两角和与差的正弦、余弦和正切公式教学分析

合集下载

《两角和与差的正弦、余弦、正切公式》教学反思

《两角和与差的正弦、余弦、正切公式》教学反思
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了两角和与差的正弦、余弦、正切公式的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对这些公式的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解两角和与差的正弦、余弦、正切公式的基本概念。这些公式描述了两个角度相加或相减时,其三角函数值的变化规律。它们在三角函数的计算、化简和应用中起着关键作用。
2.案例分析:接下来,我们来看一个具体的案例。通过计算sin(π/3 + π/4)的值,展示两角和公式在实际中的应用,以及它如何帮助我们解决问题。
二、核心素养目标
《两角和与差的正弦、余弦、正切公式》教学的核心素养目标在于培养学生的数学抽象、逻辑推理和数学建模能力。通过本章节的学习,使学生能够理解并抽象出两角和与差公式的数学本质,运用逻辑推理能力探索公式之间的内在联系,进一步构建完整的三角函数知识体系。同时,学生能运用所学的公式进行数学建模,解决实际问题,增强数学在实际生活中的应用意识。此外,注重培养学生的数据分析能力,让学生在解决三角函数问题时,能够熟练运用公式,准确进行数据处理和分析,从而提高学生的综合解题能力和数学素养。这一目标与新教材强调的学科核心素养培养要求相契合。
举例:化简sin(π/3 + π/4)等表达式,并求出其数值。
(3)运用公式解决实际问题:将两角和与差的三角函数公式应用于解决几何、物理等实际问题。
举例:在给定角度和边长的情况下,求解三角形的高、面积等问题。

两角和与差的正弦余弦和正切公式教学分析

两角和与差的正弦余弦和正切公式教学分析

两角和与差的正弦余弦和正切公式教学分析对于给定的两个角A和B,我们可以使用三角函数的和差公式来计算它们的正弦、余弦和正切值。

1.两角和公式:正弦公式:sin(A + B) = sinA * cosB + cosA * sinB余弦公式:cos(A + B) = cosA * cosB - sinA * sinB正切公式:tan(A + B) = (tanA + tanB) / (1 - tanA * tanB)这些公式可以通过几何或代数方法进行推导。

以下是几何推导的简要概述:首先,我们有两个角A和B,我们可以构造一个单位圆,将角A的终边与x轴相交于点P,角B的终边与x轴相交于点Q。

然后,我们可以将角A扩展为一个完整的圆,使得终边与x轴再次相交于点R。

这样,我们可以得到角A的终边PR与单位圆的交点为点P的坐标(x,y)。

同样地,我们可以将角B扩展为一个完整的圆,将角B的终边与x轴相交于点S。

这样,我们可以得到角B的终边QS与单位圆的交点为点Q 的坐标(x',y')。

接下来,我们可以通过观察图形,发现角A+B的终边与点R和点S的连线所形成的三角形是一个直角三角形。

根据直角三角形的定义,我们可以使用三角函数的定义来计算这个直角三角形的各个边的长度。

我们可以发现,点R的坐标(x, y)可以表示为cosA和sinA的形式,点S的坐标(x', y')可以表示为cosB和sinB的形式。

因此,我们可以得到直角三角形的斜边PR与终边QS之间的关系:PR=PS=(x'-x)然后,我们可以使用勾股定理来计算PR的长度:PR^2=PS^2+SR^2将PS和SR的长度用cosB、sinB和cosA、sinA表示,我们可以得到:(cosB - cosA)^2 + (sinB - sinA)^2 = (x' - x)^2展开后整理得到结果:2 - 2*cosA*cosB - 2*sinA*sinB = (x' - x)^2再通过求平方根可得:x' - x = sqrt(2 - 2*cosA*cosB - 2*sinA*sinB)因此,我们可以得到两角和公式的正弦、余弦和正切形式:sin(A + B) = sinA * cosB + cosA * sinBcos(A + B) = cosA * cosB - sinA * sinBtan(A + B) = (tanA + tanB) / (1 - tanA * tanB)2.两角差公式:对于两角差公式,我们可以通过两角和公式来推导出来。

两角和与差的正弦、余弦和正切公式

两角和与差的正弦、余弦和正切公式

三角恒等变换课标要求:1、掌握两角和与差的正弦、余弦和正切公式2、运用两角和与差的正弦、余弦和正切公式,二倍角公式进行简单的三角恒等变换3、发展学生的推理能力和运算能力§3.1两角和与差的正弦、余弦和正切公式课标要求:1、经历用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用2、能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系学习目标:1、掌握两角和与差的正弦、余弦和正切公式,二倍角公式2、学会利用公式进行简单的三角恒等变换教学重点:两角和与差的正弦、余弦和正切公式,二倍角公式教学难点:两角和与差的正弦、余弦和正切公式,二倍角公式的灵活应用课时安排:6课时教具:直尺、圆规、背投、电脑第一课时师:这节课我们开始学习第三章第一节:两角差的余弦公式(板书)。

请看本节课的学习目标。

展示学习目标。

学习目标:1、记忆两角差的余弦公式2、利用两角差的余弦公式求值师:目标明确的同学请举手。

(老师根据情况进行下一步)。

请看自学指导。

(展示自学指导) 请认真阅读P124—P126的内容(其中公式的推导不看),完成下列问题,10分钟后检测大家自学效果。

1、βαβαcos cos )cos(-=-成立吗?若成立,说明理由;若不成立,则举例说明。

2、两角差的余弦公式是什么?当已知哪些量时,就可以使用公式计算两角差的余弦了?师:看完并理解掌握的同学请举手。

(根据情况判断是否理解,若有没举手的,老师要问其原因,并解决)师:请 同学解决第一个问题。

(老师根据学生的解答板书,并请其他同学进行纠正)师:请 同学解决第二个问题。

老师根据学生的解答板书,同时强调:1、若已知ββααcos sin cos sin 、之一和、之一及βα、所在的象限,就可以求)cos(βα- 2、若不知角所在的象限,则)cos(βα-的结果可能有多个课堂检测:1、利用差角余弦公式求 105cos 。

两角和与差的正弦余弦正切公式

两角和与差的正弦余弦正切公式

两角和与差的正弦余弦正切公式在三角函数中,我们经常需要计算两个角的和或差的正弦、余弦或正切值。

这些公式被广泛应用于数学、物理、工程等领域的问题求解中。

本文将详细介绍两角和与差的正弦、余弦和正切公式。

一、两角和与差的正弦公式首先,我们来讨论两个角的和的正弦公式。

设有两个角A和B,那么它们的和角记为(A+B)。

根据三角函数的定义,我们知道正弦的定义为一个角的对边与斜边之比,可以表示为sin(x)=opposite/hypotenuse。

根据这个定义,我们可以得到如下的两角和的正弦公式:sin(A+B) = sinA*cosB + cosA*sinB这个公式很重要,可以帮助我们计算两个角的和的正弦值。

在实际应用中,我们经常需要计算两个角的和的正弦,而不是两个角分别的正弦。

所以这个公式非常有用。

接下来,我们来讨论两个角的差的正弦公式。

设有两个角A和B,那么它们的差角记为(A-B)。

根据三角函数的定义,我们可以得到如下的两角差的正弦公式:sin(A-B) = sinA*cosB - cosA*sinB这个公式与两角和的正弦公式类似,也非常有用。

二、两角和与差的余弦公式类似于正弦公式,我们也可以推导出两角和与差的余弦公式。

设有两个角A和B,那么它们的和角记为(A+B)。

根据三角函数的定义,我们知道余弦的定义为一个角的邻边与斜边之比,可以表示为cos(x)=adjacent/hypotenuse。

根据这个定义,我们可以得到如下的两角和的余弦公式:cos(A+B) = cosA*cosB - sinA*sinB同样地,我们也可以得到两角差的余弦公式:cos(A-B) = cosA*cosB + sinA*sinB这两个公式和两角和与差的正弦公式一样重要,经常被应用于实际问题中。

三、两角和与差的正切公式最后,我们来讨论两角和与差的正切公式。

设有两个角A和B,那么它们的和角记为(A+B)。

根据三角函数的定义,我们知道正切的定义为一个角的对边与邻边之比,可以表示为tan(x)=opposite/adjacent。

两角和与差的正弦、余弦和正切公式(含解析)

两角和与差的正弦、余弦和正切公式(含解析)

两角和与差的正弦、余弦和正切公式(含解析)1.两角和与差的正弦、余弦、正切公式1) $cos(\alpha-\beta): cos(\alpha-\beta)=cos\alphacos\beta+sin\alpha sin\beta$2) $cos(\alpha+\beta): cos(\alpha+\beta)=cos\alpha cos\beta-sin\alpha sin\beta$3) $sin(\alpha+\beta): sin(\alpha+\beta)=sin\alphacos\beta+cos\alpha sin\beta$4) $sin(\alpha-\beta): sin(\alpha-\beta)=sin\alpha cos\beta-cos\alpha sin\beta$5) $tan(\alpha+\beta):tan(\alpha+\beta)=\frac{tan\alpha+tan\beta}{1-tan\alpha tan\beta}$6) $tan(\alpha-\beta): tan(\alpha-\beta)=\frac{tan\alpha-tan\beta}{1+tan\alpha tan\beta}$2.二倍角的正弦、余弦、正切公式1) $sin2\alpha: sin2\alpha=2sin\alpha cos\alpha$2) $cos2\alpha: cos2\alpha=cos^2\alpha-sin^2\alpha=2cos^2\alpha-1=1-2sin^2\alpha$3) $tan2\alpha: tan2\alpha=\frac{2tan\alpha}{1-tan^2\alpha}$3.常用的公式变形1) $tan(\alpha\pm\beta)=\frac{tan\alpha\pm tan\beta}{1\mp tan\alpha tan\beta}$2) $cos2\alpha=\frac{1+cos2\alpha}{2}$,$sin2\alpha=\frac{1-cos2\alpha}{2}$3) $1+sin2\alpha=(sin\alpha+cos\alpha)^2$,$1-sin2\alpha=(sin\alpha-cos\alpha)^2$,$\sin\alpha+\cos\alpha=2\sin\frac{\alpha+\beta}{4}$基础题必做1.若$tan\alpha=3$,则$\frac{sin2\alpha}{2sin\alphacos\alpha}$的值等于$2tan\alpha=2\times3=6$。

两角和与差的正弦、余弦和正切公式(含解析)

两角和与差的正弦、余弦和正切公式(含解析)

归纳与技巧:两角和与差的正弦、余弦和正切公式基础知识归纳1.两角和与差的正弦、余弦、正切公式 (1)C (α-β):cos(α-β)=cos_αcos_β+sin_αsin_β; (2)C (α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S (α+β):sin(α+β)=sin_αcos_β+cos_αsin_β; (4)S (α-β):sin(α-β)=sin_αcos_β-cos_αsin_β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.常用的公式变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎫α±π4.基础题必做1. 若tan α=3,则sin 2αcos 2α的值等于( )A .2B .3C .4D .6解析:选Dsin 2αcos 2α=2sin αcos αcos 2α=2tan α=2×3=6. 2.sin 68°sin 67°-sin 23°cos 68°的值为( )A .-22B.22C.32D .1解析:选B 原式=sin 68°cos 23°-cos 68°sin 23°=sin(68°-23°)=sin 45°=22. 3.已知sin α=23,则cos(π-2α)等于( )A .-53 B .-19C.19D.53解析:选B cos(π-2α)=-cos 2α=-(1-2sin 2α)=2sin 2α-1=2×49-1=-19.4.(教材习题改编)若cos α=-45,α是第三象限角,则sin ⎝⎛⎭⎫α+π4=________ 解析:由已知条件sin α=-1-cos 2α=-35,sin ⎝⎛⎭⎫α+π4=22sin α+22cos α=-7210. 答案:-72105.若tan ⎝⎛⎭⎫α+π4=25,则tan α=________. 解析:tan ⎝⎛⎭⎫α+π4=tan α+11-tan α=25, 即5tan α+5=2-2tan α. 则7tan α=-3,故tan α=-37.答案:-37解题方法归纳1.两角和与差的三角函数公式的理解:(1)正弦公式概括为“正余,余正符号同”.“符号同”指的是前面是两角和,则后面中间为“+”号;前面是两角差,则后面中间为“-”号.(2)余弦公式概括为“余余,正正符号异”.(3)二倍角公式实际就是由两角和公式中令β=α所得.特别地,对于余弦:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,这三个公式各有用处,同等重要,特别是逆用即为“降幂公式”,在考题中常有体现.2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角为:对角的分拆要尽可能化成已知角、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.三角函数公式的应用 典题导入[例1] 已知函数f (x )=2sin ⎝⎛⎭⎫13x -π6,x ∈R . (1)求f ⎝⎛⎭⎫5π4的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫3α+π2=1013,f (3β+2π)=65,求cos(α+β)的值. [自主解答] (1)∵f (x )=2sin ⎝⎛⎭⎫13x -π6, ∴f ⎝⎛⎭⎫5π4=2sin ⎝⎛⎭⎫5π12-π6=2sin π4= 2. (2)∵α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫3α+π2=1013,f (3β+2π)=65, ∴2sin α=1013,2sin ⎝⎛⎭⎫β+π2=65. 即sin α=513,cos β=35.∴cos α=1213,sin β=45.∴cos(α+β)=cos αcos β-sin αsin β =1213×35-513×45=1665.解题方法归纳两角和与差的三角函数公式可看作是诱导公式的推广,可用α、β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.以题试法1.(1)已知sin α=35,α∈⎝⎛⎭⎫π2,π,则cos 2α2sin ⎝⎛⎭⎫α+π4=________.(2) 已知α为锐角,cos α=55,则tan ⎝⎛⎭⎫π4+2α=( ) A .-3 B .-17C .-43D .-7 解析:(1)cos 2α2sin ⎝⎛⎭⎫α+π4=cos 2α-sin 2α2⎝⎛⎭⎫22sin α+22cos α=cos α-sin α,∵sin α=35,α∈⎝⎛⎭⎫π2,π,∴cos α=-45. ∴原式=-75.(2)依题意得,sin α=255,故tan α=2,tan 2α=2×21-4=-43,所以tan ⎝⎛⎭⎫π4+2α=1-431+43=-17. 答案:(1)-75 (2)B三角函数公式的逆用与变形应用典题导入[例2] 已知函数f (x )=2cos 2x2-3sin x .(1)求函数f (x )的最小正周期和值域;(2)若α为第二象限角,且f ⎝⎛⎭⎫α-π3=13,求cos 2α1+cos 2α-sin 2α的值. [自主解答] (1)∵f (x )=2cos 2x2-3sin x =1+cos x -3sin x =1+2cos ⎝⎛⎭⎫x +π3,∴周期T =2π,f (x )的值域为[-1,3].(2)∵f ⎝⎛⎭⎫α-π3=13,∴1+2cos α=13,即cos α=-13. ∵α为第二象限角,∴sin α=223. ∴cos 2α1+cos 2α-sin 2α=cos 2α-sin 2α2cos 2α-2sin αcos α =cos α+sin α2cos α=-13+223-23=1-222.解题方法归纳运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.以题试法2.(1) 已知sin ⎝⎛⎭⎫α+π6+cos α=435,则sin ⎝⎛⎭⎫α+π3的值为( ) A.45 B.35 C.32D.35(2)若α+β=3π4,则(1-tan α)(1-tan β)的值是________.解析:(1)由条件得32sin α+32cos α=435, 即12sin α+32cos α=45. ∴sin ⎝⎛⎭⎫α+π3=45. (2)-1=tan 3π4=tan(α+β)=tan α+tan β1-tan αtan β,∴tan αtan β-1=tan α+tan β. ∴1-tan α-tan β+tan αtan β=2,即(1-tan α)(1-tan β)=2. 答案:(1)A (2)2角 的 变 换 典题导入[例3] (1) 若sin α+cos αsin α-cos α=3,tan(α-β)=2,则tan(β-2α)=________.(2) 设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________. [自主解答] (1)由条件知sin α+cos αsin α-cos α=tan α+1tan α-1=3,则tan α=2.故tan(β-2α)=tan [(β-α)-α] =tan (β-α)-tan α1+tan (β-α)tan α=-2-21+(-2)×2=43.(2)因为α为锐角,cos ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+π6=35,sin 2⎝⎛⎭⎫α+π6=2425, cos 2⎝⎛⎭⎫α+π6=725, 所以sin ⎝⎛⎭⎫2α+π12=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6-π4 =2425×22-725×22=17250. [答案] (1)43 (2)17250解题方法归纳1.当“已知角”有两个时,一般把“所求角”表示为两个“已知角”的和或差的形式; 2.当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.3.常见的配角技巧: α=2·α2;α=(α+β)-β;α=β-(β-α); α=12[(α+β)+(α-β)];β=12[(α+β)-(α-β)]; π4+α=π2-⎝⎛⎭⎫π4-α;α=π4-⎝⎛⎭⎫π4-α.以题试法3.设tan ()α+β=25,tan ⎝⎛⎭⎫β-π4=14,则tan ⎝⎛⎭⎫α+π4=( ) A.1318 B.1322 C.322D.16解析:选C tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =tan (α+β)-tan ⎝⎛⎭⎫β-π41+tan (α+β)tan ⎝⎛⎭⎫β-π4=322.1. 设tan α,tan β是方程x 2-3x +2=0的两根,则tan (α+β)的值为( ) A .-3 B .-1 C .1D .3解析:选A 由题意可知tan α+tan β=3,tan α·tan β=2, tan(α+β)=tan α+tan β1-tan αtan β=-3.2. 已知cos ⎝⎛⎭⎫x -π6=-33,则cos x +cos ⎝⎛⎭⎫x -π3的值是( ) A .-233B .±233C .-1D .±1解析:选C cos x +cos ⎝⎛⎭⎫x -π3=cos x +12cos x +32sin x =32cos x +32sin x =3⎝⎛⎭⎫32cos x +12sin x =3cos ⎝⎛⎭⎫x -π6=-1. 3. 已知α满足sin α=12,那么sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-α的值为( ) A.14 B .-14C.12D .-12解析:选A 依题意得,sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4+α·cos ⎝⎛⎭⎫π4+α=12sin ⎝⎛⎭⎫π2+2α=12cos 2α=12(1-2sin 2α)=14.4.已知函数f (x )=x 3+bx 的图象在点A (1,f (1))处的切线的斜率为4,则函数g (x )=3sin 2x +b cos 2x 的最大值和最小正周期为( )A .1,πB .2,π C.2,2πD.3,2π解析:选B 由题意得f ′(x )=3x 2+b , f ′(1)=3+b =4,b =1. 所以g (x )=3sin 2x +b cos 2x =3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6, 故函数的最大值为2,最小正周期为π. 5. 设α、β都是锐角,且cos α=55,sin ()α+β=35,则cos β=( ) A.2525B.255C.2525或255D.55或525 解析:选A 依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45.又α、β均为锐角,因此0<α<α+β<π, cos α>cos(α+β),注意到45>55>-45,所以cos(α+β)=-45.cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=-45×55+35×255=2525.6.已知α为第二象限角,sin α+cos α=33,则cos 2α=( ) A .-53B .-59C.59D.53解析:选A 将sin α+cos α=33两边平方,可得1+sin 2α=13,sin 2α=-23,所以(-sin α+cos α)2=1-sin 2α=53.因为α是第二象限角,所以sin α>0,cos α<0,所以-sin α+cos α=-153,所以cos 2α=(-sin α+cos α)·(cos α+sin α)=-53. 7. 满足sin π5sin x +cos 4π5cos x =12的锐角x =________.解析:由已知可得 cos 4π5cos x +sin 4π5sin x =12,即cos ⎝⎛⎭⎫4π5-x =12,又x 是锐角,所以4π5-x =π3,即x =7π15.答案:7π158.化简2tan (45°-α)1-tan 2(45°-α)·sin αcos αcos 2α-sin 2α=________. 解析:原式=tan(90°-2α)·12sin 2αcos 2α=sin (90°-2α)cos (90°-2α)·12sin 2αcos 2α =cos 2αsin 2α·12sin 2αcos 2α=12. 答案:129. 已知角α,β的顶点在坐标原点,始边与x 轴的正半轴重合,α,β∈(0,π),角β的终边与单位圆交点的横坐标是-13,角α+β的终边与单位圆交点的纵坐标是45,则cos α=________.解析:依题设及三角函数的定义得: cos β=-13,sin(α+β)=45.又∵0<β<π,∴π2<β<π,π2<α+β<π,sin β=223,cos(α+β)=-35.∴cos α=cos[(α+β)-β] =cos(α+β)cos β+sin(α+β)sin β =-35×⎝⎛⎭⎫-13+45×223 =3+8215.答案:3+821510.已知α∈⎝⎛⎭⎫0,π2,tan α=12,求tan 2α和sin ⎝⎛⎭⎫2α+π3的值. 解:∵tan α=12,∴tan 2α=2tan α1-tan 2α=2×121-14=43,且sin αcos α=12,即cos α=2sin α, 又sin 2α+cos 2α=1, ∴5sin 2α=1,而α∈⎝⎛⎭⎫0,π2, ∴sin α=55,cos α=255. ∴sin 2α=2sin αcos α=2×55×255=45, cos 2α=cos 2α-sin 2α=45-15=35,∴sin ⎝⎛⎭⎫2α+π3=sin 2αcos π3+cos 2αsin π3=45×12+35×32=4+3310. 11.已知:0<α<π2<β<π,cos ⎝⎛⎭⎫β-π4=45. (1)求sin 2β的值; (2)求cos ⎝⎛⎭⎫α+π4的值.解:(1)法一:∵cos ⎝⎛⎭⎫β-π4=cos π4cos β+sin β=22cos β+22sin β=13, ∴cos β+sin β=23,∴1+sin 2β=29,∴sin 2β=-79. 法二:sin 2β=cos ⎝⎛⎭⎫π2-2β=2cos 2⎝⎛⎭⎫β-π4-1=-79. (2)∵0<α<π2<β<π, ∴π4<β<-π4<34π,π2<α+β<3π2, ∴sin ⎝⎛⎭⎫β-π4>0,cos (α+β)<0. ∵cos ⎝⎛⎭⎫β-π4=13,sin (α+β)=45, ∴sin ⎝⎛⎭⎫β-π4=223,cos (α+β)=-35. ∴cos ⎝⎛⎭⎫α+π4=cos ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =cos (α+β)cos ⎝⎛⎭⎫β-π4 =-35×13+45×223=82-315. 12. 函数f(x)=cos ⎝⎛⎭⎫-x 2+sin ⎝⎛⎭⎫π-x 2,x ∈R . (1)求f (x )的最小正周期;(2)若f (α)=2105,α∈⎝⎛⎭⎫0,π2,求tan ⎝⎛⎭⎫α+π4的值. 解:(1)f (x )=cos ⎝⎛⎭⎫-x 2+sin ⎝⎛⎭⎫π-x 2=sin x 2+cos x 2=2sin ⎝⎛⎭⎫x 2+π4, 故f (x )的最小正周期T =2π12=4π. (2)由f (α)=2105,得sin α2+cos α2=2105, 则⎝⎛⎭⎫sin α2+cos α22=⎝⎛⎭⎫21052, 即1+sin α=85,解得sin α=35,又α∈⎝⎛⎭⎫0,π2,则cos α=1-sin 2α= 1-925=45, 故tan α=sin αcos α=34, 所以tan ⎝⎛⎭⎫α+π4=tan α+tan π41-tan αtan π4=34+11-34=7.1.若tan α=lg(10a ),tan β=lg ⎝⎛⎭⎫1a ,且α+β=π4,则实数a 的值为( ) A .1B.110 C .1或110 D .1或10解析:选C tan(α+β)=1⇒tan α+tan β1-tan αtan β=lg (10a )+lg ⎝⎛⎭⎫1a 1-lg (10a )·lg ⎝⎛⎭⎫1a =1⇒lg 2a +lg a =0, 所以lg a =0或lg a =-1,即a =1或110. 2.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α =1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:123.已知sin α+cos α=355,α∈⎝⎛⎭⎫0,π4,sin ⎝⎛⎭⎫β-π4=35,β∈⎝⎛⎭⎫π4,π2. (1)求sin 2α和tan 2α的值;(2)求cos(α+2β)的值.解:(1)由题意得(sin α+cos α)2=95, 即1+sin 2α=95,∴sin 2α=45.又2α∈⎝⎛⎭⎫0,π2,∴cos 2α=1-sin 22α=35, ∴tan 2α=sin 2αcos 2α=43. (2)∵β∈⎝⎛⎭⎫π4,π2,β-π4∈⎝⎛⎭⎫0,π4,sin ⎝⎛⎭⎫β-π4=35, ∴cos ⎝⎛⎭⎫β-π4=45, 于是sin 2⎝⎛⎭⎫β-π4=2sin ⎝⎛⎭⎫β-π4cos ⎝⎛⎭⎫β-π4=2425. 又sin 2⎝⎛⎭⎫β-π4=-cos 2β, ∴cos 2β=-2425, 又∵2β∈⎝⎛⎭⎫π2,π,∴sin 2β=725, 又∵cos 2α=1+cos 2α2=45⎝⎛⎭⎫α∈⎝⎛⎭⎫0,π4, ∴cos α=255,sin α=55. ∴cos(α+2β)=cos αcos 2β-sin αsin 2β=255 ×⎝⎛⎭⎫-2425-55×725=-11525.1. 已知函数f (x )=3sin 2x +sin x cos x ,x ∈⎣⎡⎦⎤π2,π.(1)求f (x )的零点;(2)求f (x )的最大值和最小值.解:(1)令f (x )=0,得sin x ·(3sin x +cos x )=0, 所以sin x =0或tan x =-33. 由sin x =0,x ∈⎣⎡⎦⎤π2,π,得x =π;由tan x =-33,x ∈⎣⎡⎦⎤π2,π,得x =5π6. 综上,函数f (x )的零点为5π6,π.(2)f (x )=32(1-cos 2x )+12sin 2x =sin ⎝⎛⎭⎫2x -π3+32. 因为x ∈⎣⎡⎦⎤π2,π,所以2x -π3∈⎣⎡⎦⎤2π3,5π3. 所以当2x -π3=2π3,即x =π2时,f (x )的最大值为3; 当2x -π3=3π2,即x =11π12时,f (x )的最小值为-1+32. 2.已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值; 解:∵0<β<π2<α<π, ∴-π4<α2-β<π2,π4<α-β2<π. ∴cos ⎝⎛⎭⎫α2-β=1-sin 2⎝⎛⎭⎫α2-β = 1-⎝⎛⎭⎫232=53,sin ⎝⎛⎭⎫α-β2= 1-cos 2⎝⎛⎭⎫α-β2 = 1-⎝⎛⎭⎫-192=459. ∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =-19×53+459×23=7527. ∴cos(α+β)=2cos 2α+β2-1=2×49×5729-1=-239729.。

高中数学两角和与差的正弦 余弦 正切公式 教案

高中数学两角和与差的正弦 余弦 正切公式 教案

§3.1.2 两角和与差的正弦、余弦、正切公式一、教学目标理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用.二、教学重、难点1. 教学重点:两角和、差正弦和正切公式的推导过程及运用;2. 教学难点:两角和与差正弦、余弦和正切公式的灵活运用.三、学法与教学用具学法:研讨式教学四、教学设想:(一)复习式导入:大家首先回顾一下两角和与差的余弦公式:()cos cos cos sin sin αβαβαβ+=-;()cos cos cos sin sin αβαβαβ-=+.这是两角和与差的余弦公式,下面大家思考一下两角和与差的正弦公式是怎样的呢?提示:在第一章我们用诱导公式五(或六)可以实现正弦、余弦的互化,这对我们解决今天的问题有帮助吗?让学生动手完成两角和与差正弦和正切公式.()()sin cos cos cos cos sin sin 2222ππππαβαβαβαβαβ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-+=-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦sin cos cos sin αβαβ=+.()()()()sin sin sin cos cos sin sin cos cos sin αβαβαβαβαβαβ-=+-=-+-=-⎡⎤⎣⎦让学生观察认识两角和与差正弦公式的特征,并思考两角和与差正切公式.(学生动手)()()()sin sin cos cos sin tan cos cos cos sin sin αβαβαβαβαβαβαβ+++==+-.通过什么途径可以把上面的式子化成只含有tan α、tan β的形式呢?(分式分子、分母同时除以cos cos αβ,得到()tan tan tan 1tan tan αβαβαβ++=-. 注意:,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈以上我们得到两角和的正切公式,我们能否推倒出两角差的正切公式呢?()()()()tan tan tan tan tan tan 1tan tan 1tan tan αβαβαβαβαβαβ+---=+-==⎡⎤⎣⎦--+ 注意:,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈.(二)例题讲解例1、已知3sin ,5αα=-是第四象限角,求sin ,cos ,tan 444πππααα⎛⎫⎛⎫⎛⎫-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值. 解:因为3sin ,5αα=-是第四象限角,得4cos 5α===, 3sin 35tan 4cos 45ααα-===-, 于是有43sin sin cos cos sin 444252510πππααα⎛⎫⎛⎫-=-=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭43cos cos cos sin sin 44455πππααα⎛⎫⎛⎫+=-=-= ⎪ ⎪⎝⎭⎝⎭两结果一样,我们能否用第一章知识证明?3tan tan144tan 7341tan tan 144παπαπα---⎛⎫-===- ⎪⎛⎫⎝⎭++- ⎪⎝⎭ 例2、利用和(差)角公式计算下列各式的值:(1)、sin 72cos 42cos72sin 42-;(2)、cos 20cos70sin 20sin 70-;(3)、1tan151tan15+-. 解:分析:解此类题首先要学会观察,看题目当中所给的式子与我们所学的两角和与差正弦、余弦和正切公式中哪个相象. (1)、()1sin 72cos 42cos72sin 42sin 7242sin 302-=-==; (2)、()cos 20cos70sin 20sin 70cos 2070cos900-=+==;(3)、()1tan15tan 45tan15tan 4515tan 6031tan151tan 45tan15++==+==--.例3x x解:此题与我们所学的两角和与差正弦、余弦和正切公式不相象,但我们能否发现规律呢?)()1cos sin 30cos cos30sin 22sin 3022x x x x x x x ⎫-=-=-=-⎪⎪⎭思考:=我们是构造一个叫使它的正、余弦分别等于12和2的. 小结:本节我们学习了两角和与差正弦、余弦和正切公式,我们要熟记公式,在解题过程中要善于发现规律,学会灵活运用.作业:1、 已知()21tan ,tan ,544παββ⎛⎫+=-= ⎪⎝⎭求tan 4πα⎛⎫+ ⎪⎝⎭的值.(322) 2、 已知()33350,cos ,sin 4445413ππππβααβ⎛⎫⎛⎫<<<<-=+= ⎪ ⎪⎝⎭⎝⎭,求()sin αβ+的值.。

两角和与差的正弦、余弦和正切(二倍角公式)

两角和与差的正弦、余弦和正切(二倍角公式)

两角和与差的正弦、余弦和正切(二倍角公式)一.【学习目标】1、掌握并熟练使用两角和与差的余弦、正弦、正切进行证明、化简和求值;2、能针对不同情况进行寻找已知角之间的关系,灵活使用两角和与差的余弦、正弦、正切公式,二倍角公式进行证明、化简和求值.二.重点、难点、易错(混)点、常考点灵活使用两角和与差的余弦、正弦、正切进行证明、化简和求值三.【知识梳理】1.两角和与差的正弦、余弦、正切公式: C (),cos()αβαβ--= ; C (),cos()αβαβ++= S (),sin()αβαβ--= ; S (),sin()αβαβ++= . T (),tan()αβαβ++= 由T ()αβ+可得公式变形tan tan αβ+= T (),tan()αβαβ--=由T ()αβ-可得公式变形得:tan tan αβ-= 2. 二倍角的正弦、余弦、正切公式2:sin 2S ________________;2:tan 2T ________________。

2:cos 2C ________________=________________=________________;四.【基础题达标】 1.12cos312sinππ-=2.sin15°sin30°sin75°=__________.3.cos20°cos40°cos60°cos80° =4.),0(πθ∈,θθsin 1sin 1--+=5.313sin 253sin 223sin 163sin +的值等于 6.12cos312sinππ-=7.化简:x x sin 6cos 2-= 8.若51cos sin =+θθ,则θ2sin 的值 9.81cos sin =x x 且24ππ<<x ,则=-x x sin cos 10.),0(πθ∈,θθsin 1sin 1--+=11.函数)(2cos 21cos )(R x x x x f ∈-=的最大值为 12..若223tan 1tan 1+=-+αα,则=-αα2cos 2sin 113.50tan 10tan 350tan 10tan ++=14.化简:15tan 115tan 1-+=15.已知cos (6πα-)+sin α76)πα+的值是考点一: 运用公式求值、求角问题【例1】 (1)已知cos α=13,cos(α+β)=-13,且α,β∈⎝⎛⎭⎫0,π2,求cos(α-β)的值. (2)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值; (3)已知π2<β<α<34π,sin(α-β)=1213,cos(α+β) =-35,求sin2α的值(3)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.【训练1】已知βα,是锐角且1010sin ,55sin ==βα,求βα+【训练2】(2012·江苏卷)设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________.考点二: 公式的变形应用【例2】已知:)tan(βα+=βtan 2。

两角和与差的正弦、余弦和正切公式

两角和与差的正弦、余弦和正切公式

龙文教育一对一个性化辅导教案曹澜同学2016年4月10日学案 【第12次】课题:三角函数恒等变换复习学案1、同角关系: ⑴商的关系:①sin tan cos y x θθθ== ②cos cot sin x y θθθ== ③sin cos tan y r θθθ==⋅ ④cos sin cot x rθθθ==⋅ ⑵倒数关系:tan cot 1θθ⋅= ⑶平方关系:22sin cos 1θθ+=2、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+) ⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-) 3、二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒⑵2222cos2cos sin 2cos 112sin ααααα=-=-=- ⇒升幂公式21cos 2cos 2αα+=,21cos 2sin 2αα-= ⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-= ⑶22tan tan 21tan ααα=- 4、万能公式:①22tan sin 21tan θθθ=+ ②221tan cos 21tan θθθ-=+ ③22tan tan 21tan θθθ=- ④222tan sin 1tan θθθ=+ ⑤221cos 1tan θθ=+ 5、半角公式sin 2α=sin 1cos tan 21cos sin ααααα-===+ ⇒ (后两个不用判断符号,更加好用) 6、)sin(cos sin 22ϕθθθ++=+b a b a(其中辅助角ϕ与点(,)a b 在同一象限,且tan b a ϕ=) 题型1:两角和与差的三角函数例1、利用和、差角余弦公式求cos 75 、cos15 的值.变式练习:1 计算① cos105︒ ②cos15︒ ③cos5πcos 103π-sin 5πsin 103π2 :1.不查表计算下列各式的值: ︒︒+︒︒20sin 80sin 20cos 80cos 1)(︒+︒15sin 2315cos 212)(例2、已知4sin 5α=,5,,cos ,213παπββ⎛⎫∈=- ⎪⎝⎭是第三象限角,求()cos αβ-的值.变式练习:1 已知sin α=53,cos β=1312求cos(α-β)的值2 已知cos(2α-β)=-1411,sin (α-2β)=734,且4π<α<2π,0<β<4π, 求cos(α+β)的值评注:在三角变换中,首先应考虑角的变换是“据果变形”,创造出使用三角公式的条件,以达到求值、化简和证明的目的常用的变换角的方法有:α=(α+β)-β,α+2β=(α+β)+α,α=,22βαβα-++22βαβαβ--+=,… 例3 .已知cos(α-β)=31,求(sin α+sin β)2+(cos α+cos β)2的值变式练习:1 sin α-sin β=-21,cos α-cos β=21,α∈(0,2π),β∈(0, 2π),求cos(α-β)的值2 已知sin(α+β)=32,sin(α-β)=52 求βαtan tan 的值例4 求tan15︒, tan75︒及cot15︒的值:变式练习:求下列各式的值:1︒75tan 175tan 1-+ 2︒tan17︒+tan28︒+tan17︒tan28︒例2 已知tan α=31,tan β=-2 求cot(α-β),并求α+β的值,其中0︒<α<90︒, 90︒<β<180︒变式练习:已知.2,31-==βαtg tg (1)求)(),(βαβα-+tg tg ; (2)求βα+的值(其中 18090,900<<<<βα).课堂检测: 在△ABC 中,已知cosA =135,cosB =54,则cosC 的值为( ) (A )6516 (B )6556 (C )65566516或 (D )6516- 2 已知tan (α+β)=52,tan (β-4π)=41,那么tan (α+4π)等于 183D. 223C. 2213B. 1813A. 在△ABC 中,已知tan A ,tan B 是方程3x 2+8x -1=0的两个根,则tan C等于( ) A 2 B -2 C4 D 4 4 在△ABC 中,若0<tan A ·tan B <1则△AB C一定是( ) A 等边三角形 B 直角三角形 C锐角三角形 D )tan()2tan(1βαβα-+-= 6 (1+tan10°)·(1+tan35°)=7 在△ABC 中,tan A =31,tan B =-2,则C = 8 已知tan α、tan β是方程x 2-5x +6=0的两个实根,求2sin 2(α+β)-3sin (α+β)cos (α+β)+cos 2(α+β)9 已知434παπ<<,40πβ<<,53)4cos(-=+απ,135)43sin(=+βπ, 求sin(α + β)的值10 不查表,求下列各式的值:1︒ sin75︒ 2︒ sin13︒cos17︒+cos13︒sin17︒11 已知sin(α+β) =21,sin(α-β) =101,求βαtan tan 的值12 .已知sin α+sin β=53 ① , cos α+cos β=54 ② ,求cos(α-β)13 已知0cos cos 1sin sin =+=+βαβα,,求cos )的值(βα+14 计算下列各式的值(1) 184211842tg tg tg tg -+ (2)753017530tg tg tg tg +-3 计算751751tg tg -+的值.15 已知βαtg tg ,是一元二次方程0222=--x x 的两个根,求)(βα+tg 的值.16 求证:cos α+3sin α=2sin(6π+α)。

两角和与差的正弦、余弦、正切公式教案新部编本

两角和与差的正弦、余弦、正切公式教案新部编本

精选教课教课方案设计| Excellent teaching plan教师学科教课方案[ 20–20学年度第__学期]任教课科: _____________任教年级: _____________任教老师: _____________xx市实验学校两角和与差的正弦、余弦、正切公式教课方案三维教课目的1.知识与技术能从两角差的余弦公式导出两角和的余弦公式,以及两角和与差的正弦、正切公式,认识公式间的内在联系.能应用公式解决比较简单的相关应用的问题.2. 过程与方法经过层层研究领会数学思想的形成特色.3. 感情目标与价值观经过公式变形领会转变与化归的思想方法.教课要点 :推导两角和的余弦公式及两角和与差的正弦、正切公式,并能差别两角和与差的正弦、余弦、正切公式.教课难点:两角和与差的正弦、余弦、正切公式的理解和灵巧运用.打破举措:学生在前方引诱公式及两角差的余弦公式的基础上,比较自然的推出两角和的余弦公式,以及两角和与差的正弦、正切公式.学情剖析:三角函数是高考的要点内容,本节主假如公式的推导和应用,难度不大,要让学生增强记忆,且娴熟应用.教课方案:复习回首1.几个诱导公式:熟记公式sin() __,cos()= ___, tan() ___.sin()_____,cos()= ________.22公式 C():______________________________________增强落实!cos15o_____情形导入有了两角差的余弦公式,我们能解决一些问题,但范围有限,所以自然想获得两角差的正弦、正切公式,以及两角和的正弦、余弦、正切公式,对此,我们将逐一进行研究,让希望成为现实 .新课研究二、自主学习,合作研究研究一:研究两角和的余弦公式思虑 1:注意与间的关系,联合两角差的余弦公式及引诱公式,推导 cos() 等于什么?利用公式仔细推导,cos() =_____________________学生独立达成 .思虑2:上述公式就是两角和的余弦公式,记作C( ),该公式有什么特色?怎样记忆?总结特色_____________________________________________________发现记忆方法试一试:求 cos75研究二:研究两角和与差的正弦公式思虑 3:引诱公式sincos() 能够实现由正弦到余弦2的转变,联合 C()和C() , 你能推导出sin() ,sin() 分别等于什么吗?仔细推导,并与同学沟通,sin() =________________________________得出结论 .sin() =_______________________________思虑 4:上述公式就是两角和与差的正弦公式,分别记作 S() ,S( ),这两个公式有什么特色?怎样记忆?总结特色发现记忆方法____________________________________________________练习:求 sin 15 , sin 75 .研究三:研究两角和与差的正切公式可否借助 tan sin及两角和与差的正余弦公式推导出costan(), tan() ?tan()___________________________. tan()____________________________.注:(1)公式合用范围:________________________分组议论,把自己的看法展示出来 .(2) 公式变形:tan tan____________.tan tan____________.精选教课教课方案设计| Excellent teaching plan练习:tan 20tan 40 3 tan 20 tan 40______.2. 理论迁徙例1:已知 sin3,是第四象限角,求 sin(),54cos(), tan(4)的值 .4思虑:经过计算 sin()cos() ,能否关于随意的角44都建立?并说明原因.3,(, ), 求 sin()的值 .练习: 1.已知cos5232.已知 tan3,求 tan()的值 .4例 2. 公式的逆用利用和(差)角公式计算以下各式的值:(1). sin 72o cos42o cos72o sin 42oo ).cos 20o cos70o sin 20o sin 70o;(3).1 tan15o1 tan15练习:求以下各式的值:学生自己剖析,要解决这个问题需做什么准备工作.学生直接回答cos()6发现式子的形式切合什么公式,从右向左利用公式.1 sin 72o cos18o cos72o sin18oo otan12 tan332o o1 tan12 tan333sin 34o sin 26o cos34 o cos26o4sin 20o cos40o cos 20o cos50o133 sin x化简 : 1 cos x sin x(2) cos x22思虑 :一般地 , a sin x b cosx 能否都能够化成Asin( x ) 的独立研究,发现规律 .形式 ?精选教课教课方案设计| Excellent teaching plan稳固练习:1. 已知cos3,0, 求 cos()的值.512,62. 已知 cos(4),求 sin的值 .13 42学生独立达成,稳固知识3. 已知 sin 5, sin10,且 ,0, , 5102求角的大小 .讲堂小结1.方法由公式 C()出发推导 C(),S(),S()的方法 .2.知识:公式及公式的记忆方法C() =_______________________________.C() =________________________________.仔细总结,在总结中提高对知识的认知S() =________________________________. S() =________________________________. T()___________________________. T()____________________________.部署作业:题案板书设计:板书设计 :课题 :例题解说两角和的余弦公式 :两角和与差的正弦公式:两角和与差的正切公式:。

两角和与差的正弦余弦正切公式教学案

两角和与差的正弦余弦正切公式教学案

两角和与差的正弦余弦正切公式教学案一、教学目标:1.知识与技能目标:掌握两角和与差的正弦、余弦、正切公式。

2.过程与方法目标:鼓励学生积极思考、合作学习,培养学生的逻辑推理能力。

3.情感与态度目标:培养学生的数学兴趣,增强对数学的自信心。

二、教学重、难点:1.教学重点:学习正弦、余弦、正切两角和与差的公式,能够正确地应用到解题中。

2.教学难点:正弦、余弦、正切两角和与差的公式的推导与应用。

三、教学准备:1.教师准备:教案、笔记、教辅资料、教学媒体等。

2.学生准备:学习笔记、作业本。

四、教学步骤:Step 1 引入新课1.教师展示一幅图形,引导学生观察图形中的三角形,并提问:对于一个任意的三角形ABC,如何求角A和角C的两角和与差的正弦、余弦和正切?2.引导学生思考,并提醒学生复习正弦、余弦、正切的定义和性质。

Step 2 探究与讨论1.教师以角A和角C的两角和为例,引导学生分析角A和角C的三角函数之间可能存在的关系,并引导学生探究和讨论。

2.学生合作讨论,提出各自的思考结果并互相交流。

Step 3 运用公式解题1.教师给出两具体的角A和角C的数值,并提问学生如何求其两角和与差的正弦、余弦和正切的值。

2.学生运用公式计算,并与他人交流讨论结果,互相纠正错误。

Step 4 归纳总结1.教师总结学生的讨论结果,整理归纳出正弦、余弦、正切两角和与差的公式。

2.指导学生将这些公式整理成归纳表格或表格。

Step 5 拓展应用1.教师给出一些拓展应用题目,要求学生利用所学知识解答。

2.学生独立完成练习题,并互相交流讨论。

Step 6 小结与反思1.教师对本节课的内容进行小结,并引导学生参与总结。

2.向学生征求反馈意见,以便以后教学改进。

五、教学评价:1.学生通过合作探究和讨论,积极参与课堂活动。

2.学生能够利用正弦、余弦、正切两角和与差的公式解决实际问题。

3.学生对角度与三角函数之间的关系有了更深入的了解。

4.学生对本节课的教学内容和方式进行评价。

两角和与差的正弦、余弦、正切公式教学设计与反思

两角和与差的正弦、余弦、正切公式教学设计与反思

两角和与差的正弦、余弦、正切公式教学设计与反思教材分析本节教材在高中三角函数中占有很重要的地位,因为它与前面所学习的两角差的余弦公式有着密切的联系,是在两角差的余弦公式的基础上推导出来的结果,而且与更早之前学习的诱导公式、同角三角函数关系有着密切的联系;同时又是后面将要学习二倍角公式的基础,因此学好本节内容知识,不仅可对以前所学的相关知识进行加深理解和巩固,而且为后面将要学习的知识作了很好的铺垫作用。

教学目标(1)知识与技能使学生能由两角差的余弦公式推导出两角和的余弦,并进而推得两角和与差的正弦公式、正切公式;使学生能进行简单的三角函数式的化简、求值和恒等变形;培养学生的运算能力及逻辑推理能力,从而提高解决问题的能力。

(2)过程与方法通过教学活动,使学生理解两角和与差正弦、余弦、正切公式的形成过程;探究推导两角和与差正弦、余弦、正切公式的方法。

(3)情感态度与价值观通过本节学习,使学生掌握寻找数学规律的方法,提高学生的观察分析能力,培养学生的应用意识,提高学生的数学素质。

教学重点、难点:重点:两角和与差正弦、余弦、正切公式的推导及记忆;难点:灵活运用所学公式进行求值、化简及证明。

教学方法本节教学采用启发式教学,辅以观察法、发现法、讲练结合法。

采用这种方法的原因是本校高一学生的领会思想的能力比较差,回顾旧知的能力不足,通过师生的配合,共同进行探究活动,使其理解并掌握本节知识。

教学过程(一)课堂引入首先引导学生回顾一下两角差的余弦公式:cos(α-β)=cosαcosβ+sinαsinβ问题1:计算:(1)cos105。

cos15。

+ sin105。

sin15。

(2)-cos(θ+21。

)cos(θ-24。

)-sin(θ+21。

)sin(θ-24。

)思考:如果此处是求"cosαcosβ-sinαsinβ"的值呢?如何处理(引导学生去猜想可能就是"cos(α+β)")?教师指出这便是本节所要探讨的内容之一,由此引入新课。

两角和与差的正弦、余弦、正切公式教案

两角和与差的正弦、余弦、正切公式教案

两角和与差的余弦、正弦、正切教学目标知识目标:两角和的正切公式;两角差的正切公式能力目标:掌握T (α+β),T (α-β)的推导及特征;能用它们进行有关求值、化简情感态度:提高学生简单的推理能力;培养学生的应用意识;提高学生的数学素质 教学重点两角和与差的正切公式的推导及特征教学难点灵活应用公式进行化简、求值。

教学过程Ⅰ。

复习回顾首先,我们来回顾一下前面所推导两角和与差的余弦、正弦公式.(学生作答,老师板书)sin (α+β)=sin αcos β+cos αsin β(S (α+β))sin (α-β)=sin αcos β-cos αsin β(S (α-β))cos(α+β)=cos αcos β-sin αsin β(C (α+β))cos(α-β)=cos αcos β+sin αsin β(C (α-β))要准确把握上述各公式的结构特征.Ⅱ.讲授新课一、推导公式[师]上述公式结合同角三角函数的基本关系式,我们不难得出:当cos (α+β)≠0时tan (α+β)=βαβαβαβαβαβαsin sin cos cos sin cos cos sin )cos()sin(a -+=++ 如果cos αcos β≠0,即cos α≠0且cos β≠0,我们可以将分子、分母都除以cos αcos β,从而得到:tan (α+β)=βαβαtan tan 1tan tan -+ 不难发现,这一式子描述了两角α与β的和的正切与这两角的正切的关系。

同理可得:tan (α-β)=βαβαtan tan 1tan tan +- 或将上式中的β用-β代替,也可得到此式.这一式子又描述了两角α与β的差的正切与这两角的正切的关系。

所以,我们将这两式分别称为两角和的正切公式、两角差的正切公式,简记为T (α+β),T (α-β)。

但要注意:运用公式T (α±β)时必须限定α、β、α±β都不等于2π+k π(k ∈Z )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.1 两角和与差的正弦、余弦和正切公式
一、本章知识结构
二、教学重点与难点
重点:引导学生通过独立探索和讨论交流,导出两角和与差的三角函数的十一个公式,并了解他们的内在联系,为运用这些公式进行简单的恒等变换打好基础。

难点:两角差的余弦公式的探索与证明。

三、教学建议
1、主要概念的教学分析
本节内容可分四部分,即引入,两角差的余弦公式的探索、证明及初步应用,和差公式的探索、证明和初步应用,倍角公式的探索、证明和初步应用。

两角差的余弦公式
联系已学过的三角函数相关知识,采用“夹叙夹议”的方式,引导学生感受教科书中的探索过程,使他们对公式有一个基本了解,并引起寻求适当方法推出公式的欲望
(1)回顾求角的余弦方法时,联系向量知识;
(2)结合图形,完成运用向量法推导公式的必备条件
(3)抓住主要问题及其讨论线索进行探索,反思完善
和差公式
以两角差的余弦公式为基础,推导其他十个公式
推导公式的过程是一个逻辑推理过程,也是一个认识三角函数式的特征,体会三角恒等变换特点的过程
因此,在对照、比较有关的三角函数式过程中,认清其区别和联系
2、 例题与习题的教学分析
例题分析:
情景设置意图:由给出的情景素材,使学生感受实际问题中对研究和(差)角公式的需要。

例1意图:这是通过应用理解公式最基础的练习(1)三角变换关注角的拆分,易于理解(2)由于是具体角,拆分过程容易进行(3)拆分的多样性,决定变换的多样性(4)思考问题,由4
2615cos +=︒求︒75sin 的值,为后面变换函数种类的思考做出铺垫 例2意图:这是通过应用、理解公式最基础的练习,与例1相比(1)它需要思考使用公式前应作出的必要准备(2)作出必要准备要运用同角三角函数知识
例3意图:这是通过应用、理解公式最基础的练习,易引起学生思考)4sin(απ
-与
)4cos(απ
+的结果相同时否具有一般性,进而类比讨论,且为下一题的求解做铺垫
例4意图:体现了对公式的全面理解上的要求,即要求学生能够从正、反两个角度使用公式
(1)(2)两小题是最简单的公式反用,可培养学生的反用思维以及思维的灵活性;(3)则承上启下,复习、过渡
例5意图:这是倍角公式的正用(1)要求学生对“倍”的相对性有一定的认识(2)是学生了解“换元思想”(3)推动学生推理能力的发展
例6意图:这是综合性题目,也是和差角公式的应用问题(1)课本中列出两种解法,鼓励学生用不同的思路去思考(2)让学生尝试自主解题并引导他们适当的归纳总结
习题分析:
P 127页练习1、2搭配例题在课堂上让学生作答完成,3、4课作为课后作业。

P 131页练习1、2、5(1)搭配例题课堂作答完成,其余部分为选作题部分作业。

P 127页练习1、5(1)搭配例题在课堂作答完成,其余作为课后思考。

3、 值得注意的问题
引导学生自己推导公式,而不应要求他们死记硬背;
在分析条件时,要分析的透彻注意一些隐含的条件;
要经常性的诱导学生进行公式与公式之间的转换。

相关文档
最新文档