人教版初一数学上册1.5.1乘方

合集下载

人教版七上)数学:1.5.1乘方

人教版七上)数学:1.5.1乘方
一个数可以看作这个数的本身的一次方; 0的任何正整数次幂都是0。
判断:(对的画“√”,错的画“ ×”)
(1) 32 = 3×2 = 6;
()
(2) (-2)3 = (-3)2; (3) -32 = (-3)2;
() () ()
(1)负数的乘方,在书写时一定要把 整个负数(连同符号)用小括号括起 来.这也是辨认底数的方法; (2)分数的乘方,在书写时一定要把 整个分数用小括号括起来.
有理数的乘方
拉面馆的师傅,用一根 很粗的面条,把两头捏 合在一起拉伸,再捏合, 再拉伸,反复几次,就 把这根很粗的面条拉成 了许多细的面条。如图 所示:
第1次
第2次
第3次
这样捏合到第__次后可拉出128根面条?
第一次捏合可得______根面条 第二次捏合可得______根面条 第三次捏合可得______根面条

7.个性并非社会的敌人,而是社会的逻 辑前提 。社会 是人之 共性和 个性的 统一体; 共性相 约,个性 相得; 共性是 社会的 基础,个 性是社 会的灵 魂。扼 制个性 便是扼 制了社 会之根 本。

8.创新是人的才能的最高表现形式,是 促使人 类社会 不断前 进的车 轮。纵 观历史, 每一位 取得卓 越成就 的人,无 不是敢 于创新 的。敢 于创新 ,是一 种极为 宝贵的 精神,我 们都应 该学习 。
3.童年少年青年好像还是昨天的事儿, 呀,时光 真快,一 生的一 半儿已 经烟飞 云散。 无论如 何,时 光是无 情的,青 春不会 因为你 的期盼 而凝滞, 也不会 因为你 曾有的 虚度而 有半丝 的缓慢 。

4.年老时,你对青春的期盼就只能依靠 些许爽 朗的情 怀,时光 告诉你, 青春是 一种年 龄,亦 是一种 心境。 只是,来 日不多, 你身处 的境地 已经很 明白地 告诉你: 自己孩 提时的 理想是 否成真 ,自己 生命的 质量显 现了一 种什么 样的光 色。

人教版七年级数学上册:1.5.1《乘方》说课稿4

人教版七年级数学上册:1.5.1《乘方》说课稿4

人教版七年级数学上册:1.5.1《乘方》说课稿4一. 教材分析《乘方》是人教版七年级数学上册第一章第五节的一部分,主要介绍了乘方的概念、性质和运算法则。

这部分内容是学生学习数学的基础知识,对于培养学生的逻辑思维和抽象思维能力具有重要意义。

在本节课中,学生将学习乘方的定义,了解乘方的意义和运用。

通过观察和分析实际问题,学生将掌握乘方的运算法则,并能够运用乘方解决实际问题。

教材通过丰富的例题和练习题,帮助学生巩固乘方的知识,并培养学生的解决问题的能力。

二. 学情分析在七年级的学生中,大部分学生已经具备了一定的数学基础,对于基本的运算规则和概念有一定的了解。

但是,由于年龄和认知水平的限制,学生的抽象思维能力还不够成熟,对于抽象的概念和运算法则的理解和运用还需要通过具体的实例和实际操作来辅助。

在乘方的学习中,学生需要理解乘方的定义和意义,并能够运用乘方的运算法则进行计算。

由于乘方是一个比较抽象的概念,学生可能对于乘方的本质和运用有一定的困难。

因此,在教学过程中,需要通过具体的实例和实际操作,帮助学生理解和掌握乘方的知识。

三. 说教学目标1.知识与技能目标:学生能够理解乘方的定义,掌握乘方的运算法则,并能够运用乘方解决实际问题。

2.过程与方法目标:学生通过观察、分析和实际操作,培养学生的逻辑思维和抽象思维能力。

3.情感态度与价值观目标:学生培养对数学的兴趣和热情,培养积极的学习态度和合作精神。

四. 说教学重难点1.教学重点:乘方的定义和乘方的运算法则。

2.教学难点:乘方的本质理解和运用。

五. 说教学方法与手段在本节课中,我将采用问题驱动的教学方法,通过提问和引导学生思考,激发学生的学习兴趣和积极性。

同时,我将运用多媒体教学手段,通过动画和图片的展示,帮助学生直观地理解乘方的概念和运算法则。

此外,我还将在课堂上进行实际操作,让学生亲身体验和感知乘方的运用。

六. 说教学过程1.导入:通过提问和引导学生思考,激发学生的学习兴趣,引出本节课的主题《乘方》。

人教版数学七年级上册1.5.1《乘方》教案1

人教版数学七年级上册1.5.1《乘方》教案1

人教版数学七年级上册1.5.1《乘方》教案1一. 教材分析《乘方》是人教版数学七年级上册第一章第五节的第一课时,本节课主要让学生掌握乘方的概念,理解乘方的意义,学会进行乘方的运算。

教材通过引入“幂”的概念,让学生理解乘方的意义,并通过例题和练习,使学生掌握乘方的运算方法。

二. 学情分析学生在学习本节课之前,已经学习了有理数的乘法,对乘法运算有一定的理解。

但是,乘方作为乘法的推广,学生可能难以理解其本质。

因此,在教学过程中,需要通过具体例题和实际操作,让学生深入理解乘方的意义。

三. 教学目标1.理解乘方的概念,掌握乘方的运算方法。

2.能够运用乘方解决实际问题。

3.培养学生的逻辑思维能力。

四. 教学重难点1.乘方的概念。

2.乘方的运算方法。

五. 教学方法采用讲授法、例题解析法、小组讨论法、练习法等教学方法,通过生动有趣的例题和实际操作,引导学生理解乘方的概念,掌握乘方的运算方法。

六. 教学准备1.PPT课件。

2.练习题。

七. 教学过程1.导入(5分钟)通过复习有理数的乘法,引导学生思考:乘法可以表示为几个相同因数的乘积,那么,几个相同因数的乘积可以表示为什么呢?从而引入乘方的概念。

2.呈现(15分钟)PPT呈现乘方的定义和乘方的运算方法,让学生直观地了解乘方的意义。

通过例题解析,让学生学会进行乘方的运算。

例题1:计算2^3。

解析:2^3表示2乘以自己3次,即2×2×2=8。

例题2:计算3^4。

解析:3^4表示3乘以自己4次,即3×3×3×3=81。

3.操练(10分钟)让学生在课堂上进行乘方的运算练习,教师巡回指导,及时纠正学生的错误。

4.巩固(10分钟)让学生完成一些乘方的练习题,巩固所学知识。

5.拓展(10分钟)引导学生思考:乘方可以表示几个相同因数的乘积,那么,几个相同因数的除法可以表示为什么呢?让学生自己探索并得出答案。

6.小结(5分钟)对本节课的知识进行小结,强调乘方的概念和运算方法。

人教版七年级数学上册1.5.1乘方第3课时有理数的混合运算说课稿

人教版七年级数学上册1.5.1乘方第3课时有理数的混合运算说课稿
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将采用以下方式导入新课:
1.创设情境:以一个与学生生活密切相关的问题为背景,如购物找零、温度变化等,引发学生对有理数混合运算的思考,激发他们的学习兴趣。
2.中体验运算的乐趣,为新课的学习营造轻松愉快的氛围。
2.情境教学:将生活实际问题引入课堂,创设情境,让学生在具体情境中感受数学知识的应用。这种教学方法符合认知灵活性理论,有助于学生将知识应用于不同情境,提高解决问题的能力。
3.小组合作学习:这种方法鼓励学生之间的交流与合作,有利于培养学生的团队精神和沟通能力。社会建构主义理论认为,学习是一个社会互动过程,学生在互动中能够相互启发、共同进步。
(1)激发学生学习数学的兴趣,增强自信心;
(2)培养学生勇于探索、克服困难的意志品质;
(3)使学生认识到数学知识在实际生活中的重要性,提高学习数学的积极性。
(三)教学重难点
根据对学生的了解和教学内容的分析,本节课的教学重点是有理数混合运算的法则和运算顺序。通过实例讲解和练习,使学生掌握混合运算的方法,提高运算速度和准确性。
3.提高学习兴趣方面,我将尝试更多有趣的数学游戏和活动,激发学生学习兴趣。
课后评估教学效果:
1.检查学生作业完成情况,了解学生对知识点的掌握程度;
2.通过课后访谈、问卷调查等方式,了解学生的课堂体验和学习需求;
3.反思本次教学中的优点和不足,及时调整教学策略。
反思和改进措施:
1.针对学生的反馈,调整教学方法和教学内容,提高课堂趣味性;
4.对学生的点滴进步给予表扬和鼓励,增强他们的自信心,激发学习潜能;
5.组织小组合作学习,让学生在交流互动中共同进步,提高学习效果。

人教版七年级数学上册:1.5.1 《乘方》教案

人教版七年级数学上册:1.5.1 《乘方》教案

人教版七年级数学上册:1.5.1 《乘方》教案一. 教材分析《乘方》是人教版七年级数学上册第一章第五节的第一课时,主要介绍有理数的乘方。

教材通过简单的实例让学生感受乘方的意义,理解乘方的运算规则,为后续学习指数幂、对数等概念打下基础。

本节课的内容在数学体系中起到承前启后的作用,既巩固了有理数的基本运算,又为高中阶段更深入的数学学习奠定基础。

二. 学情分析七年级的学生已经掌握了有理数的基本运算,对数学符号和概念有一定的理解。

但乘方作为一个新的概念,需要学生从新的角度去理解。

学生在学习乘方时,可能会对乘方的意义和运算规则产生困惑,因此需要通过实例和练习来帮助学生理解和掌握。

三. 教学目标1.让学生理解乘方的意义,掌握有理数的乘方运算规则。

2.培养学生的逻辑思维能力,提高学生解决实际问题的能力。

3.激发学生对数学的兴趣,培养学生的自主学习能力。

四. 教学重难点1.乘方的意义和运算规则。

2.乘方在实际问题中的应用。

五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。

通过问题引导学生的思考,实例让学生理解乘方的意义,小组合作学习法培养学生的团队协作能力。

六. 教学准备1.教学PPT。

2.实例和练习题。

3.小组合作学习的相关材料。

七. 教学过程1.导入(5分钟)通过一个实际问题引出乘方的概念:某商品打八折出售,即按原价的80%出售,问原价为100元的商品现价是多少?让学生思考如何用数学方法表示这个问题。

2.呈现(15分钟)讲解乘方的意义和运算规则,通过PPT展示实例,让学生理解乘方的概念。

例如,2的3次方表示2乘以自己3次,即2×2×2=8。

3.操练(15分钟)让学生进行乘方运算的练习,教师巡回指导,解答学生的疑问。

可以设置一些有趣的题目,让学生在练习中感受乘方的魅力。

4.巩固(10分钟)通过一些实际问题,让学生运用乘方解决实际问题。

例如,一个班级有30人,每次活动参加的人数是上一次的90%,问第三次活动参加的人数是多少?5.拓展(5分钟)讲解乘方在实际生活中的应用,如科学计算、金融理财等。

人教版七年级数学上册:1.5.1 《乘方》教学设计

人教版七年级数学上册:1.5.1 《乘方》教学设计

人教版七年级数学上册:1.5.1 《乘方》教学设计一. 教材分析《乘方》是人教版七年级数学上册第一章第五节的第一课时,本节课主要让学生了解乘方的概念,掌握有理数的乘方规则,并能够运用乘方解决一些实际问题。

教材通过引入“幂”的概念,让学生理解乘方的意义,并通过大量的例子让学生掌握有理数的乘方规则。

二. 学情分析七年级的学生已经掌握了有理数的乘法,对数的概念有一定的了解,这为学习乘方打下了基础。

但学生在学习乘方时,可能会对乘方的概念和乘方的规则感到困惑,因此需要通过大量的例子让学生理解和掌握。

三. 教学目标1.了解乘方的概念,理解乘方的意义。

2.掌握有理数的乘方规则,能够运用乘方解决一些实际问题。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.乘方的概念。

2.有理数的乘方规则。

五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,通过引导学生思考、讨论、实践,让学生主动探究乘方的意义和规则。

六. 教学准备1.PPT课件。

2.教学案例和习题。

3.小组合作学习的小组划分和任务分配。

七. 教学过程1.导入(5分钟)通过PPT展示一个实际问题:某商品打八折后的价格是120元,问原价是多少?让学生思考如何解决这个问题,从而引出乘方的概念。

2.呈现(15分钟)PPT展示乘方的定义和有理数的乘方规则,通过讲解和示例让学生理解乘方的意义和掌握乘方的规则。

3.操练(15分钟)让学生进行一些乘方的练习,巩固乘方的概念和规则。

教师可以通过PPT展示练习题,让学生在课堂上完成,并对学生的答案进行讲解和指导。

4.巩固(10分钟)通过PPT展示一些巩固乘方知识的习题,让学生独立完成,教师对学生的答案进行讲解和指导。

5.拓展(10分钟)让学生运用乘方解决一些实际问题,如计算利息、折扣等。

教师可以通过PPT 展示实际问题,让学生在课堂上解决,并对学生的答案进行讲解和指导。

6.小结(5分钟)让学生总结本节课所学的内容,教师对学生的总结进行点评和补充。

人教版七年级数学上第一章1.5.1乘方

人教版七年级数学上第一章1.5.1乘方
做一做: 请同学们把一张长方形的纸多次对折, 所产生的纸的层数和对折的次数有关系吗?
对折 次数 纸的 层数 层数可 用算式 表示为 1次 2次 3次 4次 5次 …
2
4
8
16
32
… …

2×2 2×2×2 2×2×2×2 2×2×2×2×2
1次
2次
20次
1.5.1 乘方
2 ×2
… ×
×2 ×2
记作210
注意:“一看底数,二看指数”
想一想:
计算: 102 = 100 103 = 1000
104 = 10000 105 = 100000 观察计算的结果,你能发现什么规律? 10的几次幂,1的后面就有几个0。
练一练:
1、填表:
底数 指数 幂 -1 3 2 5
-4 3
(-4)3
0.3 4
0.34
10 4
(-2)6 =64
(-3)3 =-27 03 =0 04 =0
(-3)4=81
(-1)3 =-1 09 =0
有理数乘方的规律: 1、正数的任何次幂都是正数; 2、负数的偶次幂是正数,负数的奇次幂是负数; 3 、零的任何正整数次幂都是零。
试一试:
不计算确定下列幂的正负。
(-3)13 (负) (-2)23 (-2)24 (正) (-1.7)2003 (负) (负) 02004 (零) (-3.9)12 (正)
10个(-2)
10
2
议一议:
(-3)2与-32有什么区别?
在(-3)2 中,底数是-3, 指数是2,表示2个-3相乘.
在-32 中,底数是3,指数是2, 表示2个3相乘的相反数.
例:计算

人教版七年级数学上册:1.5.1《乘方》教案

人教版七年级数学上册:1.5.1《乘方》教案

人教版七年级数学上册:1.5.1《乘方》教案一. 教材分析《乘方》是人教版七年级数学上册的一个重要内容,主要介绍了乘方的概念、性质和运算法则。

通过学习乘方,学生能够理解和掌握乘方的基本概念,了解乘方的意义和作用,以及运用乘方解决实际问题。

二. 学情分析学生在学习乘方之前,已经掌握了有理数的乘法、除法和加减法等基础知识,具备了一定的数学思维能力。

但部分学生可能对乘方的概念和性质理解不够深入,需要通过实例和练习来进一步巩固。

三. 教学目标1.理解乘方的概念,掌握乘方的性质和运算法则。

2.能够运用乘方解决实际问题,提高解决问题的能力。

3.培养学生的数学思维能力和逻辑推理能力。

四. 教学重难点1.乘方的概念和性质。

2.乘方的运算法则。

3.运用乘方解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生主动探究乘方的概念和性质。

2.运用实例和练习,让学生通过实际操作来理解和掌握乘方的运算法则。

3.采用小组合作学习,培养学生的团队协作能力和沟通能力。

六. 教学准备1.教学PPT或黑板。

2.教学素材和练习题。

3.学生分组名单。

七. 教学过程1.导入(5分钟)利用PPT或黑板,展示一些生活中的实际问题,如温度、速度等,让学生感受到乘方的意义和作用。

引导学生思考:这些问题能否用乘法来解决?如何用乘法来解决?2.呈现(10分钟)介绍乘方的概念,讲解乘方的意义和作用。

通过实例和练习,让学生理解和掌握乘方的运算法则。

如:2^3 = 2 × 2 × 2 = 83.操练(10分钟)让学生进行乘方运算练习,巩固所学知识。

可以设置一些难度不同的练习题,让学生根据自己的实际情况选择适合自己的题目。

4.巩固(10分钟)通过小组合作学习,让学生运用乘方解决实际问题。

可以设置一些开放性问题,让学生分组讨论和解答。

5.拓展(10分钟)引导学生思考:乘方在实际生活中有哪些应用?如何运用乘方解决更复杂的问题?可以让学生举例说明,并进行讲解。

人教版七年级上册数学第一章1.5.1乘方

人教版七年级上册数学第一章1.5.1乘方

1.5 有理数的乘方1.5.1 乘方第1课时有理数的乘方【知识与技能】正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.【过程与方法】1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算.2.已知一个数,会求出它的正整数指数幂,渗透转化思想.【情感态度】培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.【教学重点】正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.【教学难点】准确建立底数、指数和幂三个概念,并能求幂的运算.一、情境导入,初步认识提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,……,5小时后要分裂10次,分裂成1024个.为了简便可将记作210.二、思考探究,获取新知一般地,n个相同的因数a相乘,即a·a·……·a,记作a n,读作a的n 次方.求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n叫做指数,当a n看作a的n次方的结果时,也可读作a的n次幂.【教学说明】(1)举例56说明概念及读法;(2)一个数可以看作这个数本身的一次方,通常省略指数1不写;(3)因为a n就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算;(4)乘方是一种运算,幂是乘方运算的结果.试一试(1)(-4)3;(2)(-2)4;(3)-24.【教学说明】教师教学时应强调:(1)计算时仍然是要先确定符号,再确定绝对值;(2)注意(-2)4与-24的区别.【归纳结论】根据有理数的乘法法则得出有理数乘方的符号规律:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何次幂都是0.三、典例精析,掌握新知例1 计算:【教学说明】注意观察,分清符号、底数以及指数.试一试教材第42~43页练习第1、2题.例2用计算器计算.(-8)5和(-3)6(教材第42页例2)【教学说明】教师让学生用计算器计算上面的题,注意让学生知道算乘方时的按键为∧.试一试教材第42~43页练习第3题.四、运用新知,深化理解1.在(-2)6中,指数为______,底数为______.2.在-26中,指数为______,底数为_______.3.若a 2=16,则a=______.4.平方等于本身的数为______,立方等于本身的数为______.5.计算(-151)×461=________. 6.在(-2)5,(-3)5,(-21)5,(-31)5中,最大的数是_______. 7.下列说法正确的是( )A.平方得9的数是3B.平方得-9的数是-3C.一个数的平方只能是正数D.一个数的平方不能是负数8.下列运算正确的是( )A.-24=16B.-(-2)+=-4C. (-31)2=-91D.(- 21)2=-41 9.下列各组数中,不相等的是( )A.(-3)2与-32B.(-3)2与32C.(-2)3与-23D.丨-23丨与丨-23丨10.下列各式计算不正确的是( )A.(-1)2013=-1B.-12012=1C.(-1)2n =1(n 为正整数)D.(-1)2n+1=-1(n 为正整数)【教学说明】以上题目均较简单,可由学生独立完成后再由教师评讲,边评讲边点学生口答.【答案】1.6 -22.6 23.±44.1、0 -1、0、15.-56.(-31) 5 7.D8.B9.A10.B五、师生互动,课堂小结1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念.2.教师扩展:首先,有理数的乘方就是几个相同因数的积的运算,可以运用有理数乘法法则进行符号的确定和幂的求值.乘方的含义:①表示一种运算;②表示运算的结果.乘方的读法:①当a n 表示运算时,读作a 的n 次方;②当a n 表示运算结果时,读作a 的n 次幂.乘方的符号法则:①正数的任何次幂都是正数;②零的任何次幂都是零;③负数的偶次幂是正数,奇次幂是负数.注意(-a )n 与-a n 及(a b )n 与a nb 的区别和联系.1.布置作业::从教材习题1.5中选取.2.完成练习册中本课时的练习.3.选做题.本课时宜从现实生活里的具体事例出发,引导学生探究理解乘方的意义,在教学过程中采用“自主——合作——讨论——探究——交流”的教学方法,教师始终起着引领学生探寻方向的作用,即遵循“引导——帮助——点拨”的原则,真正做到数学教师由单纯的知识传递者转变为学生学习的组织者、引导者和合作者.这种方式可使学生在动手实践、自主探索、合作交流中主动发展知识,在合作学习及相互交流中形成协作意识.第2课时 有理数的混合运算【知识与技能】了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序.【过程与方法】能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律.【情感态度】培养学生对数的感觉,提高学生正确运算的能力,培养学生思维的逻辑性和灵活性,进一步发展学生的思维能力.【教学重点】有理数的混合运算顺序是确定的.【教学难点】根据有理数的混合运算顺序,正确地进行有理数的混合运算.一、情境导入,初步认识计算:3-(-2)3×6.这个式子先算什么,后算什么?【教学说明】教师引导学生做这道题,让学生说一说运算顺序,接着师生共同归纳出下面的结论.【归纳结论】1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.二、典例精析,掌握新知例1计算下列各题:【分析】按照有理数混合运算的顺序——先算括号,再乘方,然后算乘除,最后算加减进行计算,每步计算先确定符号再计算结果.【教学说明】有理数的计算要遵循先观察,后计算,先确定符号,再计算结果的原则;观察时,先看每个算式可以用括号和“+、-”号分成几个部分(如第(1)题可分为三部分,第(2)题可分为两部分),再看每个部分能否进行简算(如\[21×317-713×722÷312\]2及(0.12510×89)均可进行简算),乘除法中带分数一般化为假分数进行计算.完成此例题后,教师让学生自行阅读教材第43~44页例3、例4.试一试教材第44页练习.例2观察下面三行数:1,4,9,16,25,…;①0,3,8,15,24,…;②4,7,12,19,28,…;③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第12个,计算这三个数的和.分析通过比较可以发现,第②③行数据都是在①的基础上进行加减后得到的,所以根据这个思路很容易知道怎么解题.解:(1)第①行数是12,22,32,42,52,….(2)对比①②两行中的数据,可以发现:第②行数是第①行相应数减1,即12-1,22-1,32-1,42-1,52-1,….对比①③两行中的数据,可以发现,第③行数是第①行相应数加3,即12+3,22+3,32+3,42+3,52+3,….(3)每行第12个数是122,122-1,122+3,其和是122+122-1+122+3=434.【教学说明】这道例题与课本上的例题比较类似,教师可事先让学生学习教材例4后再解这道题.例3已知y=ax5+bx3+cx-5,当x=-3时,y=7;求x=3的y的值.解:当x=-3时,y=a·(-3)5+b·(-3)3+c·(-3)-5=-35a-33b-3c-5=7,∴35a+33b+3c=-12那么,当x=3时,y=35a+33b+3c-5=-12-5=-17【教学说明】本题重在让学生体会整体思想的运用.三、运用新知,深化理解1.计算下列各题.2.根据下表,探索规律:根据规律写出37与320的个位数字.【教学说明】第1题中的几道题都是有关混合运算的题,教师先让学生思考,再让学生在黑板上解答,然后全体学生共同订正,总结规律与注意事项.第2题为探索题,教师可与学生共同探索,提示学生注意看个位数字的变化规律.2.解:由表格知,3n中,当n是连续自然数变化时,幂3n的个位数字是3,9,7,1,3,9,7,1,…周期变化,且四个数为一个周期,易知37的个位数字为7,20 ÷4=5,则320的个位数字与第四个数的个位数字相同,即320的个位数字与34的个位数字相同,为1.四、师生互动,课堂小结1.注意有理数的混合运算顺序,要熟练进行有理数混合运算;2.在运算中要注意像-72与(-7)2等这类式子的区别.1.布置作业::从教材习题1.5中选取.2.完成练习册中本课时的练习.本课时教学重在培养学生计算能力,要求学生先通过交流,正确归纳出有理数混合运算顺序,再在实际解题过程中寻找规律,发现问题,学生间互相辨析指正.教师在指导过程中,强调学生对易错点特别警醒,解题时仔细分析问题结构特征,合理选择步骤和运算律.。

人教版初一数学上册1.5.1乘方

人教版初一数学上册1.5.1乘方
1.5.1 乘方
福州江南水都中学 黄智灵
一、乘方的由来
(1)边长为2的正方形的面积是多少? (2)棱长为2的正方体的体积怎么表示? (3)n个相同因数a 的乘法运算如何表示?
共Hale Waihona Puke 特点:2222相同因数的积 每组算式都是乘法运算
22223
二、乘方的定义
n个相同的因数 a相乘,即 a a a ...a ..
⑤ (5)2 25 ⑥ 52 25 ⑦ 52 -25
⑧ (3)3 -27 ⑨ 33 27
⑩ ( 1)3 1
2
8

(1 2
)3

1 8
⑿ ( 4 )2 16 5 25
⒀ 4 2 16
5
5

4 52
4 25
(3) 5555

6666
3、把下列乘方写成乘法的形式:
(1) 0.93

(2)
9
4



7
(3)ab2

(4) (2)4与 24一样吗?为什么?
三、探究幂的符号规律
例1、计算
(1)(4)3 (2)(2)4
( 3 )

2
3

3
(4 )
n个a相乘
我们把它记作 a ,n 读作:“ 的an次方”
这种求 n个相同因数的积的运算,叫做乘方。
乘方的结果叫做幂。 (n是正整数)
注:一个数可以看 作它本身的一次方
a 幂
n 指数
底数
乘方 a n 有双重含义: (1)“ 表示一种特殊的乘法运算 ”; (2)“ 表示乘方运算的结果 ”;

人教版七年级数学上册:1.5.1《乘方》教学设计1

人教版七年级数学上册:1.5.1《乘方》教学设计1

人教版七年级数学上册:1.5.1《乘方》教学设计1一. 教材分析《乘方》是人教版七年级数学上册第一章第五节的第一部分内容。

本节内容是在学生已经掌握了有理数的乘法、平方根的概念以及性质的基础上进行的。

通过学习乘方,使学生能够理解乘方的概念,掌握乘方的运算法则,并能够运用乘方解决实际问题。

二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的乘法和平方根的概念有一定的了解。

但是,对于乘方的概念和运算法则可能还比较陌生,需要通过具体例子和实际操作来逐步理解和掌握。

三. 教学目标1.知识与技能目标:学生能够理解乘方的概念,掌握乘方的运算法则,并能够运用乘方解决实际问题。

2.过程与方法目标:通过具体例子和实际操作,学生能够逐步理解和掌握乘方的概念和运算法则。

3.情感态度与价值观目标:学生能够积极参与课堂活动,培养对数学的兴趣和自信心。

四. 教学重难点1.教学重点:乘方的概念,乘方的运算法则。

2.教学难点:乘方的运算法则的应用。

五. 教学方法1.情境教学法:通过具体例子和实际操作,引导学生理解和掌握乘方的概念和运算法则。

2.启发式教学法:通过提问和讨论,激发学生的思维,培养学生的解决问题的能力。

六. 教学准备1.教学PPT:制作教学PPT,包括具体的例子和实际操作的演示。

2.练习题:准备一些练习题,用于巩固学生的理解和掌握。

七. 教学过程通过一个实际问题,引出乘方的概念。

例如,一个正方形的边长为2,求它的面积。

学生可以通过计算得出答案,进而引出乘方的概念。

2.呈现(10分钟)通过PPT展示乘方的定义和运算法则,结合具体的例子进行解释和演示。

让学生直观地理解乘方的概念和运算法则。

3.操练(10分钟)让学生进行一些乘方的运算练习,巩固对乘方概念和运算法则的理解。

可以设置一些不同难度的题目,让学生根据自己的能力选择练习。

4.巩固(5分钟)通过一些实际问题,让学生运用乘方进行解决。

例如,计算一些数的乘方,或者解决一些与乘方相关的实际问题。

人教版七年级数学上册1.5.1 乘方课件(共27张PPT)

人教版七年级数学上册1.5.1 乘方课件(共27张PPT)
=-2×27+12+15 =-27
223 3 (4)2 2 32 2
=-8-3×18+9÷2
=57.5
1.5.1 第2课时 有理数的混合运算
随堂练习
(1)(1)10 2 (2)3 4
(2)(5)3

3


1 2
4
这就是今天我们研究的课题:
有理数的乘方
1.5.1 第1课时 乘方的意义
求n个相同因数的积的运算,叫做乘方.

a n 指数 因数的个数
底数 因数
乘方的结果叫做幂,相同的因数叫做底 数,相同的因数的个数叫做指数.一般地,在
an中,a取任意有理数,n取正整数.
1.5.1 第1课时 乘方的意义
注意:
乘方是一种运算,幂是乘方运算的结果. an看作是a的n次方的结果时,也可读作a的n 次幂.一个数可以看作是它本身的一次方.
合作探究 (1)第①行数按什么规律排列?
1n 2n
(2)第②③行数与第①行数分别有什么关系? 第行数等于第行相应的数+2 第行数等于第行相应的数÷2
(3)取每行数的第10个数,计算这三个数的和.
210 210 2 210 2 2562
2 5
5
,读作“-
2 5
的五次方”.
1.5.1 第1课时 乘方的意义
思考
a·a·a·a·a·a可以记作什么?读作什么?
记作a6,读作“a的六次方”.
aaa
n个
a(n为正整数)记作什么,
读作什么?
记作an,读作“a的n次方”.
1.5.1 第1课时 乘方的意义
对于an中的a,不仅可以取正数,还可以 取0和负数,也就是说a可以取任意有理数,

人教版数学七年上 1.5.1有理数的乘方 (共14张PPT)

人教版数学七年上 1.5.1有理数的乘方 (共14张PPT)

探究新知
自学课本41页,并思考下列问题:
• 1.什么叫乘方?它的关键词是什么? 什么叫指数,底数,幂?
• 2..乘方与乘法有什么关系? • 3.怎么计算乘方?
一般地,n个相同的因数a相乘,即
a ·a ·… ·a ,记作an,读作
n个 a的n次方.
求n个相同因数的积的运算叫做
乘方,乘方的结果叫幂.
3.计算:
(1)、(-5)3 -125
(2)、 3 4 4
81 256
(3)、-24 -8 (4)、(0.1)3 0.001
谈一谈
课后作业
• 教科书47页第1题
祝同学们: 学习快乐
快乐学习
(3) 07 =0×0×0×0 × 0×0×0=0;
(4)


2 3 3



2 3




2 3




2 3


8 27
归纳总结
• 负数的奇次幂是负数,负数的偶次 幂是正数。
• 正数的任何次幂都是正数。 • 0的任何正整数次幂都是0.
你能迅速判断下列各幂的正负吗?
an= a ·a ·… ·a
n个
底数
an
指数 幂

例1 说出下列乘方的底数、指数且计算:
(1) (-4)3; (3) 07;
解:
(2) (-2)4;
(4)


2 3

3

(1) (-4)3 =(-4)×(-4)×(-4)=-64;
(2) (-2)4 =(-2)×(-2)×(-2)×(-4

(1)101

人教版七年级数学上册:1.5.1《乘方》教学设计

人教版七年级数学上册:1.5.1《乘方》教学设计

人教版七年级数学上册:1.5.1《乘方》教学设计一. 教材分析人教版七年级数学上册1.5.1《乘方》是学生在学习了有理数乘法和算术平方根的基础上,进一步探究乘方的概念及运算法则的一节课。

本节课的内容在数学知识的体系中起着承前启后的作用,既是对前面所学内容的延伸,又是后面学习指数运算、对数等知识的基础。

教材通过丰富的实例,引导学生探究乘方的规律,让学生在自主学习的过程中体会数学的归纳与演绎思想。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和数学基础,对于乘法和算术平方根的概念有一定的了解。

但是,对于乘方的概念和运算法则,学生可能还比较陌生。

因此,在教学过程中,需要结合学生的实际情况,用生动形象的实例引导学生理解乘方的本质,逐步掌握乘方的运算法则。

三. 教学目标1.知识与技能:使学生理解乘方的概念,掌握乘方的运算法则,能正确进行乘方运算。

2.过程与方法:通过观察、分析、归纳等方法,引导学生探究乘方的规律,培养学生的逻辑思维能力和归纳演绎能力。

3.情感态度与价值观:让学生在自主学习的过程中,体验数学的乐趣,培养对数学的兴趣,增强自信心。

四. 教学重难点1.教学重点:乘方的概念,乘方的运算法则。

2.教学难点:乘方运算的规律,乘方在实际问题中的应用。

五. 教学方法采用情境教学法、问题教学法和小组合作学习法。

情境教学法可以帮助学生形象地理解乘方的概念;问题教学法可以激发学生的思考,引导学生自主探究乘方的规律;小组合作学习法可以培养学生的团队合作精神,提高学生的交流表达能力。

六. 教学准备1.教师准备:教材、PPT、黑板、粉笔等教学工具。

2.学生准备:预习教材,了解乘方的基本概念。

七. 教学过程1.导入(5分钟)利用PPT展示一个实际问题:计算3的4次方。

让学生尝试解答,引导学生思考乘方是什么。

2.呈现(10分钟)讲解乘方的概念,用PPT展示乘方的定义和运算法则。

让学生跟随教师一起,用归纳法探究乘方的规律。

人教版数学七年级上册第一章1.5.1乘方课件

人教版数学七年级上册第一章1.5.1乘方课件
幂的底数是分数或负数 时,底数要添上括号!
1.把
1 2
5
写成几个相同因数相乘的形式
1 21 21 21 21 2
2.把(-2)× (-2)× (-2)×···×(-2)
10个(-2)
写成幂的形式。
2
10
!议一议
3 2 与 (-3)2 结果相等吗?
-32 读作 32 的相反数,而(-3)2 读作-3的 平方
解: (2)原式= 8 ( 3 ) ( 1 2 6 ) 9 ( 2 )
8 ( 3 ) 1 8 ( 4 .5 ) 85 44.5 57.5
练习:
(1) (1)10 2(2)34 0
(2)(5)33(1)4 2
125 3 16
(3)11(11)35 2
5 3 2 114
25
(4 ) ( 1)4 0 [ ( 4 )2 (3 3 2 ) 2 ]9992
例4 观察下面三行数: -2, 4,-8,16,-32, 64,…; 0, 6,-6, 18,-30, 66,…; -1,2, -4, 8, -16, 32,….
(1)第①行数按什么规律排列?
(2)第②③行数与第①行数分别有什么关系?
(3)取每行数的第10个数,计算这三个数的和.
解: (1)(2)n
(2) -1的幂很有规律: -1的奇次幂是-1 , -1的偶次幂是1。
抢答练习: 计算
102 100 103 1000; 104 1000
0
(10)2 100(10)3 -1000(10)4 10000
(1)正数的任次幂为正;负数的偶次 幂为正 奇次幂为负
( 2 ) 对 于 1 0 n , 1 后 面 就 有 n 个 0 你律能 吗?发现什么规

人教版数学七年级上册第一章1.5.1乘方

人教版数学七年级上册第一章1.5.1乘方

解:原式= 1×2+(-8)÷4 =2+(-2)
=0
(2)(5)3 3 ( 1 )4 2
解:原式
=
125Leabharlann 31 16= 125 3 16
= 125 3 16
(3) ( )
解:原式 =
- 4 - 36
()
=
-
4
-
36
1 36
= -4-1
= -5
例2
计算:(3)2
2 3
(
5 9
问题 这两个式子有什么相同点? 它们都是乘法;并且它们各自的因数都相同. 思考 同学们想一想:这样的运算能像平方、立方 那样简写吗?
一般地,n个相同的因数a相乘,记作an, 读作“a的n次幂(或a的n次方)”,即
a·a·a·…·a = an
n个
例如:2×2×2×2 记作 24 读作2的4次方(幂). 2×2×2×2×2×2 记作 26 读作2的6次方(幂).
七年级数学上(RJ)
第一章 有理数
1.5 有理数的乘方
1.5.1 乘 方
第1课时 乘 方
珠穆朗玛峰是世界的最高峰,它的海拔高度是 8844米.把一张足够大的厚度为0.1毫米的纸,连续 对折30次的厚度能超过珠穆朗玛峰,这是真的吗?
一 乘方的意义
问题引导
问题 某种细胞每30分钟便由一个分裂成两个. 经过3小时这种细胞由1个能分裂成多少个?
分裂方式如下所示:
第一次
第二次
第三次
这个细胞分裂一次可得多少个细胞?
分裂两次呢? 分裂三次呢?四次呢?
那么,3小时共分裂了多少次?有多少个细胞?
解:一次得: 2个;
两次: 三次:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【1.5.1乘方】教学设计方案
教学过程教师活动学生活动设计意图
教学环节一:类比导入1、2+2=
2+2+2=
2+2+ (2)
1 J
n 个
提冋:乘法是怎么定义的?
2 X 2=
2 X 2X 2=
2 X2X・・・X 2=
1 __ ____ /
Y
n 个
这就是我们今天要学习的一种新的运算:乘方
2、板书课题:乘方
思考,回忆乘法定义:
求相同加数和的运算叫
做乘法.
明确学习内容
先让学生回
忆乘法定义,
为下面引入
乘方定义做
铺垫.渗透类
比的数学思
想.
2 X 2=22; 2X 2X 2=23;
2 X2X2X2= ?;
(-2 ) X( -2 ) X( -2 ) X( -2 ) X( -2 )
教学环节二:自主探究,引出概念/ 2、2222
(-X(__) X(-—)X (---)X(-一)=?
55555
那么, a X a=?
7
n 个
类比22和23
小组讨论,得出答
案.
a X a X…a=a n
v r *
n 个
渗透类比的
数学思
想.
这是一种新的运算形式:乘方。

谁能给
乘方下个定义?(适当提醒, 言)
求n个相同因数积的
规范语运算叫做乘方。

明确乘方的
概念,培养
学生观察,
合作,交
流,归纳的
能力.
教学环节三:剖析概念,明确意义
底散
通过图解,
理解记忆.
1、明确各部分名称及含义
2、例1:94,底数是9,指
数是4,94读作“9的4次方”
或“9的4次幕”.表示的意
义是4个9相乘,又如(一
2)的底数是一2, 指数是4,
读作—2的4次方或—2的4
次幕,表示的意义是4个-2
相乘.
3、- 2底数是2 ,指数

4,读作负的2的四次方,表
示的意义是2的四次方的相
反数._
3、你还能举出这样的例子
吗?
4、例2:下列各组式子表示
的意义相同吗?
(1) 23与32
(2) -23与(-2)
(3) (2)3与23
3 3
理解底数,指数,
幕等概念.
完成例题,加深理
解.
举出不同类型底
数的例子
小组讨论,得出结

师生共同交流
通过例题,
加深巩固. 注
意区分底数

自由举例,
培养学生的
发散思
维.
易错题解析,
认清底数。

培养学生合
作交流的意
识.
教学环节十:作业
1、数学书47页第1题
2、上网搜集有关乘方的小故事认真完成作业
深化提高,了解
数学在实际生活
中的应用.
教学环节十一:反思
板书设计 1.5.
1
乘方
1

3、例题
捋数
底数
2、幕的符号法则:。

相关文档
最新文档