数学:8.3第四课时解一元一次不等式组(四)
《一元一次不等式组的解法 》 教案精品 2022年数学
9.3 一元一次不等式组第1课时 一元一次不等式组的解法1.理解一元一次不等式组及其解集的概念; 2.掌握一元一次不等式组的解法;(重点)3.会利用数轴表示一元一次不等式组的解集.(难点)一、情境导入你能列出上面的不等式并将其解集在数轴上表示出来吗? 二、合作探究探究点一:在数轴上表示不等式组的解集不等式组⎩⎪⎨⎪⎧x <3,x ≥1的解集在数轴上表示为( )解析:把不等式组中每个不等式的解集在数轴上表示出来,它们的公共局部是1≤x <3.应选C.方法总结:利用数轴确定不等式组的解集,如果不等式组由两个不等式组成,其公共局部在数轴上方应当是有两根横线穿过.探究点二:解一元一次不等式组解以下不等式组,并把它们的解集在数轴上表示出来:(1)⎩⎪⎨⎪⎧2x -3≥1,x +2<2x ; (2)⎩⎪⎨⎪⎧3〔x +2〕>x +8,x 4≥x -13.解析:先求出不等式组中每一个不等式的解集,再求它们的公共局部.解:(1)⎩⎪⎨⎪⎧2x -3≥1,①x +2<2x .②解不等式①,得x ≥2,解不等式②,得x >2.所以这个不等式组的解集为x >2.将不等式组的解集在数轴上表示如下:(2)⎩⎪⎨⎪⎧3〔x +2〕>x +8,①x 4≥x -13.②解不等式①,得x >1,解不等式②,得x ≤4. 所以这个不等式组的解集是1<x ≤4. 将不等式组的解集在数轴上表示如下:方法总结:解一元一次不等式组的一般步骤:先分别求出不等式组中每一个不等式的解集,并把它们的解集在数轴上表示出来,然后利用数轴确定这几个不等式解集的公共局部.也可利用口诀确定不等式组的解集:大大取较大,小小取较小,大小小大中间找,大大小小无处找.探究点三:求不等式组的特殊解求不等式组⎩⎪⎨⎪⎧2-x ≥0,x -12-2x -13<13的整数解.解析:分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x 的整数值即可.解:⎩⎪⎨⎪⎧2-x ≥0,①x -12-2x -13<13.②解不等式①,得x ≤2,解不等式②,得x >-3.故此不等式组的解集为-3<x ≤2,x 的整数解为-2,-1,0,1,2.方法总结:求不等式组的特殊解时,先解每一个不等式,求出不等式组的解集,然后根据题目要求确定特殊解.确定特殊解时也可以借助数轴.探究点四:根据不等式组的解集求字母的取值范围假设不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2无解,那么实数a 的取值范围是( )A .a ≥-1B .a <-1C .a ≤1D .a ≤-1解析:解第一个不等式得x ≥-a ,解第二个不等式得x <1.因为不等式组无解,所以-a ≥1,解得a ≤-1.应选D.方法总结:根据不等式组的解集求字母的取值范围,可按以下步骤进行:①解每一个不等式,把解集用数字或字母表示;②根据条件即不等式组的解集情况,列出新的不等式.这时一定要注意是否包括边界点,可以进行检验,看有无边界点是否满足题意;③解这个不等式,求出字母的取值范围.三、板书设计一元一次不等式组⎩⎪⎨⎪⎧概念解法不等式组的解集⎩⎪⎨⎪⎧利用数轴确定解集利用口诀确定解集解一元一次不等式组是建立在解一元一次不等式的根底之上,解不等式组时,先解每一个不等式,再确定各个不等式的解集的公共局部.教学中可以把利用数轴与利用口诀确定不等式组的解集结合起来,互相验证15.1.2 分式的根本性质1.通过类比分数的根本性质,说出分式的根本性质,并能用字母表示.(重点) 2.理解并掌握分式的根本性质和符号法那么.(难点)3.理解分式的约分、通分的意义,明确分式约分、通分的理论依据.(重点) 4.能正确、熟练地运用分式的根本性质,对分式进行约分和通分.(难点)一、情境导入中国古代的数学论著中就有对“约分〞的记载,如?九章算术?中就曾记载“约分术〞,并给出了详细的约分方法,这节课我们就来学习分式化简的相关知识,下面先来探索分式的根本性质.二、合作探究探究点一:分式的根本性质【类型一】 利用分式的根本性质对分式进行变形以下式子从左到右的变形一定正确的选项是( )A.a +3b +3=a b B.a b =acbcC.3a 3b =a bD.a b =a 2b2 解析:A 中在分式的分子与分母上同时加上3不符合分式的根本性质,故A 错误;B 中当c =0时不成立,故B 错误;C 中分式的分子与分母同时除以3,分式的值不变,故C 正确;D 中分式的分子与分母分别乘方,不符合分式的根本性质,故D 错误;应选C.方法总结:考查分式的根本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.【类型二】 不改变分式的值,将分式的分子、分母中各项系数化为整数不改变分式0.2x +12+0.5x的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( )A.2x +12+5xB.x +54+x C.2x +1020+5x D.2x +12+x解析:利用分式的根本性质,把0.2x +12+0.5x 的分子、分母都乘以10得2x +1020+5x .应选C.方法总结:观察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需根据分式的根本性质让分子和分母同乘以某一个数即可.【类型三】 分式的符号法那么不改变分式的值,使以下分式的分子和分母都不含“-〞号. (1)-3b 2a ;(2)5y -7x 2;(3)-a -2b 2a +b. 解析:在分子的符号,分母的符号,分式本身的符号三者当中同时改变其中的两个,分式的值不变.解:(1)原式=-3b 2a ;(2)原式=-5y 7x 2;(3)原式=-a +2b 2a +b.方法总结:这类题目容易出现的错误是把分子的符号,分母的项的符号,特别是首项的符号当成分子或分母的符号.探究点二:最简分式、分式的约分和通分 【类型一】 判定分式是否是最简分式以下分式是最简分式的是( ) A.2a 2+a ab B.6xy 3aC.x 2-1x +1D.x 2+1x +1解析:A 中该分式的分子、分母含有公因式a ,那么它不是最简分式.错误;B 中该分式的分子、分母含有公因数3,那么它不是最简分式.错误;C 中分子为(x +1)(x -1),所以该分式的分子、分母含有公因式(x +1),那么它不是最简分式.错误;D 中该分式符合最简分式的定义.正确.应选D.方法总结:最简分式的标准是分子,分母中不含公因式.判断的方法是把分子、分母分解因式,并且观察有无公因式.【类型二】 分式的约分约分:(1)-5a 5bc 325a 3bc 4;(2)x 2-2xyx 3-4x 2y +4xy 2. 解析:先找分子、分母的公因式,然后根据分式的根本性质把公因式约去. 解:(1)-5a 5bc 325a 3bc 4=5a 3bc 3〔-a 2〕5a 3bc 3·5c =-a25c; (2)x 2-2xy x 3-4x 2y +4xy 2=x 〔x -2y 〕x 〔x -2y 〕2=1x -2y. 方法总结:约分的步骤:(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.【类型三】 分式的通分通分: (1)b 3a 2c 2,c -2ab ,a5cb 3; (2)1a 2-2a ,a a +2,1a 2-4. 解析:确定最简公分母再通分.解:(1)最简公分母为30a 2b 2c 2,b 3a 2c 2=10b 430a 2b 3c 2,c -2ab =-15ab 3c 330a 2b 3c 2,a 5cb 3=6a 3c30a 2b 3c2;(2)最简公分母为a (a +2)(a -2),1a 2-2a =a 2+2a a 〔a +2〕〔a -2〕,aa +2=a 3-2a 2a 〔a +2〕〔a -2〕,1a 2-4=aa 〔a +2〕〔a -2〕.方法总结:通分的一般步骤:(1)确定分母的最简公分母.(2)用最简公分母分别除以各分母求商.(3)用所得到的商分别乘以分式的分子、分母,化成同分母的分式.三、板书设计分式的根本性质1.分式的根本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法那么:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;假设只改变其中一个的符号或三个全变号,那么分式的值变成原分式值的相反数.本节课的流程比拟顺畅,先探究分式的根本性质,然后顺势探究分式变号法那么.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.。
8.3 一元一次不等式组 华东师大版数学七年级下册同步练习(含解析)
8.3 一元一次不等式组基础过关全练知识点1 一元一次不等式组及其解集1.(2020贵州毕节月考)下列是一元一次不等式组的是 ( )A.{2y −7<63x +3>1B.{x <1x >−2C.{x +2=63x +5>1D.{2a −7>13b +3=02.(2022广西梧州中考)不等式组{x >−1,x <2的解集在数轴上表示为( )A B C D3.(2022湖北十堰中考)关于x 的不等式组中的两个不等式的解集如图所示,则该不等式组的解集为 .4.【新独家原创】已知a 、b 在数轴上的对应位置如图所示,则(1)不等式组{x >a,x >b 的解集是 ;(2)不等式组{x >a,x <b的解集是 ;(3)不等式组{x <a,x >b 的解集是 ;(4)不等式组{x <a,x <b的解集是 .5.【新独家原创】【跨学科·生物】某中学生物兴趣小组利用课后服务的时间,在恒温箱中培养甲、乙两种菌种,通过观察发现,甲菌种适合的生长温度是32 ℃~36 ℃;乙菌种适合的生长温度是33 ℃~37 ℃,为了节约资源,兴趣小组决定将两种菌种放入同一恒温箱中,那么为了使两种菌种都生长良好,恒温箱的温度t (℃)应该设定的范围是 .知识点2 一元一次不等式组的解法 6.(2022山西中考)不等式组{2x +1≥3,4x −1<7的解集是( )A .x ≥1B .x <2C .1≤x <2D .x <127.(2022山东滨州中考)把不等式组{x −3<2x,x+13≥x−12中每个不等式的解集在同一条数轴上表示出来,正确的为( )A B C D8.【新独家原创】关于x 的不等式组{2x−13−5x+12≤1,x −1>a 的解集是x ≥-1,则a 的取值范围是( )A.a >-2B.a ≥-2C.a <-2D.a ≤-29.(2022四川宜宾中考)不等式组{3−2x ≥5,x+22>−1的解集为 .10.(1)(2022四川自贡中考)解不等式组:{3x <6,5x +4>3x +2,并在数轴上表示其解集;(2)(2022福建宁德古田期中)解不等式组:{3x −2<4,2(x −1)≤3x +1,并把它的解集在数轴上表示出来;(3)(2022福建三明尤溪期中)解不等式组:{x ≥3−2x,x−12−x−36<1,并把解集表示在数轴上;(4)(2022河南南阳新野期中)解不等式组:{x −4≤32(x −1),2x −3x+12<1,并把它的解集在数轴上表示出来.能力提升全练11.(2021湖南邵阳中考,7,)下列数值不是不等式组{5x −1>3x −4,−13x ≤23−x的整数解的是( )A.-2B.-1C.0D.1 12.(2022福建南平模拟,8,)如图,在数轴上A ,B ,C ,D 四个点所表示的数中是不等式组{x −1<2x,x 2≤0的解的是( )A.点A 表示的数B.点B 表示的数C.点C 表示的数D.点D 表示的数 13.(2022湖南邵阳中考,10,)关于x 的不等式组{−13x >23−x,12x −1<12(a −2)有且只有三个整数解,则a 的最大值是 ( )A.3B.4C.5D.6 14.(2022四川成都七中育才学校模拟,8,)若关于x 的一元一次不等式组{x +8<5x,x −1>m的解集为x >2,则m 的取值范围是( )A.m >1B.m ≤1C.m <1D.m ≥115.【易错题】(2022重庆北碚西南大学附中月考,10,)若关于x 的不等式组{x−23≤m,x −12>3−2x 无解,则m 的取值范围是( )A.m >1B.m ≥1C.m <1D.m ≤116.(2022黑龙江龙东地区中考,15,)若关于x 的一元一次不等式组{2x −1<3,x −a <0的解集为x <2,则a 的取值范围是 . 17.(2022四川成都青羊石室中学月考,12,)若关于x 的不等式组{2x −b ≥0,x +a ≤0的解集为3≤x ≤4,则a +b 的值为 . 18.(2022四川成都双流实验中学期中,16,)若关于x ,y 的二元一次方程组的解满足{2x +y =−m +5,x −y =4m −2,且x +y ≤0,求m 的取值范围.素养探究全练19.【运算能力】【新独家原创】若不等式组{x−52<3a,x−a3≥1无解,求a 的取值范围.20.【运算能力】(2022河南南阳南召期中)阅读下列材料:求不等式(2x -1)(x +1)>0的解集.解:根据“同号两数相乘,积为正”可得①{2x −1>0,x +1>0或 ②{2x −1<0,x +1<0.解不等式组①得x >12;解不等式组②得x <-1,∴不等式的解集为x >12或x <-1.请你仿照上述方法解决下列问题. (1)求不等式(2x -3)(x +3)<0的解集; (2)求不等式13x−1x+2≥0的解集.答案全解全析基础过关全练1.B 根据一元一次不等式组的定义知,{x <1,x >−2是一元一次不等式组.故选B.2.C 不等式组{x >−1,x <2的解集为-1<x <2,在数轴上表示为C.3. 答案 0≤x <1解析 由题图可知该不等式组的解集为0≤x <1. 4. 答案 (1)x >b (2)a <x <b (3)空集 (4)x <a解析 由数轴知,a <b ,所以{x >a,x >b 的解集是x >b ;不等式组{x >a,x <b 的解集是a <x <b ;不等式组{x <a,x >b 无解;不等式组{x <a,x <b的解集是x <a. 5. 答案 33≤t ≤36解析 甲菌种适合的生长温度是32 ℃~36 ℃,乙菌种适合的生长温度是33 ℃~37 ℃,则{32≤t ≤36,33≤t ≤37,∴33≤t ≤36.6.C 解不等式2x +1≥3,得x ≥1,解不等式4x -1<7,得x <2,则不等式组的解集为1≤x <2,故选C.7.C 解不等式x -3<2x ,得x >-3,解不等式x+13≥x−12,得x ≤5,故原不等式组的解集是-3<x ≤5,其解集在数轴上表示为C.8.C {2x−13−5x+12≤1①,x −1>a ②,解不等式①得x ≥-1,解不等式②得x >a +1,由题意得a +1<-1,解得a <-2.9. 答案 -4<x ≤-1解析 {3−2x ≥5①,x+22>−1②,解不等式①,得x ≤-1,解不等式②,得x >-4,故原不等式组的解集为-4<x ≤-1.10.解析 (1)由不等式3x <6,得x <2,由不等式5x +4>3x +2,得x >-1,∴不等式组的解集为-1<x <2. 解集在数轴上表示如下:(2)由3x -2<4,得x <2,由2(x -1)≤3x +1,得x ≥-3,则不等式组的解集为-3≤x <2.解集在数轴上表示如下:(3)由x ≥3-2x ,得x ≥1,由x−12−x−36<1,得x <3,∴不等式组的解集是1≤x <3.解集在数轴上表示如下:(4)由x -4≤32(x -1),得x ≥-5,由2x -3x+12<1,得x <3,则不等式组的解集为-5≤x <3.解集在数轴上表示如下:能力提升全练11.A {5x −1>3x −4①,−13x ≤23−x ②,解不等式①,得x >-32,解不等式②,得x ≤1, ∴不等式组的解集为-32<x ≤1,∴不等式组的整数解为-1,0,1,故选A.12.B 由x -1<2x ,得x >-1,由x2≤0,得x ≤0,则不等式组的解集为-1<x ≤0,符合此范围的为B 表示的数,故选B.13.C {−13x >23−x ①,12x −1<12(a −2)②,由①得x >1,由②得x <a ,∴1<x <a ,∵不等式组有且只有三个整数解,即2,3,4,∴4<a ≤5,∴a 的最大值是5,故选C. 14.B 由x +8<5x ,得x >2,由x -1>m ,得x >m +1,∵不等式组的解集为x >2,∴m +1≤2,解得m ≤1,故选B. 15.D 由x−23≤m ,得x ≤3m +2,由x -12>3-2x ,得x >5,∵不等式组无解,∴3m +2≤5,解得m ≤1,故选D.本题的易错之处是对端点值的取舍. 16. 答案 a ≥2解析 由2x -1<3,得x <2,由x -a <0,得x <a ,∵不等式组的解集为x <2, ∴a ≥2.故答案为a ≥2. 17. 答案 2解析 由2x -b ≥0,得x ≥b2,由x +a ≤0,得x ≤-a ,∴b2≤x ≤-a ,∵不等式组的解集为3≤x ≤4,∴b2=3,-a =4,解得a =-4,b =6,则a +b =-4+6=2.故答案为2.18.解析 解方程组得{x =m +1,y =−3m +3,∵x +y ≤0,∴m +1-3m +3≤0,解得m ≥2.素养探究全练19.解析{x−52<3a ①,x−a3≥1②,解不等式①得x <6a +5,解不等式②得x ≥a +3,因为不等式组无解,所以6a +5≤a +3,解得a ≤-25.20.解析 (1)根据“异号两数相乘,积为负”可得①{2x −3>0,x +3<0或②{2x −3<0,x +3>0.不等式组①无解,解不等式组②,得-3<x <32,∴原不等式的解集为-3<x <32.(2)根据“同号两数相除,商为正”可得①{13x −1≥0,x +2>0或②{13x −1≤0,x +2<0.解不等式组①,得x ≥3,解不等式组②,得x <-2,∴原不等式的解集为x ≥3或x <-2.。
8.3.1一元一次不等式组复习课件
x 8 x m
C、m<8 D、m≤8
有解,那么m的取值范围是( C ) A、m>8 B、m≥8
2、如果不等式组
x a的解集是x>a,则a_______b ≥ 。 x b
3.已知关于x不等式组
{ xa
x 1
a≤-1 无解,则a的取值范围是____
例4.若不等式组
5、已知不等式 3 x a 0 的正整数解 恰是1,2,3,4,那么a的取值范围是_________
解: 解不等式①,得,x
① ②
8
解不等式②,得,
4 解不等式②,得, x 5
所以不等式组无解。
所以不等式组的解集为:
x3
练习
1.不等式组
2.不等式组
3( x 1) ( x 3) 8 2x 1 1 x 的解集应为_________; 1 2 3
① ②
x8
所以这个不等式组的解集为:
1 x 8
2x 1 5 解法二: 1 3
解:不等式各项都乘以3,得: 各项都加上1,得: 即:
3 2 x 1 15
3 1 2 x 1 1 15 1
2 2 x 16
1 x 8
取值范围是 。
5 x 3m m 15 4 2 4
2.m是什么正整数时,方程
的解是非负数
3.关于x的不等式组
xa 0 的整数解共有5个,则a 3 2 x 1
。
的取值范围是
练习二
5 2 x 1 a>3 无解,则a的取值范围是___ 4.已知关于x不等式组 xa 0
2、若关于x的不等式组 值范围是_________
一元一次不等式 教案
一元一次不等式教案第一章:一元一次不等式的概念与性质1.1 引入不等式的概念通过实际例子,让学生了解不等式的含义和作用。
引导学生理解不等号(>、<、≥、≤)的含义。
1.2 认识一元一次不等式解释一元一次不等式的定义,即形如ax + b > 0 或ax + b ≤0 的不等式。
强调未知数x 的系数a 和常数项b 的重要性。
1.3 探索一元一次不等式的性质引导学生通过举例或图形来分析一元一次不等式的性质。
讨论不等式的解集,即满足不等式的x 的取值范围。
第二章:一元一次不等式的解法2.1 解基本的一元一次不等式演示如何解形如ax > b 或ax ≤b 的一元一次不等式。
强调解不等式时要注意符号的变化。
2.2 解含括号的一元一次不等式解释如何处理含括号的一元一次不等式。
引导学生先解决括号内的运算,再进行不等式的解法。
2.3 解含有绝对值的一元一次不等式解释绝对值的概念,并引导学生如何处理含有绝对值的一元一次不等式。
强调绝对值不等式的解集可能包含两个部分。
第三章:一元一次不等式的应用3.1 应用一元一次不等式解决实际问题提供实际问题,让学生应用一元一次不等式进行解答。
强调将实际问题转化为不等式问题的过程。
3.2 一元一次不等式的线性组合解释如何将多个一元一次不等式进行线性组合。
引导学生理解线性组合后的不等式的解集。
3.3 一元一次不等式组解释什么是一元一次不等式组,即多个一元一次不等式的集合。
引导学生如何解决一元一次不等式组,并讨论解集的交集。
第四章:一元一次不等式的拓展4.1 不等式的符号性质引导学生深入理解不等式的符号性质,如传递性、互补性等。
通过举例或练习题来巩固学生对不等式符号性质的理解。
4.2 不等式的变形解释如何对一元一次不等式进行变形,如两边加减乘除等。
强调变形时保持不等号方向不变的重要性。
4.3 一元一次不等式与函数的关系引导学生理解一元一次不等式与函数之间的关系。
8.3.1 一元一次不等式组及其解法
知2-练
1
(福州)不等式组
x x
1的, 解集在数轴上表示正确的是 2
()
第十八页,编辑于星期五:九点 二十四分。
2
不等式组 A.x<1
x x
1 , 的解集是( 3
B.x≥3
)
C.1≤x<3
D.1<x≤3
知2-练
第十九页,编辑于星期五:九点 二十四分。
易看出,这两个不等式的解集没有公共部分.这时,
这个不等式组无解.
第二十三页,编辑于星期五:九点 二十四分。
总结
知3-讲
解不等式组的关键:一是要正确地求出每个不等 式的解集;二是要利用数轴正确地表示出每个不等式 的解集,并找出不等式组的解集.
第二十四页,编辑于星期五:九点 二十四分。
知2-练
1 解下列不等式组,并把它们的解集在数轴上表示出来:
第八页,编辑于星期五:九点 二十四分。
知1-练
1 下列不等式组是一元一次不等式组的有_________.
(填序号)
①
x 2 3x 1, 2y 7;
②
③ 2( x 1) 3x, ④
x
2;
⑤
x 1 0,
2
x
3
0
⑥
x 4 2 x 3;
x2 1 2x 2, 3x 1;
x 6 1,
式合在一起,就组成了一个一元一次不等式组. 要点精析:(1)这里的“几个”是指两个或两个以上;(2)每
个不等式只能是一元一次不等式;(3)每个不等式必须含 有同一个未知数. 2. 易错警示:判断一个不等式组是否为一元一次不等式组, 常出现以下几种错误:
①不等式组中不都是一元一次不等式;
湘教版数学八年级上册第4章《一元一次不等式(组)单元复习课》课件
A.0
B.-1
C.1
10.(2023·遂宁中考)若关于x的不等式组
D.2 023
4( − 1) > 3 − 1
的解集为x>3,则a的
5 > 3 + 2
取值范围是( D )
A.a>3
B.a<3
C.a≥3
D.a≤3
7 − 14 ≤ 0①,
11.(1)(2023·湘潭中考)解不等式组
方案1:租用5辆B种客车,20辆A种客车;
方案2:租用6辆B种客车,19辆A种客车;
方案3:租用7辆B种客车,18辆A种客车;
(3)在(2)的条件下,若A种客车租金为每辆220元,B种客车租金每辆300元,应该怎
最小整数解.
【解析】由①得:x<1,由②得:x≥-2,
∴不等式组的解集为:-2≤x<1,
∴该不等式组的最小整数解为x=-2.
− 3( − 2) > 4①
2−1
3
≥
3+2
6
− 1②
,并写出该不等式组的
考点4一元一次不等式(组)的应用
12.(2023·邵阳中考)低碳生活已是如今社会的一种潮流形式,人们的环保观念也
其解集在数轴上表示如图:
−1 −3
(2)(2022·宜昌中考)解不等式 ≥ +1,并在数轴上表示解集.
3
2
【解析】去分母得:2(x-1)≥3(x-3)+6,
去括号得:2x-2≥3x-9+6,
移项得:2x-3x≥-9+6+2,
合并同类项得:-x≥-1,
系数化为1得:x≤1.
表示如图.
人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用
有 3 个整数解,则 a 的取值范围为
( A)
A.1<a≤2
B.1<a<2
C.1≤a<2
D.1≤a≤2
6 . (2019 · 鄂 州 第 12 题 3 分 ) 若 关 于 x , y 的 二 元 一 次 方 程 组
x-3y=4m+3,
x+5y=5
的解满足 x+y≤0,则 m
的取值范围是__mm≤≤--22__.
③学校购买篮球和足球共 40 个.
(1)
若④购买篮球的个数不少于足球个数的23,则最少可购买篮球
116 6
个;
【分层分析】(1)设购买篮球 x 个,则由题干③可得购买足球((440 0--x)
个,由题干④可列不等式为
2 xx≥≥3((4400--xx)),解此不等式得
x) xx≥≥1166.
(2)若⑤购买篮球的费用不超过购买足球的费用,则最多可购买篮球115
(2)若此不等式组的解集为-4≤x<1,则 a 的值为--22; 【分层分析】(2)由题意得1a.-25168=0--m4 m,即 a=--22;
重难点 2:一元一次不等式的应用
(一题多设问)某校为举行体育比赛活动,准备购买若干个足球和篮
球作为奖品,已知①篮球的单价为 100 元/个,②足球的单价为 60 元/个,
第四节 一元一次不等式 (组)及其应用
【考情分析】湖北近 3 年主要考查:1.一元一次不等式(组)的解法及解集 表示,考查形式有:①求不等式(组)的解集;②求不等式(组)的解集并在 数轴上表示;③求不等式组的整数解;④确定不等式组中字母参数的取 值范围.2.一元一次不等式的应用,考查形式有:①利用不等式判断哪种 方案合算;②与方程(组)、函数结合确定方案问题,设题背景有购买问题、 销售费用问题,以解答题为主
华师大版数学七年级下册全册教案
1、知识与技能:①了解方程、一元一次方程、二元一次方程组以及方程(组)的解等基本概念,了解方程的基本变形及其在解方程(组)中的作用。会解一元一次方程、二元一次方程组,并经历和体会解方程中转化的过程与思想,了解解方程(组)解法的一般步骤,并能灵活运用。②了解三角形的内角、外角及其主要线段(中线、高线、角平分线)等概念,会画出任意三角形的中线、高线和角平分线,了解三角形的稳定性,了解几种特殊三角形与多边形的特征,并能加以简单的识别,探索并掌握三角形的外角性质与外角和,理解并掌握三角形三边关系,探索、归纳多边形的内角和秘外角和公式。③通过具体实例认识轴对称探索线段、角和圆等图形的轴对称性,了解线段中垂线的性质和角平分线的性质,会画轴对称图形并探索轴对称的基本性质,理解对应点所连的线段被对称轴垂直平分的性质,能利用轴对称进行图案设计,了解等腰三角形的概念掌握其性质和其识别方法。④让学生知道普查和抽样调查的区别,感受抽样调查的必要性和现实性,体会选取有代表性的样本对正确估计总体是十分重要的,会求平均数、中位数、众数并了解它们各自适用范围,体验随机事件在每一次实验中是否发生是不可预言的,但在大数次反复实验后是有规律的。
本章难点:正确理解三角形的高、中线及角平分线的性质并能作图,及三角形内角和的证明与多边形内角和的探究。
第十章:轴对称图形是通过观察与操作,让学生感知确认最为简单的变换——轴对称中隐含着的数学不变量关系,同时辅以数学说理,给学生一定的理性训练与图形变换的思想。
本章重点:轴对称中隐含着的数学不变量关系,同时辅以数学说理
解:设小红能买到工本笔记本,那么根据题意,得
1.2x=6
因为1.2×5=6,所以小红能买到5本笔记本。
二、新授:
我们再来看下面一个例子:
问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?
一元一次不等式章节教学中落实数学核心素养分析
一元一次不等式章节教学中落实数学核心素养分析1、教材的地位和作用:在已学习了一元一次方程的相关知识,如同方程(组)是刻画现实世界中数量相等关系的数学模型一样,不等式(组)是刻画现实世界不等关系的数学模型,因此从问题中提炼数量不等关系是研究不等式的起点。
本章节主要是通过类比一元一次方程的定义、解法总结归纳出一元一次不等式的定义、解法,并熟练运用不等式的性质解一元一次不等式。
只有学生掌握好了一元一次不等式的解法,才能更好学习后面的不等式组。
同时,学习本章节时涉及的类比思想、化归思想和数形结合思想对后续学习也是十分有益的,所以本章节的教学不能仅仅停留在知识的探索上,更要注重数学方法和数学思想的渗透和传播。
日常生产生活中不等关系的情况常常发生,所以不等式在日常生产生活中的应用很广泛,它与数、式、方程、函数甚至几何图形有着密切的联系,它几乎渗透到初中数学的每一部分。
那么本章内容在整个初中数学中就具有承上启下的作用,处于一个基础性、工具性的地位,不仅是对已有知识的运用和深化,还为后续继学习打下基础。
2、书本给的课时安排:共11课时8.1认识不等式---------------------------1课时8.2 解一元一次不等式---------------------5课时8.3 一元一次不等式组 --------------------3课时复习 ------------------------------------2课时我认为的课时安排:共13课时8.1认识不等式---------------------------1课时8.2 解一元一次不等式---------------------5课时8.3 一元一次不等式组 --------------------5课时(其中不等式(组)的应用2课时)复习 ------------------------------------2课时3、中考考点:(1、)列不等式:主要考察不等号的使用(2、)要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学词语的含义。
春青岛版数学八下83《列一元一次不等式解应用题》ppt课件1
情景导航问题解答
(2)如果把问题中的未知量用x表示,怎样才能用数学符号表示出问题的未知量x与已知量之间的关系?
设购买A型机组x台,则购出一元一次不等式,
在本章“情境导航”中的问题(1)(2)中,哪些是已知量?哪些是未知量?量与量之间的相等或不相等关系分别是什么?与同学交流.
已知量:A,B两种型号发电机组总台数;A型机组价格及月均发电量;B型机组价格及月均发电量;该乡镇月用电量;购买发电机组的总资金.
未知量:A,B两种型号及发电机组各是多少台.
相等关系:A,B两种型号发电机组总台数为10.
(2)设:设出适当的未知数;
(3)列:根据题中的不等关系,列出不等式;
(4)解:求出所列不等式的解集;
(5)答:写出答案,并检验答案是否符合题意.
习题8.3 1、3题
经检验,上面不等式的整数解符合题意.
所以当游客人数是17人、18人、19人时,选择购买20人的团体门票方式比购买普通门票便宜.
例2 某旅游景点普通门票票价为每位30元,20人及20人以上的团体门票票价为每位25元.(1)一个旅游团队共有18为游客来景点参观,他们选用哪种购买门票凡是较为便宜?(2)如果团队人数不足20人,当游客人数为多少时购买20人的团体门票比购买普通门票便宜?
例2 某旅游景点普通门票票价为每位30元,20人及20人以上的团体门票票价为每位25元.(1)一个旅游团队共有18为游客来景点参观,他们选用哪种购买门票凡是较为便宜?(2)如果团队人数不足20人,当游客人数为多少时购买20人的团体门票比购买普通门票便宜?
解:
(1)18位游客购买普通门票费用为 18×30=540(元).
8.3一元一次不等式组
§8.3一元一次不等式组学情分析:学生已经学习了一元一次不等式,了解了解一元一次不等式的方法,学生在此基础上,总结一元一次不等式组以及一元一次不等式组的解集的概念,并通过具体实例让学生经历知识的拓展过程,也重视不等式与不等式组的解集在数轴上的表示,让学生进一步感受数形结合的作用,逐步熟悉和掌握这一重要的思想方法。
教材分析本节的主要内容是一元一次不等式组概念及其解集的求法,是全章的重点,教材通过对不等式的复习和具体实例总结一元一次不等式组以及一元一次不等式组的解集的概念。
通过例题教会学生解一元一次不等式组,并教会学生通过在数轴上表示不等式的解集得到不等式组的解集,让学生感受数形结合的作用。
教学目标1.创设情境,通过实例引导学生考虑多个不等式联合的解法。
通过例题总结解一元一次不等式组的方法,并总结一元一次不等式组的解与一元一次不等式的解之间的关系。
2通过数轴的表示不等式组的解,让学生加深对数形结合的作用的理解,使他们逐步熟悉和掌握这一重要的思想方法。
3.在对例题的讲解中,使学生认识一元一次不等式组的解集即每个不等式解集的公共部分,从而渗透“交集”的思想。
在解不等式组的过程中让学生体会数学解题的直观性和简洁性的数学美。
教学重、难点重点1.理解一元一次不等式组的概念,会用数轴表示一元一次不等式组解集的情况。
2.掌握一元一次不等式组的解法。
难点1.弄清一元一次不等式的解集与一元一次不等式组的解集之间的关系。
2.灵活运用一元一次不等式组的知识解决问题。
教学设计一、导学提纲:1.复习提问不等式2+3x<9的正整数解是_______,不等式3-4x<8的负整数解是_______。
2.自学课本P62的问题,并总结一下知识:几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。
解一元一次不等式组,通常可以先分别求出不等式组中每一个不等式的解集,再求出它们的公共部分。
利用数轴可以直观地帮助我们求出不等式组的解集。
八年级数学下册第八章一元一次不等式8.3列一元一次不等式解应用题作业青岛版
8 3㊀列一元一次不等式解应用题㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀一㊁旧知链接1.什么是一元一次不等式?2.解一元一次不等式的步骤有哪些?3.列方程解应用题的步骤有哪些?二㊁新知速递1.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20-x.根据题意得(㊀㊀).A 10x-5(20-x)ȡ120B 10x-5(20-x)ɤ120C 10x-5(20-x)>120D 10x-5(20-x)<1202.娃哈哈矿泉水每瓶售价1 5元,现甲㊁乙两家商场给出优惠政策:甲商场全部9折,乙商场20瓶以上的部分8折.老师要小明去买一些矿泉水,小明想了想觉得到乙商场购买比较优惠.小明需要购买的矿泉水的数量x的取值范围是(㊀㊀).A x>20B x>40C xȡ40D x<403.小聪从瓯南礼品城购买了A㊁B两种笔记本10本,所付金额不超过55元,已知A种笔记本每本5元,B种笔记本每本8元,则小聪至少要购买A种笔记本㊀㊀㊀㊀本.4.某车工计划在15天内加工408个零件,前3天每天加工24个,此后,该车工平均每天至少加工多少个零件,才能在规定时间内完成任务?1.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计在2012-2013赛季全部32场比赛中最少得到48分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是(㊀㊀).A 2x+(32-x)ȡ48B 2x-(32-x)ȡ48C 2x+(32-x)ɤ48D 2xȡ48第八章㊀一元一次不等式2.某工厂已有某零件75个,一个工人每天可生产这种零件30个,现有一紧急任务,一天内急需这种零件580个,那么至少安排多少工人才能满足供货需求(㊀㊀).A 16人B 17人C 18人D 19人3.某商场计划每月销售900台电脑,2015年5月1日至7日黄金周期间,商场开展促销活动,5月的销售计划又增加了30%,已知黄金周这7天平均每天销售54台,则这个商场本月后24天平均每天至少销售㊀㊀㊀㊀台才能完成本月计划.4.某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局得反扣1分.在12局比赛中,积分超过15分就可以晋升下一轮比赛,小王进入了下一轮比赛,而且在全部12轮比赛中,没有出现平局,问小王最多输了多少局比赛?5.某中学为丰富学生的校园生活,准备从一家体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球㊁一个篮球各需多少元?(2)根据这所中学的实际情况,需从这家体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?基础训练1. a与3的和不小于8 列出的不等式,正确的是(㊀㊀).A 3a>8B a+3>8C a+3ȡ8D a+3ɤ82.有盐水84kg,含盐12%,为使盐水含盐不低于24%,至少应加盐多少千克设应加盐x(kg),由题意列不等式为A 84ˑ12%+xȡ(84+x)ˑ24%B (84-x)ˑ12%>(84+x)ˑ24%C (84+x)ˑ12%ɤ84ˑ24%+xD 84ˑ12%+x>(84+x)ˑ24%3.班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔(㊀㊀).A 20支B 14支C 13支D 10支4.某市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数(㊀㊀).A 至少20户B 至多20户C 至少21户D 至多21户拓展提高5.某种出租车的收费标准是:起步价7元(即行驶的距离不超过3千米都需付7元车费),超过3千米,每增加1千米,加收2 4元(不足1千米按1千米计算)某人乘这种出租车从甲地到乙地共付车费19元,那么此人从甲地到乙地经过的路程的最大值是(㊀㊀)千米A 11B 8C 7D 56.已知三个连续自然数的和小于19,则这样的数共有(㊀㊀)组.A 4B 5C 6D 77.某种商品的进价为80元,出售时的标价是120元,后来由于该商品积压,商店准备打折出售,但要保持所获利润不低于10元,则该商店最多可打㊀㊀㊀㊀㊀折.8.某初级中学八年级(1)班若干名同学星期天去公园游览,公园售票窗口标明票价:每人10元,团体票25人以上(含25人)8折优惠,他们经过核算,买团体票比买单人票便宜,则他们至少有㊀㊀㊀㊀㊀人.发散思维9.某商场用36000元购进甲㊁乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲㊁乙两种商品各多少件?(2)商场第二次以原进价购进甲㊁乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?10.为支援雅安灾区,某学校计划用 义捐义卖 活动中筹集的部分资金用于购买A,B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A,B两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?。
2021年华东师大版七年级数学下册第八章《8.3 一元一次不等式组》公开课课件(57张PPT)
课后作业
1.从教材习题中选取, 2.完成练习册本课时的习题.
8.3 一元一次不等式组
第2课时 解一元一次不等式组(2)
华东师大·七年级下册
新课导入
1.什么是一元一次不等式组? 2.什么是一元一次不等式组的解集? 3.你能用什么方法确定一元一次不等式组的解
集?
推进新课
随堂演练
(1)求饮用水和蔬菜各有多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这 批饮用水和蔬菜全部运往该乡中小学.已知每辆甲 种货车最多可装饮用水40件和蔬菜10件,每辆乙种 货车最多可装饮用水和蔬菜各20件,有哪几种方案 可供选择?
(3)在(2)的条件下,如果甲种货车每辆需付运费 400元,乙种货车每辆需付运费360元.运输部门应 选择哪种方案可使运费最少?最少运费是多少元?
分析:设需要x分钟能将污水抽完,那么总的抽 水量为30x吨,由题意可知
在这个实际问题中,未知量x应同时满足这两个不等 式,我们把这两个一元一次不等式合在一起,就得 到一个一元一次不等式组:
分别求这两个不等式的解集,得
在同一数轴上表示出这两个不等式的解集,可 知其公共部分是40和50之间的数(包括40 和50),记作 40≤x≤50.
(1)某校九年级某班课外活动小组承接了这个园艺 造型搭配方案的设计,问符合题意的搭配方案有几 种?请你帮助设计出来;
(2)若搭配一个A种造型的成本是200元,搭配一个 B种造型的成本是360元,试说明(1)中哪种方案 成本最低,最低成本是多少元?
分析:本题的不等关系比较隐蔽,好像与不等 式没有什么关系,但仔细分析题意并结合实 际可知:A、B两种造型所需甲种花卉不能 超过349盆,乙种花卉不能超过295盆,依 此便能够建立不等式组求解.
不等式(组)的知识点
不等式与不等式组知识点总结一、知识导航图二、课标要求一元一次不等式(组)的应用一元一次不等式(组)的解法一元一次不等式(组)解集的含义一元一次不等式(组)的概念不等式的性质一元一次不等式和一元一次不等式组三、知识梳理考点一、不等式的概念(3分)1、不等式:用不等号表示不等关系的式子,叫做不等式。
常见的不等号有五种:“≠”、“>” 、“<” 、“≥”、“≤”.2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
不等式的解集可以在数轴上直观的表示出来,具体表示方法是:①确定边界点。
解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;②确定方向:大向右,小向左。
3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
考点二、不等式基本性质(3~5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
如果a>b,那么a+c>b+c,a-c>b-c.2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
如果a >b ,并且c >0,那么a c >b c3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
如果a >b ,并且c <0,那么a c <b c4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;考点三、一元一次不等式 (6--8分)1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x 项的系数化为1说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例:131321≤---x x 解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!每一项都得乘) 去括号,得 62633≤+--x x (注意符号,不要漏乘!) 移 项,得 23663-+≤-x x (移项要变号)合并同类项,得 73≤-x (计算要正确) 系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了)考点四、一元一次不等式组 (8分)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
初中数学青岛版八年级下册多媒体互动教学课件8-3 列一元一次不等式解应用题
【例题】
【例】在一次知识竞赛中,有10道抢答题,答对一题得10分, 答错一题扣5分,不答得0分,小玲有一道题没有答,成绩仍然 不低于60分,她至少答对几道题? 【分析】答对题得的分数-答错题扣的分数≥60分. 【解析】设小玲答对的题数是x,则答错的题数是9-x, 根据题意,得10x-5(9-x)≥60 解这个不等式,得x≥7 答:她至少答对7道题.
答错或不答一道题扣1分.在这次竞赛中,小明被评为优秀
(85分或85分以上),小明至少答对了几道题?
【解析】设小明答对了x道题,则他答错或不答的共有(25-
x)道题,
根据题意得,4x-1×(25-x)≥85
解得
x≥22
所以小明至少答对了22道题.由于共有25道竞赛题,因而他
可能答对了22,23,24或25道竞赛题.
【解析】设这张相片上的同学有x人,根据题意,得 0.70x≥0.68+0.50x 解得 x≥3.4 因为x为正整数, 所以x=4.
答:这张相片上的同学最少有4人.
1.(临沂·中考)有3人携带会议材料乘坐电梯,这3人的
体重共210kg,每捆材料重20kg,电梯最大负荷1 050kg,
则该电梯在此3人乘坐的情况下最多能搭载
【解析】(1)120×0.95=114(元). 实际应支付114元. (2)设所购买的商品的价格为x元时,采用方案一更合 算,根据题意,得0.95x>0.8x+168, 解这个不等式,得x>1 120. 所以当小敏所购买商品的价格大于1 120元时,采用方案 一更合算.
4.一次环保知识竞赛共有25道题,规定答对一道题得4分,
捆
材料. 【解析】设可搭载x捆材料,列不等式210+20x≤1 050,解
8_3 一元一次不等式组(重点练)原卷版
8.3 一元一次不等式组(重点练)一.选择题(共10小题)1.(2021春•蜀山区校级期中)如图,按下面的程序进行运算,规定程序运行到“判断结果是否大于30”为一次运算.若某运算进行了3次才停止,则x的取值范围是()A.≤x B.<x C.<x≤D.≤x<2.(2021秋•东营期末)若不等式组无解,则a的取值范围为()A.a>4B.a≤4C.0<a<4D.a≥4 3.(2021•淇滨区模拟)不等式组的解集为()A.﹣1<x<4B.x<﹣1C.x<4D.无解4.(2021春•扶沟县期末)目前,我国已获批上市4款自主研发的新冠疫苗.某生物制药公司计划生产制造A、B两种疫苗共40万支,已知生产每支A疫苗需甲种原料8mg,乙种原料5mg;生产每支B疫苗需甲种原料4mg,乙种原料9mg.公司现有甲种原料4kg,乙种原料3kg,设计划生产A疫苗x支,下列符合题意的不等式组是()A.B.C.D.5.(2021•西吉县二模)不等式组的解集在数轴上表示正确的是()A.B.C.D.6.(2021春•泌阳县期末)若关于x的不等式组的整数解只有2个,则m的取值范围是()A.m>﹣3B.m<﹣2C.﹣3≤m<﹣2D.﹣3<m≤﹣2 7.(2020秋•永嘉县校级期末)若关于x的一元一次不等式组的解集是x<﹣3,则m的取值范围是()A.m≥﹣3B.m>﹣3C.m≤﹣3D.m<﹣3 8.(2021春•滦南县期末)如果不等式组的解集是0≤x<1,那么a+b的值为()A.﹣1B.0C.1D.29.(2021•东阿县三模)不等式组的解集在数轴上表示正确的是()A.B.C.D.10.(2021春•平原县期末)某班数学兴趣小组对不等式组讨论得到以下结论:①若a=5,则不等式组的解集为3<x≤5;②若a=2,则不等式组无解;③若不等式组无解,则a的取值范围为a<3;④若不等式组只有两个整数解,则a的值可以为5.1.其中,正确的结论的序号是()A.①②③B.①③④C.①②④D.①②③④二.填空题(共8小题)11.(2021•沈阳)不等式组的解集是.12.(2021秋•双峰县期末)不等式组的解集为x<3a+2,则a的取值范围是.13.(2021春•渝北区校级月考)为保障某贫困山区小学的学生有充足的学习文具,某小区向住户募集了2330支钢笔,1060本笔记本和若干套尺规套装,小区工作人员将这些物资分成了甲、乙、丙三类包裹进行发放,一个甲类包裹里有25支钢笔,10本笔记本和4套尺规套装,一个乙类包裹里有16支钢笔,8本笔记本和7套尺规套装,一个丙类包裹里有20支钢笔,6本笔记本和3套尺规套装.已知甲、乙、丙三类包裹的数量都为正整数,并且甲类的个数低于28个,乙类个数低于106个,那么所有包裹里尺规套装的总套数为套.14.(2021春•光明区期中)安排学生住宿,若每间住3人,则还有13人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为.15.(2021春•依安县期末)把一批书分给小朋友,每人3本,则余8本;每人5本,则最后一个小朋友得到书且不足3本,这批书有本.16.(2021春•福田区校级期中)安排学生住宿,若每间住3人,则还有3人无房可住;若每间住5人,则其它房间全住满还剩一间住的人数不足3人,则宿舍的房间数量是.17.(2021春•兖州区期末)现有一批学生住若干间宿舍,若每间住4人还余19人,若每间住6人将有一间宿舍不满不空,则学生人数最多有人.18.(2021春•阳谷县期末)若关于x的一元一次不等式组无解,则m的取值范围是.三.解答题(共8小题)19.(2021春•上蔡县期末)解不等式组.20.(2021•杨浦区三模)解不等式组:,并将解集在数轴上表示出来.21.(2021•济南)解不等式组:并写出它的所有整数解.22.(2021•汉阳区模拟)解不等式组请按下列步骤完成解答:(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.23.(2021春•平邑县期末)在一次高速铁路建设中,某渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方.已知2辆大型渣土运输车与3辆小型渣土运输车一次共运输土方31吨,5辆大型渣土运输车与6辆小型土运输车一次共运输土方70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?(2)该渣土运输公司决定派出大、小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不小于148吨,且小型渣土运输车至少派出2辆,则有哪几种派车方案?24.(2021秋•临湘市期末)列不等式(组)解应用题:一工厂要将100吨货物运往外地,计划租用某运输公司甲、乙两种型号的汽车共6辆一次将货物全部运动,已知每辆甲型汽车最多能装该种货物16吨,租金800元,每辆乙型汽车最多能装该种货物18吨,租金850元,若此工厂计划此次租车费用不超过5000元,通过计算求出该公司共有几种租车方案?请你设计出来,并求出最低的租车费用.25.(2021•资兴市模拟)某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A,B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A,B两种货厢的节数,有哪几种运输方案?请设计出来.26.(2021春•沂南县期末)蔬菜大王小明牛年春节前欲将一批蔬菜运往外地销售,若用2辆A 型车和1辆B型车载满蔬菜一次可运走10吨,用1辆A型车和2辆B型车载满蔬菜一次可运走11吨.现有蔬菜31吨,计划同时租用A型车x辆,B型车y辆,一次运完,且恰好每辆车都载满蔬菜.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满蔬菜一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案;(3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费.。
中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用
重难点 2:一元一次不等式的应用 在某次篮球联赛初赛阶段,每队共有 10 场比赛,每场比赛都要分出
胜负,每队胜一场得 2 分,负一场得 1 分,积分超过 15 分才能获得参加 决赛资格. (1)已知甲队在初赛阶段的积分为 18 分,求甲队初赛阶段胜、负各多少 场; (2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少 场?
4.对于带有单位的应用题,设未知数和答时要带单位. 评分说明: (1)正确地设未知数并列出方程或方程组得 2 分; (2)方程或方程组解答正确得 1 分,解答的具体过程不是得分点,可以省 略;
(3)写出“答”得 1 分; (4)正确地设未知数并列出不等式得 2 分; (5)解不等式的过程不是得分点,可以省略,正确地写出不等式的解得 1 分; (6)正确地写出“答”得 1 分.
(1)【教你审题】设甲队初赛阶段胜 x 场,负 y 场.
原题信息
整理后的信息
在某次篮球联赛初赛阶段,每队共 x+y=10
有 10 场比赛
每队胜一场得 2 分,负一场得 1 分, 2x+y=18
甲队在初赛阶段的积分为 18 分
解:设甲队初赛阶段胜 x 场,负 y 场,由题意得,
x+y=10, 2x+y=18,(2 分)
积分超过 15 分才能获得参加决赛 2a+(10-a)>15
资格,乙队要获得参加决赛资格
解:设乙队初赛阶段胜 a 场,则负(10-a)场,由题意得, 2a+(10-a)>15,(6 分) 解得 a>5.(7 分) 答:乙队在初赛阶段至少要胜 6 场.(8 分)
1.设未知数时,表示不等关系的文字如“至少”等不能出现,即应给出 肯定的未知数的设法. 2.对于不等式的应用,应注意一些关键词语,从而建立不等式模型,例 如“不少于≥”“不超过≤”“至少≥”“最多≤”“不高于≤”等. 3.不等式的应用还需要验根,题目中用字母表示的量要符合实际意义, 如人数是正整数,时间不能为负数等.
一元一次不等式组的特征
一元一次不等式组的特征说到一元一次不等式组,大家可能脑袋一晕,瞬间想逃跑。
我知道,数学这玩意儿一看到“组”字,很多人就已经开始心里打退堂鼓了。
其实啊,它真的没那么复杂,真没那么可怕。
你看看,就像你每天出门的时候得决定要穿什么,外面冷不冷,风大不大,或者是今天心情怎么样一样。
一元一次不等式组也不过是给你几个条件,让你根据这些条件去做决定,找出哪些值符合这些规则。
不信?我来慢慢给你讲。
首先啊,“一元一次”这四个字就很容易理解了。
“一元”就是只有一个“x”,只有一个未知数,明白吧?“一次”呢,咱们就可以理解成那个“x”上面没有高高的幂,没有复杂的二次方、三次方,就一个“x”。
所以呀,一元一次不等式组其实就是一堆一元一次不等式的组合而已,看起来像个难题,其实就是拼图。
就好比你现在手里拿着几块拼图,拼拼看,最后完成的结果就是你要找的答案。
说到不等式,大家心里可能就会产生一些疑惑。
什么意思呢?举个例子吧,比如你和朋友约好一起去吃饭,结果你俩的目的地一开始是A餐厅,后来你又想着要不要换去B餐厅。
好,B餐厅就在A餐厅的左边,你就可以说A餐厅的位置比B餐厅“更远”。
这就类似于不等式。
也就是说,当你拿到一个不等式,你其实是在比较两个数或者是表达两者之间的关系,就像你和朋友吃饭时的餐厅选择一样。
一元一次不等式组就是给你提供了几条“不等式”,然后你需要在满足这些条件下找到符合的解。
比如:。
x > 3x leq 5这就像是给你说“嘿!你这小子必须比3大,但是又不能超过5,最好就保持在3到5之间”,你看,多简单!你只要拿着这个约束条件去找符合它的数字,答案就出来了。
就像你去超市挑商品,标签上写着“这个产品满足条件A和条件B”,你就按照这个标准挑一挑,找到合适的商品。
不过呢,咱们如果要解这类不等式组可得注意点细节,特别是涉及到符号翻转的情况。
就像咱们生活中啊,规则是死的,人心是不定的。
有时候不等式前面乘或者除以负数时,符号就得反过来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2 15 x 16 3 3
2 x 15 3
3
又x为整数,所以x=16,即每个小组原来每天生产16件产品.
2.一个长方形,两边的长分别为x cm和10cm,如果它的周 2 cm 长小于80cm,面积大于100 ,根据题意可列出不等式 组为 2( x 10) 80
10 x 100
一元一次不等式组(四)
例1、3个小组计划在10天内生产500件产品 (每天生产量相同),按原先的生产速度,不 能完成任务;如果每个小组每天比原先多生产1 件产品,就能提前完成任务.每个小组原先每
天生产多少件产品?
解:设每个小组原来每天生产x件产品,则有 3 10x 0 3 10( x 1) 500 2 x 16 由不等式①得 由②得
练习巩固:
1、某中学为七年级寄宿学生 安排宿舍,如果每间4人,那 么有20人无法安排,如果每间 8人,那么有一间不空也不 满,求宿舍间数和寄宿学生人 数。
小结
列一元一次不等式组解实际问题的一 般步骤:
(1) 审题; (2)找不等量关系,; (3)设未知量 (4)根据不等量关系列不等式(组) ; (5)解不等式组、检验并作答。
x125
∴不等式组的解集为: 125 x136 答:进价的范围是125~136元。
例2.已知利民服装厂现有A种布料70米,B 种布料52米,现计划用这两种布料生产M,N 两种型号的时装共80套,已知做一套M型号时 装需A种布料0.6米,B种布料0.9米;做 一套N型号时装需A种布料1.1米,B种布料 0.4米;若设生产N型号的时装套数为X,用 这批布料生产这两种型号的时装有几种方案
4、某商品的售价是150元,商家售出一件商品可获利润 是进价的10%~20%,进价的范围是多少?(精确到1元) 分析:10%~20%该怎么理解? 10%~20%的范围是10%到20%之间,并且包括10%和 20%。 150 x10%x 解:设进价是x元。 则不等关系为: 150 x20%x ≧ 利润 10%进价 ≦ 利润 20%进价 125 136 0 解不等式①得: x136 解不等式②得: