·=0,若存在实数λ,μ满足=λ+μ,则点(λ,μ)与圆O的位置关系是( B )(A)在圆O外 (B)在圆O上(C)在圆O内 (D)无法确定解析:因为点A,B,C在单位圆上,所以||=1,于是有||2=1,即(λ+μ)2=1,展开得λ2+μ2=1,所以点(λ,μ)在圆x2+y2=1上.二、填空题7.已知圆C过点A(1,0)和B(3,0),且圆心在直线y=x上,则圆C的标准方程为.解析:由题意可设圆心坐标为(a,a),半径为r,则圆的标准方程为(x- a)2+(y-a)2=r2,所以解得故圆C的标准方程为(x-2)2+(y-2)2=5.答案:(x-2)2+(y-2)2=58.已知两点A(-2,0),B(0,2),点C是圆x2+y2-2x=0上任意一点,则△ABC面积的最小值是.解析:直线AB的方程为x-y+2=0,圆心(1,0)到直线AB的距离d=. 因为该圆的半径为1,所以AB边上的高的最小值为-1.因为|AB|=2,所以△ABC面积的最小值是×2×(-1)=3-.答案:3-9.点P(1,2)到圆C:x2+y2+2kx+2y+k2=0上的点的距离的最小值是.解析:圆C的标准方程为(x+k)2+(y+1)2=1,所以圆心C(-k,-1),半径r=1.易知点P(1,2)在圆外,所以点P到圆心C的距离|PC|==≥3,所以|PC|min=3,所以点P到圆C上点的最小距离d min=|PC|min-r=3-1=2.答案:210.已知点A(0,2)为圆M:x2+y2-2ax-2ay=0(a>0)外一点,圆M上存在点T使得∠MAT=45°,则实数a的取值范围是.解析:圆M的标准方程为(x-a)2+(y-a)2=2a2,圆心M(a,a),半径r=a, 所以|AM|=,|TM|= a.设AS与圆切于S,因为AM,TM长度固定,所以当点T与点S重合时,∠MAT最大.由题意知圆M上存在点T使得∠MAT=45°,所以sin∠MAS==≥sin∠MAT=sin 45°=,整理得a2+2a-2≥0,由于a>0,解得a≥-1.又因为=≤1,所以a≤1,又点A(0,2)为圆M外一点,所以02+22-4a>0,解得a<1,综上可得-1≤a<1.答案:[-1,1)11.若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为.解析:圆C的圆心为(0,1),半径为1,标准方程为x2+(y-1)2=1.答案:x2+(y-1)2=1三、解答题12.已知圆C的圆心C在第一象限,且在直线3x-y=0上,该圆与x轴相切,且被直线x-y=0截得的弦长为2,直线l:kx-y-2k+5=0与圆C 相交.(1)求圆C的标准方程;(2)求出直线l所过的定点,以及当直线l被圆C所截得的弦长最短时,直线l的方程及最短的弦长.解:(1)设圆心C(a,b)(a>0,b>0),半径为r,则由题可知b=3a,r=3a.圆心C到直线x-y=0的距离d==a,则(a)2+()2=(3a)2,解得a2=1,因为a>0,所以a=1,圆心C(1,3),半径为3.故圆C的标准方程为(x-1)2+(y-3)2=9.(2)易知直线l过定点M(2,5),因为点M在圆C内,且k CM=2,所以弦长最短时,直线l的斜率k=-,所以直线l的方程为x+2y-12=0.因为|CM|=,所以最短弦长为4.13.已知圆M过两点C(1,-1),D(-1,1),且圆心M在x+y-2=0上.(1)求圆M的方程;(2)设P是直线3x+4y+8=0上的动点,PA,PB是圆M的两条切线,A,B为切点,求四边形PAMB的面积的最小值.解:(1)因为CD的垂直平分线方程为y=x,联立解得所以圆心坐标为(1,1),圆的半径r==2,所以所求圆M的方程为(x-1)2+(y-1)2=4.(2)因为四边形PAMB的面积S=S△PAM+S△PBM=|AM|·|PA|+|BM|·|PB|, 且|AM|=|BM|=2,|PA|=|PB|,所以S=2|PA|,又|PA|==,所以S=2.因此要求S的最小值,只需求|PM|的最小值即可,即在直线3x+4y+8=0上找一点P,使得|PM|的值最小.因为|PM|min==3,所以四边形PAMB的面积的最小值S min=2=2=2.14.已知圆C经过P(4,-2),Q(-1,3)两点,且y轴被圆C截得的弦长为4,半径小于5.(1)求直线PQ与圆C的方程;(2)若直线l∥PQ,且l与圆C交于点A,B,且以线段AB为直径的圆经过坐标原点,求直线l的方程.解:(1)易得直线PQ的方程为x+y-2=0.设圆心C(a,b),半径为r.由于线段PQ的垂直平分线的方程是y-=x-,即y=x-1,且圆心C在该条直线上,所以b=a-1.①又因为y轴被圆C所截得的弦长为4,所以r2=(a+1)2+(b-3)2=12+a2.②由①②得a=1,b=0或a=5,b=4.当a=1,b=0时,r2=13,满足题意;当a=5,b=4时,r2=37,不满足题意.故圆C的方程为(x-1)2+y2=13.(2)设直线l的方程为y=-x+m,A(x1,m-x1),B(x2,m-x2).由题意可知OA⊥OB,即·=0,所以x1x2+(m-x1)(m-x2)=0,整理得m2-m(x1+x2)+2x1x2=0.将y=-x+m代入(x-1)2+y2=13,可得2x2-2(m+1)x+m2-12=0,所以x1+x2=1+m,x1x2=,Δ=-4(m2-2m-25),所以m2-m·(1+m)+m2-12=0,解得m=4或m=-3,经验证均满足Δ>0,所以直线l的方程为y=-x+4或y=-x-3.第3节直线与圆、圆与圆的位置关系一、选择题1.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为( B )(A)内切(B)相交(C)外切(D)相离解析:两圆的圆心距为,因为1<<5,即|r1-r2|<d<r1+r2,因此两圆相交.2.已知圆C:x2+y2-2x=1,直线l:y=k(x-1)+1,则l与C的位置关系是( C )(A)一定相离(B)一定相切(C)相交且一定不过圆心(D)相交且可能过圆心解析:因为直线恒过点(1,1),且该点在圆的内部,所以直线与圆相交,又因为圆的圆心坐标为(1,0),且直线的斜率存在,所以直线不过圆心.3.若直线x-y=2被圆(x-1)2+(y+a)2=4所截得的弦长为2,则实数a 的值为( D )(A)-2或6 (B)0或4(C)-1或(D)-1或3解析:圆心(1,-a)到直线x-y=2的距离d=,由垂径定理得()2+()2=4,解得a=-1或a=3.4.若直线y=x+b与曲线x=有且仅有一个公共点,则b的取值范围是( B )(A){b|b=±}(B){b|-1<b≤1或b=-}(C){b|-1≤b≤}(D){b|-<b<1}解析:y=x+b是斜率为1的直线,曲线x=是以原点为圆心、1为半径的右半圆,如图所示.由图可以看出,直线与曲线有且仅有一个公共点有两种情况:当直线与曲线相切时,b=-;当-1<b≤1时,直线与曲线相交且有唯一公共点.5.已知P(x,y)是直线kx+y+4=0(k>0)上一动点,PA,PB是圆C:x2+y2- 2y=0的两条切线,A,B是切点,若四边形PACB的最小面积是2,则k的值为( D )(A)3 (B)(C)2 (D)2解析:因为圆的方程为x2+(y-1)2=1,所以圆心为(0,1),半径r=1,四边形PACB的面积S=2S△PBC,所以若四边形PACB的最小面积是2,则S△PBC的最小值为1,而S△PBC=r|PB|,所以|PB|的最小值为2,|PC|的最小值为,所以圆心到直线的距离d==,即k2=4,因为k>0,所以k=2.6.在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则实数k的取值范围是( C )(A)[-,0] (B)[0,)(C)[0,] (D)(0,)解析:将圆C的方程整理为标准方程得(x-4)2+y2=1,所以圆心C(4,0),半径r=1.因为直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,所以只需圆C′:(x-4)2+y2=4与y=kx-2有公共点,所以圆心(4,0)到直线y=kx-2的距离d=≤2,解得0≤k≤.二、填空题7.直线ax-y+4=0与圆(x-1)2+(y-2)2=4相切,则a的值为. 解析:由题意得圆心(1,2)到直线的距离d==2,解得a=0或a=.答案:0或8.已知集合A={(x,y)|x-y+m≥0},集合B={(x,y)|x2+y2≤1}.若A∩B= ,则实数m的取值范围是.解析:如图所示,A={(x,y)|x-y+m≥0}表示直线x-y+m=0及其右下方区域,B={(x,y)|x2+y2≤1}表示圆x2+y2=1及其内部.要使A∩B= ,则直线x-y+m=0在圆x2+y2=1的下方,且圆心(0,0)到直线的距离d=>1,故m<-.答案:m<-9.过点P(3,1)作圆C:(x-2)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为 .解析:圆(x-2)2+y2=1的圆心为C(2,0),半径为1,以线段PC为直径的圆的方程为(x-2.5)2+(y-0.5)2=0.5,将两圆的方程相减可得公共弦AB 的方程x+y-3=0.答案:x+y-3=010.已知f(x)=x3+ax-2b,如果f(x)的图象在切点P(1,-2)处的切线与圆(x-2)2+(y+4)2=5相切,那么3a+2b= .解析:由题意得f(1)=-2⇒a-2b=-3,又因为f′(x)=3x2+a,所以f(x)的图象在点(1,-2)处的切线方程为y+2=(3+a)(x-1),即(3+a)x-y- a-5=0,所以=⇒a=-,所以b=,所以3a+2b=-7.答案:-711.过直线x+y-2=0上的点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P的坐标是.解析:因为点P在直线x+y-2=0上,所以可设点P(x 0,-x0+2),且其中一个切点为M.因为两条切线的夹角为60°,所以∠OPM=30°.故在Rt△OPM中,有|OP|=2|OM|=2.由两点间的距离公式得|OP|==2,解得x 0=.故点P的坐标是(,).答案:(,)三、解答题12.已知点M(3,1),直线ax-y+4=0及圆(x-1)2+(y-2)2=4.(1)求过点M的圆的切线方程;(2)若直线ax-y+4=0与圆相切,求a的值;(3)若直线ax-y+4=0与圆相交于A,B两点,且弦AB的长为2,求a的值.解:(1)由题意知,圆心的坐标为(1,2),半径r=2.当过点M的切线的斜率不存在时,切线方程为x=3.当过点M的切线的斜率存在时,设方程为y-1=k(x-3),即kx-y+1- 3k=0.由题意知=2,解得k=,所以切线方程为y-1=(x-3),即3x-4y-5=0.故过点M的圆的切线方程为x=3或3x-4y-5=0.(2)由题意有=2,解得a=0或a=.(3)因为圆心(1,2)到直线ax-y+4=0的距离为,()2+()2=4,解得a=-.13.已知圆M:x2+(y-2)2=1,Q是x轴上的动点,QA,QB分别切圆M于A,B 两点.(1)若Q(1,0),求切线QA,QB的方程;(2)求四边形QAMB面积的最小值;(3)若|AB|=,求直线MQ的方程.解:(1)设过点Q的圆M的切线方程为x=my+1,因为圆心M(0,2)到切线的距离为1,所以=1,所以m=-或m=0,所以所求的切线方程为3x+4y-3=0和x=1.(2)因为MA⊥AQ,所以S四边形MAQB=2××|MA|·|QA|=|QA|==≥=,所以四边形QAMB面积的最小值为.(3)设Q(x,0).设AB与MQ交于P,则MP⊥AB,MB⊥BQ,所以|MP|==.在Rt△MBQ中,|MB|2=|MP||MQ|,即1=|MQ|,所以|MQ|=3,所以x2+22=9,所以x=±,所以Q(±,0),所以直线MQ的方程为2x+y-2=0或2x-y+2=0.14.在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和C2:(x- 4)2+(y-5)2=16.(1)若直线l过点A(6,0),且被圆C 2截得的弦长为4,求直线l的方程;(2)在平面内是否存在一点P,使得过点P有无穷多对互相垂直的直线l1和l2(l1,l2与坐标轴不垂直),它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长的2倍与直线l2被圆C2截得的弦长相等?若存在,求出所有满足条件的P点的坐标;若不存在,请说明理由.解:(1)若直线l的斜率不存在,则其方程为x=6,此时圆心C2(4,5)到直线x=6的距离为2,l被圆C 2截得的弦长为2=4,所以直线x=6满足题意.若直线l的斜率存在,可设直线l的方程为y=k(x-6),即kx-y-6k=0,此时圆心C2到直线l的距离d==,又直线l被圆C2截得的弦长为4,圆C 2的半径为4,所以圆心C2到直线l的距离为=,解得k=-.因此直线l的方程为x=6或y=-(x-6),即x=6或21x+20y-126=0.(2)设P点坐标为(m,n),直线l1的斜率为k(依题意k≠0),则直线l1的方程为y-n=k(x-m),即kx-y+n-km=0,直线l2的方程为y-n=-(x-m),即x+ky-kn-m=0.因为直线l1被圆C1截得的弦长的2倍与直线l2被圆C2截得的弦长相等,且圆C2的半径是圆C1的半径的2倍,所以圆心C1到直线l1的距离的2倍与圆心C2到直线l2的距离相等,故=,化简得(2m+n+1)k+(m-2n-2)=0或(2m-n+11)k+(6-2n-m)=0.由于关于k的方程有无穷多解,所以或解得或所以所有满足条件的P点坐标为(0,-1)或(-,).。

高考数学直线和圆专题辅导测试练习

高考数学直线和圆专题辅导测试练习

高考数学直线和圆专题辅导测试练习1. 直线l 经过A (2,1)、B (1,m 2)(m ∈R)两点,那么直线l 的倾斜角的取值范围是( )A .),0[πB .),2(]4,0[πππ⋃C .]4,0[πD .),43[]4,0[πππ⋃ 2. 已知点A (6,-4),B (1,2)、C (x ,y ),O 为坐标原点,若),(R OB OA OC ∈+=λλ 则点C 的轨迹方程是 ( )A .2x -y +16=0B .2x -y -16=0C .x -y +10=0D .x -y -10=03. 若点(5,b )在两条平行直线6x -8y +1=0与3x -4y +5=0之间,则整数b 的值为( )A .5B .-5C .4D .-44.直线ax +by +b -a =0与圆x 2+y 2-x -2=0的位置关系是 ( )A .相离B .相交C .相切D .与a ,b 的取值有关5.已知直线ax +3y +1=0与直线x +(a -2)y +a =0,当a =_________时,两直线平行;当a =_________时,两直线重合;当a ∈_____________________________时,两直线相交.6.将直线y x 绕点(2,0)按顺时针方向旋转30°所得直线方程是______7.在坐标平面内,由不等式组⎩⎨⎧+-≤--≥3||21||x y x y 所确定的平面区域的面积为________8.已知定点P (2,1),分别在y =x 及x 轴上各取一点B 与C ,使∆BPC 的周长最小,最小值为_________9.经过点M (1,3)的圆x 2+y 2=1的切线方程是________________10.若圆经过点A (a ,0),B (2a ,0),C (0,a )(a ≠0),则这个圆的方程为_______________11.一直线被两条平行直线x +2y -1=0及x +2y -3=0所截的线段的中点在直线x -y -1=0上,且这条直线与两平行线的夹角为45°,求此直线的方程.12.当C 为何值时,圆x 2+y 2+x -6y +C =0与直线x +2y -3=0的两交点P 、Q 满足OP ⊥OQ ?(其中O 为坐标原点)13.已知圆C :x 2+(y -2)2=5,直线l :mx -y +1=0,(1)求证:对m ∈R ,直线l 与圆C 总有两个不同交点;(2)设l 与圆C 交于A 、B 两点,若|AB |=17,求l 的倾斜角;(3)求弦AB 的中点M 的轨迹方程.14.圆的方程为x 2+y 2-6x -8y =0,过坐标原点作长为8的弦,求弦所在的直线方程。

直线与圆的方程培优试题

直线与圆的方程培优试题

直线与圆的方程培优试题题目一给定一个圆的方程为:(x - a)^2 + (y - b)^2 = r^2,求出过点(x0, y0)且与该圆相切的直线的方程。

解析我们知道,直线与圆相切的条件是:直线上的一点到圆心的距离等于圆的半径。

因此,我们需要找到一条直线,使得直线上的某个点(x, y)到圆心(a, b)的距离等于半径r。

设直线的方程为y = kx + c,将其代入圆的方程中,得到:(x - a)^2 + (kx + c - b)^2 = r^2展开并整理得到:(x^2 - 2ax + a^2) + (k^2x^2 + c^2 + b^2 - 2kcx - 2kb)x + (2bkc - 2bc) = r^2由于直线与圆相切,所以该方程有唯一解。

根据相等斜率定理,我们知道,直线与圆相切意味着两者的切点处的斜率相等。

因此,我们可以通过解方程组来求解该问题。

将上述方程与圆的方程联立,可得到一个二元一次方程组:2bk - 2a = 02bkc - 2bc - r^2 + a^2 + b^2 - c^2 = 0解方程组得到:k = (a - c) / bc = r^2 / (b - k)因此,过点(x0, y0)且与给定圆相切的直线的方程为:y = ((x0 - a) / b) * x + (r^2 / (b - ((x0 - a) / b)))题目二给定一个直线的方程为:y = kx + c,求该直线与圆(x - a)^2 + (y - b)^2 = r^2的交点坐标。

解析我们需要找到直线与圆的交点,也就是说,找到直线和圆的方程组的解。

将直线的方程代入圆的方程中,得到:(x - a)^2 + (kx + c - b)^2 = r^2展开并整理得到:(x^2 - 2ax + a^2) + (k^2x^2 + c^2 + b^2 - 2kcx - 2kb)x + (2bkc - 2bc) = r^2合并同类项得到:(1 + k^2)x^2 + (-2a - 2ck - 2kb)x + (a^2 + c^2 + b^2 - 2kcx - 2bc -r^2) = 0这是一个二次方程,我们可以使用二次方程的求根公式来求解。

高考数学复习直线与圆专题过关训练100题(WORD版含答案)

高考数学复习直线与圆专题过关训练100题(WORD版含答案)

高考数学复习直线与圆专题过关训练100题(WORD 版含答案)一、选择题1.点M ,N 是圆22240x y kx y +++-=上的不同两点,且点M ,N 关于直线10x y -+=对称,则该圆的半径等于A ..3 2.我们把顶角为36°的等腰三角形称为黄金三角形.....。

其作法如下:①作一个正方形ABCD ;②以AD 的中点E 为圆心,以EC 长为半径作圆,交AD 延长线于F ;③以D 为圆心,以DF 长为半径作⊙D ;④以A 为圆心,以AD 长为半径作⊙A 交⊙D 于G ,则△ADG 为黄金三角形。

根据上述作法,可以求出cos36°= A .415-B .415+ C .435+ D .435-3.已知实数a ,b 满足224a b +=,则ab 的取值范围是 A .[0,2]B .[-2,0]C .(-∞,-2]∪[2,+∞)D .[-2,2]4.双曲线C :22221(0,0)x y a b a b -=>>的离心率为2,其渐近线与圆()2234x a y -+=相切,则该双曲线的方程为( )A .2213y x -= B .22139x y -=C .22125x y -= D .221412x y -= 5.若直线与圆有公共点,则实数a 取值范围是( )A. [-3,-1]B. [-1,3]C. [-3,1]D. (-∞,-3]∪[1,+∞)6.直线20x y -与y 轴的交点为P ,点P 把圆()22136x y ++=的直径分为两段,则较长一段比上较短一段的值等于( ) A .2 B .3 C .4 D .57.已知圆...22:(3)(4)1C x y -+-=和两点...()()(,0),00A m Bm m ->,.若圆...C .上存在点....P .,使得...90APB ∠=︒,则..m .的最大值为.....(. ).A ...7B ....6C ....5D ....4.8.已知圆...22:(3)(4)1C x y -+-=和两点...()()(,0),,00A m B m m ->.. 若圆..C .上存在点....P .,使得... 90APB ∠=︒,则..m .的最大值为.....(. ). A ...7 B ....6 C ....5 D ....4.9.若函数1)(2+=x x f 的图象与曲线C :()01)(>+=a ae x g x存在公共切线,则实数a 的取值范围为 A .⎪⎭⎫⎢⎣⎡∞+,26e B .⎥⎦⎤ ⎝⎛28,0e C .⎪⎭⎫⎢⎣⎡∞+,22e D .⎥⎦⎤ ⎝⎛24,0e 10.已知直线x +y =a 与圆x 2+y 2=4交于A 、B 两点,且||||-=+,其中O 为坐标原点,则实数a 的值为 A .2 B .±2 C .-2D .2±11.已知抛物线22(0)y px p =>上一点(5,)t 到焦点的距离为6,P 、Q 分别为抛物线与圆22(6)1x y -+=上的动点,则|PQ |的最小值为( )A 1B . 2C ..1函数()e cos xf x x =的图象在(0,f (0))处的切线倾斜角为( ) A. 0 B . 4π C. 1 D .2π 13.在平面直角坐标系xOy 中,已知两圆C 1:1222=+y x 和C 2:1422=+y x ,又A 点坐标为(3,-1),M ,N 是C 1上的动点,Q 为C 2上的动点,则四边形AMQN 能构成矩形的个数为( )A .0个B .2个C .4个D .无数个 14. 曲线11x y x +=-在点(2,3)处的切线与直线10ax y ++=平行,则a =( ) A .12B .12-C .-2D .215.已知过点A (a ,0)作曲线:xC y x e =⋅的切线有且仅有两条,则实数a 的取值范围是A .(-∞,-4)∪(0,+∞)B .(0,+∞)C .(-∞,-1)∪(1,+∞)D .(-∞,-1) 16.若点P (1,1)为圆2260x y x +-=的弦MN 的中点,则弦MN 所在直线方程为A .230x y +-=B .210x y -+=C .230x y +-=D .210x y --= 17.直线2x -y 与y 轴的交点为P ,点P 把圆22(1)36x y ++=的直径分为两段,则较长一段比上较短一段的值等于 A. 2B. 3C. 4D. 518.若函数1()(0,0)bxf x e a b a=->>的图象在0x =处的切线与圆221x y +=相切,则a b +的最大值是( )C.2D.中心在原点,对称轴为坐标轴的双曲线C 的两条渐近线与圆22(2)1x y -+=都相切,则双曲线C 的离心率是( )A .2B .220.中心在原点,对称轴为坐标轴的双曲线C 的两条渐近线与圆22(2)1x y -+=都相切,则双曲线C 的离心率是( )A .2B .221.若直线y x b =+与曲线096422=+--+y x y x 有公共点,则b 的取值范围是( )A. 1,1⎡-+⎣B. 1⎡-+⎣C. 1⎡⎤-⎣⎦D. 1⎡⎤-⎣⎦22.已知直线4x -3y +a =0与⊙C : x 2+y 2+4x =0相交于A 、B 两点,且∠AOB =120°,则实数a 的值为( )A .3B .10 C. 11或 21 D .3或13 23.过点(2,1)且与直线3x -2y =0垂直的直线方程为A .2x -3y -1=0B .2x +3y -7=0C .3x -2y -4=0D .3x +2y -8=0 24.若直线y =x +b 与曲线y =3b 的取值范围是A .[1,1-+B .[1-+C .[1-D .[1 25.已知动圆圆心在抛物线y 2=4x 上,且动圆恒与直线x=-1相切,则此动圆必过定点( )A. (2,0)B. (1,0)C. (0,1)D.(0,-1) 26.已知曲线421y x ax =++在点(-1,f (-1))处切线的斜率为8,则f (-1)= A .7B .-4C .-7D .427.已知点(1,2)P 和圆222:20C x y kx y k ++++=,过点P 作圆C 的切线有两条,则k 的取值范围是( )A .RB .(,)3-∞C .(33-D .(3- 28.已知倾斜角为θ的直线l 与直线230x y +-=垂直,则cos2θ的值为 ( ) A .35 B .35- C .15 D .15- 29.我国古代太极图是一种优美的对称图.如果一个函数的图像能够将圆的面积和周长分成两个相等的部分,我们称这样的函数为圆的“太极函数”.下列命题中错误..命题的个数是( ) P 1:对于任意一个圆其对应的太极函数不唯一;P 2:如果一个函数是两个圆的太极函数,那么这两个圆为同心圆; P 3:圆22(1)(1)4x y -+-=的一个太极函数为32()33f x x x x =-+; P 4:圆的太极函数均是中心对称图形; P 5:奇函数都是太极函数; P 6:偶函数不可能是太极函数. A. 2B. 3C.4D.530.在平面直角坐标系xOy 中,动点P 的坐标满足方程4)3()1(22=-+-y x ,则点P 的轨迹经过()A. 第一、二象限B.第二、三象限C. 第三、四象限D.第一、四象限 31.直线1-=x y 的倾斜角是()A.6π B.4π C. 2π D.43π32.已知圆221:1C x y +=,圆222:(3)(4)9C x y -+-=,则圆C 1与圆C 2的位置关系是()A.内含B.外离C.相交D.相切 33.在平面直角坐标系xOy 中,已知直线l 的方程为2y x =+,则原点O 到直线l 的距离是A.12D.234.过点()1,1P -作圆()()()22:21C x t y t t R -+-+=∈的切线,切点分别为A,B ,则PA PB ⋅的最小值为A. 103B. 403C. 214D.3 35.已知函数()ln ,f x x x =若直线l 过点(0,-1),且与曲线()y f x =相切,则直线l 的方程为 A.10x y +-= B.10x y ++= C.10x y --= D.10x y -+= 36.圆C :222x y +=,点P 为直线136x y+=上的一个动点,过点P 向圆C 作切线,切点分别为A 、B ,则直线AB 过定点( ) A .11(,)23B .21(,)33C .11(,)32D .12(,)3337.过双曲线221916x y -=的右支上一点P ,分别向圆C 1:22(5)4x y ++=和圆C 2:222(5)x y r -+=(0r >)作切线,切点分别为M ,N ,若22PM PN -的最小值为58,则r =( )A .1B .2 38.已知l 1,l 2分别是函数()|ln |f x x =图像上不同的两点P 1,P 2处的切线,l 1,l 2分别与y 轴交于点A ,B ,且l 1与l 2垂直相交于点P ,则△ABP 的面积的取值范围是( ) A .(0,1) B .(0,2) C. (0,+∞) D .(1,+∞) 39.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则△ABP 面积的取值范围是A .[2,6]B .[4,8]C .D .40.在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 (A )1(B )2(C )3 (D )441.若圆1C :2222()(2)410x m y n m n -+-=++(0mn >)始终平分圆2C :22(1)(1)2x y +++=的周长,则12m n+的最小值为( ) A .3 B .92C.6 D .9 42.函数()2ln (0,)f x x x bx a b a =+-+>∈R 的图像在点()(),b f b 处的切线斜率的最小值是( )A .BC .1D .243.己知直线1:sin 10l x y α+-=,直线212:3cos 10,sin 2=l x y l l αα-+=⊥若,则 A .23B .35±C .35-D .3544.若直线b x y +=与曲线243x x y --=有公共点,则b 的取值范围是( ) A .]221,221[+- B .]3,221[- C .]221,1[+- D .]3,221[- 45.已知点)3,1(A ,)33,1(-=B ,则直线AB 的倾斜角是( ) A .60° B .30° C .120° D .150°二、填空题46.若直线20l x y +=:与圆()()22:10C x a y b -+-=相切,且圆心C 在直线l 的上方,则ab 的最大值为___________. 47.在四边形ABCD 中,︒=∠90ABC ,2==BC AB ,△ACD 为等边三角形,则△ABC 的外接圆与△ACD 的内切圆的公共弦长=___________. 48.设圆O 1,圆O 2半径都为1,且相外切,其切点为P .点A ,B 分别在圆O 1,圆O 2上,则PA PB ⋅的最大值为 ▲ .49.已知直线10ax y +-=与圆()()22:11C x y a -++=相交于A ,B 两点,且△ABC 为等腰直角三角形,则实数a 的值为 ※※ . 50.已知a ,b 为正数,若直线022=-+by ax 被圆422=+y x 截得的弦长为32,则221b a +的最大值是 .51.已知抛物线()20y ax a =>的准线为l ,若l 与圆()22:31C x y -+=a = . 52.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 . 53.已知双曲线22221(0,0)x y a b a b-=>>的渐近线被圆22650x y x +-+=截得的弦长为2,则该双曲线的离心率为 . 54.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点.设顶点(),P x y 的轨迹方程是()y f x =,则对函数()y f x =有下列判断:①函数()y f x =是偶函数;②对任意的x ∈R ,都有()()22f x f x +=-;③函数()y f x =在区间[2,3]上单调递减;④函数()y f x =的值域是[]0,1;⑤()2π1d 2f x x +=⎰.其中判断正确的序号是__________.55.在平面直角坐标系xOy 中,已知圆1:22=+y x O ,直线a x y l +=:,过直线l 上点P 作圆O 的切线P A ,PB ,切点分别为A ,B ,若存在点P 使得23=+,则实数a 的取值范围是 . 56.已知函数a x y +=ln 的图象与直线1+=x y 相切,则实数a 的值为 . 57.函数()ln 1f x x =+在点(1,1)处的切线方程为 . 58.已知直线:1l mx y -=。

必修2直线和圆复习题及答案

必修2直线和圆复习题及答案

1.直线方程的几种基本形式及适用条件:(1)点斜式: ,注意斜率k 是存在的.(2)斜截式: ,其中b 是直线l 在 上的截距.(3)两点式: (x 1≠x 2且y 1≠y 2),当方程变形为(y 2-y 1)(x -x 1)-(x 2-x 1)(y -y 1)=0时,对于一切情况都成立.(4)截距式: ,其中a ·b ≠0,a 为l 在x 轴上的截距,b 是l 在y 轴上的截距.(5)一般式: ,其中A 、B 不同时为0.1.判定两条直线的位置关系(1)两条直线的平行①假设l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,则l 1∥l 2⇔ 且 ,l 1与l 2重合⇔ .②当l 1,l 2都垂直于x 轴且不重合时,则有 .③假设l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1∥l 2⇔A 1B 2=A 2B 1且B 1C 2≠B 2C 1,l 1与l 2重合⇔A 1=λA 2,B 1=λB 2,C 1=(2)两条直线的垂直①假设l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,则l 1⊥l 2⇔ . ②假设两条直线中,一条斜率不存在,同时另一条斜率等于零,则两条直线 .③假设l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1⊥l 2⇔ .(3)直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2相交的条件是 . 直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0相交的条件是 .自测题1.过点M (-1,m ),N (m +1,4)的直线的斜斜角为45° ,则m 的值为2. 以下四个命题中真命题是( )A .经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示B .经过任意两个不同点P 1(x 1,y 1),P 2(x 2,y 2)的直线可以用方程(y -y 1)(x 2-x 1)-(x -x 1)(y 2-y 1)=0表示C .不过原点的直线都可以用x a +y b =1表示D .经过定点A (0,b )的直线都可以用方程y =kx +b 表示3.假设三点A (2,3),B (3,-2),C (12,m )共线,则m 的值是________.4.已知直线x +a 2y +6=0与直线(a -2)x +3ay +2a =0平行,则a 的值为________.5.已知两条直线y =ax -2和y =(a +2)x +1互相垂直,则a 等于________.例题例1.已知两点A (-1,2),B (m,3),求:(1)求直线AB 的斜率; (2)求直线AB 的方程;例2.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是______例3.已知直线:l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0.(1)试判断l 1与l 2是否平行;(2)l 1⊥l 2时,求a 的值例4.已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0.试确定m 、n 的值,使:(1)l 1与l 2相交于点P (m ,-1); (2)l 1∥l 2; (3)l 1⊥l 2,且l 1在y 轴上的截距为-1.练习题1.以下命题中,正确的选项是( )A .假设直线的斜率为tan α,则直线的倾斜角是αB .假设直线的倾斜角为α,则直线的斜率为tan αC .假设直线的倾斜角越大,则直线的斜率就越大D .直线的倾斜角α∈[0,π2)∪(π2,π)时,直线的斜率分别在这两个区间上单调递增2..假设直线l 1,l 2关于x 轴对称,l 1的斜率是-7,则l 2的斜率是( ) A.7B .-77 C.77 D .-7 3..两直线x m -y n =1与x n -y m =1的图像可能是图中的哪一个( )4..假设点A (a,0),B (0,b ),C (1,-1)(a >0,b <0)三点共线,则a -b 的最小值等于______5..过点M (1,-2)的直线与x 轴、y 轴分别交于P 、Q 两点,假设M 恰为线段PQ 的中点,则直线PQ 的方程为______6..已知直线l 的斜率为16,且和坐标轴围成面积为3的三角形,求直线l 的方程.7..已知点M 是直线l :3x -y +3=0与x 轴的交点,将直线l 绕点M 旋转30°,求所得到的直线l ′的方程.8..在△ABC 中,已知A (1,1),AC 边上的高线所在直线方程为x -2y =0,AB 边上的高线所在直线方程为3x +2y -3=0.求BC 边所在直线方程.9..设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ).(1)假设l 在两坐标轴上截距相等,求l 的方程;(2)假设l 不经过第二象限,求实数a 的取值范围.高中数学必修二直线和圆练习一、选择题1.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为〔 〕A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x2.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为〔 〕A .0B .8-C .2D .103.已知0,0ab bc <<,则直线ax by c +=通过〔 〕A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限 4.直线l 与两直线1y =和70x y --=分别交于,A B 两点,假设线段AB 的中点为 (1,1)M -,则直线l 的斜率为〔 〕A .23B .32C .32-D . 23-. 5. 圆C 1:x 2+y 2+4x-4y+7=0和圆C 2:x 2+y 2-4x-10y+13=0的公切线有( )条条条 D.以上均错6. 已知空间两点A(1,3,5)、B(-3,1,3),则线段AB 的中点坐标为( )A.(-1,2,4)B.(2,1,1)C.(1,0,4)D.(3,3,-1)7.假设直线(1+a)x+y+1=0与圆x 2+y 2-2x=0相切,则a 的值为( )、、8.已知圆C :(x-a)2+(y-2)2=4(a>0)及直线l :x-y+3=0,当直线l 被圆C 截得的弦长为32时,则a 等于( ) A.2 B.22- C.12- D.12+二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.经过点P(1,2)与圆x 2+y 2=1相切的直线方程为______________.3. 与两平行直线x+3y-5=0和x+3y-3=0相切,圆心在直线2x+y+3=0上的圆的方程是________.4. 已知圆x 2+y 2-4x+6y-12=0的内部有一点A(4,-2),则以A 为中点的弦所在的直线方程为______________________.三、解答题1.求经过点(2,2)A -并且和两个坐标轴围成的三角形的面积是1的直线方程。

第二章 直线和圆的方程【压轴题专项训练】(解析版)

第二章 直线和圆的方程【压轴题专项训练】(解析版)

第二章直线和圆的方程【压轴题专项训练】一、单选题1.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP△面积的取值范围是A .[]26,B .[]48,C .D .⎡⎣【答案】A 【详解】分析:先求出A ,B 两点坐标得到AB ,再计算圆心到直线距离,得到点P 到直线距离范围,由面积公式计算即可详解: 直线x y 20++=分别与x 轴,y 轴交于A ,B 两点()()A 2,0,B 0,2∴--,则AB =点P 在圆22x 22y -+=()上∴圆心为(2,0),则圆心到直线距离1d ==故点P 到直线x y 20++=的距离2d 的范围为则[]2212,62ABPSAB d ==∈故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题.2.已知点()()2,3,3,2A B ---,直线:10l mx y m +--=与线段AB 相交,则直线l 的斜率k 的取值范围是()A .34k ≥或4k ≤-B .344k -≤≤C .15k <-D .344k -≤≤【答案】A 【详解】()()110m x y -+-=,所以直线l 过定点()1,1P ,所以34PB k =,4PA k =-,直线在PB 到PA 之间,所以34k ≥或4k ≤-,故选A .3.两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若,a R b R ∈∈且0ab ≠,则2211a b +的最小值为A .1B .3C .19D .49【答案】A 【详解】试题分析:由题意得两圆22()4x a y ++=与22(2)1x y b y +-=相外切,即222149a b =+⇒+=,所以22222222221111(4)141()[5][5]1999a b a b a b a b b a ++=+=++≥+=,当且仅当22224=a b b a 时取等号,所以选A.考点:两圆位置关系,基本不等式求最值【易错点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.4.过圆22:1O x y +=内一点11,42⎛⎫⎪⎝⎭作直线交圆O 于A ,B 两点,过A ,B 分别作圆的切线交于点P ,则点P 的坐标满足方程()A .240x y +-=B .240x y -+=C .240x y --=D .240x y ++=【答案】A 【分析】设出P 点坐标,求解出以OP 为直径的圆M 的方程,将圆M 的方程与圆O 的方程作差可得公共弦AB 的方程,结合点11,42⎛⎫⎪⎝⎭在AB 上可得点P 的坐标满足的方程.【详解】设()00,P x y ,则以OP 为直径的圆()()00:0M x x x y y y -+-=,即22000x y x x y y +--=①因为,PA PB 是圆O 的切线,所以,OA PA OB PB ⊥⊥,所以A ,B 在圆M 上,所以AB 是圆O 与圆M 的公共弦,又因为圆22:1O x y +=②,所以由①-②得直线AB 的方程为:0010x x y y +-=,又点11,42⎛⎫⎪⎝⎭满足直线AB 方程,所以00111042x y +-=,即240x y +-=.故选:A.5.在平面直角坐标系中,已知点(),P a b 满足1a b +=,记d 为点P 到直线20x my --=的距离.当,,a b m 变化时,d 的最大值为()A .1B .2C .3D .4【答案】C 【分析】根据直线:20l x my --=过定点A 确定出对于给定的一点P ,d 取最大值时PA l ⊥且max d PA =,然后根据点P 为正方形上任意一点求解出max PA ,由此可知max d .【详解】直线:20l x my --=过定点()2,0A ,对于任意确定的点P ,当PA l ⊥时,此时d PA =,当PA 不垂直l 时,过点P 作PB l ⊥,此时d PB =,如图所示:因为PB AB ⊥,所以PA PB >,所以max d PA =,由上可知:当P 确定时,max d 即为PA ,且此时PA l ⊥;又因为P 在如图所示的正方形上运动,所以max max d PA =,当PA 取最大值时,P 点与()1,0M -重合,此时()213PA =--=,所以max 3d =,故选:C.【点睛】关键点点睛:解答本题的关键在于利用图像分析d 取最大值时PA 与直线l 的位置关系,通过位置关系的分析可将问题转化为点到点的距离问题,根据图像可直观求解.6.若实数,x y 满足x -=x 最大值是()A .4B .18C .20D .24【答案】C 【分析】当0x =时,解得0y =;当0x >,令t =22x t -+=,设()22x f t t =-+,()g t =()f t 和()g t 有公共点,观察图形可求解.【详解】当0x =时,解得0y =,符合题意;当0x >时,令t =0t ≥,又0x y -≥,则t ≤,即t ⎡∈⎣,则原方程可化为22xt -+=,设()22xf t t =-+,()g t =t ⎡∈⎣,则()f t 表示斜率为2-的直线,()g t则问题等价于()f t 和()g t有公共点,观察图形可知,=20x =,当直线过点(时,2x=4x =,因此,要使直线与圆有公共点,[]4,20x ∈,综上,[]{}4,200x ∈⋃,故x 的最大值为20.故选:C.【点睛】关键点睛:解题得关键是令t =()22xf t t =-+与圆有公共点.7.已知圆222:()(21)2C x m y m m -+-+=,有下列四个命题:①一定存在与所有圆都相切的直线;②有无数条直线与所有的圆都相交;③存在与所有圆都没有公共点的直线;④所有的圆都不过原点.其中正确的命题个数是A .1B .2C .3D .4【答案】C 【分析】①可先设出切线方程,利用圆心到直线距离等于半径建立等式求解.②③根据直线与两条切线的相对位置,可找出与圆相交和相离的直线④假设过原点,有解【详解】由圆222:()(21)2C x m y m m -+-+=知圆心坐标为(),21m m -,半径|r m =,圆心在直线21y x =-上,①假设存在直线与所有圆均相切,设为y kx b =+则(),21m m -到y kx b =+的距离为|r m =可得|r m ==直线与所有圆均相切,故切线应与m 无关,可取1b =-=解得2k =-±即(21y x -±=-所以,存在与所有圆均相切的直线,故①正确;过点()0,1-介于两相切直线之间的直线,均与所有圆相交,故②正确;过点()0,1-在两相切直线之外部区域的直线,与所有圆均没有交点,故③正确;假设过原点,则222()(21)2m m m -+-+=,得1m =或13m =,故④错误.故选:C 【点睛】处理直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.8.已知,x y R ∈)AB .3C.D .6【答案】C 【分析】将问题转化为“点()0,y 到点()2,1的距离加上点(),0x 到点()2,1的距离加上点(),0x 到点()0,y 的距离之和的最小值”,采用分类讨论的方法并画出辅助图示求解出最小值.【详解】()0,y 到点()2,1(),0x 到点()2,1的距离,表示点(),0x 到点()0,y 的距离,设()()()2,1,,0,0,A B x C y ,表示AB BC AC ++的长度和,显然当点(),0x 与点()0,y 在,x y 轴的非负半轴上,对应原式的结果更小,当()(),0,0,x y 均不在坐标原点,如下图所示:考虑到求解最小值,所以2,1x y ≤≤,设,B A 关于原点的对称点为,B A '',所以AB BC AC AC B C A B AB A B AA '''''''++=++≥+>==当()(),0,0,x y 其中一个在坐标原点,如下图所示:此时分别有2AC BC AB AC AC AC ++>+==2AC BC AB AB AB AB ++>+==,所以AC BC AB ++>当()(),0,0,x y 都在坐标原点时,AB AC BC ++==的最小值为故选:C.【点睛】(1)先将问题转化为点到点的距离之和问题;(2)画出图示,必要时借助点关于直线的对称点知识进行分析;(3)根据距离之和的最小值得到原式的最小值.二、多选题9.下列说法正确的是()A .直线21y ax a =-+必过定点(2,1)B .直线3240x y -+=在y 轴上的截距为-2C10y ++=的倾斜角为120°D .若直线l 沿x 轴向左平移3个单位长度,再沿y 轴向上平移2个单位长度后,回到原来的位置,则该直线l 的斜率为23-【答案】ACD 【分析】代入点的坐标判断A ,求出纵截距判断B ,求出斜率得倾斜角,判断C ,写出平移直线后的方程,与原方程一致,由此求得ba-,判断D .【详解】2211z a -+=,所以点(2,1)在直线上,A 正确;对3240x y -+=,令0x =,得2y =,直线3240x y -+=在y 轴上截距为2,B 错误;10y ++=的斜率为120︒,C 正确;设直线l 方程为0ax by c ++=,沿x 轴向左平移3个单位长度,再沿y 轴向上平移2个单位长度后得(3)(2)0a x b y c ++-+=,即320ax by c a b +++-=它就是0ax by c ++=,所以320a b -=,所以23a kb =-=-,D 正确.故选:ACD .【点睛】关键点点睛:本题考查直线方程,利用直线方程研究直线的性质是解析几何的基本方法.掌握直线的概念与特征是解题关键.10.已知点P 是直线3450x y -+=上的动点,定点()1,1Q ,则下列说法正确的是()A .线段PQ 的长度的最小值为45B .当PQ 最短时,直线PQ 的方程是3470x y +-=C .当PQ 最短时P 的坐标为1341,2525⎛⎫⎪⎝⎭D .线段PQ 的长度可能是23【答案】AC 【分析】当PQ 垂直直线3450x y -+=时,PQ 最短,即可判断A 、D ,设出P 坐标,根据最短使PQ 与直线垂直求解P 坐标,即可判断C ,由两点式求出直线方程,即可判断B .【详解】解:当PQ 垂直直线3450x y -+=时,PQ 最短,Q 到直线的距离为223454534-+=+,故A 正确;故PQ 的长度范围为4,5⎡⎫+∞⎪⎢⎣⎭,2435<,故D 错误;设35,4m P m +⎛⎫ ⎪⎝⎭,则3514413PQ m k m +-==--,解得1325m =,故P 为1341,2525⎛⎫⎪⎝⎭,故C 正确;此时直线PQ 的方程是114113112525y x --=--,即4370x y +-=,故B 错误,故选:AC .11.(2021•佛山模拟)已知圆2221:C x y r +=,圆2222:()()C x a y b r -+-=,(0r >,且a ,b 不同时为0)交于不同的两点1(A x ,1)y ,2(B x ,2)y ,下列结论正确的是A .221122ax by a b +=+B .1212()()0a x x b y y -+-=C .12x x a +=,12y y b+=D .M ,N 为圆2C 上的两动点,且||3MN r =,则||OM ON +的最大值为22a b r ++【答案】ABC【解析】根据题意,圆2221:C x y r +=和圆2222:(?)(?)(0)C x a y b r r +=>交于不同的两点A ,B ,∴两圆方程相减可得直线AB 的方程为:22220a b ax by +--=,即22220ax by a b +--=,分别把点1(A x ,1)y ,2(B x ,2)y 两点坐标代入22220ax by a b +--=得:221122??0ax by a b +=,222222??0ax by a b +=,所以选项A 正确,上面两式相减得:12122()2()0a x x b y y -+-=,即1212()()0a x x b y y -+-=,所以选项B 正确,两圆的半径相等,∴由圆的性质可知,线段AB 与线段12C C 互相平分,则有120222x x a a++==,12022y y bb ++==,变形可得12x x a +=,12y y b +=,C 正确;M ,N 为圆2C 上的两动点,且||3MN r =,设MN 的中点为D ,则2C D MN ⊥,所以22231()22C D r r r =-=,所以MN 的中点D 的轨迹为以2(,)C a b 为圆心,12r 为半径的圆,所以MN 的中点D 的轨迹方程为2221()()4x a y b r -+-=,又||2||OM ON OD +=,所以||OM ON +的最大值为222212()22a b r a b r +=+,故D 错误.故选ABC .三、填空题12.已知C 为圆:()2211x y -+=上一动点,点B 坐标为(3,点A 坐标为()4,0,则3AC BC +的最小值为_________.【答案】27【分析】设圆心为M ,由圆的方程得到圆心和半径,取4,03D ⎛⎫⎪⎝⎭,可证得CMDAMC ,得到3AC CD =,可知()333AC BC CD BC BD +=+≥,利用两点间距离公式可求得最小值.【详解】设圆:()2211x y -+=的圆心为M ,则()1,0M ,半径1MC =,取4,03D ⎛⎫ ⎪⎝⎭,13MD MC MCMA==,CMD CMA ∠=∠,CMD AMC ∴,3AC CD ∴=,()333AC BC CD BC BD ∴+=+≥(当且仅当,,B C D 三点共线且C 在线段BD 上时取等号),BD =,3AC BC ∴+≥即3AC BC +的最小值为故答案为:【点睛】关键点点睛:本题考查圆部分的最值问题的求解,解题关键是能够利用三角形相似将问题转化为三角形两边之和大于第三边的问题,由此确定三点共线时取得最小值.13.已知函数()f x ax b =--,其中a ,b R ∈,()f x 的最大值为(,)M a b ,则(,)M a b 的最小值为___________.【答案】12【分析】数形结合分析可知(,)M a b 的最小值为()[]0,1g x x =∈与()h x ax b x =+=-纵向距离,从而可以求出结果.【详解】函数()(),f x ax b M a b =-≤,即四分之一圆[]0,1y x =∈上的点到直线1x y +=上的最大距离为12-,此时圆上的点记为P ,如图:只有过PN 的中点且平行于直线1x y +=的直线才满足条件,所以当211,2a b =-=时,(,)M a b 的最小值为()[]0,1g x x =∈与()212h x ax b x +=+=-的纵向距离,即(,)M a b 的最小值为1⎛- ⎝⎭故答案为:212.【点睛】处理直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.14.已知直线()()()11410a x a y a -++-+=(其中a 为实数)过定点P ,点Q 在函数1y x x=+的图像上,则PQ 连线的斜率的取值范围是___________.【答案】[3)-+∞,【分析】把直线方程整理成a 的多项式,根据恒等式的知识求出定点P 的坐标,【详解】由()()()11410a x a y a -++-+=得(4)40x y a x y -+-++-=∴4040x y x y -+-=⎧⎨+-=⎩,解得0,4x y =⎧⎨=⎩,∴(0,4)P 。

直线与圆的练习题

直线与圆的练习题

直线与圆的练习题一、选择题1. 已知直线l与圆O相交于A、B两点,圆的半径为r,线段AB的长度为d,若d=r,则直线l与圆O的位置关系是?A. 相切B. 相交C. 相离D. 包含2. 直线y=kx+b与圆x^2+y^2=r^2相交,圆心到直线的距离d满足什么条件时,直线与圆相交?A. d<rB. d≤rC. d>rD. d≥r3. 圆的方程为(x-a)^2+(y-b)^2=r^2,直线的方程为Ax+By+C=0,若直线经过圆心(a,b),则A和B的关系是?A. A=BB. A=-BC. A+B=0D. A-B=0二、填空题4. 若直线2x-3y+6=0与圆x^2+y^2=9相交,求圆心到直线的距离d。

5. 已知圆的方程为(x-1)^2+(y+2)^2=25,直线方程为3x-4y+12=0,求直线与圆的交点坐标。

三、解答题6. 已知圆的半径为5,圆心在(1,1),求过点(2,3)的直线方程,使得该直线与圆相切。

7. 已知直线l1: x-2y-1=0与l2: 3x+y+2=0相交于点P,求点P的坐标,并判断点P与圆x^2+y^2=10的位置关系。

四、证明题8. 证明:如果两条直线都与一个圆相切,那么这两条直线的斜率互为相反数。

9. 已知圆的方程为x^2+y^2=25,直线l的方程为y=x+3,求证直线l 与圆相切。

五、计算题10. 已知圆的方程为(x-3)^2+(y+1)^2=9,直线l的方程为2x-y-5=0。

求直线l被圆所截的弦长。

11. 已知圆的方程为x^2+y^2=r^2,直线l的方程为Ax+By+C=0,若直线l与圆相交于A、B两点,且AB的中点为M,求M的坐标。

六、综合题12. 在平面直角坐标系中,圆C的方程为(x-3)^2+(y+2)^2=20,直线l 的方程为2x-3y-6=0。

求直线l与圆C的交点A、B的坐标,并计算AB 的长度。

13. 已知圆的方程为x^2+y^2=25,直线l的方程为y=-x+5。

高考数学复习-直线与圆练习试题、参考答案

高考数学复习-直线与圆练习试题、参考答案

高考数学复习-直线与圆练习试题第Ⅰ卷 (选择题 共40分)一、选择题(10×4′=40′)1.直线l 与直线y =1、x-y -7=0分别交于P 、Q 两点,线段PQ 的中点为(1,-1),则直线l 的斜率为( )A.23 B.32 C.-32D.-232.点P 在直线2x +y +10=0上,P A 、PB 与圆422=+y x 分别相切于A 、B 两点,则四边形P AOB 面积的最小值为 ( )A.24B.16C.8D.43.已知直线1l :y =x ,2l :ax -y =0,其中a 为实数,当这两直线的夹角θ∈(0,12π)时,a 的取值范围为 ( )A.(0,1)B.(33,3) C.(33,1)∪(1,3) D.(1,3) 4.设a 、b 、k 、p 分别表示同一直线的横截距、纵截距、斜率和原点到直线的距离,则有( ) A.)1(2222k p k a += B.k =abC.b a 11+=pD.a =-kb5.已知直线x +3y -7=0,kx-y -2=0和x 轴、y 轴围成四边形有外接圆,则实数k 等于 ( ) A.-3 B.3 C.-6 D.66.若圆222r y x =+(r >0)上恰有相异两点到直线4x -3y +25=0的距离等于1,则r 的取值范围是( ) A.[4,6] B.[4,6) C.(4,6] D.(4,6)7.直线1l :0=++c by ax ,2l :0=++p ny mx ,则bnam=-1是1l ⊥2l 的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分又不必要条件8.过圆422=+y x 外一点P(4,-1)引圆的两条切线,则经过两切点的直线方程为 ( ) A.4x -y -4=0 B.4x +y -4=0 C.4x +y +4=0 D.4x -y +4=09.倾斜角为60°,且过原点的直线被圆222)()(r b y a x =-+-(r >0)截得弦长恰好等于圆的半径,则a 、b 、r 满足的条件是 ( )A.)3(|3|3a b b a r ≠-=B.)3(|3|23a b b a r ≠-=C.)3(|3|3a b b a r ≠+=D.)3(|3|23a b b a r ≠-=10.直线y =kx +1与圆0922=--++y kx y x 的两个交点关于y 轴对称,则k 为 ( )A.-1B.0C.1D.任何实数第Ⅱ卷 (非选择题 共60分)二、填空题(4×3′=12′)11.若点P (a ,b )与点Q (b +1,a -1)关于直线l 对称,则直线l 的方程是 .12.已知圆16)1()2(22=-+-y x 的一条直径通过直线x -2y -3=0被圆截弦的中点,则该直径所在直线的方程为 .13.关于x 的方程kx +1=21x -有且只有一个实根,则实数k 的取值范围是 . 14.经过点P (-2,4),且以两圆0622=-+x y x 和422=+y x 的公共弦为一条弦的圆的方程是 .三、解答题(6×8′=48′)15.若直线1l :x+y+a =0,2l :x+ay +1=0,3l :ax+y +1=0能围成三角形,求a 的取值范围.16.已知点P 是直线l 上的一点,将直线l 绕点P 逆时针方向旋转α(0<α<2π)所得直线1l 的方程为3x -y -4=0,若继续绕点P 逆时针方向旋转α-π2,则得2l 的方程为x +2y +1=0,试求直线l 的方程.17.设P 是圆M :1)5()5(22=-+-y x 上的动点,它关于A (9,0)的对称点为Q ,把P 绕原点依逆时针方向旋转90°到点S ,求|SQ |的最值.18.已知点A (3,0),点P 在圆122=+y x 的上半圆周上,∠AOP 的平分线交P A 于Q ,求点Q 的轨迹方程.19.如图,已知⊙A :425)2(22=++y x ,⊙B :41)2(22=+-y x ,动圆P 与⊙A 、⊙B 都外切. (1)求动圆圆心P 的轨迹方程,并说明轨迹是什么曲线;(2)若直线y=kx +1与(1)中的曲线有两个不同的交点1P 、2P ,求k 的取值范围; (3)若直线l 垂直平分(2)中的弦21P P ,求l 在y 轴上的截距b 的取值范围.20.已知圆C :044222=-+-+y x y x ,是否存在斜率为1的直线l ,使得l 被圆C 截得弦AB 为直径的圆过原点?若存在,求出l 的方程;若不存在,说明理由.参考答案1.C 方法1 设直线l 为y=kx+b ,分别与y =1,x-y -7=0联立解得P (-b k ,1),Q (k b -+17,kb k -+17).由PQ 中点为(1,-1),∴217=-++-k b b k ,且1+kb k -+17=-2,∴k =-32,故选C. 方法2 设P (a ,1),Q (b +7,b ),因PQ 的中点为(1,-1),∴⎪⎪⎩⎪⎪⎨⎧-=+=++121127b b a ,解得⎩⎨⎧-=-=32b a ,故P 为(-2,1),Q 为(4,-3),∴3224131-=+--==PQ k k ,故选C. 2.C 如图,PAOB S =22||||2||2||||21232AO PO PA OA PA PAO -==⋅⋅=⋅∆=24||2-PO . 要求PAOB S 的最小值,只需求|PO |的最小值即可.5212|10002|||22min =+++⨯=PO ,∴8)(min =PAOB S ,故选C.3.C 如图,设直线y=ax 的倾斜角为α, 则α≠4π,∴|α-4π|<12π, ∴6π<α<3π,且α≠4π.a =tan α∈(33,1)∪(1,3).4.A 应用点到直线的距离公式,选A.5.B 如图,设围成四边形为OABC ,因OABC 有外接圆,且∠AOC =90°,故∠ABC =90°. ∴两条直线x +3y -7=0,kx -y -2=0互相垂直,(-31)·k =-1,即k =3,故选B.说明 运用圆的几何性质是解决圆的问题的有效途径.6.D 如图,设l :4x -3y +25=0,与l 平行且距离等于1的直线为4x -3y +b =0. ∴2015|25|=⇒=-b b 或b =30.第2题图解第3题图解第5题图解1l :4x -3y +20=0,2l :4x -3y +30=0.圆心(0,0)到1l 和2l 的距离分别为5201=d =4,5302=d =6. 故满足条件的r 取值范围(4,6).实际上,圆222r y x =+没有点到直线4x -3y +25=0的距离等于1, 则0<r <4,若圆上只有一点到直线4x -3y +25=0的距离等于1,则r =4,类似可求出圆上有三点、四点到直线的距离等于1 的r 的取值范围.7.A 由1-=bnam,可得1l ⊥2l ,∴选A. 8.A 方法1 设切点为A 、B ,则AB ⊥OP , ∵410401-=---=OP k ,∴4=AB k .故排除B 、C. 又由图可知,AB 在y 轴的截距为负,故排除D,所以选A.方法2 设A (1x ,1y ),B (2x ,2y ), 由AP ⊥OA 可得AP k ·OA k =-1, 即1411111-=⋅-+x y x y .∴04112121=+-+y x y x ,又42121=+y x , ∴04411=++-y x .同理可得04422=++-y x ,∴AB 直线为-4x +y +4=0,即4x -y -4=0.方法3 设A (1x ,1y ),B (2x ,2y ),则切线P A 为411=+y y x x ,422=+y y x x . ∴4411=-y x ,4422=-y x ,∴A 、B 在直线4x -y -4=0上.另:此题可推广到一般结论,若P (0x ,0y )为圆222r y x =+ (r >0)外一点,过P 引圆的两条切线,则经过两切点的直线方程为200r y y x x =+.9.A 直线方程为x y 3=,则圆心(a ,b )到直线3x -y =0的距离为d =2|3|b a -,又因截得弦长恰好等于圆的半径,故d =23r ,∴|3a -b |=3r ,故选A. 10.B 方法1 将y =kx +1代入922=-++y kx y x 中有092)1(22=-++kx x k . 设交点为 A (1x ,1y ),B (2x ,2y ),∵A 、B 关于y 轴对称,∴021=+x x , ∴k =0.故选B.方法2 因直线与圆的两个交点A (1x ,1y ),B (2x ,2y )关于y 轴对称 ∴021=+x x ,21y y =,故圆心在y 轴上,∴k =0,故选B.11.x-y -1=0 P 、Q 关于直线l 对称,故1k k PQ ⋅=-1且PQ 中点在l 上, ∴11111=---+-=-=aa bb k k PQ,又PQ 中点为(21++b a ,21-+a b ),第6题图解第8题图解∴l 的方程为y -21-+a b =x -21++b a ,即x-y -1=0.此题也可将a ,b 赋特殊值去求直线l .12.2x +y -3=0 由圆的几何意义知该直径与直线x -2y -3=0垂直.故该直径方程为y +1=-2(x -2),即2x +y -3=0.13.{k |k >1或k =0或k <-1} 画出函数y =kx +1、y =21x -的图象,两曲线相切及只有一个交点时如图所示.14.08622=-++x y x 设圆的方程为0)4(62222=-+λ+-+y x x y x 经过P (-2,4), ∴0]44)2[()2(64)2(2222=-+-λ+--+-, ∴λ=-2,∴所求的圆的方程为08622=-++x y x .15.解 由1l 、2l 相交,需1·a -1·1≠0,得a ≠1,此时解方程组⎩⎨⎧=++=++010ay x a y x ,可解得⎩⎨⎧=-=11y x 即1l 、2l 的交点为(-1-a ,1),由1l 、3l 相交,需1·1-1·a ≠0,∴a ≠1,由2l ,3l 相交,需1·1-a ·a ≠0,∴a ≠±1,又(-1-a ,1)∉3l , ∴a ·(-1-a )+1+1≠0,得a ≠1且a ≠-2,综上所述,a ∈R 且a ≠±1且a ≠-2,能保证三交点(-1-a ,1),(1,-1-a )、(-1-a ,-1+a +2a )互不重合,所以所求a 的范围为a ∈(-∞,-2)∪(-2,-1)∪(-1,1)∪(1,+∞).16.解 由已知条件知P 为直线3x -y -4=0和直线x +2y +1=0的交点,联立两直线方程得⎩⎨⎧=++=--012043y x y x ,∴⎩⎨⎧-==11y x .∴P 点为(1,-1). 又l 与2l 垂直,故l 的方程为y +1=2(x -1),即l 的方程为2x -y -3=0. 17.解 设P (x ,y ),则Q (18-x ,-y ),记P 点对应的复数为x +y i, 则S 点对应的复数为:(x +y i )·i=-y +x i,即S (-y ,x ),∴|SQ |=xy y x xy y x y x x y y x 22363618)()18(2222222+++-+-++=--++- =2222)9()9(2818118182++-⋅=+++-+⋅y x y x y x其中22)9()9(++-y x 可以看作是点P 到定点B (9,-9)的距离,其最大值为|MB |+r =253+1,最小值为|MB |-r =253-1,则|SQ |的最大值为2106+2,|SQ |的最小值为2106-2.第13题图解18.解 方法1 如图,设P (0x ,0y )(0y >0),Q (x ,y ). ∵OQ 为∠AOP 的平分线,∴31||||==OA OP QA PQ , ∴Q 分P A 的比为31.∴⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=000043311031)1(43311313y y y x x x 即⎪⎪⎩⎪⎪⎨⎧=-=y y x x 3413400.又因12020=+y x ,且0y >0,∴1916)43(91622=+-y x . ∴Q 的轨迹方程为169)43(22=+-y x (y >0). 方法2 设∠AOP =α,α∈(0,π),则P (cos α,sin α),∠AOQ =2α, 则OQ 直线方程为y =x ·tan2α=kx ① 3cos sin -αα=PA k ,∴直线P A 方程为y =3cos sin -αα(x -3) ②由Q 满足①②且k =tan2α. 由②得y =12)3()3(311122222+--=-⋅-+-+k x k x k k k k.消去k 有y =12)3(22+--x y x x y,∴02322=-+x y x ,由图知y >0. 故所求Q 点轨迹方程为02322=-+x y x (y >0). 说明 上述两种方程为求轨迹的基本方法、相关点及参数法. 19.解 (1)如图,设⊙P 的圆心P (x ,y ),半径为R , 由题设,有|P A |=R +25,|PB |=R +21,∴|P A |-|PB |=2. ∴⊙P 的圆心轨迹是实轴长为2,焦点在x 轴上,且焦距长 为4的双曲线的右支,其方程为1322=-y x (x >0).第18题图解第19题图解(2)由方程组⎪⎩⎪⎨⎧>=-+=)0(13122x y x kx y ,有042)3(22=---kx x k (x >0). ①因为直线与双曲线有两个不同交点,∴⎪⎪⎩⎪⎪⎨⎧≠->⋅>+>∆030022121k x x x x .从而,有⎪⎪⎩⎪⎪⎨⎧><-<3034222k k kk ⇒⎪⎩⎪⎨⎧>-<<<-<<<-3330322k k k k k 或或. ∴-2<k <-3. (3)设21P P 的中点为M (M x 、M y ),则M x =22132k kx x -=+. 又M 在y=kx +1上,∴M y =k M x +1=233k-.∴M (23k k-,233k -).∴21P P 的垂直平分线l 的方程为:y-M y =-k 1(x -M x ),即y -233k -=-k 1(x -23kk -). 令x =0,得截距b =234k-,k ∈(-2,-3),又-2<k <-3,∴-1<3-2k <0.∴b <-4.20.解 假设存在这样的直线,设直线l 方程为y=x+b .方法1 将y=x+b 代入圆的方程有0222)1(22=+-+++b b x b x .由题设知OA ⊥OB ,设A (1x ,1y ),B (2x ,2y ),∴1x 2x +1y 2y =0.又1y 2y =(1x +b )(2x +b )=1x 2x +b (1x +2x )+2b ,∴21x 2x +b (1x +2x )+2b =0. 又∵1x +2x =-(b +1),1x 2x =2b -2+22b ,∴2(22b +2b -2)-b (b +1)+ 2b =0.∴b =1或b =-4.此时Δ=0)22(4)1(2>--+b b , ∴存在这样的直线l :y=x +1或y=x -4满足题设.方法2 设过圆C 与l 的交点的圆系D 为.0)(44222=+-λ+-+-+b y x y x y x 即04)4()2(22=-λ+λ-+-λ++b y x y x . 圆心为(-22-λ,-24λ-),在直线y=x+b 上,∴-24λ-=-22-λ+b ,即λ=3+b . ①又圆D 过原点,∴b λ-4=0. ② 由①②得,0432=-+b b ,即b =1或b =-4.此时圆D 的方程存在.故存在直线y=x +1或y=x -4.。

直线和圆综合练习(辅导班使用)(解析版)

直线和圆综合练习(辅导班使用)(解析版)

直线和圆综合和练习考点一:倾斜角与斜率1.(2019·东北三校联考)经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y =( B )A .-1B .-3C .0D .2[解析] 由2y +1-(-3)4-2=2y +42=y +2,得y +2=tan 3π4=-1,∴y =-3.2.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( D )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2[解析] 直线l 1的倾斜角α1为钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D . 3.直线x +3y +1=0的倾斜角是( D )A .π6B .π3C .2π3D .5π6[解析] 由直线的方程得直线的斜率为k =-33,设倾斜角为α,则tan α=-33,所以α=5π6.考点二:直线方程4.过点M (1,-2)的直线与x 轴、y 轴分别交于P 、Q 两点,若M 恰为线段PQ 的中点,则直线PQ 的方程为( B )A .2x +y =0B .2x -y -4=0C .x +2y +3=0D .x -2y -5=0[解析] 设P (x 0,0),Q (0,y 0), ∵M (1,-2)为线段PQ 中点, ∴x 0=2,y 0=-4,∴直线PQ 的方程为x 2+y-4=1,即2x -y -4=0.5.过点A (-1,-3),斜率是直线y =3x 的斜率的-14的直线方程为__3x +4y +15=0___.[解析] 设所求直线的斜率为k ,依题意k =-14×3=-34.又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.6.(2019·山东烟台模拟)直线3x -4y +k =0在两坐标轴上的截距之和为2,则实数k =__-24___.[解析] 令x =0,得y =k 4;令y =0,得x =-k3.则有k 4-k3=2,所以k =-24.考点三:两直线位置关系7.过点(1,0)且与直线x -2y -2=0平行的直线方程是( A )A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=0[解析] (1)设直线方程为x -2y +c =0,又经过点(1,0),故c =-1,所求方程为x -2y -1=0.8.(2019·成都模拟)直线mx +4y -2=0与直线2x -5y +n =0垂直,垂足为(1,p ),则n 的值为( A )A .-12B .-2C .0D .10[解析](2)由2m -20=0,得m =10.由垂足(1,p )在直线mx +4y -2=0上得10+4p -2=0,∴p =-2.又垂足(1,-2)在直线2x -5y +n =0上,则解得n =-12.9.“m =3”是“直线l 1:2(m +1)x +(m -3)y +7-5m =0与直线l 2:(m -3)x +2y -5=0垂直”的( A )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[解析]由l 1⊥l 2,得2(m +1)(m -3)+2(m -3)=0,∴m =3或m =-2,∴m =3是l 1⊥l 2的充分不必要条件.10.(2019·宁夏模拟)若直线l 1:x +2my -1=0与l 2:(3m -1)x -my -1=0平行,则实数m 的值为__0或16___.[解析]因为直线l 1:x +2my -1=0与l 2:(3m -1)x -my -1=0平行,则斜率相等或者斜率不存在,-12m =3m -1m 或者m =0,∴m =16或0.11.(2019·四川资阳模拟)已知直线l 1:ax +(a +2)y +2=0与l 2:x +ax +1=0平行,则实数a 的值为( D )A .-1或2B .0或2C .2D .-1[解析] 由题意得a ·a -(a +2)=0,即a 2-a -2=0,解得a =2或-1. 经过验证可得,a =2时两条直线重合,舍去. ∴a =-1,故选D .12.已知直线l 1:x +ay -2=0,l 2:x -ay -1=0,则“a =-1”是“l 1⊥l 2”的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] 由l 1⊥l 2,得1×1+a ×(-a )=0,解得a =-1或a =1,则“a =-1”是“l 1⊥l 2”的充分不必要条件,故选A . 考点四:距离公式13.已知两点A (3,2)和B (-1,4)到直线mx +y +3=0距离相等,则m 的值为( A )A .-6或12B .-12或1C .-12或12D .0或12[解析] (1)直线mx +y +3=0与直线AB 平行或直线mx +y +3=0过AB 中点,∴-m =4-2-1-3=-12,即m =12;AB 中点(1,3),∴m +3+3=0即m =-6,故选A .14.若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c 的值为__2或-6___.[解析](2)由题意,得63=a -2≠c-1,∴a =-4,c ≠-2.则6x +ay +c =0可化为3x -2y +c2=0.∴21313=|c 2+1|13,解得c =2或-6.15.(2019·启东模拟)不论m 为何值时,直线(m -1)x +(2m -1)y =m -5恒过定点( D )A .(1,-12)B .(-2,0)C .(2,3)D .(9,-4)[解析] 由(m -1)x +(2m -1)y =m -5,得(x +2y -1)m -(x +y -5)=0,由⎩⎪⎨⎪⎧x +2y -1=0,x +y -5=0,得定点坐标为(9,-4),故选D . 考点五:圆方程16.圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( A )A .-43B .-34C .3D .2[解析] x 2+y 2-2x -8y +13=0可化为(x -1)2+(y -4)2=4,∴圆心为(1,4).由1=|a +3|1+a 2,得a =-43.17.(2019·贵州贵阳)圆心在y 轴上且通过点(3,1)的圆与x 轴相切,则该圆的方程是( B )A .x 2+y 2+10y =0B .x 2+y 2-10y =0C .x 2+y 2+10x =0D .x 2+y 2-10x =0[解析] 设圆心为(0,b ),半径为r ,由圆与x 轴相切,得r =|b |,故圆的方程为x 2+(y -b )2=b 2.∵点(3,1)在圆上,∴9+(1-b )2=b 2,解得b =5.∴圆的方程为x 2+y 2-10y =0. 18.已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( B )A .(x +1)2+(y -1)2=2B .(x -1)2+(y +1)2=2C .(x -1)2+(y -1)2=2D .(x +1)2+(y +1)2=2[解析] (1)设出圆心坐标,根据该圆与两条直线都相切列方程即可. 设圆心坐标为(a ,-a ), 则|a -(-a )|2=|a -(-a )-4|2即|a |=|a -2|,解得a =1, 故圆心坐标为(1,-1),半径r =22=2,故圆C 的方程为(x -1)2+(y +1)2=2.19.(2019·浙江模拟)以点(2,-1)为圆心且与直线3x -4y +5=0相切的圆的方程为( C )A .(x -2)2+(y +1)2=3B .(x +2)2+(y -1)2=3C .(x -2)2+(y +1)2=9D .(x +2)2+(y -1)2=9(2)因为圆心(2,-1)到直线3x -4y +5=0的距离d =|6+4+5|5=3,所以圆的半径为3,即圆的方程为(x -2)2+(y +1)2=9.故选C .20.(2018·天津高考)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__x 2+y 2-2x =0___.(3)设圆的一般方程为x 2+y 2+Dx +Ey +F =0.分别代入(0,0),(1,1),(2,0)三点, 得⎩⎪⎨⎪⎧F =0,1+1+D +E +F =0,4+2D +F =0,解得⎩⎪⎨⎪⎧D =-2,E =0,F =0.故圆的方程为x 2+y 2-2x =0.21.已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为__(x -2)2+y 2=9___.(4)设圆C 的圆心坐标为(a,0),a >0,半径为r ,则455=|2a |22+12.∵a >0,∴a =2.∴r 2=(2-0)2+(0-5)2=9,∴圆C 的方程为(x -2)2+y 2=9.22.(2019·广州模拟)已知圆C :x 2+y 2+kx +2y =-k 2,当圆C 的面积取最大值时,圆心C 的坐标为( B )A .(0,1)B .(0,-1)C .(1,0)D .(-1,0)[解析] 圆C 的方程可化为(x +k 2)2+(y +1)2=-34k 2+1,所以当k =0时圆C 的面积最大.故圆心C 的坐标为(0,-1),选B .23.(2019·江西新余)若圆C 与y 轴相切于点P (0,1),与x 轴的正半轴交于A ,B 两点,且|AB |=2,则圆C 的标准方程是( C )A .(x +2)2+(y +1)2=2B .(x +1)2+(y +2)2=2C .(x -2)2+(y -1)2=2D .(x -1)2+(y -2)2=2[解析] 设线段AB 的中点为D ,则|AD |=|CD |=1,∴r =|AC |=2=|CP |,故C (2,1),故圆C 的标准方程是(x -2)2+(y -1)2=2,故选C .24.(2019·汕头模拟)直线l :x -y +1=0与圆C :x 2+y 2-4x -2y +1=0的位置关系是( D )A .相离B .相切C .相交且过圆心D .相交但不过圆心[解析] 圆的方程化为(x -2)2+(y -1)2=4,圆心为(2,1),半径为2,圆心到直线l 的距离为|2-1+1|2=2<2,所以直线l 与圆相交.又圆心不在直线l 上,所以直线不过圆心.故选D .25.(2019·浙江镇海模拟)若无论实数a 取何值时,直线ax +y +a +1=0与圆x 2+y 2-2x -2y +b =0都相交,则实数b 的取值范围为( C )A .(-∞,2)B .(2,+∞)C .(-∞,-6)D .(-6,+∞)[解析] ∵x 2+y 2-2x -2y +b =0表示圆,∴8-4b >0,即b <2.∵直线ax +y +a +1=0过定点(-1,-1),∴点(-1,-1)在圆x 2+y 2-2x -2y +b =0的内部,∴6+b <0,解得b <-6,∴b 的取值范围是(-∞,-6).故选C .26.(2019·怀柔二模)若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( C )A .21B .19C .9D .-11[解析] 圆C 1的圆心为C 1(0,0),半径r 1=1,因为圆C 2的方程可化为(x -3)2+(y -4)2=25-m ,所以圆C 2的圆心为C 2(3,4),半径r 2=25-m (m <25).从而|C 1C 2|=32+42=5,由两圆外切得|C 1C 2|=r 1+r 2,即1+25-m =5,解得m =9,故选C .27.(2019·西安八校联考)若过点A (3,0)的直线l 与曲线(x -1)2+y 2=1有公共点,则直线l 的斜率的取值范围为( D )A .(-3,3)B .[-3,3]C .(-33,33) D .[-33,33] [解析] (1)数形结合可知,直线l 的斜率存在,设直线l 的方程为y =k (x -3),则圆心(1,0)到直线y =k (x -3)的距离应小于等于半径1,即|2k |1+k2≤1,解得-33≤k ≤33,故选D . 28.(2019·深圳模拟)已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( B )A .相切B .相交C .相离D .不确定(3)因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b 2=1a 2+b 2<1,故选B .29.直线4x -3y =0与圆(x -1)2+(y -3)2=10相交所得的弦长为( A )A .6B .3C .62D .32[解析] 假设直线4x -3y =0与圆(x -1)2+(y -3)2=10相交所得的弦为AB .∵圆的半径r =10,圆心到直线的距离d =5(-3)2+42=1,∴弦长|AB |=2×r 2-d 2=210-1=2×3=6,故选A .30.(2019·北京海淀区期末)已知直线x -y +m =0与圆O :x 2+y 2=1相交于A ,B 两点,且△AOB 为正三角形,则实数m 的值为( D )A .32B .62 C .32或-32D .62或-62[解析] 根据题意,得点O 到直线x -y +m =0的距离为32,所以32=|m |2,所以|m |=62,所以m =±62. 31.若圆x 2+y 2+4x -2y -a 2=0截直线x +y +5=0所得的弦长为2,则实数a 的值为( A )A .±2B .-2C .±4D .4[解析] (1)圆x 2+y 2+4x -2y -a 2=0化为标准方程(x +2)2+(y -1)2=a 2+5,则圆心(-2,1)到直线x +y +5=0的距离d =42=22,则弦长2a 2+5-8=2,化简得a 2=4,故a =±2.考点八:切线问题32.圆x 2+y 2-4x =0在点P (1,3)处的切线方程为( D )A .x +3y -2=0B .x +3y -4=0C .x -2y +4=0D .x -3y +2=0[解析] 圆的方程为(x -2)2+y 2=4,圆心坐标为(2,0),半径为2,点P 在圆上,设切线方程为y -3=k (x -1),即kx -y -k +3=0,∴|2k -k +3|k 2+1=2,解得k =33.∴切线方程为y -3=33(x -1),即x -3y +2=0. 33.过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( C )A .3x +4y -4=0B .4x -3y +4=0C .x =2或4x -3y +4=0D .y =4或3x +4y -4=0[解析] (1)当斜率不存在时,x =2与圆相切;当斜率存在时,设切线方程为y -4=k (x -2),即kx -y +4-2k =0,则|k -1+4-2k |k 2+1=1,解得k =43,则切线方程为4x -3y +4=0,故切线方程为x =2或4x -3y +4=0.34.由直线y =x +1上的动点P 向圆C :(x -3)2+y 2=1引切线,则切线长的最小值为( C )A .1B .22C .7D .3(2)如图:切线长|PM |=|PC |2-1,显然当|PC |为C 到直线y =x +1的距离即3+12=22时|PM |最小为7,故选C .35.已知过点P (2,2)的直线与圆(x -1)2+y 2=5相切,且与直线ax -y +1=0垂直,则a 等于( C )A .-12B .1C .2D .12[解析] (1)圆心为C (1,0),由于P (2,2)在圆(x -1)2+y 2=5上,∴P 为切点,CP 与过点P 的切线垂直.∴k CP =2-02-1=2.又过点P 的切线与直线ax -y +1=0垂直,∴a =k CP =2,选C .36.(2019·太原一模)已知在圆x 2+y 2-4x +2y =0内,过点E (1,0)的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为( D )A .35B .65C .415D .215[解析](2)将圆的方程化为标准方程得(x -2)2+(y +1)2=5,圆心坐标为F (2,-1),半径r =5,如图,显然过点E 的最长弦为过点E 的直径,即|AC |=25,而过点E 的最短弦为垂直于EF 的弦,|EF |=(2-1)2+(-1-0)2=2,|BD |=2r 2-|EF |2=23,∴S 四边形ABCD=12|AC |×|BD |=215.。

20道直线与圆的方程特训题(含详细的答案解析)

20道直线与圆的方程特训题(含详细的答案解析)

圆与直线方程的训练题一.选择题(共20小题)1.圆(x+1)2+y2=2的圆心到直线y=x+3的距离为()A.1 B.2 C.D.22.圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=()A.﹣ B.﹣C.D.23.已知两点P(4,0),Q(0,2),则以线段PQ为直径的圆的方程是()A.(x+2)2+(y+1)2=5 B.(x﹣2)2+(y﹣1)2=10C.(x﹣2)2+(y﹣1)2=5 D.(x+2)2+(y+1)2=104.圆心在直线y=x上,经过原点,且在x轴上截得弦长为2的圆的方程为()A.(x﹣1)2+(y﹣1)2=2 B.(x﹣1)2+(y+1)2=2C.(x﹣1)2+(y﹣1)2=2或(x+1)2+(y+1)2=2 D.(x﹣1)2+(y+1)2=2或(x+1)2+(y﹣1)2=25.已知圆x2+y2+2x﹣2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是()A.﹣2 B.﹣4 C.﹣6 D.﹣86.直线x+y=1与圆x2+y2﹣2ay=0(a>0)没有公共点,则a的取值范围是()A.(0,)B.(,)C.(,)D.(0,)7.直线l:x=my+2与圆M:x2+2x+y2+2y=0相切,则m的值为()A.1或﹣6 B.1或﹣7 C.﹣1或7 D.1或﹣8.圆(x﹣1)2+y2=1与圆x2+(y﹣1)2=2的位置关系为()A.外离 B.外切 C.相交 D.内切9.圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣3)2=9的位置关系为()A.外切 B.相交 C.内切 D.相离10.已知圆C1:x2+y2=1,圆C2:x2+y2+4x﹣6y+4=0,则圆C1与圆C2的位置关系是()A.外离 B.相切 C.相交 D.内含11.若圆O1:(x﹣3)2+(y﹣4)2=25和圆O2:(x+2)2+(y+8)2=r2(5<r<10)相切,则r等于()A.6 B.7 C.8 D.912.直线x﹣y+3=0被圆(x+2)2+(y﹣2)2=2截得的弦长等于()A.B.C.2D.13.在直角坐标系中,直线x+y+3=0的倾斜角是()A.B.C.D.14.直线AB的斜率为2,其中点A(1,﹣1),点B在直线y=x+1上,则点B的坐标是()A.(4,5)B.(5.7)C.(2,1)D.(2,3)15.直线L1:ax+3y+1=0,L2:2x+(a+1)y+1=0,若L1∥L2,则a的值为()A.﹣3 B.2 C.﹣3或2 D.3或﹣216.已知直线l1:x+y=0,l2:2x+2y+3=0,则直线l1与l2的位置关系是()A.垂直 B.平行 C.重合 D.相交但不垂直17.若直线ax﹣y+1=0与直线2x+y+2=0平行,则a的值为()A.﹣2 B.﹣1 C.D.118.已知点(a,2)(a>0)到直线l:x﹣y+3=0的距离为1,则a=()A.B.C.D.19.点(2,1)到直线3x﹣4y+2=0的距离是()A.B.C.D.20.在直角坐标系xOy中,已知点A(4,2)和B(0,b)满足|BO|=|BA|,那么b的值为()A.3 B.4 C.5 D.6参考答案与试题解析一.选择题(共20小题)1.(2016•北京)圆(x+1)2+y2=2的圆心到直线y=x+3的距离为()A.1 B.2 C.D.2【解答】解:∵圆(x+1)2+y2=2的圆心为(﹣1,0),∴圆(x+1)2+y2=2的圆心到直线y=x+3的距离为:d==.故选:C.2.(2016春•金昌校级期末)圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=()A.﹣ B.﹣C.D.2【解答】解:圆x2+y2﹣2x﹣8y+13=0的圆心坐标为:(1,4),故圆心到直线ax+y﹣1=0的距离d==1,解得:a=,故选:A.3.(2016•长沙模拟)已知两点P(4,0),Q(0,2),则以线段PQ为直径的圆的方程是()A.(x+2)2+(y+1)2=5 B.(x﹣2)2+(y﹣1)2=10C.(x﹣2)2+(y﹣1)2=5 D.(x+2)2+(y+1)2=10【解答】解:∵圆的直径为线段PQ,∴圆心坐标为(2,1)半径r===∴圆的方程为(x﹣2)2+(y﹣1)2=5.故选:C.4.(2016•平度市一模)圆心在直线y=x上,经过原点,且在x轴上截得弦长为2的圆的方程为()A.(x﹣1)2+(y﹣1)2=2 B.(x﹣1)2+(y+1)2=2C.(x﹣1)2+(y﹣1)2=2或(x+1)2+(y+1)2=2 D.(x﹣1)2+(y+1)2=2或(x+1)2+(y﹣1)2=2【解答】解:画出圆A满足题中的条件,有两个位置,当圆心A在第一象限时,过A作AC⊥x轴,又|OB|=2,根据垂径定理得到点C为弦OB的中点,则|OC|=1,由点A在直线y=x上,得到圆心A的坐标为(1,1),且半径|OA|=,则圆A的标准方程为:(x﹣1)2+(y﹣1)2=2;当圆心A′在第三象限时,过A′作A′C′⊥x轴,又|OB′|=2,根据垂径定理得到点C′为弦OB′的中点,则|OC′|=1,由点A′在直线y=x上,得到圆心A′的坐标为(﹣1,﹣1),且半径|OA′|=,则圆A′的标准方程为:(x+1)2+(y+1)2=2,综上,满足题意的圆的方程为:(x﹣1)2+(y﹣1)2=2或(x+1)2+(y+1)2=2.故选C5.(2016•贵州校级模拟)已知圆x2+y2+2x﹣2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是()A.﹣2 B.﹣4 C.﹣6 D.﹣8【解答】解:圆x2+y2+2x﹣2y+a=0 即(x+1)2+(y﹣1)2=2﹣a,故弦心距d==.再由弦长公式可得2﹣a=2+4,∴a=﹣4,故选:B.6.(2016•扬州校级一模)直线x+y=1与圆x2+y2﹣2ay=0(a>0)没有公共点,则a的取值范围是()A.(0,)B.(,)C.(,)D.(0,)【解答】解:把圆x2+y2﹣2ay=0(a>0)化为标准方程为x2+(y﹣a)2=a2,所以圆心(0,a),半径r=a,由直线与圆没有公共点得到:圆心(0,a)到直线x+y=1的距离d=>r=a,当a﹣1>0即a>1时,化简为a﹣1>a,即a(1﹣)>1,因为a>0,无解;当a﹣1<0即0<a<1时,化简为﹣a+1>a,即(+1)a<1,a<=﹣1,所以a的范围是(0,﹣1)故选A7.(2016•佛山模拟)直线l:x=my+2与圆M:x2+2x+y2+2y=0相切,则m的值为()A.1或﹣6 B.1或﹣7 C.﹣1或7 D.1或﹣【解答】解:圆M:x2+2x+y2+2y=0,即(x+1)2+(y+1)2=2,表示以M(﹣1,﹣1)为圆心,半径等于的圆.再根据圆心到直线l:x﹣my﹣2=0的距离等于半径,可得=,求得m=1,或m=﹣7,故选:B.8.(2016•枣庄一模)圆(x﹣1)2+y2=1与圆x2+(y﹣1)2=2的位置关系为()A.外离 B.外切 C.相交 D.内切【解答】解:这两个圆(x﹣1)2+y2=1与圆x2+(y﹣1)2=2的圆心分别为(1,0)、(0,1);半径分别为1、.圆心距为,大于半径之差而小于半径之和,可得两个圆相交,故选:C.9.(2016春•漳州期末)圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣3)2=9的位置关系为()A.外切 B.相交 C.内切 D.相离【解答】解:圆C(x+2)2+y2=4的圆心C(﹣2,0),半径r=2;圆M(x﹣2)2+(y﹣3)2=9的圆心M(2,3),半径R=3.∴|CM|==5=R+r=3+2=5.∴两圆外切.故选:A.10.(2016春•厦门期末)已知圆C1:x2+y2=1,圆C2:x2+y2+4x﹣6y+4=0,则圆C1与圆C2的位置关系是()A.外离 B.相切 C.相交 D.内含【解答】解:圆C1:x2+y2=1,表示以C1(0,0)为圆心,半径等于1的圆.圆C2:x2+y2+4x﹣6y+4=0,即(x+2)2+(y﹣3)2=9,表示以C2(﹣2,3)为圆心,半径等于3的圆.∴两圆的圆心距d==,∵3﹣1<<3+1,故两个圆相交.故选:C.11.(2016春•承德期末)若圆O1:(x﹣3)2+(y﹣4)2=25和圆O2:(x+2)2+(y+8)2=r2(5<r<10)相切,则r等于()A.6 B.7 C.8 D.9【解答】解:圆(x﹣3)2+(y﹣4)2=25的圆心M(3,4)、半径为5;圆(x+2)2+(y+8)2=r2的圆心N(﹣2,﹣8)、半径为r.若它们相内切,则圆心距等于半径之差,即=|r﹣5|,求得r=18或﹣8,不满足5<r<10.若它们相外切,则圆心距等于半径之和,即=|r+5|,求得r=8或﹣18(舍去).故选:C.12.(2016•马鞍山)直线x﹣y+3=0被圆(x+2)2+(y﹣2)2=2截得的弦长等于()A.B.C.2D.【解答】解:连接OB,过O作OD⊥AB,根据垂径定理得:D为AB的中点,根据(x+2)2+(y﹣2)2=2得到圆心坐标为(﹣2,2),半径为.圆心O到直线AB的距离OD==,而半径OB=,则在直角三角形OBD中根据勾股定理得BD==,所以AB=2BD=故选D.13.(2016•衡阳校级模拟)在直角坐标系中,直线x+y+3=0的倾斜角是()A.B.C.D.【解答】解:直线x+y+3=0斜率等于﹣,设此直线的倾斜角为θ,则tanθ=﹣,又0≤θ<π,∴θ=,故选D.14.(2016•长沙校级模拟)直线AB的斜率为2,其中点A(1,﹣1),点B在直线y=x+1上,则点B的坐标是()A.(4,5)B.(5.7)C.(2,1)D.(2,3)【解答】解:根据题意,点B在直线y=x+1上,设B的坐标为(x,x+1),则直线AB的斜率k===2,解可得x=4,即B的坐标为(4,5),故选:A.15.(2016•衡阳校级模拟)直线L1:ax+3y+1=0,L2:2x+(a+1)y+1=0,若L1∥L2,则a 的值为()A.﹣3 B.2 C.﹣3或2 D.3或﹣2【解答】解:直线L1:ax+3y+1=0的斜率为:,直线L1∥L2,所以L2:2x+(a+1)y+1=0的斜率为:所以=;解得a=﹣3,a=2(舍去)故选A.16.(2016•马鞍山)已知直线l1:x+y=0,l2:2x+2y+3=0,则直线l1与l2的位置关系是()A.垂直 B.平行 C.重合 D.相交但不垂直【解答】解:由直线l1:x+y=0,l2:2x+2y+3=0,可得斜率都等于﹣1,截距不相等.∴l1∥l2.故选:B.17.(2016•海南校级模拟)若直线ax﹣y+1=0与直线2x+y+2=0平行,则a的值为()A.﹣2 B.﹣1 C.D.1【解答】解:∵直线ax﹣y+1=0与直线2x+y+2=0平行,∴,解得a=﹣2,故选:A.18.(2016春•新疆期末)已知点(a,2)(a>0)到直线l:x﹣y+3=0的距离为1,则a=()A.B.C.D.【解答】解:由点到直线的距离公式得:=,∵a>0,∴a=.故选C.19.(2016•衡阳校级模拟)点(2,1)到直线3x﹣4y+2=0的距离是()A.B.C.D.【解答】解:点(2,1)到直线3x﹣4y+2=0的距离d==.故选A.20.(2016•北京)在直角坐标系xOy中,已知点A(4,2)和B(0,b)满足|BO|=|BA|,那么b的值为()A.3 B.4 C.5 D.6【解答】解:∵点A(4,2)和B(0,b)满足|BO|=|BA|,∴b2=42+(2﹣b)2,∴b=5.故选:C.。

2025高考数学一轮复习-8.4-直线与圆、圆与圆的位置关系-专项训练【答案】

2025高考数学一轮复习-8.4-直线与圆、圆与圆的位置关系-专项训练【答案】

2025高考数学一轮复习-8.4-直线与圆、圆与圆的位置关系-专项训练1.直线4x-3y+11=0与圆(x+1)2+(y+1)2=4的位置关系是()C DA.相离B.相切C.相交D.不确定2.圆x2+y2-6x+4y+12=0与圆x2+y2-14x-2y+14=0的位置关系是()A.相离B.相交C.外切D.内切3.已知以C(-4,3)为圆心的圆与圆x2+y2=1相内切,则圆C的方程为()A.(x-4)2+(y+3)2=36B.(x+4)2+(y-3)2=16C.(x+4)2+(y-3)2=36D.(x-4)2+(y+3)2=164.在同一直角坐标系中,直线y=ax+a2与圆(x+a)2+y2=a2的位置可能是()A B5.(多选题)已知直线l:(1+a)x+y+2a=0(a∈R)与圆C:x2+(y-2)2=4,则()A.直线l必过定点B.当a=1时,l被圆C截得的弦长为455C.直线l与圆C可能相切D.直线l与圆C不可能相离6.(多选题)(2024江苏百校大联考)已知圆O:x2+y2=4与圆C:(x-3)2+(y-2)2=9交于A,B两点,则下列说法正确的有()A.线段AB的垂直平分线所在的直线方程为2x-3y=0B.直线AB的方程为3x+2y-4=0C.|AB|=61313D.若P是圆O上的一点,则△PAB面积的最大值为24+1213137.请写出一个与x轴和直线y=3x都相切的圆的方程:.8.过原点O作圆C:x2+y2+4x+4y+5=0的两条切线,设切点分别为A,B,则直线AB的方程为.9.已知直线l过点P(1,-1),且.在下列所给的三个条件中,任选一个补充在题中的横线上,并完成解答.①与圆(x+1)2+y2=5相切;②倾斜角的余弦值为55;③直线l的斜率为2.(1)求直线l的一般式方程;(2)若直线l与曲线C:x2+y2-6x-2y+6=0相交于M,N两点,求弦长|MN|.综合提升练10.(2023宿迁月考)若直线y=kx-1与曲线y=- 2+4 -3恰有两个公共点,则实数k的取值范围是()+∞ B.1C.1D.011.由点P(-3,0)射出的两条光线与☉O1:(x+1)2+y2=1分别相切于点A,B,称两射线PA,PB上切点右侧所夹的平面区域为☉O1的“背面”.若☉O:(x-1)2+(y-t)2=1处于右侧部分的射线和优弧☉O1的“背面”,则实数t的取值范围为()A.-23≤t≤23B.-433+1≤t≤433-1C.-1≤t≤1D.t:如果选择多个条件分别解答,按第一个解答计分.12.(多选题)已知圆C:x2+y2-2ay+a-1=0,直线l:x-y=0,则()A.存在a∈R,使得l与圆C相切B.对任意a∈R,l与圆C相交C.存在a∈R,使得圆C截l所得弦长为1D.对任意a∈R,存在一条直线被圆C截得的弦长为定值13.写出一个半径为1,且与圆x2+y2=1和圆(x-2)2+(y-2)2=1均外切的圆的方程:.14.设P(a,b)为直线y=x-3上一点,则由该点向圆x2+y2+2x-4y+3=0所作的切线长的最小值是.15.(2023苏州月考)在平面直角坐标系xOy中,已知圆心在第二象限,半径为22的圆C与直线y=x相切于坐标原点O.(1)求圆C的方程.(2)试求圆C上是否存在异于原点的点Q,使Q到定点F(4,0)的距离等于线段OF的长?若存在,请求出点Q的坐标;若不存在,请说明理由.创新应用练16.数学家阿波罗尼斯证明过这样一个命题:平面内到两定点距离之比为常数λ(λ>0且λ≠1)的点的轨迹是圆.后人将这个圆称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,A(-2,0),动点M满足|MA|=2|MO|,得到动点M的轨迹是阿氏圆C.若对任意实数k,直线l:y=k(x-1)+b与圆C恒有公共点,则b的取值范围是()A.-33133B.-143143C.15153D.-434317.(多选题)如图所示,该曲线W是由(x-1)2+y2=1,(x+1)2+y2=1,x2+(y+1)2=1,x2+(y-1)2=1这4个圆的一部分所构成的,则下列叙述正确的是()A.曲线W围成的封闭图形面积为4+2πB.若圆x2+y2=r2(r>0)与曲线W有8个交点,则2≤r≤2C. 与 的公切线方程为x+y-1-2=0D.曲线W上的点到直线x+y+52+1=0的距离的最小值为4参考答案1.B2.D3.C4.C5.ABD6.ABD7.(x-3)2+(y-1)2=1(答案不唯一)8.2x+2y+5=09.解(1)若选①:因为(1+1)2+(-1)2=5,故点P在圆(x+1)2+y2=5上,且圆心(-1,0)与P连线的斜率为-1-01-(-1)=-12因为直线l与圆(x+1)2+y2=5相切,所以直线l的斜率为2,所以直线l的一般式方程为2x-y-3=0.若选②:设直线l的倾斜角为α(0≤α<π),由cosα=55,得tanα=2,所以直线l的斜率k=tanα=2,故直线l的一般式方程为2x-y-3=0.若选③:因为l的斜率k=2,所以直线l的一般式方程为2x-y-3=0.(2)曲线C:x2+y2-6x-2y+6=0,即(x-3)2+(y-1)2=4.故曲线C为圆,圆心为C(3,1),半径r=2,则圆心C到直线l的距离255,所以弦长|MN|=2 2- 210.B11.D12.BD13.(x-2)2+y2=1或x2+(y-2)2=1(填一个即可)14.415.解(1)设圆C的圆心为C(a,b),则圆C的方程为(x-a)2+(y-b)2=8.因为直线y=x与圆C相切于原点O,所以O点在圆C上,且OC垂直于直线y=x,+ 2 8,-1,解得 2, -2或 -2, 2.由于点C(a,b)在第二象限,故a<0,b>0,所以圆C的方程为(x+2)2+(y-2)2=8.(2)假设存在点Q符合要求,设Q(x,y),则有( -4)2+ 2 16,( +2)2+( -2)2 8,解得x=45或x=0(舍去).所以存在点使Q到定点F(4,0)的距离等于线段OF的长.16.C17.ACD。

专题七 解析几何 第一讲 直线与圆—2023届高考数学二轮复习重点练(含解析)

专题七 解析几何  第一讲 直线与圆—2023届高考数学二轮复习重点练(含解析)

专题七 解析几何 第一讲 直线与圆1.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A.5B.5C.5D.52.下列说法中不正确的是( )A.平面上任一条直线都可以用一个关于,x y 的二元一次方程0Ax By C ++=(,A B 不同时为0)表示B.当0C =时,方程0Ax By C ++=(,A B 不同时为0)表示的直线过原点C.当0,0,0A B C =≠≠时,方程0Ax By C ++=表示的直线与 x 轴平行D.任何一条直线的一般式方程都能与其他四种形式互化3.已知设点M 是圆224690C x y x y +--+=上的动点,则点M 到直线240x y ++=距离的最小值为( )2 2- 2+ 2 4.已知直线1l ,2l 分别过点(1,3)P -,(2,1)Q -,若它们分别绕点P ,Q 旋转,但始终保持平行,则1l ,2l 之间的距离d 的取值范围为( )A.(0,5]B.(0,5)C.(0,)+∞D.5.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是( )A.[2,6]B.[4,8]C.D.6.已知直线:10l x ay +-=是圆22:6210C x y x y +--+=的对称轴,过点()1,A a -作圆C 的一条切线,切点为B ,则AB =( ) A.1B.2C.4D.87.已知点(2,0),(1,1)A B --,射线AP 与x 轴的正方向所成的角为π4,点Q 满足||1QB =,则||PQ 的最小值为( )1 B.1 C.1 18.(多选)已知直线12:210,:20l ax y a l x ay a --+=+--=,圆22:4240E x y x y +-+-=,则以下命题正确的是( )A.直线12,l l 均与圆E 不一定相交B.直线1l 被圆E 截得的弦长的最小值C.直线2l 被圆E 截得的弦长的最大值6D.若直线1l 与圆E 交于2,,A C l 与圆E 交于,B D ,则四边形ABCD 面积最大值为14 9. (多选)已知圆221:()1C x a y ++=,圆2222:()(2)2C x a y a a -+-=,下列说法正确的是( )A.若12C OC △(O 为坐标原点)的面积为2,则圆2C 的面积为2πB.若a ,则圆1C 与圆2C 外离C.若a ,则y x =1C 与圆2C 的一条公切线D.若a 1C 与圆2C 上两点间距离的最大值为610. (多选)已知直线11:0l ax y -+=,2:10l x ay ++=,a ∈R ,则下列结论中正确的是( )A.不论a 为何值,1l ,2l 都互相垂直B.当a 变化时,1l ,2l 分别经过定点(0,1)A 和(1,0)B -C.不论a 为何值,1l ,2l 都关于直线0x y +=对称D.若1l ,2l 相交于点M ,则MO11.过两直线10x +=0y +的交点,并且与原点的最短距离为12的直线的方程为________________.12.圆221:2120C x y x ++-=与圆222:440C x y x y ++-=的交点为A ,B ,则弦AB 的长为_____.13.已知圆22:2410C x y x y ++-+=,若存在圆C 的弦AB ,使得AB =,且其中点M 在直线20x y k ++=上,则实数k 的取值范围是___________.14.已知曲线2:2x C y =,D 为直线12y =-上的动点,过D 作C 的两条切线,切点分别为A ,B.(1)证明:直线AB 过定点;(2)若以20,5E ⎛⎫⎪⎝⎭为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.15.已知半圆224(0)x y y +=≥,动圆与此半圆相切(内切或外切,如图),且与x 轴相切.(1)求动圆圆心的轨迹方程,并画出其轨迹.(2)是否存在斜率为13的直线l ,它与(1)中所得的轨迹由左至右顺次交于A ,B ,C ,D 四点,且满足||2||AD BC =?若存在,求出直线l 的方程;若不存在,请说明理由.答案以及解析1.答案:B解析:设圆心为()00,P x y ,半径为r ,圆与x 轴,y 轴都相切,00x y r ∴==,又圆经过点(2,1),00x y r ∴==且()()2220021x y r -+-=,222(2)(1)r r r ∴-+-=,解得1r =或5r =.①1r =时,圆心(1,1)P ,则圆心到直线230x y --=的距离d ==②5r =时,圆心(5,5)P ,则圆心到直线230x y --=的距离d ==故选B. 2.答案:D解析:对于选项A,在平面直角坐标系中,每一条直线都有倾斜角α,当90α≠︒时,直线的斜率k 存在,其方程可写成y kx b =+,它可变形为0kx y b -+=,与0Ax By C ++=比较,可得,1,A k B C b ==-=;当90α=︒时,直线的斜率不存在,其方程可写成1x x =,与0Ax B C ++=比较,可得11,0,A B C x ===-,显然,A B 不同时为0,所以此说法是正确的.对于选项B,当0C =时,方程0Ax By C ++=(,A B 不同时为0),即0Ax By +=,显然有000A B ⨯+⨯=,即直线过原点()0,0,故此说法正确.对于选项C,因为当0A =,0,0B C ≠≠时,方程0Ax By C ++=可化为Cy B=-,它表示的直线与x 轴平行,故此说法正确.D 说法显然错误. 3.答案:B解析:由题意可知圆心(2,3)C ,半径2r =,则点M 到直线240x y ++=距离的最小值min22d =-=-,故选B. 4.答案:A解析:易知两直线之间的最大距离为P ,Q 两点间的距离,由两点间的距离公式得||5PQ .故1l ,2l 之间的距离d 的取值范围为(0,5].5.答案:A解析:由圆22(2)2x y -+=可得圆心坐标为()2,0,半径r ABP △的面积记为S ,点P 到直线AB 的距离记为d ,则有1||2S AB d =⋅.易知||AB =max d ==,min d =26S ≤≤,故选A.6.答案:C解析:已知直线:10l x ay +-=是圆22:6210C x y x y +--+=的对称轴,圆心()3,1C ,半径3r =,所以直线l 过圆心()3,1C ,故310a +-=,故2a =-.所以点()1,2A --,||5AC =,||4AB ==.故选C.7.答案:A解析:因为||1QB =,所以点Q 在以点B 为圆心,1为半径的圆上, 显然当射线AP 在x 轴的下方时||PQ 取得最小值,此时直线:20AP x y ++=,点B 到AP 的距离d ==所以||PQ 1,故选A. 8.答案:BCD解析:由题意,直线1:210l ax y a --+=,即(2)10a x y --+=.令20x -=,得2,1x y ==,即直线1l 过定点()2,1;直线2:20l x ay a +--=,即2(1)0x a y -+-=,令10y -=,得2,1x y ==,即直线2l 过定点()2,1,所以直线12,l l 过同一个定点()2,1,记为点M .圆22:4240E x y x y +-+-=可化为22(2)(1)9x y -++=,而点()2,1M 在圆E 内部,所以直线12,l l 均与圆E 相交,所以A 选项错误;对于直线1l ,当0a =时,直线1l 被圆E 截得的弦长最小,且最小值为所以B 选项正确;对于直线2l ,当0a =时,直线2l 被圆E 截得的弦长最大,且最大值恰好为圆E 的直径6,所以C 选项正确;又当0a ≠时,直线1l 的斜率为a ,直线2l 的斜率为1a-,即直线12l l ⊥.设圆心E 到直线12,l l 的距离分别为12,d d ,则12d d ==又22212||4d d EM +==,即22||||99444AC BD -+-=,所以22||||56AC BD +=,所以2211||||||||14222ABCDAC BD S AC BD +=⋅≤⨯=四边形,当且仅当||||AC BD ==,等号成立,故四边形ABCD 面积最大值为14,所以D 选项正确,故选BCD. 9.答案:BC解析:本题考查圆与圆的位置关系.依题意1(,0)C a -,2(,2)C a a ,圆1C 半径11r =,圆2C 半径2|r a =.对于选项A ,1221|||2|22C OC S a a a =-⋅==△,则a =2|2r a ==,则圆2C 的面积为22π4πr =,选项A 错误;对于选项B,12|C C a,121|r r a +=+,若圆1C 与圆2C 外离,则1212C C r r >+,即|1|a a >,得2a >或2a <,选项B 正确;对于选项C ,当a =时,1C ⎛⎫ ⎪ ⎪⎝⎭,2C ⎝,121r r ==,1212|2C C a r r ===+,所以圆1C 与圆2C 外切,且121C C k =,所以两圆的公切线中有两条的斜率为1,设切线方程为0x y b -+=1=,解得2b =-或2b =,则一条切线方程为0x y -=,即y x =,选项C 正确;对于选项D,当a =1(C,2C ,11r =,22r =,12|4C C a ==,圆1C 与圆2C 上两点间距离的最大值为1247r r ++=,选项D 错误.故选BC.10.答案:ABD解析:因为110a a ⨯-⨯=,所以无论a 为何值,1l ,2l 都互相垂直,故A 正确;1l ,2l 分别经过定点(0,1)A 和(1,0)B -,故B 正确;1:10l ax y -+=关于直线0x y +=对称的直线方程为10ay x -++=,不是2:10l x ay ++=,故C 错误;由10,10,ax y x ay -+=⎧⎨++=⎩解得221,11,1a x a a y a --⎧=⎪⎪+⎨-+⎪=⎪+⎩即2211,11a a M a a ---+⎛⎫ ⎪++⎝⎭,所以MO =≤MO的最大值是D 正确.故选ABD.11.答案:12x =或10x +=解析:联立10,0,x y ⎧+=⎪+解得1,2x y ⎧=⎪⎪⎨⎪=⎪⎩即两直线的交点为12⎛ ⎝⎭.当直线的斜率不存在时,12x =,到原点的距离等于12,符合题意;当直线的斜率存在时,设直线的方程为12y k x ⎛⎫=- ⎪⎝⎭,即220kx y k -+=.因为直线与原点的最短距离为12,所以12=,解得k =,所以所求直线的方程为10x +=,所以所求直线的方程为12x =或10x +=. 12.答案:解析:圆221:2120C x y x ++-=与圆222:440C x y x y ++-=联立可得: 公共弦的方程为260x y -+=,222:440C x y x y ++-=变形为()()222:228C x y ++=-,故222:440C x y x y ++-=的圆心为()22,2C -,半径为, 而()22,2C -满足260x y -+=,故弦AB 的长为圆2C 的直径, 故弦AB的长为.故答案为:. 13.答案:k 解析:圆C 的方程可化为22(1)(2)4x y ++-=,圆心(1,2)C -,半径2r =,由于弦AB满足||AB =M,则||1CM , 因此M 点在以(1,2)C -为圆心,1为半径的圆上, 又点M 在直线20x y k ++=上,故直线20x y k ++=与圆22(1)(2)1x y ++-=1≤,解得k ≤14.答案:(1)见解析(2)当0t =时,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭;当1t =±时,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭ 解析:(1)证明:依题意,可设:AB y kx b =+,1,2D t ⎛⎫- ⎪⎝⎭,()11,A x y ,()()2212,B x y x x ≠.联立2,2,x y y kx b ⎧=⎪⎨⎪=+⎩消去y 得2220x kx b --=. 2480k b ∆=+>,122x x k +=,122x x b =-.又直线DA 与抛物线相切,则2111122x x x t+=-, 所以211210x tx --=,同理222210x tx --=. 所以1222k x x t =+=,1221b x x -=⋅=-, 所以k t =,12b =,则直线1:2AB y tx =+,必过定点10,2⎛⎫⎪⎝⎭. (2)解法一:由(1)得直线AB 的方程为12y tx =+.由21,22y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩可得2210x tx --=. 于是122x x t +=,()21212121y y t x x t +=++=+.设M 为线段AB 的中点,则21,2M t t ⎛⎫+ ⎪⎝⎭.由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1,)t 平行,所以()220t t t +-=,解得0t =或1t =±.当0t =时,||2EM =,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭; 当1t =±时,||2EM =,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭. 解法二:设M 为线段AB 的中点,由(1)可知212,M t t ⎛+⎫ ⎪⎝⎭.所以()2,2EM t t =-,()2,FM t t =,又EM FM ⊥,则()2220t t t t ⋅+-⋅=, 解得0t =或1t =或1t =-.当0t =时,||2EM =,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭; 当1t =±时,||2EM =,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭. 15.答案:(1)见解析(2)不存在满足题意的直线l .理由见解析解析:(1)设动圆圆心(,)M x y ,作MN x ⊥轴于点N . ①若动圆与半圆外切,则||2||MO MN =+,2y +, 两边平方得22244x y y y +=++,化简得211(0)4y x y =->. ②若动圆与半圆内切,则||2||MO MN =-,2y =-, 两边平方得22244x y y y +=-+,化简得211(0)4y x y =-+>.综上,当动圆与半圆外切时,动圆圆心的轨迹方程为211(0)4y x y =->; 当动圆与半圆内切时,动圆圆心的轨迹方程为211(0)4y x y =-+>. 动圆圆心的轨迹如图所示.(2)假设满足题意的直线l 存在,可设l 的方程为13y x b =+.依题意,可得直线l 与曲线211(0)4y x y =->交于A ,D 两点,与曲线211(0)4y x y =-+>交于B ,C 两点.由21,3114y x b y x ⎧=-+⎪⎪⎨⎪=-⎪⎩与21,311,4y x b y x ⎧=+⎪⎪⎨⎪=-+⎪⎩消去y 整理可得23412120x x b ---=①与23412120x x b ++-=②. 设(),A A A x y ,(),B B B x y ,(),C C C x y ,(),D D D x y ,则43A D x x +=,12123A D b x x --=,43B C x x +=-,12123B C b x x -=.又||A D AD x =-,||B C BC x -,且||2||AD BC =,2A D B C x x x x ∴-=-,即()()22444A D A D B C B C x x x x x x x x ⎡⎤+-=+-⎣⎦, 整理得2244(1212)44(1212)43333b b ⎡⎤+-⎛⎫⎛⎫+=--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解得23b =.将23b =代入方程①,得2A x =-,103D x =. 函数211(0)4y x y =->的定义域为(,2)(2,)-∞-+∞,∴假设不成立,即不存在满足题意的直线l .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与圆
1.点P (4,-2)与圆224x y +=上任一点连续的中点轨迹方程是 ( ) A.22(2)(1)1x y -++= B.22(2)(1)4x y -++= C.22(4)(2)4x y ++-= D.22(2)(1)1x y ++-=
【答案】A
2.已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则k 得值是( )
A. 1或3
B.1或5
C.3或5
D.1或2
【答案】C
3以点(2,1-)为圆心且与直线6x y +=相切的圆的方程是 .
【解析】将直线6x y +=化为60x y +-=,
圆的半径r =
=所以圆的方程为2225(2)(1)2x y -++=
【答案】2225(2)(1)2
x y -++= 4.若圆422=+y x 与圆)0(06222>=-++a ay y x 的公共弦长为32,则a =________. 【解析】由已知,两个圆的方程作差可以得到相交弦的直线方程为a
y 1= , 利用圆心(0,0)到直线的距离d 1|1|
a =为13222=-,解得a =1. 【答案】1
5若直线m 被两平行线12:10:30l x y l x y -+=-+=与所截得的线段的长为22,则m 的倾斜角可以是 ①15 ②30 ③45 ④60 ⑤75
其中正确答案的序号是 .(写出所有正确答案的序号) 【解析】解:两平行线间的距离为21
1|
13|=+-=d ,由图知直线m 与1l 的夹角为o 30,1l 的倾斜角为o 45,所以直线m 的倾斜角等于00754530=+o 或00153045=-o 。

6.(2009江苏卷18)(本小题满分16分)在平面直角坐标系xoy 中,已知圆221:(3)(1)4C x y ++-=若直线l 过点(4,0)A ,且被圆1C
截得的弦长为线l 的方程;解 (1)设直线l 的方程为:(4)y k x =-,即40kx y k --=
由垂径定理,得:圆心1C 到直线l
的距离1d ==,
1,
=
化简得:2
7
2470,0,,
24
k k k or k
+===-
求直线l的方程为:0
y=或7(4)
24
y x
=--,即0
y=或724280
x y
+-=
7.(2008四川文14)已知直线:40
l x y
-+=与圆()()
22
:112
C x y
-+-=,则C上各点到l的距离的最小值为_______.
8.(2014²四川成都二模)已知圆C1:(x+1)2+(y-1)2=1,圆C2与C1关于直线x-y-1=0对称,则圆C2的方程为( )
A.(x+2)2+(y-2)2=1
B.(x-2)2+(y+2)2=1
C.(x+2)2+(y+2)2=1
D.(x-2)2+(y-2)2=1
解析C1:(x+1)2+(y-1)2=1的圆心为(-1,1),它关于直线x-y-1=0对称的点为(2,-2),对称后半径不变,所以圆C2的方程为(x-2)2+(y+2)2=1.
答案 B
9.(2014²山东潍坊一模)若圆C经过(1,0),(3,0)两点,且与y轴相切,则圆C的方程为( )
A.(x-2)2+(y±2)2=3
B.(x-2)2+(y±3)2=3
C.(x-2)2+(y±2)2=4
D.(x-2)2+(y±3)2=4
解析因为圆C经过(1,0),(3,0)两点,所以圆心在直线x=2上,又圆与y轴相切,所以半径r=2,设圆心坐标为(2,b),则(2-1)2+b2=4,b2=3,b=±3,选D.
答案 D
10.(2014²山东青岛一模)过点P(1,3)作圆O:x2+y2=1的两条切线,切点分别为A和B,则弦长|AB|=( )
A. 3 B.2
C. 2 D.4
解析
如图所示,∵PA ,PB 分别为圆O :x 2+y 2
=1的切线,
∴OA ⊥AP .
∵P (1,3),O (0,0),
∴|OP |=1+3=2.
又∵|OA |=1,在Rt △APO 中,cos ∠AOP =12
, ∴∠AOP =60°,
∴|AB |=2|AO |sin ∠AOP = 3.故选A.
答案 A
11.(2014²江西卷)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( )
A.45
π B.34π C .(6-25)π
D.54π 解析 ∵∠AOB =90°,∴点O 在圆C 上.
设直线2x +y -4=0与圆C 相切于点D ,则点C 与点O 间的距离等于它到直线2x +y -4=0的距离,
∴点C 在以O 为焦点,以直线2x +y -4=0为准线的抛物线上,
∴当且仅当O ,C ,D 共线时,圆的直径最小为|OD |.
又|OD |=|2³0+0-4|5=45
, ∴圆C 的最小半径为25, ∴圆C 面积的最小值为π⎝
⎛⎭⎪⎫252=45
π. 答案 A 12.(2014²山东卷)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________.
解析 ∵圆心在直线x -2y =0上,
∴可设圆心为(2a ,a ).
∵圆C 与y 轴正半轴相切,
∴a >0,半径r =2a .
又∵圆C 截x 轴的弦长为23,
∴a 2+(3)2=(2a )2
,解得a =1(a =-1舍去).
∴圆C 的圆心为(2,1),半径r =2.
∴圆的方程为(x -2)2+(y -1)2=4.
答案 (x -2)2+(y -1)2=4
13.(2014²重庆卷)已知直线x -y +a =0与圆心为C 的圆x 2+y 2+2x -4y -4=0相交于A ,B 两点,且AC ⊥BC ,则实数a 的值为________.
解析 由题意,得圆心C 的坐标为(-1,2),半径r =3.因为AC ⊥BC ,所以圆心C 到直线x -y +a =0的距离d =|-1-2+a |2=22r =322,即|-3+a |=3,所以a =0或a =6. 答案 0或6
14.(2014²课标全国卷Ⅰ)已知点P (2,2),圆C :x 2+y 2
-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.
(1)求M 的轨迹方程;
(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.
解 (1)圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4.设M (x ,y ),则CM →=(x ,y -4),MP →=
(2-x,2-y ).
由题设知CM →²MP →=0,
故x (2-x )+(y -4)(2-y )=0,
即(x -1)2+(y -3)2
=2.
由于点P 在圆C 的内部,
所以M 的轨迹方程是(x -1)2+(y -3)2=2.
(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.
由|OP |=|OM |,故O 在线段PM 的垂直平分线上,
又P 在圆N 上,从而ON ⊥PM .
因为ON 的斜率为3,所以l 的斜率为-13
, 故l 的方程为y =-13x +83
. 又|OM |=|OP |=22,O 到l 的距离为4105, |PM |=4105
, 所以△POM 的面积为165
. 15.过圆x 2+y 2=1上一点作圆的切线与x 轴、y 轴的正半轴交于A ,B 两点,则|AB |的最小值为________. 解析 假设直线l AB :x a +y b =1.由于圆心(0,0)到l 的距离为1,可得a 2b 2=a 2+b 2.又a 2b 2≤⎝ ⎛⎭
⎪⎫a 2+b 222,所以a 2+b 2≥4.又因为|AB |=a 2+b 2≥2,当且仅当a =b =2时等号成立.
答案 2。

相关文档
最新文档