2019-2020年七年级下第三次月考数学试卷

合集下载

人教版七年级下册数学第三次月考试题及答案

人教版七年级下册数学第三次月考试题及答案

人教版七年级下册数学第三次月考试卷一、单选题1.在﹣3,0,π)A.0 B.﹣3 C.πD2.若x是9的算术平方根,则x是()A.3 B.-3 C.9 D.81 3.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.x y > 334.下列计算不正确的是()A=±2 B9C0.4 D 65.方程1ax yx by+=⎧⎨+=⎩的解是11xy=⎧⎨=-⎩,则a,b为( )A.1ab=⎧⎨=⎩B.1ab=⎧⎨=⎩C.11ab=⎧⎨=⎩D.ab=⎧⎨=⎩6.在数轴上表示不等式组21xx>-⎧⎨≤⎩的解集,其中正确的是()A.B.C.D.7.下列语句中,是假命题的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.互补的两个角是邻补角D.垂线段最短8.实数a,b在数轴上的位置如图所示,则下列各式表示正确的是()A.b﹣a<0 B.1﹣a<0 C.b﹣1>0 D.﹣1﹣b<09.如图直线a∥b,射线DC与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,则∠2的度数为( )A.115°B.125°C.155°D.165°10.小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”,小刚却说:“只要把你的13给我,我就有10颗”,如果设小刚的弹珠数为x颗,小龙的弹珠数为y颗,则列出方程组正确的是()A.210330x yx y+=⎧⎨+=⎩B.210310x yx y+=⎧⎨+=⎩C.220310x yx y+=⎧⎨+=⎩D.220330x yx y+=⎧⎨+=⎩二、填空题112的相反数是____________,绝对值是_________________.12.87.19.(不用计算器)13.将方程2x+3y=6写成用含x的代数式表示y,则y=________.14.不等式3x﹣5≤1的正整数解是_______.15.在一本书上写着方程组21x pyx y+=⎧⎨+=⎩的解是0.5xy=⎧⎨=⎩,其中,y的值被墨渍盖住了,不过,我们可解得出p=___________.16.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.17.一个立方体的体积是64m3,若把这个立方体体积扩大1000倍,则棱长为______.三、解答题183|.19.解方程组4421x y x y -=⎧⎨+=-⎩.20.如图,经过平移,四边形ABCD 的顶点A 移到点A′,作出平移后的四边形.21.求不等式组34361232x x x x -⎧>-⎪⎪⎨+⎪+<⎪⎩的整数解.22.已知2a b +(1)求2a -3b 的平方根;(2)解关于x 的方程2420ax b +-=.23.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C=∠EFG ,∠CED=∠GHD (1)求证:CE ∥GF ;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由; (3)若∠EHF=100°,∠D=30°,求∠AEM 的度数.24.某电器超市销售每台进价分别200元,170元的A ,B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A,B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台;(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.25.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图1,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a-3b|+(a+b-4)²=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a、b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.参考答案1.D【分析】从四个数中先找出无理数,再根据实数大小比较的法则进行比较即可得出答案.【详解】∵﹣3,0是有理数,∴无理数有π∴故选:D.【点睛】本题考查实数大小的比较,解题的关键是掌握实数大小比较的基本方法.2.A【详解】试题解析:∵32=9,,故选A.3.B【详解】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.4.A【分析】根据平方根和立方根的求解方法对原式各项计算得到结果,即可作出判断.【详解】A、原式=2,错误;B、原式=|﹣9|=9,正确;C、原式=0.4,正确;D、原式=﹣6,正确.故选:A.【点睛】本题考查平方根和立方根,解题的关键是掌握平方根和立方根的计算法则. 5.B【解析】由题意得:1011ab-=⎧⎨-=⎩,解得:1ab=⎧⎨=⎩,故选B.6.A【分析】先根据题意得出不等式组的解集,再在数轴上表示出来即可.【详解】由题意不等式组的解集为;﹣2<x≤1,在数轴上表示为:.故选:A.【点睛】本题考查解一元一次不等式组和在数轴上表示解集,熟练掌握解不等式组的方法是解此题的关键.7.C【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A、所有的实数都可用数轴上的点表示,正确是真命题,B、等角的补角相等,正确是真命题,C、互补的两个角不一定是邻补角,错误是假命题,D、垂线段最短,正确是真命题,故选:C.【点睛】此题主要考查命题的真假,涉及到补角和垂线段的知识,难度一般.8.A【分析】根据在数轴上表示的两个实数,右边的总比左边的大可得b<a<0,再根据有理数的加减法法则可得答案.【详解】解:由题意,可得b<a<0,则b﹣a<0,1﹣a>0,b﹣1<0,﹣1﹣b与0无法比较,表示正确的是A;故选:A.【点睛】本题考查实数与数轴,关键是掌握在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.也考查了有理数的加减法法则.9.A【分析】如图,过点D作c∥a.由平行线的性质进行解题.【详解】如图,过点D作c∥a.则∠1=∠CDB=25°.又a ∥b ,DE ⊥b , ∴b ∥c ,DE ⊥c , ∴∠2=∠CDB+90°=115°. 故选A . 【点睛】本题考查了平行线的性质.能正确作出辅助线是解决此题的关键. 10.D 【详解】试题解析:根据把小刚的珠子的一半给小龙,小龙就有10颗珠子,可表示为102xy +=, 化简得220x y +=;根据把小龙的13给小刚,小刚就有10颗,可表示为103y x +=,化简得3x+y=30. 列方程组为220330.x y x y +=⎧⎨+=⎩ 故选D.11.2 2【详解】2的相反数是-2)=2,根据绝对值的2的绝对值是22.故答案为22. 考点:相反数;绝对值. 12.4.487 【详解】试题分析:被开方数的小数点每移动两位,其算术平方根的小数点移动一位..87,.487 考点:算术平方根 13.6−2x 3(或2−23x )【分析】将x 看做已知数求出y 即可. 【详解】解:方程2x+3y=6, 解得:y=6−2x 3=2−23x . 故答案为6−2x 3(或2−23x )14.2或1 【分析】解出不等式3x ﹣5≤1的解集,即可得到不等式3x ﹣5≤1的正整数解. 【详解】 解:3x ﹣5≤1 3x≤6 x≤2,∴不等式3x ﹣5≤1的正整数解是2或1, 故答案为:2或1. 【点睛】本题考查解一元一次不等式和正整数的定义,解题的关键是掌握解一元一次不等式. 15.3 【详解】解:将x=0.5代入第二个方程可得:0.5+y=1,则y=0.5,将x=0.5和y=0.5代入第一个方程可得:0.5+0.5p=2,解得:p=3. 故答案为:3. 16.65 【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可. 【详解】解:如图,由题意可知, AB ∥CD , ∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解得∠1=65°.故答案为:65.【点睛】本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.17.40m【分析】根据体积扩大1000倍,可得立方体的体积,根据开方运算,可得答案.【详解】解:64×1000=64000m3,40,故答案为:40m.【点睛】本题考查立方根,解题的关键是先求体积再开方.18.2【分析】根据立方根和平方根的定义以及去绝对值法则,对式子化简即可得到答案.【详解】3|=2+0﹣3+3=2.【点睛】本题主要考查了立方根和二次根式的化简以及去绝对值法则,熟练掌握各知识点是解题的关键.19.7617-6xy⎧=⎪⎪⎨⎪=⎪⎩.【分析】方程组利用代入消元法求出解即可.【详解】解:4421x yx y-=⎧⎨+=-⎩①②,由①得:x=y+4,代入②得:4y+16+2y=﹣1,解得:y=﹣176,将y=﹣176代入①得:x=76,则方程组的解为7617-6xy⎧=⎪⎪⎨⎪=⎪⎩.【点睛】本题主要考查方程组的解法,解题的关键是掌握代入消元法的应用.20.见解析.【分析】根据题意分别作BB′、CC′、DD′与AA′平行且相等,即可得到B、C、D的对应点,顺次连接即可.【详解】解:如图:四边形A′B′C′D′即为所求.【点睛】本题考查的是平移变换作图.注意掌握作平移图形时,找关键点的对应点也是关键的一步.21.不等式组的所有整数解为3,4.【分析】根据题意先求出不等式的解集,再求出不等式组的解集,即可得出答案.【详解】 解:34361232x x x x -⎧>-⎪⎪⎨+⎪+<⎪⎩①②, ∵解不等式①得:x <92, 解不等式②得:x >52, ∴不等式组的解集为52<x <92, ∴不等式组的所有整数解为3,4.【点睛】本题考查解一元一次不等式以及解一元一次不等式组,不等式组的整数解的应用,能求出不等式组的解集是解此题的关键.22.(1)23a b -的平方根为4±;(2)3x =±.【分析】(1)先由相反数的定义列出等式,再根据绝对值的非负性、算术平方根的非负性求出a 、b 的值,然后代入,根据平方根的定义求解即可;(2)先将a 、b 的值代入,再利用平方根的性质求解即可.【详解】(1)由相反数的定义得:02a b =+由绝对值的非负性、算术平方根的非负性得:203120a b b +=⎧⎨+=⎩ 解得24a b =⎧⎨=-⎩则23223(4)41216a b -=⨯-⨯-=+=故23a b -的平方根为4±;(2)方程2420ax b +-=可化为224(4)20x +⨯--=整理得22180x -=29x=x=±.解得3【点睛】本题考查了相反数的定义、绝对值的非负性、算术平方根的非负性、平方根的定义等知识点,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.23.(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)∠AEM=130°【详解】分析:(1)根据同位角相等两直线平行,可证CE∥GF;(2)根据平行线的性质可得∠C=∠FGD,根据等量关系可得∠FGD=∠EFG,根据内错角相等,两直线平行可得AB∥CD,再根据平行线的性质可得∠AED与∠D之间的数量关系;(3)根据对顶角相等可求∠DHG,根据三角形外角的性质可求∠CGF,根据平行线的性质可得∠C,∠AEC,再根据平角的定义可求∠AEM的度数.本题解析:(1)证明:∵∠CED=∠GHD,∴CE∥GF(2)答:∠AED+∠D=180°理由:∵CE∥GF,∴∠C=∠FGD,∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°;(3)∵∠DHG=∠EHF=100°,∠D=30°,∴∠CGF=100°+30°=130°∵CE∥GF,∴∠C=180°﹣130°=50°∵AB∥CD,∴∠AEC=50°,∴∠AEM=180°﹣50°=130°.点睛:本题考查了平行线的判定与性质,解题关键是根据已知条件判断相关的内错角,同位角的相等关系.24.(1)A、B两种型号电风扇的销售单价分别为250元,210元;(2)A型号电风扇最多能采购10台;(3)在(2)的条件下,超市不能实现利润为1400元的目标,理由见解析【分析】(1)设A种型号的电风扇的销售单价为x元,B种型号的电风扇的销售单价为y元,根据总价=单价×数量结合近两周的销售情况统计表,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设A种型号的电风扇采购a台,则B种型号的电风扇采购(30-a)台,根据进货总价=进货单价×进货数量结合超市准备用不多于5400元的金额采购两种型号的电风扇共30台,即可得出关于a的一元一次不等式,解之取其中的最大值即可得出结论;(3)先求出超市销售完这30台电风扇实现利润为1400元时的A种型号电风扇采购台数a,再结合(2)的取值范围判断即可.【详解】(1)设A、B两种型号的电风扇销售单价分别为x元、y元.⎧⎨⎩3518004103100x yx y+=+=解得:250210xy=⎧⎨=⎩答:A、B两种型号电风扇的销售单价分别为250元,210元.(2)设采购A种型号电风扇a台.200a+170(30-a)≤5400 解得:a≤10答:A型号电风扇最多能采购10台.(3)依题意解(250-200)a+(210-170)(30-a)=1400解得:a=20 ∵a≤10∴在(2)的条件下,超市不能实现利润为1400元的目标.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一元一次不等式组的应用,解题的关键:找准等量关系,正确列出二元一次方程组;根据各数量之间的关系,正确列出一元一次不等式.25.(1)a=3,b=1;(2)A灯转动10秒或85秒时,两灯的光束互相平行;(3)∠BAC与∠BCD的数量关系不发生变化,2∠BAC=3∠BCD.【分析】(1)根据非负数的性质列方程组求解即可;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况:①在灯A射线到达AN之前;②在灯A射线到达AN之后,分别列出方程求解即可;(3)设A灯转动时间为t秒,则∠CAN=180°−3t,∠BAC=∠BAN−∠CAN=3t−135°,过点C作CF∥PQ,则CF∥PQ∥MN,得出∠BCA=∠CBD+∠CAN=180°−2t,∠BCD=∠ACD−∠BCA=2t−90°,即可得出结果.【详解】解:(1)∵|a-3b|+(a+b-4)²=0,∴3040a ba b-=⎧⎨+-=⎩,解得:31ab=⎧⎨=⎩,故a=3,b=1;(2)设A灯转动t秒,两灯的光束互相平行,①在灯A射线到达AN之前,由题意得:3t=(20+t)×1,解得:t=10,②在灯A射线到达AN之后,由题意得:3t−180°=180°−(20+t)×1,解得:t=85,综上所述,A灯转动10秒或85秒时,两灯的光束互相平行;(3)∠BAC与∠BCD的数量关系不发生变化,2∠BAC=3∠BCD;理由:设A灯转动时间为t秒,则∠CAN=180°−3t,∴∠BAC=∠BAN−∠CAN=45°−(180°−3t)=3t−135°,∵PQ∥MN,如图2,过点C作CF∥PQ,则CF∥PQ∥MN,∴∠BCF=∠CBD,∠ACF=∠CAN,∴∠BCA=∠BCF+∠ACF=∠CBD+∠CAN=t+180°−3t=180°−2t,∵CD⊥AC,∴∠ACD=90°,∴∠BCD=∠ACD−∠BCA=90°−(180°−2t)=2t−90°,∴2∠BAC=3∠BCD.【点睛】本题考查了非负数的性质、解二元一次方程组、平行线的性质等知识,熟练掌握平行线的性质是解题的关键.。

人教版七年下第三次月考数学试卷

人教版七年下第三次月考数学试卷

七年下第三次月考数学试卷一、选择题(每小题2分,共12分)1.根据下列表述,能确定位置的是( )A.电影院2排B.北京四环路C.北偏东30°D.东经118°,北纬40°2.下列各方程组中,属于二元一次方程组的是( )A. ⎩⎨⎧==+5723xy y xB. ⎩⎨⎧=+=+212z x y xC. ⎪⎩⎪⎨⎧=+=-243123y x y xD. ⎪⎩⎪⎨⎧=+=+322135y x y x 3.小颖要制作一个三角形木架,现有两根长度为8m 和5m 的木棒.如果要求第三根木棒的长度是整数,第三根木棒的长度可以是( )A.3mB.6mC.13mD.5.5m4.下列各式中是一元一次不等式的有( )①x +3<-7; ②xy <3 ③12++x x >0 ④621+x ≤5x ⑤x -3≠0. A.1个 B.2个 C.3个 D.4个5.在正三角形、正方形、正五边形、正六边形中不能单独镶嵌平面的是( )A.正三角形B.正方形C.正五边形D.正六边形6.已知m <n ,则下列结论正确的是( )A. m <n -1B.-3m >-3nC. m +5>n +5D. m -n ≥0二、填空题(每小题3分,共24分)7.用不等式表示“x 的5倍与8的和不大于10”: .8.在方程3x -a y =8中,如果⎩⎨⎧==13y x 是它的一个解,那么a 的值为 . 9.如图,张叔叔家里的椅子坏了,于是他给椅子加了两根木条,他所用的数学原理是 .10.点A (-3,a )在第三象限的角平分线上,则a = .11.如图,a ∥b ,AC ⊥BC ,∠C=90°,∠β=25°,则∠α= .12.如图,在△ABC 中∠C=100°,∠B=30°,AE 是∠BAC 的平分线,∠AEC= .13.当x 时,式子231-x 的值是正数. βαC B A b a E C B A 9题图 11题图 12题图14.在某校举办的足球赛中规定:胜一场得3分,平一场得1分,负一场得0分.某班足球队参加了12场比赛,共得了22分,已知这个球队中输了2场,为求此队胜几场和平几场.设这支足球队胜x 场,平y 场.根据题意,可列出方程组 .三、解答题(每小题5分,共20分)15.用代入法解方程组: ()⎩⎨⎧=-+=-11323y x y y x16.若一个多边形的内角和等于它外角和的2倍,求这个多边形的边数.17.如图所示,已知∠1=72°,∠2=108°,∠3=69°,求∠4的度数..32+x ≤3x -1四、解答题(每小题7分,共28分)□x +5y =13①19.甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎩⎨⎧==22y x ;乙看错了 4x -□y =2②方程②中y 的系数,解得⎩⎨⎧=-=41y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解.20.张大伯有一块大型模板如图所示,设计要求BA 与CD 相交成30°角,DA 与CB 相交成20°角,怎样通过测量∠A ,∠B ,∠C ,∠D 的度数来检验模板是否合格?21.某山区有若干名中、小学生因贫困失学需要捐款,某中学七、八年级学生举行“献爱心”募捐活动.七、22.如图,在△ABC 中,AD 是BC 边上的中线,△ABD 的周长比△ACD 的周长小5,你能求出AC 与AB 的边长的差吗?五、解答题(每小题8分,共16分)23.如图,在平面直角坐标系中,若每一个方格的边长代表一个单位.(1)线段CD 是线段AB 经过怎样的平移得到的?(2)若C 点的坐标是(4,1),A 点的坐标是(-1,-2),你能写出B ,D 两点的坐标吗?(3)求平行四边形ABCD 的面积.D C B A D C B A 22题图20题图24.用白铁皮做水桶,每张铁皮能做1个桶身或8个桶底,而1个桶身1个桶底正好配套做1个水桶,现有63张这样的铁皮,则需要多少张做桶身,多少张做桶底正好配套?六、解答题(每小题10分,共20分)25.如图,AD 为△ABC 的中线,BE 为△ABD 的中线.(1)若∠ABE=25°,∠BAD=50°,则∠BED 的度数是 .(2)在△ADC 中过点C 作AD 边上的高CH ;(3)若△ABC 的面积为60,BD=7.5,求点E 到BC 边的距离.26.小明与小王分别要把两块边长都为60㎝的正方形薄钢片制作成两个无盖的长方体盒子(不计粘合部分).(1)小明先在薄钢片四个角截去边长为10㎝的四个相同的小正方形(如图①),然后把四边折合粘在一起,便得到甲种盒子,请你帮忙求出甲种盒子底面边长.(2)小王如图②截去两角后,沿虚线折合粘在一起,便得到乙种盒子,已知乙种盒子底面的长AB 是宽BC 的2倍,求乙种盒子底面的长与宽.(3)若把乙种盒子装满水后倒入甲种盒子内,问是否可以装满甲种盒子,若能装满甲种盒子,那么乙种盒子里的水面还有多高?若不能装满甲种盒子,求出此时甲种盒子的水面的高度.E D C BA 剪去剪去CB A ① ② 26题图 25题图。

人教版数学七年级下册第三次月考试卷及答案

人教版数学七年级下册第三次月考试卷及答案

人教版数学七年级下册第三次月考试题一、单选题1.下列各式的值一定是正数的是( )A B C .21a D .a 2.下列式子中,是一元一次不等式的是( )A .x 2<1B .y –3>0C .a+b=1D .3x=2 3.上海是世界知名金融中心,以下能准确表示上海市地理位置的是( ) A .在中国的东南方B .东经121.5C .在中国的长江出海口D .东经12129',北纬3114' 4.如图,已知a ∥b ,小明把三角板的直角顶点放在直线b 上,若∠1=35°,则∠2的度数为( )A .65°B .120°C .125°D .145° 5.若点P (a ,b )在第二象限,则点Q (b +2,2﹣a )所在象限应该是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.直线l 外一点P 与直线l 上两点的连线段长分别为3cm ,5cm ,则点P 到直线l 的距离是( )A .不超过3cmB .3cmC .5cmD .不少于5cm 7.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为( )A .7385y x y x =+⎧⎨+=⎩B .7385y x y x =+⎧⎨-=⎩C .7385y x y x =-⎧⎨=+⎩D .7385y x y x =+⎧⎨=+⎩8.下列计算或命题:①有理数和无理数统称为实数;=a ;的算术平方根是2;④实数和数轴上的点是一一对应的,其中正确的个数有( )A .1个B .2个C .3个D .4个9.如图,AB ∥CD ∥EF ,EH ⊥CD 于H ,则∠BAC+∠ACE+∠CEH=( ).A .180°B .270°C .360°D .540°10.我国古代问题:以绳测井,若将绳三折测之(注:绳儿折即把绳平均分成几等分),绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?( )A .36,8B .28,6C .28,8D .13,311.在平面直角坐标系中,点A (﹣3,2),B (3,5),C (x ,y ),若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,(﹣3,5)B .10,(3,﹣5)C .1,(3,4)D .3,(3,2) 12.若x 是不等于1的实数,我们把11x -称为x 的差倒数,如2的差倒数是112-=-1,-1的差倒数为()11112=--.现已知x 1=-21x 3,是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依此类推,则x 2019的值为( )A .13-B .1-C .34D .4二、填空题13.下列实数中:3.14,π,0,2270.3232232223(⋯每相邻两个3之间依次增加一个2),0.123456;其中无理数有______个.14.化简(21+-+_____.15.不等式7﹣2x >1的非负整数解为:_______________.16.如图,在长方形ABCD中,AB=7cm,BC=10cm,现将长方形ABCD向右平移3m,再向下平移4cm后到长方形A'B'C'D'的位置,A'B'交BC于点E,A'D'交DC于点F,那么长方形A'ECF的周长为_____cm.17.编队飞行(即平行飞行)的两架飞机A、B在直角坐标系中的坐标分别为A(﹣1,2)、B(﹣2,3),当飞机A飞到指定位置的坐标是(2,﹣1)时,飞机B的坐标是_____.18.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2018次运动后,动点P的坐标是_____.三、解答题19.如图所示,已知AB∥CD,∠C=75°,∠A=25°,求∠E的度数.20.解方程(或方程组):(1) 4x2=81;(2)(2x+10)3=﹣27.(3)24 {4523x yx y-=-=-(4)11 {23 3210. x yx y+-=+=21.长阳公园有四棵古树A,B,C,D (单位:米).(1)请写出A,B,C,D 四点的坐标;(2)为了更好地保护古树,公园决定将如图所示的四边形EFGH 用围栏圈起来,划为保护区,请你计算保护区的面积.22.已知()267567190a b a b +-+--=.(1)求a 和b 的值;(2)当x 取何值时,ax b -的值大于2.23.如图,已知直线AB 和CD 相交于O 点,射线OE ⊥AB 于O ,射线OF ⊥CD 于O ,且∠BOF =25∘.求:∠AOC 与∠EOD 的度数.24.在平面直角坐标系xOy 中,有一点P (a ,b ),实数a ,b ,m 满足以下两个等式:2a -6m +4=0,b +2m -8=0.(1)当a =1时,点P 到x 轴的距离为______;(2)若点P 在第一三象限的角平分线上,求点P 的坐标;(3)当a <b 时,则m 的取值范围是______.25.列方程组解应用题:某学校在筹建数学实验室过程中,准备购进一批桌椅,现有三种桌椅可供选择:甲种每套150元,乙种每套210元,丙种每套250元.若该学校同时购买其中两种不同型号的桌椅50套,恰好花费了9000元,则共有哪几种购买方案?26.已知,直线AB∥DC,点P为平面上一点,连接AP与CP.(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC度数.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC 与∠APC之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC 有何数量关系?并说明理由.参考答案1.C【解析】【分析】根据实数、绝对值以及算术平方根的性质进行选择即可.【详解】解:A 、当a≤0时,,故A 错误;B 、当a=0时,,故B 错误;C 、∵a≠0,∴a 2>0,∴21a >0,故C 正确; D 、当a=0时,|a|=0,故D 错误;故选:C .【点睛】本题考查了实数,立方根,非负数:绝对值和算术平方根,掌握非负数的性质是解题的关键. 2.B【解析】【分析】根据一元一次不等式的定义,只含有一个未知数,并且未知数的次数是1的不等式,即可解答.【详解】解:A 、未知数次数是2,属于一元二次不等式,故本选项错误;B 、符合一元一次不等式的定义,故本选项正确;C 、含有2个未知数,属于二元一次方程,故本选项错误;D 、含有1个未知数,是一元一次方程,故本选项错误.故选B .【点睛】本题考查一元一次不等式的定义,解题的关键是熟练掌握一元一次不等式的定义. 3.D【解析】【分析】根据坐标确定点的位置可得.【详解】解:A、在中国的东南方,无法准确确定上海市地理位置;B、东经121.5,无法准确确定上海市地理位置;C、在中国的长江出海口,法准确确定上海市地理位置;D、东经12129',北纬3114',是地球上唯一的点,能准确表示上海市地理位置;故选:D.【点睛】本题主要考查坐标确定点的位置,掌握将平面用两条互相垂直的直线划分为四个区域,据此可表示出平面内每个点的准确位置是关键.4.C【解析】【分析】根据两直线平行,同位角相等,即可得到∠AEB=∠ACD=125°,再根据两直线平行,同位角相等,即可得到∠2的度数.【详解】如图所示,∵∠1=35°,∠ACB=90°,∴∠ACD=125°,∵a∥b,∴∠AEB=∠ACD=125°,∴由图可得∠2=∠AEB=125°,故选:C.【点睛】本题考查了平行线的性质,直角三角形的性质,熟记性质并准确识图是解题的关键.5.A【解析】【分析】直接利用第二象限内点的坐标特点得出a,b的符号进而得出答案.【详解】∵点P(a,b)在第二象限,∴a<0,b>0,∴b+2>0,2﹣a>0,∴点Q(b+2,2﹣a)所在象限应该是第一象限.故选:A.【点睛】此题主要考查了点的坐标,正确记忆各象限内点的坐标特点是解题关键.6.A【解析】【分析】根据直线外的点与直线上各点的连线垂线段最短,可得答案.【详解】解:直线外的点与直线上各点的连线垂线段最短,得点P到直线l的距离是小于或等于3,故选A.【点睛】本题考查了点到直线的距离,直线外的点与直线上各点的连线垂线段最短.7.C【解析】【分析】根据题意确定等量关系为:①组数×每组7人=总人数-3人;②组数×每组8人=总人数+5人.由此列方程组即可.【详解】根据组数×每组7人=总人数-3人,得方程7y=x-3;根据组数×每组8人=总人数+5人,得方程8y=x+5.列方程组为73 85y xy x=-⎧⎨=+⎩.故选C.【点睛】本题考查了二元一次方程组的应用,根据题意确定等量关系为组数×每组7人=总人数-3人和组数×每组8人=总人数+5人是解决问题的关键.8.D【解析】【分析】利用实数的定义、算术平方根的定义以及立方根的性质,分别判定各项即可解答.【详解】①有理数和无理数统称为实数,①正确;,②正确;,4的算术平方根是2,③正确;④实数和数轴上的点是一一对应的,④正确.故选D.【点睛】本题考查了命题与定理,熟练运用相关定义是解决问题的关键.9.C【解析】【分析】根据平行线的性质可以求得:∠BAC与∠ACD,∠DCE与∠CEF的度数的和,再减去∠HEF 的度数即可.【详解】∵AB∥CD,∴∠BAC+∠ACD=180°,同理∠DCE+∠CEF=180°,∴∠BAC+∠ACE+∠CEF=360°;又∵EH⊥CD于H,∴∠HEF=90°,∴∠BAC+∠ACE+∠CEH=∠BAC+∠ACE+∠CEF-∠HEF=360°-90°=270°.故选B .【点睛】本题主要考查了平行线的性质:两直线平行同旁内角互补.10.A【解析】【分析】此题不变的是井深,用代数式表示井深即可得方程.此题中的等量关系有:①将绳三折测之,绳多四尺;②绳四折测之,绳多一尺.【详解】设绳长x 米、井深y 米,依题意有4314x y x y ⎧=+⎪⎪⎨⎪=+⎪⎩ , 解得368x y =⎧⎨=⎩, 即:绳长36米、井深8米.故选:A【点睛】本题考核知识点:二元一次方程组的应用.解题关键点:设好未知数,根据题意,找出等量关系,列出方程(组).11.D【解析】依题意可得:∵AC∥x,∴y=2,根据垂线段最短,当BC⊥AC于点C时,点B到AC的距离最短,即BC的最小值=5﹣2=3,此时点C的坐标为(3,2),故选D.点睛:本题考查已知点求坐标及如何根据坐标描点,正确画图即可求解.12.D【解析】【分析】根据已知条件可以先计算出几个x的值,从而可以发现其中的规律,求出x2019的值.【详解】解:由已知可得,x1=13 -,213,14 13x==⎛⎫--⎪⎝⎭314,314x==-411, 143x==--可知每三个一个循环,2019÷3=673,故x2019=4.故选D.【点睛】本题考查数字的规律问题,解题的关键是发现其中的规律,求出相应的x的值.13.4【解析】【分析】根据无理数的定义即可求出答案.【详解】π,0.3232232223…(每相邻两个3之间依次增加一个2)是无理数.故答案为:4.【点睛】本题考查了无理数的定义,解题的关键是熟练运用无理数的定义,本题属于基础题型.14.3+【解析】【分析】先算平方,再去绝对值,然后算立方根,从左往右依次相加即可.【详解】原式3故答案为3【点睛】本题考查了实数的混合运算,熟练掌握运算法则是解题的关键.15.0、1、2【解析】【分析】首先根据不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【详解】解:不等式7-2x>1,整理得,2x<6,x<3,则不等式的非负整数解是:0,1,2.故答案为:0,1,2.【点睛】本题主要考查了不等式的整数解,正确解不等式,求出解集是解答本题的关键;解不等式应根据不等式的基本性质.16.20【解析】【分析】根据平移的距离表示出长方形A'ECF的长和宽,即可求出结论.【详解】解:由题意得到BE=3cm,DF=4cm,∵AB=DC=7cm,BC=10cm,∴EC=BC-BE=10cm-3cm=7cm,FC=DC-DF=7cm-4cm=3cm,∴长方形A'ECF的周长=2×(7+3)=20(cm),故答案为20.【点睛】本题考查了平移的性质,认准图形,准确求出长方形A'ECF的长和宽是解题的关键.17.(1,0)【解析】【分析】先根据飞机A确定出平移规律,再求出飞机B的横坐标与纵坐标即可得解.【详解】∵飞机A(-1,2)到达(2,-1)时,横坐标加3,纵坐标减3,∴飞机B(-2,3)的横坐标为-2+3=1,纵坐标为3-3=0,∴飞机B的坐标为(1,0).故答案为(1,0)【点睛】本题考查了坐标与图形的变化-平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.18.(2018,0)【解析】分析:根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为1,0,2,0,每4次一轮这一规律,进而求出即可.详解:根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),∴第4次运动到点(4,0),第5次接着运动到点(5,1),…,∴横坐标为运动次数,经过第2018次运动后,动点P的横坐标为2018,纵坐标为1,0,2,0,每4次一轮,∴经过第2018次运动后,动点P的纵坐标为:2018÷4=504余2,故纵坐标为四个数中第2个,即为0,∴经过第2018次运动后,动点P的坐标是:(2018,0),故答案为: (2018,0).点睛:此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.19.50°.【解析】【分析】先根据平行线的性质得∠BFE=∠C=105°,然后根据三角形外角性质求∠E的度数.【详解】解:∵AB∥CD,∴∠BFE=∠C=75°,∵∠BFE=∠A+∠E,∴∠E=75°﹣25°=50°.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了三角形外角性质.20.(1) x=92±; (2)x=132-; (3)436{313xy==;(4)=3{1=2xy.【解析】【分析】(1)系数化为1后,利用平方根的定义进行求解即可;(2)利用立方根的定义进行求解即可;(3)利用代入消元法进行求解即可;(4)整理后,利用加减消元法进行求解即可.【详解】(1) 4x2=81,x2=81 4,x=所以x=92±;(2)(2x+10)3=﹣27,,2x+10=-3,x=132 -;(3)244523x yx y-=⎧⎨-=-⎩①②,由①得y=2x-4③,把③代入②得,4x-5(2x-4)=-23,解得x=436,把x=436代入③,得y=313,所以436313x y ⎧=⎪⎪⎨⎪=⎪⎩; (4) 整理得3283210x y x y -=⎧⎨+=⎩①②, ①+②得,6x=18,x=3,②-①得,4y=2,y=12, 所以312x y =⎧⎪⎨=⎪⎩. 【点睛】本题考查了利用平方根定义、立方根定义解方程,解二元一次方程组,熟练掌握相关定义以及求解方法是解题的关键.21.(1)A(10,10),B(20,30),C(40,40),D(50,20);(2)1950m 2【解析】试题分析:(1)根据图形即可直接写出A 、B 两点坐标;(2)用大长方形面积减去三个小三角形面积即可.试题解析:(1)A (10,10)、B (20,30);(2)保护区面积为:60×50﹣12×10×60﹣12×10×50﹣12×20×50=1950m 2. 考点:点的坐标. 22.(1)21a b =⎧⎨=-⎩;(2) 当12x >时, 21x +的值大于2 【解析】【分析】(1)已知()267567190a b a b +-+--=,由非负数的性质可得675067190a b a b +-=⎧⎨--=⎩,解方程组即可求得求a 和b 的值;(2)根据题意可得2ax b ->,把a 和b 的值代入后解不等式即可求得x 的取值范围.【详解】(1)由题意得,675067190a b a b +-=⎧⎨--=⎩, 解得, 21a b =⎧⎨=-⎩; (2) 2ax b ->∵2a =,1b =-∴()212x --> 即12x > 所以,当12x >时, 21x +的值大于2. 【点睛】本题考查了非负数的性质、二元一次方程组的解法及一元一次不等式的解法,根据非负数的性质得到方程组675067190a b a b +-=⎧⎨--=⎩是解决问题的关键.23.∠AOC =115°, ∠EOD =25°.【解析】【分析】根据垂线的性质和余角及补角的定义可求出∠ AOC ,由垂线的性质和余角的定义可求出∠EOD【详解】解:∵OF ⊥CD ,∴∠COF =90°,∴∠BOC =90°-∠BOF =65°,∴∠AOC =180°-65°=115°. ∵OE ⊥AB ,∴∠BOE =90°,∴∠EOF =90°-25°=65°,∵OF ⊥CD∴∠DOF=90°∴∠EOD=∠DOF −∠EOF=90°-65°=25°.【点睛】垂线的性质及补角和余角的定义都是本题的考点,正确找出角之间的关系是解题的关键. 24.(1)6.(2)(4,4).(3)m<2【解析】【分析】(1)把a=1代入2a-6m+4=0中求出m值,再把m值代入b+2m-8=0中即可求出b的值,再根据点到x轴的距离是纵坐标的绝对值即可求解;(2)借助两个等式,用m把a、b分别表示出来,再根据题意可知P点的横、纵坐标相等,列关于m的方程求出m的值,最后求出a、b值.(3)把a、b用m表示出来,代入a<b,则m的取值范围可求.【详解】解:(1)当a=1时,则2×1-6m+4=0,解得m=1.把m=1代入b+2m-8=0中,得b=6.所以P点坐标为(1,6),所以点P到x轴的距离为6.故答案为6.(2)当点P在第一、三象限的角平分线上时,根据点的横、纵坐标相等,可得a=b.由2a-6m+4=0,可得a=3m-2;由b+2m-8=0,可得b=-2m+8.则3m-2=-2m+8,解得m=2.把m=2分别代入2a-6m+4=0,b+2m-8=0中,解得a=b=4,所以P点坐标为(4,4).(3)由(2)中解答过程可知a=3m-2,b=-2m+8.若a<b,即3m-2<-2m+8,解得m<2.故答案为m<2.【点睛】本题主要考察了点的坐标特征及解不等式,熟知特殊点的坐标特征是解题的关键.25.有两种购买方案:购买甲、乙各25套,或者购买甲35套,购买丙15套【解析】根据题意可以列出相应的二元一次方程组,从而可以解答本题.解:①若同时购买甲、乙两种桌椅,则设购买甲x套,购买乙y套.根据题意,得50 1502109000x yx y+=⎧⎨+=⎩,解方程组,得2525x y =⎧⎨=⎩; ②若同时购买甲、丙两种桌椅,则设购买甲x 套,购买乙z 套.根据题意,得501502509000x z x z +=⎧⎨+=⎩, 解方程组,得 3515x z =⎧⎨=⎩, ③若同时购买乙、丙两种桌椅,则设购买乙y 套,购买丙z 套.根据题意,得502102509000y z y z +=⎧⎨+=⎩, 解方程组,得87.537.5y z =⎧⎨=-⎩(不符题意,舍),所以,共有两种购买方案:购买甲、乙各25套,或者购买甲35套,购买丙15套. 26.(1)80°;(2)详见解析;(3)详见解析【解析】【分析】(1)过P 作PE ∥AB ,根据平行线的性质即可得到∠APE =∠BAP ,∠CPE =∠DCP ,再根据APC APE CPE BAP DCP ∠=∠+∠=∠+∠进行计算即可;(2)过K 作KE ∥AB ,根据KE ∥AB ∥CD ,可得∠AKE =∠BAK ,∠CKE =∠DCK ,得到∠AKC =∠AKE +∠CKE =∠BAK +∠DCK ,同理可得,∠APC =∠BAP +∠DCP ,再根据角平分线的定义,得1111()2222BAK DCK BAP DCP BAP DCP APC ∠+∠=∠+∠=∠+∠=∠,进而得到1.2AKC APC ∠=∠ (3)过K 作KE ∥AB ,根据KE ∥AB ∥CD ,可得∠BAK =∠AKE ,∠DCK =∠CKE ,进而得到∠AKC =∠AKE −∠CKE =∠BAK −∠DCK ,同理可得,∠APC =∠BAP −∠DCP ,再根据角平分线的定义,得出1111()2222BAK DCK BAP DCP BAP DCP APC ∠-∠=∠-∠=∠-∠=∠,进而得到1.2AKC APC ∠=∠ 【详解】解:(1)如图1,过P 作PE ∥AB ,∵AB ∥CD ,∴PE ∥AB ∥CD ,∴∠APE =∠BAP ,∠CPE =∠DCP ,∴602080APC APE CPE BAP DCP ∠=∠+∠=∠+∠=+=; (2)1.2AKC APC ∠=∠理由:如图2,过K 作KE ∥AB ,∵AB ∥CD ,∴KE ∥AB ∥CD ,∴∠AKE =∠BAK ,∠CKE =∠DCK ,∴∠AKC =∠AKE +∠CKE =∠BAK +∠DCK ,过P 作PF ∥AB ,同理可得,∠APC =∠BAP +∠DCP ,∵∠BAP 与∠DCP 的角平分线相交于点K , ∴1111()2222BAK DCK BAP DCP BAP DCP APC ∠+∠=∠+∠=∠+∠=∠,∴12AKC APC ∠=∠; (3) 12AKC APC ∠=∠;理由:如图3,过K 作KE ∥AB ,∵AB ∥CD ,∴KE ∥AB ∥CD ,∴∠BAK =∠AKE ,∠DCK =∠CKE ,∴∠AKC =∠AKE −∠CKE =∠BAK −∠DCK ,过P 作PF ∥AB ,同理可得,∠APC =∠BAP −∠DCP ,∵∠BAP 与∠DCP 的角平分线相交于点K ,∴1111()2222BAK DCK BAP DCP BAP DCP APC ∠-∠=∠-∠=∠-∠=∠,∴1.2AKC APC ∠=∠【点睛】考核知识点:平行线判定和性质综合.添辅助线,灵活运用平行线性质是关键.第21 页。

【月考试卷】人教版2019年 七年级数学下册(3月) 月考模拟试卷 二(含答案)

【月考试卷】人教版2019年 七年级数学下册(3月) 月考模拟试卷 二(含答案)

2019年七年级数学下册(3月) 月考模拟试卷一、选择题1.下列命题是真命题的是( )A.如果两个角不相等,那么这两个角不是对顶角;B.两互补的角一定是邻补角.C.如果a2=b2,那么a=b;D.如果两角是同位角,那么这两角一定相等2.下列各数:,,,﹣1.414,,0.1010010001…中,无理数有()A.1个B.2个C.3个D.4个3.如图,立定跳远比赛时,小明从点A起跳落在沙坑内P处.若AP=2.3米,则这次小明跳远成绩( )A.大于2.3米B.等于2.3米C.小于2.3米D.不能确定4.已知点平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3B.﹣5C.1或﹣3D.1或﹣55.下列说法中错误的是()6.一个正方形的面积是15,估计它的边长大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间7.下列图形中,已知∠1=∠2,则可得到AB∥CD的是 ( )8.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心、正方形对角线的长为半径画弧,交数轴于点A,则点A表示的数是 ( )A.-2 B.2-2 C.1-2 D.1+29.“健步走”越来越受到人们的喜爱,某个“健步走”小组将自己的活动场地定在奥林匹克公园,所走路线为:森林公园—玲珑塔—国家体育场—水立方.如图,设在奥林匹克公园设计图上玲珑塔的坐标为(-1,0),森林公园的坐标为(-2,2),那么水立方的坐标为( )A.(-2,-4)B.(-1,-4)C.(-2,4)D.(-4,-1)10.如图所示,一辆汽车,经过两次转弯后,行驶的方向与原来保持平行,如果第一次转过的角度为α,第二次转过的角度为β,则β等于()A.αB.90°﹣αC.180°﹣αD.90°+α11.如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F.三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0B.1C.2D.312.如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D ﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,-1)B.(-1,1)C.(-1,-2)D.(1,-2)二、填空题13.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD周长为.14.如果=1.08,那么x= .15.点P(x-1,x+1)不可能在第象限.16.如图,在△ABC中,DE∥BC,EF∥AB,则∠B相等的角有______个。

湖北省武汉市六中2019-2020学年第二学期人教版七年级下(3月份)月考考试数学试卷(解析版)

湖北省武汉市六中2019-2020学年第二学期人教版七年级下(3月份)月考考试数学试卷(解析版)

2019-2020学年七年级第二学期(3月份)月考数学试卷一、选择题1.下列各数中是无理数的是()A.B.0.C.D.2.在平面直角坐标系中,点P(2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.下列各式中,正确的是()A.B.C.D.4.如图,直线AB和CD相交于O点,OE⊥CD,∠EOF=142°,∠BOD:∠BOF=1:3,则∠AOF的度数为()A.138°B.128°C.117°D.102°5.如图是小数在4×4的小正方形组成的网格中画的一张脸的示意图,如果用(0,4)和(2,4)表示眼睛,那么嘴的位置可以表示成()A.(2,1)B.(1,1)C.(1,﹣2)D.(1,2)6.如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,FG平分∠EFD交AB于点G,若∠BEF=70°,则∠AGF的度数为()A.35°B.45°C.55°D.65°7.下列命题中:①若=﹣,则=﹣;②在同一平面内,若a⊥b,a⊥c,则b∥c;③若ab=0,则P(a,b)表示原点;④的算术平方根是9.是真命题的有()A.1 个B.2 个C.3 个D.4 个8.如图,小数沿正东方向散步行至A处后,沿北偏东40°方向继续前行至B处,接着沿北偏西30°方向继续前行至C处,之后小数决定沿正东方向行走,则方向的调整应该是()A.右转60°B.左转60°C.右转120°D.左转120°9.如图,若AB∥DE,∠B=130°,∠D=35°,则∠C的度数为()A.80°B.85°C.90°D.95°10.在平面直角坐标系中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(a,b),则点A2020的坐标为()A.(a,b)B.(﹣b+1,a+1)C.(﹣a,﹣b+2)D.(b﹣1,﹣a+1)11.如图,下列命题:①若∠1=∠2,则∠D=∠4;②若∠C=∠D,则∠4=∠C;③若∠A=∠F,则∠1=∠2;④若∠1=∠2,∠C=∠D,则∠A=∠F;⑤若∠C=∠D,∠A=∠F,则∠1=∠2.其中正确的个数有()个.A.1B.2C.3D.412.如图(1)所示为长方形纸带,将纸带第一次沿EF折叠成图(2),再第二次沿BF折叠成图(3),继续第三次沿EF折叠成图(4),按此操作,最后一次折叠后恰好完全盖住∠EFB,整个过程共折叠了11次,问图(1)中∠DEF的度数是()A.20°B.19°C.18°D.15°二、填空题(共4小题)13.比较大小:.14.离最近的整数是.15.点M在第四象限,它到x轴的距离是4,到y轴的距离是5,则点M的坐标为.16.已知y=++x+3,求=.三、解答题(共1题,共8分,一空一分)17.完成以下推理过程:如图,已知∠A=∠1,∠C=∠F,求证:∠CBA=∠E.证明:∵∠A=∠1(已知)∴AC∥()∴∠C=()又∵∠C=∠F(已知)∴∠F=∠(等量代换)∴BC∥()∴∠CBA=∠E()三、填空题(共4小题,每小题4分,共16分)18.已知点A(3a﹣6,a+4),B(﹣3,2),AB∥y轴,点P为直线AB上一点,且PA =2PB,则点P的坐标为.19.如图,已知,∠ABG为锐角,AH∥BG,点C从点B(C不与B重合)出发,沿射线BG的方向移动,CD∥AB交直线AH于点D,CE⊥CD交AB于点E,CF⊥AD,垂足为F(F不与A重合),若∠ECF=n°,则∠BAF的度数为度.(用n来表示)20.A,B,C三点是同一个平面直角坐标系内不同的三点,A点在坐标轴上,点A向左平移3个单位长度,再向上平移2个单位长度就到了B点;直线BC∥y轴,C点的横坐标、纵坐标互为相反数,且点B和点C到x轴的距离相等.则A点的坐标是.21.如图,已知A(0,2),B(﹣1,﹣2),将AB向右平移到CD的位置,S四边形ABDC=a(a>30),若E(m,n)为四边形ABDC内一点,且S△ABE=5,则m与n的数量关系为,m的取值范围是.三、解答题(共5小题,第22题8分,第23题8分,第24题8分,第25题12分,第26题12分,共48分)22.计算:(1)+﹣(2)(+2)﹣|﹣2|23.求下列各式中的x:(1)(x﹣1)2=16(2)(x﹣1)3﹣3=24.如图,已知△ABC,A(﹣2,3),B(﹣4,﹣1),C(1,0).(1)P(x0,y0)是△ABC内任一点,经平移后对应点为P1(x0+2,y0+1),将△ABC 作同样的平移,得到△A1B1C1,①直接写出A1、B1、C1的坐标.②若点E(a﹣2,5﹣b)是点F(2a﹣3,2b﹣5)通过平移变换得到的,求b﹣a的平方根.(2)若Q为x轴上一点,S△BCQ=S△ABC,直接写出点Q的坐标.25.已知,如图1,E为BC延长线上一点.(1)请你添加平行线证明:∠ACE=∠ABC+∠A.(2)如图2,若点D是线段AC上一点,且DF∥BC,作DG平分∠BDF交AB于G,DH平分∠GDC交BC于H,且∠BDC比∠ACB大20°,求∠GDH的度数.(3)如图3,已知E为BC延长线上一点,D是线段AC上一点,连接DE,若∠ABC 的平分线与∠ADE的平分线相交于点P,请你判断∠P、∠A、∠E的数量关系并证明你的结论.26.如图,已知A(a,1),B(b,﹣2),C(0,c),且(a﹣2)2++|c+2|=0.(1)如图1,求A、B、C三点的坐标.(2)如图2,延长AC至P(﹣a,﹣5),连PO、PB.求.(3)将线段AC平移,使点A的对应点E恰好落在y轴正半轴上,点C的对应点为F,连AF交y轴于G,当EG=3OG时,求点E的坐标.参考答案一、选择题(共12小题,每小题3分,共36分)1.下列各数中是无理数的是()A.B.0.C.D.解:A.=3,是整数,属于有理数;B.是循环小数,属于有理数;C.是无理数;D.是分数,属于有理数.故选:C.2.在平面直角坐标系中,点P(2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限解:点P(2,﹣3)在第四象限.故选:D.3.下列各式中,正确的是()A.B.C.D.解:A、=|﹣3|=3;故A错误;B、=﹣|3|=﹣3;故B正确;C、=|±3|=3;故C错误;D、=|3|=3;故D错误.故选:B.4.如图,直线AB和CD相交于O点,OE⊥CD,∠EOF=142°,∠BOD:∠BOF=1:3,则∠AOF的度数为()A.138°B.128°C.117°D.102°解:∵OE⊥CD,∴∠EOD=90°,∵∠EOF=142°,∴∠DOF=142°﹣90°=52°.∵∠BOD:∠BOF=1:3,∴∠BOD=∠DOF=26°,∴∠BOF=∠BOD+∠DOF=78°,∵∠AOF+∠BOF=180°,∴∠AOF=180°﹣∠BOF=180°﹣78°=102°.故选:D.5.如图是小数在4×4的小正方形组成的网格中画的一张脸的示意图,如果用(0,4)和(2,4)表示眼睛,那么嘴的位置可以表示成()A.(2,1)B.(1,1)C.(1,﹣2)D.(1,2)解:建立平面直角坐标系如图,嘴的坐标为(1,2).故选:D.6.如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,FG平分∠EFD交AB于点G,若∠BEF=70°,则∠AGF的度数为()A.35°B.45°C.55°D.65°【解答】证明:∵AB∥CD,∴∠EGF=∠DFG,∵FG平分∠DEF,∴∠EFG=∠DFG,∴∠EFG=∠EGF,∵∠BEF=70°,∴∠AGF=∠EFG=(180°﹣70°)=55°,故选:C.7.下列命题中:①若=﹣,则=﹣;②在同一平面内,若a⊥b,a⊥c,则b∥c;③若ab=0,则P(a,b)表示原点;④的算术平方根是9.是真命题的有()A.1 个B.2 个C.3 个D.4 个解:①若=﹣,则=﹣,正确;②在同一平面内,若a⊥b,a⊥c,则b∥c,正确;③若ab=0,则P(a,b)表示原点或坐标轴,错误;④的算术平方根是3,错误;故选:B.8.如图,小数沿正东方向散步行至A处后,沿北偏东40°方向继续前行至B处,接着沿北偏西30°方向继续前行至C处,之后小数决定沿正东方向行走,则方向的调整应该是()A.右转60°B.左转60°C.右转120°D.左转120°解:由题意得:∠CBD=30°,过C作CD⊥BD于D,∵小数决定沿正东方向行走,∴∠CDB=90°,∴∠DCB=60°,∴∠ECD=120°,∴方向的调整应该是右转120°,故选:C.9.如图,若AB∥DE,∠B=130°,∠D=35°,则∠C的度数为()A.80°B.85°C.90°D.95°解:过C作CM∥AB,∵AB∥DE,∴AB∥CM∥DE,∴∠1+∠B=180°,∠2=∠D=35°,∵∠B=130°,∴∠1=50°,∴∠BCD=∠1+∠2=85°,故选:B.10.在平面直角坐标系中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(a,b),则点A2020的坐标为()A.(a,b)B.(﹣b+1,a+1)C.(﹣a,﹣b+2)D.(b﹣1,﹣a+1)解:观察发现:A1(a,b),A2(﹣b+1,a+1),A3(﹣a,﹣b+2),A4(b﹣1,﹣a+1),A5(a,b),A6(﹣b+1,a+1)…∴依此类推,每4个点为一个循环组依次循环,∵2020÷4=505,∴点A2020的坐标与A4的坐标相同,为(b﹣1,﹣a+1),故选:D.11.如图,下列命题:①若∠1=∠2,则∠D=∠4;②若∠C=∠D,则∠4=∠C;③若∠A=∠F,则∠1=∠2;④若∠1=∠2,∠C=∠D,则∠A=∠F;⑤若∠C=∠D,∠A=∠F,则∠1=∠2.其中正确的个数有()个.A.1B.2C.3D.4解:①若∠1=∠2,可得∠3=∠2,可得DB∥EC,则∠D=∠4,正确;②若∠C=∠D,得不出∠4=∠C,错误;③若∠A=∠F,得不出∠1=∠2,错误;④若∠1=∠2,∠C=∠D,则∠A=∠F,正确;⑤若∠C=∠D,∠A=∠F,则∠1=∠2,正确.故选:C.12.如图(1)所示为长方形纸带,将纸带第一次沿EF折叠成图(2),再第二次沿BF折叠成图(3),继续第三次沿EF折叠成图(4),按此操作,最后一次折叠后恰好完全盖住∠EFB,整个过程共折叠了11次,问图(1)中∠DEF的度数是()A.20°B.19°C.18°D.15°解:设∠DEF=α,则∠EFG=α,∵折叠11次后CF与GF重合,∴∠CFE=11∠EFG=11α,如图(2),∵CF∥DE,∴∠DEF+∠CFE=180°,∴α+11α=180°,∴α=15°,即∠DEF=15°.故选:D.二、填空题(共4小题,每小题3分,共12分)13.比较大小:>.解:∵()2=,()2=,∴>.故答案为:>.14.离最近的整数是8.解:∵49<58<64,∴7<<8,∵7.52=56.25<58,∴离最近的整数是8,故答案为:8.15.点M在第四象限,它到x轴的距离是4,到y轴的距离是5,则点M的坐标为(5,﹣4).解:因为点M在第四象限,所以其横、纵坐标分别为正数、负数,又因为点M到x轴的距离为4,到y轴的距离为5,所以点M的坐标为(5,﹣4).故答案为:(5,﹣4).16.已知y=++x+3,求=3.解:由题意得:,解得:x=3,则y=6,∴===3,故答案为:3.三、解答题(共1题,共8分,一空一分)17.完成以下推理过程:如图,已知∠A=∠1,∠C=∠F,求证:∠CBA=∠E.证明:∵∠A=∠1(已知)∴AC∥DF(同位角相等,两直线平行)∴∠C=∠DGB(两直线平行,同位角相等)又∵∠C=∠F(已知)∴∠F=∠DGB(等量代换)∴BC∥EF(同位角相等,两直线平行)∴∠CBA=∠E(两直线平行.同位角相等)【解答】证明:∵∠A=∠1(已知)∴AC∥DF(同位角相等,两直线平行)∴∠C=∠DGB(两直线平行,同位角相等)又∵∠C=∠F(已知)∴∠F=∠DGB(等量代换)∴BC∥EF(同位角相等,两直线平行)∴∠CBA=∠E(两直线平行.同位角相等);故答案为:DF;同位角相等,两直线平行;∠DGB;两直线平行,同位角相等;DGB;EF;同位角相等,两直线平行;两直线平行.同位角相等.三、填空题(共4小题,每小题4分,共16分)18.已知点A(3a﹣6,a+4),B(﹣3,2),AB∥y轴,点P为直线AB上一点,且PA =2PB,则点P的坐标为(﹣3,2)或(﹣3,﹣1).解:∵AB∥y轴,∴3a﹣6=﹣3,解得a=1,∴A(﹣3,5),∵B点坐标为(﹣3,2),∴AB=3,B在A的下方,①当P在线段AB上时,∵PA=2PB∴PA=AB=2,∴此时P坐标为(﹣3,2),②当P在AB延长线时,∵PA=2PB,即AB=PB,∴PA=2AB,∴此时P坐标为(﹣3,﹣1);故答案为(﹣3,2)或(﹣3,﹣1).19.如图,已知,∠ABG为锐角,AH∥BG,点C从点B(C不与B重合)出发,沿射线BG的方向移动,CD∥AB交直线AH于点D,CE⊥CD交AB于点E,CF⊥AD,垂足为F(F不与A重合),若∠ECF=n°,则∠BAF的度数为n或180﹣n度.(用n来表示)解:过A作AM⊥BC于M,如图1,当点C在BM延长线上时,点F在线段AD上,∵AD∥BC,CF⊥AD,∴CF⊥BG,∴∠BCF=90°,∴∠BCE+∠ECF=90°,∵CE⊥AB,∴∠BEC=90°,∴∠B+∠BCE=90°,∴∠B=∠ECF=n°,∵AD∥BC,∴∠BAF=180°﹣∠B=180°﹣n°,过A作AM⊥BC于M,如图2,当点C在线段BM上时,点F在DA延长线上,∵AD∥BC,CF⊥AD,∴CF⊥BG,∴∠BCF=90°,∴∠BCE+∠ECF=90°,∵CE⊥AB,∴∠BEC=90°,∴∠B+∠BCE=90°,∴∠B=∠ECF=n°,∵AD∥BC,∴∠BAF=∠B=n°,综上所述,∠BAF的度数为n°或180°﹣n°,故答案为:n或180﹣n.20.A,B,C三点是同一个平面直角坐标系内不同的三点,A点在坐标轴上,点A向左平移3个单位长度,再向上平移2个单位长度就到了B点;直线BC∥y轴,C点的横坐标、纵坐标互为相反数,且点B和点C到x轴的距离相等.则A点的坐标是(5,0)或(0,﹣5).解:当A点在x轴上时,设A(a,0),∵点A向左平移3个单位长度,再向上平移2个单位长度就到了B点,∴B(a﹣3,2),∵直线BC∥y轴,∴C点的横坐标是a﹣3,∵C点的横坐标、纵坐标互为相反数,∴C(a﹣3,3﹣a),∵点B和点C到x轴的距离相等,∴2=|3﹣a|,∴a=1或a=5,∴A(1,0)或A(5,0),当A(1,0)时,B(﹣2,2),C(﹣2,2),不合题意;当A点在y轴上时,设A(0,a),∵点A向左平移3个单位长度,再向上平移2个单位长度就到了B点,∴B(﹣3,2+a),∵直线BC∥y轴,∴C点的横坐标是﹣3,∵C点的横坐标、纵坐标互为相反数,∴C(﹣3,3),∵点B和点C到x轴的距离相等,∴|2+a|=3,∴a=1或a=﹣5,∴A(0,1)或A(0,﹣5),当A(0,1)时,B(﹣3,3),C(﹣3,3),不合题意;综上所述:A点的坐标为(5,0)或(0,﹣5).21.如图,已知A(0,2),B(﹣1,﹣2),将AB向右平移到CD的位置,S四边形ABDC=a(a>30),若E(m,n)为四边形ABDC内一点,且S△ABE=5,则m与n的数量关系为n=4m﹣8,m的取值范围是 1.5<m<2.5.解:如图,过点E作AB的平行线,交x轴于K,设K(a,0),AB交x轴于G,∵S△ABE=5,∴点E在平行于AB的直线EK上.设直线AB的解析式为y=kx+b.∵A(0,2),B(﹣1,﹣2),∴,解得,∴直线AB的解析式为y=4x+2,当y=0时,4x+2=0,解得x=﹣,∴G(﹣,0),∵AB∥EK,∴S△ABE=S△ABK=×(a+)×4=5,解得a=2,∴K(2,0),∴点E在直线y=4x﹣8上,∵E(m,n),∴n=4m﹣8(1.5<m<2.5).故答案为n=4m﹣8,1.5<m<2.5.三、解答题(共5小题,第22题8分,第23题8分,第24题8分,第25题12分,第26题12分,共48分)22.计算:(1)+﹣(2)(+2)﹣|﹣2|解:(1)原式=6+3﹣(﹣4),=6+3+4,=13;(2)原式=2+2﹣(2﹣),=2+2﹣2+,=2+.23.求下列各式中的x:(1)(x﹣1)2=16(2)(x﹣1)3﹣3=解:(1)(x﹣1)2=16,则x﹣1=±4,解得:x=5或﹣3;(2)∵(x﹣1)3﹣3=,∴(x﹣1)3=,∴x﹣1=,解得:x=.24.如图,已知△ABC,A(﹣2,3),B(﹣4,﹣1),C(1,0).(1)P(x0,y0)是△ABC内任一点,经平移后对应点为P1(x0+2,y0+1),将△ABC 作同样的平移,得到△A1B1C1,①直接写出A1、B1、C1的坐标.②若点E(a﹣2,5﹣b)是点F(2a﹣3,2b﹣5)通过平移变换得到的,求b﹣a的平方根.(2)若Q为x轴上一点,S△BCQ=S△ABC,直接写出点Q的坐标.解:(1)①△A1B1C1如图所示,A1(0,4),B1(﹣2,0).C1(3,1).②由题意:a﹣2=2a﹣3+2,5﹣b=2b﹣5+1,解得a=1,b=3,∴b﹣a=2,2的平方根为±.(2)设Q(m,0),由题意:•|m﹣1|×1=×(20﹣×2×4﹣×1×5﹣×3×3),解得m=﹣或,∴Q(﹣,0)或(,0).25.已知,如图1,E为BC延长线上一点.(1)请你添加平行线证明:∠ACE=∠ABC+∠A.(2)如图2,若点D是线段AC上一点,且DF∥BC,作DG平分∠BDF交AB于G,DH平分∠GDC交BC于H,且∠BDC比∠ACB大20°,求∠GDH的度数.(3)如图3,已知E为BC延长线上一点,D是线段AC上一点,连接DE,若∠ABC 的平分线与∠ADE的平分线相交于点P,请你判断∠P、∠A、∠E的数量关系并证明你的结论.解:(1)过点C作CD∥AB,如图1,∴∠A=∠ACD,∠B=∠DCE,∴∠ACD+∠DCE=∠A+∠B,即∠ACE=∠A+∠B;(2)∵DF∥BC,∴∠BDF=∠CBD,∵DG平分∠BDF,∴∠BDG=∠BDF=∠CBD,∵∠BCD+∠BDC+∠CBD=180°,∠BDC比∠ACB大20°,∴∠BDC=100°﹣,∴∠CDG=∠BDC+∠BDG=100°﹣+∠CBD=100°,∵DH平分∠GDC,∴∠GDH==50°;(3)设BP与AC的交点为点F,如图2,∵BP平分∠ABC,∴∠ABP=∠CBP=∠ABC,∵∠ACE=∠A+∠ABC,∠ADE=∠DCE+∠E,∴∠ADE=∠A+∠ABC+∠E,∵DP平分∠ADE,∴∠FDP=∠ADE=,∵∠AFP=∠A+∠ABF=∠A+,∠AFP=∠P+∠FDP,∴∠A+=∠P+∴∠P=(∠A﹣∠E).26.如图,已知A(a,1),B(b,﹣2),C(0,c),且(a﹣2)2++|c+2|=0.(1)如图1,求A、B、C三点的坐标.(2)如图2,延长AC至P(﹣a,﹣5),连PO、PB.求.(3)将线段AC平移,使点A的对应点E恰好落在y轴正半轴上,点C的对应点为F,连AF交y轴于G,当EG=3OG时,求点E的坐标.解:(1)∵(a﹣2)2++|c+2|=0又∵(a﹣2)2≥0,≥0,|c+2|≥0,∴a﹣2=0,b+4=0,c+2=0,∴a=2,b=﹣4,c=﹣2,∴点A(2,1),点B(﹣4,﹣2),点C(0,﹣2).(2)如图2中,∵点A(2,1),点B(﹣4,﹣2),点C(0,﹣2),点P(﹣2,﹣5),∴S△AOC=×2×2=1,S△BOP=×2×4+×4×3﹣×2×2=8,∴==8.(3)如图3﹣1中,当E,G在原点同侧时,∵AC∥EF,∴∠A=∠F,∵∠EGF=∠AGC,EF=AC,∴△EGF≌△CGA(AAS),∴GE=GC,∵EG=3OG,C(0,﹣2)设OG=m,则EG=3m,∴OC=2,∴2=m+3m,∴m=1,∴OE=4m=4,∴E(0,4).如图2﹣2中,当E,G在原点两侧时,同法可证:EG=CG.设OG=n,则EG=3n,OE=2n,∴2﹣n=3n,∴n=,∴OE=1,∴E(0,1),综上所述,满足条件的点E的坐标为(0,1)或(0,4).。

湖南省长沙市立信中学2023-2024学年七年级下学期第三次月考数学试题

湖南省长沙市立信中学2023-2024学年七年级下学期第三次月考数学试题

湖南省长沙市立信中学2023-2024学年七年级下学期第三次月考数学试题一、单选题1.在227π,2023这五个数中无理数的个数为( ) A .2 B .3 C .4 D .52.如果x y <,那么下列不等式正确的是( )A .22x y <B .22x y -<-C .11x y ->-D .11x y +>+3.在坐标平面内,有一点()20P -,,则P 点的位置在( ) A .原点 B .第二象限 C .x 轴上 D .y 轴上 4.如图,在ABC V 中,画出AC 边上的高( )A .B .C .D .5.某中学为了解本校1500名学生的睡眠情况,从中随机抽查了300名学生的睡眠时间进行调查,下列说法正确的是( )A .总体是本校1500名学生B .样本是300名学生C .个体是每名学生的睡眠时间D .样本容量是300名学生6.若等腰三角形的两边长分别为4和9,则它的周长为( )A .22B .17C .13D .17或227.已知方程组2527x y x y +=⎧⎨+=⎩,则x y -的值为( ) A .2 B .1 C .0 D .1-8.小明借到一本有87页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里平均每天至少要读多少页才能读完?设以后几天里平均每天要读x 页,所列不等式为( )A .21087x +≥B .21087x +≤C .10887x +≤D .10887x +≥ 9.如图,ABC V 中,D 在BC 的延长线上,过D 作DF AB ⊥于F ,交AC 于E .已知33A ∠=︒,85ECD ∠=︒,则D ∠=( )A .52︒B .43︒C .33︒D .38︒10.如图,ABC V 中,BD BE 、分别是高和角平分线,点F 在CA 的延长线上,FH BE ⊥,交BD 于点G ,交BC 于点H ,下列结论中正确的结论有( )①DBE F ∠=∠; ②()12F BAC C ∠=∠-∠; ③2BEF BAF C ∠=∠+∠;④BGH ABE C ∠=∠+∠.A .①②③B .①③④C .①②④D .①②③④二、填空题11.916的算术平方根是. 12.把方程310x y +-=改写成用含x 的式子表示y 的形式,则y =.13.不等式()4223x x -<-的最大整数解为.14.如图,AB CD ∥,若65A ∠=︒,38E ∠=︒,则C ∠=.15.有30个数据,其中最大值为40,最小值为19,若取组距为4,则应该分成组.16.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是13x y =-⎧⎨=⎩,则方程组()()1112222222a x b y c a x b y c ⎧-+=⎪⎨-+=⎪⎩的解是.三、解答题17()232+-18.解方程组322231922x y x y +=⎧⎪⎨-+=⎪⎩①②. 19.六一儿童节当天,小玉给小玲打电话,相约去五一广场看书,但是她忘了电话号码中的一个数字,依稀记得号码是1398249456W (“□”表示忘记的数字,若“□”位置上的数字是不等式组2130142x x x ->⎧⎪⎨≤+⎪⎩的一个解,求“□”可能表示的数字. 20.已知关于x 、y 的方程组244x y a x y a+=⎧⎨-=⎩. (1)若方程组的解也是方程3210x y +=的一个解,求a 的值;(2)若方程组的解满足5x y ->,请化简2a a +-.21.某校组织全校学生进行了一场党史知识竞赛活动根据竞赛结果,抽取了200名学生的成绩(得分均为正整数,满分为100分,大于80分的为优秀)进行统计,绘制了如图所示尚不完整的统计图表.请结合图表解决下列问题:(1)频数表中=a ,b =;(2)请将频数分布直方图补充完整;(3)若该校共有1000名学生,请估计本次党史知识竞赛成绩为“优秀”的学生人数. 22.为加快公共领域充电基础设施建设,某停车场计划购买A ,B 两种型号的充电桩.已知B 型充电桩比A 型充电桩的单价多0.2万元,且用24万元可购买A 型充电桩12个和与B 型充电桩10个.(1)A ,B 两种型号充电桩的单价各是多少?(2)该停车场计划购买A ,B 两种型号充电桩共26个,购买总费用不超过28万元,且B 型充电桩的购买数量不少于A 型充电桩购买数量的25.请问有几种购买方案? 23.如图,在ABC V 中,E ,G 分别是AB ,AC 上的点,F ,D 是BC 上的点,连接EF ,AD ,DG ,AB DG ∥,12180∠+∠=︒.(1)求证:AD EF ∥;(2)若DG 是ADC ∠的平分线,2140∠=︒,60C ∠=︒,求AGD ∠的度数;(3)若ABC V 的周长为16cm ,AB BC =,当中线AD 将ABC V 分成周长差为2cm 的两部分,求AC 的长.24.定义:对于立信不等式:()01x x x L a L x b >>≠,,当1x >时,a b >;当01x <<时,a b <. (1)解关于x 的不等式()22523L x L x ->;(2)若关于x 的不等式()1122237L x m L ->的解集是2x <,求不等式()2222L mx L m +>的解集; (3)若关于x 的不等式组()()331133221L x L n L x L n ⎧->⎪⎨>+⎪⎩的解集中有且只有2个整数解,求n 的取值范围. 25.根据以下所给的材料,解答下面的问题.材料一:如图1,ABC V 中,若B C ∠=∠,则AB AC =.材料二:如图2,ABC V 的内角ABC ∠和外角ACD ∠的平分线交于点E ,则有结论:12∠=∠E A .解答问题:如图3,点()0,A m 与点(),0B n 坐标轴上,且m ,n 满足()23240m n -+-=. (1)求点A (,),B (,)的坐标;(2)C 为y 轴正半轴上一动点,D 为BCO V 的外角BCy ∠的平分线与COB ∠的平分线的交点,当14D COB ∠=∠,求C 点坐标; (3)如图4,C 为y 轴正半轴上A 的上方一动点,P 为线段AB 上一动点,连CP 延长交x 轴于E ,CAB ∠和CEB ∠平分线交于F ,在点C 在运动过程中,下列结论:①ABO ECO F ∠-∠∠是定值,②ABO ECO F∠+∠∠是定值;请选择你认为正确的结论,并进行证明;若都不正确,也请说明理由.。

2023-2024学年河南省周口十九中七年级(下)第三次月考数学试卷(含答案)

2023-2024学年河南省周口十九中七年级(下)第三次月考数学试卷(含答案)

2023-2024学年河南省周口十九中七年级(下)第三次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.在下列方程中,其中二元一次方程的个数是( )①4x+5=1;②3x−2y=1;③3x +y3=1;④xy+y=14A. 1B. 2C. 3D. 42.已知a>b,若c是任意实数,则下列不等式中总成立的是( )A. a+c<b+cB. a−c>b−cC. ac<bcD. ac>bc3.已知二元一次方程3x+2y=11,则下列说法正确的是( )A. 任何一对有理数都是它的解B. 只有一对解C. 只有两对解D. 有无数对解4.不等式2x+9≥3(x+2)的解集是( )A. x≤3B. x≤−3C. x≥3D. x≥−35.不等式组{x≥−12x<4的解集在数轴上表示正确的是( )A. B.C. D.6.用代入法解方程组{2x+3y−2=0,①4x+1=9y,②正确的解法是( )A. 先将①变形为x=3y−22,再代入②B. 先将①变形为y=2−2x3,再代入②C. 先将②变形为x=94y−1,再代入①D. 先将②变形为y=9(4x−1),再代入①7.方程组{4x+3m=28x−3y=m的解x,y满足x>y,则m的取值范围是( )A. m>910B. m>109C. m>1910D. m>10198.对于不等式组{12x−1≤7−32x5x+2>3(x−1)下列说法正确的是( )A. 此不等式组无解B. 此不等式组有7个整数解C. 此不等式组的负整数解是−3,−2,−1D. 此不等式组的解集是−52<x ≤29.关于x 的不等式组{x−m >07−2x >1的整数解只有4个,则m 的取值范围是( )A. −2<m ≤−1B. −2≤m ≤−1C. −2≤m <−1D. −3<m ≤−210.对于有理数x ,y ,定义新运算“※”:x ※y =ax +by +1,a ,b 为常数,若3※5=15,4※7=28,则5※9=( )A. 41B. 42C. 43D. 44二、填空题:本题共5小题,每小题3分,共15分。

人教版数学七年级下册第三次月考试卷及答案

人教版数学七年级下册第三次月考试卷及答案

人教版数学七年级下册第三次月考试题一、单选题(每小题3分,共36分)1.下面四个图形中,∠1与∠2是对顶角的是( )A .B .C .D . 2.点P(-2,-5)在( )A .第一象限B .第二象限C .第三象限D .第四象限 3( )A .1到2之间B .2到3之间C .3到4之间D .4到5之间 4.下列方程组不是二元一次方程组的是( )A .43624x y x y +=⎧⎨+=⎩B .44x y x y +=⎧⎨-=⎩C .141y x x y ⎧+=⎪⎨⎪-=⎩D .35251025x y x y +=⎧⎨+=⎩ 5.在311.41407π-,,, 1.14,3.212212221(每两个1之间多一个2),这些数中无理数的个数为( )A .3B .2C .5D .46.若点P ()31m m ,+-在x 轴上,则点P 的坐标为( )A .(0,-2)B .(4,0)C .(2,0)D .(0,-4) 7.如图,由下列条件不能得到AB ∥CD 的是( )A .∠B +∠BCD =180° B .∠1=∠2C .∠3=∠4D .∠B =∠5 8.若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是( )A .(-3,4)B .(4,-3)C .(3,-4)D .(-4,3) 9.下列说法中正确的是( )A .9的平方根是3B .4平方根是2±C 4D .-8的立方根是2± 10.已知x y 、是二元一次方程组31238x y x y +=⎧⎨+=⎩的解,那么x y +的值是( ) A .0 B .5 C .-1 D .111.如图所示,AB ∥DE ,∠ABC=60°,∠CDE=150°,则∠BCD 的度数为( )A .50°B .60°C .40°D .30°12.如图所示,一只电子跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→>(0,1)→(1,1)→>(1,0)→…]且每秒跳动一个单位,那么第45秒时跳蚤所在位置的坐标是( )A .(5,6)B .(6,0)C .(6,3)D .(3,6)二、填空题 13.把命题“同位角相等,两直线平行”改写成“如果……那么……”的形式是________.14.已知x y 、()230y -=,则xy 的值是_______.15 1.732 5.477≈≈,≈_____.16.如图所示,△ABC 沿着有点B 到点E 的方向,平移到△DEF ,已知BC=7cm ,EC=4cm ,那么平移的距离为______cm.17.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(−1,−2),“马”位于点(2,−2),则“兵”位于点__________.18.永川区某工程公司积极参与“三城同创”建设,该工程公司下属的甲工程队、乙工程队分别承包了三城的A 工程、B 工程,甲工程队睛天需要14天完成,雨天工作效率下降30%;乙工程队晴天需15天完成,雨天工作效率下降20%,实际上两个工程队同时开工,同时完工,两个工程队各工作了______天.三、解答题19.计算:(1)(2)已知(x –2)2=16,求x 的值.20.已知,△ABC 三个顶点的坐标分别为:A(-3,-2)、B(-5,0)、C(-2,2).(1)在平面直角坐标系中画出△ABC ;(2)将△ABC 向右平移5个单位长度,再向上移2个单位长度,画出平移后的111A B C △;(3)计算111A B C △的面积.21.如图,直线AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD=20°,求∠BOE 和∠AOG 的度数.22.若关于x y 、的方程组59x y k x y k +=⎧⎨-=⎩的解满足236x y +=,求k 的值.23.已知,如图,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E=∠1,求证:AD 平分∠BAC .24.据永川区农业信息中心介绍,去年永川生态枇杷园喜获丰收,个体商贩张杰准备租车把枇杷运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满枇杷一次可运货12吨;用3辆甲型车和4辆乙型车装满枇杷一次可运货17吨,现有21吨枇杷,计划同时租用甲型车m 辆,乙型车n 辆,一次运完,且恰好每辆车都装满枇杷,根据以上信息,解答下列问题:(1)1辆甲型车和1辆乙型车都装满枇杷一次可分别运货多少吨?(2)请你帮个体商贩张杰设计共有多少种租车方案?25.如图,△ABO 的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB 的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的25,求点M的坐标.参考答案1.B【分析】对顶角是两条直线相交,其中一个角是另一个角的边的反向延长线,据定义即可判断.【详解】解:根据对顶角的定义,A,D,C,不符合其中一个角是另一个角的边的反向延长线,是对顶角的只有第二个图形,故选B【点睛】本题主要考查对顶角的定义,是一个基础题.理解定义是关键.2.C【解析】【分析】根据各象限内点的坐标特征解答.【详解】解:点在平面直角坐标系中,点P(−2,−5)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).3.B【解析】【分析】<<,推出23即可.【详解】解:<<,∴23,2和3之间.【点睛】.4.C【解析】【分析】根据二元一次方程组的定义对各选项分析判断后利用排除法求解.【详解】解:A、是二元一次方程组,故本选项错误;B、是二元一次方程组,故本选项错误;C、第一个方程x在分母上,不是二元一次方程组,故本选项正确;D、是二元一次方程组,故本选项错误.故选:C.【点睛】本题考查了二元一次方程组的定义,组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项的最高次数都应是一次的整式方程.5.A【解析】【分析】根据无理数是无限不循环小数,直接判定即可.【详解】,π,3.212212221(每两个1之间多一个2),共3个;故选:A.【点睛】本题主要考查无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.6.B【解析】【分析】根据点P在x轴上,即m-1=0,可得出m的值,从而得出点P的坐标.【详解】解:∵点P(m+3,m-1)在x轴上,∴m-1=0,解得:m=1,∴m+3=1+3=4,∴点P的坐标为(4,0).故选:B.【点睛】本题考查了点的坐标,注意平面直角坐标系中,点在x轴上时纵坐标为0,得出m的值是解题关键.7.B【解析】【分析】根据平行线的判定(①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行)判断即可.【详解】解:A、∵∠B+∠BCD=180°,∴AB∥CD,正确,故本选项不选;B、∵∠1=∠2,∴AD∥BC,不能推出AB∥CD,错误,故本选项选;C、∵∠3=∠4,∴AB∥CD,正确,故本选项不选;D、∵∠B=∠5,∴AB∥CD,正确,故本选项不选;故选:B.【点睛】本题考查了平行线的判定的应用,注意:平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.8.A【解析】【分析】首先根据题意得到P点的横坐标为负,纵坐标为正,再根据到x轴的距离与到y轴的距离确定横纵坐标即可.【详解】解:∵点P在第二象限,∴P点的横坐标为负,纵坐标为正,∵到x轴的距离是4,∴纵坐标为:4,∵到y轴的距离是3,∴横坐标为:−3,∴P(−3,4),故选:A.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握其特点是解题关键.9.B【解析】【分析】根据算术平方根的定义、平方根的定义、立方根的定义即可作出判断.【详解】解:A、9的平方根是±3,故选项错误;B、4的平方根是±2,故选项正确;C2,故选项错误;D、-8的立方根是-2,故选项错误.故选:B.【点睛】本题考查了算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.平方根的定义:若一个数的平方等于a,那么这个数叫a的平方根,记作(a≥0);也考查了立方根的定义.10.B【解析】【分析】两个二元一次方程相加可得4x+4y=20,两边同时除以4即可得到结果. 【详解】解:31238x yx y+=⎧⎨+=⎩①②,①+②得:4x+4y=20,∴x+y=5,故选:B.【点睛】本题考查了二元一次方程组的解,理解方程组解的定义是解题关键.11.D【解析】【分析】反向延长DE交BC于M,根据平行线的性质求出∠BMD的度数,由补角的定义求出∠CMD 的度数,根据三角形外角的性质即可得出结论.【详解】解:反向延长DE交BC于M,∵AB∥DE,∴∠BMD=∠ABC=60°,∴∠CMD=180°−∠BMD=120°;又∵∠CDE=∠CMD+∠BCD,∴∠BCD=∠CDE−∠CMD=150°−120°=30°.故选:D.【点睛】本题考查的是平行线的性质和三角形外角的性质,用到的知识点为:两直线平行,内错角相等.12.D【解析】【分析】根据题目中所给点运动的特点,从中找出规律,即可得出答案.【详解】解:由图可得,4秒后跳蚤所在位置的坐标是(2,0);16秒后跳蚤所在位置的坐标是(4,0);36秒后跳蚤所在位置的坐标是(6,0);∴42秒时根据跳蚤向上跳动6个单位可以到达(6,6),45秒时根据跳蚤向左跳动3个单位可以到达(3,6),故选:D.【点睛】本题主要考查点的坐标问题,解决本题的关键是读懂题意,能够正确确定点运动的规律,从而可以得到到达每个点所用的时间.13.如果两条直线被第三条直线所截且同位角相等,那么这两条直线平行【解析】【分析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】解:“同位角相等,两直线平行”的条件是:“同位角相等”,结论为:“两直线平行”,所以写成“如果…,那么…”的形式为:“如果同位角相等,那么两直线平行”.14.6【解析】【分析】根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案.【详解】解:由题意得,x−2=0,y-3=0,解得,x=2,y=3,xy=6,故答案为:6.【点睛】本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.15.17.32【解析】【分析】根据题目中的数据和算术平方根的求法可以解答本题.【详解】==≈,17.32故答案为:17.32.【点睛】本题考查算术平方根,解答本题的关键是明确题意,求出所求数据的算术平方根.16.3【解析】【分析】BE 即是平移的距离,根据线段和差求出即可.【详解】解:根据题意可知BE即为平移的距离,BE=BC-EC=3cm,故答案为:3.【点睛】本题考查平移的性质,根据题意找到平移的的方向和距离是解题关键.17.(−3,1)【解析】试题分析:根据帅的坐标,建立坐标系,如图所示,然后判断得(-3,1).考点:平面直角坐标系18.17【解析】【分析】设晴天工作x 天,雨天工作y 天,根据题意列出二元一次方程组求解即可.【详解】解:设晴天工作x 天,雨天工作y 天, 根据题意得:()()1130%1141411120%11515x y x y ⎧+⨯-=⎪⎪⎨⎪+⨯-=⎪⎩, 解得:710x y =⎧⎨=⎩, ∴两个工程队各工作了x+y=17天,故答案为:17.【点睛】本题考查了二元一次方程组的实际应用,能够找到等量关系列出二元一次方程组是解题关键.19.(1)原式=4;(2)x=-2或x=6.【解析】【分析】(1)根据绝对值、立方根和二次根式的性质计算即可;(2)利用平方根的性质解方程即可.【详解】解:(1)原式224=-+=+(2)()2216x -=,24x -=±,1262x x ==-,,【点睛】本题考查平方根、立方根和二次根式的性质,熟练掌握运算法则是解题关键.20.(1)见解析;(2)见解析;(3)面积为5.【解析】【分析】(1)找到点A 、B 、C 的位置,连接即可;(2)根据平移的性质找到A 1、B 1、C 1的位置,连接即可;(3)用111A B C △所在矩形的面积减去周围直角三角形的面积进行计算.【详解】解:(1)如图,△ABC 即为所求;(2)如图,111A B C △即为所求;(3)111111342214235222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】本题考查平面直角坐标系和平移,熟练掌握平移的性质是解题关键.21.∠BOE=70°;∠AOG=55°. 【解析】【分析】先求出∠AOF ,根据对顶角的性质得出∠BOE ,再根据邻补角的性质求出∠AOE ,由角平分线即可求出∠AOG .【详解】解:∵AB ⊥CD ,∴∠AOD=∠AOC=90°,∵∠FOD=20°,∴∠AOF=90°-20°=70°,∴∠BOE=70°;∴∠AOE=180°-70°=110°,∵OG 平分∠AOE ,∴∠AOG=110°÷2=55°.【点睛】本题考查了垂线、对顶角、邻补角的定义,弄清各个角之间的数量关系是解决问题的关键. 22.34【解析】分析:先利用加减消元法解二元一次方程组,可得72x k y k=⎧⎨=-⎩,然后根据2x+3y=6可得:1466k k -=,解得34k =. 详解:解59x y k x y k +=⎧⎨-=⎩①②, 由①+②可得:214x k =,解得7x k =,把7x k =代入②可得:2y k =-, 因为2x+3y=6可得:1466k k -=,解得34k =. 点睛:本题主要考查含参数的二元一次方程组的解法,解决本题的关键是要熟练掌握加减消元法解二元一次方程组.23.见解析【解析】【分析】根据垂直的定义可得∠ADC=∠EGC=90°,即可证得AD ∥EG ,根据平行线的性质可得∠1=∠2,∠E=∠3,再结合∠E=∠1可得∠2=∠3,从而可以证得结论.【详解】证明:∵AD ⊥BC 于D ,EG ⊥BC 于G ,(已知)∴∠ADC=∠EGC=90°,∴AD ∥EG ,(同位角相等,两直线平行).∴∠1=∠2,(两直线平行,内错角相等).∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3,(等量代换).∴AD 平分∠BAC .(角平分线的定义)24.(1)甲、乙两种车分别运载3吨,2吨;(2)共4种方案.【解析】【分析】(1)设甲、乙两种车分别运载x 吨,y 吨,根据题意列出二元一次方程组,求出x,y 即可得解;(2)列出二元一次方程,根据m ,n 都是整数,可得到方案.【详解】解:(1)设甲、乙两种车分别运载x 吨,y 吨;23123417x y x y +=⎧⎨+=⎩,解得32x y =⎧⎨=⎩; 答:1辆甲型车和1辆乙型车都装满枇杷一次可分别运货3吨,2吨;(2)设租甲、乙两种车分别m 辆,n 辆,由题意得:3m+2n=21.19m n =⎧⎨=⎩,36m n =⎧⎨=⎩,53m n =⎧⎨=⎩,70m n =⎧⎨=⎩共4种方案. 方案一:甲车1辆,乙车9辆;方案二:甲车3辆,乙车6辆;方案三:甲车5辆,乙车3辆方案四:甲车7辆,乙车0辆.答:甲车1辆,乙车9辆或甲车3辆,乙车6辆或甲车5辆,乙车3辆或甲车7辆,乙车0辆.【点睛】本题考查了二元一次方程组的实际应用,能够找到等量关系列出二元一次方程组是解题关键.25.(1)10;(2)P 点的纵坐标为8或-8,横坐标为任意实数;(3)M(-2,0),(2,0).【解析】【分析】(1)根据三角形面积公式可直接计算;(2)由于底不变,△OAP 的高是△OAB 的高的二倍即可;(3)分情况讨论,当M 在x 轴上时和当M 在y 轴上时,分别求出OM 即可.【详解】解:(1)∵O(0,0),A(5,0),B(2,4),∴S △OAB =0.5×5×4=10;(2)若△OAP 的面积是△OAB 面积的2倍,O ,A 两点的位置不变,则△OAP 的高应是△OAB 高的2倍,即△OAP 的面积=△OAB 面积×2=0.5×5×(4×2), ∴P 点的纵坐标为8或-8,横坐标为任意实数;(3) △OBM 的面积=21045⨯=, 当M 在x 轴上时,以OM 为底,OM 边上的高为4, ∴1442OM ⨯⨯=,解得OM=2, ∴M(-2,0),(2,0),同理当M在y轴上时,M(0,4),(0,-4).【点睛】本题考查了坐标与图形以及三角形的面积的求解,三角形的底边不变,则三角形的面积与高成正比,高不变,则三角形的面积与底边成正比,需要注意,在平面直角坐标系内,符合长度的点的坐标通常都有两种情况,不要漏解.。

2023-2024学年河南省许昌市禹州市七年级(下)第三次月考数学试卷(含答案)

2023-2024学年河南省许昌市禹州市七年级(下)第三次月考数学试卷(含答案)

2023-2024学年河南省许昌市禹州市七年级(下)第三次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列各数中,是无理数的是( )A. −3B. 3.14C. 38D. 322.如图所示的交通标志为一条公路某路段上汽车的最高时速不得超过100km,若某汽车的时速为a km/ℎ,且该汽车没有超速,则下列不等式正确的是( )A. a>100B. a≥100C. a<100D. a≤1003.如图,直线AB,CD相交于点O,OE⊥CD.若∠AOE=50°,则∠BOC的度数是( )A. 140°B. 130°C. 50°D. 40°4.如图,有三种不同的小球,质量分别为a、b、c,放置在天平的托盘中,结果天平右侧向下倾斜,则可得到( )A. a>bB. a>cC. c>bD. b>c5.用加减消元法解二元一次方程组{3x−2y=5①2x−3y=10②,将①×3−②×2可得( )A. 12x−13y=40B. 5x−12y=−5C. 5y=−20D. 5x=−56.不等式x+3≤2的解集在数轴上表示正确的是( )A. B. C. D.7.已知点M(x,y),若x−y >0,xy <0,则点M 所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.《算法统宗》是中国古代数学名著,其中有一道题的大概译文为“一客人问店主李三公现在店中有多少间客房以及多少房客,店主说:若一间客房住7人,则有7人无房可住;若一间客房住9人,则空出一间客房”.若设该店有客房x 间,房客y 人,则列出关于x ,y 的二元一次方程组正确的是( )A. {7x +7=y 9x−1=yB. {7x−7=y 9(x−1)=yC. {7x +7=y 9(x−1)=yD. {7x−7=y 9x−1=y 9.小明,小琪两人一起解方程组{ax +5y =15①4x−by =−10②,由于小明看错了方程①中的a ,得到的方程组的解为{x =−3y =1,小琪看错了方程②中的b ,得到的方程组的解为{x =5y =−4,则a +b 的值是( )A. 3B. 5C. −3D. −510.对m ,n 定义一种新运算“∗”,规定:m ∗n =am−bn +5(a,b 均为非零实数),等式右边的运算是通常的四则运算,例如3∗4=3a−4b +5.已知2∗3=1,3∗(−1)=10.则关于x 的不等式x ∗(2x−3)<5的最小整数解为( )A. 1B. 2C. 3D. 4二、填空题:本题共5小题,每小题3分,共15分。

安徽省阜阳市省界首市第五中学2023-2024学年七年级下学期第三次月考数学试题

安徽省阜阳市省界首市第五中学2023-2024学年七年级下学期第三次月考数学试题

安徽省阜阳市省界首市第五中学2023-2024学年七年级下学期第三次月考数学试题一、单选题1.9的算术平方根是( )A .9±B .9C .3±D .32.下列不等式中,是一元一次不等式的是( )A .110x +>B .24x ≥C .23x y +<-D .512x +≤ 3.北宋诗人苏轼在《前赤壁赋》中写道:“寄蜉游于天地,渺沧海之一粟.”“沧海一粟”比喻非常渺小.据测量,200粒粟的质量大约为1g .1粒粟的质量用科学记数法可表示为( )A .3510g -⨯B .2510g -⨯C .2210g -⨯D .2210g ⨯ 4.若把分式3x y xy+中的x 和y 都扩大2倍,则分式的值( ) A .扩大2倍 B .不变 C .缩小为原来的12D .缩小为原来的145 )A .5和6之间B .6和7之间C .7和8之间D .8和9之间 6.下列运算正确的是( )A .341222a a a ⋅=B .236(3)9a a -=-C .221a a a a ÷⨯=D .32242⋅+⋅=a a a a a7.若2m n +=,则代数式2n m n m m m ⎛⎫--÷ ⎪⎝⎭的值为( ) A .2 B .2- C .12 D .12- 8.已知10a ->,则下列结论正确的是( )A .11a a -<-<<B .11a a -<-<<C .11a a -<-<<D .11a a -<-<<9.A 、B 两地相距90千米,甲车和乙车的平均速率之比为5:3,两车同时从A 地出发到B 地,乙车比甲车迟到30分钟.若求甲车的平均速度,设甲车平均速度为5x 千米/小时,则所列方程是( )A .90903053x x -=B .90901352x x -=C .90901532x x -=D .90903053x x+= 10.如图1,将甲、乙两个正方形并列放置,H 为AE 的中点,连接DH ,FH .如图2,将正方形乙放在正方形甲的内部.已知甲、乙两个正方形的边长之和为8,图2中阴影部分的面积为6,则图1中阴影部分的面积为( )A .3B .19C .21D .28二、填空题11.计算:4-=.12.如果分式232x x -+的值为0,那么x 的值是. 13.把24520b -分解因式的结果是.14.已知关于x ,y 的二元一次方程组325x y a x y a-=+⎧⎨+=⎩的解满足x y >. (1)实数a 的取值范围是.(2)若关于x 的不等式组212213147x a x +<⎧⎪-⎨≥⎪⎩无解,则所有符合条件的整数a 的个数为.三、解答题15.先化简,再求值:2[()()2224)]2(x y x y y x xy y ---+-÷,其中x =1,2y = 16.解方程:211x x x+--=3. 17.整式133m ⎛⎫- ⎪⎝⎭的值为P . (1)当m 取什么值时,P 的值是正数?(2)当m 取什么值时,P 的取值范围如图所示?18.已知105a =,106b =,求下列各式的值:(1)10a b +;(2)2210a b -+.19.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示的数为a ,点B 表示的数为b .(1)求11a b +++的值.(2)在数轴上,C ,D 两点分别表示实数c 和d ,且5c -与()22d +互为相反数,求23c d +的平方根.20.观察下面的式子,解答下列问题.第1个式子:()()111x x -÷-=;第2个式子:()()2111x x x -÷-=+; 第3个式子:()32(1)11x x x x -÷-=++;第4个式子:()()432111x x x x x -÷-=+++.(1)你能得到()()111n x x +-÷-的结果吗?请写出结果. (2)求20242023202222221+++++L 的值.21.阅读下面的材料,解答下列问题.()2222a b a ab b +=++和()2222a b a ab b -=-+是我们熟悉的两个乘法公式.将这两个公式变形,可得到一个新公式;2222a b a b ab +-⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,这个新公式形似平方差公式,我们称之为“准平方差公式”.灵活、恰当地运用这个新公式将会使一些数学问题迎刃而解.(1)利用新公式分解因式:()()()2122ab a b a b ab -++-+-.(2)已知实数a ,b ,c 满足29ab c =+,且6a b =-,试说明a b =.22.有两款售价相同的汽车,信息如下表所示:(1)新能源车的每千米行驶费用是______元;(用含a 的代数式表示)(2)若燃油车的每千米行驶费用比新能源车多0.52元.①分别求出这两款车的每千米行驶费用;②若燃油车和新能源车每年的其他费用分别为4600元和7200元,则每年行驶里程在什么范围时,新能源车的年费用更低?(年费用=年行驶费用+年其它费用)23.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“快乐分式”.如:112122111111x x x x x x x x +-+-==+=+-----,则11x x +-是“快乐分式”. (1)下列式子中,属于“快乐分式”的是__________(填序号);①1x x +②21x x ++③221y y+④22x + (2)将“快乐分式”2231a a a -+-化成一个整式与一个分子为常数的分式的和的形式为:2231a a a -+=-__________. (3)应用:先化简22361112x x x x x x x+---÷++,并求x 取什么整数时,该式的值为整数.。

2020-2021学年人教版七年级下学期数学第三次月考测试题

2020-2021学年人教版七年级下学期数学第三次月考测试题

七年级数学(下)第三次月考试题一、选择题(本大题每小题3分,共30分,)1.下列各数无理数有 ( )0 , -3.14 , 3 , 722 , 0.101001…… , π , ..85358.2 A.1个 B.2个 C.3个 D.4个2.方程2x -y 1=0,3x+y=0,2x+xy=1, x2-x+1=0中,二元一次方程的个数是( ) A . 1个 B .2个 C .3个 D .4个3.二元一次方程组的解是 ( )⎩⎨⎧==01.y X A ⎩⎨⎧==12.y X B ⎩⎨⎧==21.y X C ⎩⎨⎧==20.y X D 4.方程2x+y=5的正整数解的个数是 ( )A .1个B .2个C .3个D .4个5.下列运动属于平移的是 ( ) A 、荡秋千 B 、地球绕着太阳转C 、风筝在空中随风飘动 D 、急刹车时,汽车在地面上的滑动6.如果│x+y -1│+(2x+y -3)2=0,那么x ,y 的值为 ( )A .7.若方程(a-2)x-3y=6是二元一次方程,则a 必须满足( )A 、B 、C 、D 、8. 下列命题错误的是( )A 、同位角不一定相等B 、内错角都相等C 、同旁内角可能相等D 、同旁内角互补则两直线平行 9.如图所示,点E 在AC 的延长线上,下列条件中能判断AB ∥CD 的是( )A .∠3=∠4B .∠1=∠2C .∠D=∠DCED .∠D +∠ACD=180°10. 如图,直线a 、b 被直线c 所截,a ∥b ,∠2=∠3.若∠1=80°,则∠4等于( )A .20°B .40°C .60°D .80°二、填空题(本大题每小题3分,共24分,)第9题 第10题11. 3的平方根是 , 9的算术平方根是 , 27的立方根是 .12.点P 在第四象限,且P 到x 轴距离为3,到y 轴距离为2,则点P 坐标为13.写出方程x+2y=8的一组正整数解是___.14.任意写出一个解为⎩⎨⎧=-=35y x 的二元一次方程组__________. 15若点M (a -3,a +4)在y 轴上,则a =___________.16.若2x a y b+5与-x 1+2b y 2a 是同类项,则a=_____,b=_____.17.方程是二元一次方程时,则a=_____,b=_____.18. 根据下图提供的信息,可知一件上衣的价格是____元,一条短裤的价格是____元.三、解答题(本大题满分46分)19.解方程组(每小题3分,共12分)⎩⎨⎧=++=9573)1(y x x y ⎩⎨⎧-=-=+253523)1(y x y x⎩⎨⎧=+=+7321255)3(y x y x ⎪⎩⎪⎨⎧=+=+=+4513)4(z x z y y x20. (本题4分)关于x ,y 的二元一次方程组⎩⎨⎧=-=+123532y x y x 的解是二元一次方程x+2y=k 的解,则k 的值是多少?21(本题6分).某企业准备给灾区捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每 顶安置6人,乙种帐篷每顶安置4人,共安置8000人.问该企业捐助甲种帐篷和乙种帐篷各多少顶?22(本题6分).A ,B 两地相距20 km ,甲从A 地向B 地前进,同时乙从B 地向A 地前进,2 h 后两人在途中相遇;如果两人同时从A 地出发到B 地,2h 后两人相距2km ,求甲、乙两人的速度.23.(本题6分)经营户小熊在蔬菜批发市场上了解到以下信息内容:蔬菜品种红辣椒西红柿批发价(元/公斤) 4 1.6零售价(元/公斤) 63.0他共用116元钱从市场上批发了红辣椒和西红柿共44公斤到菜市场去卖,当天卖完。

2023北雅中学七年级下学期第三次月考数学试卷

2023北雅中学七年级下学期第三次月考数学试卷

2023年春季学期错题回做练习(二)初一年级数学科目命题人:王飞审题人:刘思敏学生注意:本练习共3道大题,25道小题,满分120分,时量120分钟.一、选择题(本题共10小题,每题3分)1.在平面直角坐标系中,将点()1,1向右平移2个单位后,得到的点的坐标是()A .()3,1B .()1,1-C .()1,3D .()1,1-2.如果x y <,那么下列不等式正确的是()A .11x y +>+B .11x y ->-C .22x y<D .22x y -<-3.在0、0.23、2-、38、227、π、0.1010010001⋯(它的位数无限且相邻两个“1”之间“0”的个数依次加1个)这七个数中,无理数的个数是()A .2B .3C .4D .54.为了解某初中1200名学生的视力情况,随机抽查了200名学生的视力进行统计分析,下列说法正确的是()A .200名学生的视力是总体的一个样本B .200名学生是总体C .200名学生是总体的一个个体D .样本容量是1200名5.如图,下列条件中,不能判定AB CD ∥的是()A .180D BAD ∠+∠=︒B .12∠=∠C .34∠∠=D .B DCE∠=∠6.方程2317x y +=的正整数解的对数是()A .1对B .2对C .3对D .4对7.如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,∠1=60°,则∠2的度数是()A .30°B .35°C .45°D .50°8.如果点P (m ,1+2m )在第三象限内,那么m 的取值范围是()A .102m -<<B .12m >-C .0m <D .12m <-二、填空题(本题共6小题,每题3分)11.如果2120a b x y -++=是二元一次方程,则=a ______,b =______.12.点()231A a a --+,在y 轴上,则=a ______.13.若一个正数的平方根是2a -+和21a -,则a=______.14.已知二元一次方程组2425x y x y +=⎧⎨+=⎩,则x y -的值为______.15.如果不等式(2)2a xa ->-的解集是1x <,那么a 必须满足___________.16.如图,把一张长方形纸条ABCD (其中AD BC ∥)沿EF 折叠,若150∠=︒,则AEG ∠=______.三、解答题(本题共9小题)17.(6分)计算:()202311-+-20、(8分)为了解某种小西红柿的挂果情况,科技小组从试验田随机抽取了部分西红柿秧进行了统计,按每株挂果的数量x 分成五组:A .1030x ≤<,B .3050x ≤<,C .5070x ≤<,D .7090x ≤<,E .90110x ≤<.并根据调查结果给制了如下不完整的统计图.请结合统计图解答下列问题:(1)本次调查一共随机抽取了__________株西红柿秧.扇形统计图中D 组所对应的圆心角的度数为______度;(2)补全频数分布直方图;(3)若该试验田共种植小西红柿2000株,请估计挂果数量在E 组的小西红柿株数.21、(8分)甲、乙两人同时解方程组5213mx y x ny +=⎧⎨-=⎩①②,甲解题看错了①中的m ,解得722x y ⎧=⎪⎨⎪=-⎩,乙解题时看错②中的n ,解得37x y =⎧⎨=-⎩,(1)求m ,n 的值;(2)求原方程组的解.22.(9分)如图,在大长方形ABCD 中,放入8个相同的小长方形,求(1)每个小长方形的长和宽分别是多少厘米?(2)图中阴影部分面积为多少平方厘米?23.(9分)为更好的治理水质,保护环境,市治污办事处预购买10台污水处理设备,现有A 、B 两种型号的设备,其中价格及污水处理量如右表.询问商家得知:购买一台A 型设备比购买一台B 型设备多2万元,购买2台A 型设备比购买3台B 型设备少6万元,根据以上条件,(1)求a 、b 的值;A 型B 型价格(万元)a b 处理污水量(吨/月)240200(2)市治污办事处由于资金缺乏,购买污水处理设备的资金最多105万元,你认为该有几种购买方案?(3)在(2)的情况下,若每月污水处理量要求不低于2040吨,为节约资金,请你帮市治污办事处选取一种最省钱的方案?24.(10分)对于数轴上的点A 和正数r ,给出如下定义:点A 在数轴上移动,沿负方向移动r 个单位长度后所在位置点表示的数是x ,沿正方向移动r 个单位长度后所在位置点表示的数是y ,x 与y 这两个数叫做“点A 的r 对称数”,记作(,){,}D A r x y =,其中x y <.例如:原点O 表示0,原点O 的1对称数是(,1){1,1}D O =-.(1)若点A 表示2,则点A 的3对称数(,3){,}D A x y =,则x =______,y =______;(2)若(,){2,14}D A r =,求点A 表示的数及r 的值;(3)已知(,5){,}D A x y =,(,3){,}D B m n =,若数轴上还有一点C ,点A 、点B 从点C 同时出发,沿数轴反向运动,点A 的速度是点B 速度的2倍,且满足24y n x m -=-.当2()5()yn x m -=-时,求此时点A 表示的数.25.(10分)在平面直角坐标系中,点(),1A a ,(),6B b ,(),3C c ,且a ,b ,c 满足231321b c a a c b +=+⎧⎨+=+⎩.(1)若1a =,求B ,C 两点的坐标;(2)当实数a 变化时,判断ABC 的面积是否发生变化?若不变,求其值;若变化,求其变化范围;(3)如图,已知线段AB 与y 轴相交于点E ,直线AC 与直线OB 交于点P ,若3PA PC ≤,求实数a 的取值范围.。

2020-2021学年度七年级数学下册第三次月考试题卷(附答案)

2020-2021学年度七年级数学下册第三次月考试题卷(附答案)

七年级数学下册第三次月考试题卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第四章《三角形》班级姓名得分一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.下列运算正确的是()A. (−x)2·x3=x6B. (−x)3÷x=x2C. 3x2yz÷(−xy)=−3xzD. (a−b)6÷(a−b)3=a3−b32.如图,点F,E分别在线段AB和CD上,下列条件能判定AB//CD的是()A. ∠1=∠2B. ∠1=∠4C. ∠4=∠2D. ∠3=∠43.有一辆汽车储油45升,从某地出发后,每行驶1千米耗油0.1升,如果设剩余油量为(升,行驶的路程为(千米),则与的关系式为A. y=45−0.1xB. y=45+0.1xC. y=45−xD. y=45+x4.已知BD是△ABC的中线,AB=4,AC=3,BD=5,则△ABD的周长为()A.12B. 10.5C. 10D. 8.55.如图,已知△ABC的六个元素,而在图甲、乙、丙中,仅已知甲、乙、丙三个三角形中某些元素,则与△ABC一定全等的三角形是()A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙6.2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间关系的大致图象是()A. B. C. D.7.下列说法中正确的是()A. 如果|x|=7,那么x一定是7B. −a表示的数一定是负数C. 射线AB和射线BA是同一条射线D. 一个锐角的补角比这个角的余角大90°8.设a=355,b=444,c=533,则a、b、c的大小关系是()A. c<a<bB. a<b<cC. b<c<aD. c<b<a9. 如果二次三项式x 2−14x +m 2是一个完全平方式,那么m 的值是( ) A. 7 B. ±7 C. 49 D. √1410. 如图,在长方形ABCD 中,AB =6cm ,BC =8cm ,点E 是AB 上的一点,且AE =2BE.点P 从点C 出发,以2cm/s 的速度沿点C −D −A −E 匀速运动,最终到达点E.设点P 运动时间为ts ,若三角形PCE 的面积为18cm 2,则t 的值为( )A. 98或194B. 98或194或274C. 94或6 D. 94或6或274 二、填空题(本大题共5小题,共20.0分)11. 如图,已知BD 是△ABC 的中线,AB =5,BC =3,△ABD 和△BCD 的周长的差是 .12. 某汽车生产厂对其生产的A 型汽车进行油耗试验,试验中汽车为匀速行驶,在行驶过程中,油箱的余油量y(升)与行驶时间t(小时)之间的关系如下表:t(小时)0 1 2 3 y(升) 120 112 104 96由表格中y 与t 的关系可知,当汽车行驶 小时时,油箱的余油量为0升. 13. 如图,点O 在直线AB 上,OC ⊥OD ,OC ,OF 分别平分∠AOE 和∠BOD.若∠AOC =20∘,则∠BOF 的度数为 .14. 若2x =5,2y =1,2z =6.4,则x +y +z = .15. 如图所示,与∠A 是同旁内角的角共有______个.三、解答题(本大题共10小题,共100.0分)16. (8分)化简(2a +b)(b −2a)−(a −2b)2+4a(a −b)中,其中a =3,b =−217. (10分)如图,点O 是直线AB 上任一点,射线OD 和射线OE 分别平分∠AOC 和∠BOC .(1)填空:与∠AOE 互补的角有______;(2)若∠COD =30°,求∠DOE 的度数;(3)当∠AOD =α°时,请直接写出∠DOE 的度数.18.(10分)如图,四边形ABCD中,AB//CD,CD=AD,∠ADC=60°,对角线BD平分∠ABC交AC于点P.CE是∠ACB的角平分线,交BD于点O.(1)请求出∠BAC的度数;(2)试用等式表示线段BE、BC、CP之间的数量关系,并说明理由.19.(10分)如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一直线上,连接BD.(1)△BAD与△CAE全等吗?为什么?(2)试猜想BD,CE有何特殊位置关系,并说明理由.20.(10分)棱长为a的小正方体,按照下图的方法继续摆放,自上而下分别叫第一层、第二层、…、第n层.第n层的小正方体的个数记为S.解答下列问题:(1)按要求填写下表:n1234…S13…(2)研究上表可以发现S随n的变化而变化,且S随n的增大而增大有一定的规律,请你用式子来表示S与n的关系,并计算当n=10时,S的值为多少?21.(8分)如图,直线AB,CD相交于点O,∠1=35∘,∠2=75∘,求∠EOB的度数.22.(10分)数学课上,老师出了这样一道题:先化简,再求值:(2x+y)(2x−y)−(2x−y)2+2y2,其中xy=2021.小亮一看,题中没有给出x和y的值,只给出了xy的值,所以小亮认为根据题中条件不可能求出题目的值.你认为小亮的说法正确吗⋅请说明理由.23.(10分)陈杰骑自行车去上学,当他以往常的速度骑了一段路时,忽然想起要买某本书,于是又折回到刚经过的一家书店,买到书后继续赶去学校.以下是他本次上学所用的路程与时间的关系示意图.根据图中提供的信息回答下列问题:(1)陈杰家到学校的距离是多少米?书店到学校的距离是多少米?(2)陈杰在书店停留了多少分钟?本次上学途中,陈杰一共行驶了多少米?(3)在整个上学的途中哪个时间段陈杰骑车速度最快?最快的速度是多少米?(4)如果陈杰不买书,以往常的速度去学校,需要多少分钟?本次上学比往常多用多少分钟?24.(12分)在平面直角坐标系中,O为原点,点A(2,0),点B(0,3).(Ⅰ)如图①,三角形AOB的面积为______;(Ⅱ)如图②,将线段AB向右平移2个单位长度,再向上平移1个单位长度,得到线段A1B1,求三角形OA1B1的面积;(Ⅲ)如图①,在x轴上是否存在点C,使三角形ABC的面积等于6.若存在,求点C 的坐标;若不存在,请说明理由.25.(12分)如图,将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)判断大小关系:∠AOD______∠BOC(填>、=、<等);(2)若∠BOD=35°,则∠AOC=____________;若∠AOC=135°,则∠BOD=__________;(3)猜想∠AOC与∠BOD的数量关系,并说明理由.答案1.C2.B3.A4.B5.B6.D7.D8.A9.B10.C11.212.1513.35°14.515.416.解:原式=b2−4a2−a2+4ab−4b2+4a2−4ab =−3b2−a2,当a=3,b=−2时,原式=−3×4−9=−12−9=−21.17.解:(1)∠BOE、∠COE;(2)∵OD、OE分别平分∠AOC、∠BOC,∠BOC,∴∠COD=∠AOD=30°,∠COE=∠BOE=12∴∠AOC=2×30°=60°,∴∠BOC=180°−60°=120°,∠BOC=60°,∴∠COE=12∴∠DOE=∠COD+∠COE=90°;(3)当∠AOD=α°时,∠DOE=90°.18.(1)解:∵CD=AD,∠ADC=60°,∴△ACD为等边三角形,∵AB//CD,∴∠ACD=60°,∴∠BAC=∠ACD=60°;(2)证明::在BC上截取BF=BE,∵BD平分∠ABC,∴∠EBO=∠OBF,∵OB=OB,∴△BEO≌△BFO(SAS),∴∠BOE=∠BOF,∵∠BAC=60°,CE是∠ACB的角平分线,∴∠OBC=∠OCB=60°,∴∠POC=∠BOE=60°,∴∠COF=60°,∴∠COF=∠POC,又∵OC=OC,∠OCP=∠OCF,∴△CPO≌△CFO(ASA),∴CP=CF,∴BC=BF+CF=BE+CP.19.解:(1)全等.因为∠BAC=∠DAE=90°,所以∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE.在△BAD和△CAE中,所以△BAD≌△CAE(SAS).(2)BD,CE的特殊位置关系为BD⊥CE.理由:由(1)知△BAD≌△CAE,所以∠ADB=∠E.因为∠DAE=90°,所以∠E+∠ADE=90°.所以∠ADB+∠ADE=90°,即∠BDE=90°.所以BD,CE的特殊位置关系为BD⊥CE.20.解:(1)6,10(2)S=n(n+1).2=55.当n=10时,S=10×(10+1)221.解:因为∠1与∠DOB是对顶角,所以∠DOB=∠1=35∘.又因为∠2=75∘,所以∠EOB=∠2+∠DOB=75∘+35∘=110∘.22.解:不正确.理由如下:因为(2x+y)(2x−y)−(2x−y)2+2y2=4x2−y2−4x2+4xy−y2+2y2=4xy.所以,当xy=2021时,原式=4×2021=8084.23.解:(1)陈杰家到学校的距离是1500米,1500−600=900(米).所以书店到学校的距离是900米.(2)12−8=4(分钟),所以陈杰在书店停留了4分钟.1200+(1200−600)+(1500−600)=2700(米),所以本次上学途中,陈杰一共行驶了2700米.(3)(1500−600)÷(14−12)=450(米/分钟),所以在整个上学的途中12分钟到14分钟时段陈杰骑车速度最快,最快的速度是450米/分钟.(4)1500÷(1200÷6)=7.5(分钟),14−7.5=6.5(分钟),所以陈杰以往常的速度去学校,需要7.5分钟,本次上学比往常多用6.5分钟.答:陈杰以往常的速度去学校,需要7.5分钟,本次上学比往常多用6.5分钟.24.解:(Ⅰ)如图①中,∵A(2,0),点B(0,3),∴OA=2,OB=3,∴S△AOB=12⋅OA⋅OB=12×2×3=3.故答案为3.(Ⅱ)如图②中,过点B1作B1E⊥x轴于E,过点A1作A1F⊥x轴于F.由题意A1(4,1),B1(2,4),∴E(2,0),F(4,0),∴OE=2,EB1=4,EF=2,A1F=1,∴S△OA1B1=S△AB1E+S梯形EFA1B1−S△OFA1=12×2×4+12×(4+1)×2−12×1×4=7.(Ⅲ)如图1−1中,存在点C.设C(m,0),由S△ABC=12×AC×OB=6,可知12×|2−m|×3=6,解得m=−2或6,∴C(−2,0)或C(6,0).25.解:(1)=;(2)145°;45°;(3)猜想:∠AOC+∠BOD=180°,理由:依题意∠AOB=∠DOC=90°,∴∠AOC+∠BOD=(∠AOB+∠BOC)+∠BOD,=∠AOB+(∠BOC+∠BOD),=∠AOB+∠DOC=90°+90°,=180°.。

长春市七年级(下)第三次月考数学试卷含答案

长春市七年级(下)第三次月考数学试卷含答案

月考试卷一、选择题(本大题共8小题,共24.0分)1.现有两根小木棒,它们的长度分别为4cm和5cm,若要钉成一个三角形架,下列长度不可以作为第三根木棒长度的是为()A. 4cmB. 5cmC. 8cmD. 10cm2.已知两个不等式的解集在数轴上如图所示,则由这两个不等式组成的不等式组的解集为()A. -2<x<2B. x<2C. x≥-2D. x>23.n边形的内角和等于1080°,则n的值是()A. 8B. 7C. 6D. 54.方程组的解为,则被遮盖的前后两个数分别为()A. 1、2B. 1、5C. 5、1D. 2、45.若3m-7和9-m互为相反数,则m的值是()A. 4B. 1C. -1D. -46.用一批相同的正多边形地砖辅地,要求顶点聚在一起,且砖与砖之间不留空隙,这样的地砖是()A. 正五边形B. 正三角形,正方形C. 正三角形,正五边形,正六边形D. 正三角形,正方形,正六边形7.已知关于x的不等式组无解,则m的取值范围是()A. m≤3B. m>3C. m<3D. m≥38.某种服装的进价为240元,出售时标价为360元,由于换季,商店准备打折销售,但要保特利润不低20%,那么至多打()A. 6折B. 7折C. 8折D. 9折二、填空题(本大题共6小题,共18.0分)9.我们用如图的方法(斜钉上一块木条)来修理一条摇晃的凳子的数学原理是利用三角形的______.10.当代数式2x-2与3+x的值相等时,x=______.11.若,则x-y=______.12.从一个多边形的某顶点出发,连接其余各顶点,把该多边形分成了4个三角形,则这个多边形是______边形.13.关于x的不等式-2x-4≤3的所有负整数解的和是______.14.如图,△ABC是一块直角三角板,∠BAC=90°,∠B=25°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F,若∠CAF=20°,则∠BED的度数为______°.三、计算题(本大题共1小题,共8.0分)15.定义一种法则“⊕”如下:a⊕b=,例如:1⊕2=2.(1)(-2018)⊕(-2019)=______;(2)若(-3p+5)⊕8=8,求p的负整数值.四、解答题(本大题共9小题,共70.0分)16.解方程:x+=17.已知关于x,y的方程组的解满足x+y<0,求m的取值范围.18.求不等式组的整数解.19.一个多边形的每个内角都相等,并且其中一个内角比它相邻的外角大100°,求这个多边形的边数.20.如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.21.随着中国传统节日“端午节”的临近,永旺超市决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,买1盒甲品牌粽子和2盒乙品牌粽子需230元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?22.已知直线PQ∥MN,△ABC的顶点A与B分别在直线MN与PQ上,∠C=45°,设∠CBQ=∠a,∠CAN=∠β.(1)如图①,当点C落在PQ的上方时,AC与PQ相交于点D,求证:∠β=∠a+45°;(2)如图②.当点C落在直线MN的下方时,BC与MN交于点F,请判断∠a与∠β的数量关系,并说明理由.23.已知某中学计划租用、两种型号的客车共辆,同时送七年级师生到沙家参加社会实践活动,已知该中学租车的总费用不超过5600元.(1)求最多能租用多少辆A型号客车?(2)若七年级的师生共有380人,请写出所有可能的租车方案.24.探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD 的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.答案和解析1.【答案】D【解析】解:根据三角形三边关系可得:5-4<第三根木棒的长<5+4,即:1<第三根木棒的长<9,故不可以是10cm.故选:D.根据三角形的三边关系得到第三根木棒的长的取值范围,再确定答案即可.此题主要考查了三角形的三边关系,关键是掌握三角形三边关系定理:三角形两边之和大于第三边.三角形的两边差小于第三边.2.【答案】D【解析】解:根据数轴图示可知,这两个不等式组成的不等式组的解集为x>2,故选:D.根据数轴图示可知,这两个不等式组成的不等式组的解集为x>2,本题考查了不等式的解集,正确理解数轴上不等式解集的意义是解题的关键.3.【答案】A【解析】解:根据题意得;(n-2)×180°=1080°解得:n=8.故选:A.依据多边形的内角和公式计算即可.本题主要考查的是多边形的内角和公式的应用,掌握多边形的内角和公式是解题的关键.4.【答案】C【解析】解:将x=2代入第二个方程可得y=1,将x=2,y=1代入第一个方程可得2x+y=5∴被遮盖的前后两个数分别为:5,1故选:C.根据方程组的解满足方程组中的每个方程,代入求值可求出被遮盖的前后两个数.本题考查了解二元一次方程组,利用方程组的解满足每个方程即可.5.【答案】C【解析】解:由题意知3m-7+9-m=0,则3m-m=7-9,2m=-2,m=-1,故选:C.根据相反数的性质得出关于m的方程3m-7+9-m=0,解之可得.本题主要考查解一元一次方程,解题的关键是熟练掌握相反数的性质、等式的基本性质和解一元一次方程的基本步骤.6.【答案】D【解析】解:若是正三角形地砖,正三角形的每个内角是60°,能整除360°,能够铺满地面;若是正四角形地砖,正方形的每个内角是90°,能整除360°,能够铺满地面;若是正五角形地砖,正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能够铺满地面;若是正六角形地砖,正六边形的每个内角是120°,能整除360°,能够铺满地面;故选:D.根据一种正多边形的镶嵌应符合一个内角度数能整除360°求解即可.本题考查了平面镶嵌,体现了学数学用数学的思想.由平面镶嵌的知识可知只用一种正多边形能够铺满地面的是正三角形或正四边形或正六边形.7.【答案】A【解析】解:解不等式3x-1<4(x-1),得:x>3,∵不等式组无解,∴m≤3,故选:A.先按照一般步骤进行求解,因为大大小小无解,那么根据所解出的x的解集,将得到一个新的关于m不等式,解答即可.主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,注意:当符号方向不同,数字相同时(如:x>a,x<a),没有交集也是无解但是要注意当两数相等时,在解题过程中不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).8.【答案】C【解析】解:设打了x折,由题意得360×0.1x-240≥240×20%,解得:x≥8.答:至多打8折.故选:C.设打了x折,用售价×折扣-进价得出利润,根据利润率不低于20%,列不等式求解.本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于20%,列不等式求解.9.【答案】稳定性【解析】解:用如图的方法(斜钉上一块木条)来修理一条摇晃的凳子的数学原理是利用三角形的稳定性,故答案为:稳定性.当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性,根据三角形具有稳定性回答即可.本题考查了三角形的稳定性,解题的关键是了解三角形具有稳定性,四边形不具有稳定性.10.【答案】5【解析】解:根据题意得:2x-2=3+x,移项合并得:x=5,故答案为:5.根据题意列出方程,求出方程的解即可得到x的值.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.11.【答案】3【解析】解:,①+②得:4x-4y=12,方程两边同时除以4得:x-y=3,故答案为:3.利用加减消元法解之即可.本题考查了解二元一次方程组,正确掌握加减消元法是解题的关键.12.【答案】6【解析】解:设这个多边形为n边形.根据题意得:n-2=4.解得:n=6.故答案为:6.根据n边形从一个顶点出发可引出(n-2)个三角形解答即可.本题主要考查的是多边形的对角线,掌握公式是解题的关键.13.【答案】-6【解析】解:不等式-2x-4≤3的解集是x≥-,故不等式的负整数解为-3,-2,-1.-3-2-1=-6,故答案为:-6.首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的负整数即可求解.本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.14.【答案】85【解析】解:如图所示,∵DE∥AF,∴∠BED=∠BFA,又∵∠CAF=20°,∠C=65°,∴∠BFA=20°+65°=85°,∴∠BED=85°,故答案为:85.依据DE∥AF,可得∠BED=∠BFA,再根据三角形外角性质,即可得到∠BFA=20°+65°=85°,进而得出∠BED=85°.本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.15.【答案】-2018【解析】解:(1)∵-2018>-2019,∴(-2018)⊕(-2019)=-2018,故答案为:-2018;(2)∵(-3p+5)⊕8=8,∴-3p+5≤8,解得:p≥-1,∴p的负整数值为-1.(1)根据定义运算可得.(2)先根据题中所给的条件得出关于p的不等式,求出p的取值范围即可.本题考查的是解一元一次不等式,根据题意得出关于p的不等式是解答此题的关键.16.【答案】解:方程两边同时乘以6得:6x+3=2(2-x),去括号得:6x+3=4-2x,移项得:6x+2x=4-3,合并同类项得:8x=1,系数化为1得:x=.【解析】依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.17.【答案】解:,①+②,得3x+3y=2+2m,∴x+y=,∵x+y<0,∴,解得,m<-1,即m的取值范围是m<-1.【解析】根据题目中的不等式组可以求得x+y的值,从而可以求得m的取值范围.本题考查解一元一次不等式组、二元一次方程组的解,解答本题的关键是明确题意,求出m的取值范围.18.【答案】解:∵解不等式①得:x>-1,解不等式②得:x<5,∴不等式组的解集是:-1<x<5,∴不等式组的整数解是:0,1,2,3,4.【解析】先求出不等式组的解集,再求出不等式组的整数解即可.本题考查了解一元一次不等式组和不等式组的整数解,能求出不等式组的解集是解此题的关键.19.【答案】解:设每个内角度数为x度,则与它相邻的外角度数为180°-x°,根据题意可得x-(180-x)=100,解得x=140.所以每个外角为40°,所以这个多边形的边数为360÷40=9.答:这个多边形的边数为9.【解析】根据内角与相邻外角和为180度、内角比它相邻的外角大100°,构造方程求出外角度数,最后利用外角和360°可求边数.本题主要考查多边形的内角与外角、多边形的外角和360°知识,解题的关键是利用内、外角转化求边数.20.【答案】解:∵AD是BC边上的中线,∴D为BC的中点,CD=BD.∵△ADC的周长-△ABD的周长=5cm.∴AC-AB=5cm.又∵AB+AC=11cm,∴AC=8cm.即AC的长度是8cm.【解析】根据中线的定义知CD=BD.结合三角形周长公式知AC-AB=5cm;又AC+AB=11cm.易求AC的长度.本题考查了三角形的角平分线、中线和高.三角形一边的中点与此边所对顶点的连线叫做三角形的中线.21.【答案】解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据题意得:解得:答:打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)80×70×(1-80%)+100×80×(1-75%)=3120(元).答:打折后购买这批粽子比不打折节省了3120元.【解析】(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据“打折前,买1盒甲品牌粽子和2盒乙品牌粽子需230元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据节省钱数=甲品牌粽子节省的钱数+乙品牌粽子节省的钱数,即可求出节省的钱数.本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.22.【答案】(1)证明:∵∠CDQ是△CBD的一个外角,∴∠CDQ=∠α+∠C,∵PQ∥MN,∴∠CDQ=∠β,∴∠β=∠α+∠C,∵∠C=45°,∴∠β=∠α+45°;(2)解:∠α=∠β+45°,理由如下:∵∠CFN是△ACF的一个外角,∴∠CFN=∠β+∠C,∵PQ∥MN,∴∠CFN=∠α,∴∠α=∠β+∠C,∵∠C=45°,∴∠α=∠β+45°.【解析】(1)由三角形的外角性质得出∠CDQ=∠α+∠C,由平行线的性质得出∠CDQ=∠β,得出∠β=∠α+∠C,即可得出结论;(2)由三角形的外角性质得出∠CFN=∠β+∠C,由平行线的性质得出∠CFN=∠α,得出∠α=∠β+∠C,即可得出结论.本题考查了平行线的性质以及三角形的外角性质;熟练掌握平行线的性质和三角形的外角性质是解题的关键.23.【答案】解:(1)设租用A型号客车x辆,则租用B型号客车(10-x)辆,依题意,得:600x+450(10-x)≤5600,解得:x≤7.又∵x为整数,∴x的最大值为7.答:最多能租用7辆A型号客车.(2)设租用A型号客车x辆,则租用B型号客车(10-x)辆,依题意,得:45x+30(10-x),≥380,解得:x≥5.又∵x为整数,且x≤7,∴x=6,7.∴有两种租车方案,方案一:组A型号客车6辆、B型号客车4辆;方案二:组A型号客车7辆、B型号客车3辆.【解析】(1)设租用A型号客车x辆,则租用B型号客车(10-x)辆,根据总租金=600×租用A型号客车的辆数+450×租用B型号客车的辆数结合租车的总费用不超过5600元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再取其中的最大整数值即可得出结论;(2)设租用A型号客车x辆,则租用B型号客车(10-x)辆,根据座位数=45×租用A 型号客车的辆数+30×租用B型号客车的辆数结合师生共有380人,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再结合(1)的结论及x为整数,即可得出各租车方案.本题考查了一元一次不等式的应用,找准等量关系,正确列出一元一次不等式是解题的关键.24.【答案】解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=∠ADC,∠PCD=∠ACD,∴∠P=180°-∠PDC-∠PCD=180°-∠ADC-∠ACD=180°-(∠ADC+∠ACD)=180°-(180°-∠A)=90°+∠A;探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=∠ADC,∠PCD=∠BCD,∴∠P=180°-∠PDC-∠PCD=180°-∠ADC-∠BCD=180°-(∠ADC+∠BCD)=180°-(360°-∠A-∠B)=(∠A+∠B).【解析】探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;探究二:根据角平分线的定义可得∠PDC=∠ADC,∠PCD=∠ACD,然后根据三角形内角和定理列式整理即可得解;探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可.本题考查了三角形的外角性质,三角形的内角和定理,多边形的内角和公式,此类题目根据同一个解答思路求解是解题的关键.。

2019-2020学年重庆市渝中区巴蜀中学七年级(下)月考数学试卷(3月份)

2019-2020学年重庆市渝中区巴蜀中学七年级(下)月考数学试卷(3月份)

2019-2020学年重庆市渝中区巴蜀中学七年级(下)月考数学试卷(3月份)一.选择题:(每小题4分,共48分)(每题只有一个选项是正确的)1.(4分)下列计算中,正确的是()A.a2•a4=a8B.(a3)2=a5C.(3ax)2=9a2x2D.a2+a2=a42.(4分)“a是实数,a2≥0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件3.(4分)计算(﹣4)2020×0.252019=()A.﹣4B.﹣1C.4D.14.(4分)在一个不透明的布袋中装有红色,白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有()A.4个B.6个C.34个D.36个5.(4分)向如图所示的盘中随机抛掷一枚骰子,落在阴影区域的概率(盘底被等分成12份,不考虑骰子落在线上情形)是()A.B.C.D.6.(4分)已知x a=3,x b=5,则x3a﹣2b=()A.52B.C.D.7.(4分)已知a﹣b=5,ab=3,则(a+1)(b﹣1)的值为()A.﹣1B.﹣3C.1D.38.(4分)如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(3a+b)的大长方形,则需要C类卡片()张.A.5B.6C.7D.89.(4分)下列各式中,不能够用平方差公式计算的是()A.(y+2x)(2x﹣y)B.(﹣x﹣3y)(x+3y)C.(2x2﹣y2)(2x2+y2)D.(4a+b﹣c)(4a﹣b﹣c)10.(4分)如果(x﹣3)x=1,则x的值为()A.0B.2C.4D.以上都有可能11.(4分)多项式5x2﹣4xy+4y2+12x+25的最小值为()A.4B.5C.16D.2512.(4分)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如下的三角形解释(a+b)n的展开式中各项的系数,此三角形称为“杨辉三角”,即:(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5根据“杨辉三角”计算出(a+b)10的展开式中第三项的系数为()A.10B.45C.46D.50二.填空题:(每小题3分,共24分)13.(3分)世界上最小的开花结果植物是澳大利亚的出水浮萍,其果实质量只有0.000000076克,将0.000000076克用科学记数法表示为克.14.(3分)一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除颜色不同外其他完全相同,则从袋子中随机摸出一个球是黄球的概率为.15.(3分)计算:(π﹣3.14)0﹣(﹣)﹣3=.16.(3分)已知2m×82=44,则m=.17.(3分)计算:=.18.(3分)若x2+(k﹣1)xy+25y2是一个完全平方式,则常数k的值是.19.(3分)已知多项式2x2+kx﹣14是整式x﹣2与另一整式A相乘得到,则k的值是.20.(3分)已知x2=2y+5,y2=2x+5(x≠y),则x3+2x2y2+y3的值为.三.解答题:(共78分)21.(30分)计算:(1)﹣2a3b•(﹣4a2b)÷6a4b2(2)2(x﹣y)3•[﹣(y﹣x)3]2(3)(﹣x2y)3+xy•(﹣x2y+2x5y2﹣y)(4)(2a﹣1)(a﹣4)﹣(a+3)(a﹣4)(5)(x﹣3y+4)(x+3y﹣4)(6)(a+2b)(a﹣2b)(a2﹣4b2)22.(8分)某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图所示的统计表,根据统计图提供的信息解决下列问题:(1)这种树苗成活的频率稳定在,成活的概率估计值为.(2)该地区已经移植这种树苗5万棵.①估计这种树苗成活万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?23.(10分)先化简,再求值:[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷(2y),其中|x+1|+y2+2y+1=0.24.(8分)根据条件,求代数式的值:(1)若x﹣=﹣2,求x2+的值;(2)若x+y=3,x2+y2=5,求2(x﹣y)2的值.25.(10分)利用我们学过的知识,可以导出下面这个形式优美的等式:a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(a﹣c)2],该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁、美观.(1)请你检验说明这个等式的正确性.(2)若a=2019,b=2020,c=2021,你能很快求出a2+b2+c2﹣ab﹣bc﹣ac的值吗?(3)若a﹣b=,b﹣c=,且a2+b2+c2=1,求ab+bc+ac的值.26.(12分)我们通常用作差法比较代数式大小.例如:已知M=2x+3,N=2x+1,比较M和N的大小.先求M﹣N,若M﹣N>0,则M>N;若M﹣N<0,则M<N;若M﹣N=0,则M=N,反之亦成立.本题中因为MN=2x+3 (2x+1)=2>0,所以M>N.(1)如图1是边长为a的正方形,将正方形一边不变,另一边增加4,得到如图2所示的新长方形,此长方形的面积为S1;将图1中正方形边长增加2得到如图3所示的新正方形,此正方形的面积为S2.用含a的代数式表示S1=,S2=(需要化简).然后请用作差法比较S1与S2大小;(2)已知A=2a2﹣6a+1,B=a2﹣4a﹣1,请你用作差法比较A与B大小.(3)若M=(a﹣4)2,N=16﹣(a﹣6)2,且M=N,求(a﹣4)(a﹣6)的值.2019-2020学年重庆市渝中区巴蜀中学七年级(下)月考数学试卷(3月份)参考答案与试题解析一.选择题:(每小题4分,共48分)(每题只有一个选项是正确的)1.【解答】解:A、a2•a4=a6≠a8,本选项错误;B、(a3)2=a6≠a5,本选项错误;C、(3ax)2=9a2x2,本选项正确;D、a2+a2=2a2≠a4,本选线错误.故选:C.2.【解答】解:a为实数,a2≥0,是一定成立的问题,是必然事件.故选:A.3.【解答】解:原式=﹣4×(﹣4)2019×0.252019,=﹣4×(﹣4×0.25)2019,=﹣4×(﹣1),=4,故选:C.4.【解答】解:∵摸到红色球的频率稳定在15%左右,∴口袋中红色球的频率为15%,故红球的个数为40×15%=6个.故选:B.5.【解答】解:∵盘底被等分成12份,其中阴影部分占4份,∴落在阴影区域的概率=.故选C.6.【解答】解:∵x a=3,x b=5,∴x3a﹣2b=(x a)3÷(x b)2=33÷52=.故选:B.7.【解答】解:原式=ab﹣a+b﹣1=ab﹣(a﹣b)﹣1,把a﹣b=5,ab=3代入得:原式=3﹣5﹣1=﹣3,故选:B.8.【解答】解:∵(a+2b)(3a+b)=3a2+7ab+2b2∵一张C类卡片的面积为ab∴需要C类卡片7张.故选:C.9.【解答】解:B、两项都是相反项的项,不能运用平方差公式;A、C、D中均存在相同和相反的项,故选:B.10.【解答】解:x=0时,(0﹣3)0=(﹣3)0=1x=2时,(2﹣3)2=(﹣1)2=1x=4时,(4﹣3)0=14=1故选:D.11.【解答】解:∵5x2﹣4xy+4y2+12x+25,=x2﹣4xy+4y2+4x2+12x+25,=(x﹣2y)2+4(x+1.5)2+16,∴当(x﹣2y)2=0,4(x+1.5)2=0时,原式最小,∴多项式5x2﹣4xy+4y2+12x+25的最小值为16,故选:C.12.【解答】解:根据“杨辉三角”请计算(a+b)10的展开式中第三项的系数为为45,故选:B.二.填空题:(每小题3分,共24分)13.【解答】解:将0.000000076克用科学记数法表示为7.6×10﹣8克.故答案为:7.6×10﹣8.14.【解答】解:∵一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除颜色不同外其他完全相同,∴从袋子中随机摸出一个球是黄球的概率为:=.故答案为:.15.【解答】解:原式=1+8=9.故答案为:9.16.【解答】解:2m×82=44,2m×26=28,2m+6=28,则m+6=8,解得:m=2,故答案为:2.17.【解答】解:原式===,故答案为:18.【解答】解:∵x2+(k﹣1)xy+25y2是一个完全平方式,∴k﹣1=±10.∴k=11或k=﹣9.故答案为:11或﹣9.19.【解答】解:已知多项式最高次数为2,故可知整式A为一次,设A为ax+b,则(x﹣2)(ax+b)=2x2+kx﹣14∴ax2+(b﹣2a)x﹣2b=2x2+kx﹣14∴解得:k=3故答案为:3.20.【解答】解:∵x2=2y+5,y2=2x+5,∴x2﹣y2=(x+y)(x﹣y)=2(y﹣x),∵x≠y,∴x+y=﹣2,∵x2+y2=2(x+y)+10,∴x2+y2=6=(x+y)2﹣2xy,∴xy=﹣1,∵x3+2x2y2+y3=(x+y)(x2+y2﹣xy)+2=﹣2(6+1)+2=﹣12;故答案为﹣12.三.解答题:(共78分)21.【解答】解:(1)原式=8a5b2÷6a4b2=a;(2)原式=2(x﹣y)3•(x﹣y)6=(x﹣y)9;(3)原式=﹣x6y3﹣x3y2+x6y3﹣xy2=﹣x3y2﹣xy2;(4)原式=2a2﹣9a+4﹣a2+a+12=a2﹣8a+16.(5)原式=x2﹣(3y﹣4)2=x2﹣9y2+24y﹣16;(6)原式=(a2﹣4b2)(a2﹣4b2)=(a2﹣4b2)2=a4﹣8a2b2+16b4.22.【解答】解:(1)这种树苗成活的频率稳定在0.9,成活的概率估计值为0.9.(2)①估计这种树苗成活在5×0.9=4.5万棵;②18÷0.9﹣5=15;答:该地区需移植这种树苗约15万棵.23.【解答】解:原式=(x2+6xy+9y2﹣2x2+4xy+x2﹣y2)÷2y =(8y2+10xy)÷2y=4y+5x,∵|x+1|+y2+2y+1=0,∴x+1=0,y+1=0,解得:x=﹣1,y=﹣1,∴原式=4×(﹣1)+5×(﹣1)=﹣9.24.【解答】解:(1)∵x﹣=﹣2,∴(x﹣)2=4,∴x2+﹣2=4,∴x2+=6;(2)∵x+y=3,x2+y2=5,∴(x+y)2=9,∴x2+2xy+y2=9,∴2xy=9﹣(x2+y2),∴2xy=4,∴2(x﹣y)2=2(x2+y2﹣2xy)=2×(5﹣4)=2×1=2.25.【解答】解:(1)等式右边=(a2﹣2ab+b2+b2﹣2bc+c2+a2﹣2ac+c2)=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ac)=a2+b2+c2﹣ab﹣bc﹣ac=等式左边,则a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(a﹣c)2];(2)由a=2019,b=2020,c=2021,得到a﹣b=﹣1,a﹣b=﹣2,b﹣c=﹣1,则a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(a﹣c)2]=×(1+4+1)=3;(3)∵a﹣b=,b﹣c=,∴a﹣c=,∵a2+b2+c2=1,a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(a﹣c)2],∴1﹣(ab+bc+ac)=×(++)则ab+bc+ac=1﹣=﹣.26.【解答】解:(1)根据题意得:S1=a(a+4)=a2+4a,S2=(a+2)2=a2+4a+4,∵S1﹣S2=(a2+4a)﹣(a2+4a+4)=a2+4a﹣a2﹣4a﹣4=﹣4<0,∴S1<S2;故答案为:a2+4a,a2+4a+4;(2)∵A=2a2﹣6a+1,B=a2﹣4a﹣1,∴A﹣B=2a2﹣6a+1﹣a2+4a+1=a2﹣2a+2=a2﹣2a+1+1=(a﹣1)2+1≥1>0,则A>B;(3)由M=N,得到M﹣N=0,∴(a﹣4)2﹣16+(a﹣6)2=0,整理得:a2﹣10a+18=0,即a2﹣10a=﹣18,则(a﹣4)(a﹣6)=a2﹣10a+24=﹣18+24=6.。

辽宁省葫芦岛市七年级下学期数学第三次月考试卷

辽宁省葫芦岛市七年级下学期数学第三次月考试卷

辽宁省葫芦岛市七年级下学期数学第三次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)给出四个数,-1,0,0.5,,其中为无理数的是()A . -1B . 0C . 0.5D .2. (2分) (2019七下·浦城期中) 下列说法中,正确是()A . 16的算术平方根是﹣4B . 25的平方根是5C . ﹣27的立方根是﹣3D . 1的立方根是±13. (2分)如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处此时需把方向调整到与出发时一致,则方向的调整应是()A . 右转80°B . 左转80°C . 右转100°D . 左转100°4. (2分)如图,OP平分∠MO N,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,OA=3,则PQ长的最小值为()A . 1C . 3D . 45. (2分) (2017九下·萧山月考) 若方程组的解是二元一次方程3x-5y-90=0的一个解,则a的值是()A . 3B . 2C . 6D . 76. (2分)下列命题中,真命题的个数有()①对角线互相平分的四边形是平行四边形;②两组对角分别相等的四边形是平行四边形;③一组对边平行,另一组对边相等的四边形是平行四边形.A . 3个B . 2个C . 1个D . 0个7. (2分) (2017七上·温州月考) 如图,面积为的正方形由四个相同的大长方形,四个相同的小长方形以及一个小正方形组成,其中大长方形的长是小长方形长的倍,若中间小正方形(阴影部分)的面积为,则小长方形的周长是()A .B .C .D .8. (2分)不等式1﹣3x<x+10的负整数解有()A . 1个B . 2个D . 4个9. (2分)(2019·瑞安模拟) 不等式x﹣1<2的解集在数轴上表示正确的是()A .B .C .D .10. (2分)将图1中的正方形剪开得到图2,图2中共有4个正方形;将图2中一个正方形剪开得到图3,图3中共有7个正方形;将图3中一个正方形剪开得到图4,图4中共有10个正方形;……;如此下去.则图10中正方形的个数是()A . 28B . 29C . 31D . 3211. (2分)如图,直线AB与CD相交于点O,OB平分∠DOE.若∠BOE=35°,则∠COE的度数是()A . 35°B . 70°C . 105°D . 110°12. (2分)若不等式组有解,则m的取值范围是()A . m<2B . m≥2D . 1≤m<2二、解答题 (共9题;共87分)13. (1分) (2018·焦作模拟) 计算:=________.14. (5分) (2016七下·河源期中) 如图,已知AC∥DE,∠1=∠2.求证:AB∥CD.15. (10分)解方程组:.16. (10分)解不等式组:,并把解集在数轴上表示出来.17. (15分)(1)将图中三角形各点的横坐标都乘以-1,纵坐标不变,画出所得到的图形.你所画的图形与原图形发生了什么变化?(2)若把原图中各点横坐标保持不变,纵坐标都乘以-2,画出所得到的图形,并说明该图与原图相比发生了什么变化?18. (10分) (2020八上·德城期末) 为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同.问学校获奖的同学有多少人?19. (10分) (2016九上·相城期末) 如图,在中,是角平分线,点在上,且.(1)与相似吗?为什么?(2)已知,求的长.20. (11分) (2019九上·孝南月考) 如图在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为坐标原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,只借助直尺确定该圆弧所在圆的圆心D,并连接AD、CD.(保留作图痕迹,不写作法)(2)请在(1)的基础上,完成下列填空与计算:①写出点的坐标:C________、D________;②⊙D的半径=________;(结果保留根号)③求扇形ADC的面积.(结果保留π)________21. (15分) (2016八上·怀柔期末) 请阅读下列材料:问题:如图1,点A,B在直线l的同侧,在直线l上找一点P,使得AP+BP的值最小.小明的思路是:如图2所示,先作点A关于直线l的对称点A′,使点A′,B分别位于直线l的两侧,再连接A′B,根据“两点之间线段最短”可知A′B与直线l的交点P即为所求.请你参考小明同学的思路,探究并解决下列问题:(1)如图3,在图2的基础上,设AA'与直线l的交点为C,过点B作BD⊥l,垂足为D.若CP=1,AC=1,PD=2,直接写出AP+BP的值;(2)将(1)中的条件“AC=1”去掉,换成“BD=4﹣AC”,其它条件不变,直接写出此时AP+BP的值;(3)请结合图形,求的最小值.三、填空题 (共5题;共5分)22. (1分) (2017八上·深圳月考) 已知点P在第二象限,且到x轴的距离为5,到y轴的距离为3,则点P的坐标为________.23. (1分)有理数a、b在数轴上的位置如图所示,用不等式表示:①a+b________0②│a│________│b│③ab________0④a-b________0.24. (1分)如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为________.25. (1分) (2017七下·萧山期中) 如图,若开始输入的x的值为正整数,最后输出的结果为144,则满足条件的x的值为________.26. (1分)用计算器探索规律:请先用计算器计算982 , 9982 , 99982 , 999982 ,由此猜想________.参考答案一、单选题 (共12题;共24分)1-1、2-1、3、答案:略4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、解答题 (共9题;共87分)13-1、14-1、15-1、16-1、17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、21-3、三、填空题 (共5题;共5分)22-1、23-1、24-1、25-1、26-1、。

2019-2020学年重庆一中七年级(下)月考数学试卷(3月份) 解析版

2019-2020学年重庆一中七年级(下)月考数学试卷(3月份) 解析版

2019-2020学年重庆一中七年级(下)月考数学试卷(3月份)一.选择题(共12小题)1.下列事件中,随机事件是()A.一个数的绝对值为非负数B.两数相乘,同号得正C.两个有理数之和为正数D.对顶角不相等2.在球的体积公式V=πR3中,下列说法正确的是()A.V、π、R是变量,为常量B.V、R是变量,π为常量C.V、R是变量,、π为常量D.V、R是变量,为常量3.下列说法正确的是()A.直线外一点到这条直线的垂线段叫这点到这条直线的距离B.同位角相等,两直线平行C.同旁内角一定互补D.一个角的补角与它的余角相等4.一个盒子里装有红、黄、白球分别为3、4、5个,这些球除颜色外都相同,从袋中任抽一个球,则抽到黄球的概率是()A.B.C.D.5.下列各式计算正确的是()A.(x+y)2=x2+y2B.(x+3)(x﹣3)=x2﹣3C.(m﹣n)(n﹣m)=n2﹣m2D.(x﹣y)2=(y﹣x)26.按下面的程序计算,若开始输入的值x为正整数,当输入x=7时,输出的值为()A.28B.42C.52D.1007.若两个角的两边分别平行,而其中一个角比另一个角的3倍少60°,那么这两个角的度数是()A.60°、120°B.都是30°C.30°、30°或60°、120°D.30°、120°或30°、60°8.已知x2﹣2(m﹣3)x+16是一个完全平方式,则m的值是()A.﹣7B.1C.﹣7或1D.7或﹣19.长方形的长为10cm、宽为6cm,它的各边都减少xcm,得到的新长方形的周长为ycm,则y与x之间的关系式是()A.y=32﹣4x(0<x<6)B.y=32﹣4x(0≤x≤6)C.y=(10﹣x)(6﹣x)(0<x<6)D.y=(10﹣x)(6﹣x)(0≤x≤6)10.一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s 与t之间的关系的大致图象是()A.B.C.D.11.下列图形都是由同样大小的黑点按一定的规律组成,摆第1个图案需要4个圆点,摆第2个图案需要7个圆点,摆第3个图案需要10个圆点,摆第4个图案需要13个圆点,按照这个规律继续摆放,第12个图摆放圆点的个数为()A.21B.35C.37D.4312.如图,AD∥BC,BD为∠ABC的角平分线,DE、DF分别是∠ADB和∠ADC的角平分线,且∠BDF=α,则以下∠A与∠C的关系正确的是()A.∠A=∠C+αB.∠A=∠C+2αC.∠A=2∠C+αD.∠A=2∠C+2α二.填空题(共6小题)13.2019新型冠状病毒(2019﹣nCoV),2020年1月12日被世命名.科学家借助比光学显微镜更加厉害的电子显微镜发现新型冠状病毒的大小约为0.000000125米.则数据0.000000125用科学记数法表示为.14.已知:m﹣n=6,mn=1,则m2+n2=.15.如图,已知AB∥CD,BE⊥DE于E,则∠ABE+∠CDE=.16.如图,一张圆形纸片中,画出7个同样大小的圆并涂上颜色.若一只蚂蚁(蚂蚁视为一点)随机的停留在该纸片上,则蚂蚁停留在涂有颜色部分的概率为.17.甲、乙两小朋友都从A地出发,匀速步行到B地(A、B两地之间为笔直的道路),甲出发半分钟后,乙才从A地出发,经过一段时间追上甲,两人继续向B地步行,当甲、乙之间的距离刚好是70米时,乙立刻掉头以原速度向A地步行,半分钟后与甲相遇,乙又立刻掉头向B地以原速度步行(两次掉头时间忽略不计).甲、乙相距的路程为y(米)与乙出发的时间x(分钟)之间的关系如图所示,当乙到达B地时,甲与B地相距的路程是米.18.工人师傅按照“最优化处理”打包多个同一款式长方体纸盒,其“最优化处理”是指:每相邻的两个纸盒必须以完全一样的面对接,最后打包成一个表面积最小的长方体,已知长方体纸盒的长xcm、宽ycm、高zcm都为整数,且x>y>z>1,x+z=2y,x+y+z+xy+xz+yz+xyz=439,若将六个此款式纸盒按“最优化处理”打包,其表面积为cm2.三.解答题(共8小题)19.计算:(1);(2)(a+2b+c)(a﹣2b+c)﹣2ac.20.如图,a∥b,点A在直线a上,点B、C在直线b上,且BA⊥CA,点D在线段BC上,连接AD,且AC平分∠DAF.证明:∠3=∠5.证明:∵BA⊥CA(已知)∴∠BAC=∠2+∠3=90°(①)∵∠1+∠BAC+∠4=180°(平角的定义)∴∠1+∠4=180°﹣∠BAC=180°﹣90°=90°∵AC平分∠DAF(已知)∴∠1=②(角平分线的定义)∴∠3=∠4(③)∵a∥b(已知)∴∠4=∠5(④)∴∠3=∠5(⑤)21.先化简,再求值.,其中m=2,n=﹣1.22.新型冠状病毒爆发,教育部部署了“停课不停学”的有关工作,各地都在进行在线教育.小依同学为了了解网课学习情况,对本班部分同学最喜爱的课程进行了调查,调查课程分别是网上授课、体育锻炼、名著阅读、艺术欣赏和其他课程并制成以下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)本次调查中一共调查了名学生,其中“名著阅读”所占的圆心角度数为.(2)请把条形统计图补全.(3)在调查的同学中随机选取一名学生,求他恰好最喜爱的课程是“艺术欣赏”的概率.(4)若该校一共有3000名学生,请估算出全校最喜爱的课程是“体育锻炼”的人数.23.已知:a2+b2﹣4a+8b+20=0,求:(a+1)(a2+1)(a4+1)(a8+1)﹣的值.24.已知动点P从点A出发沿图1的边框(边框拐角处都互相垂直)按A→B→C→D→E→F的路径移动,相应的△AHP的面积y(cm2)关于移动路程x(cm)的关系图象如图2,若AH=2cm,根据图象信息回答下列问题:(1)图1中AB=cm.(2)图2中m=;n=.(3)当△AHP的面积y为2时,求对应的x的值.25.阅读下列材料:数学中枚举法是一种重要归纳法也称为列举法、穷举法,是暴力策略的具体体现,又称为蛮力法.用枚举法解题时应该注意:(1)常常需要将对象进行恰当分类.(2)使其确定范围尽可能最小,逐个试验寻求答案.正整数N的末尾为5称为“威武数”,那么N的平方数为M称为“平武数”.例:152=225(2=1×2),252=625(6=2×3),352=1225(12=3×4),452=2025(20=4×5),552=3025(30=5×6),……由以上的枚举可以归纳得到的“平武数”特点是:①“平武数”的末两位数字是25;②去掉末两位数字25后,剩下部分组成的数字等于“威武数”去掉个位数字5后剩部分组成的数字与比此数大1的数之积.(如例中的括号内容)(1)根据以上特点我们能够很快的推出一个四位数的“平武数”M一共有个.(2)同学们用学过的完全平方公式求证:当“威武数”N为任意二位数时,“平武数”M 都满足以上特点.(3)已知“平武数”M的首位数是2且小于六位,又满足N的各位数字之和与M的各位数字之和相等,求出“平武数”M的值.26.如图1,AB∥CD,点E,F分别在直线CD,AB上,∠BEC=2∠BEF,过点A作AG ⊥BE的延长线交于点G,交CD于点N,AK平分∠BAG,交EF于点H,交BE于点M.(1)直接写出∠AHE,∠F AH,∠KEH之间的关系:=+;(2)若∠BEF=∠BAK,求∠AHE;(3)如图2,在(2)的条件下,将△KHE绕着点E以每秒5°的速度逆时针旋转,旋转时间为t,当KE边与射线ED重合时停止,则在旋转过程中,当△KHE的其中一边与△ENG的某一边平行时,直接写出此时t的值.2019-2020学年重庆一中七年级(下)月考数学试卷(3月份)参考答案与试题解析一.选择题(共12小题)1.下列事件中,随机事件是()A.一个数的绝对值为非负数B.两数相乘,同号得正C.两个有理数之和为正数D.对顶角不相等【分析】随机事件是指在一定条件下,可能发生也可能不发生的事件,依据定义依次分析题目中的事件即可解决.【解答】解:A、一个数的绝对值为非负数是必然事件,不符合题意;B、两数相乘,同号得正是必然事件,不符合题意;C、两个有理数之和为正数是随机事件,符合题意;D、对顶角不相等是不可能事件,不符合题意;故选:C.2.在球的体积公式V=πR3中,下列说法正确的是()A.V、π、R是变量,为常量B.V、R是变量,π为常量C.V、R是变量,、π为常量D.V、R是变量,为常量【分析】根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量可得答案.【解答】解:在球的体积公式V=πR3中,V,R是变量,,π是常量,故选:C.3.下列说法正确的是()A.直线外一点到这条直线的垂线段叫这点到这条直线的距离B.同位角相等,两直线平行C.同旁内角一定互补D.一个角的补角与它的余角相等【分析】分别按照“点到直线的距离”的概念、平行线的判定定理及两角互补与互余的定义分析即可.【解答】解:选项A:点到直线的距离是指:直线外一点到这条直线的垂线段的长度,即距离是“数”,而不是垂线段这个“物”,故A错误;选项B:“同位角相等,两直线平行”是平行线的判定定理之一,故正确;选项C:两直线不平行,则同旁内角不互补,故C错误;选项D:设这个角为α,则其补角为:180°﹣α;其余角为:90°﹣α当180°﹣α=90°﹣α时,得180°=90°,矛盾,故D错误.综上,只有选项B正确.故选:B.4.一个盒子里装有红、黄、白球分别为3、4、5个,这些球除颜色外都相同,从袋中任抽一个球,则抽到黄球的概率是()A.B.C.D.【分析】让黄球的个数除以球的总数即为摸到黄球的概率.【解答】解:∵布袋中装有红、黄、白球分别为3、4、5个,共12个球,从袋中任意摸出一个球共有12种结果,其中出现黄球的情况4种可能,∴得到黄球的概率是:=.故选:B.5.下列各式计算正确的是()A.(x+y)2=x2+y2B.(x+3)(x﹣3)=x2﹣3C.(m﹣n)(n﹣m)=n2﹣m2D.(x﹣y)2=(y﹣x)2【分析】分别根据完全平方公式和平方差公式逐一判断即可.【解答】解:A.(x+y)2=x2++2xy+y2,故本选项不合题意;B.(x+3)(x﹣3)=x2﹣9,故本选项不合题意;C.(m﹣n)(n﹣m)=﹣n2+2mn﹣m2,故本选项不合题意;D.(x﹣y)2=(y﹣x)2,正确.故选:D.6.按下面的程序计算,若开始输入的值x为正整数,当输入x=7时,输出的值为()A.28B.42C.52D.100【分析】在理解题意的基础上,把x=7代入式子求值,其结果与40作比较,小于40则重新代入2x﹣4中计算,直到结果大于40就是输出结果.【解答】解:当x=7时,2x﹣4=10∵10<40∴将x=10继续代入2x﹣4=16∵16<40∴将x=16继续代入2x﹣4=28∵28<40∴将x=28继续代入2x﹣4=52∵52>40∴输出结果是52故选:C.7.若两个角的两边分别平行,而其中一个角比另一个角的3倍少60°,那么这两个角的度数是()A.60°、120°B.都是30°C.30°、30°或60°、120°D.30°、120°或30°、60°【分析】首先由两个角的两边分别平行,可得这两个角相等或互补.然后设其中一角为x°,由其中一个角比另一个角的3倍少60°,然后分别从两个角相等与互补去分析,即可求得答案,注意别漏解.【解答】解:∵两个角的两边分别平行,∴这两个角相等或互补.设其中一角为x°,若这两个角相等,则x=3x﹣60,解得:x=30,∴这两个角的度数是30°和30°;若这两个角互补,则180﹣x=3x﹣60,解得:x=60,∴这两个角的度数是60°和120°.∴这两个角的度数是30°和30°或60°和120°.故选:C.8.已知x2﹣2(m﹣3)x+16是一个完全平方式,则m的值是()A.﹣7B.1C.﹣7或1D.7或﹣1【分析】利用完全平方公式的特征判断即可得到结果.【解答】解:∵x2﹣2(m﹣3)x+16是一个完全平方式,∴﹣2(m﹣3)=8或﹣2(m﹣3)=﹣8,解得:m=﹣1或7,故选:D.9.长方形的长为10cm、宽为6cm,它的各边都减少xcm,得到的新长方形的周长为ycm,则y与x之间的关系式是()A.y=32﹣4x(0<x<6)B.y=32﹣4x(0≤x≤6)C.y=(10﹣x)(6﹣x)(0<x<6)D.y=(10﹣x)(6﹣x)(0≤x≤6)【分析】原长方形的边长减少xcm后得到的新长方形的边长为(10﹣x)cm,和(6﹣x)cm,周长为y=2(10﹣x+6﹣x),自变量的范围应能使长方形的边长是正数,即满足x >0,6﹣x>0.【解答】解:∵长方形的长为10cm、宽为6cm,它的各边都减少xcm,得到的新长方形的周长为ycm,∴y与x之间的关系式是:y=2[(10﹣x)+(6﹣x)]=32﹣4x(0<x<6).故选:A.10.一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s 与t之间的关系的大致图象是()A.B.C.D.【分析】根据抽水时间的增加,剩下的水量逐渐减少;停止时剩下的水量不变,两台抽水机同时工作抽水速度增大,剩下的水量迅速减少,可得答案.【解答】解:由题意,随着抽水时间的增加,剩下的水量逐渐减少;停止时剩下的水量不变,两台抽水机同时工作抽水速度增大,剩下的水量迅速减少,可得答案.故选:D.11.下列图形都是由同样大小的黑点按一定的规律组成,摆第1个图案需要4个圆点,摆第2个图案需要7个圆点,摆第3个图案需要10个圆点,摆第4个图案需要13个圆点,按照这个规律继续摆放,第12个图摆放圆点的个数为()A.21B.35C.37D.43【分析】首先根据前几个图形圆点的个数规律即可发现规律,从而得到第12个图摆放圆点的个数.【解答】解:观察图形可知:摆第1个图案需要4个圆点,即3×1+1=4;摆第2个图案需要7个圆点,即3×2+1=7;摆第3个图案需要10个圆点,即3×3+1=10;摆第4个图案需要13个圆点,即3×4+1=13;按照这个规律继续摆放,第12个图摆放圆点的个数3×12+1=37.故选:C.12.如图,AD∥BC,BD为∠ABC的角平分线,DE、DF分别是∠ADB和∠ADC的角平分线,且∠BDF=α,则以下∠A与∠C的关系正确的是()A.∠A=∠C+αB.∠A=∠C+2αC.∠A=2∠C+αD.∠A=2∠C+2α【分析】由角平分线定义得出∠ABC=2∠CBD,∠ADC=2∠ADF,又因AD∥BC得出∠A+∠ABC=180°,∠ADC+∠C=180°,∠CBD=∠ADB,等量代换得∠A=∠C+2α,故答案选B.【解答】解:如图所示:∵BD为∠ABC的角平分线,∴∠ABC=2∠CBD,又∵AD∥BC,∴∠A+∠ABC=180°,∴∠A+2∠CBD=180°,又∵DF是∠ADC的角平分线,∴∠ADC=2∠ADF,又∵∠ADF=∠ADB+α∴∠ADC=2∠ADB+2α,又∵∠ADC+∠C=180°,∴2∠ADB+2α+∠C=180°,∴∠A+2∠CBD=2∠ADB+2α+∠C又∵∠CBD=∠ADB,∴∠A=∠C+2α,故选:B.二.填空题(共6小题)13.2019新型冠状病毒(2019﹣nCoV),2020年1月12日被世命名.科学家借助比光学显微镜更加厉害的电子显微镜发现新型冠状病毒的大小约为0.000000125米.则数据0.000000125用科学记数法表示为 1.25×10﹣7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:数据0.000000125用科学记数法表示为1.25×10﹣7.故答案为:1.25×10﹣7.14.已知:m﹣n=6,mn=1,则m2+n2=38.【分析】根据完全平方公式(m﹣n)2=m2+n2﹣2mn即可解题.【解答】解:∵(m﹣n)2=m2+n2﹣2mn,∵36=m2+n2﹣2,∴m2+n2=38,故答案为38.15.如图,已知AB∥CD,BE⊥DE于E,则∠ABE+∠CDE=270°.【分析】作FE∥AB,然后根据平行线的性质,即可得到∠ABE+∠BEF+∠FED+∠EDC 的度数,再根据BE⊥DE,即可得到∠ABE+∠CDE的度数,本题得以解决.【解答】解:过点E作FE∥AB,∵AB∥CD,∴AB∥FE∥CD,∴∠ABE+∠BEF=180°,∠FED+∠EDC=180°,∴∠ABE+∠BEF+∠FED+∠EDC=360°∵BE⊥DE,∴∠BEF+∠FED=90°,∴∠ABE+∠CDE=270°,故答案为:270°.16.如图,一张圆形纸片中,画出7个同样大小的圆并涂上颜色.若一只蚂蚁(蚂蚁视为一点)随机的停留在该纸片上,则蚂蚁停留在涂有颜色部分的概率为.【分析】设小圆的半径为r,得出大圆的半径是3r,根据圆的面积公式先求出7个小圆的面积和一个大圆的面积,然后根据概率公式即可得出答案.【解答】解:设小圆的半径为r,则大圆的半径就是3r,7个小圆的面积是:7•r2π=7πr2,大圆的面积是:(3r)2π=9πr2,则蚂蚁停留在涂有颜色部分的概率为=;故答案为:.17.甲、乙两小朋友都从A地出发,匀速步行到B地(A、B两地之间为笔直的道路),甲出发半分钟后,乙才从A地出发,经过一段时间追上甲,两人继续向B地步行,当甲、乙之间的距离刚好是70米时,乙立刻掉头以原速度向A地步行,半分钟后与甲相遇,乙又立刻掉头向B地以原速度步行(两次掉头时间忽略不计).甲、乙相距的路程为y(米)与乙出发的时间x(分钟)之间的关系如图所示,当乙到达B地时,甲与B地相距的路程是40米.【分析】设甲的速度为am/min,乙的速度为bm/min,由第一次相遇时,图象上的数据求得a与b的关系,再根据“当甲、乙之间的距离刚好是70米时,乙立刻掉头以原速度向A地步行,半分钟后与甲相遇”求得两人的速度和a+b,进而求得两人的速度a与b,再求得第二次相遇时间,由图象知7.5min时,乙到达B地,求得此时甲与B地相距的路程.【解答】解:设甲的速度为am/min,乙的速度为bm/min,由函数图象知,当x=1.5min时,y=0m,即两人第一次相遇,根据题意得,(1.5+0.5)a=1.5b,∴b=a,∵当甲、乙之间的距离刚好是70米时,乙立刻掉头以原速度向A地步行,半分钟后与甲相遇,∴a+b=70÷=140,∴a+a=140,∴a=60(m/min),b=80(m/min),于是,当甲、乙之间的距离刚好是70米时,乙出发的时间为:1.5+70÷(80﹣60)=5(min),∴两人第二次相遇时的时间为:5+0.5=5.5(min),根据函数图象知,当x=7,5min时,乙到达了B地,此时,两人相距:(80﹣60)×(7.5﹣5.5)=40(m),∴甲与B两地的距离为:40m.故答案为:40.18.工人师傅按照“最优化处理”打包多个同一款式长方体纸盒,其“最优化处理”是指:每相邻的两个纸盒必须以完全一样的面对接,最后打包成一个表面积最小的长方体,已知长方体纸盒的长xcm、宽ycm、高zcm都为整数,且x>y>z>1,x+z=2y,x+y+z+xy+xz+yz+xyz=439,若将六个此款式纸盒按“最优化处理”打包,其表面积为956 cm2.【分析】根据x+y+z+xy+xz+yz+xyz=439可得(x+1)(y+1)(z+1)=440,再根据题意可得(x+1)+(z+1)=2(y+1),进一步得到x+1=11,y+1=8,z+1=5,解方程求得x,y,z,再根据最优化处理时,最大的表面被重叠,依此可求表面积.【解答】解:∵x+y+z+xy+xz+yz+xyz=439,∴x+y+z+xy+xz+yz+xyz+1=440,∴(x+1)(y+1)(z+1)=440,∵x+z=2y,∴(x+1)+(z+1)=2(y+1),∵z+1≥3,y+1≥4,x+1≥5,其中5+11=2×8,∴x+1=11,y+1=8,z+1=5,解得x=10,y=7,z=4,最优化处理时,最大的表面被重叠,表面积为(7×10×2+4×7×12+4×10×12=956(cm2).故答案为:956.三.解答题(共8小题)19.计算:(1);(2)(a+2b+c)(a﹣2b+c)﹣2ac.【分析】(1)分别根据幂的定义,负整数指数幂的运算法则,绝对值的定义以及任何非0数的0次幂等于1计算即可;(2)根据平方差公式和完全平方公式化简即可.【解答】解:(1)原式=﹣1+4﹣3+1=1(2)原式=(a+c)2﹣(2b)2﹣2ac=a2+2ac+c2﹣4b2﹣2ac=a2﹣4b2+c2.20.如图,a∥b,点A在直线a上,点B、C在直线b上,且BA⊥CA,点D在线段BC上,连接AD,且AC平分∠DAF.证明:∠3=∠5.证明:∵BA⊥CA(已知)∴∠BAC=∠2+∠3=90°(①垂直的定义)∵∠1+∠BAC+∠4=180°(平角的定义)∴∠1+∠4=180°﹣∠BAC=180°﹣90°=90°∵AC平分∠DAF(已知)∴∠1=②∠2(角平分线的定义)∴∠3=∠4(③等角的余角相等)∵a∥b(已知)∴∠4=∠5(④两直线平行,内错角相等)∴∠3=∠5(⑤等量代换)【分析】根据题意和图形可以将题目中的证明过程补充完整,从而可以解答本题.【解答】证明:∵BA⊥CA(已知)∴∠BAC=∠2+∠3=90°(①垂直的定义)∵∠1+∠BAC+∠4=180°(平角的定义)∴∠1+∠4=180°﹣∠BAC=180°﹣90°=90°∵AC平分∠DAF(已知)∴∠1=②∠2(角平分线的定义)∴∠3=∠4(③等角的余角相等)∵a∥b(已知)∴∠4=∠5(④两直线平行,内错角相等)∴∠3=∠5(⑤等量代换).故答案为:垂直的定义;∠2;等角的余角相等;两直线平行,内错角相等;等量代换.21.先化简,再求值.,其中m=2,n=﹣1.【分析】直接利用乘法公式进而化简,再合并同类项,利用整式的除法运算法则计算,把已知数据代入得出答案.【解答】解:原式=(m2+4n2﹣4mn﹣2mn﹣5n2+n2﹣4m2)÷3m=(﹣3m2﹣6mn)÷3m=﹣m﹣2n,当m=2,n=﹣1时,原式=﹣2+2=0.22.新型冠状病毒爆发,教育部部署了“停课不停学”的有关工作,各地都在进行在线教育.小依同学为了了解网课学习情况,对本班部分同学最喜爱的课程进行了调查,调查课程分别是网上授课、体育锻炼、名著阅读、艺术欣赏和其他课程并制成以下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)本次调查中一共调查了20名学生,其中“名著阅读”所占的圆心角度数为54°.(2)请把条形统计图补全.(3)在调查的同学中随机选取一名学生,求他恰好最喜爱的课程是“艺术欣赏”的概率.(4)若该校一共有3000名学生,请估算出全校最喜爱的课程是“体育锻炼”的人数.【分析】(1)用喜欢“其它课程“的人数除以它所占的百分比得到调查的总人数,然后用“名著阅读”所占的百分比乘以360°得到扇形统计图中,“名著阅读”所占的圆心角度数;(2)利用喜欢名著阅读的人数补全条形统计图;(3)根据概率公式计算;(4)利用样本估计整体,用3000乘以样本中最喜爱的课程是“体育锻炼”的人数所占的百分比.【解答】解:(1)2÷10%=20,所以本次调查中一共调查了20名学生,其中“名著阅读”的人数为20﹣5﹣6﹣4﹣2=3,所以在扇形统计图中,×360°=54°;故答案为20,54°;(2)如图,(3)他恰好最喜爱的课程是“艺术欣赏”的概率==;(4)3000×=900,所以估算出全校最喜爱的课程是“体育锻炼”的人数为900人.23.已知:a2+b2﹣4a+8b+20=0,求:(a+1)(a2+1)(a4+1)(a8+1)﹣的值.【分析】已知等式配方变形后,利用非负数的性质求出a与b的值,代入原式计算即可求出值.【解答】解:已知等式整理得:(a2﹣4a+4)+(b2+8b+16)=0,即(a﹣2)2+(b+4)2=0,∴a﹣2=0,b+4=0,解得:a=2,b=﹣4,可得a﹣1=2﹣1=1,则原式=(a﹣1)(a+1)(a2+1)(a4+1)(a8+1)﹣()b=(a2﹣1)(a2+1)(a4+1)(a8+1)﹣()b=(a4﹣1)(a4+1)(a8+1)﹣()b=(a8﹣1)(a8+1)﹣()b=a16﹣1﹣()b当a=2,b=﹣4时,原式=216﹣1﹣()﹣4=216﹣1﹣216=﹣1.24.已知动点P从点A出发沿图1的边框(边框拐角处都互相垂直)按A→B→C→D→E→F的路径移动,相应的△AHP的面积y(cm2)关于移动路程x(cm)的关系图象如图2,若AH=2cm,根据图象信息回答下列问题:(1)图1中AB=3cm.(2)图2中m=6;n=26.(3)当△AHP的面积y为2时,求对应的x的值.【分析】(1)由图象可得点P在B点时,x=3,y=3,由三角形面积公式可求解;(2)由图象可得点P在点D时,x=11,y=m,由三角形面积公式可求解,由点P在直线AH上时,y=0,即可求解;(3)由三角形面积公式可求点P到直线AH的距离为2cm,分别在线段AB上,线段EF 上,即可求解.【解答】解:(1)由图象可得:3=×2×AB,∴AB=3cm,故答案为:3;(2)由图象可得:0<x≤3时,点P在AB上运动,3<x≤5时,点P在BC上运动,5<x≤11时,点P在CD上运动,11<x≤17时,点P在DE上运动,17<x≤30时,点P 在EF上运动,∴m=×2×(11﹣2﹣3)=6,当点P在线段EF上,且在直线AH上时,y=0,∴n=17+11﹣2=26,故答案为:6,26;(3)∵△AHP的面积y为2,AH=2cm,∴点P到直线AH的距离为2cm,当点P在AB上时,x=2cm,当点P在EF上时,x=25+2=27cm或x=25﹣2=23cm,∴x=2或23或27;25.阅读下列材料:数学中枚举法是一种重要归纳法也称为列举法、穷举法,是暴力策略的具体体现,又称为蛮力法.用枚举法解题时应该注意:(1)常常需要将对象进行恰当分类.(2)使其确定范围尽可能最小,逐个试验寻求答案.正整数N的末尾为5称为“威武数”,那么N的平方数为M称为“平武数”.例:152=225(2=1×2),252=625(6=2×3),352=1225(12=3×4),452=2025(20=4×5),552=3025(30=5×6),……由以上的枚举可以归纳得到的“平武数”特点是:①“平武数”的末两位数字是25;②去掉末两位数字25后,剩下部分组成的数字等于“威武数”去掉个位数字5后剩部分组成的数字与比此数大1的数之积.(如例中的括号内容)(1)根据以上特点我们能够很快的推出一个四位数的“平武数”M一共有7个.(2)同学们用学过的完全平方公式求证:当“威武数”N为任意二位数时,“平武数”M 都满足以上特点.(3)已知“平武数”M的首位数是2且小于六位,又满足N的各位数字之和与M的各位数字之和相等,求出“平武数”M的值.【分析】(1)由已知可得352=1225,452=2025,552=3025,652=4225,752=5625,852=7225,952=9025,满足条件;(2)设二位数的“威武数”N的十位数字是a,则N=10a+5,再由M=(10a+5)2=100a2+25+100a=100a(a+1)+25,即可证明;(3)M分两种情况讨论:当M是四位数时,设M的千位数是x,百位数是y,此时N 是两位数,设N的十位数字是z,根据已知可得z2+2=9x,则当x=2时,z=4;当M是五位数时,设万位数字是x,千位数字是y,百位数字是z,由于五位数中3152=99225,再分两种情况:设N的十位数字是a,当N的首位是1时,可得1+a=2+x+y+z,(10+a)(10+a+1)=100x+10y+z,联立求出a=4;当N的首位是2时,可得2+a=2+x+y+z,(20+a)(20+a+1)=100x+10y+z,此时a不存在.【解答】解:(1)∵352=1225,452=2025,552=3025,652=4225,752=5625,852=7225,952=9025,再由“平武数”的特点,∴四位数的“平武数”共有7个,故答案为7;(2)设二位数的“威武数”N的十位数字是a,∴N=10a+5,∴M=(10a+5)2=100a2+25+100a=100a(a+1)+25,∴M的末尾两位数是25,∴当“威武数”N为任意二位数时,“平武数”M都满足以上特点;(3)当M是四位数时,设M的千位数是x,百位数是y,此时N是两位数,设N的十位数字是z,∴10x+y=z(z+1),∵N的各位数字之和与M的各位数字之和相等,∴z+5=x+y+2+5,∴z=x+y+2,∴z2+2=9x,∴当x=2时,z=4;∴M=2025;当M是五位数时,设万位数字是x,千位数字是y,百位数字是z,∵3152=99225,∴N的首位两个数字和最大是11,设N的十位数字是a,当N的首位是1时,∴1+a=2+x+y+z,∴a﹣1=x+y+z,又∵(10+a)(10+a+1)=100x+10y+z,∴a2+20a+111=9(9x+y),∴a2+20a+111=(a+10)2+11=9(9x+y),∴a=4,∴1452=21025,∴M=21025;当N的首位是2时,∴2+a=2+x+y+z,∴a=x+y+z,又∵(20+a)(20+a+1)=100x+10y+z,∴a2+40a+420=(a+20)2+20=9(9x+y),此时a不存在;∴M的值为2025或21025.26.如图1,AB∥CD,点E,F分别在直线CD,AB上,∠BEC=2∠BEF,过点A作AG ⊥BE的延长线交于点G,交CD于点N,AK平分∠BAG,交EF于点H,交BE于点M.(1)直接写出∠AHE,∠F AH,∠KEH之间的关系:∠AHE=∠KEH+∠F AH;(2)若∠BEF=∠BAK,求∠AHE;(3)如图2,在(2)的条件下,将△KHE绕着点E以每秒5°的速度逆时针旋转,旋转时间为t,当KE边与射线ED重合时停止,则在旋转过程中,当△KHE的其中一边与△ENG的某一边平行时,直接写出此时t的值.【分析】(1)根据平行线的性质和三角形的外角性质可得答案;(2)设∠BEF=x,用x分别表示出∠BAK、∠BEC、∠BAK、∠KAG、∠AME和∠AHE,再由AG⊥BE,得关于x的方程,解得x的值,则问题可解;(3)由(2)可得,∠KHE=105°,再分4种情况列方程求解即可:①当KH∥EN时;②当kE∥GN时;③当HE∥GN时;④当HK∥GN时.【解答】解:(1)∵AB∥CD∴∠KEH=∠AFH∵∠AHE=∠AFH+∠F AH∴∠AHE=∠KEH+∠F AH故答案为:∠AHE;∠KEH;∠F AH;(2)设∠BEF=x∵∠BEF=∠BAK,∠BEC=2∠BEF∴∠BAK=∠BEC=2x∵AK平分∠BAG∴∠BAK=∠KAG=2x由(1)的结论可得:∠AME=2x+2x=4x,∠AHE=2x+3x=5x∵AG⊥BE∴∠G=90°∴∠AME+∠KAG=2x+4x=90°∴x=15°∴∠AHE=5x=75°;(3)由(2)可得,∠KHE=105°,∠BEF=15°,∠HEK=45°,∠NEG=30°,∠ENG=60°①当KH∥NG时5°×t=60°﹣30°=30°∴t=6②当KE∥GN时5°×t=60°∴t=12③当HE∥GN时5°×t=45°+60°=105°∴t=21④当HK∥EG时,5°×t=180°﹣30°﹣30°=120°∴t=24⑤当HK∥EN时,5t=150°∴t=30综上所述,t的值为:6或12或21或24或30.。

2019-2020学年吉林省长春市名校调研(市命题三十四)七年级(下)第三次月考数学试卷【附答案】

2019-2020学年吉林省长春市名校调研(市命题三十四)七年级(下)第三次月考数学试卷【附答案】

2019-2020学年吉林省长春市名校调研(市命题三十四)七年级(下)第三次月考数学试卷一、选择题(每小题3分,共24分)1.(3分)现有两根小木棒,它们的长度分别为4cm和5cm,若要钉成一个三角形架,下列长度不可以作为第三根木棒长度的是为()A.4cm B.5cm C.8cm D.10cm2.(3分)已知两个不等式的解集在数轴上如图所示,则由这两个不等式组成的不等式组的解集为()A.﹣2<x<2B.x<2C.x≥﹣2D.x>23.(3分)n边形的内角和等于1080°,则n的值是()A.8B.7C.6D.54.(3分)方程组的解为,则被遮盖的前后两个数分别为()A.1、2B.1、5C.5、1D.2、45.(3分)若3m﹣7和9﹣m互为相反数,则m的值是()A.4B.1C.﹣1D.﹣46.(3分)用一批相同的正多边形地砖铺地,要求顶点聚在一起,且砖与砖之间不留空隙,这样的地砖是()A.正五边形B.正三角形,正方形C.正三角形,正五边形,正六边形D.正三角形,正方形,正六边形7.(3分)已知关于x的不等式组无解,则m的取值范围是()A.m≤3B.m>3C.m<3D.m≥38.(3分)某种服装的进价为240元,出售时标价为360元,由于换季,商店准备打折销售,但要保持利润不低20%,那么至多打()A.6折B.7折C.8折D.9折二、填空题(每小题3分,共18分)9.(3分)我们用如图的方法(斜钉上一块木条)来修理一条摇晃的凳子的数学原理是利用三角形的.10.(3分)当代数式2x﹣2与3+x的值相等时,x=.11.(3分)若,则x﹣y=.12.(3分)从一个多边形的某顶点出发,连接其余各顶点,把该多边形分成了4个三角形,则这个多边形是边形.13.(3分)关于x的不等式﹣2x﹣4≤3的所有负整数解的和是.14.(3分)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=25°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F,若∠CAF=20°,则∠BED的度数为°.三、解答题(本大题共10小题,共78分)15.(6分)解方程:x+=16.(6分)已知关于x,y的方程组的解满足x+y<0,求m的取值范围.17.(6分)求不等式组的整数解.18.(7分)一个多边形的每个内角都相等,并且其中一个内角比它相邻的外角大100°,求这个多边形的边数.19.(7分)如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.20.(7分)随着中国传统节日“端午节”的临近,永旺超市决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,买1盒甲品牌粽子和2盒乙品牌粽子需230元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?21.(8分)定义一种法则“⊕”如下:a⊕b=,例如:1⊕2=2.(1)(﹣2018)⊕(﹣2019)=;(2)若(﹣3p+5)⊕8=8,求p的负整数值.22.(9分)已知直线PQ∥MN,△ABC的顶点A与B分别在直线MN与PQ上,∠C=45°,设∠CBQ=∠a,∠CAN=∠β.(1)如图①,当点C落在PQ的上方时,AC与PQ相交于点D,求证:∠β=∠a+45°;(2)如图②.当点C落在直线MN的下方时,BC与MN交于点F,请判断∠a与∠β的数量关系,并说明理由.23.(10分)某公司有A、B两种型号的客车,它们的载客量、每天的租金如表所示:A型号客车B型号客车载客量(人/辆)4530租金(元/辆)600450已知某中学计划租用A、B两种型号的客车共10辆,同时送七年级师生到沙家参加社会实践活动,已知该中学租车的总费用不超过5600元.(1)求最多能租用多少辆A型号客车?(2)若七年级的师生共有380人,请写出所有可能的租车方案.24.(12分)探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD 的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.2019-2020学年吉林省长春市名校调研(市命题三十四)七年级(下)第三次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)现有两根小木棒,它们的长度分别为4cm和5cm,若要钉成一个三角形架,下列长度不可以作为第三根木棒长度的是为()A.4cm B.5cm C.8cm D.10cm【解答】解:根据三角形三边关系可得:5﹣4<第三根木棒的长<5+4,即:1<第三根木棒的长<9,故不可以是10cm.故选:D.2.(3分)已知两个不等式的解集在数轴上如图所示,则由这两个不等式组成的不等式组的解集为()A.﹣2<x<2B.x<2C.x≥﹣2D.x>2【解答】解:根据数轴图示可知,这两个不等式组成的不等式组的解集为x>2,故选:D.3.(3分)n边形的内角和等于1080°,则n的值是()A.8B.7C.6D.5【解答】解:根据题意得;(n﹣2)×180°=1080°解得:n=8.故选:A.4.(3分)方程组的解为,则被遮盖的前后两个数分别为()A.1、2B.1、5C.5、1D.2、4【解答】解:将x=2代入第二个方程可得y=1,将x=2,y=1代入第一个方程可得2x+y=5∴被遮盖的前后两个数分别为:5,1故选:C.5.(3分)若3m﹣7和9﹣m互为相反数,则m的值是()A.4B.1C.﹣1D.﹣4【解答】解:由题意知3m﹣7+9﹣m=0,则3m﹣m=7﹣9,2m=﹣2,m=﹣1,故选:C.6.(3分)用一批相同的正多边形地砖铺地,要求顶点聚在一起,且砖与砖之间不留空隙,这样的地砖是()A.正五边形B.正三角形,正方形C.正三角形,正五边形,正六边形D.正三角形,正方形,正六边形【解答】解:若是正三角形地砖,正三角形的每个内角是60°,能整除360°,能够铺满地面;若是正四角形地砖,正方形的每个内角是90°,能整除360°,能够铺满地面;若是正五角形地砖,正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能够铺满地面;若是正六角形地砖,正六边形的每个内角是120°,能整除360°,能够铺满地面;故选:D.7.(3分)已知关于x的不等式组无解,则m的取值范围是()A.m≤3B.m>3C.m<3D.m≥3【解答】解:解不等式3x﹣1<4(x﹣1),得:x>3,∵不等式组无解,∴m≤3,故选:A.8.(3分)某种服装的进价为240元,出售时标价为360元,由于换季,商店准备打折销售,但要保持利润不低20%,那么至多打()A.6折B.7折C.8折D.9折【解答】解:设打了x折,由题意得360×0.1x﹣240≥240×20%,解得:x≥8.答:至多打8折.故选:C.二、填空题(每小题3分,共18分)9.(3分)我们用如图的方法(斜钉上一块木条)来修理一条摇晃的凳子的数学原理是利用三角形的稳定性.【解答】解:用如图的方法(斜钉上一块木条)来修理一条摇晃的凳子的数学原理是利用三角形的稳定性,故答案为:稳定性.10.(3分)当代数式2x﹣2与3+x的值相等时,x=5.【解答】解:根据题意得:2x﹣2=3+x,移项合并得:x=5,故答案为:5.11.(3分)若,则x﹣y=3.【解答】解:,①+②得:4x﹣4y=12,方程两边同时除以4得:x﹣y=3,故答案为:3.12.(3分)从一个多边形的某顶点出发,连接其余各顶点,把该多边形分成了4个三角形,则这个多边形是6边形.【解答】解:设这个多边形为n边形.根据题意得:n﹣2=4.解得:n=6.故答案为:6.13.(3分)关于x的不等式﹣2x﹣4≤3的所有负整数解的和是﹣6.【解答】解:不等式﹣2x﹣4≤3的解集是x≥﹣,故不等式的负整数解为﹣3,﹣2,﹣1.﹣3﹣2﹣1=﹣6,故答案为:﹣6.14.(3分)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=25°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F,若∠CAF=20°,则∠BED的度数为85°.【解答】解:如图所示,∵DE∥AF,∴∠BED=∠BF A,又∵∠CAF=20°,∠C=65°,∴∠BF A=20°+65°=85°,∴∠BED=85°,故答案为:85.三、解答题(本大题共10小题,共78分)15.(6分)解方程:x+=【解答】解:方程两边同时乘以6得:6x+3=2(2﹣x),去括号得:6x+3=4﹣2x,移项得:6x+2x=4﹣3,合并同类项得:8x=1,系数化为1得:x=.16.(6分)已知关于x,y的方程组的解满足x+y<0,求m的取值范围.【解答】解:,①+②,得3x+3y=2+2m,∴x+y=,∵x+y<0,∴,解得,m<﹣1,即m的取值范围是m<﹣1.17.(6分)求不等式组的整数解.【解答】解:∵解不等式①得:x>﹣1,解不等式②得:x<5,∴不等式组的解集是:﹣1<x<5,∴不等式组的整数解是:0,1,2,3,4.18.(7分)一个多边形的每个内角都相等,并且其中一个内角比它相邻的外角大100°,求这个多边形的边数.【解答】解:设每个内角度数为x度,则与它相邻的外角度数为180°﹣x°,根据题意可得x﹣(180﹣x)=100,解得x=140.所以每个外角为40°,所以这个多边形的边数为360÷40=9.答:这个多边形的边数为9.19.(7分)如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.【解答】解:∵AD是BC边上的中线,∴D为BC的中点,CD=BD.∵△ADC的周长﹣△ABD的周长=5cm.∴AC﹣AB=5cm.又∵AB+AC=11cm,∴AC=8cm.即AC的长度是8cm.20.(7分)随着中国传统节日“端午节”的临近,永旺超市决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,买1盒甲品牌粽子和2盒乙品牌粽子需230元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?【解答】解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据题意得:解得:答:打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)80×70×(1﹣80%)+100×80×(1﹣75%)=3120(元).答:打折后购买这批粽子比不打折节省了3120元.21.(8分)定义一种法则“⊕”如下:a⊕b=,例如:1⊕2=2.(1)(﹣2018)⊕(﹣2019)=﹣2018;(2)若(﹣3p+5)⊕8=8,求p的负整数值.【解答】解:(1)∵﹣2018>﹣2019,∴(﹣2018)⊕(﹣2019)=﹣2018,故答案为:﹣2018;(2)∵(﹣3p+5)⊕8=8,∴﹣3p+5≤8,解得:p≥﹣1,∴p的负整数值为﹣1.22.(9分)已知直线PQ∥MN,△ABC的顶点A与B分别在直线MN与PQ上,∠C=45°,设∠CBQ=∠a,∠CAN=∠β.(1)如图①,当点C落在PQ的上方时,AC与PQ相交于点D,求证:∠β=∠a+45°;(2)如图②.当点C落在直线MN的下方时,BC与MN交于点F,请判断∠a与∠β的数量关系,并说明理由.【解答】(1)证明:∵∠CDQ是△CBD的一个外角,∴∠CDQ=∠α+∠C,∵PQ∥MN,∴∠CDQ=∠β,∴∠β=∠α+∠C,∵∠C=45°,∴∠β=∠α+45°;(2)解:∠α=∠β+45°,理由如下:∵∠CFN是△ACF的一个外角,∴∠CFN=∠β+∠C,∵PQ∥MN,∴∠CFN=∠α,∴∠α=∠β+∠C,∵∠C=45°,∴∠α=∠β+45°.23.(10分)某公司有A、B两种型号的客车,它们的载客量、每天的租金如表所示:A型号客车B型号客车载客量(人/辆)4530租金(元/辆)600450已知某中学计划租用A、B两种型号的客车共10辆,同时送七年级师生到沙家参加社会实践活动,已知该中学租车的总费用不超过5600元.(1)求最多能租用多少辆A型号客车?(2)若七年级的师生共有380人,请写出所有可能的租车方案.【解答】解:(1)设租用A型号客车x辆,则租用B型号客车(10﹣x)辆,依题意,得:600x+450(10﹣x)≤5600,解得:x≤7.又∵x为整数,∴x的最大值为7.答:最多能租用7辆A型号客车.(2)设租用A型号客车x辆,则租用B型号客车(10﹣x)辆,依题意,得:45x+30(10﹣x)≥380,解得:x≥5.又∵x为整数,且x≤7,∴x=6,7.∴有两种租车方案,方案一:组A型号客车6辆、B型号客车4辆;方案二:组A型号客车7辆、B型号客车3辆.24.(12分)探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD 的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.【解答】解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=∠ADC,∠PCD=∠ACD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠ACD=180°﹣(∠ADC+∠ACD)=180°﹣(180°﹣∠A)=90°+∠A;探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=∠ADC,∠PCD=∠BCD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠BCD=180°﹣(∠ADC+∠BCD)=180°﹣(360°﹣∠A﹣∠B)=(∠A+∠B).。

最新人教版七年级数学下册第三次月考试题

最新人教版七年级数学下册第三次月考试题

人教版七年级数学下册第三次月考试题一、选择题(每小题3分,共36分)1.下列算式正确的是()A .B .C.D.2.在实数3.14,﹣,﹣,1.7,,0,﹣π,4.262262226…(两个6之间一次增加一个“2”)中,无理数的个数是()A.1个B.2个C.3个D.4个3.如果a>b,那么下列不等式中一定成立的是()A.a+m<b+n B.am<bm C.am2>bm2D.m﹣a<m﹣b 4.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是()A.300名学生是总体B.每名学生是个体C.50名学生是所抽取的一个样本D.这个样本容量是505.如图,下列不能判定AB∥CD的条件是()A.∠B+∠BCD=180°B.∠1=∠2C.∠3=∠4D.∠B=∠56.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间7.已知点P(0,m)在y轴的负半轴上,则点M(﹣m,﹣m+1)在()A.第一象限B.第二象限C.第三象限D.第四象限8.方程组的解为,则被遮盖的两个数分别为()A.2,1B.2,3C.5,1D .2,49.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)10.如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°11.我区某中学七年级一班40名同学为灾区捐款,共捐款2000元,捐款情况如表:捐款(元)204050100人数108表格中捐款40元和50元的人数不小心被墨水污染已看不清楚、若设捐款40元的有x名同学,捐款50元的有y 名同学,根据题意,可得方程组()A.B.C.D.12.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到A n.则△OA2A2020的面积是()A .1010m2B.m2C.505m2D.m2二、填空题(每小题3分,满分18分)13.的平方根是.14.如图,直线a、b 被第三条直线c所截,如果a∥b,∠1=50°,那么∠2=.15.已知二元一次方程4x+3y=9,若用含x的代数式表示y,则有y=.16.把命题“等角的余角相等”写成“如果…,那么….”的形式为.17.已知是方程bx﹣2y=10的一个解,则b=.18.将正整数按图所示的规律排列,若用有序数对(n,m)表示第n行从左到右第m个数,如(4,3)表示整数9,则(11,5)表示的整数是.三、解答题(66分)19.(6分)(1)计算(2)解方程组20.(5分)解不等式组,并把它们的解集在数轴上表示出来:.21.(5分)如图所示,直线a、b被c、d所截,且c⊥a,c⊥b,∠1=70°,求∠3的大小.22.(8分)推理填空:如图,已知EF∥AD,∠1=∠2,∠BAC=70°,将求∠AGD的过程填写完整;解:因为EF∥AD()所以∠2=,()又因为∠1=∠2,而∠2=∠3,所以∠1=∠3(等量代换)所以AB∥,()所以∠BAC+=180°()又因为∠BAC=70°所以∠AGD=.23.(8分)如图,∠ABC=∠ADC,BF平分∠ABC,DE平分∠ADC,∠1=∠2.问AB与CD,AD与BC平行吗?请说明理由.24.(8分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)△ABC的面积是.(2)在图中画出△ABC向下平移2个单位,向右平移5个单位后的△A1B1C1.(3)写出点A1,B1,C1的坐标.25.(8分)体育委员统计了全班同学60秒跳绳的次数,列出了频数分布表和频数分布直方图.如图:60≤x<8080≤x<10080≤x<120120≤x<140140≤x<160160≤x<180180≤x<200 2a1813841(1)频数分布表中a=;补全频数分布直方图.(2)上表中组距是,组数是组,全班共有人.(3)跳绳次数在100≤x<140范围的学生有人,占全班同学的%.(4)从图中,我们可以看出怎样的信息?(合理即可)26.(8分)为保护环境,我市某公交公司计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车3辆,B型公交车2辆,共需600万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?27.(10分)在平面直角坐标系中,点A的坐标为(m,n),且,点B的坐标为(1,2).(1)求点A的坐标;(2)若存在点M(2,b),使△ABM的面积S△ABM=5.试求出b的值;(3)已知点P的坐标为(7,0),若把线段AB上下平移,恰使△ABP的面积S△ABP=4,直接写出平移方式.人教版七年级数学下册期中试题一、选择题(每小题3分,共30分)1.如图所示的车标,可以看作由“基本图案”经过平移得到的是()A.B.C.D.2.下列各数:,,,﹣1.414,,0.1010010001…中,无理数有()A.1个B.2个C.3个D.4个3.下列命题是真命题的是()A.垂直于同一条直线的两条直线平行B.相等的角是对顶角C.平行于同一条直线的两条直线平行D.内错角相等4.在下面哪两个整数之间()A.5和6 B.6和7 C.7和8 D.8和95.下列结论正确的是()A.64的立方根是±4B.﹣没有立方根C.立方根等于本身的数是0D.=﹣36.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD()A.∠1=∠2 B.∠3=∠4C.∠D=∠DCE D.∠D+∠ACD=180°7.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(﹣2,﹣2),“马”位于点(1,﹣2),则“兵”位于点()A.(﹣1,1)B.(﹣4,1)C.(﹣2,﹣1)D.(1,﹣2)8.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限9.如果小华在小丽北偏东40°的位置上,那么小丽在小华的()A.南偏西50°B.北偏东50°C.南偏西40°D.北偏东40°10.如图,AB∥EF,∠C=90°,则α、β、γ的关系是()A.β+γ﹣α=90°B.α+β+γ=180°C.α+β﹣γ=90° D.β=α+γ二、填空题(每小题3分,共18分)11.的平方根是.12.若第二象限内的点P(x,y),满足=0.则点P的坐标是.13.如图,AB∥CD,∠B=48°,∠D=29°,则∠BED=°.14.如图,BE平分∠ABC,∠DBE=∠BED,∠C=72°,则∠AED=°.15.如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C的度数是度.16.已知∠A的两边与∠B的两边分别平行,且∠A的度数比∠B度数的2倍少18°,则∠A 的度数为.三、解答题(72分)17.(8分)计算:(1)|﹣5|++(2).18.(8分)求x的值:(1)(x﹣2)3=1 (2)(x﹣1)2=4;19.(8分)填空,将理由补充完整.如图,CF⊥AB于F,DE⊥AB于E,∠1+∠EDC=180°,求证:FG∥BC证明:∵CF⊥AB,DE⊥AB(已知)∴∠BED=∠BFC=90°(垂直的定义)∴ED∥FC()∴∠2=∠3 ()∵∠1+∠EDC=180°(已知)又∵∠2+∠EDC=180°(平角的定义)∴∠1=∠2 ()∴∠1=∠3(等量代换)∴FG∥BC()20.(8分)如图,在平面直角坐标系xOy中,A、B、C三点的坐标分别为(﹣5,4)、(﹣3,0)、(0,2).(1)画出三角形ABC,并求其面积;(2)如图,△A′B′C′是由△ABC经过怎样的平移得到的?(3)已知点P(a,b)为△ABC内的一点,则点P在△A′B′C′内的对应点P′的坐标(,).21.(8分)如图,D,E为△ABC边AB上两点,F,H分别在AC,BC上,∠1+∠2=180°(1)求证:EF∥DH;(2)若∠ACB=90°,∠DHB=25°,求∠EFC的度数.22.(10分)天气晴朗时,一个人能看到大海的最远距离S(单位:km)可用公式S2=1.7h 米估计,其中h(单位:m)是眼睛离海平面的高度.(1)如果一个人站在岸边观察,当眼睛离海平面的高度是1.7m时,能看到多远?(2)若登上一个观望台,使看到的最远距离是(1)中的3倍,已知眼睛到脚底的高度为1.7m,求观望台离海平面的高度?23.(10分)如图已知AB∥CD,P为直线AB,CD外一点,BF平分∠ABP,DE平分∠CDP,BF 的反向延长线交DE于点E.(1)∠ABP,∠P和∠PDC的数量关系为;(2)若∠BPD=80°,求∠BED的度数;(3)∠P与∠E的数量关系为.24.(12分)在平面直角坐标系中,A(0,1),B(5,0)将线段AB向上平移到DC,如图1,CD交y轴于点E,D点坐标为(﹣2,a)(1)直接写出点C坐标(C的纵坐标用a表示);(2)若四边形ABCD的面积为18,求a的值;(3)如图2,F为AE延长线上一点,H为OB延长线上一点,EP平分∠CEF,BP平分∠ABH,求∠EPB的度数.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年七年级下第三次月考数学试卷
班级姓名
一、选择题(每题3分)
1.在下列方程中①x2+2x=1,②﹣3x=9,③x=0,④3﹣=2,⑤=y+是一元一次方程的有()个.
A.1 B.2 C.3 D.4
2.如果a﹣3b=﹣3,那么代数式5﹣a+3b的值是()
A.0 B.2 C.5 D.8
3.如果a<b<0,下列不等式中错误的是()
A.ab>0 B.a+b<0 C.<1 D.a﹣b<0
4.三角形的两边长分别为5cm和7cm,下列长度的四条线段中能作为第三边的是()A.14cm B.13cm C.8cm D.2cm
5. 下列命题中,其中是真命题的个数有()
①形状相同的两个三角形是全等形;②全等三角形对应边上的高、中线及对应角平分线分别相等;③在两个三角形中,相等的角是对应角,相等的边是对应边;.
A. 3个
B. 2个
C. 1个
D.0个.
6.已知|2x﹣y﹣3|+(2x+y+11)2=0,则()
A.B.C.D.
7.在三角形的三个外角中,锐角最多只有()个.
A.0 B.1 C.2 D.3
8.下列图形中,既是轴对称图形,又是中心对称图形的是()
A.B.C. D.
9.如图,将周长为7的△ABC沿BC方向平移1个单位得到△DEF,则
四边形ABFD的周长为()
A.8 B.9 C.10 D.11
10.如图4所示,AD是△ABC的中线,E、F分别是AD和AD延
长线上的点,且DE=DF,连结BF、CE,下列说法:①△ABD和
△ACD面积相等②△BDF≌△CDE ③CE=BF④BF∥CE,其中正确的有()
A.1个
B.4个
C.3个
D.2个
二、填空题(每题3分)
11.把命题:“正方形的四条边相等”的逆命题改写成“如果……,那么……”的形式为: .
12.写出命题:“角平分线上的点到角两边的距离相等”的逆命题:
.
13.已知是方程的解,则m= .
14.一个多边形的内角和等于2340°,它的边数是.
15.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为.
16.三元一次方程组的解是.
17.已知是方程组的解,则a= ,b= .
18.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于cm.
19、如图7所示,在△ABC中,D为BC边上一点,AD=BD,AB=AC=CD,∠BAC=
20、20. 在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得的钝角为130°,则∠B等于度.
三、解答题(21---23每题5分共20分)
21.解方程(组):x﹣=2﹣. 22.解方程组.
23
.解不等式组
.(把解集在数轴上表示出来)
24、己知:
0)3(1212=-+-b a ,解方程组:⎩⎨⎧=+=-5
13by x y ax
24、(6分)如图:107国道OA 和320国道OB 在某市相交于点O,在∠AOB 的内部有工厂C 和D,现要修建一个货站P,使P 到OA 、OB 的距离相等且
PC=PD,用尺规作出货站P 的位置(不写作法,保留作图痕
迹,写出结论)
25.(8分)如图18所示,E 是∠AOB 的平分线上一点,EC ⊥OA ,垂足为C ,D 为OB 上一点,且OD=OC ,连结ED ,连结CD 交OE 于点F ,求证:(1)ED ⊥OB ,(2)OE 平分线段CD.
26.(7分)如图,△ABC 中,AD 平分∠BAC ,EG ∥AD ,找出图中的等腰三角形,并给出证明.
27.(7分)若关于x的不等式组的整数解恰有5个,求a的范围.
28、(8分)在解方程组
2,
78
ax by
cx y
+=


-=

时,哥哥正确地解得
3,
2.
x
y
=


=-

,弟弟因把c写错而解

2,
2.
x
y
=-


=

,求a+b+c的值.
29、(12分)某电器经营老板计划购进同种型号的空调和电风扇,若购进8台空调和20台电风扇,
需要资金17400元,若购进10台空调哈30台电风扇,需要资金22500元.
(1)求空调和电风扇的采购价各是多少元?
(2)该老板计划购进这两种电器共70台,而可用于购买这两种电器的资金不超过30000元,根据市场行情,销售一台这样的空调可获利200元,销售一台这样的电风扇可获利30元,该老板希望当这两种电器销售完时,所获的利润不少于3500元,试问老板有哪几种进货方案?
(3)在所有的进货方案中,哪种方案获利最大?最大利润是多少?
30.(10分)如图16所示,△ABC是等腰三角形,AB=AC,点D、E、F分别在AB、BC、AC 边上,且BD=CE,BE=CF. ⑴求证△DEF是等腰三角形;⑵推想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.
31、(12分)如图20所示,已知∠ABC=∠DBE=90°,DB=BE,AB=BC.(1) 求证:AD=CE,AD⊥CE (2)若△DBE绕点B旋转到△ABC外部,其他条件不变,则(1)中结论是否仍成立?请证明.。

相关文档
最新文档