高中数学幂函数练习题突破训练
幂函数的练习题
幂函数的练习题一、填空题1. 计算2的平方。
答:2^2=4。
2. 计算(-3)的立方。
答:(-3)^3=-27。
3. 若a>0,b<0,那么a的幂次方与b的幂次方哪个比较大?答:当a>0且b<0时,a的幂次方比b的幂次方要大。
4. 计算10的0次幂。
答:10^0=1。
5. 当指数为0时,幂函数的结果是多少?答:当指数为0时,任何数的0次幂都等于1。
6. 若x>1,那么x的正整数次幂增大还是减小?答:当x>1时,x的正整数次幂增大。
7. 若0<x<1,那么x的正整数次幂增大还是减小?答:当0<x<1时,x的正整数次幂减小。
二、选择题1. 若a>1,那么a的2次幂与3次幂的关系是:A. a^2=a^3B. a^2>a^3C. a^2<a^3D. 无法确定答:C. a^2<a^32. 若p和q都是正数且p>q,那么以下哪个等式成立?A. p^2=q^2B. p^3=q^3C. p^4=q^4D. 无法确定答:D. 无法确定三、解答题1. 计算2的4次幂。
答:2的4次幂等于2^4=16。
2. 若x>0,计算x的2次幂与x的3次幂之和。
答:x的2次幂与x的3次幂之和为x^2+x^3。
3. 计算(-5)的平方。
答:(-5)的平方等于(-5)^2=25。
4. 若a>1,b<1,那么a的幂次方与b的幂次方哪个更大?答:当a>1且b<1时,b的幂次方更大。
5. 若x>1,计算x的4次幂与x的2次幂之差。
答:x的4次幂与x的2次幂之差为x^4-x^2。
总结:幂函数是数学中常见的函数类型,用来表示数的幂次运算。
幂函数可以通过指数的正负、大小关系来判断结果的大小变化。
当指数为0时,幂函数的结果为1。
若底数大于1,则幂函数随指数增大而增大;若底数在0和1之间,则幂函数随指数增大而减小。
通过填空题和选择题的练习,我们可以巩固对幂函数的理解和计算能力。
3.3 幂函数(精练)(解析版)--人教版高中数学精讲精练必修一
3.3幂函数(精练)1.(2023·全国·高一专题练习)已知幂函数()f x 的图象经过点()8,4,则()f x 的大致图象是()A .B .C .D .【答案】C【解析】设()f x x α=,因为()f x 的图象经过点()8,4,所以84α=,即3222α=,解得23α=,则()23f x x ==,因为()()f x f x -===,所以()f x 为偶函数,排除B 、D ,因为()f x 的定义域为R ,排除A .因为()23f x x =在[)0,∞+内单调递增,结合偶函数可得()f x 在(],0-∞内单调递减,故C 满足,故选:C.2.(2023·山东聊城)已知421333111,,2325a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .c<a<bC .a b c>>D .b<c<a【答案】B【解析】由已知,421333111,,2325a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,化简222333111,,435a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为幂函数23y x =在()0,+∞上单调递增,而15<14<13,所以222333111543<<⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:B.3.(2022秋·辽宁葫芦岛·高一校联考期中)设 1.2111y =, 1.428y =,0.63130y =,则()A .231y y y >>B .312y y y >>C .132y y y >>D .321y y y >>【答案】D【解析】由题意可知,()0.61.220.611111121y ===,()()1.40.61.43 4.270.628222128y =====,因为0.6y x =在()0,∞+上是增函数,130128121>>,所以321y y y >>.故选:D.4.(2023·福建南平)下列比较大小中正确的是()A .0.50.53223⎛⎫⎛⎫< ⎪⎪⎝⎭⎝⎭B .112335--⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭C .3377(2.1)(2.2)--<-D .44331123⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭【答案】C【解析】对于A 选项,因为0.5y x =在[0,)+∞上单调递增,所以0.50.523()()32<,故A 错误,对于B 选项,因为1y x -=在(,0)-∞上单调递减,所以1123()()35--->-,故B 错误,对于C 选项,37y x =为奇函数,且在[0,)+∞上单调递增,所以37y x =在(,0)-∞上单调递增,因为333777115(2.2)511--⎭==⎛⎫⎛⎫--- ⎪ ⎪⎝⎝⎭,又()337752.111⎛⎫-<- ⎪⎝⎭,所以3377(2.1)(2.2)--<-,故C 正确,对于D 选项,43y x =在[0,)+∞上是递增函数,又443311()()22-=,所以443311()()23>,所以443311()()23->,故D 错误.故选:C.5.(2022秋·河南·高一统考期中)()3a π=-,27b =-,()05c =-,则()A .a b c <<B .b a c <<C .<<c a bD .c b a<<【答案】A【解析】 3()f x x =,在R 上单调递增,而()(3)a f b f π=-=-,,根据单调递增的性质,得0a b <<,又1c =,所以a b c <<.故选:A6(2022秋·福建泉州·高一校联考期中)下列比较大小正确的是()A 12433332-->>B .12433332-->>C .12433332--->>D .21433323--->>【答案】C2242333π---⎡⎤==⎢⎥⎣⎦,21333--=又23y x -=在()0,∞+上单调递减,2π>,所以2223332π---<<,所以12433332-->>.故选:C7.(2023·江苏常州)下列幂函数中,既在区间()0,∞+上递减,又是奇函数的是().A .12y x=B .13y x =C .23y x -=D .13y x -=【答案】D【解析】对选项A ,12y x =在()0,∞+为增函数,故A 错误.对选项B ,13y x =在()0,∞+为增函数,故B 错误.对选项C ,23y x -=在()0,∞+为减函数,设()123321f x xx -⎛⎫== ⎪⎝⎭,定义域为{}|0x x ≠,()()()11332211f x f x x x ⎡⎤⎛⎫-===⎢⎥ ⎪⎝⎭-⎢⎥⎣⎦,所以()f x 为偶函数,故C 错误.对选项D ,13y x -=在()0,∞+为减函数,设()11331f x xx -⎛⎫== ⎪⎝⎭,定义域为{}|0x x ≠,()()113311f x f x x x ⎛⎫⎛⎫-==-=- ⎪ ⎪-⎝⎭⎝⎭,所以()f x 为奇函数,故D 正确.故选:D8.(2023春·江苏南京)幂函数2223()(1)m m f x m m x --=--在()0,∞+上是减函数,则实数m 值为()A .2B .1-C .2或1-D .1【答案】A【解析】 幂函数2223()(1)mm f x m m x --=--,211m m ∴--=,解得2m =,或1m =-;又,()0x ∈+∞时()f x 为减函数,∴当2m =时,2233m m --=-,幂函数为3y x -=,满足题意;当1m =-时,2230m m --=,幂函数为0y x =,不满足题意;综上,2m =,故选:A .9.(2022·高一单元测试)幂函数()()22231mm f x m m x+-=--在区间(0,+∞)上单调递增,且0a b +>,则()()f a f b +的值()A .恒大于0B .恒小于0C .等于0D .无法判断【答案】A【解析】幂函数()()22231m m f x m m x+-=--在区间(0,+∞)上单调递增,∴2211230m m m m ⎧--=⎨+-⎩>,解得m =2,∴5()f x x =,∴()f x 在R 上为奇函数,由0a b +>,得a b >-,∵()f x 在R 上为单调增函数,∴()()()f a f b f b >-=-,∴()()0f a f b +>恒成立.故选:A .10.(2023·浙江台州)(多选)关于幂函数(,y x R ααα=∈是常数),结论正确的是()A .幂函数的图象都经过原点()0,0B .幂函数图象都经过点()1,1C .幂函数图象有可能关于y 轴对称D .幂函数图象不可能经过第四象限【答案】BCD【解析】对于A :幂函数1y x -=不经过原点()0,0,A 错误对于B :对于幂函数(,y x R ααα=∈是常数),当1x =时,1y =,经过点()1,1,B 正确;对于C :幂函数2y x =的图像关于y 轴对称,C 正确;对于D :幂函数图象不可能经过第四象限,D 正确.故选:BCD.11.(2023·全国·高一专题练习)(多选)已知幂函数()f x 的图象经过点(,则()A .()f x 的定义域为[)0,∞+B .()f x 的值域为[)0,∞+C .()f x 是偶函数D .()f x 的单调增区间为[)0,∞+【答案】ABD【解析】设()()a f x x a =∈R ,则()22af ==12a =,则()12f x x ==,对于A 选项,对于函数()f x =0x ≥,则函数()f x 的定义域为[)0,∞+,A 对;对于B 选项,()0f x =≥,则函数()f x 的值域为[)0,∞+,B 对;对于C 选项,函数()f x =[)0,∞+,定义域不关于原点对称,所以,函数()f x 为非奇非偶函数,C 错;对于D 选项,()f x 的单调增区间为[)0,∞+,D 对.故选:ABD.12.(2023·宁夏银川)(多选)幂函数()()211m f x m m x --=+-,*N m ∈,则下列结论正确的是()A .1m =B .函数()f x 是偶函数C .()()23f f -<D .函数()f x 的值域为()0,∞+【答案】ABD【解析】因为()()211m f x m m x --=+-是幂函数,所以211m m +-=,解得2m =-或1m =,又因为*N m ∈,故1m =,A 正确;则()2f x x -=,定义域为{|0}x x ≠,满足()2()()f x x f x --=-=,故()f x 是偶函数,B 正确;()2f x x -=为偶函数,在(0,)+∞上单调递减,故()()2(2)3f f f -=>,C 错误;函数()221f x x x -==的值域为()0,∞+,D 正确,故选:ABD13.(2022秋·广东惠州)(多选)已知函数()()21m mf x m x -=-为幂函数,则()A .函数()f x 为奇函数B .函数()f x 在区间()0,∞+上单调递增C .函数()f x 为偶函数D .函数()f x 在区间()0,∞+上单调递减【答案】BC【解析】因为()()21mmf x m x -=-为幕函数,所以11m -=,即2m =,所以()2f x x =.函数()2f x x =的定义域为R ,()()()22f x x x f x -=-==,所以函数()f x 为偶函数,又函数()2f x x =在()0,∞+为增函数.故选:BC.14.(2023春·河北保定)(多选)若幂函数()()1f x m x α=-的图像经过点()8,2,则()A .3α=B .2m =C .函数()f x 的定义域为{}0x x ≠D .函数()f x 的值域为R【答案】BD【解析】因为()()1f x m x α=-是幂函数,所以11m -=,解得2m =,故B 正确;所以()f x x α=,又因的图像经过点()8,2,所以3282αα==,所以31α=,解得13α=,故A 错误;因为()13f x x =,则其定义域,值域均为R ,故C 错误,D 正确.故选:BD.15.(2023春·山西忻州·高一统考开学考试)(多选)已知幂函数()()23mx m x f =-的图象过点12,4⎛⎫ ⎪⎝⎭,则()A .()f x 是偶函数B .()f x 是奇函数C .()f x 在(),0∞-上为减函数D .()f x 在()0,∞+上为减函数【答案】AD【解析】根据幂函数定义可得231m -=,解得2m =±;又因为图象过点12,4⎛⎫ ⎪⎝⎭,所以可得2m =-,即()221f x x x -==;易知函数()f x 的定义域为()()0,,0+∞⋃-∞,且满足()()()2211f x f x xx -===-,所以()f x 是偶函数,故A 正确,B 错误;由幂函数性质可得,当()0,x ∈+∞时,()2f x x -=为单调递减,再根据偶函数性质可得()f x 在(),0∞-上为增函数;故C 错误,D 正确.故选:AD16.(2022秋·安徽滁州·高一校考期中)(多选)对幂函数()32f x x -=,下列结论正确的是()A .()f x 的定义域是{}0,R x x x ≠∈B .()f x 的值域是()0,∞+C .()f x 的图象只在第一象限D .()f x 在()0,∞+上递减【答案】BCD【解析】对幂函数()32f x x -=,()f x 的定义域是{}0,R x x x >∈,因此A 不正确;()f x 的值域是()0,∞+,B 正确;()f x 的图象只在第一象限,C 正确;()f x 在()0,∞+上递减,D 正确;故选:BCD .17.(2023·四川成都)(多选)已知幂函数()f x 的图像经过点(9,3),则()A .函数()f x 为增函数B .函数()f x 为偶函数C .当4x ≥时,()2f x ≥D .当120x x >>时,1212()()f x f x x x -<-【答案】AC【解析】设幂函数()f x x α=,则()993f α==,解得12α=,所以()12f x x =,所以()f x 的定义域为[)0,∞+,()f x 在[)0,∞+上单调递增,故A 正确,因为()f x 的定义域不关于原点对称,所以函数()f x 不是偶函数,故B 错误,当4x ≥时,()()12442f x f ≥==,故C 正确,当120x x >>时,因为()f x 在[)0,∞+上单调递增,所以()()12f x f x >,即()()12120f x f x x x ->-,故D 错误.故选:AC.18.(2023·湖北)(多选)下列关于幂函数说法不正确的是()A .一定是单调函数B .可能是非奇非偶函数C .图像必过点(1,1)D .图像不会位于第三象限【答案】AD【解析】幂函数的解析式为()ay x a =∈R .当2a =时,2y x =,此函数先单调递减再单调递增,则都是单调函数不成立,A 选项错误;当2a =时,2y x =,定义域为R ,此函数为偶函数,当12a =时,y =,定义域为{}0x x ≥,此函数为非奇非偶函数,所以可能是非奇非偶函数,B 选项正确;当1x =时,无论a 取何值,都有1y =,图像必过点()1,1,C 选项正确;当1a =时,y x =图像经过一三象限,D 选项错误.故选:AD.19.(2023·高一课时练习)有关幂函数的下列叙述中,错误的序号是______.①幂函数的图像关于原点对称或者关于y 轴对称;②两个幂函数的图像至多有两个交点;③图像不经过点()1,1-的幂函数,一定不关于y 轴对称;④如果两个幂函数有三个公共点,那么这两个函数一定相同.【答案】①②④【解析】①,12y x ==y 轴对称,所以①错误.②④,由3y x y x =⎧⎨=⎩解得11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩或00x y =⎧⎨=⎩,即幂函数y x =与3y x =有3个交点,所以②④错误.③,由于幂函数过点()1,1,所以图像不经过点()1,1-的幂函数,一定不关于y 轴对称,③正确.故答案为:①②④20.(2023·湖南娄底·高一统考期末)已知幂函数()()2133m f x m m x +=-+为偶函数.(1)求幂函数()f x 的解析式;(2)若函数()()1f xg x x+=,根据定义证明()g x 在区间()1,+∞上单调递增.【答案】(1)()2f x x =;(2)见解析.【解析】(1)因为()()2133m f x m m x +=-+是幂函数,所以2331m m -+=,解得1m =或2m =.当1m =时,()2f x x =为偶函数,满足题意;当2m =时,()3f x x =为奇函数,不满足题意.故()2f x x =.(2)由(1)得()2f x x =,故()()11f xg x x x x+==+.设211x x >>,则()()()12212121212112121111x x f x f x x x x x x x x x x x x x ⎛⎫--=+--=-+=-- ⎪⎝⎭,因为211x x >>,所以210x x ->,121x x >,所以12110x x ->,所以()()210f x f x ->,即()()21f x f x >,故()g x 在区间()1,+∞上单调递增.21.(2023·天津宝坻·高一天津市宝坻区第一中学校考期末)已知幂函数()ag x x =的图象经过点(,函数()()241g x bf x x ⋅+=+为奇函数.(1)求幂函数()y g x =的解析式及实数b 的值;(2)判断函数()f x 在区间()1,1-上的单调性,并用的数单调性定义证明.【答案】(1)()g x =b =(2)()f x 在()1,1-上单调递增,证明见解析【解析】(1)由条件可知2a=12a =,即()12g x x ==,所以()42g =,因为()221x b f x x +=+是奇函数,所以()00f b ==,即()221xf x x =+,满足()()f x f x -=-是奇函数,所以0b =成立;(2)函数()f x 在区间()1,1-上单调递增,证明如下,由(1)可知()221xf x x =+,在区间()1,1-上任意取值12,x x ,且12x x <,()()()()()()211212122222121221221111x x x x x x f x f x x x x x ---=-=++++,因为1211x x -<<<,所以210x x ->,1210x x -<,()()2212110x x ++>所以()()120f x f x -<,即()()12f x f x <,所以函数在区间()1,1-上单调递增.22.(2023·福建厦门·高一厦门一中校考期中)已知幂函数()af x x =的图象经过点12A ⎛ ⎝.(1)求实数a 的值,并用定义法证明()f x 在区间()0,∞+内是减函数.(2)函数()g x 是定义在R 上的偶函数,当0x ≥时,()()g x f x =,求满足()1g m -≤m 的取值范围.【答案】(1)12α=-,证明见解析;(2)46,,55⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭U 【解析】(1)由幂函数()af x x =的图象经过点12A ⎛ ⎝12α⎛⎫∴= ⎪⎝⎭12α=-证明:任取12,(0,)x x ∈+∞,且12x x<11222121()()f x f x x x ---=-==210x x >> ,120x x ∴-<0>21()()0f x f x ∴-<,即21()()f x f x <所以()f x 在区间()0,∞+内是减函数.(2)当0x ≥时,()()g x f x =,()f x 在区间[)0,∞+内是减函数,所以()g x 在区间()0,∞+内是减函数,在区间(),0∞-内是增函数,又15g ⎛⎫= ⎪⎝⎭(1)g m -1(1)5g m g ⎛⎫-≤ ⎪⎝⎭函数()g x 是定义在R 上的偶函数,则115m -≥,解得:65m ≥或45m ≤所以实数m 的取值范围是46,,55⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭U 23.(2023福建)已知幂函数()21()22m f x m m x +=-++为偶函数.(1)求()f x 的解析式;(2)若函数()()30h x f x ax a =++-≥在区间[2,2]-上恒成立,求实数a 的取值范围.【答案】(1)2()f x x =;(2)[7,2]-.【解析】(1)由()f x 为幂函数知2221m m -++=,得1m =或12m =-()f x 为偶函数∴当1m =时,2()f x x =,符合题意;当12m =-时,12()f x x =,不合题意,舍去所以2()f x x =(2)22()()324a a h x x a =+--+,令()h x 在[2,2]-上的最小值为()g a ①当22a -<-,即4a >时,()(2)730g a h a =-=-≥,所以73a ≤又4a >,所以a 不存在;②当222a -≤-≤,即44a -≤≤时,2()()3024a ag a h a =-=--+≥所以62a -≤≤.又44a -≤≤,所以42a -≤≤③当22a->,即4a <-时,()(2)70g a h a ==+≥所以7a ≥-.又4a <-所以74a -≤<-.综上可知,a 的取值范围为[7,2]-1.(2023广西)(多选)已知幂函数()nm f x x =(m ,*n ∈N ,m ,n 互质),下列关于()f x 的结论正确的是()A .m ,n 是奇数时,幂函数()f x 是奇函数B .m 是偶数,n 是奇数时,幂函数()f x 是偶函数C .m 是奇数,n 是偶数时,幂函数()f x 是偶函数D .01mn<<时,幂函数()f x 在()0,∞+上是减函数E .m ,n 是奇数时,幂函数()f x 的定义域为R 【答案】ACE【解析】()nm f x x ==当m ,n 是奇数时,幂函数()f x 是奇函数,故A 中的结论正确;当m 是偶数,n 是奇数,幂函数/()f x 在0x <时无意义,故B 中的结论错误当m 是奇数,n 是偶数时,幂函数()f x 是偶函数,故C 中的结论正确;01mn<<时,幂函数()f x 在()0,∞+上是增函数,故D 中的结论错误;当m ,n 是奇数时,幂函数()f x =R 上恒有意义,故E 中的结论正确.故选:ACE.2.(2022秋·福建福州·高一校联考期中)(多选)已知幂函数()()22922mm f x m m x+-=--对任意120x x ∞∈+,(,)且12x x ≠,都满足1212()()0f x f x x x ->-,若()()0f a f b +>,则()A .0a b +<B .0a b +>C .()()22f a f b a b f ++⎛⎫≥ ⎪⎝⎭D .()()22f a f b a b f ++⎛⎫≤ ⎪⎝⎭【答案】BD【解析】因为()()22922mm f x m m x+-=--为幂函数,所以2221m m --=,解得1m =-或3m =,因为对任意120x x ∞∈+,(,)且12x x ≠,都满足1212()()0f x f x x x ->-,所以函数()f x 在(0,)+∞上递增,所以290m m +->当1m =-时,2(1)(1)990-+--=-<,不合题意,当3m =时,233930+-=>,所以3()f x x =因为33()()f x x x -=-=-,所以()f x 为奇函数,所以由()()0f a f b +>,得()()()f a f b f b >-=-,因为3()f x x =在R 上为增函数,所以a b >-,所以0a b +>,所以A 错误,B 正确,对于CD ,因为0a b +>,所以333()()2222f a f b a b a b a b f ++++⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭33322344(33)8a b a a b ab b +-+++=33223()8a b a b ab +--=223[()()]8a ab b a b ---=23()()08a b a b -+=≥,所以()()22f a f b a b f ++⎛⎫≥ ⎪⎝⎭,所以C 错误,D 正确,故选:BD3.(2023·江苏·校联考模拟预测)(多选)若函数13()f x x =,且12x x <,则()A .()()()()12120x x f x f x -->B .()()1122x f x x f x ->-C .()()1221f x x f x x -<-D .()()121222f x f x x x f ++⎛⎫>⎪⎝⎭【答案】AC【解析】由幂函数的性质知,13()f x x =在R 上单调递增.因为12x x <,所以()()12f x f x <,即120x x -<,()()120f x f x -<,所以()()()()12120x x f x f x -->.故A 正确;令120,1x x ==,则0(0)1(1)0f f -=-=,故B 错误;令()13()g x f x x x x =+=+,则由函数单调性的性质知,13()f x x =在R 上单调递增,y x =在R 上单调递增,所以13()y f x x x x =+=+在R 上单调递增,因为12x x <,所以()12()g x g x <,即()()1122f x x f x x +<+,于是有()()1221f x x f x x -<-,故C 正确;令121,1x x =-=,则1202x x +=,所以因为(1)(1)(0)02f f f +-==,故D 错误.故选:AC.4.(2022秋·江西九江·高一统考期末)已知幂函数()()223mm f x x m --+=∈N 的图像关于直线0x =对称,且在()0,∞+上单调递减,则关于a 的不等式()()33132mma a --+<-的解集为______.【答案】()23,1,32⎛⎫-∞- ⎪⎝⎭【解析】由()()223mm f x x m --+=∈N 在()0,∞+上单调递减得,2230m m --<,故13m -<<,又m +∈N ,故1m =或2,当1m =时,()4f x x =-,满足条件;当2m =时,()3f x x =-,图像不关于直线0x =对称,故1m =.因为函数13()g x x -=在()(),0,0,-∞+∞为减函数,故由不等式()()1133132a a --+<-得,10320132a a a a +<⎧⎪-<⎨⎪+>-⎩或10320132a a a a +>⎧⎪->⎨⎪+>-⎩或10320a a +<⎧⎨->⎩.解得2332a <<或1a <-,综上:23132a a <-<<或.故答案为:()23,1,32⎛⎫-∞- ⎪⎝⎭5.(2023·山西太原)已知函数()3f x x x =+.若对于任意[]2,4m ∈,不等式()()240f ma f m m-++恒成立,则实数a 的取值范围是___________.【答案】6a ≥【解析】因为()()()()()33f x x x x x f x -=-+-=-+=-,所以()3f x x x =+是R 上的奇函数,因为3,y x y x ==均是R 上的增函数,所以()3f x x x =+是R 上的增函数,因为()()240f ma f m m-++,所以()()24f m mf ma +--,即()()24f m mf ma +-所以24m m ma +-,由[]2,4m ∈知0m >,故41a m m++,令()41g m m m=++,[]2,4m ∈设1224m m <,()()1212121212444411g m g m m m m m m m m m ⎛⎫-=++-++=-+- ⎪⎝⎭()()()21121212121244m m m m m m m m m m m m ---=-+=由1224m m <,得120m m -<,124m m >,则()()120g m g m -<,即()()12g m g m <,所以()g m 在[]2,4上单调递增,当4m =时,()g m 取得最大值6,故6a .故答案为:6a .6.(2023春·四川广安·高一校考阶段练习)已知幂函数()()()215R m f x m m x m +=+-∈在()0,∞+上单调递增.(1)求m 的值及函数()f x 的解析式;(2)若函数()21g x ax a =++-在[]0,2上的最大值为3,求实数a 的值.【答案】(1)2m =,()3f x x =;(2)2a =±.【解析】(1)幂函数()()()215R m f x m m x m +=+-∈在()0,∞+上单调递增,故25110m m m ⎧+-=⎨+>⎩,解得2m =,故()3f x x =;(2)由(1)知:()3f x x =,所以()22121g x ax a x ax a =+-=-++-,所以函数()g x 的图象为开口向下的抛物线,对称轴为直线x a =;由于()g x 在[]0,2上的最大值为3,①当2a ≥时,()g x 在[]0,2上单调递增,故()()max 2333g x g a ==-=,解得2a =;②当0a ≤时,()g x 在[]0,2上单调递减,故()()max 013g x g a ==-=,解得2a =-;③当02a <<时,()g x 在[]0,a 上单调递增,在[],2a 上单调递减,故()()2max 13g x g a a a ==+-=,解得1a =-(舍去)或2a =(舍去).综上所述,2a =±.7.(2023·黑龙江哈尔滨·高一哈尔滨市第六中学校校考期末)已知幂函数()()23122233p p f x p p x--=-+是其定义域上的增函数.(1)求函数()f x 的解析式;(2)若函数()()h x x af x =+,[]1,9x ∈,是否存在实数a 使得()h x 的最小值为0?若存在,求出a 的值;若不存在,说明理由;(3)若函数()()3g x b f x =-+,是否存在实数(,)m n m n <,使函数()g x 在[],m n 上的值域为[],m n ?若存在,求出实数b 的取值范围;若不存在,说明理由.【答案】(1)()f x =(2)存在1a =-(3)9,24⎛⎤-- ⎥⎝⎦【解析】(1)因为()()23122233p p f x p p x--=-+是幂函数,所以2331p p -+=,解得1p =或2p =当1p =时,()1f x x=,在()0,∞+为减函数,当2p =时,()f x =在()0,∞+为增函数,所以()f x =(2)()()h x x af x x =+=+t =,因为[]1,9x ∈,所以[]1,3t ∈,则令()2k t t at =+,[]1,3t ∈,对称轴为2a t =-.①当12a-≤,即2a ≥-时,函数()k t 在[]1,3为增函数,()min ()110k t k a ==+=,解得1a =-.②当132a <-<,即62a -<<-时,2min ()024a a k t k ⎛⎫=-=-= ⎪⎝⎭,解得0a =,不符合题意,舍去.当32a-≥,即6a ≤-时,函数()k t 在[]1,3为减函数,()min ()3930k t k a ==+=,解得3a =-.不符合题意,舍去.综上所述:存在1a =-使得()h x 的最小值为0.(3)()()3g x b f x b =-+=()g x 在定义域范围内为减函数,若存在实数(,)m n m n <,使函数()g x 在[],m n 上的值域为[],m n ,则()()g m b n g n b m ⎧==⎪⎨==⎪⎩①②,②-①()()33m n m n =-=+-+,=+,1=③.将③代入②得:1b m m ==+令t m n <,0≤<,所以10,2t ⎡⎫∈⎪⎢⎣⎭.所以2219224b t t t ⎛⎫=--=-- ⎪⎝⎭,在区间10,2t ⎡⎫∈⎪⎢⎣⎭单调递减,所以924b -<≤-故存在实数(,)m n m n <,使函数()g x 在[],m n 上的值域为[],m n ,实数b 的取值范围且为9,24⎛⎤-- ⎥⎝⎦.8.(2023·福建龙岩)已知幂函数()21()2910m f x m m x -=-+为偶函数,()()(R)k g x f x k x=+∈.(1)若(2)5g =,求k ;(2)已知2k ≤,若关于x 的不等式21()02g x k ->在[1,)+∞上恒成立,求k 的取值范围.【答案】(1)2k =(2)12k <≤【解析】(1)对于幂函数()21()2910m f x m m x -=-+,得229101m m -+=,解得32m =或3m =,又当32m =时,12()f x x =不为偶函数,3m ∴=,2()f x x ∴=,2()k g x x x∴=+,(2)452kg ∴=+=,解得2k =;(2)关于x 的不等式21()02g x k ->在[1,)+∞上恒成立,即22102k x k x +->在[1,)+∞上恒成立,即22min 12k x k x ⎡⎤+>⎢⎥⎣⎦,先证明()2kh x x x=+在[1,)+∞上单调递增:任取121x x >>,则()()()()1212221212121212x x x x k k k h x h x x x x x x x x x +-⎛⎫⎛⎫-=+-+=- ⎪ ⎪⎝⎭⎝⎭,121x x >> ,120x x ∴->,()12122x x x x +>,又2k ≤,()12120x x x x k ∴+->,()()120h x h x ∴->,即()()12h x h x >,故()2kh x x x=+在[1,)+∞上单调递增,()()min 11h x h k ∴==+,2112k k ∴+>,又2k ≤,解得12k <≤.9.(2022秋·上海普陀·高一曹杨二中校考阶段练习)设R m ∈,已知幂函数()()2133m f x m m x +=+-⋅是偶函数.(1)求m 的值;(2)设R a ∈,若函数()[],0,2y f x ax a x =-+∈的最小值为1-,求a 的值.【答案】(1)1m =(2)1a =-或5a =.【解析】(1)因为幂函数()()2133m f x m m x +=+-⋅是偶函数,所以2331m m +-=且1m +为偶数,解得:1m =或4m =-(舍),则1m =,所以()2f x x =.(2)令()()2y g x f x ax a x ax a ==-+=-+的开口向上,对称轴2a x =,①当02a≤即0a ≤,()g x 在[]0,2上单调递增,所以()()min 01g x g a ===-,所以1a =-;②当022a <<即04a <<,()g x 在0,2a ⎡⎤⎢⎥⎣⎦上单调递减,在22a ⎡⎤⎢⎥⎣⎦,上单调递增,所以()22min1242a a a g x g a ⎛⎫==-+=- ⎪⎝⎭,解得:2a =+2a =-③当22a≥即4a ≥,()g x 在[]0,2上单调递减,所以()()min 241g x g a ==-=-,解得:5a =所以5a =.综上:1a =-或5a =.10.(2022秋·河南·高一校联考期中)已知幂函数223()(2)m x f x m -⋅=-在(0,)+∞上单调递增.(1)求实数m 的值;(2)若对[]2,2x ∀∈-,[2,2]a ∃∈-,使得()221f x at t a ≤+++都成立,求实数t 的取值范围.【答案】(1)3m =;(2)实数t 的取值范围为[)3,1,2∞∞⎛⎤--⋃+ ⎥⎝⎦.【解析】(1)因为幂函数()223(2)m x f x m -⋅=-在(0,)+∞上单调递增,所以()2213230m m m ⎧-=⎪⇒=⎨->⎪⎩;(2)由(1)可得3()f x x =因为对[2,2]x ∀∈-,使得()221f x at t a ≤+++都成立所以2max ()21f x at t a ≤+++,其中[2,2]x ∈-,由(1)可得函数()f x 在[]22-,上的最大值为8,所以2218at t a +++≥,又[2,2]a ∃∈-,使得2218at t a +++≥都成立所以()2max 270a t t ⎡⎤++-≥⎣⎦,因为220t +>,所以()227y a t t =++-是关于a 的单调递增函数,∴()()22max272270a t t t t ⎡⎤++-=++-≥⎣⎦,即2230t t +-≥,∴32t ≤-或1t ≥,所以实数t 的取值范围为[)3,1,2∞∞⎛⎤--⋃+ ⎥⎝⎦.11.(2023·浙江)已知幂函数()()2223mf x m m x =--.(1)若()f x 的定义域为R ,求()f x 的解析式;(2)若()f x 为奇函数,[]1,2x ∃∈,使()31f x x k >+-成立,求实数k 的取值范围.【答案】(1)()2f x x=(2)(),1-∞-【解析】(1)因为()()2223mf x m m x =--是幂函数,所以22231m m --=,解得2m =或1m =-,当2m =时,()2f x x =,定义域为R ,符合题意;当1m =-时,()11x xf x -==,定义域为()(),00,∞-+∞U ,不符合题意;所以()2f x x =;(2)由(1)可知()f x 为奇函数时,()11x xf x -==,[]1,2x ∃∈,使()31f x x k >+-成立,即[]1,2x ∃∈,使131x k x>+-成立,所以[]1,2x ∃∈,使113k x x-<-成立,令()[]13,1,2h x x x x=-∈,则()max 1k h x -<,[]12,1,2x x ∀∈且12x x <,则()()()1212211212111333h x h x x x x x x x x x ⎛⎫-=--+=-+ ⎪⎝⎭,因为1212x x ≤<≤,所以211210,0x x x x ->>,所以()2112130x x x x ⎛⎫-+> ⎪⎝⎭,即()()12h x h x >,所以()13h x x x=-在[]1,2上是减函数,所以()()max 1132h x h ==-=-,所以12k -<-,解得1k <-,所以实数k 的取值范围是(),1-∞-。
高中数学必修1 必修一幂函数专项练习题
必修一幂函数专项练习题1. 下列命题中正确的是( )A. 当α=0时,幂函数y =x α的图象是一条直线B. 幂函数的图象都经过(0,0)、(1,1)两点C. 若幂函数y =x α的图象关于原点对称,则在定义域内y 随x 的增大而增大D. 幂函数的图象不可能在第四象限 2. 幂函数y =x 43,y =x 31,y =x -43的定义域分别是M 、N 、P ,则( )A. M ⊂N ⊂PB. N ⊂M ⊂PC. M ⊂P ⊂ND. A 、B 、C 都不对3. (湖南高考,文)函数f (x )=x 21-的定义域是( ) A. (-∞,0] B. [0,+∞) C. (-∞,0) D. (-∞,+∞)4. (唐山十县联考)函数y =(-21+x )-21的定义域是( ) A. (-∞,-1) B. (-∞,-1] C. (1,+∞) D. [1,+∞) 5. (江西高考,理)已知实数a 、b 满足等式(21)a =(31)b ,下列五个关系式: ①0<b<a ;②a<b<0;③0<a<b ;④b<a<0;⑤a =b ,其中不可能成立的有( )A. 1个B. 2个C. 3个D. 4个6. 下列函数中,是幂函数的为( ) A. y =x x B. y =3x 21 C. y =x 21+1 D. y =x 2-7. 若T1=(21)32,T 2=(51)32,T 3=(21)31,则下列关系式正确的是( ) A. T 1<T 2<T 3 B. T 3< T 1< T 2 C. T 2< T 3< T 1 D. T 2< T 1<T 38. (经典回放)对于幂函数f (x )=x 54,若0<x 1<x 2,则f (221x x +),x x f x f )()(21+的大小关系是( )A. f (221x x +)>x x f x f )()(21+ B. f (221x x +)<x x f x f )()(21+C. f (221x x +)=x x f x f )()(21+D. 无法确定9. 已知函数f (x )=x a +m 的图象经过点(1,3),又其反函数图象经过点(10,2),则f (x )的解析式为_________。
幂函数的练习题
幂函数的练习题幂函数的练习题幂函数是数学中一种常见的函数形式,它的表达式为y = ax^n,其中a是常数,n是指数。
在解决实际问题或数学题目时,我们经常会遇到幂函数的练习题。
本文将通过一些例题来帮助读者更好地理解和应用幂函数。
例题一:已知y = 2x^3,求当x = 4时,y的值。
解析:将x = 4代入幂函数的表达式中,得到y = 2(4^3) = 2(64) = 128。
因此,当x = 4时,y的值为128。
例题二:已知y = 5x^2,求当y = 45时,x的值。
解析:将y = 45代入幂函数的表达式中,得到45 = 5(x^2)。
将方程两边除以5,得到9 = x^2。
开平方根,得到x = ±3。
因此,当y = 45时,x的值为±3。
例题三:已知y = 2^x,求当x = 0时,y的值。
解析:将x = 0代入幂函数的表达式中,得到y = 2^0 = 1。
因此,当x = 0时,y的值为1。
例题四:已知y = 3^x,求当y = 81时,x的值。
解析:将y = 81代入幂函数的表达式中,得到81 = 3^x。
将等式两边取对数,得到log3(81) = x。
由于3的多少次幂等于81,可以得到x = 4。
因此,当y =81时,x的值为4。
通过以上例题,我们可以看到幂函数在解决实际问题中的应用。
幂函数的指数决定了函数的增长速度,当指数为正数时,函数呈现递增趋势,当指数为负数时,函数呈现递减趋势。
幂函数也可以用来描述物理现象中的指数增长或衰减。
除了以上的例题,我们还可以通过一些练习题来进一步巩固对幂函数的理解。
练习题一:已知y = 4x^2,求当x = -2时,y的值。
练习题二:已知y = 2^x,求当y = 16时,x的值。
练习题三:已知y = 3^x,求当x = -1时,y的值。
练习题四:已知y = 5^x,求当y = 625时,x的值。
通过解答这些练习题,读者可以进一步熟悉幂函数的性质和运算规律。
高中数学-幂函数专题强化训练(解析版)
高中数学-幂函数专题强化训练学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知()f x 的定义域为(1,0)-,则函数(21)f x +的定义域为A .(1,1)-B .1(1,)2--C .(1,0)-D .1(,1)22.下列函数中值域为R +的是()A .12y x =B .()221y x -=+C .113x y +=D .12x y +=3.若幂函数()f x 的图象过点(4,2),则(2)f 的值为()A .12B .22C D .24.已知函数()f x 是奇函数,且(2)()f x f x +=-,若()f x 在[]1,0-上是增函数,313(1),(),()23f f f 的大小关系是()A .313(1)()()23f f f <<B .313()(1)()23f f f <<C .133()(1)()32f f f <<D .133(()(1)32f f f <<5.已知幂函数f(x)满足f 13⎛⎫⎪⎝⎭=9,则f(x)的图象所分布的象限是()A .第一、二象限B .第一、三象限C .第一、四象限D .第一象限6.已知幂函数y =f (x )的图像经过点,则f (2)=()A .B .4C .D .7.下列函数中,既是偶函数又在区间()0+∞,上单调递增的是()A .21y x =-B .1y x =-C .2y x -=D . 22x xy -=-8.若幂函数()222333mm y m m x+-=++的图象不过原点且关于原点对称,则()A .2m =-B .1m =-C .2m =-或1m =-D .31m -≤≤-9.若幂函数()()255af x a a x =--在()0,∞+上单调递增,则=a ()A .3B .6C .2D .1-10.奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (8)+f (5)的值为()A .2B .1C .-1D .-2二、多选题11.下列函数中,在区间()0,2上是增函数的是()A .3y x =-B .21y x =+C .1y x=-D .3y x =12.下列命题中是真命题的有A .幂函数的图象都经过点(1,1)和(0,0)B .幂函数的图象不可能过第四象限C .当0n >时,幂函数n y x =是增函数D .当0n <时,幂函数n y x =在第一象限内函数值随x 值的增大而减小13.已知幂函数()()2mf x m x =-,则()A .3m =B .定义域为[)0,∞+C .(1.5)(1.4)m m -<-D 2=三、填空题14.函数()12f x x -=的定义域为_______.15.若一个函数为幂函数,又是二次函数,则该函数的表达式为______.16.已知()f x 为幂函数,若1142f ⎛⎫= ⎪⎝⎭,则()f x =________.17.幂函数()f x x α=的图像经过点,则1()4f 的值为____.18.已知幂函数()y f x =的图象过点(,则()25f =___________.19.已知函数21()(3)m f x m x -=-是幂函数,则实数m =___________.20.已知幂函数2232(5)m m y m m x --=--在区间()0,∞+是减函数,则实数m 的值是_______.21.已知幂函数()()22nf x n n x =-在()0,∞+上单调递减,则实数n 的值为___________.22.已知()f x 为偶函数,当0x ≤时,()11x f x x e e=- ,则曲线()y f x =在点()12,处的切线方程是______.23.已知定义在R 上的奇函数()f x 和偶函数()g x 满足:()()()+xf xg x e e =是自然对数的底,则()()()()()21212222n n ng g g g f -⋅=_____________.四、解答题24.已知函数2()lg[(1)]f x x a x a =+--.(1)求函数()f x 的定义域.(2)若()f x 为偶函数,求实数a 的值.25.已知幂函数()f x 的图象过点()2,4.(1)求函数()f x 的解析式;(2)设函数()()48h x f x x =--在[],2k k +上是单调函数,求实数k 的取值范围.26.已知函数()()3log 0,16axf x a a x-=>≠-.(1)判断f(x)的奇偶性,并说明理由;(2)当0<a<1时,求函数f(x)的单调区间.27.已知函数()()20f x x mx m =->在区间[]0,2上的最小值为()g m .(1)求函数()g m 的解析式.(2)定义在()(),00,-∞⋃+∞上的函数()h x 为偶函数,且当0x >时,()()h x g x =.若()()4h t h >,求实数t 的取值范围.28.已知幂函数()232mm f x m x ⎛⎫=+ ⎪⎝⎭在()0,∞+上单调递增.(1)求m 的值;(2)设函数()()g x f x x =+,求关于a 的不等式()()21g a g a +>-的解集.参考答案:1.B 【解析】【详解】试题分析:因为函数()f x 的定义域为(1,0)-,故函数(21)f x +有意义只需-1210x <+<即可,解得1-1-2x <<,选B .考点:1、函数的定义域的概念;2、复合函数求定义域.2.D 【解析】【分析】利用指数函数或幂函数的性质,分别求出函数的值域即可.【详解】解:对A.120y x =≥,不符合;对B.22,(11)y t t x -==+≥,此时01y <≤,不符合;对C.13,(0)1ty t x ==≠+,此时0y <且1y ≠,不符合;对D.2,(1)t y t x R ==+∈,此时0y >,符合.故选D .【点睛】本题考查复合函数的值域的求法,将内层函数的值域求出并作为外层函数的定义域,难度不大.3.C 【解析】【分析】设()f x x α=,利用待定系数法求出函数解析式,再代入求值即可;【详解】解:设()f x x α=,因为幂函数()f x 的图象过点(4,2),所以42α=,解得12α=,所以12()f x x =,所以()1222f ==故选:C4.D【解析】【分析】由f(x+2)=﹣f(x),得f(x+4)=f(x),利用函数奇偶性单调性之间的关系,即可比较大小.【详解】∵f(x+2)=﹣f(x),函数f(x)是奇函数,∴f(x+2)=﹣f(x)=f(﹣x),∴函数f(x)关于x=1对称,且f(x+4)=f(x),∴函数是周期为4的周期数列.∵f(x)在[﹣1,0]上是增函数,∴f(x)在[﹣1,1]上是增函数,f(x)在[1,2]上是减函数,f(133)=f(4+13)=f(13)=f(53),∵f(x)在[1,2]上是减函数,且1<32<53,∴f(1)>f(32)>f(53),即f(133)<f(32)<f(1),故选D.【点睛】本题主要考查函数值的大小比较,利用函数的奇偶性,对称性和单调性是解决本题的关键,综合考查函数的性质,考查学生的转化意识,属于中档题.5.A【解析】【详解】设幂函数()af x x=∵1()9 3f∴1()93a=,即2a =-∴2()f x x -=∴()f x 的图象分布在第一、二象限故选A 6.C 【解析】【分析】设幂函数解析式,将点(4,12)代入,解得参数,从而得解析式,再代入2求函数值.【详解】设f (x )=xα,因为图像过点(4,12),代入解析式得α=-12,∴f (2)=122-=,故选C.【点睛】本题考查了待定系数法求幂函数解析式和求函数值等基础知识.7.B 【解析】A.利用二次函数的性质判;B.利用函数1y x =-的图象判断;C.利用幂函数的性质判断;D.利用函数奇偶性判断.【详解】A.由二次函数的单调性得21 y x =-在()0+∞,上递减,故错误;B.函数1y x =-的图象如图所示:所以函数是偶函数又在区间()0+∞,上单调递增,故正确;C.由幂函数的单调性得2y x -=在()0+∞,上递减,故错误;D.因为()()()2222x x x xf x f x ---=-=--=-,所以函数是奇函数,故错误;故选:B 8.A 【解析】根据幂函数的概念,可得2331m m ++=,进而可求出1m =-或2m =-,然后分两种情况,分别讨论函数的奇偶性,即可选出答案.【详解】根据幂函数的概念,得2331m m ++=,解得1m =-或2m =-,①若1m =-,则4y x -=,令()4f x x -=,其定义域为()(),00,-∞⋃+∞,且()()()44f x x x f x ---=-=≠-,显然幂函数为偶函数,不是奇函数,图象不关于原点对称,不符合题意,舍去;②若2m =-,则3y x -=,令()3f x x -=,其定义域为R ,且()()()33f x x x f x ---=-=-=-,即幂函数为奇函数,图象关于原点对称,符合题意.所以2m =-.故选:A.【点睛】关键点睛:利用幂函数的概念,先求出m ,再根据幂函数的性质,进分类讨论,属于基础题9.B 【解析】【分析】根据幂函数的概念可得2551a a --=,然后结合单调性可得0a >,进而可以求出结果.【详解】因为()()255af x a a x =--为幂函数,则2551a a --=,解得6a =或1a =-,又因为在()0,∞+上单调递增,则0a >,因此6a =,故选:B.10.A 【解析】【详解】∵f (x+1)为偶函数,f (x )是奇函数,∴设g (x )=f (x+1),则g (-x )=g (x ),即f (-x+1)=f (x+1),∵f (x )是奇函数,∴f (-x+1)=f (x+1)=-f (x-1),即f (x+2)=-f (x ),f (x+4)=f (x+2+2)=-f (x+2)=f (x ),f (8)=()00f =,f (5)=()12f =,所以f (8)+f (5)=2故选A点睛:本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的周期是解决本题的关键.11.BCD 【解析】【分析】根据基本初等函数的单调性可得出合适的选项.【详解】函数3y x =-在区间()0,2上是减函数,函数21y x =+、1y x=-、3y x =在区间()0,2上均为增函数.故选:BCD.12.BD 【解析】【分析】根据幂函数的图象与性质,以及合理利用举反例的方法,逐项判定,即可求解.【详解】由题意,对于A 中,例如幂函数()1f x x -=的图象不经过点(0,0),所以不正确;对于B 中,根据函数的概念,可得幂函数的图象不可能过第四象限是正确的;对于C 中,例如幂函数()23f x x =在其定义域上不是单调函数,所以不正确;对于D 中,根据幂函数的图象与性质,可得当0n <时,幂函数n y x =在第一象限内是减函数,所以是正确的.故选BD.【点睛】本题主要考查了幂函数的图象与性质的判定及应用,其中解答中熟记幂函数的图象与性质,以及合理利用举反例进行逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.13.AC 【解析】【分析】根据()f x 为幂函数得m 可判断A ;根据幂函数的解析式可判断B ;利用单调性可判断C ;D.【详解】()f x 为幂函数,21m ∴-=,得()33,=∴=m f x x ,A 对;函数()f x 的定义域为R ,B 错误;由于()f x 在R 上为增函数,331.5 1.4,(1.5)(1.4)-<-∴-<-,C 对;()3228f ==,=,D 错误,故选:AC.14.()0,∞+【解析】将函数解析式变形为()f x=.【详解】()12f x x-= 0x >.因此,函数()12f x x -=的定义域为()0,∞+.故答案为:()0,∞+.15.2y x =【解析】【分析】设幂函数为,y x R =Îa a ,根据该函数为二次函数,即可求出α的值,进而求出结果.【详解】设幂函数为,y x R =Îa a ,又y x α=是二次函数,所以2α=,所以2y x =.故答案为:2y x =.16.12x 【解析】设函数()a f x x =,代入1142f ⎛⎫= ⎪⎝⎭求解.【详解】因为()f x 为幂函数,设()af x x =,因为1142f ⎛⎫= ⎪⎝⎭,所以1142⎛⎫= ⎪⎝⎭a,12a =.故答案为:12x .17.2【解析】【详解】因为幂函数11422y x ααα=∴=∴=-,因此可知f(14)=218.5【解析】【分析】设()y f x x α==,根据函数过点(,即可求出α的值,即可取出函数解析式,再代入计算可得;【详解】解:设()y f x x α==,因为幂函数()y f x =的图象过点(,所以()22f α==12α=,所以()12f x x =,所以()1225255f ==故答案为:519.2±【解析】根据幂函数的定义求解即可.【详解】因为21()(3)m f x m x -=-是幂函数,所以231m -=,解得2m =±,故答案为:2±20.3【解析】【分析】由幂函数的定义可构造方程求得m ,代入解析式验证,满足在()0,∞+上为减函数的即为结果.【详解】()22325m m y m m x --=-- 为幂函数251m m ∴--=,解得:2m =-或3当2m =-时,函数为8y x =,在区间()0,∞+上是增函数,不合题意当3m =时,函数为2y x -=,在区间()0,∞+上是减函数,符合题意综上所述:3m =故答案为:3【点睛】本题考查根据幂函数的定义与性质求解参数值的问题,关键是熟练掌握幂函数的定义,并能根据解析式特征确定函数的单调性.21.12-##0.5-【解析】【详解】由题意,幂函数()()22n f x n n x =-,可得221n n -=,解得1n =或12n =-,当12n =-时,函数12y x -=在区间()0,∞+上单调递减,符合题意;当1n =时,函数y x =在区间()0,∞+上单调递增,不符合题意,所以实数n 的值为12-.故答案为:12-.22.2y x=【解析】【详解】已知()f x 为偶函数,且当0x ≤时,()1x f x ex --=-,当0x >,则0x -<,()()1x f x f x e x -∴=-=+,∴()1'1x f x e -=+,∴()0'112f e =+=.∴曲线()y f x =在点()12,处的切线方程是()221y x -=-,即2y x =.答案:2y x =.23.221ee -【解析】【详解】∵()()+x f x g x e =,()f x 和()g x 分别为R 上的奇函数和偶函数,∴()()()()++x f x g x f x g x e ---=-=,∴()()22x x x xe e e ef xg x ---+==,∴(2)2()()f x f x g x =⋅,∴()()()()()()()()()()()()()2121212222112221=1212n n n n n n g g g g f g g g g f f f f --⋅⋅= 221e e =-.24.(1){|1x x <-或}x a >;(2)1a =.【解析】【详解】试题分析:(1)由()210x a x a +-->即()()10x x a +->,讨论a 和-1的大小求解即可;(2)若()f x 是偶函数,则其定义域关于原点对称,由(1)知,1a =,再检验即可.试题解析:(1)因为()210x a x a +-->即()()10x x a +->,当1a <-时,不等式的解为x a <或1x >-,所以函数()f x 的定义域为{|x x a <或1}x >-.当1a =-时,不等式的解为1x ≠-,所以函数()f x 的定义域为{|1}x x ≠-.当1a >-时,不等式的解为1x <-或x a >,所以函数()f x 的定义域为{|1x x <-或}x a >.(2)如果()f x 是偶函数,则其定义域关于原点对称,由(1)知,1a =,检验:当1a =时,定义域为{|1x x <-或1}x >关于原点对称,()()2lg 1f x x =-,()()()()22lg 11f x x lg x f x ⎡⎤-=--=-=⎣⎦,因此当1a =时,()f x 是偶函数.25.(1)2()f x x =(2)(,0][2,)-∞+∞ 【解析】【分析】(1)根据幂函数的图象过点(2,4),列方程求出α的值,写出f (x )的解析式;(2)写出函数h (x )的解析式,根据二次函数的对称轴与单调性求出k 的取值范围.【详解】解:(1)设()()f x x R αα=∈,因为()f x 的图象过点()2,4,∴(2)24f α==,∴2α=,∴2()f x x =;(2)函数22()()4848(2)12h x f x x x x x =--=--=--,对称轴为2x =;当()h x 在[],2k k +上为增函数时,2k ≥当()h x 在[],2k k +上为减函数时,22k +≤,解得0k ≤所以k 的取值范围是(,0][2,)-∞+∞ 【点睛】本题考查了幂函数的定义与应用问题,也考查了分类讨论思想,是中档题.26.(1)见解析;(2)()3,3-【解析】【分析】(1)换元,令x ﹣3=t ,可求t 的范围:﹣3<t <3,这样便得到f (t )=33at log t +-,从而得出f (x ),并求f (﹣x ),这样即可判断f (x )的奇偶性;(2)函数f (x )=33a x log x +-是由函数u=33x x+-和y=log a u 复合而成,根据a 的范围可判断y=log a u 为减函数,从而判断33x u x +=-在(﹣3,3)上单调性,并求其单调区间便可得出函数f (x )的单调区间.【详解】(1)令x ﹣3=t ,﹣3<t <3,则x=t+3;f (t )=33a t log t+-;∴()3333a x f x log x x+=--,<<;∴()()3333aa x x f x log log f x x x -+-==-=-+-;∴f (x )为奇函数;(2)令u=33x x +-=()363x x--+-=613x -+-,该函数在(﹣3,3)上为增函数;又0<a <1;∴函数log a u 为减函数;∴复合函数f (x )单调减区间为(﹣3,3).【点睛】考查换元法求函数解析式,奇函数的定义,以及根据奇偶函数的定义判断函数奇偶性的方法,复合函数的定义,对数函数的单调性,复合函数单调性的判断方法.27.(1)()2,04 442,4m m g m m m ⎧-<≤⎪=⎨⎪->⎩(2)()()4,00,4- 【解析】【分析】(1)函数的对称轴2m x =,讨论对称轴所在的区间即可求解.(2)根据已知定义在()(),00,-∞⋃+∞的函数()h x 为偶函数,再对其单调性进行研究可知()()4h t h >,即04t <<,实数t 的取值范围即可求解.【详解】(1)因为()()222024m m f x x mx x m ⎛⎫=-=--> ⎪⎝⎭,所以当04m <≤时,022m <≤,此时()224m m g m f ⎛⎫==- ⎪⎝⎭.当4m >时,函数()2224m m f x x ⎛⎫=-- ⎪⎝⎭在区间[]0,2上单调递减,所以()()242g m f m ==-.综上可知()2,04442,4m m g m m m ⎧-<≤⎪=⎨⎪->⎩.(2)因为当0x >时,()()h x g x =,所以当0x >时,()2,04442,4x x h x x x ⎧-<≤⎪=⎨⎪->⎩.易知函数()h x 在()0,+∞上单调递减,因为定义在()(),00,-∞⋃+∞上的函数()h x 为偶函数,且()()4h t h >,所以04t <<,解得40t -<<或04t <<.综上所述,实数t 的取值范围为()()4,00,4-⋃.【点睛】本题主要考查函数的性质,求二次函数在闭区间上的最值问题主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论是哪种类型,解决的关键是明确对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.28.(1)12(2)1,12⎛⎤- ⎥⎝⎦【解析】【分析】(1)根据幂函数的定义得到2312m m +=,解得12m =或2m =-,再由函数()232m m f x m x ⎛⎫=+ ⎪⎝⎭在()0,+∞上单调递增,做出取舍;(2)根据题意得到()g x 在[)0,+∞上单调递增,列出不等式组,求得结果.(1)因为()232m m f x m x ⎛⎫=+ ⎪⎝⎭为幂函数,所以2312m m +=,解得12m =或2m =-.当2m =-时,()2f x x -=在()0,+∞上单调递减,不符合题意;当12m =时,()f x =()0,+∞上单调递增,符合题意.综上,m 的值为12.(2)()f x 的定义域为[)0,+∞,且()f x 在[)0,+∞上单调递增.又因为函数y x =在[)0,+∞上单调递增,所以()g x 的定义域为[)0,+∞,且()g x 在[)0,+∞上单调递增.由()()21g a g a +>-,得20,10,21,a a a a +⎧⎪-⎨⎪+>-⎩解得112a -< 故所求不等式的解集为1,12⎛⎤- ⎥⎝⎦.。
高中数学《幂函数》针对练习及答案
第二章 函数2.6.2 幂函数(针对练习)针对练习针对练习一 幂函数的概念1.给出下列函数:①31y x=;①32y x =-;①42y x x =+;①y =①()21y x =-;①0.3x y =,其中是幂函数的有( ) A .1个 B .2个 C .3个 D .4个2.下列函数中,值域是R 的幂函数是( ) A .13y x = B .13xy ⎛⎫= ⎪⎝⎭C .23y x =D .23xy ⎛⎫= ⎪⎝⎭3.下列函数是幂函数的是( ) A .3y x =- B .3y x -=C .32y x = D .32y x =-4.已知幂函数y = f (x )的图像过(36, 6),则此幂函数的解析式是( ) A .13y x = B .3y x =C .12y x =D .2y x5.已知幂函数(1)y k x α=-的图象过点()2,4,则k α+等于( ) A .32B .3C .12D .4针对练习二 幂函数的图像6.下列四个图像中,函数34y x =的图像是( )A .B .C .D .7.如图是幂函数y x α=的部分图象,已知α取12,2,2-,12-这四个值,则与曲线1C ,2C ,3C ,4C 相应的α依次为( )A .2,12,12-,2- B .2-,12-,12,2 C .12-,2,2-,12 D .2,12,2-,12-8.如图,①①①①对应四个幂函数的图像,其中①对应的幂函数是( )A .3y x =B .2y xC .y x =D .y =9.若幂函数()m nf x x = (m ,n ①N *,m ,n 互质)的图像如图所示,则( )A .m ,n 是奇数,且m n<1 B .m 是偶数,n 是奇数,且m n>1 C .m 是偶数,n 是奇数,且m n <1 D .m 是奇数,n 是偶数,且m n>110.下列结论中,正确的是( ) A .幂函数的图象都经过点(0,0),(1,1) B .幂函数的图象可以出现在第四象限C .当幂指数α取1,3,12时,幂函数y =xα是增函数 D .当α=-1时,幂函数y =xα在其整个定义域上是减函数针对练习三 幂函数的定义域11.函数()12ln 1xf x x x =-+的定义域A .()0,∞+B .()1,-+∞C .()0,1D .()()0,11,+∞12.幂函数32y x -=的定义域为( ) A .(0,+∞) B .[0,+∞)C .RD .(-∞,0)①(0,+∞)13.下列幂函数中,定义域为R 的幂函数是( ) A .34y x = B .12y x -= C .6y x -= D .25y x =14.若幂函数()f x 的图象经过点⎛⎝⎭,则()f x 的定义域为( )A .2,2⎛⎝⎭B .()(),00,-∞+∞C .[)0,+∞D .(0,+∞)15.下列函数中,与幂函数12y x -=有相同定义域的是( ) A .2log y x =; B .1y x=C .y x =;D .2x y =.针对练习四 幂函数的值域16.幂函数a y x =中a 的取值集合C 是11,0,,1,2,32⎧⎫-⎨⎬⎩⎭的子集,当幂函数的值域与定义域相同时,集合C 为( ) A .11,0,2⎧⎫-⎨⎬⎩⎭B .1,1,22⎧⎫⎨⎬⎩⎭C .11,,32⎧⎫-⎨⎬⎩⎭D .1,1,2,32⎧⎫⎨⎬⎩⎭17.下列函数中,值域为[0,)+∞的是( ) A .2x y = B .12y x =C .ln y x =D .3y x =18.下列函数中,定义域、值域相同的函数是( ) A .2x y =B .ln y x =C .4y x -=D .12y x -=19.当α①11,,1,2,32⎧⎫-⎨⎬⎩⎭时,函数a y x =的值域为R 的α值有( )A .1个B .2个C .3个D .4个20.以下函数12y x =,2y x ,23y x =,1y x -=中,值域为[0,)+∞的函数共( )个A .1B .2C .3D .4针对练习五 幂函数的单调性21.下列函数中是减函数的为( )A .()2f x x =-B .()3f x x = C.()32⎛⎫= ⎪⎝⎭xf xD .()=f x22.在区间()0,1上单调递减的函数是( )A .3y x =B .y =C .1y x =-D .ln y x =23.已知幂函数()2()5f x x ααα=--在(0,)+∞内单调递增,则α的值为( )A .3B .12C .3或12D .-224.若幂函数223()m m f x x +=在(0,)+∞上是减函数,则实数m 值可以是下列的( ) A .2 B .1 C .1- D .2-25.幂函数()()223169m m f x m m x -+=-+在0,上单调递增,则m 的值为( )A .2B .3C .4D .2或4针对练习六 幂函数的奇偶性26.下列幂函数中,其图像关于y 轴对称且过点()0,0、()1,1的是( ) A .12y x =;B .4y x =;C .2y x ;D .13y x =.27.设10,,2,32α⎧⎫∈⎨⎬⎩⎭,则使幂函数()f x x α=的定义域为R ,且为偶函数的α的值是( ) A .0 B .12 C .2 D .328.下列命题中,不正确的是( ) A .幂函数y =x -1是奇函数 B .幂函数y =x 2是偶函数C .幂函数y =x 既是奇函数又是偶函数D .y =12x 既不是奇函数,又不是偶函数29.使幂函数y x α=为偶函数,且在(0,)+∞上是减函数的α值为( ) A .1- B .23-C .12-D .230.下列幂函数中,定义域为R 且为偶函数是( ) A .2yxB .y x =C .13y x =D .23y x =针对练习七 比较大小与解不等式31.已知 1.13.3a =, 1.14b =,0.93c =,则a ,b ,c 的大小关系为( ) A .c a b << B .c b a << C .b a c << D .b c a <<32.已知0.2log 2a =,0.32b =,0.30.2c =,则( ) A .a c b << B .a b c << C .c a b << D .b c a <<33.已知幂函数12f x x ()=,若()()132f a f a +<-,则实数a 的取值范围是( ) A .[-1,3] B .21,3⎡⎫-⎪⎢⎣⎭C .[-1,0)D .21,3⎛⎤- ⎥⎝⎦34.“()()112212a a +<-”是“122a -<<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件35.已知幂函数()12f x x -=,若()()1102f a f a +<-,则a 的取值范围为( )A .()3,5-B .()5,3-C .()5,3--D .()3,5第二章 函数2.6.2 幂函数(针对练习)针对练习针对练习一 幂函数的概念1.给出下列函数:①31y x=;①32y x =-;①42y x x =+;①y =①()21y x =-;①0.3x y =,其中是幂函数的有( ) A .1个 B .2个 C .3个 D .4个【答案】B 【解析】由幂函数的定义即可判断. 【详解】由幂函数的定义:形如y x α=(α为常数)的函数为幂函数, 则可知①331y x x -==和①53y x =是幂函数. 故选;B.2.下列函数中,值域是R 的幂函数是( ) A .13y x = B .13xy ⎛⎫= ⎪⎝⎭C .23y x =D .23xy ⎛⎫= ⎪⎝⎭【答案】A【分析】根据幂函数的定义与性质,对选项中的函数进行分析、判断即可. 【详解】由题意可得选项B 、D 的函数为指数函数,故排除B 、D ; 对于A :函数13y x ==R ,所以值域为R ,满足条件;对于C :函数23y x ==R ,在第一象限内单调递增,又20x ≥,所以值域为[)0+∞,,不满足条件; 故选:A3.下列函数是幂函数的是( ) A .3y x =- B .3y x -= C .32y x = D .32y x =-【答案】B 【解析】根据幂函数的概念判断各选项中的函数是否为幂函数,由此可得出合适的选项. 【详解】形如a y x =(a 为常数且a R ∈)为幂函数,所以,函数3y x -=为幂函数,函数3y x =-、32y x =、32y x =-均不是幂函数, 故选:B.4.已知幂函数y = f (x )的图像过(36, 6),则此幂函数的解析式是( ) A .13y x = B .3y x =C .12y x =D .2y x【答案】C 【解析】设()a f x x ,代入已知点坐标求解即得. 【详解】由题意设()a f x x ,①366a =,12a =,①12()f x x =.故选:C .5.已知幂函数(1)y k x α=-的图象过点()2,4,则k α+等于( ) A .32B .3C .12D .4【解析】 【分析】根据幂函数解析式的特点可得k 的值,再将点()2,4代入解析式可得α的值,进而可得k α+的值. 【详解】因为(1)y k x α=-是幂函数, 所以11k -=可得:2k =, 因为y x α=的图象过点()2,4, 所以42α=,解得:2α=, 所以4k α+=, 故选:D.针对练习二 幂函数的图像6.下列四个图像中,函数34y x =的图像是( )A .B .C .D .【答案】B 【解析】 【分析】首先判断函数的定义域,再根据幂函数的性质判断即可;解:因为34y x =,即34y x ==30x ≥,解得0x ≥,即函数的定义域为[)0,+∞,故排除A 、C 、D ,且函数在定义域上单调递增,故B 正确; 故选:B7.如图是幂函数y x α=的部分图象,已知α取12,2,2-,12-这四个值,则与曲线1C ,2C ,3C ,4C 相应的α依次为( )A .2,12,12-,2- B .2-,12-,12,2 C .12-,2,2-,12 D .2,12,2-,12-【答案】A 【解析】 【分析】由幂函数的图象性质进行判定. 【详解】因为在直线1x =右侧,指数越大,幂函数的图象越靠上, 所以曲线1C ,2C ,3C ,4C 相应的α依次为2,12,12-,2-. 故选:A.8.如图,①①①①对应四个幂函数的图像,其中①对应的幂函数是( )A .3y x =B .2y xC .y x =D .y =【答案】C 【解析】 【分析】根据常见幂函数的图像即可得出答案. 【详解】解:由图知:①表示y =①表示y x =,①表示2y x ,①表示3y x =.故选:C.9.若幂函数()m nf x x = (m ,n ①N *,m ,n 互质)的图像如图所示,则( )A .m ,n 是奇数,且m n<1 B .m 是偶数,n 是奇数,且m n>1 C .m 是偶数,n 是奇数,且m n <1 D .m 是奇数,n 是偶数,且m n>1 【答案】C 【解析】 【分析】根据幂函数的图像和性质利用排除法求解 【详解】由图知幂函数f (x )为偶函数,且1mn<,排除B ,D ; 当m ,n 是奇数时,幂函数f (x )非偶函数,排除A ; 故选:C.10.下列结论中,正确的是( ) A .幂函数的图象都经过点(0,0),(1,1) B .幂函数的图象可以出现在第四象限C .当幂指数α取1,3,12时,幂函数y =xα是增函数 D .当α=-1时,幂函数y =xα在其整个定义域上是减函数 【答案】C 【解析】 【分析】对于AD ,举例判断,对于BC ,由幂函数的性质判断即可 【详解】当幂指数α=-1时,幂函数y =x -1的图象不经过原点,故A 错误;因为所有的幂函数在区间(0,+∞)上都有定义,且y =xα(α①R )>0,所以幂函数的图象不可能出现在第四象限,故B 当α>0时,y =xα是增函数,故C 正确;当α=-1时,y =x -1在区间(-∞,0),(0,+∞)上是减函数,但在整个定义域上不是减函数,故D 错误. 故选:C.针对练习三 幂函数的定义域11.函数()12ln 1xf x x x =-+的定义域A .()0,∞+B .()1,-+∞C .()0,1D .()()0,11,+∞【答案】A 【解析】解不等式010xx x ⎧>⎪+⎨⎪≥⎩即得函数的定义域. 【详解】由题得010,0100xx x x x x x ⎧><->⎧⎪∴∴>+⎨⎨≥⎩⎪≥⎩或 所以函数的定义域为()0,∞+. 故选A 【点睛】本题主要考查函数的定义域的求法,考查对数函数和幂函数的定义域,意在考查学生对这些知识的理解掌握水平和分析推理能力. 12.幂函数32y x -=的定义域为( ) A .(0,+∞) B .[0,+∞)C .RD .(-∞,0)①(0,+∞)【答案】A 【解析】 【详解】333221y xx -⎛⎫=== ⎪⎝⎭, 所以10x≥,解得0x >,即定义域为()0,∞+,故选A . 13.下列幂函数中,定义域为R 的幂函数是( ) A .34y x = B .12y x -= C .6y x -= D .25y x =【答案】D 【解析】 【分析】利用分数指数式与根式的互化,结合具体函数的定义域的求法逐项分析即可求出结果. 【详解】A 34y x =30x ≥,即0x ≥,所以函数34y x =的定义域为[)0,+∞,故A不符合题意; B 12-==y x0x >,所以函数12y x -=的定义域为()0,∞+,故B 不符合题意; C 661xy x -==,则需要满足0x ≠,所以函数6y x -=的定义域为()(),00,-∞⋃+∞,故C 不符合题意;D 25y x ==25y x =的定义域为R ,故D 正确;故选:D.14.若幂函数()f x 的图象经过点⎛⎝⎭,则()f x 的定义域为( )A .⎛⎝⎭B .()(),00,-∞+∞C .[)0,+∞D .0,【答案】D 【解析】求出幂函数的解析式,()12f x x-==. 【详解】设()f x x α=,已知()f x 的图象经过点2⎛ ⎝⎭1222α-==,12α∴=-,()12f x x -∴==其定义域为0,.故选:D. 【点睛】此题考查幂函数的概念,根据概念求解析式,再求函数定义域,需要注意定义域写成集合或区间形式.15.下列函数中,与幂函数12y x -=有相同定义域的是( )A .2log y x =;B .1y x=;C .y x =;D .2x y =.【答案】A【解析】 【分析】 由题知幂函数12-==y x()0,∞+,再依次讨论各选项即可得答案. 【详解】 解:幂函数12-==y x()0,∞+, 对于A 选项,2log y x =定义域为()0,∞+,故正确; 对于B 选项,1y x=定义域为()(),00,-∞⋃+∞,故错误; 对于C 选项,y x =定义域为R ,故错误; 对于D 选项,2x y =定义域为R ,故错误; 故选:A针对练习四 幂函数的值域16.幂函数a y x =中a 的取值集合C 是11,0,,1,2,32⎧⎫-⎨⎬⎩⎭的子集,当幂函数的值域与定义域相同时,集合C 为( ) A .11,0,2⎧⎫-⎨⎬⎩⎭B .1,1,22⎧⎫⎨⎬⎩C .11,,32⎧⎫-⎨⎬⎩⎭D .1,1,2,32⎧⎫⎨⎬⎩⎭【答案】C 【解析】 【分析】分别求出各幂函数的定义域和值域,得到答案. 【详解】当1a =-时,1y x -=定义域和值域均为()(),00,∞-+∞,符合题意;0a =时,0y x =定义域为()(),00,∞-+∞,值域为{}1,故不合题意;12a =时,y =[)0,∞+,值域为[)0,∞+,符合题意; 1a =时,y x =定义域与值域均为R ,符合题意;2a =时,2yx 定义域为R ,值域为[)0,∞+,不符合题意;3a =时,3y x =定义域与值域均为R ,符合题意.故选:C17.下列函数中,值域为[0,)+∞的是( ) A .2xy =B .12y x =C .ln y x =D .3y x =【答案】B 【解析】 【分析】由题意利用基本初等函数的定义域和值域,得出结论. 【详解】解:由于2x y =的定义域为R ,值域为(0,)+∞,故A 不满足条件; 由于12y x ==[0,)+∞,值域为[0,)+∞,故B 满足条件; 由于ln y x =的定义域为(0,)+∞,值域为R ,故C 不满足条件; 由于3y x =的定义域为R ,值域为R ,故D 不满足条件, 故选:B.18.下列函数中,定义域、值域相同的函数是( ) A .2x y = B .ln y x = C .4y x -=D .12y x -=【答案】D 【解析】分别确定函数的定义域与值域.可得正确选项. 【详解】2x y =的定义域是R ,值域是(0,)+∞,ln y x =的定义域是(0,)+∞,值域是R , 4y x -=的定义域是{|0}x x ≠,值域是(0,)+∞,12y x -=的定义域是{|0}x x >,值域是(0,)+∞,D 中函数的定义域、值域相同. 故选:D .19.当α①11,,1,2,32⎧⎫-⎨⎬⎩⎭时,函数y =xα的值域为R 的α值有( ) A .1个 B .2个C .3个D .4个【答案】B 【解析】 【分析】根据幂函数的性质可得. 【详解】解:11,,1,2,32α⎧⎫∈-⎨⎬⎩⎭,y x α=1y x -∴=的值域为()(),00,-∞⋃+∞;12y x =的值域为[)0,+∞; y x =的值域为R ;2yx 的值域为[)0,+∞;3y x =的值域为R ;所以使函数y x α=满足值域为R 的α有2个; 故选:B 【点睛】本题考查幂函数的性质,属于基础题. 20.以下函数12y x =,2y x ,23y x =,1y x -=中,值域为[0,)+∞的函数共( )个A .1B .2C .3D .4【答案】C 【解析】 【分析】根据四个函数的定义域结合函数的解析式,分别求出四个幂函数的值域即可得答案. 【详解】函数12y x ==[0,)+∞,值域为[0,)+∞; 函数2yx 的定义域为R ,值域为[0,)+∞;函数23y x ==20x ≥,∴函数值域为[0,)+∞;函数331y x x -==,值域为(,0)(0,)-∞+∞. ∴值域为[0,)+∞的函数共3个.故选C. 【点睛】本题考查对幂函数简单性质的考查,即函数的三要素,考查基本运算求解能力.针对练习五 幂函数的单调性21.下列函数中是减函数的为( )A .()2f x x =-B .()3f x x =C .()32⎛⎫= ⎪⎝⎭xf xD .()=f x 【答案】D 【解析】 【分析】根据二次函数、正比例函数、指数函数、幂函数的单调性逐一判断即可. 【详解】A :因为函数()2f x x =-在(,0)-∞上单调递增,所以该函数不是减函数,不符合题意;B :因为函数()3f x x =是增函数,所以不符合题意;C :因为函数()32⎛⎫= ⎪⎝⎭xf x 是增函数,所以不符合题意;D :因为函数()=f x故选:D22.在区间()0,1上单调递减的函数是( )A .3y x =B .y =C .1y x =-D .ln y x =【答案】C 【解析】 【分析】依次判断四个选项的单调性即可. 【详解】A 选项:增函数,错误;B 选项:增函数,错误;C 选项:当01x <<时,1y x =-+,为减函数,正确;D 选项:增函数,错误. 故选:C.23.已知幂函数()2()5f x x ααα=--在(0,)+∞内单调递增,则α的值为( )A .3B .12C .3或12D .-2【答案】A【解析】 【分析】由幂函数的定义及幂函数的图象与性质即可求解. 【详解】解:因为幂函数()2()5f x x ααα=--在(0,)+∞内单调递增,所以2510ααα⎧--=⎨>⎩,解得3α=,故选:A.24.若幂函数223()m m f x x +=在(0,)+∞上是减函数,则实数m 值可以是下列的( ) A .2 B .1 C .1- D .2-【答案】C 【解析】 【分析】根据幂函数的单调性即可得出答案. 【详解】解:因为幂函数223()m m f x x +=在(0,)+∞上是减函数, 所以2230m m +<,解得302m -<<. 故选:C.25.幂函数()()223169m m f x m m x -+=-+在0,上单调递增,则m 的值为( )A .2B .3C .4D .2或4【答案】C 【解析】 【分析】利用幂函数的定义和性质求解即可 【详解】2691m m -+=且2310m m -+>解得4m = 故选:C针对练习六 幂函数的奇偶性26.下列幂函数中,其图像关于y 轴对称且过点()0,0、()1,1的是( ) A .12y x =; B .4y x =; C .2y x ;D .13y x =.【答案】B 【解析】 【分析】根据幂函数的性质,逐项判断,即可得到结果. 【详解】由于函数12y x =的定义域为[)0,∞+,所以函数12y x =图像不关于y 轴对,故A 错误; 由于函数4()y f x x ==的定义域为(),-∞+∞,且()4()()f x x f x =-=-,所以函数4y x =关于y 轴对称,且经过了点()0,0、()1,1,故B 正确; 由于2yx 的定义域为()(),00,∞-+∞,所以函数2yx 不过点()0,0,故C 错误;由于13()y f x x ==的定义域为(),-∞+∞,且1133()()f x xxf x ,所以13y x =图像关于原点中心对称,故D 错误. 故选:B.27.设10,,2,32α⎧⎫∈⎨⎬⎩⎭,则使幂函数()f x x α=的定义域为R ,且为偶函数的α的值是( ) A .0 B .12 C .2 D .3【答案】C 【解析】 【分析】分别对0α=,12,2,3时的幂函数分析判断即可 【详解】当0α=时,()0f x x =,其定义域为{}0x x ≠,所以不合题意, 当12α=时, ()12f x x =,其定义域为{}0x x ≥,所以不合题意,当2α=时,2()f x x =,其定义域为R ,且为偶函数,所以符合题意, 当3α=时,3()f x x =,其定义域为R ,而此函数为奇函数,所以不合题意,故选:C28.下列命题中,不正确的是( ) A .幂函数y =x -1是奇函数 B .幂函数y =x 2是偶函数C .幂函数y =x 既是奇函数又是偶函数D .y =12x 既不是奇函数,又不是偶函数 【答案】C 【解析】 【分析】根据奇偶函数的定义依次判断即可. 【详解】因为11x x-=,11=--x x,所以A 正确;因为22()x x -=,所以B 正确; 因为x x -=不恒成立,所以C 不正确;因为12y x =定义域为[0,+∞),不关于原点对称,所以D 正确. 故选:C. 【点睛】本题主要考查奇偶函数的定义,属于简单题.29.使幂函数y x α=为偶函数,且在(0,)+∞上是减函数的α值为( ) A .1- B .23-C .12-D .2【答案】B 【解析】 【分析】根据幂函数的性质确定正确选项. 【详解】A 选项,1y x=是奇函数,不符合题意. B 选项,y =(0,)+∞上是减函数,符合题意.C 选项,y=.D 选项,2y x ,在()0,∞+上递增,不符合题意.故选:B30.下列幂函数中,定义域为R 且为偶函数是( ) A .2yxB .y x =C .13y x =D .23y x =【答案】D 【解析】 【分析】根据函数解析式,判断函数的定义域,并根据偶函数定义()()f x f x =-,来判断函数是否满足,一一判断即可. 【详解】 对于A ,函数2yx 的定义域为{}|0x x ≠,不符合题意,故A 错误;对于B ,函数y x =为奇函数,不符合,故B 错误; 对于C ,函数13y x =为奇函数,不符合,故C 错误;对于D ,函数23y x =的定义域为R ,满足偶函数定义()()f x f x =-,故D 正确. 故选:D.针对练习七 比较大小与解不等式31.已知 1.13.3a =, 1.14b =,0.93c =,则a ,b ,c 的大小关系为( ) A .c a b << B .c b a <<C .b a c <<D .b c a <<【答案】A 【解析】 【分析】根据指数函数、幂函数的单调性可得三者的大小关系. 【详解】因为 3.3x y =为R 上增函数,0.9y x =在()0,∞+上为增函数, 故 1.10.90.93.3 3.33>>即a c >,因为 1.1y x =在()0,∞+上为增函数,故 1.1 1.13.34<即a b <, 故c a b <<, 故选:A .32.已知0.2log 2a =,0.32b =,0.30.2c =,则( ) A .a c b << B .a b c << C .c a b << D .b c a <<【答案】A 【解析】 【分析】把三个数与“0,1”比较即可. 【详解】因为0.20.2log 2log 10a =<=,0a ∴<,0.30221b =>=,1b ∴>,0.300.21<<,01c ∴<<,所以a c b << 故选: A .33.已知幂函数12f x x ()=,若()()132f a f a +<-,则实数a 的取值范围是( ) A .[-1,3] B .21,3⎡⎫-⎪⎢⎣⎭C .[-1,0)D .21,3⎛⎤- ⎥⎝⎦【答案】B 【解析】 【分析】由题得函数()f x 在定义域[0,)+∞单调递增,解不等式组10320132a a a a +≥⎧⎪-≥⎨⎪+<-⎩即得解.【详解】因为幂函数12f x x ()=,所以函数在定义域[0,)+∞单调递增, 因为()()132f a f a +<-,所以10320,132a a a a +≥⎧⎪-≥⎨⎪+<-⎩解之得213a -≤<. 故选:B 【点睛】本题主要考查幂函数的单调性及其应用,意在考查学生对这些知识的理解掌握水平. 34.“()()112212a a +<-”是“122a -<<”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】A 【解析】 【分析】根据幂函数的单调性求出a 的范围,再根据充分条件和必要条件的定义即可得出答案. 【详解】解:因为12y x =是定义在[)0,∞+上的增函数,又()()112212a a +<-,所以102012a a a a+≥⎧⎪-≥⎨⎪+<-⎩,解得112a -≤<,因为由112a -≤<可推出122a -<<,而由122a -<<无法推出112a -≤<, 故“()()112212a a +<-”是“122a -<<”的充分不必要条件. 故选:A.35.已知幂函数()12f x x -=,若()()1102f a f a +<-,则a 的取值范围为( ) A .()3,5- B .()5,3- C .()5,3-- D .()3,5【答案】D 【解析】 【分析】根据幂函数()12f x x -=的单调性与定义域可解不等式()()1102f a f a +<-.【详解】因为幂函数()12f x x -=的定义域为()0,∞+,且()f x 是定义域上的减函数,所以若()()1102f a f a +<-,则10,1020,1102,a a a a +>⎧⎪->⎨⎪+>-⎩解得35a <<.故选:D.。
高中数学《幂函数》题型战法试题及答案
第二章 函数2.6.1幂函数(题型战法)知识梳理一 幂函数的概念一般地,函数y x α=称为幂函数,其中α为常数.注意:幂函数中底数是自变量,而指数函数中指数为自变量.二 幂函数的图像与性质(1)五个常见幂函数的图像: 如右图所示(2)五个常见幂函数的性质:函数 性质 y =x12y x =y =x 2 y =x 3 1y x -=定义域 R [)0+∞, R R ()(),00,-∞+∞ 值域 R [)0+∞,[)0+∞,R ()(),00,-∞+∞奇偶性奇非奇非偶偶奇奇单调性 R 上增[)0+∞,上增 (-∞,0)上减 [0,+∞)上增R 上增(-∞,0)上减 (0,+∞)上减公共点(1)所有的幂函数在区间()0+∞,上都有定义,因此在第一象限内都有图像,并且图像都过点()1,1.(2)如果0α>,幂函数图像过原点,并且在[)0+∞,上是增函数 (3)如果0α<,幂函数图像过原点,并且在[)0+∞,上是减函数 题型战法题型战法一 幂函数的概念典例1.下列函数是幂函数的是( )A .2y x =B .21y x =-C .3y x =D .2x y =变式1-1.下列函数是幂函数的是( ) A .22y x = B .1y x -=- C .31y x = D .2x y =变式1-2.已知幂函数()y f x =的图象过点()2,8,则()2f -的值为( ) A .8 B .8- C .4 D .4-变式1-3.已知幂函数()22233m m y m m x --=-+的图象不过原点,则实数m 的取值为( )A .1B .2C .-2D .1或2变式1-4.已知幂函数()(,)f x kx k R R αα=∈∈的图象过点1(2,则k α+等于( ) A .12 B .1 C .32D .2题型战法二 幂函数的图像典例2.函数y =的图象大致为( )A .B .C .D .变式2-1.已知幂函数()f x 的图象过点()9,3,则函数()f x 的图象是( )A .B .C .D .变式2-2.如图,①①①①对应四个幂函数的图像,其中①对应的幂函数是( )A .3y x =B .2y xC .y x =D .58y x =变式2-3.图中C 1、C 2、C 3为三个幂函数y x α=在第一象限内的图象,则解析式中指数α的值依次可以是( )A .12、3、1- B .1-、3、12C .12、1-、3D .1-、12、3变式2-4.已知幂函数()f x x α=和()g x x β=,其中0αβ>>,则有下列说法: ①()f x 和()g x 图象都过点()1,1; ①()f x 和()g x 图象都过点(1,1)-;①在区间[1,)+∞上,增长速度更快的是()f x ; ①在区间[1,)+∞上,增长速度更快的是()g x . 则其中正确命题的序号是( ) A .①① B .①①C .①①D .①①题型战法三 幂函数的定义域典例3.下列幂函数中,定义域为R 的是( ) A .1y x -= B .12y x -=C .13y x =D .12y x =变式3-1.若()342x --有意义,则实数x 的取值范围是( ) A .[)2,+∞ B .(],2-∞ C .()2,+∞ D .(),2-∞变式3-2.函数()()()102121f x x x -=-+-的定义域是( ) A .(],1-∞ B .11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭C .(),1-∞-D .1,12⎛⎫⎪⎝⎭变式3-3.5个幂函数:①2y x ;①45y x =;①54y x =;①23y x =;①45y x -=.其中定义域为R 的是( ) A .只有①① B .只有①① C .只有①① D .只有①①变式3-4.若函数()12f x x -=则函数y =f (4 x -3)的定义域是( )A .(-∞,+∞)B .3,4⎛⎫-∞ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .3,4⎛⎫+∞ ⎪⎝⎭题型战法四 幂函数的值域典例4.函数2y x 在区间1,22⎡⎤⎢⎥⎣⎦上的最小值是( )A .14B .14-C .4D .4-变式4-1.在下列函数中,定义域和值域不同的是( ) A .13y x = B .12y x =C .53y x =D .23y x =变式4-2.幂函数()y f x =的图象过点(,则函数()y x f x =-的值域是( ) A .(),-∞+∞ B .1,4⎛⎫-∞ ⎪⎝⎭C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎫-+∞ ⎪⎝⎭变式4-3.已知函数f (x )={3x −2,x ⩽1,x 12,1<x ⩽4,则函数()f x 值域是( )A .(],2-∞B .(]2,2-C .(]1,4D .(],4∞-变式4-4.已知幂函数()f x x α=1(2,)2,则函数()f x 的值域为 A .(,0)-∞ B .(0,)+∞C .(,0)(0,)-∞⋃+∞D .(,)-∞+∞题型战法五 幂函数的单调性典例5.下列函数在(0,)+∞上为减函数的是( )A .y =B .1y x=C .2y xD .y x =变式5-1.已知函数()122()43f x x x =-+的增区间为( )A .(3,)+∞B .(2,)+∞C .(,2)-∞D .(,1)-∞变式5-2.已知函数()()()2,16,(1aa x x f x x x ⎧+≤=⎨->⎩)是减函数,则实数a 的取值范围是( )A .[)7,2--B .(),2-∞-C .(),7-∞-D .()7,2--变式5-3.已知幂函数()()22244m m f x m m x -=-+在()0,∞+上是增函数,则实数m 的值为( ) A .1或3- B .3 C .1- D .1-或3变式5-4.已知幂函数()()282mf x m m x =-在()0,∞+上为增函数,则()4f =( )A .2B .4C .6D .8题型战法六 幂函数的奇偶性典例6.下列函数是奇函数的为( ) A .2x y =B .1y x -=C .12log y x= D .2yx变式6-1.下列函数中,值域是[)0,∞+且为偶函数的是( ) A .2y xB .e e x x y -=+C .lg y x =D .23y x =变式6-2.下列函数中,既是奇函数又是定义域内的增函数为( ) A .tan y x = B .2log y x = C .2y x= D .3y x =变式6-3.设1,1,22α⎧⎫∈⎨⎬⎩⎭,使函数y x α=的定义域是R ,且为偶函数的所有α的值是( ) A .2 B .1,2 C .12,2D .12,1,2变式6-4.已知幂函数()()2133a f x a a x +=-+为偶函数,则实数a 的值为( )A .3B .2C .1D .1或2题型战法七 比较大小与解不等式典例7.设0.2 1.20.21.2,0.9,0.3a b c -===,则a ,b ,c 大小关系为( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>变式7-1.0.20.21210.5,log ,0.43a b c ===,则( )A .a c b >>B .b c a >>C .b a c >>D .c a b >>变式7-2.设120.7a =,120.8b =,31log 2c =,则( ) A .c b a << B .c a b << C .a b c<< D .b a c <<变式7-3.已知1122(52)(1)m m -<-,则m 的取值范围是( ) A .(2,+∞) B .52,2⎛⎤⎥⎝⎦C .(),2-∞ D .[)1,2变式7-4.若1122(1)(32)a a +<-,则实数a 的取值范围是( ) A .31,2⎡⎤-⎢⎥⎣⎦B .21,3⎡⎫-⎪⎢⎣⎭C .2,3⎛⎫-∞ ⎪⎝⎭D .3,2⎛⎤-∞ ⎥⎝⎦第二章 函数2.6.1幂函数(题型战法)知识梳理一 幂函数的概念一般地,函数y x α=称为幂函数,其中α为常数.注意:幂函数中底数是自变量,而指数函数中指数为自变量.二 幂函数的图像与性质(1)五个常见幂函数的图像:如右图所示(2)五个常见幂函数的性质:()0,+∞()0,+∞0)上减∞)上减题型战法题型战法一幂函数的概念典例1.下列函数是幂函数的是()A.2=B.21y x=-y xC.3y=y x=D.2x【答案】C【解析】【分析】由幂函数定义可直接得到结果.【详解】形如y xα=为幂函数.y x=的函数为幂函数,则3故选:C.变式1-1.下列函数是幂函数的是()A .22y x =B .1y x -=-C .31y x =D .2x y =【答案】C 【解析】 【分析】根据幂函数的定义判断. 【详解】形如y x α=(α为常数且R α∈)为幂函数, 所以,函数331=xy x -=为幂函数,函数22y x =、1y x -=-、2x y =均不是幂函数. 故选:C.变式1-2.已知幂函数()y f x =的图象过点()2,8,则()2f -的值为( ) A .8 B .8- C .4 D .4-【答案】B 【解析】 【分析】设()af x x =,由已知条件求出a 的值,可得出函数()f x 的解析式,由此可求得()2f -的值. 【详解】设()a f x x =,由()228a f ==,可得3a =,则()3f x x =,因此,()()3228f -=-=-.故选:B.变式1-3.已知幂函数()22233m m y m m x --=-+的图象不过原点,则实数m 的取值为( )A .1B .2C .-2D .1或2【答案】A 【解析】 【分析】根据题意,可知系数为1,指数应小于0,由此列出不等式组,解得答案. 【详解】由题意可知:2233120m m m m ⎧-+=⎨--<⎩,解得1m = ,经经验,符合题意, 故选:A.变式1-4.已知幂函数()(,)f x kx k R R αα=∈∈的图象过点1(2,则k α+等于( ) A .12 B .1 C .32D .2【答案】A 【解析】 【分析】根据幂函数的定义,结合代入法进行求解即可. 【详解】因为()f x 是幂函数,所以1k =,又因为函数()f x 的图象过点1(2,所以1211()2222ααα-=⇒=⇒=-,因此12k α+=,故选:A题型战法二 幂函数的图像典例2.函数y = )A .B .C .D .【答案】A 【解析】 【分析】根据幂函数的性质判断函数值、增长特点,即可确定大致图象. 【详解】由0y ≥,排除B 、D ,根据对应幂函数的性质,第一象限增速逐渐变慢,排除C. 故选:A.变式2-1.已知幂函数()f x 的图象过点()9,3,则函数()f x 的图象是( )A .B .C .D .【答案】C 【解析】 【分析】设出函数的解析式,根据幂函数()y f x =的图象过点(9,3),构造方程求出指数的值, 【详解】设幂函数的解析式为()f x x α=, ①幂函数()y f x =的图象过点(9,3), ①39α=, 解得12α=①()y f x ==[0,)+∞,且是增函数,当01x <<时,其图象在直线y x =的上方.对照选项可知C 满足题意. 故选:C .变式2-2.如图,①①①①对应四个幂函数的图像,其中①对应的幂函数是( )A .3y x =B .2y xC .y x =D .58y x =【答案】D 【解析】 【分析】根据函数图象求出幂函数的指数取值范围,得到正确答案. 【详解】根据函数图象可得:①对应的幂函数y x α=在[)0,∞+上单调递增,且增长速度越来越慢,故()0,1α∈,故D 选项符合要求. 故选:D变式2-3.图中C 1、C 2、C 3为三个幂函数y x α=在第一象限内的图象,则解析式中指数α的值依次可以是( )A .12、3、1- B .1-、3、12C .12、1-、3D .1-、12、3【答案】D 【解析】 【分析】根据幂函数y x α=在第一象限内的图象性质,结合选项即可得出指数α的可能取值. 【详解】由幂函数y x α=在第一象限内的图象,结合幂函数的性质, 可得:图中C 1对应的0α<,C 2对应的01α<<,C 3对应的1α>, 结合选项知,指数α的值依次可以是11,,32-. 故选:D.变式2-4.已知幂函数()f x x α=和()g x x β=,其中0αβ>>,则有下列说法: ①()f x 和()g x 图象都过点()1,1; ①()f x 和()g x 图象都过点(1,1)-;①在区间[1,)+∞上,增长速度更快的是()f x ; ①在区间[1,)+∞上,增长速度更快的是()g x . 则其中正确命题的序号是( ) A .①① B .①①C .①①D .①①【答案】A 【解析】 【分析】由幂函数的性质进行分析判断即可 【详解】幂函数的图象过定点(1,1),①正确,在区间[1,)+∞上,α越大y x α=增长速度更快,①正确, 故选:A.题型战法三 幂函数的定义域典例3.下列幂函数中,定义域为R 的是( ) A .1y x -= B .12y x -=C .13y x =D .12y x =【答案】C 【解析】 【分析】直接根据幂函数的定义域可直接判断,偶次根式被开方式必须大于等于0才有意义,分式则必须分母不为0 【详解】对选项A ,则有:0x ≠对选项B ,则有:0x > 对选项C ,定义域为:R 对选项D ,则有:0x ≥故答案选:C变式3-1.若()342x --有意义,则实数x 的取值范围是( ) A .[)2,+∞ B .(],2-∞ C .()2,+∞ D .(),2-∞【答案】C 【解析】 【分析】将分式指数幂化为根式,结合根式的性质可得出关于实数x 的不等式,即可解得实数x 的取值范围. 【详解】由负分数指数幂的意义可知,()342x --=所以20x ->,即2x >,因此x 的取值范围是()2,+∞. 故选:C.变式3-2.函数()())10211f x x x -=-+-的定义域是( ) A .(],1-∞ B .11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭C .(),1-∞-D .1,12⎛⎫⎪⎝⎭【答案】B 【解析】 【分析】根据函数解析式有意义可得出关于实数x 的不等式组,由此可解得函数()f x 的定义域. 【详解】因为()()()()100212121f x x x x -=-+-=-, 则有10210x x ->⎧⎨-≠⎩,解得1x <且12x ≠,因此()f x 的定义域是11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭.故选:B.变式3-3.5个幂函数:①2y x ;①45y x =;①54y x =;①23y x =;①45y x -=.其中定义域为R 的是( ) A .只有①① B .只有①① C .只有①① D .只有①①【答案】C 【解析】 【分析】分别写出所给函数的定义域,然后作出判断即可. 【详解】 ①2yx 的定义域为(,0)(0,)-∞+∞,①45y x =的定义域为R , ①54y x =的定义域为(0,)+∞, ①23y x =的定义域为R ,①45y x -=的定义域为(,0)(0,)-∞+∞,故选:C . 【点睛】本题考查幂函数的定义,侧重考查对基础知识的理解和掌握,属于基础题.变式3-4.若函数()12f x x -=则函数y =f (4 x -3)的定义域是( )A .(-∞,+∞)B .3,4⎛⎫-∞ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .3,4⎛⎫+∞ ⎪⎝⎭【答案】D 【解析】 【分析】 先求出()43f x -=,根据幂函数的定义域求解即可. 【详解】 幂函数()12f x x-==, ()43y f x =-=所以430x ->,所以34x >,所以函数()43y f x =-的定义域是3,4⎛⎫+∞ ⎪⎝⎭,故选D. 【点睛】本题主要考函数的定义域、不等式的解法,属于简单题.定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数()f x 的定义域为[],a b ,则函数()()f g x 的定义域由不等式()a g x b ≤≤求出.题型战法四 幂函数的值域典例4.函数2y x 在区间1,22⎡⎤⎢⎥⎣⎦上的最小值是( )A .14B .14-C .4D .4-【答案】A 【解析】 【分析】 由于函数2y x 在区间1,22⎡⎤⎢⎥⎣⎦上是减函数,从而可求出其最小值【详解】 ①函数2yx 在区间1,22⎡⎤⎢⎥⎣⎦上是减函数,①2min 124y -==, 故选:A. 【点睛】此题考查由函数的单调性求最值,属于基础题变式4-1.在下列函数中,定义域和值域不同的是( ) A .13y x = B .12y x =C .53y x =D .23y x =【答案】D 【解析】 【分析】把幂函数写成根式的形式即可求出定义域及值域,逐项分析即可得解. 【详解】由13y x ==x ∈R ,y R ∈,定义域、值域相同; 由12y x ==[0,)x ∈+∞,[0,)y ∈+∞,定义域、值域相同; 由53y x ==x ∈R ,,定义域、值域相同y R ∈; 由23y x ==x ∈R ,[0,)y ∈+∞,定义域、值域不相同. 故选:D变式4-2.幂函数()y f x =的图象过点(,则函数()y x f x =-的值域是( ) A .(),-∞+∞ B .1,4⎛⎫-∞ ⎪⎝⎭C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎫-+∞ ⎪⎝⎭【答案】C 【解析】 【分析】设()af x x =,带点计算可得()12f x x =,得到12y x x =-,令12t x =转化为二次函数的值域求解即可. 【详解】设()af x x =,代入点(得2a =12a ∴=, ()12f x x ∴=则12y x x =-,令12t x =,0t ≥22111244t t t y ⎛⎫=--≥- ⎪⎝⎭∴=-函数()y x f x =-的值域是1,4⎡⎫-+∞⎪⎢⎣⎭. 故选:C.变式4-3.已知函数f (x )={3x −2,x ⩽1,x 12,1<x ⩽4,则函数()f x 值域是( )A .(],2-∞B .(]2,2-C .(]1,4D .(],4∞-【答案】B 【解析】 【分析】结合分段函数的单调性来求得()f x 的值域. 【详解】当1x 吋,32x y =-单调递增,值域为(]2,1-;当14x <时,12y x =单调递增,值域为(]1,2,故函数值域为(]2,2-. 故选:B变式4-4.已知幂函数()f x x α=的图象过点1(2,)2,则函数()f x 的值域为 A .(,0)-∞ B .(0,)+∞ C .(,0)(0,)-∞⋃+∞ D .(,)-∞+∞【答案】C 【解析】 【详解】试题分析:()f x x α=的图象过点1(2,)2()11212a a f x x -∴=∴=-∴=,值域为(,0)(0,)-∞⋃+∞考点:幂函数值域题型战法五 幂函数的单调性典例5.下列函数在(0,)+∞上为减函数的是( )A .y =B .1y x=C .2y xD .y x =【答案】B 【解析】 【分析】依据幂函数的性质去判断各选项的单调性即可解决. 【详解】选项A :由12>可得12y x ==(0,)+∞上单调递增.不符合要求,排除;选项B :由10-<可得11y x x-==在(0,)+∞上单调递减.符合要求,可选;选项C :由20>可得2y x 在(0,)+∞上单调递增.不符合要求,排除;选项D :由10>可得y x =在(0,)+∞上单调递增.不符合要求,排除. 故选:B变式5-1.已知函数()122()43f x x x =-+的增区间为( ) A .(3,)+∞ B .(2,)+∞ C .(,2)-∞ D .(,1)-∞【答案】A 【解析】先求得函数的定义域,再令243t x x =-+,结合12y t =的单调性,利用复合函数的单调性求解. 【详解】 由2430x x -+≥, 解得3x ≥或1x ≤,因为243t x x =-+在(,1]-∞递减,在[3,)+∞递增, 又因为12y t =在[0,)+∞递增, 所以()f x 增区间为(3,)+∞ 故选:A变式5-2.已知函数()()()2,16,(1aa x x f x x x ⎧+≤=⎨->⎩)是减函数,则实数a 的取值范围是( ) A .[)7,2-- B .(),2-∞-C .(),7-∞-D .()7,2--【答案】A 【解析】 【分析】由分段函数()f x 是减函数及幂函数的单调性,可得()2001621a a a a ⎧+<⎪<⎨⎪-≤+⨯⎩,解不等式组即可得答案. 【详解】解:因为函数()()()2,16,(1aa x x f x x x ⎧+≤=⎨->⎩)是减函数,所以()2001621a a a a ⎧+<⎪<⎨⎪-≤+⨯⎩,解得72a -≤<-,所以实数a 的取值范围是[)7,2--, 故选:A.变式5-3.已知幂函数()()22244m m f x m m x -=-+在()0,∞+上是增函数,则实数m 的值为( ) A .1或3- B .3 C .1- D .1-或3【答案】B 【解析】 【分析】由函数是幂函数,解得3m =或1m =,再代入原函数,由函数在()0,∞+上是增函数确定最后的m 值. 【详解】①函数是幂函数,则2441m m -+=,①3m =或1m =.当3m =时()3f x x =在()0,∞+上是增函数,符合题意;当1m =时()1f x x -=在()0,∞+上是减函数,不合题意.故选:B.变式5-4.已知幂函数()()282mf x m m x =-在()0,∞+上为增函数,则()4f =( )A .2B .4C .6D .8【答案】A 【解析】 【分析】由于幂函数在在()0,∞+上为增函数,所以可得282100m m m ⎧--=⎨>⎩,求出m 的值,从而可求出幂函数的解析式,进而可求得答案 【详解】由题意得282100m m m ⎧--=⎨>⎩,得12m =,则()12f x x =,()42f =. 故选:A题型战法六 幂函数的奇偶性典例6.下列函数是奇函数的为( )A .2x y =B .1y x -=C .12log y x =D .2y x【答案】B【解析】【分析】奇函数应该满足()()f x f x =--,且定义域关于原点对称,对选项一一判断即可.【详解】奇函数应该满足()()f x f x =--,22x x -≠-,12log y x=的定义域为()0,∞+显然A,C,不成立,当0x ≠时,有()11x x --=--,所以1y x -=为奇函数,由()22x x -=可知,2y x 为偶函数. 故选:B .变式6-1.下列函数中,值域是[)0,∞+且为偶函数的是( )A .2y xB .e e x x y -=+C .lg y x =D .23y x = 【答案】D【解析】【分析】根据函数的奇偶性和值域确定正确选项.【详解】2y x 的值域为()0,∞+,不符合题意,A 选项错误.e e 2x x y -=≥+,当0x =时等号成立,不符合题意,B 选项错误. lg y x =的定义域为()0,∞+,是非奇非偶函数,不符合题意,C 选项错误. 令()23f x x =,其定义域为R ,()()()2233f x x x f x =-=-=,所以()f x 是偶函数, 且230x ≥,即()f x 的值域为[)0,∞+,符合题意,D 选项正确.故选:D变式6-2.下列函数中,既是奇函数又是定义域内的增函数为( ) A .tan y x =B .2log y x =C .2y x =D .3y x = 【答案】D【解析】【分析】根据初等函数的性质及奇函数的定义结合反例逐项判断后可得正确的选项.【详解】对于A ,tan y x =的定义域为|,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,而233ππ>,但2tan tan 33ππ==,故tan y x =在定义域上不是增函数,故A 错误.对于B ,2log y x =的定义域为()0,+∞,它不关于原点对称,故该函数不是奇函数, 故B 错误.对于C ,因为21>时,2221<,故2y x=在定义域上不是增函数,故C 错误. 对于D ,因为3y x =为幂函数且幂指数为3,故其定义域为R ,且为增函数, 而()33-=-x x ,故3y x =为奇函数,符合.故选:D.变式6-3.设1,1,22α⎧⎫∈⎨⎬⎩⎭,使函数y x α=的定义域是R ,且为偶函数的所有α的值是( )A .2B .1,2C .12,2D .12,1,2 【答案】A【解析】【分析】 把1,1,22α=分别代入验证即可.【详解】当12α=时,y x α==[)0,∞+,故12α≠;当1α=时,y x x α==,定义域为R ,但是为奇函数,故1α≠;当2α=时,2y x x α==,定义域为R ,为偶函数,故2α=.故选:A变式6-4.已知幂函数()()2133a f x a a x +=-+为偶函数,则实数a 的值为( ) A .3B .2C .1D .1或2【答案】C【解析】【分析】 由题意利用幂函数的定义和性质,得出结论.【详解】幂函数()()2133a f x a a x +=-+为偶函数,2331a a ∴-+=,且1a +为偶数,则实数1a =,故选:C题型战法七 比较大小与解不等式典例7.设0.2 1.20.21.2,0.9,0.3a b c -===,则a ,b ,c 大小关系为( ) A .a b c >>B .a c b >>C .c a b >>D .c b a >>【答案】C【解析】【分析】利用有理指数幂和幂函数的单调性分别求得a ,b ,c 的范围即可得答案.【详解】200. 1.211.2a >==, 1.200.90.91b =<=, b a ∴<,又0.2y x =在(0,)+∞上单调递增,0.20.20.2101 1.20.3()3a -∴<=<=,b ac ∴<<,变式7-1.0.20.21210.5,log ,0.43a b c ===,则( )A .a c b >>B .b c a >>C .b a c >>D .c a b >>【答案】C【解析】【分析】 利用幂函数的单调性判断a b >,再利用对数函数的单调性、对数的换底公式即可求解.【详解】幂函数0.2y x =在(0,)+∞上单调递增, 00.20.20.50.50.4∴>>,1a c ∴>>, 1221log log 313b ==>, b ac ∴>>,故选:C .变式7-2.设120.7a =,120.8b =,31log 2c =,则( ) A .c b a <<B .c a b <<C .a b c <<D .b a c << 【答案】B【解析】【分析】根据函数单调性和中间值比较函数值大小.【详解】因为12y x =在[)0,∞+上单调递增,0.70.8<,所以121200780..b a <=<=,而331log log 102c =<=,故c a b <<. 故选:B变式7-3.已知1122(52)(1)m m -<-,则m 的取值范围是( ) A .(2,+∞)B .52,2⎛⎤ ⎥⎝⎦C .(),2-∞D .[)1,2【答案】B由幂函数的性质,可得0521m m ≤-<-,解不等式组可得答案【详解】 解:因为1122(52)(1)m m -<-, 所以0521m m ≤-<-, 解得522m <≤,故选:B变式7-4.若1122(1)(32)a a +<-,则实数a 的取值范围是( ) A .31,2⎡⎤-⎢⎥⎣⎦ B .21,3⎡⎫-⎪⎢⎣⎭ C .2,3⎛⎫-∞ ⎪⎝⎭ D .3,2⎛⎤-∞ ⎥⎝⎦ 【答案】B【解析】首先利用幂函数的单调性得到10320132a a a a +≥⎧⎪-≥⎨⎪+<-⎩,再解不等式组即可. 【详解】 因为1122(1)(32)a a +<-,所以10320132a a a a +≥⎧⎪-≥⎨⎪<-⎩,解得213a -≤<. 故选:B。
高中数学简单的幂函数过关练习题(有答案)
高中数学简单的幂函数过关练习题(有答案)
高中数学简单的幂函数过关练习题(有答案)简单的幂函数
1 . 下列函数中是幂函数的是()
A. y=3x3
B. y=(x- 1)2
C. y=-
D. y=x-1
2. (重点)函数y= 的图像是()
3. 函数y=(x2-2x)-1 2的定义域为 .
4. ( 重点 )当0<x<1时,f(x)=x2,g(x)= ,h(x)=x-2的大小关系是()
A.? h(x)<g(x)<f(x)
B.? h( x)<f(x)<g(x)
C.? g(x)<f(x)<h(x)
D.? f (x)<g(x )<h(x)
5. 如图所示是函数y= (m、nN+且互质)的图像,则()
A.? m、n是奇数,且<1
B.? m是偶数 ,n是奇数,且>1
C.? m是偶数,n是奇数,且<1
D.? m是奇数,n是偶数,且>1
6. 若幂函数y=(m2+3m-17) 的图像不过原点,则m的值为 .
7. 若幂函数y=xp与y =xq的图像在第一象限内的部分关于直线y=x对称,则p、q应满足的条件是 .
8. (重点)试比较a= ,b= ,c= 的大小.
9. 已知幂函数y=xn在第一象限内的图像如下图所示,则曲线C1、C2、C3、C4的n值可能依次为()
A.? -2,- , ,2。
高中数学人教A版必修第一册 课时训练 分层突破 幂函数
3.3 幂函数选题明细表基础巩固1.已知幂函数f(x)=k ·x α的图象过点(12,√22),则k+α等于( C )A.12B.1C.32D.2解析:由幂函数的定义,知{k =1,√22=k ·(12) α.所以k=1,α=12,所以k+α=32.故选C.2.函数y=x 12-1的图象关于x 轴对称的图象大致是( B )解析:y=x 12的图象位于第一象限,且为增函数,所以函数图象是上升的,函数y=x 12-1的图象可看作由y=x 12的图象向下平移一个单位长度得到的(如选项A 中的图所示),将y=x 12-1的图象关于x 轴对称后即为选项B.故选B.3.幂函数f(x)=(m 2-2m+1)x 2m-1在(0,+∞)上单调递增,则实数m 的值为( D )A.0B.1C.1或2D.2解析:因为函数f(x)是幂函数,所以m2-2m+1=1,解得m=0或m=2,因为函数f(x)在(0,+∞)上单调递增,所以2m-1>0,即m>12,故m=2.故选D.4.(多选题)下列命题中是真命题的有( BD )A.幂函数的图象都经过点(1,1)和(0,0)B.幂函数的图象不可能过第四象限C.当n>0时,幂函数y=x n是增函数D.当n<0时,幂函数y=x n在第一象限内函数值随x值的增大而减小解析:由于幂函数f(x)=x-1的图象不经过点(0,0),所以A不正确;根据幂函数的定义,当x>0时,y不可能小于0,因此幂函数的图象不可能过第四象限,所以B正确;如幂函数f(x)=x 23在其定义域上不是单调函数,所以C不正确;根据幂函数的图象与性质,可得当n<0时,幂函数y=x n在第一象限内单调递减,所以D是正确的.故选BD.5.幂函数f(x)=x m-2(m∈N)在(0,+∞)上单调递减,且f(-x)=f(x),则m等于.解析:因为f(x)=x m-2(m∈N)在(0,+∞)上单调递减,所以m-2<0,故m<2.又因为m∈N,所以m=0或m=1,当m=0时,f(x)=x-2,f(-x)=f(x),符合题意;当m=1时,f(x)=x-1,f(-x)≠f(x),不符合题意.综上知,m=0. 答案:06.已知幂函数f(x)的图象经过点(4,2),则函数f(x)= ,若f(2-a)>f(a-1),则实数a 的取值范围是 .解析:设幂函数f(x)=x α,由f(4)=4α=2,得到α=12,于是f(x)=x 12=√x .若f(2-a)>f(a-1),则√2-a >√a -1,所以{2-a >a -1,2-a ≥0,a -1≥0,解得 1≤a<32.答案:√x [1,32)能力提升7.如图是幂函数y=x m 与y=x n 在第一象限内的图象,则( B )A.-1<n<0<m<1B.n<-1,0<m<1C.-1<n<0,m>1D.n<-1,m>1解析:由幂函数的图象特征可知n<-1,0<m<1.故选B.8.(多选题)已知幂函数f(x)的图象经过点(18,√24),P(x 1,y 1),Q(x 2,y 2)(x 1<x 2)是函数图象上的任意不同两点,给出以下结论正确的是( BC )A.x 1f(x 1)>x 2f(x 2)B.x 1f(x 1)<x 2f(x 2)C.f (x 1)x 1>f (x 2)x 2D.f (x 1)x 1<f (x 2)x 2解析:因为f(x)为幂函数,故可设f(x)=x α,又它的图象经过点(18,√24),可由√24=(18)α得出α=12,所以f(x)=√x .设g(x)=xf(x)=x √x =x 32,它在[0,+∞)上为增函数,若0≤x 1<x 2,则有g(x 1)<g(x 2),故A ,B 中只能选择B.设h(x)=f (x )x =√x x =√x,它在(0,+∞)上为减函数,若0<x 1<x 2,则有h(x 1)>h(x 2),故C ,D 中只能选择C.故选BC. 9.已知幂函数f(x)的图象为曲线C.有下列四个性质: ①f(x)为偶函数; ②曲线C 不过原点O;③曲线C 在第一象限呈上升趋势; ④当x ≥1时,f(x)≥1.写出一个同时满足上述四个性质中三个性质的一个函数 . 解析:常见的幂函数有y=x ,y=x 2,y=x 3,y=x -1,y=√x , y=x 2满足性质①③④. 答案:f(x)=x 2(答案不唯一)10.已知点(√2,2)在幂函数f(x)的图象上,点(-2,14)在幂函数g(x)的图象上.问当x 为何值时: (1)f(x)>g(x); (2)f(x)=g(x); (3)f(x)<g(x).解:设f(x)=x α,由题意得,(√2)α=2⇒α=2, 所以f(x)=x 2.同理可得g(x)=x -2.在同一平面直角坐标系内作出y=f(x)与y=g(x)的大致图象,如图.由图象可知.(1)当x>1或x<-1时,f(x)>g(x).(2)当x=±1时,f(x)=g(x).(3)当-1<x<0或0<x<1时,f(x)<g(x).11.已知幂函数f(x)=(m2-2m-2)x m2-4m+2在(0,+∞)上单调递减.(1)求m的值;(2)试判断是否存在a>0,使得函数g(x)=(2a-1)x-af(x)+1在(0,2]上的值域为(1,11]?若存在,求出a的值;若不存在,请说明理由.解:(1)由题意知,{m2-2m-2=1,m2-4m+2<0,解得m=3.(2)由(1)可得f(x)=x-1,所以g(x)=(2a-1)x-ax+1=(a-1)x+1,假设存在a>0,使得g(x)在(0,2]上的值域为(1,11].①当0<a<1时,a-1<0,此时g(x)在(0,2]上单调递减,不符合题意;②当a=1时,g(x)=1,显然不成立;③当a>1时,a-1>0,g(x)在(0,2]上单调递增,故g(2)=2(a-1)+1=11,解得a=6.综上所述,存在a=6使得g(x)在(0,2]上的值域为(1,11].应用创新12.已知f(x)=(m2-m-1)x4m9-m5-1是幂函数,对任意的x1,x2∈(0,+>0,若a,b∈R,且a+b>0,ab<0,则∞),且x1≠x2,满足f(x1)-f(x2)x1-x2f(a)+f(b)的值( A )A.恒大于0B.恒小于0C.等于0D.无法判断解析:由题意知,m2-m-1=1,解得m=-1或m=2,又对任意的x1,x2∈(0,+∞),且x1≠x2,>0,满足f(x1)-f(x2)x1-x2所以f(x)在(0,+∞)上单调递增.当m=-1时,4m9-m5-1=-4+1-1=-4<0,不合题意,当m=2时,4m9-m5-1=4×29-25-1=2 015>0,满足题意,所以f(x)=x2 015,f(x)是奇函数,所以f(x)在R上是增函数.a+b>0,ab<0,不妨设a>0,b<0,则a>-b>0,所以f(a)>f(-b),即f(a)>-f(b),所以f(a)+f(b)>0.故选A.。
高一幂函数练习题
高一幂函数练习题高一幂函数练习题幂函数是高中数学中的一个重要概念,它在数学中具有广泛的应用。
在高一的学习中,我们经常会遇到各种幂函数的练习题。
通过解决这些练习题,我们可以更好地理解和掌握幂函数的性质和运算规律。
下面,我将为大家提供一些高一幂函数练习题,并给出解题思路和方法。
题目一:已知函数y=2^x,求解方程2^x=8的解。
解题思路:将方程2^x=8转化为指数方程,即2^x=2^3。
由于指数相等时底数相等,所以可以得到x=3。
因此,方程2^x=8的解为x=3。
题目二:已知函数y=3^x,求解方程3^x=27的解。
解题思路:将方程3^x=27转化为指数方程,即3^x=3^3。
由于指数相等时底数相等,所以可以得到x=3。
因此,方程3^x=27的解为x=3。
题目三:已知函数y=4^x,求解方程4^x=64的解。
解题思路:将方程4^x=64转化为指数方程,即4^x=4^3。
由于指数相等时底数相等,所以可以得到x=3。
因此,方程4^x=64的解为x=3。
通过以上的练习题,我们可以发现幂函数的一个重要性质:当底数相等时,指数相等。
这个性质在解决幂函数的方程时非常有用,可以简化解题过程。
除了解方程外,我们还可以通过幂函数的性质来进行一些其他的运算。
下面,我将给出一些例子。
例一:已知函数y=2^x,求证函数y=2^(x+1)是函数y=2^x的图像向左平移1个单位得到的。
解题思路:对于函数y=2^x,当x增加1个单位时,函数的值变为2^(x+1)。
因此,函数y=2^(x+1)是函数y=2^x的图像向左平移1个单位得到的。
例二:已知函数y=3^x,求证函数y=3^(x-1)是函数y=3^x的图像向右平移1个单位得到的。
解题思路:对于函数y=3^x,当x减少1个单位时,函数的值变为3^(x-1)。
因此,函数y=3^(x-1)是函数y=3^x的图像向右平移1个单位得到的。
通过以上的例子,我们可以看出幂函数的平移是通过改变指数来实现的。
突破15 幂函数(重难点突破)(原卷版)
突破15 幂函数重难突破一、基础知识【知识点一、幂函数】 1.幂函数的概念一般地,函数(y x αα=是常数)叫做幂函数,其中x 是自变量,α是常数. 2.幂函数的结构特征幂函数的解析式是一个幂的形式,且需满足: (1)指数为常数; (2)底数为自变量; (3)系数为1.3.幂函数与指数函数的区别与联系函数 解析式相同点不同点指数函数 (0,1)x y a a a =>≠且右边都是幂的形式指数是自变量,底数是常数幂函数()y x αα=∈R底数是_______,指数是_______【知识点二、幂函数的图象与性质】 1.几个常见幂函数的图象与性质函数y x =2y x =3y x =12y x =1y x=图象定义域 R R R[0,)+∞ {|0}x x ≠ 值域 R[0,)+∞R[0,)+∞{|0}y y ≠奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性在R 上单调递增在(,0)-∞上单调递减;在[0,)+∞上单调递增在R 上单调递增在[0,)+∞上单调递增在(,0)-∞和(0,)+∞上单调递减 过定点过定点(0,0),(1,1)过定点(1,1)【注】幂函数(y x αα=是常数)中,α的取值不一样,对应的幂函数的定义域不一样.注意α是正分数或负分数(正整数或负整数)时的不同.2.幂函数(y x αα=是常数)的指数对图象的影响(1)当_______时,函数图象与坐标轴没有交点,类似于1y x -=的图象,且在第一象限内,逆时针方向指数在增大;(2)当_______时,函数图象向x 轴弯曲,类似于y x =的图象;(3)当_______时,函数图象向y 轴弯曲,类似于2y x =的图象,而且逆时针方向指数在增大. 具体如下:αα>10<α<1α<0图象特殊点 过(0,0),(1,1) 过(0,0),(1,1)过(1,1) 凹凸性 下凸 上凸 下凸 单调性 递增 递增递减举例y =x 212y x =1y x -=、12y x -=3.常用结论(1)幂函数在_______ 上都有定义. (2)幂函数的图象均过定点_______.(3)当0α>时,幂函数的图象均过定点(0,0),(1,1),且在(0,)+∞上单调_______. (4)当0α<时,幂函数的图象均过定点(1,1),且在(0,)+∞上单调_______. (5)幂函数在第四象限无图象.二、题型分析1.K 重点——幂函数的定义判断一个函数是否为幂函数的依据是该函数是否为y x α=(α是常数)的形式,即满足: (1)指数为常数;(2)底数为自变量;(3)系数为1. 【例1】已知幂函数()f x 的图象过点(2, 41),试求该函数的解析式.【变式训练1】(2019春•闵行区校级月考)已知函数()f x 是幂函数,且2f (4)(16)f =,则()f x 的解析式是 .【变式训练2】(2018秋•道里区校级月考)已知幂函数2242()(1)m m f x m x --=+在(0,)+∞上单调递减,则函数()f x 的解析式为 .【变式训练3】已知幂函数22(29)()(919)()mm f x m m x m Z --=-+∈的图象不过原点,则()f x 的解析式为 .2.幂函数的图象要牢记幂函数的图象,并能灵活运用.由幂函数的图象,我们知道:(1)当α的值在(0,1)上时,幂函数中指数越大,函数图象越接近x 轴(简记为“指大图低”);当α的值在(1,+∞)上时,幂函数中指数越大,函数图象越远离x 轴.(2)任何幂函数的图象与坐标轴最多只有一个交点(原点);任何幂函数的图象都不经过第四象限. 【例2】已知函数ay x =,by x =,cy x =的图象如图所示,则实数,,a b c 的大小关系为A .c b a <<B .a b c <<C .b c a <<D .c a b <<【变式训练1】(2019秋•涪城区校级月考)幂函数a y x =,b y x =,c y x =的图象如图所示,则实数a ,b ,c 的大小关系为( )A .a b c >>B .c b a >>C .a c b >>D .b a c >>【变式训练2】已知幂函数n y x =,m y x =,p y x =的图象如图,则( )A .m n p >>B .m p n >>C .n p m >>D .p n m >>【变式训练3】(2019•开福区校级模拟)如图,函数1y x=、y x =、1y =的图象和直线1x =将平面直 角坐标系的第一象限分成八个部分:①②③④⑤⑥⑦⑧.则函数1y x=的图象经过的部分是( )A .④⑦B .④⑧C .③⑦D .③⑧3.幂函数性质的应用(1)幂函数的单调性主要用来比较指数相同、底数不同的幂的值的大小,这时需要注意幂函数的定义域和利用幂函数的奇偶性进行转化;(2)与幂函数有关的综合性问题一般是利用单调性、奇偶性以及函数图象求函数值域、不等式解集等. 【例3】如图,幂函数()37m y xm -=∈N 的图象关于y 轴对称,且与x 轴,y 轴均无交点,求此函数的解析式及不等式(2)16f x +<的解集.4.幂函数单调性的应用(1)注意利用幂函数的性质比较幂值大小的方法步骤. 第一步,根据指数分清正负;第二步,正数区分大于1与小于1的情况,a >1,α>0时,a α>1;0<a <1,α>0时,0<a α<1;a >1,α<0时,0<a α<1;0<a <1,α<0时,a α>1;第三步,构造幂函数应用幂函数单调性,特别注意含字母时,要注意底数不在同一单调区间内的情形. (2)给定一组数值,比较大小的步骤.第一步:区分正负.一种情形是幂函数或指数函数值即幂式确定符号;另一种情形是对数式确定符号,要根据各自的性质进行.第二步:正数通常还要区分大于1还是小于1.第三步:同底的幂,用指数函数单调性;同指数的幂用幂函数单调性;同底的对数用对数函数单调性. 第四步:对于底数与指数均不相同的幂,或底数与真数均不相同的对数值大小的比较,通常是找一中间值过渡或化同底(化同指)、或放缩、有时作商(或作差)、或指对互化,对数式有时还用换底公式作变换等等.【例4】设525352)52(,)52(,)53(===c b a ,则c b a ,,的大小关系是A .a >c >bB .a >b >cC .c >a >bD .b >c >a【变式训练1】(2019秋•武邑县校级期中)若120.5a =,130.5b =,140.5c =,则a ,b ,c 的大小关系为()A .a b c >>B .a b c <<C .a c b <<D .a c b >>【变式训练2】(2019秋•开封校级期中)下列大小关系,正确的是( ) A . 3.3 4.50.990.99< B .23log 0.8log π< C . 5.2 5.20.530.35<D .0.3 3.11.70.9<【变式训练3已知432a =,254b =,1325c =,则( ) A .b a c <<B .a b c <<C .b c a <<D .c a b <<【变式训练4】(2019秋•青阳县校级期中)若221333111(),(),()252a b c ===,则a 、b 、c 的大小关系是( )A .a b c <<B .c a b <<C .b c a <<D .b a c <<5.求出参数后,忽略检验致错 【例5】已知幂函数13()n y xn *-=∈N 的定义域为(0,)+∞,且单调递减,则n =_______.【变式训练1】(2019秋•葫芦岛期末)幂函数2()(1)m g x m m x =--的图象关于y 轴对称. (1)求()g x 的解析式;(2)若函数()()21f x g x ax =-+在[1x ∈-,2]上单调递增,求a 的取值范围.【变式训练1】(2019秋•连江县校级期中)已知幂函数93*()()m f x x m N -=∈的图象关于原点对称,且在R 上单调递增.(1)求()f x 表达式;(2)求满足(1)(34)0f a f a ++-<的a 的取值范围.【变式训练2】(2019秋•静宁县校级期中)已知函数()f x 是幂函数,()f x 在(,0)-∞上是减函数,且(8f f =(1)求函数()f x 的解析式(2)判断函数()f x 的奇偶性,并说明理由 (3)若函数23()[()]()g x f x ax a R -=-∈在[1,2]上的最小值为14-,求实数a 的值.三、课后作业1.如果幂函数f (x )=x α的图象经过点139⎛⎫ ⎪⎝⎭,,则α=A .–2B .2C .12-D .122.若幂函数f (x )的图象经过点(4,12),则f (14)的值是A .4B .3C .2D .13.幂函数的图象经过点3⎛ ⎝⎭,则f (2)的值等于A .4B .14CD 4.函数()21f x x =的单调递增区间为 A .(–∞,0]B .[0,+∞)C .(0,+∞)D .(–∞,0)5.若幂函数y =f (x )经过点33⎛⎫⎪ ⎪⎝⎭,,则此函数在定义域上是 A .增函数B .减函数C .偶函数D .奇函数6.若函数f (x )=(m 2–m –1)x m 是幂函数,且图象与坐标轴无交点,则f (x ) A .是偶函数B .是奇函数C .是单调递减函数D .在定义域内有最小值7.幂函数f (x )=x α的图象经过点(3,则实数α=___________.8.幂函数y =f (x )的图象经过点144⎛⎫ ⎪⎝⎭,,则14f ⎛⎫⎪⎝⎭的值为___________. 9.已知幂函数f (x )经过点(2,8),则f (3)=___________. 10.函数()322(6)f x x x =--的单调递减区间为A .122⎡⎤-⎢⎥⎣⎦,B .132⎡⎤--⎢⎥⎣⎦,C .12⎡⎫-+∞⎪⎢⎣⎭,D .12⎛⎤-∞- ⎥⎝⎦,11.已知点18a ⎛⎫ ⎪⎝⎭,在幂函数f (x )=(a –1)x b 的图象上,则函数f (x )是 A .定义域内的减函数 B .奇函数C .偶函数D .定义域内的增函数12.已知点(a ,12)在幂函数f (x )=(a –1)x b 的图象上,则函数f (x )是 A .奇函数B .偶函数C .定义域内的减函数D .定义域内的增函数13.已知幂函数f (x )=x a 的图象经过函数g (x )=a x –2–12(a >0且a ≠1)的图象所过的定点,则幂函数 f (x )不具有的特性是A .在定义域内有单调递减区间B .图象过定点(1,1)C .是奇函数D .其定义域是R14.若函数f (x )=(m +2)x a 是幂函数,且其图象过点(2,4),则函数g (x )=log a (x +m )的单调增区间为A .(–2,+∞)B .(1,+∞)C .(–1,+∞)D .(2,+∞)15.已知函数()12f x x=,则A .存在x 0∈R ,使得f (x )<0B .对于任意x ∈[0,+∞),f (x )≥0C .存在x 1,x 2∈[0,+∞),使得()()12120f x f x x x -<-D .对于任意x 1∈[0,+∞),∃x 2∈[0,+∞)使得f (x 1)>f (x 2) 16.已知幂函数()22422m my m m x +=--的图象关于原点对称且与x 轴、y 轴均无交点,则整数m 的值为___________.17.幂函数f (x )=(t 3–t +1)x 3t +1是奇函数,则f (2)=___________. 18.已知33255()(3)m m m +≤-,求实数m 的取值范围.19.已知幂函数f (x )=x21()m m -+(m ∈N *)的图象经过点(2.(1)试求m 的值,并写出该幂函数的解析式;(2)试求满足f(1+a)>f(3a的取值范围.20.已知幂函数f(x)=(m3–m+1)x()21182m m--的图象与x轴和y轴都无交点.(1)求f(x)的解析式;(2)解不等式f(x+1)>f(x–2).21.已知f(x)=(m2–m–1)x–5m–1是幂函数,且在区间(0,+∞)上单调递增.(1)求m的值;(2)解不等式f(x–2)>16.22.已知幂函数f (x )=x α(α∈R ),且12f ⎛⎫=⎪⎝⎭. (1)求函数f (x )的解析式;(2)证明函数f (x )在定义域上是增函数.23.(2018•上海)已知α∈{–2,–1,–1122,,1,2,3},若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α=__________.。
幂函数练习题及答案
幂函数练习题及答案幂函数是数学中常见的一类函数,其形式为 f(x) = a^x,其中 a 为常数且a ≠ 0。
幂函数在数学中有广泛的应用,涉及到各个领域的问题。
本文将通过一些幂函数的练习题及其答案,来帮助读者更好地理解和掌握幂函数的性质和运算。
1. 练习题一:简单的幂函数求值计算以下幂函数在给定点上的函数值:(a) f(x) = 2^x,当 x = 3;(b) g(x) = (-3)^x,当 x = -2;(c) h(x) = 0.5^x,当 x = 4。
答案:(a) f(3) = 2^3 = 8;(b) g(-2) = (-3)^(-2) = 1/((-3)^2) = 1/9;(c) h(4) = 0.5^4 = 1/2^4 = 1/16。
这些计算可以通过将给定的 x 值代入幂函数的定义中进行求解。
注意负指数的处理方式。
2. 练习题二:幂函数的图像与性质研究以下幂函数的图像,并回答相应问题:(a) f(x) = 2^x;(b) g(x) = (-2)^x;(c) h(x) = 3^x。
答案:(a) f(x) = 2^x 的图像是一条递增曲线,穿过点 (0, 1)。
当 x 取负值时,函数值逐渐趋近于 0,当 x 取正值时,函数值逐渐增大。
(b) g(x) = (-2)^x 的图像是一条交替变化的曲线。
当 x 为偶数时,函数值为正,当 x 为奇数时,函数值为负。
(c) h(x) = 3^x 的图像是一条递增曲线,穿过点 (0, 1)。
函数值随 x 的增大而迅速增大。
通过观察这些幂函数的图像,我们可以发现幂函数的一些共同性质,如递增或递减性、穿过点 (0, 1)、趋近于 0 等。
3. 练习题三:幂函数的运算计算以下幂函数的运算结果:(a) f(x) = 2^x * 2^3;(b) g(x) = (2^x)^3;(c) h(x) = 2^(x+3)。
答案:(a) f(x) = 2^x * 2^3 = 2^(x+3);(b) g(x) = (2^x)^3 = 2^(3x);(c) h(x) = 2^(x+3) = 2^x * 2^3。
幂函数练习题
幂函数练习题幂函数练习题幂函数是数学中一种常见且重要的函数类型,它的形式为f(x) = ax^n,其中a和n是实数,且a不等于0。
幂函数在实际问题中有着广泛的应用,例如物理学中的运动学问题、经济学中的成本函数等等。
为了更好地理解和掌握幂函数,下面将给出一些幂函数的练习题。
1. 给定函数f(x) = 2x^3,求f(2)的值。
解析:将x代入函数f(x)中,得到f(2) = 2 * 2^3 = 2 * 8 = 16。
2. 已知函数g(x) = 4x^2,求g(-1)的值。
解析:将x代入函数g(x)中,得到g(-1) = 4 * (-1)^2 = 4 * 1 = 4。
3. 若函数h(x) = 3x^4,求h(0)的值。
解析:将x代入函数h(x)中,得到h(0) = 3 * 0^4 = 3 * 0 = 0。
4. 给定函数k(x) = 5x^2,求k(3)的值。
解析:将x代入函数k(x)中,得到k(3) = 5 * 3^2 = 5 * 9 = 45。
通过以上的练习题,我们可以看到幂函数的计算方法其实并不复杂。
只需要将给定的x代入函数中,并按照幂函数的定义进行计算即可。
幂函数的特点是在变量x的幂次上有着明显的影响,不同的幂次会导致函数图像的变化。
除了计算幂函数的值,我们还可以通过观察幂函数的图像来了解其性质。
例如,当幂函数的幂次为正数时,函数的图像呈现出递增的趋势;当幂次为负数时,函数的图像则呈现出递减的趋势。
这是因为正数的幂次会使函数的值逐渐增大,而负数的幂次则会使函数的值逐渐减小。
此外,当幂次为偶数时,函数的图像会关于y轴对称;当幂次为奇数时,函数的图像则不对称。
这是因为偶数次幂的函数具有正负对称性,而奇数次幂的函数则没有这种对称性。
幂函数在实际问题中的应用非常广泛。
例如,在物理学中,我们可以利用幂函数来描述物体的运动规律;在经济学中,幂函数可以用来描述成本函数、收益函数等。
掌握幂函数的性质和应用,对于解决实际问题具有重要的意义。
新高考数学一轮复习练习-幂函数(提升)(解析版)
3.9 幂函数(提升)一、单选题1.(2021·河南)已知实数a ,b ,c 满足,,,则a ,b ,c 的大小关系是( )A .B .C .D .【答案】C【解析】由题意得,,故;,因,根据对勾函数得,因此;由勾股数可知,又因且,故;因此.故选:C.2.(2021·天津南开中学高三)设,,为正实数,且,则,,的大小关系是( )A .B .C .D .【答案】B【解析】为正实数,且,可得.∴,令,又在上单调递增,136a =756log 8log 49b =+72425b b c +=b a c >>c b a >>b c a >>c a b>>103661a =>=21a >>756756772log 8log 49log 5612log 7log 561log 56b =+=-+=+-77log 56log 492>=7722log 5623log 562+>+=312b >-=22272425+=72425b b c +=2b >2b c >>b c a >>x y z 235log log log 1x y z ==>2x 3y 5z532z y x <<235x y z <<325y x z <<235x y z ==,,x y z 235log log log 1x y z k ===>22,33,55k k k x y z =>=>=>11121,31,51235k k k x y z---=>=>=>()1k f x x -=()f x ()0+∞,∴,即,故选:B .3.(2021·广东)已知奇函数在单调递增,,若,则( )A .B .C .D .【答案】D【解析】,,,,.,,,所以A ,B 错误;在上为增函数,,所以C 错误;在上为减函数,,所以D 正确.故选:D4.(2021·浙江)已知函数,若存在区间,使得函数在区间上的值域为则实数的取值范围为( )A .B .C .D .【答案】D【解析】根据函数的单调性可知,,即可得到,是方程的两个不同非负实根,所以,解得.()()()532f f f >>532zy x >>()f x ()-∞+∞,()12f =()02f m <<()()2log 1log 1m m m m +>+()log 10m m -<22(1)(1)m m ->+()()113211m m ->-()02f m << ()()()01f f m f ∴<<01m ∴<<11m ∴+>011m <-<211m m +>+ ()()2log 1log 1m m m m ∴+<+()log 10m m ->2y x = ()0+∞,22(1)(1)m m ∴-<+(1)xy m =- ()0+∞,()()113211m m ∴->-()f x k =+[,]a b ()f x [,]a b [1,1]a b ++k (1,)-+∞(1,0]-1,4⎛⎫-+∞ ⎪⎝⎭1,04⎛⎤- ⎥⎝⎦()()11f a a f b b ⎧=+⎪⎨=+⎪⎩1010a kb k ⎧+-=⎪⎨+-=⎪⎩20x x k --=1400k k ∆=+>⎧⎪=-≥104k -<≤故选:D .5.(2021·宁县第二中学)已知幂函数在上是增函数,则n 的值为( )A .B .1C .D .1和【答案】C【解析】因为函数是幂函数,所以解得:或当时,在上是增函数,符合题意.当时,在上是减函数,不符合题意.故选:C6.(2021·河南)已知幂函数的图象在上单调递减,则实数的值是( )A .1B .C .1或D【答案】A【解析】由幂函数定义得,解得或.当时,在上单调递减;当时,在上单调递增.故选:A7.(2020·武汉思久高级中学)已知函数是减函数,则实数a 的取值范围是( )A .B .C .D .【答案】B【解析】因为函数是减函数,()223()22()n nf x n n x n -=+-∈Z (0,)+∞1-3-3-2221+-=n n 3n =-1n =3n =-()18=f x x ()0,∞+1n =()2f x x -=()0,∞+()()()22231a a f x a a xa --=+-∈R ()0,∞+a2-2-211a a +-=1a =2a =-1a =()4f x x -=()0,∞+2a =-()5f x x =()0,∞+(3),(1)()7,(1)aa x x f x x x +≤⎧=⎨->⎩(,9]-∞-[9,3)--(,3)-∞-(3,0)-(3),(1)()7,(1)aa x x f x x x +≤⎧=⎨->⎩所以幂函数为减函数,一次函数为减函数,所以,解得:,所以实数a 的取值范围是故选:B8.(2021·湖南长沙市·长沙一中高三月考)已知定义在上的函数,,,,则的大小关系是A .B .C .D .【答案】C 【解析】因为.因为递增,所以,所以,因为递增,所以,∴,又函数在R 上单调递增,所以.故选:C.9.(2021·上海)在同一直角坐标系中,二次函数与幂函数图像的关系可能为( )A .B .7,(1)a y x x =->(3),(1)y a x x =+≤30360a a a +<+≥-<⎧⎪⎨⎪⎩93a -≤<-[9,3)--R 3()f x x x =+a f =()log 3b f π=1))c f =,,a b c a b c <<b c a <<c b a <<b a c<<y =1>=log y x π=log 1log 3log ππππ<<0log 31π<<ln y x =1)ln1-<1)0-<()f x c b a <<2y ax bx =+(0)bay x x =>C .D .【答案】A【解析】对于A ,二次函数开口向上,则,其对称轴,则,即幂函数为减函数,符合题意;对于B , 二次函数开口向下,则,其对称轴,则,即幂函数为减函数,不符合题意;对于C ,二次函数开口向上,则,其对称轴,则,即幂函数为增函数,且其增加的越来越快,不符合题意;对于D , 二次函数开口向下,则,其对称轴,则,即幂函数为增函数,且其增加的越来越慢快,不符合题意;故选:A10.(2021·衡水中学实验学校)已知幂函数的图象关于y 轴对称,且在上是减函数,若,则实数a 的取值范围是( )A .B .C .D .【答案】D【解析】因为在上是减函数,所以解得,又,所以,因为幂函数的图象关于y 轴对称,2y ax bx =+0a >bx 02a =->0b a<(0)b ay x x =>2y ax bx =+0a <bx 02a =->0b a<(0)b ay x x =>2y ax bx =+0a >12b x a=-=-2ba =(0)bay x x =>2y ax bx =+0a <122b x a =->-01ba<<(0)b ay x x =>39()()m f x x m N -=∈(0,)+∞33(1)(32)mm a a --+<-(1,3)-23,32⎛⎫⎪⎝⎭31,2⎛⎫- ⎪⎝⎭23(,1),32⎛⎫-∞-⎪⎝⎭39()()m f x x m N -=∈(0,)+∞390m -<3m <m N ∈0,1,2m =39()()m f x x m N -=∈所以为偶数,所以,,因为幂函数在上单调递减,所以 或 或 ,解得实数a 的取值范围.故选:D.11.(2020·贵州安顺市)已知是定义在上的函数,对任意两个不相等的正数,都有,记,,,则的大小关系为( )A .B .C .D .【答案】D【解析】,又,∴,即时,,∴函数在上是减函数,又,,即,∴.故选:D .12.(2021·湖北襄阳市·襄阳四中高三一模)已知定义在上的幂函数(为实数)过点,记,,,则的大小关系为( )A .B .C .D .【答案】A【解析】由题得.39m -1m =1133(1)(32)a a --∴+<-13y x-=(,0),(0,)-∞+∞1320a a +>->3210a a -<+<320,10a a ->+<23(,1),32⎛⎫-∞- ⎪⎝⎭()f x ()0,∞+12,x x ()()2112210x f x x f x x x ->-()0.30.30.20.2f a =()0.30.30.30.3f b =()0.20.20.20.2f c --=,,a b c a b c <<b a c<<c a b<<c b a<<120,0x x >>()()2112210x f x x f x x x ->-121221()()f x f x x x x x ->-12x x <1212()()f x f x x x >()f x y x=(0,)+∞0.30.30.20.31<<0.20.21->0.30.30.20.20.30.2-<<a b c >>R ()m f x x =m (2,8)A ()0.5log 3a f =()2log 5b f =()c f m =,,a b c a b c <<a c b<<c a b<<c b a<<3382,22,3,()m m m f x x =∴=∴=∴=函数是上的增函数.因为,,所以,所以,所以.故选:A13.(2021·河北唐山市·高三一模)已知函数是奇函数,当时,,则满足的x 的取值范围是( )A .B .C .D .【答案】C【解析】令,先考虑的解.若,因为为的奇函数,则,故为的解.若,此时,因为在上均为增函数,故在上为增函数,而,故在上的解为,因为为上的奇函数,故在上的解为,故的解为或,故或,所以或故选:C.14.(2021·黑龙江鹤岗市·鹤岗一中高三月考(理))下列命题为真命题的是( )A .若,则3()f x x =R 0.50.5log 3log 10<=220log 5log 83m <<==20.5log 5log 3m >>20.5()(log 5)(log 3)f m f f >>a b c <<()(R)y f x x =∈0x <()328log ()f x x x =--()40f log x ≥1,2⎡⎫+∞⎪⎢⎣⎭1,22⎡⎤⎢⎥⎣⎦[)1,12,2⎡⎤+∞⎢⎥⎣⎦[]11,1,22⎡⎤⋃⎢⎥⎣⎦4log t x =()0f t ≥0t =()f t R ()000f =≥0t =()0f t ≥0t <()328log ()f t t t =--32,()8log t y t y =--=(),0-∞()328log ()f t t t =--(),0-∞11102f ⎛⎫-+= ⎪⎝⎭=-()0f t ≥(),0-∞102t -≤<()f t R ()0f t ≥()0,∞+12t ≥()0f t ≥102-≤≤t 12t ≥41log 02x -≤≤41log 2x ≥112x ≤≤2x ≥0a b <<11a b<B .“,”的否定是“,”C .函数有两个零点D .幂函数在上是减函数,则实数【答案】C【解析】对于A ,,因为,所以,所以,,错误;对于B ,“,”的否定是“,”,错误;对于C ,函数,,当得,当得,所以在是单调递增函数,在是单调递减函数,所以在时有最小值,即,,,所以有两个零点,正确;对于D , 由已知得,无解,幂函数在上是减函数,则实数,错误.故选:C.15.(2021·浙江高三专题练习)已知函数是幂函数,对任意,,且,满足,若,,且,则的值( )A .恒大于0B .恒小于0C .等于0D .无法判断【答案】A【解析】∵函数是幂函数,0x R ∃∈00x ex >0x R ∀∈00x e x <()()11x f x e x x R -=--∈()22231m m y m m x --=--()0,x ∈+∞1m =-11b a a b ab--=0a b <<0,0b a ab ->>110->a b 11a b>0x R ∃∈00x ex >x R ∀∈x e x ≤()()11x f x e x x R -=--∈()1e 1x f x -'=-()0f x '>1x >()0f x '<1x <()f x 1x >1x <()f x 1x =()011110f e =--=-<()3344150f e e =--=->()3322110f e e ---=+-=+>()f x 2211230m m m m ⎧--=⎨--<⎩()22231m m y m m x --=--()0,x ∈+∞1m =-()()2265m m m f x x-=--1x ()20,x ∈+∞12x x ≠()()12120f x f x x x ->-a b R ∈0a b +>()()f a f b +()()2265m m m f x x-=--∴,解得:m = -2或m =3.∵对任意,,且,满足,∴函数为增函数,∴,∴m =3(m = -2舍去)∴为增函数.对任意,,且,则,∴∴.故选:A16.(2021·江西新余市·高三期末(理))若,则,,,的大小关系为( )A .B .C .D .【答案】D【解析】由,指数函数为减函数,幂函数为增函数,所以,又对数函数为减函数,则,而,则,所以.综上;故选:D.17.(2021·肥东县)已知幂函数,在上单调递增.设,,,则,,的大小关系是( )25=1m m --1x ()20,x ∈+∞12x x ≠()()12120f x f x x x ->-()f x 260m ->()3=f x x a b R ∈0a b +>- a b >()()()f a f b f b >-=-()()0f a f b +>01a b <<<b a a b log b a 1log ab 1log log b ab aa b a b >>>1log log a bb ab a b a >>>1log log b a b aa ab b >>>1log log a b b aa b a b >>>01a b <<<x y a =a y x =01b a a a a b <<<<log b y x =log log 1b b a b >=01a <<11a>1log 0a b <1log log a bb aa b a b >>>()()2242(1)mm f x m x m R -+=-∈()0,∞+5log 4a =15log 3b =0.20.5c -=()f a ()f b ()f cA .B .C .D .【答案】A【解析】根据幂函数的定义可得,解得或,当时,,此时满足在上单调递增,当时,,此时在上单调递减,不合题意.所以.因为,,,且,所以,因为在上单调递增,所以,又因为为偶函数,所以,所以.故选:A18.(2021·河北高三月考)若幂函数的图象过点,则函数的最大值为( )A.B .C .D .【答案】C【解析】设幂函数,图象过点,所以, ,故,,则,时,.故选:C .()()()f b f a c <<()()()f c f b f a <<()()()f c f a f b <<()()()f a f b f c <<2(1)1m -=0m =2m =0m =2()f x x =()f x ()0,∞+2m =2()f x x -=()f x ()0,∞+2()f x x =5log 4(0,1)a =∈0.200.50.51c -=>=155log 3log 3(0,1)b -=-=∈a b >-b a c -<<()f x ()0,∞+()()()f b f a f c -<<2()f x x =()()f b f b -=()()()f b f a c <<()y f x =()()21f x f x --1212-34-1-()y f x x α==3322733αα===12α∴=2()(1)()f x f x f x x =--=-t =()22131(),024y t tt t =-+=---≥12t ∴=max 34y =-19.(2021·全国高三)已知幂函数是非奇非偶函数,令(),记数列的前项和为,则( )ABCD【答案】D【解析】由题意得:,解得或,而当时,为偶函数,不合题意;当时,为非奇非偶函数,符合题意,则,则.故选:D .20.(2021·武安市第三中学高三期中)已知函数的零点分别为,则的大小顺序为( )A .B.C .D .【答案】B【解析】函数的零点,即为函数的图象分别与函数的图象交点的横坐标,如图所示:()()12253mf x m m x =-+()()11na f n fn =++n *∈N {}na n n S 2020S=1+1-11-22531m m -+=2m =12m =12m =()2f x x =2m =()12f x x =()()11n a f n f n ===++202011S =-+-+⋅⋅⋅=3131()(,()log ,()(0)2xf x xg x x xh x x x x =-=-=->,,a b c ,,a b c a b c >>c a b>>b c a>>b a c>>3131()(,()log ,()(0)2xf x xg x x xh x x x x =-=-=->y x =3131(,log ,(0)2x y y x y x x ===>由图象可得:,故选:B21.(2021·全国)已知,则( )A .B .C .D .【答案】A【解析】设,,因为,所以,则为减函数,所以,根据幂函数的性质可得,故,即.故选:A.22.(2021·江苏省镇江中学)已知函数的图象过点,令,记数列的前项和为,则( )ABCD【答案】Bc a b >>04πθ<<sin cos cos (cos )(cos )(sin )θθθθθθ>>cos sin cos (sin )(cos )(cos )θθθθθθ>>cos cos sin (cos )(sin )(cos )θθθθθθ>>cos sin cos (cos )(cos )(sin )θθθθθθ>>cos a θ=sin b θ=04πθ<<10a b >>>()x f x a =a b a a >a a a b >b a a a a b >>sin cos cos (cos )(cos )(sin )θθθθθθ>>()af x x =()4,2()()()*11n a n N f n f n =∈++{}n a n n S 2021S =1+1-1-1【解析】函数的图象过点,则,解得,得则故选:B.23.(2021·天津耀华中学高三月考)若,且,则下列不等式成立的是()A.B.C.D.【答案】C【解析】由,且知:,∴,,,∴,而,即,综上,有.故选:C24.(2021·全国高三)函数是幂函数,对任意的,且,满足,若,且,则的值( )A.恒大于0B.恒小于0C.等于0D.无法判断【答案】A【解析】函数f(x)=(m2-m-1)是幂函数,所以m2-m-1=1,解得m=2或m=-1.当m=2时,f(x)=x2 015;当m=-1时,f(x)=x-4.()af x x=()4,242a=12a=()f x=()()11naf n f n==++=-20211)1S=++⋅⋅⋅+=-a b>>1ab=21log()2aba a bb+<<+21log()2aba a bb<+<+()21log2aba b ab<+<+()21log2aba b ab+<+<a b>>1ab=0121ab a<<,2a b+>=122a ab+=>12ab<2log()1a b+>12222a ab a a b+=>>+21log()a a bb+>+21log()2aba a bb+>+>()()952411m mf x m m x--=--()12,0,x x∈+∞12x x≠()()1212f x f xx x->-,a b R∈0a b+>()()f a f b+9541m mx--又因为对任意x 1,x 2∈(0,+∞)且x 1≠x 2,满足,所以函数f (x )是增函数,所以函数的解析式为f (x )=x 2 015,函数f (x )=x 2 015是奇函数且是增函数,若a ,b ∈R 且a +b >0,ab <0,则a ,b 异号且正数的绝对值较大,所以f (a )+f (b )恒大于0,故选A.25.(2021·广东)已知函数,,,直线与这三个函数的交点的横坐标分别是,则的大小关系是 ( ).A .B .C .D .【答案】A【解析】由得,由得,由得,因为函数在上单调递增,所以,即故选:A.26.(2021·全国高三专题练习)当x ∈[0,1]时,下列关于函数y=的图象与交点个数说法正确的是( )A .当时,有两个交点B .当时,没有交点C .当时,有且只有一个交点D .当时,有两个交点【答案】B【解析】设f (x )=,g (x ),其中x ∈[0,1]A .若m=0,则与[0,1]上只有一个交点,故A 错误.()()12120f x f x x x ->-()ln f x x =()lg g x x =3()log h x x =(0)y a a =<123,,x x x 123,,x x x 231x x x <<132x x x <<123x x x <<321x x x <<1ln x a =11aax e e -⎛⎫== ⎪⎝⎭2lg x a =211010aa x -⎛⎫== ⎪⎝⎭33log x a =3133aax -⎛⎫== ⎪⎝⎭(0)y x αα=>(0,)x ∈+∞111310aaae ---⎛⎫⎛⎫⎛⎫>> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭231x x x <<2(1)mx -y =[]m 0,1∈(]m 1,2∈(]m 2,3∈()m 3,∞∈+2(1)mx -()1f x =()g x =(1,1)B .当m ∈(1,2)时,即当m ∈(1,2]时,函数y=的图象与x ∈[0,1]无交点,故B 正确,C .当m∈(2,3]时,,时,此时无交点,即C 不一定正确.D .当m ∈(3,+∞)时,g (0)>1,此时f (1)>g (1),此时两个函数图象只有一个交点,故D 错误,故选B .二、多选题27.(2021·全国课时练习)给出下列四个命题:①函数的图象过定点;②已知函数是定义在上的奇函数,当时,,若,则实数或;③若,则的取值范围是;④对于函数,其定义域内任意都满足.其中所有正确命题的是( )A .①B .②C .③D .④【答案】CD111()(0)1,()(0)1()()2f x f g x g f x g x m<<∴≤=≥=>∴<2(1)mx -y =2111()(1)(1),()(1)32f x f mg x g m <<∴≤=-≤=2(1)m >-()()f x g x <()2121x f x a-=-1,12⎛⎫- ⎪⎝⎭()f x R 0x ≥()()1f x x x =+()2f a =-1a =-2121a >a ()1,+∞()xf x e =12x x ≠()()121222f x f x x x f ++⎛⎫≥⎪⎝⎭【解析】对于①,当,即时,,过定点,①错误;对于②,当时,,方程无解;当时,,解得:或(舍);综上所述:,②错误;对于③,定义域为且在定义域内单调递增,又,若,则,即的取值范围为,③正确;对于④,图象如下图所示:任取,假设,如上图所示,则可得,④正确.故选:CD.28.(2021·江苏)若实数,则下列不等关系正确的是( )A .B .若,则C .若,则D .若,,,则【答案】BCD210x -=12x =12112f ⎛⎫=-= ⎪⎝⎭()f x ∴1,12⎛⎫⎪⎝⎭0a ≥()()12f a a a =+=-0a <()()()12f a f a a a =--=-=-1a =-2a =1a =-()12f x x = [)0,+∞()11f =∴121a >1a >a ()1,+∞()xf x e =12x x ≠12x x <()()121222f x f x x x f ++⎛⎫≥⎪⎝⎭a b <223555b a a⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1a >log 2a ab >0a >2211b a a b>++53m >a ()1,3b ∈()()3322103a b m a b a b ---+->【解析】对A ,在上单调递减,又,,,当时,在上单调递增;当时,在单调递减;故无法判断与大小,故A 错误;对B ,当时,,,,故B 正确;对C ,当时,,,故C 正确;对D ,要证,即证,即证,,即证,,,令,25xy ⎛⎫= ⎪⎝⎭R a b < 2255a b⎛⎫⎛⎫∴> ⎪ ⎪⎝⎭⎝⎭y x α=0α>y x α=()0,∞+0α<y x α=()0,∞+25a ⎛⎫ ⎪⎝⎭35a⎛⎫ ⎪⎝⎭1a >1a b <<log log 1a a b a ∴>=log log log 2a a a ab a b =+>0a >0a b <<()()()()()()33222232320111111b a b a b a b b a b a b a b a b -+-+---==>++++++2211b a a b∴>++()()3322103a b m a b a b ---+->()()()3322330a bm ab a b ---+->()()()()()2233a ab ba b a b m a b a b ++-+->+-a b < 2233a ab b m a b+++<+a ()1,3b ∈()2,6t a b =+∈,又,,即,即原式得证,故D 正确.故选:BCD .29.(2021·苏州市第五中)函数满足条件:①对于定义域内任意不相等的实数恒有;②对于定义域内的任意两个实数都有成立,则称其为函数.下列函数为函数的是( )A .B .C .D .【答案】ACD 【解析】依题意,对于定义域内任意不相等的实数恒有,即是增函数;对于定义域内的任意两个实数都有成立,是上凸函数.A 选项中,是增函数,且,故满足条件,是函数;223a ab b a b++++()()223a a t a t a t+-+-+=223a at t t-++=232331136662a a t a a a a t ++=+-<+-=-+11396562<⨯-+=53m >()2233a ab b m a b ∴+++<+2233a ab b m a b+++<+()f x ,a b ()()0f a f b a b->-12,x x 1212()()22x x f x f x f ++⎛⎫≥ ⎪⎝⎭G G ()31f x x =+()2xf x =()f x =()2()43,,1f x x x x =-+-∈-∞,a b ()()0f a f b a b->-()f x 12,x x 1212()()22x x f x f x f ++⎛⎫≥⎪⎝⎭()f x ()31f x x =+2112(22)()x x f f x f x =++⎛⎫⎪⎝⎭GB选项中,是增函数,如图可知,图象下凸,,不是函数;C选项中,是增函数,如图可知,图象上凸,,是函数;D选项中,是增函数,如图所示,图象上凸,同理可知满足,是函数.故选:ACD.30.(2021·海口市·海南中学高三月考)下列四个命题中正确的是()()2xf x=1212()()22x x f x f xf++⎛⎫≤⎪⎝⎭G()f x=1212()()22x x f x f xf++⎛⎫≥⎪⎝⎭G()2()43,,1f x x x x=-+-∈-∞1212()()22x x f x f xf++⎛⎫≥⎪⎝⎭GA .在上是单调递增函数B .若函数的图像与x 轴没有交点,则C .若幂函数的图象过点,则D .函数与函数表示同一个函数【答案】AC【解析】对于A :,根据复合函数的性质函数在上单调递减,所以函数在上单调递增,故A 正确;对于B :若函数的图象与x 轴没有交点,则当时,;当时,与轴无交点,故B 错误;对于C :幂函数的图象过点,解得,故C 正确;对于D :函数与函数,不表示同一个函数,故D 错误.故选:AC .21()2x xf x -⎛⎫=⎪⎝⎭1,2⎛⎫-∞ ⎪⎝⎭2()2f x ax bx =++280b a -<()f x x α=(P 12α=1y x =+y =22112411()22x xx f x ⎛⎫-- ⎪⎝⎭-⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭211()24g x x ⎛⎫=-- ⎪⎝⎭1,2⎛⎫-∞ ⎪⎝⎭21()()2x xf x f x -⎛⎫==⎪⎝⎭1,2⎛⎫-∞ ⎪⎝⎭2()2(0)f x x bx a α=++≠0a ≠280b a -<0a b ==()2f x =x ()f x x α=P 2α=12α=1y x =+1(10)11(10)x x y x x x ++⎧==+=⎨--+<⎩…。
幂函数的运算专项练习50题(有答案)
幂函数的运算专项练习50题(有答案)以下是50道关于幂函数运算的练题,每题都有详细的答案供参考。
1. 计算 2^3。
答案:2^3 = 8。
2. 计算 (-3)^4。
答案:(-3)^4 = 81。
3. 计算 (4^2)^3。
答案:(4^2)^3 = 4^6 = 4096。
4. 计算 (2^3)(2^4)。
答案:(2^3)(2^4) = 2^(3+4) = 2^7 = 128。
5. 计算 (2^3)^4。
答案:(2^3)^4 = 2^(3*4) = 2^12 = 4096。
6. 计算 (2^3)/2。
答案:(2^3)/2 = 2^(3-1) = 2^2 = 4。
7. 计算 (2^4)/(2^2)。
答案:(2^4)/(2^2) = 2^(4-2) = 2^2 = 4。
8. 计算 (-5^2)-3.答案:(-5^2)-3 = (-25)-3 = -28。
9. 计算 (-5)^2-3.答案:(-5)^2-3 = 25-3 = 22。
10. 计算 (-2)^3-(-2)^2.答案:(-2)^3-(-2)^2 = -8-4 = -12。
11. 计算 (-3)^2-(-3)^3.答案:(-3)^2-(-3)^3 = 9-(-27) = 36。
12. 计算 (2^3)^2/2^2.答案:(2^3)^2/2^2 = 2^6/2^2 = 64/4 = 16。
13. 计算 (2^3)^2/2^3.答案:(2^3)^2/2^3 = 2^6/2^3 = 64/8 = 8。
14. 计算 (2^3)^2-(2^2)^3.答案:(2^3)^2-(2^2)^3 = 2^6-2^6 = 64-64 = 0。
...(以下省略)这些练题旨在帮助您熟悉幂函数的运算规则和性质,通过练可以更好地掌握幂函数的计算方法。
每一题都有详细的答案解析,如果您有任何疑问或需要进一步讲解,请随时向我提问。
祝您练习顺利!。
幂函数练习题及答案
幂函数练习题及答案幂函数练习题及答案幂函数是数学中常见的一种函数形式,它的表达式为y = ax^n,其中a和n为常数,x为自变量。
幂函数在实际问题中具有广泛的应用,例如物理学中的力学问题、经济学中的需求曲线等。
下面将给出一些幂函数的练习题及其答案,帮助读者更好地理解和掌握幂函数的性质和应用。
1. 练习题:已知函数y = 2x^3,求当x取值为2时,y的值是多少?解答:将x = 2代入函数表达式中,得到y = 2*(2^3) = 2*8 = 16。
因此,当x取值为2时,y的值为16。
2. 练习题:已知函数y = 5x^(-2),求当x取值为0.5时,y的值是多少?解答:将x = 0.5代入函数表达式中,得到y = 5*(0.5^(-2)) = 5*(1/0.5^2) =5*(1/0.25) = 5*4 = 20。
因此,当x取值为0.5时,y的值为20。
3. 练习题:已知函数y = 3x^2,求当y取值为12时,x的值是多少?解答:将y = 12代入函数表达式中,得到12 = 3*(x^2)。
将方程两边同时除以3,得到4 = x^2。
再开平方根,得到x = ±2。
因此,当y取值为12时,x的值为±2。
4. 练习题:已知函数y = 4x^(-1/2),求当y取值为2时,x的值是多少?解答:将y = 2代入函数表达式中,得到2 = 4*(x^(-1/2))。
将方程两边同时除以4,得到1/2 = x^(-1/2)。
两边同时取倒数,得到2 = x^(1/2)。
再平方,得到4 = x。
因此,当y取值为2时,x的值为4。
通过以上练习题的解答,我们可以看到幂函数的特点和性质。
首先,幂函数的自变量可以取任意实数值,但要注意当指数为负数时,自变量不能取0。
其次,幂函数的图像在正数指数时呈现出上升趋势,指数越大,曲线上升得越快;而在负数指数时,图像则呈现下降趋势。
此外,幂函数的图像在指数为偶数时,始终位于x轴的上方,而在指数为奇数时,图像则会穿过x轴。
专题07 幂函数、函数的应用(重难点突破)原卷版附答案.docx
专题07 幂函数、函数应用(重难点突破)一、知识结构思维导图二、学法指导与考点梳理重难点一幂函数(1)幂函数的定义一般地,形如y=xα的函数称为幂函数,其中x是自变量,α为常数.(2)常见的5种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.三、重难点题型突破重难点1 求幂函数的解析式幂函数的解析式是一个幂的形式,且需满足: (1)指数为常数;(2)底数为自变量;(3)系数为1.例1.已知幂函数()y f x =的图象过点1(,22,则4log (2)f 的值为( ) A .14-B .14C .2-D .2例2.(2020·河北衡水中学调研)幂函数()221()21m f x m m x -=-+在()0,∞上为增函数,则实数m 的值为( ) A .0B .1C .1或2D .2例3.(2020·陕西省高二期末(文))若函数()223()1m m f x m m x+-=--是幂函数且在(0,)+∞是递减的,则m =( )A .-1B .2C .-1或2D .3【变式训练1】.(2020·河南省实验中学模拟)幂函数y =f (x )经过点(3,3),则f (x )是( )A .偶函数,且在(0,+∞)上是增函数B .偶函数,且在(0,+∞)上是减函数C .奇函数,且在(0,+∞)上是减函数D .非奇非偶函数,且在(0,+∞)上是增函数【变式训练2】.(2020·四川成都模拟)已知幂函数f(x)=xα,当x>1时,恒有f(x)<x,则α的取值范围是()A.(0,1)B.(-∞,1)C.(0,+∞)D.(-∞,0)重难点2 幂函数的图像及其性质的应用 (二) 幂函数的图像及其性质的应用1.幂函数y =x α的图象与性质,由于α值的不同而比较复杂,一般从两个方面考查: ①α的正负:当α>0时,图象过原点,在第一象限的图象上升;当α<0时,图象不过原点,在第一象限的图象下降,反之也成立. ②幂函数的指数与图象特征的关系当α≠0,1时,幂函数y =x α在第一象限的图象特征如下:2.利用幂函数的单调性比较幂值大小的方法技巧:结合幂值的特点利用指数幂的运算性质化成同指数幂,选择适当的幂函数,借助其单调性进行比较.例4.(2020·山东临沂一中质检)幂函数y =x (m ∈Z)的图象如图所示,则m 的值为( )2-2-3m mA .-1B .0C .1D .2例5.有四个幂函数:①()1f x x -=;②()2f x x -=;③()3f x x =;④()13f x x =.某同学研究了其中的一个函数,他给出这个函数的三个性质:(1)偶函数;(2)值域是{y y ∈R ,且}0y ≠;(3)在(),0-∞上是增函数.如果他给出的三个性质中,有两个正确,一个错误,则他研究的函数是( ) A .① B .② C .③D .④【变式训练1】.已知点(2,8)在幂函数()nf x x =的图象上,设,(ln ),2a f b f c f π⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系为( )A .b a c <<B .a b c <<C .b c a <<D .a c b <<重难点3 复合函数例6.(2018·全国高一课时练习)已知函数f(x)=a+b x(b>0,b≠1)的图像过点(1,4)和点(2,16).(1)求f(x)的表达式.(2)解不等式231 ()2x f x-⎛⎫> ⎪⎝⎭(3)当x∈(-3,4]时,求函数g(x)=log2f(x)+x2-6的值域.例7.(2017·全国高一课时练习)已知函数f(x)=x2−x+k,且log2f(a)=2,f(log2a)=k,a>0,且a≠1.(1)求a,k的值;(2)当x为何值时,f(log a x)有最小值?求出该最小值.【变式训练1】.(2019·江苏省金陵中学高一期中)若函数满足.(1)求的值及的解析式;(2)试判断是否存在正数,使函数在区间 上的取值范围为区间 ?若存在,求出正数的值;若不存在,请说明理由.()()22kk f x x k N -++=∈()()23f f <k ()f x q ()()()121g x qf x q x =-+-[]1,2-174,8⎡⎤-⎢⎥⎣⎦q四、课堂定时训练(45分钟)1.若幕函数()f x 的图像经过点1,42⎛⎫⎪⎝⎭,则该函数的图像( ) A .关于x 轴对称 B .关于y 轴对称 C .关于原点对称 D .关于直线y x =对称 2.幂函数()y f x =图象过点11(,)42,则[(9)]f f =( )AB .3C .13D3.幂函数()y f x =的图象经过点,则()f x 是( ) A .偶函数,且在(0,)+∞上是增函数B .偶函数,且在(0,)+∞上是减函数C .奇函数,且在(0,)+∞上是减函数D .非奇非偶函数,且在(0,)+∞上是增函数4.已知函数是幂函数且是上的增函数,则的值为( ) A .2B .-1C .-1或2D .05.满足的实数m 的取值范围是( ).A .B .C .D .6.若幂函数的图像过点,则不等式的解集为( )A .B .()253()1m f x m m x --=--(0,)+∞m 1133(1)(32)m m --+<-23,32⎛⎫⎪⎝⎭23,1,32⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭2,3⎛⎫+∞ ⎪⎝⎭23(,1),32⎛⎫-∞-⋃ ⎪⎝⎭()f x (4,2)()2()f x f x <(,0)(1,)-∞⋃+∞(0,1)C .D .7.(2020·黑龙江省鹤岗一中高二期末(文))幂函数()2f x x -=的单调增区间为______.8.(2020·上海高一课时练习)函数3y x -=在区间[2,0)-上的值域为__________.9.(2020·浙江省高二期中)幂函数()f x 的图像经过点(4,2)P ,则(9)f =_______.10.(2020·上海高一课时练习)函数()f x 既是幂函数又是二次函数,则()f x =_________;函数()g x 既是幂函数又是反比例函数,则()g x =_________.11.(2020·全国高一课时练习)已知幂函数2223(1)m m y m m x --=--⋅,求此幂函数的解析式,并指出其定义域.专题07 幂函数、函数应用(重难点突破)五、知识结构思维导图(,0)-∞(1,)+∞六、学法指导与考点梳理重难点一幂函数(1)幂函数的定义一般地,形如y=xα的函数称为幂函数,其中x是自变量,α为常数.(2)常见的5种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.七、重难点题型突破重难点1 求幂函数的解析式幂函数的解析式是一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.例1.已知幂函数()y f x =的图象过点1(2,则4log (2)f 的值为( ) A .14-B .14C .2-D .2【参考答案】B【解析】设幂函数的表达式为()nf x x =,则12n⎛⎫=⎪⎝⎭,解得12n =, 所以()12f x x=,则()11224421111log 2log 2log 22224f ===⨯=.故参考答案为B.【点睛】本题考查了幂函数,以及对数的运算,属于基础题. 例2.(2020·河北衡水中学调研)幂函数()221()21m f x m m x -=-+在()0,∞上为增函数,则实数m 的值为( ) A .0B .1C .1或2D .2【参考答案】D 【解析】由题意()f x 为幂函数,所以2211m m -+=,解得0m =或2m =. 因为()f x 在()0,∞上为增函数,所以210m ->,即12m >,所以2m =. 故选D.例3.(2020·陕西省高二期末(文))若函数()223()1m m f x m m x+-=--是幂函数且在(0,)+∞是递减的,则m =( )A .-1B .2C .-1或2D .3【参考答案】A 【解析】函数()223()1m m f x m m x+-=--是幂函数且在(0,)+∞是递减的,则221130m m m m ⎧--=⎨+-<⎩,解得1m =-. 故选:A .【变式训练1】.(2020·河南省实验中学模拟)幂函数y =f (x )经过点(3,3),则f (x )是( )A .偶函数,且在(0,+∞)上是增函数B .偶函数,且在(0,+∞)上是减函数C .奇函数,且在(0,+∞)上是减函数D .非奇非偶函数,且在(0,+∞)上是增函数 【参考答案】D【解析】设幂函数的解析式为y =x α,将(3,3)代入解析式得3α=3,解得α=12,∴y =x 12,其是非奇非偶函数,且在(0,+∞)上是增函数.故选D .【变式训练2】.(2020·四川成都模拟)已知幂函数f (x )=x α,当x >1时,恒有f (x )<x ,则α的取值范围是( )A .(0,1)B .(-∞,1)C .(0,+∞)D .(-∞,0)【参考答案】B【解析】当x >1时,恒有f (x )<x ,即当x >1时,函数f (x )=x α的图象在y =x 的图象的下方,作出幂函数f (x )=x α在第一象限的图象,由图象可知(图略)α<1时满足题意.故选B重难点2 幂函数的图像及其性质的应用 (二) 幂函数的图像及其性质的应用1.幂函数y =x α的图象与性质,由于α值的不同而比较复杂,一般从两个方面考查: ①α的正负:当α>0时,图象过原点,在第一象限的图象上升;当α<0时,图象不过原点,在第一象限的图象下降,反之也成立. ②幂函数的指数与图象特征的关系当α≠0,1时,幂函数y =x α在第一象限的图象特征如下:2.利用幂函数的单调性比较幂值大小的方法技巧:结合幂值的特点利用指数幂的运算性质化成同指数幂,选择适当的幂函数,借助其单调性进行比较.例4.(2020·山东临沂一中质检)幂函数y =x (m ∈Z)的图象如图所示,则m 的值为( )2-2-3m mA .-1B .0C .1D .2【参考答案】C【解析】从图象上看,由于图象不过原点,且在第一象限下降,故m 2-2m -3<0,即-1<m <3;又从图象看,函数是偶函数,故m 2-2m -3为负偶数,将m =0,1,2分别代入,可知当m =1时,m 2-2m -3=-4,满足要求.例5.有四个幂函数:①()1f x x -=;②()2f x x -=;③()3f x x =;④()13f x x =.某同学研究了其中的一个函数,他给出这个函数的三个性质:(1)偶函数;(2)值域是{y y ∈R ,且}0y ≠;(3)在(),0-∞上是增函数.如果他给出的三个性质中,有两个正确,一个错误,则他研究的函数是( ) A .① B .② C .③ D .④【参考答案】B【解析】①()1f x x -=只满足值域是{y y ∈R ,且}0y ≠;③()3f x x =只满足在(),0-∞上是增函数;④()13f x x =只满足在(),0-∞上是增函数;②()2f x x -=是偶函数,在(),0-∞上是增函数,但其值域是{}0y y >.故选:B.【点睛】本小题主要考查幂函数的单调性、值域和奇偶性,考查分析与推理的能力,属于基础题.【变式训练1】.已知点(2,8)在幂函数()nf x x =的图象上,设,(ln ),2a f b f c f π⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系为( )A .b a c <<B .a b c <<C .b c a <<D .a c b <<【参考答案】D【解析】由已知得:82n =,解得:3n =,所以3()f x x =,因为13<,12<,ln ln 1e π>=,02-==<,ln 2π<< 由3()f x x =在R 上递增,可得:(ln )f f f π<<⎝⎭⎝⎭,所以a c b <<.、ln π三个数的大小时,引入中间变量1,这是比较大小的常用方法.重难点3 复合函数例6.(2018·全国高一课时练习)已知函数f (x )=a +b x (b >0,b ≠1)的图像过点(1,4)和点(2,16).(1)求f (x )的表达式.(2)解不等式231()2x f x -⎛⎫>⎪⎝⎭(3)当x ∈(-3,4]时,求函数g (x )=log 2f (x )+x 2-6的值域. 【参考答案】(1)f (x )=4x .(2)(-1,3).(3)[-7,18].【解析】解:(1)由题知24,16,a b a b =+⎧⎨=+⎩所以0,4,a b =⎧⎨=⎩或7,3,a b =⎧⎨=-⎩(舍去). 所以f (x )=4x .(2)因为4x>12⎛⎫⎪⎝⎭3-x2,所以22x>2x2-3.所以2x>x2-3.所以x2-2x-3<0.所以-1<x<3.所以不等式的解集为(-1,3).(3)g(x)=log24x+x2-6=log222x+x2-6=2x+x2-6=(x+1)2-7.因为-1∈(-3,4],所以g(x)min=-7,当x=4时,g(x)max=18.所以值域为[-7,18].例7.(2017·全国高一课时练习)已知函数f(x)=x2−x+k,且log2f(a)=2,f(log2a)=k,a>0,且a≠1.(1)求a,k的值;(2)当x为何值时,f(log a x)有最小值?求出该最小值.【参考答案】(1);(2)时,f(log a x)有最小值.【解析】(1)因为,所以,又a>0,且a≠1,所以.(2)f(log a x)=f(log2x)=(log2x)2−log2x+2=(log2x−)2+.所以当log 2x=,即时,f(log a x)有最小值.【变式训练1】.(2019·江苏省金陵中学高一期中)若函数满足.(1)求的值及的解析式;(2)试判断是否存在正数,使函数在区间 上的取值范围为区间 ?若存在,求出正数的值;若不存在,请说明理由.【参考答案】(1)或,;(2)存在.【解析】(1)∵,∴.故,解得. 又∵,∴或.当或时,,∴.(2) 存在,求解如下:假设存在满足题设,由(1)知,,∵,∴两个最值点只能在和处取得, ()()22kk f x x k N -++=∈()()23f f <k ()f x q ()()()121g x qf x q x =-+-[]1,2-174,8⎡⎤-⎢⎥⎣⎦q 0k =1k =()2f x x =2q()()23f f <22213k k -++⎛⎫<⎪⎝⎭220k k -++>12k -<<k Z ∈0k =1k =0k =1k =222k k -++=()2f x x =2q 0q >()()[]2211,1,2g x qx q x x =-+-+∈-()21g =-1x =-212q x q-=,, 而, ∴,即,此时,故符合题意.()123g q -=-2214124q q g q q ⎛⎫-+=⎪⎝⎭()()224121411230244q q q g g q q q q -⎛⎫-+--=-+=≥ ⎪⎝⎭()()min 1234g x g q =-=-=-2q()2max411748q g x q +==2q八、课堂定时训练(45分钟)1.若幕函数()f x 的图像经过点1,42⎛⎫⎪⎝⎭,则该函数的图像( ) A .关于x 轴对称 B .关于y 轴对称 C .关于原点对称 D .关于直线y x =对称 【参考答案】B【解析】设()f x x α=,依题意可得1()42α=,解得2α=-,所以2()f x x -=,因为22()()()f x x x f x ---=-==,所以()f x 为偶函数,其图象关于y 轴对称.故选:B.2.幂函数()y f x =图象过点11(,)42,则[(9)]f f =( )A B .3 C .13D 【参考答案】A【解析】设()y f x x α==,因为幂函数()y f x =图象过点11(,)42,所以有11()24α=,解得12α=,所以12()y f x x ===,因为(9)3f ==,所以[(9)](3)f f f ==故选:A3.幂函数()y f x =的图象经过点,则()f x 是( ) A .偶函数,且在(0,)+∞上是增函数B .偶函数,且在(0,)+∞上是减函数C .奇函数,且在(0,)+∞上是减函数D .非奇非偶函数,且在(0,)+∞上是增函数【参考答案】D【解析】设幂函数()af x x =,因为图象经过点,所以3a =,12a =. 故()12f x x=,因为0x ≥,所以()f x 为非奇非偶函数,且在(0,)+∞上是增函数.故选:D4.已知函数是幂函数且是上的增函数,则的值为( ) A .2B .-1C .-1或2D .0【参考答案】B 【解析】由题意得, 故选:B.5.满足的实数m 的取值范围是( ).A .B .C .D . 【参考答案】D 【解析】幂函数在为减函数,且函数值为正,在为减函数,且函数值为负,等价于,()253()1m f x m m x --=--(0,)+∞m 211,530,1m m m m --=-->∴=-1133(1)(32)m m --+<-23,32⎛⎫⎪⎝⎭23,1,32⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭2,3⎛⎫+∞⎪⎝⎭23(,1),32⎛⎫-∞-⋃ ⎪⎝⎭13y x-=(0,)+∞(,0)-∞1133(1)(32)m m --+<-或或, 解得或或, 所以不等式的解集为. 故选:D.6.若幂函数的图像过点,则不等式的解集为( ) A . B .C .D .【参考答案】D【解析】设幂函数的解析式为, ∵幂函数的图象过点,∴,∴,∴,∴的定义域为,且单调递增, ∵等价于,解得, ∴的解集为. 故选:D .7.(2020·黑龙江省鹤岗一中高二期末(文))幂函数()2f x x -=的单调增区间为______. 320132m m m ->⎧⎨+>-⎩10132m m m +<⎧⎨+>-⎩32010m m ->⎧⎨+<⎩2332m <<m ∈∅1m <-23(,1),32⎛⎫-∞-⋃ ⎪⎝⎭()f x (4,2)()2()f x f x <(,0)(1,)-∞⋃+∞(0,1)(,0)-∞(1,)+∞()f x x α=()f x (4,2)24α=12α=12()f x x =()f x [0,)+∞()2()f x f x <20x x x ≥⎧⎨>⎩1x >()2()f x f x <(1,)+∞【参考答案】(),0-∞【解析】因为幂函数()2f x x -=在()0,∞+是减函数,又因为函数()221f x x x-==是偶函数,所以函数在(),0-∞是增函数.故参考答案为:(),0-∞8.(2020·上海高一课时练习)函数3y x -=在区间[2,0)-上的值域为__________. 【参考答案】1(,]8-∞-【解析】因为幂函数3y x -=在区间[2,0)-上为减函数,所以当2x =-时,函数取得最大值18-,又当0x →时,y →-∞,所以函数3y x -=在区间[2,0)-上的值域为1(,]8-∞-. 故参考答案为:1(,]8-∞-.9.(2020·浙江省高二期中)幂函数()f x 的图像经过点(4,2)P ,则(9)f =_______.【参考答案】3【解析】设幂函数()f x x α=,()f x 图像经过点(4,2)P ,42α∴=,12α∴=, ()12f x x ∴=,()12993f ∴==.故参考答案为:310.(2020·上海高一课时练习)函数()f x 既是幂函数又是二次函数,则()f x =_________;函数()g x 既是幂函数又是反比例函数,则()g x =_________. 【参考答案】2x 1x -【解析】因为()f x 是幂函数,所以设()f x x α=(α为常数),又因为()f x 又是二次函数,所以2α=,即2()f x x =因为()g x 是幂函数,所以设()g x x β=(β为常数),又因为()g x 又是反比例函数,所以1β=-,即1()g x x -=故参考答案为:2x ;1x -11.(2020·全国高一课时练习)已知幂函数2223(1)mm y m m x --=--⋅,求此幂函数的解析式,并指出其定义域.【参考答案】3y x -=或0y x =,{|0}x x ≠.【解析】2223(1)m m y m m x --=--为函数,211m m ∴--=,解得2m =或1m =-.当2m =时,2233m m --=-,则3y x -=,且有0x ≠; 当1m =-时,2230m m --=,则0y x =,且有0x ≠.故所求幂函数的解析式为3y x -=或0y x =,它们的定义域都是{|0}x x ≠.知识改变命运。
简单的幂函数过关练习题(有答案)
简单的幂函数过关练习题(有答案)篇一:幂函数练习题2(含)幂函数练习题21.下列幂函数为偶函数的是( ) 3A.y=x2 B.y=xC.y=x2D.y=x-1 2.若a<0,则0.5a,5a,5-a的大小关系是( ) A.5-a<5a<0.5aB.5a<0.5a<5-a C.0.5a<5-a<5aD.5a<5-a<0.5a1α3.设α∈{-1,1,3},则使函数y=x的定义域为R,且为奇函数的所有α值为( )2A.1,3B.-1,1 C.-1,3D.-1,1,3114.已知n∈{-2,-1,0,1,2,3},若(-2n (-3)n,则n=________.1.函数y=(x+4)的递减区间是( ) A.(-∞,-4)B.(-4,+∞) C.(4,+∞)D.(-∞,4)12.幂函数的图象过点(2,4),则它的单调递增区间是( ) A.(0,+∞)B.[0,+∞) C.(-∞,0)D.(-∞,+∞)3.给出四个说法:①当n=0时,y=xn的图象是一个点;②幂函数的图象都经过点(0,0),(1,1);③幂函数的图象不可能出现在第四象限;④幂函数y=xn在第一象限为减函数,则n<0. 其中正确的说法个数是( ) A.1 B.2 C.3D.41114.设α∈{-2,-1,-232,1,2,3},则使f(x)=xα为奇函数且在(0,+∞)上单调递减的α的值的个数是( )A.1 B.2 C.3D.45.使(3-2x-x)4有意义的x的取值范围是( )A.RB.x≠1且x≠3 C.-3<x<1D.x<-3或x>16.函数f(x)=(m2-m-1)xm2-2m-3是幂函数,且在x∈(0,+∞)上是减函数,则实数m=( )A.2 B.3 C.4D.517.关于x的函数y=(x-1)α(其中α的取值范围可以是1,2,3,-1,2)的图象恒过点________.8.已知2.4α>2.5α,则α的取值范围是________.2-1232-13121709.把33,52(52(6按从小到大的顺序排列____________________. 10.求函数y=(x-1)3的单调区间.11.已知(m+4)2(3-2m)2m的取值范围.12.已知幂函数y=xm2+2m-3(m∈Z)在(0,+∞)上是减函数,求y的解析式,并讨论此函数的单调性和奇偶性.1.下列函数中,其定义域和值域不同的函数是( )1---21-12A.y=x3 B.y=x2 C.y=x3 D.y=x3112.如图,图中曲线是幂函数y=xα在第一象限的大致图象.已知α取-2,-222四个值,则相应于曲线C1,C2,C3,C4的α的值依次为( )1111A.-2,-222B.2,2,-2,-21111C.-2,-2,2,2 D.2,2,-2,-23.以下关于函数y=xα当α=0时的图象的说法正确的是( ) A.一条直线B.一条射线 C.除点(0,1)以外的一条直线D.以上皆错14.函数f(x)=(1-x)0+(1-x)2的定义域为________.21.已知幂函数f(x)的图象经过点(2,2),则f(4)的值为( )11A.16 B.16 C.2D.22.下列幂函数中,定义域为{x|x>0}的是( ) A.y=x3B.y=x2 C.y=x323-151D.y=x4-33.已知幂函数的图象y=xm2-2m-3(m∈Z,x≠0)与x,y轴都无交点,且关于y轴对称,则m为( )A.-1或1B.-1,1或3 C.1或3D.3 4.下列结论中,正确的是( ) ①幂函数的图象不可能在第四象限②α=0时,幂函数y=xα的图象过点(1,1)和(0,0) ③幂函数y=xα,当α≥0时是增函数④幂函数y=xα,当α 0时,在第一象限内,随x的增大而减小 A.①②B.③④ C.②③D.①④5.在函数y=2x3,y=x2,y=x2+x,y=x0中,幂函数有( ) A.1个B.2个 C.3个 D.4个6.幂函数f(x)=xα满足x>1时f(x)>1,则α满足条件( )A.α>1B.0<α<1 C.α>0D.α>0且α≠17.幂函数f(x)的图象过点(3,3),则f(x)的解析式是________. 8.设x ∈(0,1)时,y=xp(p∈R)的图象在直线y=x的上方,则p的取值范围是________. 9.如图所示的函数F(x)的图象,由指数函数f(x)=ax与幂函数g(x)=xα“拼接”而成,则aa、aα、αa、αα按由小到大的顺序排列为________.10.函数f(x)=(m2-m-5)xm-1是幂函数,且当x∈(0,+∞)时,f(x)是增函数,试确定m的值.11.已知函数f(x)=(m2+2m)·xm2+m-1,m为何值时,f(x)是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数?12.已知幂函数y=xm2-2m-3(m∈Z)的图象与x、y轴都无公共点,且关于y轴对称,求m的值,并画出它的图象.参考答案1.解析:选C.y=x,定义域为R,f(-x)=f(x)=x.112.解析:选B.5-a=(5a,因为a<0时y=xa单调递减,且5<0.5<5,所以5a<0.5a<5-a.3.解析:选A.在函数y=x,y=x,y=x2y=x3中,只有函数y=x和y=x3的定义域是R,且是奇函数,故α=1,3.111n1n4.解析:∵-2 -3,且(-2) (-3),∴y=xn在(-∞,0)上为减函数.又n∈{-2,-1,0,1,2,3},∴n=-1或n=2.答案:-1或21.解析:选A.y=(x+4)开口向上,关于x=-4对称,在(-∞,-4)递减. 2.解析:选C.2-12211幂函数为y=x-2=x13.解析:选B.显然①错误;②中如y=x-2(0,0).根据幂函数的图象可知③、④正确,故选B.14.解析:选A.∵f(x)=x为奇函数,∴α=-1,31,3. 又∵f(x)在(0,+∞)上为减函数,∴α=-1.315.解析:选C.(3-2x-x2)-44?3-2x-x?∴要使上式有意义,需3-2x-x2>0,解得-3<x<1.6.解析:选A.m2-m-1=1,得m=-1或m=2,再把m=-1和m=2分别代入m2-2m-3<0,经检验得m=2.7.解析:当x-1=1,即x=2时,无论α取何值,均有1α=1,∴函数y =(x-1)α恒过点(2,1).答案:(2,1)8.解析:∵0<2.4<2.5,而2.4α>2.5α,∴y=xα在(0,+∞)为减函数.答案:α<0702-120312119.解析:6=1,(3)3>(3)=1,(52<1,(521,∵y=x2 2131702-12131702-1∴52<52(6<33答案:(5)2<(5)2<(6)<(3)32211--10.解:y=(x-1)3=,定义域为x≠1.令t=x-1,则y=t3t≠0?x-1?3?x -1?α为偶函数.22-因为α=-3<0,所以y=t3在(0,+∞)上单调递减,在(-∞,0)上单调递增.又t=x-1单调递增,故y=(x-1)3在(1,+∞)上单调递减,在(-∞,1)上单调递增.11.解:∵y=x2(0,+∞),且为减函数.--21?m+4>0∴原不等式化为?3-2m>0?m+4>3-2m1313,解得-3m<2∴m的取值范围是(-32.12.解:由幂函数的性质可知m2+2m-3<0?(m-1)(m+3)<0?-3<m<1,又∵m∈Z,∴m=-2,-1,0. 当m=0或m=-2时,y=x-3,定义域是(-∞,0)∪(0,+∞).∵-3<0,∴y=x-3在(-∞,0)和(0,+∞)上都是减函数,又∵f(-x)=(-x)-3=-x-3=-f(x),∴y=x-3是奇函数.当m=-1时,y=x-4,定义域是(-∞,0)∪(0,+∞).11-4∵f(-x)=(-x)-4=x=f(x), ?-x?x∴函数y=x-4是偶函数.∵-4<0,∴y=x-4在(0,+∞)上是减函数,又∵y=x-4是偶函数,-∴y=x4在(-∞,0)上是增函数.31.解析:选D.y=x3x,其定义域为R,值域为[0,+∞),故定义域与值域不同.22.解析:选B.当x=2时,22>22-22-2,即C1:y=x,C2:y=x2C3:y =x2C4:y=x-2.-112113.解析:选C.∵y=x0,可知x≠0,∴y=x0的图象是直线y=1挖去(0,1)点.?1-x≠04.解析:?,∴x 1.?1-x≥0答案:(-∞,1)篇二:2021数学幂函数练习题2021高中数学幂函数复习重难点:掌握常见幂函数的概念、图象和性质,能利用幂函数的单调性比较两个幂值的大小.考纲要求:①了解幂函数的概念;②结合函数y?x,y?x,y?x,y?知识梳理:1. 幂函数的基本形式是y?x?,其中x是自变量,?是常数.要求掌握y?x,y?x2,y?x3,y?x1/2,y?x?1这五个常用幂函数的图象. 2. 观察出幂函数的共性,如下:(1)当??0时,图象过定点;在(0,??)上是函数.(2)当??0时,图象过定点;在(0,??)上是函数;在第一象限内,图象向上及向右都与坐标轴无限趋近.3. 幂函数y?x?的图象,在第一象限内,直线x?1的右侧,图象由下至上,指数y轴和直线x?1之间,图象由上至下,指数?诊断练习:,则f(4)的值等于1.如果幂函数f(x)?x?的图象经过点2.函数y=(x-2x)252231x1,y?x2的图像,了解他们的变化情况.-12的定义域是3.函数y=x的单调递减区间为4.函数y=x12-m-m2在第二象限内单调递增,则m的最大负整数是_______ _.范例分析:例1比较下列各组数的大小:(1)1.5,1.7,1;(2?232?23,(-107),1.123?43;(3)3.8,3.9,(-1.8);(4)3,5.25351.41.5例2已知幂函数y?xm?6(m?Z)与y?x2?m(m?Z)的图象都与x、y轴都没有公共点,且 y?xm?2(m?Z)的图象关于y轴对称,求m的值.例3幂函数f(x)?(t?t?1)x37?3t?2t25是偶函数,且在(0,??)上为增函数,求函数解析式.反馈练习:11.幂函数y?f(x)的图象过点(4,),则f(8)的值为 .22.比较下列各组数的大小: (a?2) a; (5?a)5; 0.40.50.50.4.232?23?233.幂函数的图象过点(2,14), 则它的单调递增区间是.a4.设x∈(0, 1),幂函数y=x的图象在y=x的上方,则a的取值范围是. 5.函数y=x4在区间上是减函数.6.一个幂函数y=f (x)的图象过点(3, 27),另一个幂函数y=g(x)的图象过点(-8, -2),(1)求这两个幂函数的解析式;(2)判断这两个函数的奇偶性;(3)作出这两个函数的图象,观察得f (x) g(x)的解集.?3巩固练习1.用“”或””连结下列各式:0.32 0.32 0.34, 0.8?0.4 0.6?0.4. 0.60.50.512322.函数y?(x?1)?(4?x)3.y?xa4.已知2??的定义域是?4a?95x3是偶函数,且在(0,??)是减函数,则整数a的值是. ,x的取值范围为2x35.若幂函数y?xa的图象在0 x 1时位于直线y=x的下方,则实数a的取值范围是6.若幂函数f(x)与函数g(x)的图像关于直线y=x对称,且函数g(x) 的图象经过,则f(x)的表达式为7. 函数f(x)?x?2的对称中心是,在区间是函数(填x?3“增、减”)8.比较下列各组中两个值的大小与1.6(2)0.6与0.7(3)3.5与5.3(4)0.18?0.3与0.15?0.39.若(a?2)10.已知函数y=-2x-x2.(1)求函数的定义域、值域;(2)判断函数的奇偶性;(3)求函数的单调区间.?1335351.31.3?23?23?(3?2a)?13,求a的取值范围。
3.3 幂函数-2020-2021高中数学新教材配套提升训练(人教A版必修第一册)(解析版).pdf
1
幂函数 y x11 在
0,
上为增函数,所以,
0.66
1
11
0.77
1
6
7
11
,因此, 0.611
0.711
;
5
5
5
(2) 幂函数
y
x3
0,
0.883
在
上为增函数,
0.893
.
指数幂的大小比较,常用的有如下几种方法:
(1)底数不同,指数相同,可以利用同指数的幂函数的单调性来比较大小;
()
A.函数 y x 的图象过原点
B.函数 y x 是偶函数
8
C.函数 y x 是单调减函数 D.函数 y x 的值域为 R
【参考答案】AD
【解析】
由于幂函数 y x 过点 2,8 ,所以 2 8 ,解得 3 ,所以 y x3 . 0, 0 ,满足 y x3 ,A 选项正确.
y x3 是奇函数,所以 B 选项错误.
x
为奇函数,故选
A.
p
8.(2020·浙江高一课时练习)已知幂函数 y x q ( p, q N*, q 1 且 p, q 互质)的图象如图所示,则
()
p 1
A. p , q 均为奇数,且 q
p 1
B. q 为偶数, p 为奇数,且 q
p 1
C. q 为奇数, p 为偶数,且 q
0 p 1
D. q 为奇数, p 为偶数,且 q
所以 27 3a ,
解得 a 3 ,
所以幂函数 y x3 .
f x x3 x3 f x
因为定义域为 R,且
,
所以 f x 是奇函数,
又因为 a 3 0 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A组基础对点练1.已知命题p:存在n∈R,使得f(x)=nxn2+2n是幂函数,且在(0,+∞)上单调递增;命题q:“∃x0∈R,x20+2>3x0”的否定是“∀x∈R,x2+2<3x”.则下列命题为真命题的是()A.p∧q B.¬p∧qC.p∧¬q D.¬p∧¬q解析:当n=1时,f(x)=x3为幂函数,且在(0,+∞)上单调递增,故p是真命题,则¬p是假命题;“∃x0∈R,x20+2>3x0”的否定是“∀x∈R,x2+2≤3x”,故q是假命题,¬q是真命题.所以p∧q,¬p∧q,¬p∧¬q均为假命题,p∧¬q为真命题,选C.答案:C2.已知幂函数f(x)=x n,n∈{-2,-1,1,3}的图象关于y轴对称,则下列选项正确的是()A.f(-2)>f(1) B.f(-2)<f(1)C.f(2)=f(1) D.f(-2)>f(-1)解析:由于幂函数f(x)=x n的图象关于y轴对称,可知f(x)=x n为偶函数,所以n=-2,即f(x)=x-2,则有f(-2)=f(2)=14,f(-1)=f(1)=1,所以f(-2)<f(-1),故选B.答案:B3.已知0<m<n<1,且1<a<b,下列各式中一定成立的是()A.b m>a n B.b m<a nC.m b>n a D.m b<n a解析:∵f(x)=x a(a>1)在(0,+∞)上为单调递增函数,且0<m<n<1,∴m a<n a,又∵g(x)=m x(0<m<1)在R上为单调递减函数,且1<a<b,∴m b<m a.综上,m b<n a,故选D.答案:D4.已知函数y=ax2+bx+c,如果a>b>c,且a+b+c=0,则它的图象是()解析:∵a>b>c,a+b+c=0,∴a>0,c<0,∴y=ax2+bx+c的开口向上,且与y轴的交点(0,c)在负半轴上.选D.答案:D5.设函数f(x)=x2-x+a(a>0).若f(m)<0,则f(m-1)的值为()A .正数B .负数C .非负数D .正数、负数和零都有可能解析:函数f (x )=x 2-x +a 图象的对称轴为直线x =12,图象开口向上,且f (0)=f (1)=a>0.所以当f (m )<0时,必有0<m <1,而-1<m -1<0,所以f (m -1)>0.答案:A6.已知函数f (x )=x 2-m是定义在区间[-3-m ,m 2-m ]上的奇函数,则下列成立的是( )A .f (m )<f (0)B .f (m )=f (0)C .f (m )>f (0)D .f (m )与f (0)大小不确定解析:因为函数f (x )是奇函数,所以-3-m +m 2-m =0,解得m =3或-1.当m =3时,函数f (x )=x -1,定义域不是[-6,6],不合题意;当m =-1时,函数f (x )=x 3在定义域[-2,2]上单调递增,又m <0,所以f (m )<f (0).答案:A7.(2018·资阳模拟)已知函数f (x )=x 2-2x +4在区间[0,m ](m >0)上的最大值为4,最小值为3,则实数m 的取值范围是( )A .[1,2]B .(0,1]C .(0,2]D .[1,+∞)解析:作出函数的图象如图所示,从图中可以看出当1≤m ≤2时,函数f (x )=x 2-2x +4在区间[0,m ](m >0)上的最大值为4,最小值为3.故选A.答案:A8.在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图象可能是( )解析:因为a >0,所以f (x )=x a 在(0,+∞)上为增函数,故A 错.在B 中,由f (x )的图象知a >1,由g (x )的图象知0<a <1,矛盾,故B 错.在C 中,由f (x )的图象知0<a <1,由g (x )的图象知a >1,矛盾,故C 错.在D 中,由f (x )的图象知0<a <1,由g (x )的图象知0<a <1,相符,故选D.答案:D9.(3-a )(a +6)(-6≤a ≤3)的最大值为( ) A .9 B.92 C .3D.322解析:易知函数y =(3-a )(a +6)的两个零点是3,-6,其图象的对称轴为a =-32,y=(3-a )(a +6)的最大值为⎝⎛⎭⎫3+32×⎝⎛⎭⎫-32+6=⎝⎛⎭⎫922,则(3-a )(6+a )的最大值为92,选B. 答案:B10.已知g (x )是R 上的奇函数,当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,g (x ),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A .(-∞,1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(1,2)D .(-2,1)解析:设x >0,则-x <0,所以g (x )=-g (-x )=ln(1+x ),所以f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (1+x ),x >0,并且函数f (x )是R 上的单调递增函数,所以当f (2-x 2)>f (x )时,满足2-x 2>x ,解得-2<x <1,故选D.答案:D11.已知y =f (x )是奇函数,且满足f (x +2)+3f (-x )=0,当x ∈[0,2]时,f (x )=x 2-2x ,则当x ∈[-4,-2]时,f (x )的最小值为( )A .-1B .-13C .-19D.19解析:设x ∈[-4,-2],则x +4∈[0,2].∵y =f (x )是奇函数,∴由f (x +2)+3f (-x )=0,可得f (x +2)=-3f (-x )=3f (x ),∴f (x +4)=3f (x +2),故有f (x )=13f (x +2)=f (x +4)9.故f (x )=19f (x+4)=19[(x +4)2-2(x +4)]=19[x 2+6x +8]=(x +3)2-19.∴当x =-3时,函数f (x )取得最小值为-19.故选C.答案:C12.设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤4成立的x 的取值范围是________.解析: f (x )的图象如图所示, 要使f (x )≤4,只需x 13≤4,∴x ≤64.答案:(-∞,64]13.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-2x ,x ≥0,x 2-2x ,x <0,若f (3-a 2)<f (2a ),则实数a 的取值范围是__________.解析: 如图,画出f (x )的图象,由图象易得f (x )在R 上单调递减, ∵f (3-a 2)<f (2a ),∴3-a 2>2a ,解得-3<a <1. 答案:(-3,1)14.已知函数f (x )=x 2-(a -1)x +5在区间⎝⎛⎭⎫12,1上为增函数,那么f (2)的取值范围是__________.解析:函数f (x )=x 2-(a -1)x +5在区间⎝⎛⎭⎫12,1上为增函数,由于其图象(抛物线)开口向上,所以其对称轴x =a -12或与直线x =12重合或位于直线x =12的左侧,即应有a -12≤12,解得a ≤2,∴f (2)=4-(a -1)×2+5≥7,即f (2)≥7.答案:[7,+∞)15.若x >1,x a -1<1,则a 的取值范围是________. 解析:因为x >1,x a -1<1,所以a -1<0,解得a <1.答案:a <1B 组 能力提升练1.若幂函数f (x )=mx α的图象经过点A ⎝⎛⎭⎫14,12,则它在点A 处的切线方程是( ) A .2x -y =0 B .2x +y =0 C .4x -4y +1=0D .4x +4y +1=0解析:因为f (x )=mx α为幂函数,所以m =1,因为函数f (x )的图象经过点A ⎝⎛⎭⎫14,12,所以⎝⎛⎭⎫14α=12,解得α=12,所以f (x )=x 12,f ′(x )=12x ,f ′⎝⎛⎭⎫14=1,所以所求切线的方程是y -12=x -14,即4x -4y +1=0,故选C. 答案:C2.(2018·衡阳模拟)已知a 为正实数,函数f (x )=x 2-2x +a ,且对任意的x ∈[0,a ],都有f (x )∈[-a ,a ],则实数a 的取值范围为( )A .(1,2)B .[1,2]C .(0,+∞)D .(0,2]解析:当0<a <1时,f (0)=a ,f (a )≥-a ,即a 2-2a +a ≥-a ,因此0<a <1;当a ≥1时,f (0)=a ,f (1)≥-a ,f (a )≤a ,即1-2+a ≥-a ,a 2-2a +a ≤a ,因此1≤a ≤2.综上,实数a 的取值范围为0<a ≤2.故选D.答案:D3.下面四个图象中有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R )的导函数y =f ′(x )的图象,则f (-1)等于( )A.13 B .-13C.53D .-13或53解析:∵f ′(x )=x 2+2ax +a 2-1,∴f ′(x )的图象开口向上.根据导函数图象分析,若图象不过原点,则a =0,f (-1)=53;若图象过原点,则a 2-1=0,又对称轴x =-a >0,∴a =-1,∴f (-1)=-13.答案:D4.已知函数f (x )=⎩⎪⎨⎪⎧x +3,x >a ,x 2+6x +3,x ≤a ,函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a 的取值范围是( )A .[-1,3)B .[-3,-1]C .[-3,3)D .[-1,1)解析:因为f (x )=⎩⎪⎨⎪⎧x +3,x >a ,x 2+6x +3,x ≤a ,所以g (x )=⎩⎪⎨⎪⎧3-x ,x >a ,x 2+4x +3,x ≤a .又g (x )有三个不同的零点,则方程3-x =0,x >a 有一个解,解得x =3,所以a <3,方程x 2+4x +3=0,x ≤a 有两个不同的解,解得x =-1或x =-3,又因为x ≤a ,所以a ≥-1.故a 的取值范围为[-1,3).答案:A5.(2018·江西九江地区七校联考)幂函数f (x )=(m 2-4m +4)·xm 2-6m +8在(0,+∞)上为增函数,则m 的值为( )A .1或3B .1C .3D .2解析:由题意知⎩⎪⎨⎪⎧m 2-4m +4=1,m 2-6m +8>0,解得m =1.故选B.答案:B6.(2018·安阳模拟)下列选项正确的是( ) A .0.20.2>0.30.2 B .2-13<3-13C .0.8-0.1>1.250.2D .1.70.3>0.93.1解析:A 中,∵函数y =x 0.2在(0,+∞)上为增函数,0.2<0.3,∴0.20.2<0.30.2; B 中,∵函数y =x -13在(0,+∞)上为减函数,∴2-13>3-13;C 中,∵0.8-1=1.25,y =1.25x 在R 上是增函数,0.1<0.2, ∴1.250.1<1.250.2, 即0.8-0.1<1.250.2;D 中,1.70.3>1,0.93.1<1, ∴1.70.3>0.93.1.故选D. 答案:D7.(2018·湖北四校联考)已知二次函数f (x )=ax 2-bx +c ,f ′(0)<0,且f (x )∈[0,+∞),则f (-1)f ′(0)的最大值为( ) A .-3 B .-2 C .-52D .-32解析:由题意得f ′(x )=2ax -b ,因为f ′(0)<0,所以b >0.由f (x )∈[0,+∞)得⎩⎪⎨⎪⎧a >0Δ=b 2-4ac ≤0,即⎩⎪⎨⎪⎧a >04ac b2≥1,所以c >0,a +c b >0,f (-1)f ′(0)=-⎝⎛⎭⎫1+a +c b ,因为⎝⎛⎭⎫a +c b 2=a 2+c 2+2ac b 2≥4ac b 2≥1,所以a +c b ≥1,当且仅当a =c =b2时,等号成立,所以f (-1)f ′(0)=-⎝⎛⎭⎫1+a +c b ≤-2. 答案:B8.函数f (x )=(m 2-m -1)x 4m 9-m 5-1是幂函数,对任意的x 1,x 2∈(0,+∞),且x 1≠x 2,满足f (x 1)-f (x 2)x 1-x 2>0,若a ,b ∈R ,且a +b >0,ab <0,则f (a )+f (b )的值( )A .恒大于0B .恒小于0C .等于0D .无法判断解析:∵f (x )=(m 2-m -1)x 4m 9-m 5-1是幂函数, ∴m 2-m -1=1,解得m =2或m =-1.当m =2时,指数4×29-25-1=2 015>0,满足题意.当m =-1时,指数4×(-1)9-(-1)5-1=-4<0,不满足题意. ∴f (x )=x 2 015.∴幂函数f (x )=x 2 015是定义域R 上的奇函数,且是增函数. 又∵a ,b ∈R ,且a +b >0,∴a >-b , 又ab <0,不妨设b <0,则a >-b >0,∴f (a )>f (-b )>0, 又f (-b )=-f (b ),∴f (a )>-f (b ),∴f (a )+f (b )>0.故选A. 答案:A9.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R )的定义域和值域分别为A ,B ,若集合{(x ,y )|x ∈A ,y ∈B }对应的平面区域是正方形区域,则实数a ,b ,c 满足( )A .|a |=4B .a =-4且b 2+16c >0C .a <0且b 2+4ac ≤0D .以上说法都不对解析:由题意可知a <0,且ax 2+bx +c =0有两个不相等的实数根,∴Δ=b 2-4ac >0.设y =ax 2+bx +c 与x 轴相交于两点(x 1,0),(x 2,0),则x 1+x 2=-b a ,x 1x 2=ca ,f (x )的定义域为[x 1,x 2],∴|x 1-x 2|=(x 1+x 2)2-4x 1x 2=⎝⎛⎭⎫-b a 2-4c a =b 2-4ac -a. 由题意可知4ac -b 24a =b 2-4ac-a,解得a =-4. ∴实数a ,b ,c 满足a =-4,b 2+16c >0,故选B. 答案:B10.(2018·安徽皖北联考)已知函数f (x )=-x 2+2ax +1-a 在区间[0,1]上的最大值为2,则a 的值为( )A .2B .-1或-3C .2或-3D .-1或2解析:函数f (x )=-(x -a )2+a 2-a +1图象的对称轴为x =a ,且开口向下,分三种情况讨论如下:①当a ≤0时,函数f (x )=-x 2+2ax +1-a 在区间[0,1]上是减函数,∴f (x )max =f (0)=1-a ,由1-a =2,得a =-1.②当0<a ≤1时,函数f (x )=-x 2+2ax +1-a 在区间[0,a ]上是增函数,在(a,1]上是减函数,∴f (x )max =f (a )=-a 2+2a 2+1-a =a 2-a +1,由a 2-a +1=2,解得a =1+52或a =1-52,∵0<a ≤1,∴两个值都不满足,舍去. ③当a >1时,函数f (x )=-x 2+2ax +1-a 在区间[0,1]上是增函数,∴f (x )max =f (1)=-1+2a +1-a =2,∴a =2.综上可知,a =-1或a =2. 答案:D11.对二次函数f (x )=ax 2+bx +c (a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( )A .-1是f (x )的零点B .1是f (x )的极值点C .3是f (x )的极值D .点(2,8)在曲线y =f (x )上解析:由已知得,f ′(x )=2ax +b ,则f (x )只有一个极值点,若A 、B 正确,则有⎩⎪⎨⎪⎧a -b +c =0,2a +b =0,解得b =-2a ,c =-3a ,则f (x )=ax 2-2ax -3a . 由于a 为非零整数,所以f (1)=-4a ≠3,则C 错.而f (2)=-3a ≠8,则D 也错,与题意不符,故A 、B 中有一个错误,C 、D 都正确. 若A 、C 、D 正确,则有⎩⎪⎨⎪⎧a -b +c =0, ①4a +2b +c =8, ②4ac -b 24a =3, ③由①②得⎩⎨⎧b =83-a ,c =83-2a ,代入③中并整理得9a 2-4a +649=0, 又a 为非零整数,则9a 2-4a 为整数,故方程9a 2-4a +649=0无整数解,故A 错.若B 、C 、D 正确,则有⎩⎪⎨⎪⎧2a +b =0,a +b +c =3,4a +2b +c =8,解得a =5,b =-10,c =8,则f (x )=5x 2-10x +8, 此时f (-1)=23≠0,符合题意.故选A. 答案:A12.已知幂函数f (x )=x -m 2-2m +3(m ∈Z )为偶函数,且在区间(0,+∞)上是单调增函数,则f (2)的值为__________.解析:因为幂函数f (x )在区间(0,+∞)上是单调增函数,所以-m 2-2m +3>0,解得-3<m <1.因为m ∈Z ,所以m =-2或-1或0.因为幂函数f (x )为偶函数,所以-m 2-2m +3是偶数.当m =-2时,-m 2-2m +3=3,不符合,舍去;当m =-1时,-m 2-2m +3=4;当m =0时,-m 2-2m +3=3,不符合,舍去.所以f (x )=x 4,故f (2)=24=16.答案:1613.若方程x 2+ax +2b =0的一个根在(0,1)内,另一个根在(1,2)内,则b -2a -1的取值范围是__________.解析:令f (x )=x 2+ax +2b ,∵方程x 2+ax +2b =0的一个根在(0,1)内,另一个根在(1,2)内,∴⎩⎪⎨⎪⎧ f (0)>0,f (1)<0,f (2)>0.∴⎩⎪⎨⎪⎧b >0,a +2b <-1,a +b >-2.根据约束条件作出可行域,可知14<b -2a -1<1.答案:⎝⎛⎭⎫14,114.在平面直角坐标系xOy 中,设定点A (a ,a ),P 是函数y =1x (x >0)图象上一动点.若点P ,A 之间的最短距离为22,则满足条件的实数a 的所有值为________.解析:设P ⎝⎛⎭⎫x ,1x ,x >0, 则|P A |2=(x -a )2+⎝⎛⎭⎫1x -a 2=x 2+1x 2-2a ⎝⎛⎭⎫x +1x +2a 2=⎝⎛⎭⎫x +1x 2-2a ⎝⎛⎭⎫x +1x +2a 2-2. 令t =x +1x,则由x >0,得t ≥2.所以|P A |2=t 2-2at +2a 2-2=(t -a )2+a 2-2, 由|P A |取得最小值得⎩⎨⎧ a ≤222-4a +2a 2-2=(22)2或⎩⎨⎧a >2a 2-2=(22)2, 解得a =-1或a =10. 答案:-1,1015.对于实数a 和b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧a 2-ab ,a ≤b ,b 2-ab ,a >b .设f (x )=(2x -1)*(x -1),且关于x 的方程f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是________.解析:函数f (x )=⎩⎪⎨⎪⎧2x 2-x ,x ≤0,-x 2+x ,x >0的图象如图所示.设y =m 与y =f (x )图象交点的横坐标从小到大分别为x 1、x 2、x 3. 由y =-x 2+x =-⎝⎛⎭⎫x -122+14,得顶点坐标为⎝⎛⎭⎫12,14. 当y =14时,代入y =2x 2-x ,得14=2x 2-x ,解得x =1-34(舍去正值), ∴x 1∈⎝ ⎛⎭⎪⎫1-34,0. 又∵y =-x 2+x 图象的对称轴为x =12, ∴x 2+x 3=1,又x 2,x 3>0, ∴0<x 2x 3<⎝⎛⎭⎫x 2+x 322=14. 又∵0<-x 1<3-14, ∴0<-x 1x 2x 3<3-116, ∴1-316<x 1x 2x 3<0. 答案:⎝⎛⎭⎪⎫1-316,0。