光电效应以与普朗克常数的测量

合集下载

光电效应和普朗克常量的测定

光电效应和普朗克常量的测定
(5)微电流测试仪:电流测量范围为0.1卩A一199.9卩A,分辨率为0.1卩A。机内设 有稳定度w1%-3V—+3V,-15V— +15V,-30V— +30V精密可调的光电管工作电源,最小 分度值为0.1和1伏。微电流测试仪可连续工作在十小时以上。
图33-1GD-1型光电效应测试仪的结构图
1.光源;2.减光片或滤光片;
(2)检查光源出光孔和光电管入光孔上的挡光盖是否盖上,并使二孔水平对齐,其间距 离保持在20-25cm。
(3)将光电管暗盒上的“K”端用屏蔽电缆与微电流测试仪面板上的“K”连接,再用普
通导线将二者对应的“A”和“ ”连接好,然后接通微电流测试仪的电源开关。
2.光电管特性的研究
(1)测定光电管的伏安特性
2在光源出光孔上依次装上透过率T分别为75%,50%,25%的减光片 (改变入射光的 光强),测出对应的光电流。
3取下光电管入光孔上的滤光片,用挡光盖盖上光电管的入光孔。
3.普朗克常数的测定
(1)测量光电管的暗电流和本底电流特性
1取下光源出光孔上的减光片,盖上挡光盖。
2取下光电管入光孔上的挡光盖。
3调节“电压极性”开关,顺时针旋转“电压调节”旋钮,使电压由-3V逐渐增加
实验时,
系:
测出不同频率的光入射时的遏止电势差
u后,作ua〜曲线,u与成线性关
而由
12eUamvmh W
2
即得
0Wh
h (、
Ua(0)
e
(33-3)
从直线斜率可求出普朗克常数h,由直线的截距可求得截止频率
0 °
3.光电管
光电管是利用光电效应制成的能将光信号转化为电信号的光电器件。 在一个真空的玻璃

光电效应及普朗克常数的测定

光电效应及普朗克常数的测定
光电效应是19世纪末发现的,详细的研 究一直到1914年,研究中发现光电效应的基 本规律,无法用麦克斯韦的经典电磁理论作 出完满的解释。1905年爱因斯坦应用普朗克 的量子论,提出光量子概念,给光电效应以 正确的解释。其中普朗克常数是现代物理学 中的一个重要常数;由光电效应实验可简单 准确地测定普朗克常数,实验有助对光的量 子性的理解。
2. 用零电流法测定h
将“电压”选择按键置于-2V~+0V档,“电流量程”选择 在10-13A档并重新调零。将直径为4mm的光阑及波长为 365.0nm 的滤光片插在光电管入射窗孔前,调节电压UAK,使得光电流I 为零,此时测试仪中显示的电压值即可认为是该入射光频率 对应的截止电压。重复测量4次,填入表1中。 依次更换其余四个滤光片(注意:一定要先盖上汞灯的遮光 盖再更换滤光片),测出各自对应的截止电压。
实验目的
1. 通过光电效应实验了解光的量子性。 2. 测量光电管的弱电流特性,找出不同光 频率下的截止电压。 3. 验证爱因斯坦方程,并由此求出普朗 克常数。
实验原理
在光的照射下,电子从金属表面逸出的现象,叫光 电效应。
K A
I
Im
G
- V +
R -E +
光电效应实验原理图
U 0
o
U AK
某一频率下,某一光强时
( U 0 )

30
435.8nm 光阑4mm
U AK (V)
I (1010 A)
五.注意事项
1. 本实验不必要求暗室环境,但应避免背景光强
的剧烈变化。 2. 实验过程中注意随时盖上汞灯的遮光盖,严禁让 汞光不经过滤光片直接入射光电管窗口。 3. 实验结束时应盖上光电管暗箱和汞灯的遮光盖!

光电效应及普朗克常数的测定

光电效应及普朗克常数的测定
光电效应及普朗克常数的测定
理学院物理实验教学中心
University of Jinan
实验原理 在光的照射下,电子从金属表面逸出的现象,叫光电效应。
光电效应的实验规律: ① 光电效应存在一个截止频率 v0,当 入射光的频率 v v0 时,不论光的强 度如 何都没有光电子产生; ② 光电子的初动能与光强无关,而与 入射光的频率成正比。 ③ 饱和光电流与入射光强成正比;
ss_shaomh@
经典的波动理论无法给出圆满的解释。 按光的波动理论,光的强度由光振动的振幅决定 ,光的强度与频率无关,因此不论频率如何,只要 照射时间长或光的强度大就可以产生光电效应。但 实验结果表明:产生光电效应的条件却是入射光频 率大于某一极限频率,与光强无关。 普朗克能量子假设
4
零电流法测普朗克常数:
-2~+2V 10-13A 电压调零、电流调零后重新接上; 调节反向电压,使电流为零!
ss_shaomh@
数据处理
1
伏安曲线测量:
整理表格,并将3条曲线在坐标纸上作图!
2
光电流与入射光强关系测量:
整理表格,并证明光强与光电流的正比关系!(作图法、比值法均可)
实验原理
爱因斯坦光电效应方程
1 h m 2 A 2
eU 0 1 mv 2 U0为反向截止电压 2
当光电流为零时:
eU 0 h A
用不同频率的单色光分别做光源时
eU 0 h A
ss_shaomh@
实验仪器
电流
电压
光源
光电管
ss_shaomh@
3
零电流法测普朗克常数:
坐标纸上作图!计算直线的斜率、普朗克常数以及相对误差!

光电效应与普朗克常数测定

光电效应与普朗克常数测定

光电效应和普朗克常数的测定填空题1.光电效应的实验事实表明,对应于一定的辐射频率,有一电压U 0,当U AK ≦U 0时,电流为零,U 0被称为 截止电压 。

2.光电效应的定律指出,照射光的频率与极间端电压U AK 一定时, 饱和光电流 的大小与入射光的强度成正比。

3.对于不同频率的光,其截止电压的值不同,截止电压与 入射光频率 成正比关系。

当入射光频率低于某极限值ν0(ν0 随不同阴极金属材料而异)时,不论光的强度如何,照射时间多长,都没有光电流产生。

ν0称为 截止频率 。

4.光电效应是瞬时效应。

即使入射光的强度非常微弱,只要频率大于 截止频率 ,在开始照射后立即有光电子产生,所经过的时间至多为10-9秒的数量级。

5.爱因斯坦的光量子理论成功地解释了光电效应的实验规律。

写出爱因斯坦提出的光电效应方程:A m h +=2021υν 问答题1.如何通过光电效应测量普朗克常数?光电效应实验表明,截止电压U 0是频率ν的线性函数,即 eU 0 =h ν-A直线斜率k = h/e 。

e 为电子电荷常数,对于给定的光电管,只要用实验方法得出不同的辐射频率对应的截止电压,求出直线斜率,就可算出普朗克常数h 。

2.零电流法和补偿法测量截止电压有何区别?零电流法是直接将各谱线照射下测得的电流为零时对应的电压U AK 的绝对值作为截止电压U 0。

此法的前提是阳极反向电流、暗电流和本底电流都很小,用零电流法测得的截止电压与真实值相差较小。

补偿法调节电压U AK 使电流为零后,保持U AK 不变,遮挡汞灯光源,此时测得的电流I 为电压接近截止电压时的暗电流和本底电流。

重新让汞灯照射光电管,调节电压U AK 使电流值显示为I ,将此时对应的电压U AK 的绝对值作为截至电压U 0。

此法可补偿暗电流和本底电流对测量结果的影响。

3.根据你的测量数据,确定光电管阴极材料的电子逸出功A ?根据 eU 0 =h ν-AA 1=h ν-eU 0=6.626×10-34×8.214×1014-1.602×10-19×1.750 =2.640×10-19JA 2=6.626×10-34×7.408×1014-1.602×10-19×1.436=2.579×10-19J=6.626×10-34×6.879×1014-1.602×10-19×1.206A3=2.626×10-19JA=6.626×10-34×5.490×1014-1.602×10-19×0.6164=2.651×10-19J=6.626×10-34×5.196×1014-1.602×10-19×0.496A5=2.648×10-19JA=2.629×10-19J数据处理实验数据1: U0—V关系1.作出不同频率下截止电压Ua和频率ν的关系曲线,求出普朗克常数h、截止频率ν0、电子逸出功A,并算出所测量值h与公认值之间的相对误差E。

光电效应与普朗克常量的测定实验报告

光电效应与普朗克常量的测定实验报告

实验目的:本实验旨在通过光电效应实验测定普朗克常量,并验证光电效应与普朗克常量之间的关系。

实验原理:光电效应是指当光照射到金属表面时,金属会发射出电子的现象。

根据爱因斯坦的解释,光电效应可以用粒子模型解释,即光子(光的量子)与金属表面上的电子相互作用,使得电子获得足够的能量,从而克服金属表面的束缚力逸出。

普朗克常量(h)是描述光子的能量与频率之间关系的物理常数,它与光电效应中的电子动能和光的频率之间有关系,可以通过光电效应实验进行测定。

实验装置:光源:提供可调节的单色光源。

光电管:包括光敏阴极和阳极,用于测量光电子的电流。

电压源:用于给光电管提供适当的反向电压。

电流计:用于测量光电子的电流。

实验步骤:将光电管与电压源和电流计连接起来,确保电路正常。

调节光源的单色光频率,使其能够照射到光电管的光敏阴极上。

逐渐增加反向电压,直到观察到电流计指针发生明显变化。

记录此时的反向电压和光电管的电流值。

重复步骤3和步骤4,分别改变光源的频率和光强,记录对应的反向电压和电流值。

统计所得的数据,绘制反向电压和光电流的关系曲线。

根据实验数据和绘制的曲线,利用普朗克关系E = hf(E为光电子的动能,h为普朗克常量,f为光的频率),进行普朗克常量的测定。

实验结果与讨论:根据实验所得的反向电压和光电流的关系曲线,可以利用普朗克关系计算得到普朗克常量的数值。

在实验中应注意排除误差因素,如光强的变化、测量误差等,以提高实验结果的准确性。

结论:通过光电效应实验测定普朗克常量,并与理论值进行比较,验证了光电效应与普朗克常量之间的关系。

实验结果与理论值的接近程度可以评估实验的准确性,并对光电效应和普朗克常量的物理意义进行讨论。

需要注意的是,实验报告中还应包括实验装置的详细描述、数据记录、数据处理方法和结果分析等内容,以及可能的误差来源和改进措施。

这些信息可以根据具体的实验条件和要求进行适当调整和补充。

用光电效应测量普朗克常量

用光电效应测量普朗克常量

用光电效应测量普朗克常量【实验目的】1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律;2、掌握用光电管进行光电效应研究的方法;3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。

【实验仪器】光电效应测试仪、汞灯及电源、滤色片、光阑、光电管、测试仪【实验原理】1、存在截止频率v0 :每一种金属都有一极限频率,当入射光的频率低于截止频率时,无论光的强度如何都没有光电子产生;(v0 红限频率)2、光电效应中产生光电子速度(初动能)与光强无关,而与入射光的频率成正比;3、瞬时效应:只要v>v0立即引起光电子发射(时间间隔小的可以忽略不计)4)当AKU大于或等于U0 后,I迅速增加然后趋于饱和。

饱和光电流强度Im 与入射光强P成正比。

然而对于这些实验事实,经典的波动理论无法给出圆满的解释爱因斯坦受普朗克量子假设的启发,提出了光量子假设,当光子照射金属时,金属中的电子全部吸收光子的能量hv,电子把光子能量的一部分变成它逸出金属表面所需的功W,另一部分转化为光电子的动能,即爱因斯坦光量子理论圆满地解释了光电效应的各条实验规律光强2 >光强1aU AKUI光强光强1S2IS1I光子能量: v:光子频率 h:普朗克常数光强: N:单位时间通过单位面积的光子个数当221mmveU时,光电子动能将变为零,eU代表光电子的最大初动能存在截止电压U0光电子的最大初动能等于它反抗电场力所做的功普朗克常数的测量:得截止电压U0与入射光频率v成直线关系:实验中可用不同频率的入射光照射,分别找到相应的遏止电压U0 ,就可作出U0~ v的实验直线,此直线的斜率就是k=h/e则普朗克常数:五、实验内容与步骤1、调整仪器(1)连接仪器;接好电源,打开电源开关,充分预热(不少于20分钟)。

(2)在测量电路连接完毕后,没有给测量信号时,旋转“调零”旋钮调零。

每换一次量程,必须重新调零。

(3)取下暗盒光窗口遮光罩,换上365.0nm滤光片,取下汞灯出光窗口的遮光罩,装好遮光筒,调节好暗盒与汞灯距离。

基础物理实验-光电效应法测定普朗克常数

基础物理实验-光电效应法测定普朗克常数

基础物理实验-光电效应法测定普朗克常数
光电效应法测定普朗克常数是一项基础物理实验,是通过研究光电效应来测定普朗克常数(符号为h)的一种方式。

普朗克常数是物理定律中一个重要的常数,它影响到热力学、光学等物理现象。

其值与许多量子现象有关,因此普朗克常数的准确的测定具有很重要的意义。

光电效应法测定普朗克常数有两种方法:第一种是爱因斯坦-ヒル方法,第二种是思廉斯-威尔逊方法。

爱因斯坦-ヒル方法主要是测定半导体中发生光电效应时,所放射或吸收光子与电子电荷之间的关系。

思廉斯-威尔逊方法是研究普朗克常数在发生激光光电效应中及电子电荷与激光能量所关联的关系。

爱因斯坦-ヒル方法测定普朗克常数的具体实验操作是:测量铋基半导体片材,将研磨涂硅好的片材压入Si的夹头,然后将夹头底座接入电路中,成为一个封闭的系统;然后将强光源聚焦于夹头和片材之间,激发半导体材料,使它发射出电子,接着将其能谱绘制出来;最后根据电荷量分子和光子能量的关系求得普朗克常数的值。

思廉斯-威尔逊方法的实验过程是:首先构造一个电路,电路中要有激光源、金属晶体和放大器等元件;然后将一定能量的光束输出,激发金属晶体,使它产生电离;接着通过放大器将电离电荷数目设定为有限数量,最后通过积分器计算积分,得到普朗克常数的大小。

有了以上两个方法,人们便可以精确测定普朗克常数,并利用该方法进行其他实验中也会经常用到该常数的计算。

由此可见光电效应法测定普朗克常数的重要性。

通过本次实验学习,可以充分体现出基础物理实验中的实用性,使我们能够仔细学习其核心内容,深入理解并巩固学习结果。

利用光电效应测普朗克常数实验步骤

利用光电效应测普朗克常数实验步骤

利用光电效应测普朗克常数实验步骤测量普朗克常数的光电效应实验是一种常见的实验方法,以下是一个步骤详细的实验说明,以利用光电效应测定普朗克常数。

实验设备和材料:-光电效应实验仪器:包括光源、光电管、电压源和电流计等。

-光源:可使用氢气放电管等具有特定波长的光源。

-光电管:选择光电效应较强的光电管,例如镉面光电管。

-电压源:可以为光电管提供不同的电压。

-电流计:用于测量光电管中的电流。

实验步骤:步骤1:装置搭建1.将光电管与电压源和电流计连接起来,确保电路完整。

确保光电管的阴极朝向光源。

2.将电流计的量程设定为合适的范围,并保持其刻度清晰可读。

3.将光源切换到适当的波长,以使其与光电管光谱响应相匹配。

步骤2:测量光电流与光强关系1.先令电压源的电压为零,此时光电管中不会有电流通过。

2.将光源通过光管照射到光电管阴极上,并记录下光电流稳定值。

3.逐渐增加电压源的电压,再次记录光电流的大小。

每次增加一定的电压值后等待电流稳定再进行记录,直到光电流达到饱和或不再变化。

4.根据电流计的读数和光电管的阴极面积,计算出光电流密度(单位面积上接收到的光电流)。

步骤3:绘制光电流与光强曲线1.绘制一个光电流与光强(或电压)的散点图,横坐标为光强(或电压),纵坐标为光电流密度。

2.可以采用半对数坐标轴,即横坐标使用对数刻度,纵坐标使用线性刻度绘制图线。

3.使用最小二乘法拟合数据点得到一条最佳拟合直线。

根据光电效应的基本关系式,该直线的斜率为普朗克常数的负值。

步骤4:计算普朗克常数1.根据拟合直线的斜率,计算得到普朗克常数的负值。

2.考虑实验中存在的误差,包括光电流的测量误差、电压测量的误差等,以及仪器设备的误差,计算出普朗克常数的不确定度。

3.将实验测得的普朗克常数值和不确定度与已知的普朗克常数值进行比较,评估实验结果的准确性和可靠性。

总结:通过这个实验步骤,可以利用光电效应测定普朗克常数。

该实验操作简单,但结果的准确性和可靠性受到实验环境、测量仪器的精度和其他误差的影响。

实验七光电效应及普朗克常数的测定

实验七光电效应及普朗克常数的测定

光子的能量h0<A时,电子不能脱离金属,因而没 有光电流产生。产生光电效应的最低频率(截止 频率)是0 =Aห้องสมุดไป่ตู้h。 可得:
eU0 =h-A
此式表明止电压U0是频率的 线性函数(如图),直线斜率
h U a 2 U a1 k e 2 1
只要用实验方法得出不同的频率对应的遏止电压, 求出直线斜率,就可算出普朗克常数h。
解 释:
按照爱因斯坦光子理论: 光照射到金属 k 极,实际上是单个光子 能量为h的光子束入射到 k 极,光子 与 k 极内的电子发生碰撞。 当电子一次性地吸收了一个光子后,便获 得了h的能量而立刻从金属表面逸出,没 有明显的时间滞后,这也正是光的“粒子 性”表现。 -----光电效应的瞬时效应
根据爱因斯坦的光电效应方程:
1 2 h m 0 A 2
入射到金属表面的光频率越高,逸出的电子动能 越大,所以即使阳极电位比阴极电位低时也会有 电子落入阳极形成光电流,直至阳极电位低于遏 止电压,光电流才为零
此时有:
1 2 eU a m0 2
式中Ua为遏止电压。
阳极电位高于遏止电压后,随着阳极电位的升高, 阳极对阴极发射的电子的收集作用越强,光电流 随之上升; 当阳极电压高到一定程度,已把阴极发射的光 电子几乎全收集到阳极,再增加UAK时I不再变化, 光电流出现饱和,饱和光电流 IM 的大小与入射 光的强度P成正比。
三、实验仪器
普朗克常数测定仪
仪器由汞灯及电源、滤光片、光阑、光电管、测试 仪(含光电管电源和微电流放大器)构成,仪器结 构如图5所示
测试仪
汞灯电源
汞灯 图5
滤色片 光阑 仪器结构图
光电管
基座
滤色片:5片,透射波长365.0nm,404.7nm,435.8nm,546.1nm, 577.0nm 光 阑:3片,直径2mm,4mm,8mm

光电效应和普朗克常数的测定

光电效应和普朗克常数的测定

实验十一光电效应和普朗克常数的测定实验背景:光电效应是指一定频率的光照射在金属表面时,会有电子从金属表面溢出的现象。

光电效应对于认识光的本质及早期量子理论的发展,具有里程碑式的意义。

一,实验目的1,了解光电效应2,利用光电效应方程和能量守恒方程,求出普朗克常数3,测量伏安特性曲线4,探索电流与光阑直径之间的关系,求表达式5,探索电流与距离之间的关系,求表达式二,实验原理爱因斯坦的光电效应方程:h*ν=mvo^2/2+A含义:由光量子理论,光子具有能量为h*ν。

当光照射到金属表面时,光子的能量被金属中的电子吸收,一部分能量转化为电子克服金属表面吸收力的功,剩下的即转化为电子溢出时的动能。

即实现能量守恒。

如果外加一个反向电场,将会减弱电子运动的动能,当刚好相抵消时,回路中电流为零。

此时有eUo=m*v^2/2;代入上式中,有h*ν=e*Uo+A进行变换,得Uo=h/e*ν-C C为一个常数。

因此,只要求出Uo和ν的关系,求出斜线的斜率,即可知道普朗克常数。

三,实验仪器ZKY-GD-4型智能光电效应实验仪5个透射率分别为365.0nm 404.7nm 435.8nm 546.1nm 577.0nm 个盖子3个直径分别为2mm,4mm,8mm的光阑四,实验数据与数据处理1,测定截止电压UoL=400mm ;光阑孔径φ=4mm用MATLAB作截止电压Uo-频率λ图,并进行最小二乘法拟合:R-Square=99.95%,显然成线性关系,得斜率|k|=0.4099由公式:Uo=k*λ-A=h/e*λ-A得h=k*e其中e = 1.602176565(35)×10-19 J得实验值普朗克常量h=6.5673×10^(-34)J·s普朗克常数标准值:h=6.62606957(29)×10^(-34)J·s误差=0.6%2,伏安特性曲线测量L=400mm ;光阑孔径φ=4mm分别用五种滤光片,电压从0V-50V,每2V测量一次电流值使用MATLAB ,作出电流I 和电压U 的关系曲线:3,作出电流I 和光阑直径的曲线,并求出关系式选择波长405nm L=400mm U=20V作图并拟合:当方程形式为y=a*x^2+b时,R-square高达99.99%.即可认为完全符合这种方程形式。

光电效应和普朗克常数的测定

光电效应和普朗克常数的测定

光电效应和普朗克常数的测定光电效应是指一定频率的光照射在金属表面时会有电子从金属表面逸出的现象。

光电效应实验对于认识光的本质及早期量子理论的发展,具有里程碑的意义。

自古以来,人们就试图解释光是什么,到17世纪,研究光的反射、折射、成像等规律的几何光学基本确立。

牛顿等人在研究几何光学现象的同时,根据光的直线传播性,认为光是一种微粒流,微粒从光源飞出来,在均匀物质内以力学规律作匀速直线运动。

微粒流学说很自然的解释了光的直线传播等性质,在17、18世纪的学术界占有主导地位,但在解释牛顿环等光的干涉现象时遇到了困难。

惠更斯等人在17世纪就提出了光的波动学说,认为光是以波的方式产生和传播的,但早期的波动理论缺乏数学基础,很不完善,没有得到重视。

19世纪初,托马斯.杨发展了惠更斯的波动理论,成功的解释了干涉现象,并提出了著名的杨氏双缝干涉实验,为波动学说提供了很好的证据。

1818年,年仅30岁的菲涅耳在法国科学院关于光的衍射问题的一次悬奖征文活动中,从光是横波的观点出发,圆满的解释了光的偏振,并以严密的数学推理,定量地计算了光通过圆孔、圆板等形状的障碍物所产生的衍射花纹,推出的结果与实验符合得很好,使评奖委员会大为叹服,荣获这一届的科学奖,波动学说逐步为人们所接受。

1856,1865 19世纪末,物理学已经有了相当的发展,在力、热、电、光等领域,都已经建立了完整的理论体系,在应用上也取得巨大的成果。

就当物理学家普通认为物理学发展已经到顶时,从实验上陆续出现了一系列重大发现,揭开了现代物理学革命的序幕,光电效应实验在其中起了重要的作用。

1887年赫兹在用两套电极做电磁波的发射与接收的实验中,发现当紫外光照射到接收电极的负极时,接收电极间更易于产生放电,赫兹的发现吸引许多人去做这方面的研究工作。

斯托列托夫发现负电极在光的照射下会放出带负电的粒子,形成光电流,光电流的大小与入射光强度成正比,光电流实际是在照射开始时立即产生,无需时间上的积累。

用光电效应测量普朗克常量

用光电效应测量普朗克常量

【实验目的】1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律;2、掌握用光电管进行光电效应研究的方法;3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。

【实验仪器】光电效应测试仪、汞灯及电源、滤色片、光阑、光电管、测试仪 【实验原理】1、存在截止频率vO :每一种金属都有一极限频率,当入射光的频率低于截止频率时,无论光的强度如何都没有光电子产生;(v0红限频率)2、光电效应中产生光电子速度(初动能)与光强无关,而与入射光的频率成正比;3、瞬时效应:只要v>v0,无论光强如何,都会 立即引起光电子发射(时间间隔小的可以忽略不计)I 4)当U A K 大于或等于U0后, I 迅速增加然后趋于饱和。

饱和光电流强度Im 与入射光强P 成正比。

然而对于这些实验事实,经典的波动理论无法给出圆满的解释爱因斯坦受普朗克量子假设的启发,提出了光量子假设,当光子照射金属时,金属中的电子全部吸收光子的能量hv ,电子把光子能量的一部分变成它逸出金属表面所需的功W,另一部分转化为光电子的动能,即hu —W +—jnv 2爱因斯坦光量子理论圆满地解释了光电效应的各条实验规律用光电效应测量普朗克常量光强a光强:1—Nhv N :单位时间通过单位面积的光子个数eU 当1mv 22m 时,光电子动能将变为零,eU 代表光电子的最大初动能存在截止电压uo光电子的最大初动能等于它-mV 2=eU a反抗电场力所做的功 普朗克常数的测量:hA—v ——— ee五、实验内容与步骤1、调整仪器(1) 连接仪器;接好电源,打开电源开关,充分预热(不少于20分钟)。

(2) 在测量电路连接完毕后,没有给测量信号时,旋转“调零”旋钮调零。

每换一次量程,必须重新调零。

(3) 取下暗盒光窗口遮光罩,换上365.0nm 滤光片,取下汞灯出光窗口的遮光罩,装好遮光筒,调节好暗盒与汞灯距离。

光子能量:E=hvV :光子频率h :普朗克常数截止电压U0与入射光频率v 成直线关系:实验中可用不同频率的入射光照射,分别找到相应的遏止电压U0,就可作出U0〜V 的实验直线,此直线的斜率就是k=h/e 则普朗克常数:2、测量普朗克常数h (1)将电压选择按键开关置于-2〜+2V 档,将“电流量程”选择开关置于1-013A 档。

光电效应及普朗克常数测定

光电效应及普朗克常数测定

THQPC-1型普朗克常数测定仪(光电效应实验仪)光电效应及普朗克常数测定前言量子论是近代物理的基础之一,而光电效应可以给量子论以直观、鲜明的物理图像,随着科学技术的发展,光电效应已广泛用于工农业生产、国防和许多科技领域。

普朗克常数(公认值h=6.62619×10-34J.s.)是自然科学中一个很重要的常数,它可以用光电效应法简单而又准确地求出,所以,进行光电效应实验并通过实验求取普朗克常数有助于学生理解量子理论和更好地认识h这个常数。

1887年H·赫兹在验证电磁波存在时意外发现,一束光照射到金属表面,会有电子从金属表面逸出,这个物理现象被称为光电效应。

1888年以后,W·哈耳瓦克期、A·T斯托列托夫、P·勒纳德等人对光电效应作了长时间地研究,并总结了光电效应的基本实验事实:(1)光电流与光强成正比;(2)光电效应存在一个截止频率,当入射光的频率低于某一阈值υ0时,不论光的强度如何,都没有光电子产生;(3)光电子的动能与光强无光,但与入射光的频率成正比;(4)光电效应是瞬时效应,一经光线照射,立刻产生光电子,停止光照,即无光电子产生。

一、实验目的1.通过对实验现象的观测与分析,了解光电效应的规律和光的量子性。

2.观测光电管的弱电流特性,找出不同光频率下的截止电压。

3.了解光的量子理论与波动理论,并验证爱因斯坦方程进而求出普朗克常数。

二、实验仪器1.THQPC-1型普朗克常数测定仪微电流测试仪;1THQPC-1型普朗克常数测定仪(光电效应实验仪)2.THQPC-1型普朗克常数测定仪测试台。

三、实验原理爱因斯坦认为从一点发出的光,不是按麦克斯韦电磁学说指出的那样以连续分布的形式把能量传播到空间,而是以hυ为能量单位(光量子)的形式一份一份地向外辐射,至于光电效应,是具有能量hυ的一个光子作用于金属中的一个自由电子,并把它的全部能量都交给这个电子而造成的。

光电效应及普朗克常数的测定

光电效应及普朗克常数的测定

光电效应及普朗克常数的测定一、实验目的1. 通过光电效应基本特性曲线的测量,加深对光的量子性的理解。

2. 验证爱因斯坦光电效应方程,并测定普朗克常数。

二、实验原理1.光电效应及其实验规律光电效应:当光照射到金属表面时,金属中有电子逸出的现象。

研究原理图如图 4.5.1。

当单色光入射到光电管阴极K时,阴极上会有(光)电子逸出。

部分光电子会到达阳极A,形成光电流。

通过改变外电场的大小和方向,以及选择不同频率的单色光入射,得到光电效应的实验规律:1.1 饱和光电流与入射光强成正比。

如图 4.5.2;1.2 当入射光的频率v<vo(截止频率)时,不论光的强度如何都没有光电子产生;1.3 光电子的初动能与入射光的频率成正比,与入射光强无关,;1.4 光电效应是瞬时发生的,与入射光强无关。

对于这些实验事实,经典的波动理论无法给出圆满的解释。

2.爱因斯坦光量子理论频率为v的光由能量为hv的粒子组成,这些粒子称为光子。

光入射到金属表面时,一个光子的能量通过碰撞立即被一个电子吸收,只要电子获得的能量足以克服金属对它的束缚能(即逸出功),即可瞬间产生光电效应。

根据能量转化与守恒定律,逸出电子的初动能与入射光频率和金属逸出功的关系为(4.5.1)(爱因斯坦光电效应方程)。

3.普朗克常数的测定U.如图4.5.2。

由(4.5.1)截止电压:使光电流为零而在光电管两端所加的反向电压S和截止电压与电子最大初动能的关系可得到截止电压与入射光频率的关系(4.5.2)显然,选择不同频率的光入射,测量相应的截止电压,得到两者的线性关系,由斜率和截距可得到普朗克常数和金属材料的逸出功。

4.截止电压的确定由于热电子发射、光电管极间漏电、本底电流及阳极产生的反向光电流等因素的影响,使实际测得的光电流曲线下移,故截止电压并非是电流为零时的电压,而是实测曲线两线性段之间的弯曲联接处,即截止电压对应的是曲线上反向电流部分斜率变化很大时的电压,如图4.5.3。

光电效应测普朗克常数

光电效应测普朗克常数

光电效应测普朗克常数引言光电效应是指当光照射到金属表面时,金属会发射出电子的现象。

这一现象对于理解光的本质和粒子特性起到了重要的作用。

普朗克常数是描述光的粒子性质的一个物理常数,它被定义为光子能量与其频率之间的比值。

本文将介绍光电效应的基本原理以及如何利用光电效应来测量普朗克常数。

光电效应的基本原理光电效应的基本原理可以用来解释为什么金属在受到光照射时会发射电子。

根据爱因斯坦的光子观点,光是由一系列能量为hf的光子组成的,其中h为普朗克常数,f为光的频率。

当光照射到金属表面时,光子的能量转移给了金属中的自由电子,使其获得可能离开金属表面的能量。

如果光子的能量足够大,电子将被光子完全吸收并从金属表面射出,这就是光电效应的基本过程。

光电效应的一些基本特点可以总结如下:1.光电子发射的速度与入射光子的频率有关:光电子发射的速度与入射光子的频率成正比。

当入射光子的频率增加时,光电子的速度也会增加。

2.存在阈值频率:对于给定的金属材料,存在一个称为阈值频率的临界频率。

当入射光的频率小于该阈值频率时,光电效应不会发生,即使光的强度很大。

3.光电子的动能与入射光子的频率相关:光电子的动能与入射光子的频率之间存在一个线性关系。

光电子的动能可以通过测量光电子的速度来确定。

测量普朗克常数的实验方法利用光电效应来测量普朗克常数可以采用以下的实验方法:1.测量光电流与光强度之间的关系:首先要测量光电流与光强度之间的关系。

实验中可以通过改变入射光的强度,使用一个电流计测量光电流的大小。

根据光电效应,光强度的增加应该导致光电流的增加。

2.测量光电流与频率之间的关系:接下来测量光电流与光频率之间的关系。

在这个实验中,入射光的强度保持不变,而改变入射光的频率。

通过测量光电流的变化,可以得到光电流与频率之间的关系。

3.绘制光电流与频率的图像:根据实验测量数据,可以绘制光电流与频率的图像。

从图像中可以得到光电流与频率的线性关系的斜率。

光电效应及普朗克常数的测定实验报告

光电效应及普朗克常数的测定实验报告

光电效应及普朗克常数的测定实验报告光电效应及普朗克常数的测定实验报告引言:光电效应是指当光照射到金属表面时,会引起金属中电子的发射现象。

这一现象的发现和研究对于理解光的本质和量子理论的发展起到了重要的推动作用。

普朗克常数是描述光的粒子性质的一个重要物理常数,它是通过光电效应实验测定得到的。

本实验旨在通过测量光电效应的一些基本参数,来计算得到普朗克常数。

实验方法:实验采用了光电效应的基本原理,通过调节不同波长的光源照射到金属表面,测量光电子的动能和光的频率,从而计算得到普朗克常数。

实验装置主要包括光源、光电管、电压源和电流计。

实验步骤:1. 首先,将实验装置调整到合适的工作状态。

确保光源和光电管之间的距离适当,并调节电压源的输出电压。

2. 使用不同波长的光源照射到光电管上,记录下光电管的电流值和电压值。

3. 对于每个波长的光源,重复步骤2,记录多组数据,以提高测量的准确性。

4. 根据测得的数据,绘制光电子动能与光的频率之间的关系曲线。

5. 通过拟合曲线,计算得到普朗克常数。

实验结果与讨论:根据实验测得的数据,我们绘制了光电子动能与光的频率之间的关系曲线。

通过拟合曲线,我们得到了普朗克常数的近似值。

在实验中,我们发现光电子动能与光的频率之间存在着线性关系,这与光电效应的基本原理相符。

根据爱因斯坦的光量子假设,光的能量是由光子携带的,而光子的能量与光的频率成正比。

因此,光电子的动能与光的频率之间应该存在线性关系。

通过拟合曲线,我们得到了普朗克常数的近似值。

普朗克常数的精确值为6.62607015 × 10^-34 J·s。

通过实验测得的值与精确值的比较,可以评估实验的准确性和误差来源。

在实验中,可能存在的误差包括光源的波长测量误差、光电管的灵敏度误差以及测量仪器的误差等。

为了提高实验的准确性,我们可以采取一些措施,如使用更精确的仪器、增加数据的重复测量次数等。

结论:通过光电效应实验,我们成功测定了普朗克常数的近似值。

光电效应和普朗克常数的测定

光电效应和普朗克常数的测定
光电效应和普朗克常数的测定
填空题
1.光电效应的实验事实表明,对应于一定的辐射频率,有一电压 U0,当 UAK≦U0 时, 电流为零,U0 被称为 截止电压 。
2.光电效应的定律指出,照射光的频率与极间端电压 UAK 一定时, 饱和光电流 的 大小与入射光的强度成正比。
3.对于不同频率的光,其截止电压的值不同,截止电压与 入射光频率 成正比关 系。当入射光频率低于某极限值0(0 随不同阴极金属材料而异)时,不论光的强度 如何,照射时间多长,都没有光电流产生。0 称为 截止频率 。
1014
h=ek=1.602×10-19×0.413×1014 6.6161034 J.S
相对误差
| h h0
|
6.626 10 34
6.616 10 34
0.00151
0.15%
h
6.626 10 34
3)由 U0-ν 直线得截止频率
。 4.08 10 14 Hz
光电流与光阑孔径的关系曲线
80.0
60.0
40.0
20.0
0.0
2.0
4.0
6.0
8.0
0
φ /mm
2)入射光强与光阑孔面积成正比,因此光电流与光阑孔面积成正比。
光阑孔面积 S/mm2
л

16л
I(×10-10A)
8.0
16.5
68.7
I/(×10-10A)
R/
80.0
光电管的 I-P 曲线
3.根据你的测量数据,确定光电管阴极材料的电子逸出功 A?
根据
eU0 =h-A
A1=h-eU0=6.626×10-34×8.214×1014-1.602×10-19×1.750
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二十九 光电效应及普朗克常数的测量光电效应是指一定频率的光照射在金属表面时会有电子从金属表面逸出的现象。

光电效应实验对于认识光的本质及早期量子理论的发展,具有里程碑式的意义。

普朗克常数是量子力学当中的一个基本常量,它首先由普朗克在研究黑体辐射问题时提出,其值约为s J h ⋅⨯=-3410626069.6,它可以用光电效应法简单而又较准确地求出。

1905年,爱因斯坦借鉴了普朗克在黑体辐射研究中提出的辐射能量不连续观点,并应用于光辐射,提出了“光量子”概念,建立了光电效应的爱因斯坦方程,从而成功地解释了光电效应的各项基本规律,使人们对光的本性认识有了一个飞跃。

1916年密立根用实验验证了爱因斯坦的上述理论,并精确测量了普朗克常数,证实了爱因斯坦方程。

因光电效应等方面的杰出贡献,爱因斯坦与密立根分别于1921年和1923年获得了诺贝尔奖。

作为第一个在历史上实验测得普朗克常数的物理实验,光电效应的意义是不言而喻的。

一、实验目的1. 了解光电效应的规律,加深对光的量子性的理解。

2. 测量普朗克常数h 。

二、实验仪器仪器由汞灯及电源、滤色片、光阑、光电管、测试仪(含光电管电源和微电流放大器)构成,仪器结构如图1所示,测试仪的调节面板如图2所示。

汞灯:可用谱线365.0nm 、404.7nm 、435.8nm 、546.1nm 、577.0nm 、579.0nm 滤色片:5片,透射波长365.0nm 、404.7nm 、435.8nm 、546.1nm 、577.0nm 光阑:3片,直径分别为2mm 、4mm 、8mm光电管:阳极为镍圈,阴极为银-氧-钾(Ag-O-K ),光谱响应围320~700nm ,暗电流:I ≤2×10-13A (-2V≤U AK ≤0V )光电管电源:2档,-2~0V ,-2~+30V ,三位半数显,稳定度≤0.1%图1 仪器结构示意图1 2 3 4 5 6 7 8 9 1测试仪; 2光电管暗盒; 3光电管; 4光阑选择圈; 5滤色片选择圈;6基座; 7汞灯暗盒; 8汞灯; 9汞灯电源微电流放大器:6档,10-8~10-13A ,分辨率10-13A ,三位半数显,稳定度≤0.2%。

三、实验原理1、 光电效应爱因斯坦认为光在传播时其能量是量子化的,其能量的量子称为光子,每个光子的能量正比于其频率,比例系数为普朗克常量,即E=h ν,当光子照射到金属表面上时,一次为金属中的电子全部吸收,而无需积累能量的时间。

电子把这能量的一部分用来克服金属表面对它的吸引力,余下的就变为电子离开金属表面后的动能,按照能量守恒原理,爱因斯坦提出了著名的光电效应方程:A m h +=2021υν (1)式中,A 为金属的逸出功,2021υm 为光电子获得的初始动能,0υ为最大速度,m 为光电子的质量,ν为光的频率,h 为普朗克常数。

光电效应的实验原理如图3所示。

入射光照射到光电管阴极K 上,产生的光电子在电场的作用下向阳极A 迁移构成光电流,改变外加电压U AK ,测量出光电流I 的大小,即可得出光电管的伏安特性曲线。

ν1 ν2ν0ν图3 实验原理图图4同一频率,不同光强时光电管的伏安特性曲线图5不同频率时光电管的伏安特性曲线图6截止电压U 0与入射光频率ν的关系图图2 测试仪面板图光电效应的基本实验原理如下:(1)对于某一频率,光电效应的I-U AK 关系如图4所示。

从图中可见,对一定的频率,有一电压U 0,当U AK ≤U 0时,电流为零,也就是这个负电压产生的电势能完全抵消了由于吸收光子而从金属表面逸出的电子的动能。

这个相对于阴极的负值的阳极电压U 0,被称为截止电压。

(2)当U AK ≥U 0 后,电势能不足以抵消逸出电子的动能,从而组件产生电流I 。

I 迅速增加,然后趋于饱和,饱和光电流I M 的大小与入射光的强度P 成正比。

(3)对于不同频率的光,由于它们的光子能量不同,赋予逸出电子的动能不同。

显然,频率越高的光子,其产生逸出电子的能量也越高,所以截止电压的值也越高,如图5所示。

(4)作截止电压U 0与频率ν 的关系图如图6所示。

U 0与ν 成正比关系。

显然,当入射光频率低于某极限值ν0(ν0随不同金属而异)时,不论光的强度如何,照射时间多长,都没有光电流产生。

(5)光电效应是瞬时效应。

即使入射光的强度非常微弱,只要频率大于ν0,在开始照射后立即有光电子产生,所经过的时间至多为10-9秒的数量级。

说明:实际中,反向电流并不为零。

图4、图5中从零开始,是因为反向电流极小,仅为10-13~10-14数量级,所以在坐标上反映不出来。

由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能越大,所以即使阳极电位比阴极电位低时也会有电子落入阳极形成光电流,直至阳极电位低于截止电压,光电流才为零,此时有关系:20012eU m υ=(2) 阳极电位高于截止电压后,随着阳极电位的升高,阳极对阴极发射的电子的收集作用越强,光电流随之上升;当阳极电压高到一定程度,已把阴极发射的光电子几乎全收集到阳极,再增加U AK 时I 不再变化,光电流出现饱和,饱和光电流I M 的大小与入射光的强度P 成正比。

光子的能量h ν0 <A 时,电子不能脱离金属,因而没有光电流产生。

产生光电效应的最低频率(截止频率)是ν0 =A/h 。

将(2)式代入(1)式可得:0eU h A ν=- (3)此式表明截止电压U 0是频率ν的线性函数,直线斜率k =h /e ,只要用实验方法得出不同的频率对应的截止电压,求出直线斜率,就可算出普朗克常数h 。

爱因斯坦的光量子理论成功地解释了光电效应规律。

2、影响准确测量截止电压的因素测量普朗克参数h 的关键是正确的测出截止电压U 0,但实际上由于光电管制作工艺等原因,给准确测定截止电压带来了一定的困难。

暗电流、本底电流和反向电流是对测量产生影响的主要因素。

(1)在无光照时,也会产生电流,称之为暗电流。

它是由阴极在常温下的热电子发射形成的热电流和封闭在暗盒里的光电管在外加电压下因管子阴极和阳极间绝缘电阻漏电而产生的漏电流两部分组成。

(2)本底电流是周围杂散光进入光电管所致。

(3)反向电流是由于制作光电管时阳极上往往溅有阴极材料,所以当光照射到阳极上和杂散光漫射到阳极上时,阳极上往往有光电子发射;此外,阴极发射的光电子也可能被阳极的表面反射。

当阳极A为负电势,阴极K为正电势时,对阴极K上发射的光电子而言起减速作用,而对阳极A发射或反射的光电子而言却起了加速作用,使阳极A发射岀的光电子也到达阴极K,形成反向电流。

由于上述原因,实测的光电光伏安特性曲线与理想曲线有区别。

暗电流图5 光电流曲线分析四、实验容1.分别测量高压汞灯波长为365.0、404.7、435.8、546.1、546.1nm的单色光所对应电流小于0时的电压电流约15组对应点。

2.做出每种光所对应电流的伏安特性曲线,确定各自得截止电压,并计算普朗克常量。

五、实验步骤1、测试前准备(1)将测试仪和汞灯电源接通,预热20分钟。

(2)把汞灯盒遮光盖盖上,将光电管暗盒的光阑选择圈调整到任意两个光阑的中间位置,以此遮住光电管。

将汞灯暗盒光输出口对准光电管暗盒光输入口,调整光电管与汞灯距离为约40cm并保持不变。

(3)用专用连接线将光电管暗盒电压输入端与测试仪电压输出端(后面板上)连接起来(红—红,蓝—蓝)。

(4)调零:将“电流量程”选择开关置于所选档位,仪器在充分预热后,进行测试前调零。

调零时,将“调零/测量”切换开关切换到“调零”档位,旋转“电流调零”旋钮使电流指示为“000.0”。

调节好后,将“调零/测量”切换开关切换到“测量”档位。

(4)用高频匹配电缆将光电管暗盒电流输出端K与测试仪微电流输入端(后面板上)连接起来。

注意:在进行每一组实验前,必须按照上面的调零方法进行调零,否则会影响实验精度。

2、测普朗克常数h(1)将电压选择按键置于-2V~0V档;将“电流量程”选择开关置于10-13A档,将测试仪电流输入电缆断开,调零后重新接上;旋转光阑选择圈的“Φ4”光阑及滤色片选择圈的“365”滤色片到“↓”下方,打开汞灯暗盒遮光盖开始实验。

(2)从低到高调节电压,用“零电流法”或“补偿法”测量该波长对应的U0,并将数据记于错误!未找到引用源。

中。

(3)旋转滤色片选择圈,依次换404.7nm,435.8nm,546.1nm,577.0nm的滤色片,重复以上测量步骤。

3、测光电管的伏安特性曲线将电压选择按键置于-2V—+30V档;选择合适的“电流量程”档位(建议选择10-11A 档);将测试仪电流输入电缆断开,调零后重新接上。

旋转光阑选择圈的“Φ2”光阑及滤色片选择圈的“436”滤色片到“↓”下方,打开汞灯暗盒遮光盖开始实验。

a.从低到高调节电压,记录电流从零到非零点所对应的电压值作为第一组数据,以后电压每变化一定值记录一组数据到表中。

旋转光阑选择圈和滤色片选择圈,将“Φ4”光阑及“546”滤色片调到“↓”下方,,重复a测量步骤。

用表数据在坐标纸上作对应于以上两种波长及光强的伏安特性曲线。

4、整理仪器六、注意事项1.本实验不必要求暗室环境,但应避免背景光强的剧烈变化。

2.实验过程中注意随时盖上汞灯的遮光盖,严禁让汞灯光不经过滤光片直接入射光电管窗口。

3.实验结束时应盖上光电管暗箱和汞灯的遮光盖!4.汞灯光源必须充分预热(20分钟以上)。

七、数据记录表-6 U表 7 I —U AK 关系L= mm Φ= mm八、数据处理由于本仪器的特点,在测量各谱线的截止电压U 0时,可不用难于操作的“拐点法”,而用“零电流法”或“补偿法”。

零电流法是直接将各谱线照射下测得的电流为零时对应的电压U AK 的绝对值作为截止电压U 0。

此法的前提是阳极反向电流、暗电流和本底电流都很小,用零电流法测得的截止电压与真实值相差很小。

且各谱线的截止电压都相差ΔU 对U 0-ν 曲线的斜率无大的影响,因此对h 的测量不会产生大的影响。

补偿法是调节电压U AK 使电流为零后,保持U AK 不变,遮挡汞灯光源,此时测得的电流I 1为电压接近截止电压时的暗电流和本底电流。

重新让汞灯照射光电管,调节电压U AK 使电流值至I 1,将此时对应的电压U AK 的绝对值作为截止电压U 0。

此法可补偿暗电流和本底电流对测量结果的影响。

可用以下三种方法之一处理错误!未找到引用源。

的实验数据,得出U 0—ν直线的斜率k 。

a.根据线性回归理论,U 0—ν直线的斜率k 的最佳拟合值为:0022ννννU U k ⋅-⋅=-其中:∑==ni i n 1ν1ν表示频率ν的平均值 ∑==n i i n 122ν1ν表示频率ν的平方的平均值∑==ni i U n U 1001表示截止电压U 0的平均值∑=⋅=⋅ni i i U n U 100ν1ν表示频率ν与截止电压U 0的乘积的平均值b.根据k =000m nνννm nU U U ∆-=∆-,可用逐差法从错误!未找到引用源。

相关文档
最新文档