卡尔曼滤波算法(含详细推导)

合集下载

卡尔曼滤波五个公式推导过程

卡尔曼滤波五个公式推导过程

卡尔曼滤波五个公式推导过程1.系统的状态方程假设我们有一个线性动态系统,可以用如下的状态方程来描述:x(k)=Ax(k-1)+Bu(k-1)+w(k-1)其中,x(k)表示系统在时刻k的状态向量,A是系统的状态转移矩阵,B是输入变量矩阵,u(k-1)是输入变量向量,w(k-1)是过程噪声。

2.系统的测量方程假设我们的系统是通过一些传感器进行测量的,测量结果表示为:z(k)=Hx(k)+v(k)其中,z(k)是系统的测量向量,H是观测矩阵,v(k)是测量噪声。

3.状态估计的预测根据系统的状态方程,我们可以预测系统在下一个时刻的状态。

预测的结果表示为:x^(k)=Ax(k-1)+Bu(k-1)其中,x^(k)表示状态的预测向量。

4.测量更新在得到测量结果后,我们可以根据测量更新系统的状态估计。

计算出的状态估计称为卡尔曼增益。

卡尔曼增益的计算公式如下:K(k)=P^(k)H^T(HP^(k)H^T+R)^-1其中,P^(k)是状态协方差的预测值,R是测量噪声的协方差。

5.状态估计的更新通过卡尔曼增益,我们可以计算出最终的状态估计。

状态估计的更新公式如下:x(k)=x^(k)+K(k)(z(k)-Hx^(k))P(k)=(I-K(k)H)P^(k)其中,I是单位矩阵,P(k)是状态协方差的最优估计。

以上就是卡尔曼滤波的五个公式的推导过程。

通过这五个公式,我们可以根据系统的状态方程和测量方程,利用预测和更新步骤,得到最优的状态估计结果。

卡尔曼滤波在各个领域都有广泛的应用,如目标跟踪、定位导航等。

Kalman滤波原理及算法

Kalman滤波原理及算法

Kalman滤波原理及算法kalman滤波器一(什么是卡尔曼滤波器卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯, 我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。

二.卡尔曼滤波器算法的介绍以下是卡尔曼滤波器核心的5个式子。

X(k|k-1)=A X(k-1|k-1)+B U(k) (1)P(k|k-1)=A P(k-1|k-1) A’+Q (2)X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) (3)Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) (4)P(k|k)=(I-Kg(k) H)P(k|k-1) (5)下面我们详细介绍卡尔曼滤波的过程。

首先,我们要引入一个离散控制过程的系统。

该系统可用一个线性随机微分方程来描述:X(k)=A X(k-1)+B U(k)+W(k)再加上系统的测量值:Z(k)=H X(k)+V(k)上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。

A和B是系统参数,对于多模型系统,他们为矩阵。

Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。

W(k)和V(k)分别表示过程和测量的噪声。

他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance分别是Q,R(这里我们假设他们不随系统状态变化而变化)。

对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。

下面我们来用他们结合他们的covariances来估算系统的最优化输出。

首先我们要利用系统的过程模型,来预测下一状态的系统。

卡尔曼滤波方程的推导

卡尔曼滤波方程的推导

Kalman 增益推导: Kalman 滤波器是一个最小均方误差估计器,先验状态误差估计可表示为
ˆ ( k | k ),我们最小化这个矢量幅度平方的期望值 E X (k ) X ˆ (k | k ) 2 , X (k ) X

这等价于最小化后验估计协方差矩阵 P(k | k ) 的迹,通过展开合并 P(k | k ) 公式, 可得:
E[W (k )] 0或E[W (k )] W T E[W (k )W ( j )] Q(k ) kj E[V (k )] 0或E[V (k )] V T E[V (k )V ( j )] R(k ) kj
式(2)
1 (k j ) 其中 kj ,这里 Q(k ) 0 是激励噪声的一个 n n 维的协 0 ( k j )
我们通过式(11)求导的方式求得 P(k | k ) 的极值点:
tr ( P(k | k )) 2[ H (k ) P(k | k 1)]T 2 K (k ) S (k ) 0 ( K (k )) 注:这里协方差矩阵式对称矩阵 K (k ) P(k | k 1) H T (k ) S 1 (k )
1、 随机线性离散系统的状态方程和观测方程为:
X (k ) (k , k 1) X (k 1) B(k , k 1)U (k 1) (k , k 1)W (k 1) Z (k ) H (k ) X (k ) V (k )
式(1)
式中状态向量 X (k ) R n ,观测矢量 Z (k ) R m ,随机过程噪声 W (k ) R r ,随 机观测噪声 V (k ) R m ,状态转移矩阵 (k , k 1) R nn ,过程噪声输入矩阵

kalman滤波器算法原理

kalman滤波器算法原理

卡尔曼滤波总结假设条件:系统的状态由图1所给出的模型决定。

假定),1(k k+Φ,),1(k k+Γ,)0(P 和)(k Q 是已知的,并且是确定性的。

而观测模型由图2给出,其中)1(+kH 和)(k R 也是已知的,并且是确定性的。

它们可以写为,1,0),(),1()(),1()1(=+Γ++Φ=+k k w k k k x k k k x 状态方程)1()1()1()1(++++=+k v k x k H k z 量测方程)1(+k w激励)1(+k图1 一个离散-时间线性系统的状态方程和输出方程的矢量结构图观测转移矩阵 )1(+k xv (k+1)矢量求和激励)1(+k观测矢量 观测误差新状态矢量图2 观测模型的矢量结构图卡尔曼滤波算法:滤波估计由Kalman 所给出的最优线性滤波估计)1|1(ˆ++k k x是由下面的递归矩阵公式决定的,即,0)0|0(ˆ)]|(ˆ),1()1()1()[1()|(ˆ),1()1|1(≥=+Φ+-++++Φ=++k xk k xk k k H k z k K k k xk k k k x 初始条件这里)1(+kK 称为卡尔曼增益卡尔曼增益卡尔曼增益的表达式为,1,0,)]1()1()|1()1([)1()|1()1(1=+++++⨯++=+-k k R k H k k P k H k H k k P k K TT其中)|1(k kP +表示单步预测误差协方差矩阵。

单步预测误差协方差矩阵(单步性能)1,0)0()0|0(),1()(),1(),1()|(),1()|1(==+Γ+Γ++Φ+Φ=+k P P k k k Q k k k k k k P k k k k P TT,初始条件滤波误差的误差协方差矩阵(协方差递归形式)1,0),|1()]1()1([)1|1(=+++-=+k k k P k H k K I k k P +性能评价(系统状态的卡尔曼滤波估计的协方差矩阵)1,0],))1|1(ˆ)1(ˆ))(1|1(ˆ)1([()1|1(=++-+++-+=+k k k x k x k k xk x E k k P T+11|11|----Γ+Φ=k k k k k k kW XXkkk k V XH Z +=式中:k X —— 是一个1⨯n 维矢量,称为k t 时刻的状态矢量。

卡尔曼滤波器原理详解

卡尔曼滤波器原理详解

卡尔曼滤波器原理详解卡尔曼滤波器是一种用于估计系统状态的滤波算法,其原理基于状态空间模型和观测模型,并结合最小均方误差准则。

它通过使用系统动态方程和观测值,对系统的状态进行估计和预测,实现对噪声和偏差的最优抑制,从而提高状态估计的精度和稳定性。

1.预测步骤:预测步骤是基于系统的动态方程,利用上一时刻的状态估计和控制输入,预测系统的状态。

预测步骤中,通过状态转移矩阵A将上一时刻的状态估计值x(k-1)预测到当前时刻的状态估计值的先验估计值x'(k):x'(k)=A*x(k-1)+B*u(k-1)其中,x(k-1)为上一时刻的状态估计值,u(k-1)为控制输入。

预测步骤还要对状态估计值的协方差矩阵P(k-1)进行更新,通过状态转移矩阵A和系统的过程噪声协方差矩阵Q的关系:P'(k)=A*P(k-1)*A'+Q2.更新步骤:更新步骤是基于观测模型,利用当前时刻的观测值和预测的状态估计值,对状态进行校正和更新。

更新步骤中,首先计算观测残差z(k):z(k)=y(k)-H*x'(k)其中,y(k)为当前时刻的观测值,H为观测模型矩阵。

然后基于观测模型矩阵H、预测的状态估计值x'(k)和状态估计值的协方差矩阵P'(k),计算卡尔曼增益K(k):K(k)=P'(k)*H'*(H*P'(k)*H'+R)^(-1)其中,R为观测噪声协方差矩阵。

最后,利用卡尔曼增益对状态估计值进行校正和更新:x(k)=x'(k)+K(k)*z(k)更新步骤还要对状态估计值的协方差矩阵P'(k)进行更新,通过卡尔曼增益K(k)和观测噪声协方差矩阵R的关系:P(k)=(I-K(k)*H)*P'(k)其中,I为单位矩阵。

卡尔曼滤波器的主要优点在于可以根据系统的动态方程和观测模型进行状态估计,对于动态系统和噪声的建模具有一定的灵活性。

卡尔曼滤波详解一维卡尔曼滤波实例解析(五个公式以及各个参数的意义)

卡尔曼滤波详解一维卡尔曼滤波实例解析(五个公式以及各个参数的意义)

卡尔曼滤波详解一维卡尔曼滤波实例解析(五个公式以及各个参数的意义)一、问题描述假设我们有一个一维系统,我们想要估计这个系统的状态x。

我们可以通过一维传感器获得关于这个系统的观测z,但是这个观测会存在误差。

二、基本原理三、基本公式1.状态预测:我们首先假设系统可以通过一个线性方程来描述:x(k)=Ax(k-1)+B(u(k))+w(k),其中x(k)代表系统在时刻k的真实状态,A是系统的状态转移矩阵,B是外部输入的影响矩阵,u(k)是外部输入,w(k)是系统状态预测过程中的噪声。

2.状态协方差预测:卡尔曼滤波同时也需要估计状态的不确定性,即状态协方差。

协方差可以通过以下公式进行预测:P(k)=AP(k-1)A^T+Q(k-1),其中P(k)代表状态协方差矩阵,Q(k-1)是协方差预测过程中的噪声。

3.观测预测:将状态的估计值带入观测模型中,可以预测观测值:z^(k)=Hx^(k),其中z^(k)代表预测的观测值,x^(k)代表状态的估计值,H是观测模型矩阵。

4.观测残差:观测残差即观测值与预测观测值之间的差异:y(k)=z(k)-z^(k),其中y(k)代表观测残差。

5.状态更新:基于观测残差,我们可以通过以下公式更新状态的估计值:x(k)=x^(k)+K(k)y(k),其中K(k)代表卡尔曼增益。

卡尔曼增益可以通过以下公式计算:K(k)=P(k)H^T(HP(k)H^T+R)^-1,其中R为观测噪声的方差。

四、参数含义1.状态转移矩阵A:描述系统状态k与状态k-1之间的转移关系。

2.外部输入矩阵B:外部输入对系统状态的影响矩阵。

3.外部输入u(k):外部输入,可以是控制信号或者测量噪声。

4.状态预测噪声w(k):在状态预测过程中引入的噪声。

5.状态协方差矩阵P:表示状态估计的不确定性,协方差矩阵的对角线上的元素越大,状态的不确定性越大。

6.状态协方差预测噪声Q(k):在状态协方差预测过程中引入的噪声。

卡尔曼滤波算法含详细推导.ppt

卡尔曼滤波算法含详细推导.ppt
动态系统在时间n的状态到n+1的状态之间的转移,应为已知。
而M 1向量 v为1(过n)程噪声向量,它描述状态转移中间的
加性噪声或误差。
1、kalman滤波问题
(1)、观测方程
y(n)C (n)x(n)v2(n)....2 .)....(
式中,N 1向量y(n)表示动态系统在时间n的观测向量; N M矩阵C(n)称为观测矩阵(描述状态经过其作用,
卡尔曼滤波算法及 推导
1、kalman滤波问题
考虑一离散时间的动态系统,它由描述状态向量的过程方程 和描述观测向量的观测方程共同表示。
(1)、过程方程
x (n 1 ) F (n 1 ,n )x (n ) v 1 (n )...1 )....
式中,M 1向量x(n)表示系统在离散时间n的状态向量,它是 不可观测的;M M矩阵F(n+1,n)成为状态转移矩阵,描述
变成可预测的),要求也是已知的;v2(n)表示观测噪声向 量,其维数与观测向量的相同。过程方程也称为状态方程, 为了分析的方便,通常假定过程噪声v1(n)和观测噪声v2(n) 均为零均值的白噪声过程,它们的相关矩阵分别为:
1、kalman滤波问题
E { v 1 (n )v 1 H (k ) }Q 0 ,1 n ( n k )n , k ..3 .)...(
K (n ,n 1 ) E { e (n ,n 1 )e H (n ,n 1 )}................1 ..) ....( 7 ..
表示(一步)预测状态误差的相关矩阵
3、kalman滤波算法
由上一节的的新息过程的相关知识和信息后,即可转入 kalman滤波算法的核心问题的讨论:如何利用新息过程估计 状态向量的预测?最自然的方法是用新息过程序列a(1),…a(n) 的线性组合直接构造状态向量的一布预测:

卡尔曼滤波算法

卡尔曼滤波算法

卡尔曼滤波器不断的把covariance递归, 从而估算出最优的温度值。其运
行的很快,而且它只保留了上一时刻的covarian2c02e1/3。/28
12
三:卡尔曼滤波引例
2021/3/28
13
四:卡尔曼滤波算法数学推导
引入一个离散控制过程的系统。 该系统可用一个线性随机微分方程来描述:
X(k)=F X(k-1)+B U(k)+W(k) 加上系统的测量值:
五:卡尔曼滤波的典型应用—多传感器数据融合处理
数据融合的模型: (a)集中式融合系统;
(b)无反馈式分布融合系统;
(c)有反馈式分布融合系统; (d)有反馈的全并行系统
(c)有反馈式分布融合系统
融合中心到各传感器有反 馈通道,提高各传感器状态 估计和预测精度。
2021/3/28
27
五:卡尔曼滤波的典型应用—多传感器数据融合处理
• 卡尔曼滤波器源于他的博士论文和1960年 发表的论文《A New Approach to Linear Filtering and Prediction Problems》 (线性滤波与预测问题的新方法)。
卡尔曼将状态变量引入虑波理论,提出了递推滤波算法,建 立了后来被自动控制界称道的“卡尔曼滤波”。
25
五:卡尔曼滤波的典型应用—多传感器数据融合处理
数据融合的模型: (a)集中式融合系统;
(b)无反馈式分布融合系统;
(c)有反馈式分布融合系统; (d)有反馈的全并行系统
(b)无反馈式分布融合系统
各传感器分别滤波,将
各局部状态估计送给 融合中心进行融合,最 后给出融合结果。
2021/3/28
26
四:卡尔曼滤波算法数学推导

卡尔曼滤波算法原理及应用

卡尔曼滤波算法原理及应用

卡尔曼滤波算法原理及应⽤卡尔曼滤波是⼀种⾼效率的递归滤波器,它能够从⼀系列的不完全及包含噪声的测量中,估计动态系统的状态。

卡尔曼滤波在技术领域有许多的应⽤,常见的有飞机及太空船的导引、导航及控制。

卡尔曼算法主要可以分为两个步骤进⾏:预测和更新。

基于最⼩均⽅误差为最佳估计准则,利⽤上⼀时刻的估计值和状态转移矩阵进⾏预测,⽤测量值对预测值进⾏修正,得到当前时刻的估计值。

卡尔曼算法公式预测:1. ˆs(n |n −1)=A ˆs (n −1|n −1)2. P (n )=A ξ(n −1)A T +Q 更新:3. G (n )=P (n )C T [CP (n )C T +R ]−14. ξ(n )=(I −G (n )C )P (n )5. ˆs(n |n )=ˆs (n |n −1)+G (n )[x (n )−C ˆs (n |n −1)]利⽤上⾯五个式⼦可以递推得到状态的估计值ˆs (n |n )。

⽂章的组织如下:1.基本模型及假设2.卡尔曼算法原理及推导3.卡尔曼滤波算法举例4.Matlab 程序1.基本模型与假设状态⽅程(描述物体运动状态)s (n )=As (n −1)+w (n )测量⽅程(利⽤探测器等器件获取物体状态参数)x (n )=Cs (n )+v (n )其中w (n )为过程噪声,v (n )为测量噪声。

假设:w (n ),v (n ),为独⽴零均值的⽩噪声过程,即E [w (n )w T (k )]=Q (n ),n =k 0,n ≠k E [v (n )v T (k )]=R (n ),n =k 0,n ≠kv (n )和s (n )、w (n )不相关,即E [v (n )s (n )]=0E [v (n )w (n )]=02.卡尔曼算法原理及推导基于最⼩均⽅误差准则,通过观测值x (n )求真实信号s (n )的线性⽆偏最优估计。

已知上⼀时刻的估计值ˆs(n −1|n −1)利⽤状态⽅程对s (n )进⾏预测,最佳预测为{{ˆs(n|n−1)=Aˆs(n−1|n−1)利⽤测量⽅程对x(n)进⾏预测,最佳预测为ˆx(n|n−1)=Cˆs(n|n−1)=CAˆs(n−1|n−1)噪声不参与预测。

卡尔曼滤波算法示例解析与公式推导

卡尔曼滤波算法示例解析与公式推导

本文将对卡尔曼滤波算法进行示例解析与公式推导,帮助读者更好地理解该算法的原理和应用。

文章将从以下几个方面展开:一、卡尔曼滤波算法的概念卡尔曼滤波算法是一种用于估计动态系统状态的线性无偏最优滤波算法。

它利用系统的动态模型和观测数据,通过迭代更新状态估计值,实现对系统状态的精确估计。

卡尔曼滤波算法最初是由美国工程师鲁道夫·卡尔曼在20世纪60年代提出,随后得到了广泛的应用和研究。

二、卡尔曼滤波算法的原理1. 状态空间模型在卡尔曼滤波算法中,系统的动态模型通常用状态空间模型表示。

状态空间模型由状态方程和观测方程组成,其中状态方程描述系统的演化规律,观测方程描述观测数据与状态之间的关系。

通过状态空间模型,可以对系统的状态进行预测,并与观测数据进行融合,从而估计系统的状态。

2. 卡尔曼滤波的预测与更新卡尔曼滤波算法以预测-更新的方式进行状态估计。

在预测阶段,利用系统的动态模型和之前时刻的状态估计值,对当前时刻的状态进行预测;在更新阶段,将预测值与观测数据进行融合,得到最优的状态估计值。

通过迭代更新,可以不断优化对系统状态的估计,实现对系统状态的精确跟踪。

三、卡尔曼滤波算法的示例解析以下通过一个简单的例子,对卡尔曼滤波算法进行具体的示例解析,帮助读者更好地理解该算法的应用过程。

假设有一个匀速直线运动的物体,其位置由x和y坐标表示,观测到的位置数据带有高斯噪声。

我们希望利用卡尔曼滤波算法对该物体的位置进行估计。

1. 状态空间模型的建立我们建立物体位置的状态空间模型。

假设物体在x和y方向上的位置分别由状态变量x和y表示,动态模型可以用如下状态方程描述:x(k+1) = x(k) + vx(k) * dty(k+1) = y(k) + vy(k) * dt其中,vx和vy分别为x和y方向的速度,dt表示时间间隔。

观测方程可以用如下形式表示:z(k) = H * x(k) + w(k)其中,z(k)为观测到的位置数据,H为观测矩阵,w(k)为观测噪声。

卡尔曼滤波详解

卡尔曼滤波详解

卡尔曼滤波详解卡尔曼滤波是一种常用的状态估计方法,它可以根据系统的动态模型和观测数据,对系统的状态进行估计。

卡尔曼滤波广泛应用于机器人导航、飞行控制、信号处理等领域。

本文将详细介绍卡尔曼滤波的原理、算法及应用。

一、卡尔曼滤波原理卡尔曼滤波的基本思想是利用系统的动态模型和观测数据,对系统的状态进行估计。

在卡尔曼滤波中,系统的状态被表示为一个向量,每个元素表示系统的某个特定状态量。

例如,一个机器人的状态向量可能包括机器人的位置、速度、方向等信息。

卡尔曼滤波的基本假设是系统的动态模型和观测数据都是线性的,而且存在噪声。

系统的动态模型可以表示为:x(t+1) = Ax(t) + Bu(t) + w(t)其中,x(t)表示系统在时刻t的状态向量,A是状态转移矩阵,B是控制矩阵,u(t)表示外部控制输入,w(t)表示系统的过程噪声。

观测数据可以表示为:z(t) = Hx(t) + v(t)其中,z(t)表示系统在时刻t的观测向量,H是观测矩阵,v(t)表示观测噪声。

卡尔曼滤波的目标是根据系统的动态模型和观测数据,估计系统的状态向量x(t)。

为了达到这个目标,卡尔曼滤波将状态估计分为两个阶段:预测和更新。

预测阶段:根据系统的动态模型,预测系统在下一个时刻的状态向量x(t+1)。

预测的过程可以表示为:x^(t+1|t) = Ax^(t|t) + Bu(t)其中,x^(t|t)表示在时刻t的状态向量的估计值,x^(t+1|t)表示在时刻t+1的状态向量的预测值。

卡尔曼滤波还需要对状态的不确定性进行估计,这个不确定性通常用协方差矩阵P(t)表示。

协方差矩阵P(t)表示状态向量估计值和真实值之间的差异程度。

预测阶段中,协方差矩阵也需要进行更新,更新的过程可以表示为:P(t+1|t) = AP(t|t)A' + Q其中,Q表示过程噪声的协方差矩阵。

更新阶段:根据观测数据,更新状态向量的估计值和协方差矩阵。

更新的过程可以表示为:K(t+1) = P(t+1|t)H'(HP(t+1|t)H' + R)^-1x^(t+1|t+1) = x^(t+1|t) + K(t+1)[z(t+1) - Hx^(t+1|t)]P(t+1|t+1) = (I - K(t+1)H)P(t+1|t)其中,K(t+1)表示卡尔曼增益,R表示观测噪声的协方差矩阵,I是单位矩阵。

卡尔曼滤波算法

卡尔曼滤波算法

卡尔曼滤波算法卡尔曼滤波算法卡尔曼滤波器是⼀个“最优化⾃回归数据处理算法”。

对于解决⼤部分的问题,它是最优,效率最⾼甚⾄是最有⽤的。

其⼴泛应⽤已经超过30年,包括机器⼈导航,控制,传感器数据融合甚⾄在军事⽅⾯的雷达系统以及导弹追踪等。

近年来更被应⽤于计算机图像处理,列⼊,⾯部识别,图像分割,图像边缘检测等⽅⾯。

卡尔曼滤波原理⾸先要引⼊⼀个离散控制过程的系统,该系统可⽤⼀个线性随机微分⽅程来秒速:X(k)=AX(k-1)+BU(k)+W(k)(1)再加上系统的测量值:Z(k)=HX(k)+V(k)(2)上两式⼦中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。

A和B 是系统参数,对于多模型系统,它们为矩阵。

Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。

W(k)和V(k)分别表⽰过程和测量的噪声。

它们被假设成⾼斯⽩噪声,其协⽅差分别是Q,R,这⾥假设它们不随系统状态变化⽽变化。

由于满⾜上⾯的条件(线性随机微分系统,过程和测量都是⾼斯⽩噪声),卡尔曼滤波器是最优的信息处理器。

下⾯来估算系统的最优化输出。

⾸先利⽤系统的过程模型预测下个状态的系统。

假设现在的系统状态是k,根据系统的模型,可以基于系统的上⼀状态⽽预测出现在状态:X(k|k-1)=AX(k-1|k-1)+BU(k)(3)式(3)中,X(k|k-1)是利⽤上⼀个状态预测的结果,X(k-1|k-1)是上⼀个状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0.到现在为⽌,系统结果已经更新了,可是对应于X(k|k-1)的协⽅差还没有更新。

⽤P 表⽰协⽅差:P(k|k-1)=AP(k|k-1)A’+Q(4)式⼦(4)中P(k|k-1)是X(k|k-1)对应的协⽅差,P(k-1|k-1)是X(k-1|k-1)对应的协⽅差,A’表⽰A的转置矩阵,Q时系统过程的协⽅差。

式(3),式(4)就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。

卡尔曼滤波器的五个公式

卡尔曼滤波器的五个公式

卡尔曼滤波器的五个公式
1.状态方程:描述系统状态随时间的变化。

通常为一个一阶差分方程,常见形式为x(k)=Ax(k-1)+Bu(k),其中x为状态向量,u为控制向量,A为状态转移矩阵,B为控制矩阵。

2. 观测方程:描述系统状态的观测值随时间的变化。

通常为一个线性方程,常见形式为z(k)=Hx(k)+v(k),其中z为观测向量,H 为观测矩阵,v为观测噪声。

3. 预测方程:预测下一时刻系统状态的值。

通常为状态方程的简化形式,只考虑状态转移矩阵和控制向量。

4. 卡尔曼增益方程:用于计算状态估计值和观测值之间的差距,从而校正预测值。

通常为K(k)=PH^T(HPH^T+R)^-1,其中P为状态协方差矩阵,R为观测噪声协方差矩阵。

5. 更新方程:校正预测值,得到最终的状态估计值。

通常为
x(k)=x(k|k-1)+K(k)(z(k)-Hx(k|k-1)),其中x(k|k-1)为预测值,z(k)为观测值,K(k)为卡尔曼增益。

- 1 -。

六轴传感器卡尔曼滤波 计算公式

六轴传感器卡尔曼滤波 计算公式

六轴传感器卡尔曼滤波计算公式卡尔曼滤波器是一种高效的递归滤波器,它只需要参数的当前状态就可以估算出下一个状态,使得计算量大大减少。

在六轴传感器(通常指的是三轴加速度计和三轴陀螺仪)的融合中,卡尔曼滤波常被用来优化和预测传感器的读数,以减少噪声和误差。

以下是简化的六轴传感器卡尔曼滤波的计算步骤和公式:预测:预测下一状态:(\hat{x}{k|k-1} = F_k \hat{x}{k-1|k-1})其中,(\hat{x}{k|k-1}) 是在 k 时刻基于 k-1 时刻的估计值预测的状态,(F_k) 是状态转移矩阵,(\hat{x}{k-1|k-1}) 是在 k-1 时刻的最优估计值。

预测估计协方差:(P_{k|k-1} = F_k P_{k-1|k-1} F_k^T + Q_k) 其中,(P_{k|k-1}) 是预测的估计协方差,(P_{k-1|k-1}) 是上一时刻的最优估计协方差,(Q_k) 是过程噪声协方差。

更新:计算卡尔曼增益:(K_k = P_{k|k-1} H_k^T (H_k P_{k|k-1} H_k^T + R_k)^{-1})其中,(K_k) 是卡尔曼增益,(H_k) 是观测模型矩阵,它将状态空间映射到观测空间,(R_k) 是观测噪声协方差。

更新估计值:(\hat{x}{k|k} = \hat{x}{k|k-1} + K_k (z_k - H_k \hat{x}{k|k-1}))其中,(\hat{x}{k|k}) 是在 k 时刻的最优估计值,(z_k) 是在 k 时刻的观测值。

更新估计协方差:(P_{k|k} = (I - K_k H_k) P_{k|k-1})其中,(P_{k|k}) 是在 k 时刻的最优估计协方差。

对于六轴传感器,状态向量 (x) 通常包括角度、角速度和可能的偏差项。

观测向量 (z) 则来自加速度计和陀螺仪的读数。

你需要为系统定义一个合适的状态转移矩阵 (F) 和观测模型矩阵 (H),以及过程噪声协方差 (Q) 和观测噪声协方差 (R)。

卡尔曼滤波(Kalman Filter)原理与公式推导

卡尔曼滤波(Kalman Filter)原理与公式推导

一、背景---卡尔曼滤波的意义随着传感技术、机器人、自动驾驶以及航空航天等技术的不断发展,对控制系统的精度及稳定性的要求也越来越高。

卡尔曼滤波作为一种状态最优估计的方法,其应用也越来越普遍,如在无人机、机器人等领域均得到了广泛应用。

对于Kalman Filter的理解,用过的都知道“黄金五条”公式,且通过“预测”与“更新”两个过程来对系统的状态进行最优估计,但完整的推导过程却不一定能写出来,希望通过此文能对卡尔曼滤波的原理及状态估计算法有更一步的理解。

二、卡尔曼滤波的基本模型假设一离散线性动态系统的模型如下所示:x_{k} = A*x_{k-1} + B*u_{k} + w_{k-1}-------(1)z_{k} = H*x_{k} + v_{k} --------------------(2)其中,各变量表征的意义为:———————————————————————————x_{k}\Rightarrow 系统状态矩阵,-------, z_{k}\Rightarrow 状态阵的观测量(实测)A\Rightarrow 状态转移矩阵,-------, B\Rightarrow 控制输入矩阵H\Rightarrow 状态观测矩阵w_{k-1}\Rightarrow 过程噪声,-------,v_{k}\Rightarrow 测量噪声———————————————————————————如果大家学过《现代控制理论》的话,对上述模型的描述形式一定不会陌生,只是多了变量 w_{k-1} 与 v_{k} 。

其中,随机变量w_{k-1} 代表过程噪声(process noise), v_{k} 代表测量噪声(measurement noise),且为高斯白噪声,协方差分别为 Q 和 R ,即 p(w) \in N(0,Q) , p(v) \in N(0,R) 。

为什么要引入这两个变量呢?对于大多数实际的控制系统(如倒立摆系统)而言,它并不是一个严格的线性时变系统(Linear Time System),亦或系统结构参数的不确定性,导致估计的状态值x_{k} 存在偏差,而这个偏差值由过程噪声 w_{k} 来表征。

卡尔曼滤波算法(含详细推导)

卡尔曼滤波算法(含详细推导)

还假设状态的初始值x(0)与v1(n) 、 v2 (n),n 0均不相关,并且噪声向量 v1(n)与v2(n)也不相关,既有:
H E { v ( n ) v ( k )} 0 , n , k ......( 5 ) 1 2
2、新息过程Leabharlann 考虑一步预测问题,给定观测值y(1), ...,y(n-1),求观测向量y(n) 的最小二乘估计,记作

x ( n 1 ) F ( n 1 , n ) x ( n ) G ( n ) ( n )...... ..... 25 )
式(25)在kalman滤波算法中起着关键的作用,因为它表明, n+1时刻的 F (n 1 ,n )x (n ) 状态向量的一步预测分为非自适应(即确定)部分 和 自适应(即校正)部分G(n)a(n)。从这个意义上讲,G(n)称为kalman增 益(矩阵)是合适的。
H H E { x ( n 1 ) ( n ) F ( n 1 ,n ) E { x ( n ) ( n )} H F ( n 1 ,n ) E { x ( n )[ C ( n ) e ( n ,n 1 ) v ( n )] } 2
H H F ( n 1 ,n ) E { x ( n ) e ( n ,n 1 )} C ( n )........ 26 )
以上性质表明:n时刻的新息a(n)是一个与n上课之前的观测数 据y(1), ...,y(n-1)不相关,并具有白噪声性质的随机过程,但它却能够
提供有关y(n)的新息,这就上信息的内在物理含义。
2、新息过程
(2)、新息过程的计算
下面分析新息过程的相关矩阵
H R ( n ) E { ( n ) ( n )}........ .( 10 )

卡尔曼滤波公式

卡尔曼滤波公式

卡尔曼滤波公式
卡尔曼滤波公式
X(k)=A X(k-1)+B U(k)+W(k)
卡尔曼滤波(Kalman filtering)一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。

由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。

斯坦利·施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。

卡尔
曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。

关于这种滤波器的论文由Swerling (1958), Kalman (1960)与Kalman and Bucy (1961)发表。

数据滤波是去除噪声还原真实数据的一种数据处理技术, Kalman
滤波在测量方差已知的情况下能够从一系列存在测量噪声的数据中,估计动态系统的状态. 由于, 它便于计算机编程实现, 并能够对现场
采集的数据进行实时的更新和处理, Kalman滤波是目前应用最为广泛的滤波方法, 在通信, 导航, 制导与控制等多领域得到了较好的应用.。

卡尔曼滤波详解

卡尔曼滤波详解

卡尔曼滤波详解这篇主要介绍卡尔曼滤波公式详细推导,使用示例参考卡尔曼滤波示例。

Kalman Filter简单介绍主要讲解基本的卡尔曼滤波算法,有时候也说是离散或者线性卡尔曼滤波。

首先来看一个数学公式,这部分仅仅是给定一个思路,和最后实际算法无关。

目前考虑到要估计当前系统的状态,而且有两个已知量,一个上一个状态的估计值以及当前状态的测量值,这两个都有一定的噪声,需要做的就是把这两个结合起来,很简单的思路就是按照比例相加得到当前状态的估计值:X ^ k = K k ⋅ Z k + ( 1 − K k ) ⋅ X ^ k − 1 \hat{X}_k = K_k \cdot Z_k + (1 - K_k) \cdot \hat{X}_{k-1} X^k=Kk⋅Zk+(1−Kk)⋅X^k−1k k k 表示离散的状态量,可以把它简单的理解为离散的时间间隔。

k=1 表示1ms,k=2 表示2ms;X ^ k \hat{X}_k X^k 是对当前状态的估计值,希望利用上面的公式对每一个 k 都能得到一个较为准确的 X 的值;Z k Z_k Zk 是对当前状态的测量值,当然这个值并不是绝对准确的,会有一定的误差噪声(如果绝对准确,直接用就可以了,也就没必要搞这个卡尔曼滤波算法了);X ^ k − 1 \hat{X}_{k-1} X^k−1 是对上一状态的估计值,利用这个以及测量值对当前状态进行估计;K k K_k Kk 是卡尔曼增益(kalman gain),在这里唯一未知的就是这个值,也是需要去求的值。

当然可以直接设置值为0.5,但是这样比较暴力。

最好的方式就是根据每一时刻的状态求一个当前状态最好的增益值,这样的话更好利用以前状态的估计值以及当前测量值来估计一个最优的当前值。

后面卡尔曼滤波算法就是按照上面思路利用上一状态以及测量值去估计当前状态,只不过模型要更加复杂。

基本模型卡尔曼滤波的状态方程,利用线性随机差分方程(Linear Stochastic Difference equation)利用上一个系统状态估计当前系统状态(这里假设上一状态与下一一状态有某种线性关系,比如恒温环境的温度,匀速运动的速度等,但是因为现实环境的复杂,这种线性关系不是完全平滑的,也就是会有一些扰动):x k = A x k − 1 + B u k − 1 + w x_k = Ax_{k-1} + Bu_{k-1}+w xk=Axk−1+Buk−1+w使用时一般忽略 u u u 控制输入,得到:x k = A x k − 1 + w ( 1.1 ) x_k = Ax_{k-1} + w \qquad {(1.1)} xk=Axk−1+w(1.1)加上对于当前状态的测量方程(简单来说就是测量值和状态值的线性函数):z k = H x k + v ( 1.2 ) z_k = Hx_k + v \qquad {(1.2)} zk=Hxk +v(1.2)k − 1 k-1 k−1 和 k k k 分别表示上一状态和当前状态;x ∈ R n x \in R^n x∈Rn 表示要估计的状态;A ∈ R n × n A \in R^{n \times n}A∈Rn×n 表示上一状态到当前状态的转换矩阵;u ∈ R l u \in R^l u∈Rl 表示可选的控制输入,一般在实际使用中忽略;B ∈ R n × l B \in R^{n \times l}B∈Rn×l 表示控制输入到当前状态的转换矩阵;z ∈ R m z \in R^m z∈Rm 表示测量值;H ∈ R m × n H \in R^{m \times n}H∈Rm×n 表示当前状态到测量的转换矩阵;w ∈ R n w \in R^n w∈Rn 表示过程噪声,主要是从上一状态进入到当前状态时,会有许多外界因素的干扰;v ∈ R m v \in R^m v∈Rm 表示测量噪声,主要是任何测量仪器都会有一定的误差;在上面转换矩阵 A A A B B B H H H w ww v v v 是随着状态变化的,在这里没有添加下标,假设是不变的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卡尔曼滤波算法及 推导
1、kalman滤波问题
ß 考虑一离散时间的动态系统,它由描述状态向量的过程方程 和描述观测向量的观测方程共同表示。
(1)、过程方程
x(n 1) F (n 1, n)x(n) v1(n).......(1)
式中,M 1向量x(n)表示系统在离散时间n的状态向量,它是 不可观测的;M M矩阵F(n+1,n)成为状态转移矩阵,描
述动态系统在时间n的状态到n+1的状态之间的转移,应为已
知。而M 1向量 v1(n) 为过程噪声向量,它描述状态转移中
间的加性噪声或误差。
1、kalman滤波问题
(1)、观测方程
y(n) C(n)x(n) v2(n).........(2)
式中,N 1向量y(n)表示动态系统在时间n的观测向量; N M矩阵C(n)称为观测矩阵(描述状态经过其作用,
定义滤波状态向量的误差向量,可以证明:
P(n) E{e(n)eH (n)}............................................(35)
2、新息过程
性质3 表示观测数据的随机向量序列{y(1) ,…y(n)}与表示新息
过程的随机向量序列{a(1),…a(n)} 一一对应 ,即
{y(1),...y(n)} { (1),... (n)}..........(9)
以上性质表明:n时刻的新息a(n)是一个与n上课之前的观测数 据y(1), ...,y(n-1)不相关,并具有白噪声性质的随机过程,但它却能够提
将状态方程(1)和状态向量的一步预测更新公式(25)代入式(29)中,有:
e(n 1, n) F (n 1, n)[x(n) x1(n)]
G(n)[ y(n) C(n) x1(n)] v1(n)
将观测方程(2)代入上式,并代入 e(n, n -1) x(n) x1(n) ,则有:
e(n 1, n) [F (n 1, n) G(n)C(n)]e(n, n 1)
这里使用了状态向量与观测噪声不相关的事实。进一步地,由正交原理引
理知,在最小均方误差准则下求得的一步预测估 x1(n) 与预测误差e(n,n-1)彼
此正交,即
E{x1(n)eH (N , N 1)} 0
3、kalman滤波算法
因此,由式(26)及式(27)易得:
E{x(n 1)H (n)} F(n 1,n)E{[x(n) e(n,n 1)]eH (n,n 1)}CH (n)
v1(n) G(n)v2 (n)..................(30)
3、kalman滤波算法
求式(3)所示状态向量的一步预测误差向量的相关矩阵,容易证明:
K(n 1,n) E{e(n 1,n)]eH (n 1,n)} [F(n 1,n) G(n)C(n)]K(n,n 1)[F(n 1,n) G(n)C(n)]H Q1(n) G(n)Q2(n)GH (n).............(31)
然后再用到下式得到
y 1
(n)

y ( n ) C ( n ) x 1 ( n )......... ..( 12 ) 1
2、新息过程
ß 将上式代入新息过程的定义式(6),可得到:
(n) y(n) C(n) x1(n)
C(n)[x(n) x1(n)] v2 (n)..........(13)
状态向量的预测?最自然的方法是用新息过程序列 a(1),…a(n)的线性组合直接构造状态向量的一布预测:
def
n
x1 (n) x (n 1 y(1),..., y(n)) W1(k) (k)
ß 式中W1(k)表示与一步预测项对应的权矩k阵1,且k为离散时间。
现在的问题是如何确定这个权矩阵?
(1)、状态向量的一布预测
式中Q2(n)是观测噪声v2(n)的相关矩阵,而
K(n,n1) E{e(n,n1)eH(n,n1)}...........................(17)
表示(一步)预测状态误差的相关矩阵
3、kalman滤波算法
ß 由上一节的的新息过程的相关知识和信息后,即可转入 kalman滤波算法的核心问题的讨论:如何利用新息过程估计
k
......(3)
E{v2 (n)v2H (k)}
Q2 (n),n 0,nk
k
......(4)
1、kalman滤波问题
ß 还假设状态的初始值x(0)与v1(n) 、 v2(n), n 0均不相关,并且噪声向量v1(n)与 v2(n)也不相关,既有:
E{v1(n)v2H (k)} 0,n, k......(5)
式中R(n)是信息过程的相关矩阵,由式(10)定义。
3、kalman滤波算法
ß (3)、Riccati方程
由式(28)表示的kalman增益与预测状态误差的相关矩阵K(n,n-1)有关,为了最后完 成kalman自适应滤波算法,还需要再推导K(n,n-1)的递推公式。
考察状态向量的预测误差:
e(n 1, n) x(n 1) x1(n 1)...........(29)
状态向量的一步预测分为非自适应(即确定)部F分(n 1, n) x(n) 和自
适应(即校正)部分G(n)a(n)。从这个意义上讲,G(n)称为kalman增益 (矩阵)是合适的。
3、kalman滤波算法
(2)、 kalman增益的计算
为了完成kalman自适应滤波算法,需要进一步推导kalman增益的实际计算
E{x(n 1) H (k)} W1(k)E{ (k) H (k)}
W1(k)R(k)
ß 由此可以求出权矩阵的表达式:
W1(k) E{x(n 1) H (k)}R1(K )............(20)
3、kalman滤波算法
ß 将式(20)代入式(18),状态向量的一步预测的最小均
方估计可表示为
变成可预测的),要求也是已知的;v2(n)表示观测噪声向 量,其维数与观测向量的相同。过程方程也称为状态方程, 为了分析的方便,通常假定过程噪声v1(n)和观测噪声v2(n) 均为零均值的白噪声过程,它们的相关矩阵分别为:
1、kalman滤波问题
E{v1(n)v1H (k)}
Q1 (n),n 0,nk
F(n 1,n)E{e(n,n 1)eH (n,n 1)}CH (n) F(n 1,n)K(n,n 1)CH (n)........(27)
将式(27)代入式(24),便得到kalman增益的计算公式如下:
G(n) F (n 1, n)K (n, n 1)C H (n)R1(n)............(28)
供有关y(n)的新息,这就上信息的内在物理含义。
2、新息过程
(2)、新息过程的计算
下面分析新息过程的相关矩阵
R(n) E{ (n) H (n)}........ .(10)
在kalman滤波中,并不直接估计观测数据向量的进一步预测

而是先计算状态向量的一步预测
def
x1 (n) x(n y(1),...y(n 1))........(11)
2、新息过程
ß 考虑一步预测问题,给定观测值y(1), ...,y(n-1),求观测向量y(n)的 最小二乘估计,记作
def
yˆ1(n) yˆ(n y(1),...,y(n 1))
(1)、新息过程的性质 y(n)的新息过程定义为:
(n) y(n) yˆ1(n)..........(6)
式中,N 1向量(n)表示观测数据y(n)的新的信息,简称新息。
P(n) K (n, n 1) F 1(n 1, n)G(n)C(n)K (n, n 1)........(33)
式(32)称为Riccati差分方程。
3、kalman滤波算法
若定义
x(n)
是利用已知的y(1),…,y(n)求得的状态向量的滤波估计,则
e(n) x(n) x1(n)..............................................(34)
根据正交性原理,最优预测的估计误差
e(n 1, n) x(n 1) x1(n 1)
3、kalman滤波算法
ß 应该与已知值正交,故有
E{e(n 1, n) H (k)} E{[x(n 1) x1(n 1) H (k)}
0, k 1,..., n.........(19)
ß 将式(18)代入(19),并利用新息过程的正交性,得到
2、新息过程
ß 新息 (n)具有以下性质: 性质1 n时刻的新息 (n)与所有过去的观测数据y(1), ...,
y(n-1)正交,即:
E{ (n) yH (k)} 0,1 k n 1.......(7)
性质2 新息过程由彼此正交的随机向量序列{ (n)} 组成,即
E{有 (n) H (k)} 0,1 k n 1..........(8)
n
x 1 (n 1) E{x(n 1) H (k)}R1(k) (k)
k 1
n1
E{x(n 1) H (k)}R1(k) (k)
k 1
E{x(n 1) H (n)}R1(n) (n)..............(21)
ß 注易意知到下E式{对v1(kn=)0,(k1),}… ,0, nk成立0,:1,..., n, 并利用状态方程(1),
ß 若定义
def
G(n) E{x(n 1) H (k)}R1(k)
并将式(23)和式(24)代入式(21),则得到状态向量一步预测的
更新公式:
x(n 1) F (n 1, n) x(n) G(n) (n)..............(25)
式(25)在kalman滤波算法中起着关键的作用,因为它表明,n+1时刻的
相关文档
最新文档