开关电源 单管自激 反激 推挽 半桥 全桥

合集下载

反激式正激式推挽式半桥式全桥式开关电源优缺点

反激式正激式推挽式半桥式全桥式开关电源优缺点

反激式正激式推挽式半桥式全桥式开关电源优缺点反激式开关电源是一种常见的开关电源拓扑结构,其工作原理是利用电感储能和电容滤波器来实现电压变换。

以下是反激式、正激式、推挽式、半桥式和全桥式开关电源的优缺点分析。

1.反激式开关电源:优点:-体积小,结构简单,成本较低。

-输出电流大,适用于一些高功率应用。

-效率较高,在负载率低时仍能提供稳定的输出电压。

缺点:-输出电压稳定性较差,容易受到输入电压波动的影响。

-输入电流波形不纯净,含有较高的谐波成分。

-输出电流变化较大时容易产生振荡和噪音。

2.正激式开关电源:优点:-输出电压稳定性较好,能够提供较为纯净的输出电流。

-输出电流较大,适用于一些高负载应用。

-效率较高,在大部分负载条件下都能保持较高的效率。

缺点:-体积较大,结构相对复杂。

-成本较高。

-在负载率低时效率较低。

3.推挽式开关电源:优点:-输出频率较高,适用于一些高频应用。

-输出电压稳定性较好。

-体积相对较小,结构简单。

缺点:-输出电流相对较小。

-效率较低,在大负载条件下会有较大的功率损耗。

-容易受到电容和电感等元器件的损耗影响,导致输出电压不稳定。

4.半桥式开关电源:优点:-输出电压稳定性较好。

-输出电流较大。

-效率较高。

-结构简单,成本相对较低。

缺点:-输入电流波形较复杂,含有较高的谐波成分。

-输出电流较小负载时容易出现振荡。

-适用负载范围较窄。

5.全桥式开关电源:优点:-输出电压稳定性较好。

-输出电流较大。

-效率较高。

-结构简单,成本相对较低。

缺点:-输入电流波形较复杂,含有较高的谐波成分。

-输出电流较小负载时容易出现振荡。

-适用负载范围较窄。

总结:根据以上分析,不同的开关电源拓扑在不同应用场景中具有不同的优缺点。

在选择开关电源时,应根据具体应用需求,综合考虑输出电压稳定性、输出电流、效率、结构复杂性、成本等因素,选择最适合的拓扑结构。

开关电源半桥和全桥推挽电路工作原理

开关电源半桥和全桥推挽电路工作原理

开关电源半桥和全桥推挽电路工作原理下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注! Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!开关电源:半桥与全桥推挽电路的工作原理解析开关电源是现代电子设备中不可或缺的一部分,其核心部分包括多种拓扑结构,其中半桥和全桥推挽电路是常见的两种。

开关电源:单管自激,反激,推挽,半桥,全桥

开关电源:单管自激,反激,推挽,半桥,全桥

图 2.4 单端正激式开关电源
单端反激式开关电源 反激式变压器开关电源,是指当变压器的初级线圈正好被直流电压激励 时,变压器的次级线圈没有向负载提供功率输出,而仅在变压器初级线圈的 激励电压被关断后才向负载提供功率输出,这种变压器开关电源称为反激式 开关电源。反激式开关电源是在反极性(Buck—Boost)变换器的基础上演 变而来的,它具有以下优点: 比正激式开关电源少用一个大储能滤波电感及一个续流二极管,因此,体积 比正激式开关电源的要小,且成本也要低。
C18 Q5 C1815 22u50V
+
D17 R21 1N4148 12k
R27 1.5k
HW.79 94V-0
S-100N-R5
2000-11-21
+
C17 1u50V
MW
S-100-24 IN 110VAC 1.9A IN 220VAC 0.8A OUT 24VDC 4.5A
TL494 管脚功能及参数
+
R3 100R 2W 102 1kV FMX 1
C2
+V +V
1k 2W
C1 +
SCK054
TF-096
C3
D3S B-60 -0.5
N C10 4.7u50V T2 D7 R6 T028 15R
3A250V R13 580k 1/2W RT C6 220u 200V 470u 35V x5
开关电源:单管自激,反激,推挽,半桥,全桥
单端正激式开关电源 正激式变压器开关电源,是指当变压器的初级线圈正被直流电压激励 时,变压器的次级线圈正好有功率输出。它是在 BUCK 电路的开关管 Q 与续 流二极管 D 之间加入单端变压隔离器而得到的。它具有以下优点: 1) 正激变换器利用高频变压器的一次侧、二次侧绕组隔离的特点,可以方 便的实现交流电网和直流输出之间的隔离。 2) 正激变换器电路简单,成本很低,能方便的实现多路输出。 3) 正激变换器只有一个开关管,只需一组驱动脉冲;其对控制电路的要求 比双端变换器低。

开关电源的9种分类方式

开关电源的9种分类方式

开关电源的9种分类方式
(1)按技术、开关管的连接方式、电源技术划分,开关电源可分为串联型开关电源和并联型开关电源。

串联型开关电源的开关管是串联在输入电压和输出负载之间,属于降压式稳压电路;而并联型开关电源的开关管是在输入电压和输出负载之间并联的,类似于冗余电源一类的属于升压式稳压电路。

(2)按激励方式,开关电源可分为自激式和他激式。

在自激式开关电源中,由开关管和变压器技术'>高频变压器构成正反馈环路,来完成自激振荡,类似于间歇振荡器;而他激式开关电源必须附加一个振荡器,振荡器产生的开关脉冲加在开关管上,控制开关管的导通和截止,使开关电路工作并有直流电压输出。

(3)按调制方式,像服务器电源的开关电源可分为脉宽调制(PWM)方式和脉频调制(PFM)方式。

PWM是通过改变开关脉冲宽度来控制输出电压稳定的方式,而PFM是当输出电压变化时,通过取样比较,将误差值放大后去控制开关脉冲周期(即频率),使输出电压稳定。

(4)按输出直流值的大小,开关电源可分为升压式开关电源和降压式开关电源,也可分为高压开关技术'>高压开关电源和低压开关电源。

(5)按输出波形,开关电源可分为矩形波和正弦波电路。

(6)按输出性能,开关电源可分为恒压恒频和变压变频电路。

(7)按开关管的个数及连接方式又可将开关电源分为单端式、推挽式、半桥式
和全桥式等。

单端式仅用一只开关管,推挽式和半桥式采用两只开关管,全桥式则采用四只开关管。

(8)开关电源按能量传递方式又可分为正激式和反激式。

(9)按软开关方式分,开关电源有电流谐振型、电压谐振型、E类与准E类谐振型和部分谐振型等。

开关电源有哪些类型-开关电源的主要类型

开关电源有哪些类型-开关电源的主要类型

开关电源有哪些类型-开关电源的主要类型开关电源有哪些类型-开关电源的主要类型现代开关电源有两种:一种是直流开关电源;另一种是交流开关电源。

下面,店铺就为大家讲讲开关电源的主要类型,快来看看吧!直流开关电源,其功能是将电能质量较差的原生态电源(粗电),如市电电源或蓄电池电源,转换成满足设备要求的质量较高的直流电压(精电)。

直流开关电源的核心是DC/DC转换器。

因此直流开关电源的分类是依赖DC/DC转换器分类的。

也就是说,直流开关电源的分类与DC/DC转换器的分类是基本相同的,DC/DC 转换器的分类基本上就是直流开关电源的分类。

直流DC/DC转换器按输入与输出之间是否有电气隔离可以分为两类:一类是有隔离的称为隔离式DC/DC转换器;另一类是没有隔离的称为非隔离式DC/DC转换器。

隔离式DC/DC转换器也可以按有源功率器件的个数来分类。

单管的DC/DC转换器有正激式(Forward)和反激式(Flyback)两种。

双管DC/DC转换器有双管正激式(DoubleTransistor Forward Converter),双管反激式(Double Transistr Flyback Converter)、推挽式(Push-Pull Converter) 和半桥式(Half-Bridge Converter)四种。

四管DC/DC 转换器就是全桥DC/DC转换器(Full-Bridge Converter)。

非隔离式DC/DC转换器,按有源功率器件的个数,可以分为单管、双管和四管三类。

单管DC/DC转换器共有六种,即降压式(Buck)DC/DC转换器,升压式(Boost)DC/DC转换器、升压降压式(Buck Boost)DC/DC转换器、Cuk DC/DC转换器、Zeta DC/DC转换器和SEPIC DC/DC转换器。

在这六种单管DC/DC转换器中,Buck和Boost式DC/DC转换器是基本的,Buck-Boost、Cuk、Zeta、SEPIC式DC/DC转换器是从中派生出来的。

开关电源全桥和半桥工作原理和区别

开关电源全桥和半桥工作原理和区别

开关电源全桥和半桥工作原理和区别开关电源,听起来就很高大上吧?其实它的核心原理并不复杂,就像小朋友玩积木,简单易懂又有趣。

今天咱们就聊聊全桥和半桥这两种开关电源的工作原理和它们之间的区别。

别担心,我会把它讲得轻松又有趣,保证你听完后不再觉得这些专业术语像外星人说的。

首先说说半桥。

想象一下你在游乐园,坐上了过山车,一开始你慢慢上升,心里那个紧张啊,等到达顶点,哇,感觉真是刺激!这半桥的工作原理就像这样的过山车。

它有两个开关,在电流的控制下,电流在两个开关之间交替流动,简直像过山车一样忽上忽下。

这样做的好处是,电源能够高效地把直流电转换成高频交流电,能量损耗少,效率高,就像在游乐园省了排队的时间,爽快得很!不过,半桥也有点小缺陷,不能提供太高的输出功率。

就像过山车有个最大载重,超过了就不让上。

这时候,如果你需要更大的输出功率,比如说给一个大马达供电,半桥就显得有些力不从心了。

再加上,半桥的电压波动也比较大,有时候会让人心里发毛,哎呀,这玩意儿不会出什么岔子吧?说完半桥,咱们再来聊聊全桥。

全桥就像是升级版的过山车,有四个开关,听起来就厉害了,瞬间多了两条轨道。

全桥能把电流进行更加灵活的控制,让电流的输出更平稳、更强劲。

就像在游乐园里,有了更多的轨道,能同时让更多的人享受刺激的感觉。

全桥不仅能提供高功率输出,还能让你感受到电流的灵活变换,真是太让人惊喜了!而且全桥的电压波动相比半桥要小得多,像是在保证过山车安全的同时,让你尽情尖叫。

电源的稳定性也很不错,这样一来,设备运行得更安心,谁不喜欢这种感觉呢?而且全桥的结构稍微复杂点,需要的元件更多,但这也给了它更强的能力,像是一个全副武装的骑士,勇敢地迎接各种挑战。

世上没有十全十美的东西,全桥虽然牛,但成本也相对高一点。

就像游乐园里,刺激的项目票价可能更贵一些。

制造全桥电源的时候,需要更复杂的电路设计和材料,偶尔让预算变得紧张。

不过呢,物有所值,毕竟高效能、稳定性和强大的输出功率,谁不愿意为这些付出点钱呢?再说说应用场景。

全桥,半桥,推挽,正激,反激的优缺点比较及应用场合分析

全桥,半桥,推挽,正激,反激的优缺点比较及应用场合分析

全桥,半桥,推挽,正激,反激的优缺点比较及应用场合分析优缺点比较一、全桥式开关电源的优点和缺点1、全桥式变压器开关电源输出功率很大,工作效率很高全桥式变压器开关电源与推挽式变压器开关电源一样,由于两组开关器件轮流交替工作,相当于两个开关电源同时输出功率,其输出功率约等于单一开关电源输出功率的两倍。

因此,全桥式变压器开关电源输出功率很大,工作效率很高,经桥式整流或全波整流后,其输出电压的电压脉动系数Sv和电流脉动系数Si都很小,仅需要一个很小值的储能滤波电容或储能滤波电感,就可以得到一个电压纹波和电流纹波都很小的输出电压。

2、全桥式开关电源的优点是开关管的耐压值特别的低全桥式变压器开关电源最大的优点是,对4个开关器件的耐压要求比推挽式变压器开关电源对两个开关器件的耐压要求可以降低一半。

因为,全桥式变压器开关电源4个开关器件分成两组,工作时2个开关器件互相串联,关断时,每个开关器件所承受的电压,只有单个开关器件所承受电压的一半。

其最高耐压等于工作电压与反电动势之和的一半,这个结果正好是推挽式变压器开关电源两个开关器件耐压的一半。

3、全桥式变压器开关电源主要用于输入电压比较高的场合在输入电压很高的情况下,采用全桥式变压器开关电源,其输出功率要比推挽式变压器开关电源的输出功率大很多。

因此,一般电网电压为交流220伏供电的大功率开关电源大部分都是使用全桥式变压器开关电源。

而在输入电压较低的情况下,推挽式变压器开关电源的输出功率又要比全桥式变压器开关电源的输出功率大很多。

4、全桥式变压器开关电源的电源利用率比推挽式变压器开关电源的电源利用率低一些因为2组开关器件互相串联,两个开关器件接通时总的电压降要比单个开关器件接通时的电压降大一倍;但比半桥式变压器开关电源的电源利用率高很多。

因此,全桥式变压器开关电源也可以用于工作电源电压比较低的场合。

5、与半桥式开关电源一样,全桥式变压器开关电源的变压器初级线圈只需要一个绕组,这也是它的优点,这对小功率开关电源变压器的线圈绕制多少带来一些方便。

全桥-半桥-推挽-正激-反激的优缺点比较及应用场合分析

全桥-半桥-推挽-正激-反激的优缺点比较及应用场合分析

全桥,半桥,推挽,正激,反激的优缺点比较及应用场合分析优缺点比较一、全桥式开关电源的优点和缺点1、全桥式变压器开关电源输出功率很大,工作效率很高全桥式变压器开关电源与推挽式变压器开关电源一样,由于两组开关器件轮流交替工作,相当于两个开关电源同时输出功率,其输出功率约等于单一开关电源输出功率的两倍。

因此,全桥式变压器开关电源输出功率很大,工作效率很高,经桥式整流或全波整流后,其输出电压的电压脉动系数Sv和电流脉动系数Si都很小,仅需要一个很小值的储能滤波电容或储能滤波电感,就可以得到一个电压纹波和电流纹波都很小的输出电压。

2、全桥式开关电源的优点是开关管的耐压值特别的低全桥式变压器开关电源最大的优点是,对4个开关器件的耐压要求比推挽式变压器开关电源对两个开关器件的耐压要求可以降低一半。

因为,全桥式变压器开关电源4个开关器件分成两组,工作时2个开关器件互相串联,关断时,每个开关器件所承受的电压,只有单个开关器件所承受电压的一半。

其最高耐压等于工作电压与反电动势之和的一半,这个结果正好是推挽式变压器开关电源两个开关器件耐压的一半。

3、全桥式变压器开关电源主要用于输入电压比较高的场合在输入电压很高的情况下,采用全桥式变压器开关电源,其输出功率要比推挽式变压器开关电源的输出功率大很多。

因此,一般电网电压为交流220伏供电的大功率开关电源大部分都是使用全桥式变压器开关电源。

而在输入电压较低的情况下,推挽式变压器开关电源的输出功率又要比全桥式变压器开关电源的输出功率大很多。

4、全桥式变压器开关电源的电源利用率比推挽式变压器开关电源的电源利用率低一些因为2组开关器件互相串联,两个开关器件接通时总的电压降要比单个开关器件接通时的电压降大一倍;但比半桥式变压器开关电源的电源利用率高很多。

因此,全桥式变压器开关电源也可以用于工作电源电压比较低的场合。

5、与半桥式开关电源一样,全桥式变压器开关电源的变压器初级线圈只需要一个绕组,这也是它的优点,这对小功率开关电源变压器的线圈绕制多少带来一些方便。

反激式正激式推挽式半桥式全桥式开关电源优缺点

反激式正激式推挽式半桥式全桥式开关电源优缺点

反激式、正激式、推挽式、半桥式、全桥式开关电源优缺点反激式、正激式、推挽式、半桥式、全桥式开关电源的优点和缺点最近查了很多关于开关电源的资料,现在总结如下,以便日后的查阅,呵呵。

由于博文有字数的限制故分两部分发表,本文为第一部分为了表征各种电压或电流波形的好坏,一般都是拿电压或电流的幅值、平均值、有效值、一次谐波等参量互相进行比较。

在开关电源之中,电压或电流的幅值和平均值最直观,因此,我们用电压或电流的幅值与其平均值之比,称为脉动系数S ;也有人用电压或电流的有效值与其平均值之比,称为波形系数K 。

因此,电压和电流的脉动系数Sv 、Si 以及波形系数Kv 、Ki 分别表示为:Sv = Up/Ua ——电压脉动系数(1-84 )Si = Im/Ia ——电流脉动系数(1-85 )Kv =Ud/Ua ——电压波形系数(1-86 )Ki = Id/Ia ——电流波形系数(1-87 )上面 4 式中,Sv 、Si 、Kv 、Ki 分别表示:电压和电流的脉动系数S ,和电压和电流的波形系数K ,在一般可以分清楚的情况下一般都只写字母大写S 或K 。

脉动系数S 和波形系数K 都是表征电压或者电流好坏的指标,S 和K 的值,显然是越小越好。

S 和K 的值越小,表示输出电压和电流越稳定,电压和电流的纹波也越小。

反激式开关电源的优点和缺点1 反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。

反激式开关电源在控制开关接通期间不向负载提供功率输出,仅在控制开关关断期间才把存储能量转化为反电动势向负载提供输出,但控制开关的占空比为0.5 时,变压器次级线圈输出的电压的平均值约等于电压最大值的的二分之一,而流过负载的电流正好等于变压器次级线圈最大电流的四分之一。

即电压脉动系数等于2 ,电流脉动系数等于 4 。

反激式开关电源的电压脉动系数,和正激式开关电源的脉动系数基本相同,但是电流的脉动系数是正激式开关电源的电流脉动系数的两倍。

开关电源拓扑结构全解

开关电源拓扑结构全解

开关电源拓扑结构全解!什么是拓扑呢?所谓电路拓扑就是功率器件和电磁元件在电路中的连接方式,而磁性元件设计,闭环补偿电路设计及其他所有电路元件设计都取决于拓扑。

最基本的拓扑是Buck(降压式)、Boost(升压式)和Buck/Boost(升/降压),单端反激(隔离反激),正激、推挽、半桥和全桥变化器。

开关电源的拓扑结构,常见拓扑大约有14种,每种都有自身的特点和适用场合。

选择原则是要看是大功率还是小功率,高压输出还是低压输出,以及是否要求器件尽量少等。

因此,要恰当选择拓扑,熟悉各种不同拓扑的优缺点及适用范围是非常重要的。

错误的选择会使电源设计一开始就注定失败。

下面为大家整理汇总了开关电源20种基本拓扑,帮助系统掌握每种电路结构的工作原理与基本特性。

一、20种开关电源拓扑对比常见的基本拓扑结构:■Buck 降压■Boost 升压■Buck-Boost 降压-升压■Flyback 反激■Forward 正激■Two-Transistor Forward 双晶体管正激■Push-Pull 推挽■Half Bridge 半桥■Full Bridge 全桥■SEPIC■C’uk二、基本的脉冲宽度调制波形这些拓扑结构都与开关式电路有关,基本的脉冲宽度调制波形定义如下:三、Buck降压特点:■把输入降至一个较低的电压■可能是最简单的电路■电感/电容滤波器滤平开关后的方波■输出总是小于或等于输入■输入电流不连续(斩波)■输出电流平滑四、Boost升压特点:■把输入升至一个较高的电压■与降压一样,但重新安排了电感、开关和二极管■输出总是比大于或等于输入(忽略二极管的正向压降)■输入电流平滑■输出电流不连续(斩波)五、Buck-Boost降压-升压特点:■电感、开关和二极管的另一种安排方法■结合了降压和升压电路的缺点■输入电流不连续(斩波)■输出电流也不连续(斩波)■输出总是与输入反向(注意电容的极性),但是幅度可以小于或大于输入■“反激”变换器实际是降压-升压电路隔离(变压器耦合)形式。

正激类(全桥、半桥、推挽、正激)变压器计算

正激类(全桥、半桥、推挽、正激)变压器计算
1-8-1-42.推挽 式开关电 源变压器 初、次级 线圈匝数 比的计算
A)交流 输出推挽 式开关电 源变压器 初、次级 线圈匝数 比的计算 推挽式开 关电源如 果用于 DC/AC或 AC/AC逆 变电源, 即把直流 逆变成交 流输出, 或把交流 整流成直 流后再逆 变成交流 输出,这 种逆变电 源一般输 出电压都 不需要调 整,因此 电路相对 比较简 单,工作 效率很高 。
n=N3/N1 =Uo/Ui =Upa/Ui —— 次/ 初级变压 比,D为 0.5时 (1152) 不过,在 低电压、 大电流输 出时,一 定要考虑 整流二极 管的电压 降。
C)直流 输出电压 可调整式 推挽开关 电源变压 器初、次 级线圈匝 数比的计 算
直流输出 电压可调 整式推挽 开关电源 的功能就 要求输出 电压可 调,因 此,推挽 式变压器 开关电源 的两个控 制开关K1 、K2的占 空比必须 要小于 0.5;因 为推挽式 变压器开 关电源正 反激两种 状态都有 电压输 出,所以 在同样输 出电压 (平均 值)的情 况下,两
n=N3/N1 =Uo/Ui =Upa/Ui —— 变 压比,D 为0.5时 (1152)
(1152)式 就是计算 逆变式推 挽开关电 源变压器 初、次级 线圈匝数 比的公式 。式中, N1为开关 变压器初 级线圈两 个绕组其 中一个的 匝数,N3 为变压器 次级线圈 的匝数, Uo输出电 压的有效 值,Ui为 直流输入 电压, Upa输出 电压的半 波平均值 。
(1153)和 (1154)式 就是计算 直流输出 电压可调 整式推挽 开关电源 变压器初 、次级线 圈匝数比 的公式。 式中,N1 为变压器 初级线圈 N1或N2绕 组的匝 数,N3为 变压器次 级线圈的 匝数,Uo 直流输出 电压,Ui 为直流输 入电压。

反激式、正激式、推挽式、半桥式、全桥式开关电源的优点和缺点

反激式、正激式、推挽式、半桥式、全桥式开关电源的优点和缺点

反激式、正激式、推挽式、半桥式、全桥式开关电源的优点和缺点反激式开关电源的优点和缺点反激变换器01反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。

反激式开关电源在控制开关接通期间不向负载提供功率输出,仅在控制开关关断期间才把存储能量转化为反电动势向负载提供输出,但控制开关的占空比为0.5时,变压器次级线圈输出的电压的平均值约等于电压最大值的的二分之一,而流过负载的电流正好等于变压器次级线圈最大电流的四分之一。

即电压脉动系数等于2,电流脉动系数等于4。

反激式开关电源的电压脉动系数,和正激式开关电源的脉动系数基本相同,但是电流的脉动系数是正激式开关电源的电流脉动系数的两倍。

由此可知,反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。

特别是,反激式开关电源使用的时候,为了防止电源开关管过压击,起占空比一般都小于0.5,此时,流过变压器次级线圈的电流会出现断续,电压和电流的脉动系数都会增加,其电压和电流的输出特性将会变得更差。

02反激式开关电源的瞬态控制特性相对来说比较差。

由于反激式开关电源仅在开关关断期间才向负载提供能量输出,当负载电流出现变化时,开关电源不能立即对输出电压或电流产生反应,而需要等到下一个周期事,通过输出电压取样和调宽控制电路的作用,开关电源才开始对已经过去了的事情进行反应,即改变占空比,因此,反激式开关电源的瞬态控制特性相对来说比较差。

有时,当负载电流变化的频率和相位与取样、调宽控制电路输出的电压的延时特性在相位保持一致的时候,反激式开关电源输出电压可能会产生抖动,这种情况在电视机的开关电源中最容易出现。

03反激式开关电源变压器初级和次级线圈的漏感都比较大,开关电源变压器的工作效率低。

反激式开关电源变压器的铁芯一般需要留一定的气隙,一方面是为了防止变压器的铁芯因流过变压器的初级线圈的电流过大,容易产生磁饱和。

另一方面是因为变压器的输出功率小,需要通过调整电压器的气隙和初级线圈的匝数,来调整变压器初级线圈的电感量的大小。

半桥式以及全桥式大功率开关电源特点

半桥式以及全桥式大功率开关电源特点

半桥式以及全桥式大功率开关电源特点推挽式大功率开关电源的变压器属于双极性磁极化,磁感应变化范围是单极性磁极化的两倍多,并且变压器铁心不需要留气隙,因此,推挽式开关变压器铁心的导磁率比单极性磁极化的正激或反式开关变压器铁心的导磁率高很多倍;这样,推挽式开关变压器初、次级的线圈匝数可比单极性磁极化变压器初、次级的线圈匝数少一倍以上。

所以,推挽式开关变压器的漏感以及铜阻损耗都比单极性磁极化变压器小很多,大功率开关电源的工作效率很高。

推挽式大功率开关电源的两个开关器件有一个公共接地端,相对于半桥式或全桥式大功率开关电源来说,驱动电路要简单很多,这也是推挽式大功率开关电源的一个优点。

后面将要介绍的半桥式以及全桥式大功率开关电源都有一个共同缺点,就是当两个控制开关和处于交替转换工作状态的时候,两个开关器件会同时出现一个半导通区,即两个控制开关同时处于接通状态;这是因为开关器件在开始导通的时候,相当于对电容充电,它从截止状态到完全导通状态需要一个过渡过程;而开关器件从导通状态转换到截止状态的时候,相当于对电容放电,它从导通状态到完全截止状态也需要一个过渡过程;当两个开关器件分别处于导通和截止的过渡期间,就会同时出现半导通状态,此时,相当于两个控制开关同时接通,会对电源电压产生短路,在两个控制开关的串联回路中将出现很大的电流,而这个电流并没有通过变压器负载。

半桥式以及全桥式大功率开关电源特点因此,在两个控制开关和分别处于导通和截止的过渡期间,两个开关器件将会产生很大的功率损耗。

而推挽式大功率开关电源不会存在这种损耗。

因为,当控制开关将要关断的时候,开关变压器的两个初级线圈绕组和绕组都会产生反电动势,而绕组产生的反电动势正好与输入电流的方向相反;此时,即使是开关器件处于半导通或全导通状态,在短时间内,在组成的电路中都不会出现很大的工作电流,并且在电路中,两个控制开关也不存在直接串通的回路;因此,推挽式大功率开关电源不会像半桥式,以及全桥式大功率开关电源那样出现两个控制开关同时串通的可能性,这也是推挽式大功率开关电源的一个优点。

反激式、正激式、推挽式、半桥式、全桥式开关电源原理及优缺点

反激式、正激式、推挽式、半桥式、全桥式开关电源原理及优缺点

反激式、正激式、推挽式、半桥式、全桥式开关电源原理及优缺点1、单端正激式单端:通过一只开关器件单向驱动脉冲变压器.正激:其脉冲变压器的原/副边相位关系确保在开关管导通,驱动脉冲变压器原边时,变压器副边同时对负载供电。

该电路的最大问题是:开关管T交替工作于通/断两种状态,当开关管关断时,脉冲变压器处于“空载”状态,其中储存的磁能将积累到下一个周期,直至电感器饱和,使开关器件烧毁。

图中的D3与N3构成的磁通复位电路,提供了泄放多余磁能的渠道。

2、单端反激式反激式电路与正激式电路相反,其脉冲变压器的原/副边相位关系确保当开关管导通,驱动脉冲变压器原边时,变压器副边不对负载供电,即原/副边交错通断。

脉冲变压器积累磁能问题容易解决,但是,由于变压器存在漏感,将在原边形成电压尖峰,可能击穿开关器件,需要设置电压钳位电路予以保护D3、N3构成的回路。

从电路原理图上看,反激式与正激式很相像,表面上只是变压器同名端的区别,但电路的工作方式不同,D3、N3的作用也不同。

3、推挽(变压器中心抽头)式这种电路结构的特点是:对称性结构,脉冲变压器原边是两个对称线圈,两只开关管接成对称关系,轮流通断,工作过程类似于线性放大电路中的乙类推挽功率放大器。

主要优点:高频变压器磁芯利用率高(与单端电路相比)、电源电压利用率高(与后面要叙述的半桥电路相比)、输出功率大、两管基极均为低电平,驱动电路简单。

主要缺点:变压器绕组利用率低、对开关管的耐压要求比较高(至少是电源电压的两倍)。

4、全桥式这种电路结构的特点是:由四只相同的开关管接成电桥结构驱动脉冲变压器原边。

图中T1、T4为一对,由同一组信号驱动,同时导通/关断;T2、T3为另一对,由另一组信号驱动,同时导通/关断。

两对开关管轮流通/断,在变压器原边线圈中形成正/负交变的脉冲电流。

主要优点:与推挽结构相比,原边绕组减少了一半,开关管耐压降低一半。

主要缺点:使用的开关管数量多,且要求参数一致性好,驱动电路复杂,实现同步比较困难。

软开关

软开关

电源技术概述直流变换器分类非隔离:Buck 、Boost 、Buck/Boost 、Cuk 、Zeta 、Sepic隔离: 单管正激Forward 、单管反激Flyback 、双管正激、双管反激、推挽、半桥、全桥 通常变压器隔离在功率开关管电压和电流定额相同时,变换器的输出功串通常与所用开关管的数量 成正比,故四管变换器的输出功率最大,而单管变换器的输出功率最小。

硬开关:承受电流、电压的情况下接通或断开电路。

开关损耗,频率越高损耗越大。

软开关:开关管开通或关断过程中,电压为零或电流为零。

硬开关Buck电流连续输出:D V V in O ⨯=脉动:28)1(V s f f Of C L V D -=∆(理论)、ESR )1(V ∙-=∆sf Of L V D (电容损耗、等效串联电阻ESR )Q 、D 承受电压VinBoost电流连续 输出:D-11V V in O ⨯= 脉动:sf Of C D I V =∆ Q 、D 承受电压VoBuck/Boost连续输出:D DV in -∙=1V O Q 、D 承受电压:DO V脉动:sf O f C D I V =∆Cuk连续输出:D D V in -∙=1V OQ 、D 承受电压:O in V +VZeta输出:D D V in -∙=1V OQ 、D 承受电压:O in V +V脉动:28)1(V s f f Of C L V D -=∆Sepic输出:D D V in -∙=1V O Q 、D 承受电压:DOV正激磁复位方法:输入端接复位绕组、RCD 复位、LCD 复位、有源箝位W3复位绕组输出:12D V W W V in O ∙∙= in D V W W ∙=122V in D V W W ∙=321V in D V W W ∙+=1313W V 复位条件:311max D W W W +=反激铁芯必须有气隙,保证铁芯不饱和。

由于电路简洁,所用元器件少,适合于多输出场合使用。

开关电源分类共9文档

开关电源分类共9文档

开关电源分类开关电源一般分为两类:一是直流开关电源(DC-DC);另一种是交流开关电源(AC-DC)。

也有 AC/AC、DC/AC直流开关电源的分类是依赖DCDC转换器分类的。

直流DC/DC转换器按输入与输出之间是否有电气隔离可以分为两类:一类是有隔离的称为隔离式DC/DC转换器;另一类是没有隔离的称为非隔离式DC/DC转换器。

隔离式也可以按有源功率器件的个数来分类。

单管的DC/DC转换器有正激式和反激式两种。

双管DC/DC转换器有双管正激式,双管反激式、推挽式和半桥式四种。

四管DC/DC转换器就是全桥DC/DC转换器。

非隔离式按有源功率器件的个数,可以分为单管、双管和四管三类。

单管DC/DC转换器共有六种,即降压式(Buck)DC/DC转换器,升压式(Boost)DC/DC 转换器、升压降压式(Buck Boost)DC/DC 转换器、Cuk DC/DC转换器、ZetaDC/DC转换器和SEPICDC/DC转换器。

在这六种单管DC/DC 转换器中,Buck和Boost式DC/DC转换器是基本的,Buck-Boost、Cuk、Zeta、SEPIC式DC/DC转换器是从中派生出来的。

双管DC/DC转换器有双管串接的升压式(Buck-Boost)DC/DC转换器。

四管DC/DC转换器常用的是全桥DC/DC 转换器(Full-Bridge Converter)。

隔离式DC/DC转换器在实现输出与输入电器隔离时,通常采用变压器来实现,由于变压器具有变压的功能,所以有利于扩大转换器的输出应用范围,也便于实现不同电压的多路输出,或相同电压的多种输出。

在功率开关管的电压和电流定额相同时,转换器的输出功率通常与所用开关管的数量成正比。

所以开关管数越多,DC/DC转换器的输出功率越大,四管式比两管式输出功率大一倍,单管式输出功率只有四管式的1/4。

非隔离式转换器与隔离式转换器的组合,可以得到单个转换器所不具各的一些特性。

常见反激式、正激式、桥式、推挽式DC/DC电源变换器的拓扑类型

常见反激式、正激式、桥式、推挽式DC/DC电源变换器的拓扑类型

主题: 常见反激式、正激式、桥式、推挽式DC/DC电源变换器的拓扑类型常见DC/DC电源变换器的拓扑类型见表1~表3所列。

表中给出不同的电路结构,同时也给出相应的电压及电流波形(设相关的电感电流为连续工作方式)。

PWM表示脉宽调制波形,U1为直流输入电压,UDS为功率开关管S1(MOSFFT)的漏一源极电压。

ID1为S1的漏极电流。

IF1为D1的工作电流,U0为输出电压,IL为负载电流。

T为周期,t为UO呈高电平(或低电平)的时问及开关导通时间,D为占空比,有关系式:D=t/T。

C1、C2均为输入端滤波电容,CO为输出端滤波电容,L1、L2为电感。

1、常见单管DC/DC电源变换器
2、常见反激式或正激式DCDC电源变换器
3、常见桥式或推挽式DCDC电源变换器。

几种常见的开关电源拓扑结构及应用

几种常见的开关电源拓扑结构及应用

几种常见的开关电源拓扑结构及应用什么是拓扑呢?所谓电路拓扑就是功率器件和电磁元件在电路中的连接方式,而磁性元件设计,闭环补偿电路设计及其他所有电路元件设计都取决于拓扑。

最基本的拓扑是Buck(降压式)、Boost(升压式)和Buck/Boost(升/降压),单端反激(隔离反激),正激、推挽、半桥和全桥变化器。

下面简单介绍一下常用的开关电源拓扑结构。

Buck电路首先我们要讲的就是Buck电路。

Buck电路也成为降压(step-down)变换器。

它的电路图是下面这样的:晶体管,二极管,电感,电容和负载构成了主回路,下方的控制回路一般采用PWM(脉冲宽度调制)芯片控制占空比决定晶体管的通断。

Buck电路的功能是把直流电压Ui转换成直流电压Uo,实现降压目的。

展开剩余88%反激变换器反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源,与之对应的有正激式开关电源。

反激(FLY BACK),具体是指当开关管接通时,输出变压器充当电感,电能转化为磁能,此时输出回路无电流;相反,当开关管关断时,输出变压器释放能量,磁能转化为电能,输出回来中有电流。

反激式开关电源中,输出变压器同时充当储能电感,整个电源体积小、结构简单,所以得到广泛应用。

应用最多的是单端反激式开关电源。

优点:元器件少、电路简单、成本低、体积小,可同时输出多路互相隔离的电压;缺点:开关管承受电压高,输出变压器利用率低,不适合做大功率电源。

Boost电路Boost(升压)电路是最基本的反激变换器。

Boost变换器又称为升压变换器、并联开关电路、三端开关型升压稳压器。

上面的图就是Boost电路图。

Boost电路是一个升压电路,它的输出电压高于输入电压。

Buck/Boost变换器Buck/Boost变换器:也叫做升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但它的输出电压的极性与输入电压相反。

Buck/Boost变换器可以看做是Buck变换器和Boost变换器串联而成,合并了开关管。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源:单管自激,反激,推挽,半桥,全桥单端正激式开关电源正激式变压器开关电源,是指当变压器的初级线圈正被直流电压激励时,变压器的次级线圈正好有功率输出。

它是在BUCK电路的开关管Q与续流二极管D之间加入单端变压隔离器而得到的。

它具有以下优点:1)正激变换器利用高频变压器的一次侧、二次侧绕组隔离的特点,可以方便的实现交流电网和直流输出之间的隔离。

2)正激变换器电路简单,成本很低,能方便的实现多路输出。

3)正激变换器只有一个开关管,只需一组驱动脉冲;其对控制电路的要求比双端变换器低。

图2.4单端正激式开关电源单端反激式开关电源反激式变压器开关电源,是指当变压器的初级线圈正好被直流电压激励时,变压器的次级线圈没有向负载提供功率输出,而仅在变压器初级线圈的激励电压被关断后才向负载提供功率输出,这种变压器开关电源称为反激式开关电源。

反激式开关电源是在反极性(Buck—Boost)变换器的基础上演变而来的,它具有以下优点:比正激式开关电源少用一个大储能滤波电感及一个续流二极管,因此,体积比正激式开关电源的要小,且成本也要低。

图2.5单端反激式开关电源推挽式开关电源在双激式变压器开关电源中,推挽式开关电源是最常用的开关稳压电源。

由于推挽式变压器开关电源中的两个控制开关S1和S2轮流交替工作,其输出电压波形非常对称,而且开关电源在整个工作周期之内都向负载提供功率输出,它在输入电压很低的情况下,仍能维持很大的功率输出,所以推挽式变压器开关电源被广泛应用于DC/AC逆变器,或DC/DC变换电路中。

它具有以下优点:功率开关器件的发射极是共地的,所以无须隔离基极驱动电路;推挽式开关电源变压器的漏感及铜阻损耗很小,因此其工作效率很高。

图2.6推挽式开关电源半桥式开关电源半桥式变压器开关电源属于双激式变压器开关电源,从原理上来说,半桥式变压器开关电源也属于推挽式变压器开关电源,它是多种推挽式变压器开关电源家庭成员之一。

在半桥式变压器开关电源中,也是两个控制开关管S1和S2轮流交替工作,开关电源在整个工作周期之内都向负载提供功率输出,因此,其输出电流瞬间响应速度很高,电压输出特性也很好。

由于半桥式变压器开关电源的两个开关器件工作电压只有输入电压的一半,截止开关管极间承受的电压低;抗不平衡能力强,因此,半桥式变压器开关电源比较适用于工作电压比较高的场合。

图2.7半桥式开关电源全桥开关电源全桥式变压器开关电源也属于双激式变压器开关电源。

它同时具有推挽式变压器开关电源电压利用率高,又具有半桥式变压器开关电源耐压高的特点。

因此,全桥式变压器开关电源经常用于电压高,输出功率大的场合。

全桥式变压器开关电源工作原理图如下。

图中,K1、K2、K3、K4是4个控制开关管;开关管K1和K4,K2和K3同时开通和关断,两对开关管以PWM方式交替的开通和关断。

它具有以下优点:对4个开关器件的耐压要求比推挽式对2个开关器件的耐压要求可以降低一半;全桥式开关电源的输出功率要比推挽式开关电源的输出功率大很多且其变压器的初级线圈只需要一个绕组。

图2.9全桥开关电源R 32VO MC O MV C 20I N 220V A C 0.8A O U T 24V D C 4.5AH W .79 94V -0S -100N -R 52000-11-21TL494管脚功能及参数1脚为内部1#误差放大器的同向输入端 IN1+。

2脚为内部1#误差放大器的反向输入端IN1—。

3脚为误差放大器A1、A2输出端。

集成电路内部用于控制PWM比较器的同相输入,当A1、A2任一输出电压升高时,控制PWM比较器的输出脉宽减小。

同时,该输出端还引出端外,以便与2、15脚间接入RC频率校正电路和直流负反馈电路,稳定误差放大器的增益以及防止其高频自激。

3脚电压反比于输出脉宽,也可利用该端功能实现高电平保护。

4脚为死区时间控制端。

当外加1V以下的电压时,死区时间与外加电压成正比。

如果电压超过1V,内部比较器将关断触发器的输出脉冲,起到保护作用。

5脚为锯齿波振荡器外接定时电容端。

6脚为锯齿波振荡器外接定时电阻端。

7脚为共地端。

8、11脚为两路驱动放大器NPN管的集电极开路输出端。

当通过外接负载电阻引出输出脉冲时,为两路时序不同的倒相输出,脉冲极性为负极性,适合驱动P型双极型开关管或P沟道MOS FET管。

此时两管发射极接共地。

9、10脚为两路驱动放大器的发射极开路输出端,也是对应的脉冲参考地端。

12脚为V cc、输入端。

供电范围适应8~40V。

13脚为输出模式控制端。

外接5V高电平时为双端图腾柱式输出,用以驱动各种推挽开关电路。

接地时为两路同相位驱动脉冲输出,8、11脚和9、10脚可直接并联。

双端输出时最大驱动电流为2×200mA,并联运用时最大驱动电流为400mA。

14脚为内部基准电压精密稳压电路端。

输出5V±0.25V的基准电压,最大负载电流为10mA。

用于误差检出基准电压和控制模式的控制电压。

15脚为内部2#误差放大器的反向输入端IN2-。

16 脚为内部2#误差放大器的同向输入端IN2+。

R T取值范围1.8~500kΩ,C T取值范围4700pF~10μF,最高振荡频率f OSC≤300KHz。

TL494在工作时,通过5、6脚分别接定时元件C T和R T。

经相应的门电路去控制TL494内部的两个驱动三极管交替导通和截止,通过8脚和11脚向外输出相位相差180°的脉宽调制控制脉冲。

工作波形如图3-3所示。

TL494若将13脚与14脚相连.可形成推挽式工作;若将13脚与7脚相连.可形成单端输出方式。

为增大输出可将2个三极管并联[7]。

电路启动过程分析:当接通电源后,由滤波电容器C5上的150V电压的正端输出电流,通过启动电阻R12、R15分压给V3注入一个基极电流,这时V3流入的集电极电流通过发射极,又通过驱动变压器T1中的W3(T1中间的那段绕组)电流由上往下流,又通过主变压器T2初级绕组由下往上流,最后通过电容C7,回到C5上的150V负端。

C6和C5类似,但流经W3的电流方向相反,而幅值又相等,这样W3中的电流就相互抵消了,W3中没有电流也就不能震荡起来了。

这是一个非常重要的问题,但是W3中是有电流的,虽然V3,V4的外围电路相同,元件参数也相等,所加的电压也相等,但是元件参数的分散性还是比较大的,也就是说相同的元件,相同的参数,但是他们存在着误差,不可能完全相等,所以抵消一部分电流后W3中还是有电流,在T2的初级绕组产生幅值+150~ -150的方波。

来驱动反馈变压器使TL494工作。

一但TL494正常工作,这个启动自激震荡的波形就立刻停止了。

电路启动后,R12、R15就完成了任务,虽然在电路中没有断开,但在电路中已经不起作用了,因为启动电阻R1 R3的阻值很大(一般都在300K以上),对三极管的电流很小起不到控制作用,这样三极管的导通和截止完全受PWM来控制。

主电路工作过程分析:闭合开关S1后,输入电压经过保险管F1,浪涌抑制电阻R1,滤波器C1、L1、C2、C3、C4及全桥整流后送入由C5、C6、V4、V5、T1、T2等构成的半桥式变换器。

开关管V4和V5在TL494的控制下,两管交替导通截止,将直流电转换成高频交流电。

高频振荡电压有变压去T2副绕组分两路输出。

一路由V13、V14、C25整流滤波得到约12V直流电压供给脉冲宽度调制器TL494专用,另一路则由V12、L2、C22、L3、C23 整流滤波作为48V主输出。

电路中R12、R15、R14、R17构成启动回路,T1、V8、V9、C12、C14、R13、R16为正反馈元件,R4、C8及R29、C21构成尖峰吸收网络,用于改善波形及保护开关管。

在电路中,TL494的13脚连14脚,即U13=5V; TL494由8脚和11脚双端输出,两路输出脉冲相位差半个周期,送到V2、V3俩个驱动管,Q3和Q4的导通或截止又通过驱动变压器T1分别去控制两个大功率开关调整管Q1和Q2的饱和导通或截止。

C7是耦合电容, 其作用是防止由于两个开关管的特性差异而造成变压器磁芯饱和,从而提高半桥逆变电路的抗不平衡能力.R4 、C8 ;R29 、C21为吸收电路,用于改善波形和保护开关管。

吸收电路就是我们通常说的“消反冲电路”,其作用就是药消除没有用的反冲电压。

在开关稳压电压中最高的反冲电压,是在开关调整管截止时产生的,这个很高的反冲电压,就产生在开关变压器的初级绕组的两端,同时也加在了开关调整管的集电极和发射机的两端,这样就对开关管是一个很大的威胁,所以就将吸收电路加在开关变压器的初级绕组的两端。

吸收电路通常能起到两个作用,那就是降低反冲电压和消除高频振荡。

C20、R26分别接至TL494的5脚和6脚,使内部振荡器的震荡频率由C20和R26决定。

本电路利用TL494的内部误差放大器2进行反馈稳压。

反馈稳压过程如下:误差放大器2的反向输入端15脚接与14脚和地之间的电阻R20、R18之间,分压后U15=2.5V,输出电压U0经R23和(R21、RP1)分压后加到16脚,作为误差放大器2的同向输入。

当U0变化时,误差放大器2的输出电压随之改变,即与比较的电平改变,PWM 比较器输出的脉冲宽度改变,致使TL494输出的驱动脉冲,即开关管V4和V5的导通时间TON 改变,从而实现调宽稳压的目的。

此外,微调RP1可调节输出电压的数值,使输出电压在45V~75V之间变化。

电路利用误差放大器1作为过流保护。

从48V输出主回路上取出的电流控制信号经R24接至误差放大器1的1脚和2脚上,其中反向输入端2脚的电位由14脚输出的5V基准源经过(RP2,R27)和(R24,R30)分压后获得。

调整RP2大小可控制2脚门坎电位,即过流控制点。

当R30上取出的电压信号足够大使其绝对值超过2脚电位时,误差放大器1将翻转并关闭脉冲信号输出,进而起到过流保护作用。

本电源输出的直流电压为48V,输出电流为0~3A.。

图3-3 半桥开关电路原理图分析:当前驱电路经过滤波后在经过桥式整流,然后电流入半桥开关电路,当V1导通时,T1(V1的导通时间)的一次磁通增大,增大的磁通为A1; 当V2导通时,T2(V1的导通时间)的一次磁通减小,减小的磁通为A2。

整个电路中的磁通为N(A1- A2),当A2=0时此时达到直流磁通。

如果没有达到直流磁通可能由于C5和C6的两端电压有波动以及V1和V2的导通不对称。

此电路中VD7 和VD8分别提供维持V1和V2三极管的发射极电流Ib。

此电路中C10对V1瞬间从饱和转换到截止状态起装换作用;C10对V1瞬间从饱和转换到截止状态起装换作用。

3.4 驱动变压电路如图3-4所示为驱动变压电路。

相关文档
最新文档