2016年浙江省数学高考模拟精彩题选—阅读理解题含答案
2016年浙江省数学高考模拟精彩题选——函数含答案
2016浙江精彩题选——函数【一、选择填空题】1.(2016温州一模13).已知4()ln()f x x a x=+-,若对任意的R m ∈,均存在00x >使得0()f x m =,则实数a 的取值范围是 [4,)+∞ .分析:题目之意就是函数值域为R ,是一道一轮复习时的训练好题2.(2016浙江六校联考15).设a ,b ,c ∈R ,对任意满足1≤x 的实数x ,都有12≤++c bx ax ,则c b a ++的最大可能值为___3___.解法二:取极端情况,可知2()21f x x =-3. (2016金丽衢第二次联考)设f(x)=4x+l +a ·2x +b (a ,b ∈R ),若对于∀x ∈[0,1],|f(x)|≤12都 成立,则b= 172. 令2x t =,2()4g t t at b =++法一:2114221116222112162a b a b a b ⎧-≤++≤⎪⎪⎪-≤++≤⎨⎪⎪-≤-≤⎪⎩可行域只有一个点A法二:2211|4|||2448at b t at b t ++≤⇔++≤取特殊情况可得22213117()()3448288at b g t t t t t =++=--=-+,即1717,b ,482b == 法三:4.(2016绍兴期末8)对于函数()f x ,若存在0x Z ∈,满足01|()|4f x ≤,则称0x 为函数()f x 的一根“近零点”。
已知函数2()(0)f x ax bx c a =++>有四个不同的“近零点”,则a 的最大值为( D )A .2B .1C .12 D .14解:法一:取极端情况,离原点最近的四个整数:1(0)41(1)41(1)41(2)4f f f f ⎧=-⎪⎪⎪=-⎪⎨⎪-=⎪⎪⎪=⎩,2111()444f x x x =--法二:任取四个连续整数,则14(3)()(2)(1)|(3)||()||(2)||(1)|414a f m f m f m f m f m f m f m f m =++-+-+≤++++++≤⨯=5.(2016绍兴期末15)已知函数2|1|y x =-的图像与函数2(2)2y kx k x =-++的图像恰有两个不同的公共点,则实数k 的取值范围是 014k ork ork ≤=≥ 注:本题是函数与方程零点的极佳训练题。
2016年浙江省数学高考模拟精彩题选——解析几何小题 Word版含答案
2016浙江精彩题选——解析几何小题1.(2016丽水一模7)已知1F ,2F 分别为双曲线C :12222=-by a x 的左、右焦点, 若存在过1F 的直线分别交双曲线C 的左、右支于A ,B 两点,使得122F BF BAF ∠=∠,则双曲线C 的离心率e 的取值范围是 ( C )A .()+∞,3B .()521+,C .()523+, D .()31, 解:由三角形相似,222112BF AF AB k BF BF F F ===,则1122122AB BF AF kBF BF kBF AF k c =-=⎧⎪=⎨⎪=⋅⎩,1211122(1)2BF BF aBF kBF a k BF a-=⎧⎪-=⎨⎪-=⎩112BF AF kBF -=,112AF BF kBF =-,22112AF a BF k BF -=-21,3ak e c a∴=<∴>- 12(1)2a BF a c a -=-,12()3a c a BF c a c a-=≥+-,2e ∴≤+ 此题为2016离心率难度之最2.(2016宁波十校 14) 已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别是12,F F ,过2F 的直线交双曲线的右支于,P Q 两点,若112||||PF F F =,且223||2||PF QF =,则该双曲线的离心率为 75.3(2016嘉兴二模7).如图,双曲线)0,(12222>=-b a by a x 的右顶点为A ,左右焦点分别为21,F F ,点P 是双曲线右支上一点,1PF 交左支于点Q ,交渐近线x aby =于点R .M 是PQ 的中点,若12PF RF ⊥,且1PF AM ⊥,则双曲线的离心率是 ( C ) A .2B .3C .2D .5分析:由222b y x a x y c ⎧=⎪⎨⎪+=⎩得,(,)R a b ,2F R b k a c =-,1F Rb k ac =+, 由1MF A ∆与12RF F ∆相似得,1122M R y F A a c y F F c +==,2M a cy b c+=⋅,由R 、M 、F 1三点共线(第7题)可求M 的横坐标,再由点差法122F R OM b k k a⋅=建立等量关系。
最新浙江省数学高考模拟精彩题选:阅读理解题_有答案
浙江精彩题选——阅读理解题1.(2016温州一模7).已知集合22{(,)|1}M x y x y =+≤,若实数,λμ满足:对任意的(,)x y M ∈,都有(,)x y M λμ∈,则称(,)λμ是集合M 的“和谐实数对”。
则以下集合中,存在“和谐实数对”的是(C ) A.}4|),{(=+μλμλ B.}4|),{(22=+μλμλC.}44|),{(2=-μλμλD.}4|),{(22=-μλμλ分析:由题意,||1,||1λμ≤≤,问题转化为选项中的图与||1,||1λμ≤≤围成的正方形的图有无公共点问题.2.(2016嘉兴期末)设)4(,,,21≥n A A A n 为集合{}n S ,,2,1 =的n 个不同子集,为了表示这些子集,作n行n 列的数阵,规定第i 行第j 列的数为:⎪⎩⎪⎨⎧∈∉=j j ij A i A i a ,1,0.则下列说法中,错误的是 ( C ) A .数阵中第一列的数全是0当且仅当φ=1AB .数阵中第n 列的数全是1当且仅当S A n =C .数阵中第j 行的数字和表明集合j A 含有几个元素D .数阵中所有的2n 个数字之和不超过12+-n n解析:数阵中第一列的数全是0,当且仅当111,,2,1A n A A ∉∉∉ ,∴A 正确; 数阵中第n 列的数全是1当且仅当n n n A n A A ∈∈∈,,2,1 ,∴B 正确;当n A A A ,,,21 中一个为S 本身,其余1-n 个子集为S 互不相同的1-n 元子集时,数阵中所有的2n 个数字之和最大,且为1)1(22+-=-+n n n n ,∴D 正确;数阵中第j 行的数字和表明元素j 属于几个子集,∴C 错误.3.(2016丽水一模8).已知二次函数)2()(2a b bx ax x f ≤+=,定义}11)({)(1≤≤≤-=x t t f max x f ,}11)({)(2≤≤≤-=x t t f min x f ,其中}{b a max,表示b a ,中的较大者,}{b a min ,表示b a ,中的较小者,则下列命题正确的是. (D )A .若)1()1(11f f =-,则)1()1(f f >-B .若)1()1(22f f =-,则)1()1(f f >-C .若)1()1(f f =-,则)1()1(22f f >-D .若)1()1(12-=f f ,则)1()1(11f f <-nn n n nna a a a a a a a a ,,,,,,,,,212222111211题目的意思是在变区间上的最值情况,1,11t x x -≤≤-≤≤,t 的范围是变的。
2016年浙江省湖州市高考数学模拟试卷(理科)(5月份) (2)
2016年浙江省湖州市高考数学模拟试卷(理科)(5月份)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)已知集合A={x|x2﹣4x>0},B={x|x>1},则(∁R A)∩B=()A.{x|x>4或x<0}B.{x|1<x<4}C.{x|1<x≤4}D.{x|1≤x≤4}2.(5分)在斜三角形ABC中,“A>”是“tanA>1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件3.(5分)已知{a n}是公比大于1的等比数列,若2a1,a2,a3成等差数列,则=()A.B.C.D.24.(5分)若实数x和y满足,则x2+y2的最小值是()A.2 B.C.3 D.45.(5分)已知函数f(x)=a x﹣b的图象如图所示,则函数g(x)=ax+b的图象可能是()A.B.C.D.6.(5分)已知三棱柱ABC﹣A1B1C1的所有棱长相等,若∠AA1B1=∠AA1C1=60°,则异面直线A1C与AB1所成角的余弦值是()A.B.C.D.7.(5分)若f(x)是定义在(﹣1,1)上的减函数,则下列不等式正确的是()A.f(sinx)>f(cosx)B.f()>f(x)C.f()≥f()D.f()≥f()8.(5分)已知抛物线y2=2px(p>0)的焦点为F,准线为l,过点F的直线交抛物线于A,B两点,点A在l上的射影为A1.若|AB|=|A1B|,则直线AB的斜率为()A.±3 B.±2C.±2 D.±二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)9.(6分)已知tanα=2,则tan(α+)=,cos2α=,=.10.(6分)已知函数f(x)=则f(f(﹣2))=;若f(x)≥2,则实数x的取值范围是.11.(6分)已知函数f(x)=2cos2x+cos(﹣2x),则函数f(x)的最小正周期是,值域是.12.(6分)一个几何体的三视图如图所示(单位:cm),则该几何体的体积是cm3,该几何体的表面积是cm2.13.(4分)已知双曲线﹣y2=1(a>0)的右焦点为F,过点F作一条渐近线的垂线,垂足为P.若点P的纵坐标为,则该双曲线的离心率是.14.(4分)已知单位向量,的夹角为120°,|x+y|=(x,y∈R),则|x﹣y|的取值范围是.15.(4分)在直角梯形ABCD中,AD∥BC,∠A=90°,AB=2AD,若将△ABD沿直线BD 折成△A′BD,使得A′D⊥BC,则直线A′B与平面BCD所成角的正弦值是.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.(15分)在△ABC中,内角A,B,C的所对边分别为a,b,c.已知a2+b2+5abcosC=0,sin2C=sinAsinB.(Ⅰ)求角C的大小;(Ⅱ)若△ABC的面积为,求sinA的值.17.(15分)在三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC1⊥平面ABC,BC=CA=AC1.(Ⅰ)求证:AC⊥平面AB1C1;(Ⅱ)求二面角A1﹣BB1﹣C的余弦值.18.(15分)已知点C(x0,y0)是椭圆+y2=1上的动点,以C为圆心的圆过点F(1,0).(Ⅰ)若圆C与y轴相切,求实数x0的值;(Ⅱ)若圆C与y轴交于A,B两点,求|FA|•|FB|的取值范围.19.(15分)已知函数f(x)=x2+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m (a);(Ⅱ)设b∈R,若|f(x)+b|≤3对x∈[﹣1,1]恒成立,求3a+b的取值范围.20.(14分)在数列{a n}中,a1=a(a∈R),a n+1=(n∈N*),记数列{a n}的前n项和是S n.(Ⅰ)若对任意的n∈N*,都有a n+1>,求实数a的取值范围;(Ⅱ)若a=1,求证:S n<+1(n∈N*).2016年浙江省湖州市高考数学模拟试卷(理科)(5月份)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2016•湖州模拟)已知集合A={x|x2﹣4x>0},B={x|x>1},则(∁R A)∩B=()A.{x|x>4或x<0}B.{x|1<x<4}C.{x|1<x≤4}D.{x|1≤x≤4}【分析】求出集合A,然后求解(∁R A)∩B.【解答】解:集合A={x|x2﹣4x>0}={x|x>4或x<0},B={x|x>1},则(∁R A)∩B={x|0≤x≤4}∩{x|x>1}={x|1<x≤4}.故选:C.【点评】本题考查集合的基本运算,考查计算能力.2.(5分)(2016•湖州模拟)在斜三角形ABC中,“A>”是“tanA>1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【分析】要判断“A>”是“tanA>1”的什么条件,只要判断,其中一个成立时,另一个是否也成立即可,我们可以利用举反例进行判断;【解答】解:当A=时,tanA=﹣,所以△ABC中,“A>”推不出“tanA>1”;在斜三角形ABC中,当tanA>1,可得A>,满足tanA>1,推出A>,∴“A>”是“tanA>1”的必要不充分条件,故选:B.【点评】本题考查了充要条件的判断,做题时一定要细心,此题利用特殊值法进行判断会比较简单,是一道基础题;3.(5分)(2016•湖州模拟)已知{a n}是公比大于1的等比数列,若2a1,a2,a3成等差数列,则=()A.B.C.D.2【分析】设等比数列{a n}的公比为q(q>1),由已知列式求得公比,然后代入等比数列的通项公式及前n项和求得答案.【解答】解:设等比数列{a n}的公比为q(q>1),由2a1,a2,a3成等差数列,得,解得q=1(舍)或q=2.则=.故选:C.【点评】本题考查等比数列的性质,考查了等比数列的前n项和,是基础的计算题.4.(5分)(2016•湖州模拟)若实数x和y满足,则x2+y2的最小值是()A.2 B.C.3 D.4【分析】作出不等式组对应的平面区域,根据点到直线的距离公式进行转化求解即可.【解答】解:作出不等式组对应的平面区域,z=x2+y2的几何意义是区域内的点到原点的距离的平方,由图象知O到直线AB:3x+2y﹣6=0的距离最小,此时d==,则x2+y2的最小值为z=d=()2=,故选:B.【点评】本题主要考查线性规划的应用,结合点到直线的距离公式进行转化求解是解决本题的关键.5.(5分)(2016•湖州模拟)已知函数f(x)=a x﹣b的图象如图所示,则函数g(x)=ax+b 的图象可能是()A.B.C.D.【分析】根据指数函数图象递减可知0<a<1,再有平移可知向右平移了小于1个单位,得出0<b<1,可得出选项.【解答】解:根据指数函数图象和平移可知:0<a<1,0<b<1,故一次函数g(x)=ax+b的图象为A.故选:A.【点评】考查了指数函数,图象的平移和一次函数的图象.属于基础题型,应熟练掌握.6.(5分)(2016•湖州模拟)已知三棱柱ABC﹣A1B1C1的所有棱长相等,若∠AA1B1=∠AA1C1=60°,则异面直线A1C与AB1所成角的余弦值是()A.B.C.D.【分析】设,再设三棱柱ABC﹣A1B1C1的棱长为m,利用平面向量的数量积运算求出cos,则异面直线A1C与AB1所成角的余弦值可求.【解答】解:设,再设三棱柱ABC﹣A1B1C1的棱长为m,则,,,∴==.=,=m.∴cos==.则异面直线A1C与AB1所成角的余弦值是.故选:A.【点评】本题考查异面直线所成的角,考查了空间想象能力和思维能力,训练了利用平面向量的数量积运算求夹角,是中档题.7.(5分)(2016•湖州模拟)若f(x)是定义在(﹣1,1)上的减函数,则下列不等式正确的是()A.f(sinx)>f(cosx)B.f()>f(x)C.f()≥f()D.f()≥f()【分析】由三角函数线可判断出时,sinx>cosx,根据f(x)的单调性便可判断选项A的正误,而对于B,C,D各选项可通过对自变量的值进行作差,配方,通分及提取公因式等方法,根据x的范围及指数函数的单调性便可判断出自变量值的大小关系,从而由f(x)的单调性即可判断出对应函数值的大小关系,从而判断选项的正误.【解答】解:A.x∈时,sinx>cosx;∵f(x)在(﹣1,1)上为减函数;∴f(sinx)<f(cosx),∴该选项错误;B.x∈(﹣1,1);∴>0;∴,且f(x)在(﹣1,1)上单调递减;∴,∴该选项错误;C.=;∵x∈(﹣1,1);∴x∈(﹣1,0)时,;∴,且f(x)在(﹣1,1)上为减函数;∴,∴该选项错误;D.=;∴①x∈(﹣1,0]时,;∴;②x∈(0,1)时,;∴;∴综上得,;∵f(x)为(﹣1,1)上的减函数;∴,∴该选项正确.故选D.【点评】考查根据三角函数线比较sinx,cosx大小的方法,减函数的定义,作差法比较两个式子的大小,配方法的应用,以及指数函数的单调性.8.(5分)(2016•湖州模拟)已知抛物线y2=2px(p>0)的焦点为F,准线为l,过点F的直线交抛物线于A,B两点,点A在l上的射影为A1.若|AB|=|A1B|,则直线AB的斜率为()A.±3 B.±2C.±2 D.±【分析】设A,B到准线的距离分别为2a,a,由抛物线的定义可得|AB|=3a,利用锐角三角函数的定义即可得出直线AB的斜率.【解答】解:设A在第一象限,直线AB的倾斜角为α.过B作准线的垂线BB′,作AA′的垂线BC,∵|AB|=|A1B|,∴C是AA′的中点.设|BB′|=a,则|AA′|=2a,∴|AB|=|AA′|+|BB′|=3a.∴cosα=cos∠BAC==,∴tanα=2,由抛物线的对称性可知当A在第四象限时,tanα=﹣2.∴直线AB的斜率为±2.故选:B.【点评】本题考查抛物线的定义,考查直线的斜率的计算,考查学生的计算能力,属于中档题.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)9.(6分)(2016•湖州模拟)已知tanα=2,则tan(α+)=﹣3,cos2α=,=.【分析】由已知,利用特殊角的三角函数值及两角和的正切函数公式可求tan(α+)的值,利用同角三角函数基本关系式即可计算求得cos2α,的值.【解答】解:∵tanα=2,∴tan(α+)===﹣3;cos2α====;===.故答案为:﹣3,,.【点评】本题主要考查了特殊角的三角函数值及两角和的正切函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.10.(6分)(2016•湖州模拟)已知函数f(x)=则f(f(﹣2))=2;若f(x)≥2,则实数x的取值范围是x≥1或x≤﹣4.【分析】根据分段函数的表达式利用代入法进行求解即可.【解答】解:由分段函数的表达式得f(﹣2)=log22=1,f(1)=21=2,则f(f(﹣2))=2;若x≥0,由f(x)≥2得2x≥2,得x≥1,若x<0,由f(x)≥2得log2(﹣x)≥2,得﹣x≥4,则x≤﹣4,综上x≥1或x≤﹣4,故答案为:2,x≥1或x≤﹣4.【点评】本题主要考查函数值的计算,以及分段函数的表达式的应用,注意变量的取值范围.11.(6分)(2016•湖州模拟)已知函数f(x)=2cos2x+cos(﹣2x),则函数f(x)的最小正周期是π,值域是[1﹣,1] .【分析】利用三角函数恒等变换的应用化简函数解析式为f(x)=sin(2x+)+1,利用三角函数周期公式可求最小正周期,利用正弦函数的图象和性质可得sin(2x+)∈[﹣1,1],从而可求f(x)的值域.【解答】解:∵f(x)=2cos2x+cos(﹣2x)=1+cos2x+sin2x=sin(2x+)+1,∴函数f(x)的最小正周期T==π,∵sin(2x+)∈[﹣1,1],∴f(x)=sin(2x+)+1∈[1﹣,1].故答案为:π,[1﹣,1].【点评】本题主要考查了三角函数恒等变换的应用,三角函数周期公式的应用,正弦函数的图象和性质的应用,考查了转化思想和数形结合思想,属于基础题.12.(6分)(2016•湖州模拟)一个几何体的三视图如图所示(单位:cm),则该几何体的体积是6cm3,该几何体的表面积是cm2.【分析】根据几何体的三视图得该几何体是一个底面为直角梯形的四棱柱,由三视图求出几何元素的长度,由梯形的面积公式、柱体的体积公式求出该几何体的体积,由四棱柱的各个面的长度求出几何体的表面积.【解答】解:根据几何体的三视图得:该几何体是一个底面为直角梯形的四棱柱,其底面是正视图中的直角梯形,上底为1cm,下底为2cm,高为2cm,由侧视图知四棱柱的高为2cm,所以该几何体的体积V==6(cm3),由正视图可知直角梯形斜腰是,则该几何体的表面积S表面积=2×+=(cm2),故答案为:6;.【点评】本题考查三视图求几何体的体积以及表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力.13.(4分)(2016•湖州模拟)已知双曲线﹣y2=1(a>0)的右焦点为F,过点F作一条渐近线的垂线,垂足为P.若点P的纵坐标为,则该双曲线的离心率是.【分析】设右焦点F(c,0),设双曲线的一条渐近线方程为l:y=,由两直线垂直的条件:斜率之积为﹣1,可得直线PF的方程,联立渐近线方程求得P的纵坐标,由条件结合离心率公式计算即可得到所求值.【解答】解:设右焦点F(c,0),且c==,设双曲线的一条渐近线方程为l:y=,由PF⊥l,可得直线PF的方程为y=﹣a(x﹣c),联立消去x,可得y=,即有y===,由点P的纵坐标为,可得=,即有e=.故答案为:.【点评】本题考查双曲线的离心率的求法,注意运用双曲线的渐近线方程和两直线垂直的条件:斜率之积为﹣1,考查运算能力,属于基础题.14.(4分)(2016•湖州模拟)已知单位向量,的夹角为120°,|x+y|=(x,y∈R),则|x﹣y|的取值范围是[1,3] .【分析】由已知求得.再由|x+y|=得到x2+y2﹣xy=3.然后利用配方法及换元法分别求得|x﹣y|的最大值及最小值即可.【解答】解:∵,且,的夹角为120°,∴.∴|x+y|==.即x2+y2﹣xy=3.∴3=x2+y2﹣xy≥2xy﹣xy=xy,即xy≤3;则|x﹣y|==;令x+y=t,则(x+y)2=x2+y2+2xy=t2,∴3+xy+2xy=t2,则,∴|x﹣y|====.∴|x﹣y|的取值范围是[1,3].故答案为:[1,3].【点评】本题考查平面向量的数量积运算,考查了数学转化思想方法,训练了利用配方法及换元法求函数的最值,属难题.15.(4分)(2016•湖州模拟)在直角梯形ABCD中,AD∥BC,∠A=90°,AB=2AD,若将△ABD沿直线BD折成△A′BD,使得A′D⊥BC,则直线A′B与平面BCD所成角的正弦值是.【分析】过D作DE⊥BC于E,连结A′E,过A′作A′O⊥DE,连结A′O.则可证明A′O⊥平面BCD,于是∠A′BO为直线A′B与平面BCD所成的角.设AD=1,在直角梯形中根据平面几何知识解出DO,从而得出A′O,得出线面角的正弦值.【解答】解:过D作DE⊥BC于E,连结A′E,过A′作A′O⊥DE,连结A′O.∵BC⊥A′D,BC⊥DE,A′D∩A′O=A′,∴BC⊥平面A′DE,∵A′O⊂平面A′DE,∴BC⊥A′O,又A′O⊥DE,BC∩DE=E,∴A′O⊥平面BCD.∴∠A′BO为直线A′B与平面BCD所成的角.在直角梯形ABCD中,过A作AO⊥BD,交BD于M,交DE于O,设AD=1,则AB=2,∴BD=,∴AM==,∴DM==.由△AMD∽△DMO得,即,∴DO=.∴A′O==.∴sin∠A′BO==.故答案为.【点评】本题考查了线面角的作法与计算,根据条件构造线面垂直得出线面角是解题关键.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.(15分)(2016•湖州模拟)在△ABC中,内角A,B,C的所对边分别为a,b,c.已知a2+b2+5abcosC=0,sin2C=sinAsinB.(Ⅰ)求角C的大小;(Ⅱ)若△ABC的面积为,求sinA的值.【分析】(Ⅰ)由余弦定理,正弦定理化简已知可得:7(a2+b2)=5c2,c2=ab,从而利用余弦定理可求cosC=﹣,结合范围C∈(0,π)即可求得∠C的值.(Ⅱ)利用三角形面积公式可求ab=2,由(Ⅰ)知,c2=7,a2+b2=5,联立可求a,b的值,利用正弦定理即可求得sinA的值.【解答】解:(Ⅰ)由题意及余弦定理得,a2+b2+5ab=0,即7(a2+b2)=5c2,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由题意及正弦定理得,c2=ab,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)故cosC===﹣,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)因为C∈(0,π),∠C=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)(Ⅱ)因为S△ABC=absinC=,即ab=2 ①.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)由(Ⅰ)知,c2=7,a2+b2=5 ②.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)联立①②得,或.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)由正弦定理得,sinA=或sinA=.﹣﹣﹣﹣﹣﹣﹣(15分)【点评】本题主要考查了正弦定理,余弦定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.17.(15分)(2016•湖州模拟)在三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC1⊥平面ABC,BC=CA=AC1.(Ⅰ)求证:AC⊥平面AB1C1;(Ⅱ)求二面角A1﹣BB1﹣C的余弦值.【分析】(Ⅰ)推导出BC∥B1C1,AC⊥B1C1,AC1⊥ACC,由此能证明AC⊥平面AB1C1.(Ⅱ)分别取BB1,CC1的中点M、N,连结AM,MN,AN,则∠AMN为二面角A1﹣BB1﹣C的平面角,由此能求出二面角A1﹣BB1﹣C的余弦.【解答】证明:(Ⅰ)因为三棱柱ABC﹣A1B1C1,所以BC∥B1C1.又因为∠ACB=90°,所以AC⊥B1C1,(3分)因为AC1⊥平面ABC,所以AC1⊥ACC,(6分)因为AC1∩B1C1=C1,所以AC⊥平面AB1C1.(7分)解:(Ⅱ)因为点A1在平面A1ABB1内,故只需求A﹣BB1﹣C的二面角.分别取BB1,CC1的中点M、N,连结AM,MN,AN,所以AM⊥BB1.因为AC1⊥平面ABC,∠ACB=90°,所以BC⊥CC1,即平行四边形BCC1B1为矩形,所以MN⊥BB1,所以∠AMN为二面角的平面角.(11分)设BC=CA=AC1=1,则AB=AB1=BB1=,所以AM=,MN=1,AN=.由余弦定理得,cos∠AMN==,所以二面角A1﹣BB1﹣C的余弦值为.(15分)【点评】本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.18.(15分)(2016•湖州模拟)已知点C(x0,y0)是椭圆+y2=1上的动点,以C为圆心的圆过点F(1,0).(Ⅰ)若圆C与y轴相切,求实数x0的值;(Ⅱ)若圆C与y轴交于A,B两点,求|FA|•|FB|的取值范围.【分析】(Ⅰ)当圆C与y轴相切时,|x0|=,再由点C在椭圆上,得,由此能求出实数x0的值.(Ⅱ)圆C的方程是(x﹣x0)2+(y﹣y0)2=(x0﹣1)2+,令x=0,得y2﹣2y0y+2x0﹣1=0,由此利用根的判别式、韦达定理,结合已知条件能求出|FA|•|FB|的取值范围.【解答】解:(Ⅰ)当圆C与y轴相切时,|x0|=,(2分)又因为点C在椭圆上,所以,(3分)解得,(5分)因为﹣,所以.(6分)(Ⅱ)圆C的方程是(x﹣x0)2+(y﹣y0)2=(x0﹣1)2+,令x=0,得y2﹣2y0y+2x0﹣1=0,设A(0,y1),B(0,y2),则y1+y2=2y0,y1y2=2x0﹣1,(8分)由,及得﹣2﹣2<x0<﹣2+2,又由P点在椭圆上,﹣2≤x0≤2,所以﹣2≤,(10分)|FA|•|FB|=•=(12分)===,(14分)所以|FA|•|FB|的取值范围是(4,4].(15分)【点评】本题考查实数值的求法,考查两线段乘积的求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、圆、椭圆性质的合理运用.19.(15分)(2016•湖州模拟)已知函数f(x)=x2+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m (a);(Ⅱ)设b∈R,若|f(x)+b|≤3对x∈[﹣1,1]恒成立,求3a+b的取值范围.【分析】(Ⅰ)利用分段函数,结合[﹣1,1],分类讨论,即可求M(a)﹣m(a);(Ⅱ)问题转化为3﹣b≤f(x)≤3﹣b对x∈[﹣1,1]恒成立,分类讨论,即可求3a+b的取值范围.【解答】解:(Ⅰ)f(x)=x2+3|x﹣a|=,①当a≥1时,f(x)=x2﹣3x+3a在x∈[﹣1,1]单调递减,则M(a)=f(﹣1)=4+3a,m(a)=f(1)=﹣2+3a,此时M(a)﹣m(a)=6;②当a≤﹣1时,f(x)=x2+3x﹣3a在x∈[﹣1,1]单调递增,则M(a)=f(1)=4﹣3a,m(a)=f(﹣1)=﹣2﹣3a,此时M(a)﹣m(a)=6;③当﹣1<a<1时,f(x)=,此时f(x)在x∈[﹣1,a]单调递减,在x∈[a,1]单调递增,则m(a)=f(a)=a2,M(a)=max{f(﹣1),f(1)}=max{4+3a,4﹣3a}=4+|3a|,此时M(a)﹣m(a)=4+|3a|﹣a2;因此M(a)﹣m(a)=,(Ⅱ)原问题等价于﹣3﹣b≤f(x)≤3﹣b,由(Ⅰ)知①当a≥1时,则,即,此时3a+b=﹣1;②当a≤﹣1时,则,即,此时b﹣3a=﹣1,此时3a+b≤﹣7;③当﹣1<a<1时,则m(a)=f(a)=a2,,即﹣a2﹣3≤b≤﹣|3a|﹣1,此时﹣a2+3a﹣3≤3a+b≤3a﹣|3a|﹣1;由﹣1<a<1得﹣a2+3a﹣3>﹣7和3a﹣|3a|﹣1≤﹣1,此时﹣7<3a+b≤﹣1,因此3a+b≤﹣1.【点评】本题考查导数的综合运用,考查函数的最值,考查分类讨论、化归与转化的数学思想,难度大.20.(14分)(2016•湖州模拟)在数列{a n}中,a1=a(a∈R),a n+1=(n∈N*),记数列{a n}的前n项和是S n.(Ⅰ)若对任意的n∈N*,都有a n+1>,求实数a的取值范围;(Ⅱ)若a=1,求证:S n<+1(n∈N*).【分析】(Ⅰ)由a n+1=(n∈N*),可得=,当a n+1时,a n,且a n,反之也成立.即可得出.(Ⅱ)由(Ⅰ)知,a=1时,a n,从而a n>0,可得a n+1﹣a n<0,因此,又==,可得:a n+1.利用递推关系与等比数列的前n项和公式可得S n+.进而得出结论.【解答】(Ⅰ)解:∵a n+1=(n∈N*),∴=,当a n+1时,a n,且a n,反之,当a n时,且a n,可得:a n+1.故,且a.(Ⅱ)证明:由(Ⅰ)知,a=1时,a n,从而a n>0,∴a n+1﹣a n==<0,∴,由=,可得:==,由,得,即a n+1.∴++…+≤=<.∴S n+.又+1﹣=≥0,∴S n<+1(n∈N*).【点评】本题考查了递推关系、等比数列的前n项和公式、不等式的性质、“放缩法”,考查了推理能力与计算能力,属于难题.参与本试卷答题和审题的老师有:qiss;sxs123;maths;洋洋;wkl197822;zhczcb;w3239003;gongjy;双曲线;zlzhan;刘老师;沂蒙松(排名不分先后)菁优网2017年1月11日。
2016年浙江省高考文科数学试卷及参考答案与试题解析
2016年浙江省高考文科数学试卷及参考答案与试题解析一、选择题1.(5分)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁UP)∪Q =( )A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5}2.(5分)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则( )A.m∥lB.m∥nC.n⊥lD.m⊥n3.(5分)函数y=sinx2的图象是( )A. B. C. D.4.(5分)若平面区域,夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( )A. B. C. D.5.(5分)已知a,b>0且a≠1,b≠1,若logab>1,则( )A.(a-1)(b-1)<0B.(a-1)(a-b)>0C.(b-1)(b-a)<0D.(b-1)(b-a)>06.(5分)已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,x∈R.( )A.若f(a)≤|b|,则a≤bB.若f(a)≤2b,则a≤bC.若f(a)≥|b|,则a≥bD.若f(a)≥2b,则a≥b8.(5分)如图,点列{An }、{Bn}分别在某锐角的两边上,且|AnAn+1|=|An+1An+2|,An≠An+1,n∈N*,|Bn Bn+1|=|Bn+1Bn+2|,Bn≠Bn+1,n∈N*,(P≠Q表示点P与Q不重合)若dn=|AnBn|,Sn为△A n BnBn+1的面积,则( )A.{Sn }是等差数列 B.{Sn2}是等差数列C.{dn }是等差数列 D.{dn2}是等差数列二、填空题9.(6分)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.10.(6分)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是,半径是.11.(6分)已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=,b=.12.(6分)设函数f(x)=x3+3x2+1,已知a≠0,且f(x)-f(a)=(x-b)(x-a)2,x∈R,则实数a=,b=.13.(4分)设双曲线x2-=1的左、右焦点分别为F1、F2,若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是.14.(4分)如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°,沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是.15.(4分)已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是.三、解答题16.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB. (1)证明:A=2B;(2)若cosB=,求cosC的值.17.(15分)设数列{an }的前n项和为Sn,已知S2=4,an+1=2Sn+1,n∈N*.(Ⅰ)求通项公式an;(Ⅱ)求数列{|an-n-2|}的前n项和.18.(15分)如图,在三棱台ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC =1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求直线BD与平面ACFD所成角的余弦值.19.(15分)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|-1,(Ⅰ)求p的值;(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.20.(15分)设函数f(x)=x3+,x∈[0,1],证明:(Ⅰ)f(x)≥1-x+x2(Ⅱ)<f(x)≤.2016年浙江省高考数学试卷(文科)参考答案与试题解析一、选择题1.(5分)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁UP)∪Q =( )A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5}【分析】先求出∁U P,再得出(∁UP)∪Q.【解答】解:∁UP={2,4,6},(∁UP)∪Q={2,4,6}∪{1,2,4}={1,2,4,6}.故选:C.【点评】本题考查了集合的运算,属于基础题.2.(5分)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则( )A.m∥lB.m∥nC.n⊥lD.m⊥n【分析】由已知条件推导出l⊂β,再由n⊥β,推导出n⊥l.【解答】解:∵互相垂直的平面α,β交于直线l,直线m,n满足m∥α,∴m∥β或m⊂β或m与β相交,l⊂β,∵n⊥β,∴n⊥l.故选:C.【点评】本题考查两直线关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.3.(5分)函数y=sinx2的图象是( )A. B. C. D.【分析】根据函数奇偶性的性质,以及函数零点的个数进行判断排除即可.【解答】解:∵sin(-x)2=sinx2,∴函数y=sinx2是偶函数,即函数的图象关于y轴对称,排除A,C;由y=sinx2=0,则x2=kπ,k≥0,则x=±,k≥0,故函数有无穷多个零点,排除B,故选:D.【点评】本题主要考查函数图象的识别和判断,根据函数奇偶性和函数零点的性质是解决本题的关键.比较基础.4.(5分)若平面区域,夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( )A. B. C. D.【分析】作出平面区域,找出距离最近的平行线的位置,求出直线方程,再计算距离. 【解答】解:作出平面区域如图所示:∴当直线y=x+b分别经过A,B时,平行线间的距离相等.联立方程组,解得A(2,1),联立方程组,解得B(1,2).两条平行线分别为y=x-1,y=x+1,即x-y-1=0,x-y+1=0.∴平行线间的距离为d==,故选:B.【点评】本题考查了平面区域的作法,距离公式的应用,属于基础题.5.(5分)已知a,b>0且a≠1,b≠1,若logab>1,则( )A.(a-1)(b-1)<0B.(a-1)(a-b)>0C.(b-1)(b-a)<0D.(b-1)(b-a)>0【分析】根据对数的运算性质,结合a>1或0<a<1进行判断即可.【解答】解:若a>1,则由loga b>1得logab>logaa,即b>a>1,此时b-a>0,b>1,即(b-1)(b-a)>0,若0<a<1,则由loga b>1得logab>logaa,即b<a<1,此时b-a<0,b<1,即(b-1)(b-a)>0,综上(b-1)(b-a)>0,故选:D.【点评】本题主要考查不等式的应用,根据对数函数的性质,利用分类讨论的数学思想是解决本题的关键.比较基础.6.(5分)已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】求出f(x)的最小值及极小值点,分别把“b<0”和“f(f(x))的最小值与f(x)的最小值相等”当做条件,看能否推出另一结论即可判断.(x)=-.【解答】解:f(x)的对称轴为x=-,fmin(1)若b<0,则->-,∴当f(x)=-时,f(f(x))取得最小值f(-)=-,即f(f(x))的最小值与f(x)的最小值相等.∴“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的充分条件.(2)设f(x)=t,则f(f(x))=f(t),∴f(t)在(-,-)上单调递减,在(-,+∞)上单调递增,若f(f(x))=f(t)的最小值与f(x)的最小值相等,则-≤-,解得b≤0或b≥2.∴“b<0”不是“f(f(x))的最小值与f(x)的最小值相等”的必要条件.故选:A.【点评】本题考查了二次函数的性质,简易逻辑关系的推导,属于基础题.7.(5分)已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,x∈R.( )A.若f(a)≤|b|,则a≤bB.若f(a)≤2b,则a≤bC.若f(a)≥|b|,则a≥bD.若f(a)≥2b,则a≥b【分析】根据不等式的性质,分别进行递推判断即可.【解答】解:A.若f(a)≤|b|,则由条件f(x)≥|x|得f(a)≥|a|,即|a|≤|b|,则a≤b不一定成立,故A错误,B.若f(a)≤2b,则由条件知f(x)≥2x,即f(a)≥2a,则2a≤f(a)≤2b,则a≤b,故B正确,C.若f(a)≥|b|,则由条件f(x)≥|x|得f(a)≥|a|,则|a|≥|b|不一定成立,故C错误,D.若f(a)≥2b,则由条件f(x)≥2x,得f(a)≥2a,则2a≥2b,不一定成立,即a≥b不一定成立,故D错误,故选:B.【点评】本题主要考查不等式的判断和证明,根据条件,结合不等式的性质是解决本题的关键.综合性较强,有一定的难度.8.(5分)如图,点列{A n }、{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n +2|,A n ≠A n +1,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +1,n ∈N *,(P ≠Q 表示点P 与Q 不重合)若d n =|A n B n |,S n 为△A nB n B n +1的面积,则( )A.{S n }是等差数列B.{S n 2}是等差数列C.{d n }是等差数列D.{d n 2}是等差数列【分析】设锐角的顶点为O ,再设|OA 1|=a ,|OB 1|=c ,|A n A n +1|=|A n +1A n +2|=b ,|B n B n +1|=|B n +1B n +2|=d ,由于a ,c 不确定,判断C ,D 不正确,设△A n B n B n +1的底边B n B n +1上的高为h n ,运用三角形相似知识,h n +h n +2=2h n +1,由S n =d •h n ,可得S n +S n +2=2S n +1,进而得到数列{S n }为等差数列.【解答】解:设锐角的顶点为O ,|OA 1|=a ,|OB 1|=c , |A n A n +1|=|A n +1A n +2|=b ,|B n B n +1|=|B n +1B n +2|=d , 由于a ,c 不确定,则{d n }不一定是等差数列, {d n 2}不一定是等差数列,设△A n B n B n +1的底边B n B n +1上的高为h n ,由三角形的相似可得==,==,两式相加可得,==2,即有h n +h n +2=2h n +1,由S n =d •h n ,可得S n +S n +2=2S n +1,即为S n +2-S n +1=S n +1-S n , 则数列{S n }为等差数列.另解:可设△A 1B 1B 2,△A 2B 2B 3,…,A n B n B n +1为直角三角形, 且A 1B 1,A 2B 2,…,A n B n 为直角边, 即有h n +h n +2=2h n +1,由S n =d •h n ,可得S n +S n +2=2S n +1, 即为S n +2-S n +1=S n +1-S n , 则数列{S n }为等差数列. 故选:A.【点评】本题考查等差数列的判断,注意运用三角形的相似和等差数列的性质,考查化简整理的推理能力,属于中档题.二、填空题9.(6分)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是80 cm2,体积是40 cm3.【分析】根据几何体的三视图,得出该几何体下部为长方体,上部为正方体的组合体,结合图中数据求出它的表面积和体积即可.【解答】解:根据几何体的三视图,得;该几何体是下部为长方体,其长和宽都为4,高为2,表面积为2×4×4+2×42=64cm2,体积为2×42=32cm3;上部为正方体,其棱长为2,表面积是6×22=24 cm2,体积为23=8cm3;所以几何体的表面积为64+24-2×22=80cm2,体积为32+8=40cm3.故答案为:80;40.【点评】本题考查了由三视图求几何体的表面积与体积的应用问题,也考查了空间想象和计算能力,是基础题.10.(6分)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是(-2,-4) ,半径是 5 .【分析】由已知可得a2=a+2≠0,解得a=-1或a=2,把a=-1代入原方程,配方求得圆心坐标和半径,把a=2代入原方程,由D2+E2-4F<0说明方程不表示圆,则答案可求. 【解答】解:∵方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,∴a2=a+2≠0,解得a=-1或a=2.当a=-1时,方程化为x2+y2+4x+8y-5=0,配方得(x+2)2+(y+4)2=25,所得圆的圆心坐标为(-2,-4),半径为5;当a=2时,方程化为,此时,方程不表示圆, 故答案为:(-2,-4),5.【点评】本题考查圆的一般方程,考查圆的一般方程化标准方程,是基础题.11.(6分)已知2cos 2x +sin2x =Asin(ωx+φ)+b(A >0),则A =,b = 1 .【分析】根据二倍角的余弦公式、两角和的正弦函数化简左边,即可得到答案. 【解答】解:∵2cos 2x +sin2x =1+cos2x +sin2x =1+(cos2x +sin2x)=sin(2x +)+1,∴A =,b =1,故答案为:;1.【点评】本题考查了二倍角的余弦公式、两角和的正弦函数的应用,熟练掌握公式是解题的关键.12.(6分)设函数f(x)=x 3+3x 2+1,已知a ≠0,且f(x)-f(a)=(x -b)(x -a)2,x ∈R ,则实数a = -2 ,b = 1 .【分析】根据函数解析式化简f(x)-f(a),再化简(x -b)(x -a)2,根据等式两边对应项的系数相等列出方程组,求出a 、b 的值. 【解答】解:∵f(x)=x 3+3x 2+1,∴f(x)-f(a)=x 3+3x 2+1-(a 3+3a 2+1) =x 3+3x 2-(a 3+3a 2)∵(x -b)(x -a)2=(x -b)(x 2-2ax +a 2)=x 3-(2a +b)x 2+(a 2+2ab)x -a 2b , 且f(x)-f(a)=(x -b)(x -a)2,∴,解得或(舍去),故答案为:-2;1.【点评】本题考查函数与方程的应用,考查化简能力和方程思想,属于中档题.13.(4分)设双曲线x 2-=1的左、右焦点分别为F 1、F 2,若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是.【分析】由题意画出图形,以P 在双曲线右支为例,求出∠PF 2F 1和∠F 1PF 2为直角时|PF 1|+|PF 2|的值,可得△F 1PF 2为锐角三角形时|PF 1|+|PF 2|的取值范围. 【解答】解:如图,由双曲线x 2-=1,得a 2=1,b 2=3,∴.不妨以P 在双曲线右支为例,当PF 2⊥x 轴时, 把x =2代入x 2-=1,得y =±3,即|PF 2|=3,此时|PF 1|=|PF 2|+2=5,则|PF 1|+|PF 2|=8; 由PF 1⊥PF 2,得,又|PF 1|-|PF 2|=2,①两边平方得:,∴|PF 1||PF 2|=6,② 联立①②解得:, 此时|PF 1|+|PF 2|=.∴使△F 1PF 2为锐角三角形的|PF 1|+|PF 2|的取值范围是().故答案为:().【点评】本题考查双曲线的简单性质,考查双曲线定义的应用,考查数学转化思想方法,是中档题.14.(4分)如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD =,∠ADC =90°,沿直线AC 将△ACD 翻折成△ACD′,直线AC 与BD′所成角的余弦的最大值是 .【分析】如图所示,取AC的中点O,AB=BC=3,可得BO⊥AC,在Rt△ACD′中,AC=.作D′E⊥AC,垂足为E,D′E=.CO=,CE==,EO=CO-CE=.过点B 作BF∥AC,作FE∥BO交BF于点F,则EF⊥AC.连接D′F.∠FBD′为直线AC与BD′所成的角.则四边形BOEF为矩形,BF=EO=.EF=BO=.则∠FED′为二面角D′-CA-B的平面角,设为θ.利用余弦定理求出D′F2的最小值即可得出.【解答】解:如图所示,取AC的中点O,∵AB=BC=3,∴BO⊥AC,在Rt△ACD′中,=.作D′E⊥AC,垂足为E,D′E==.CO=,CE===,∴EO=CO-CE=.过点B作BF∥AC,作FE∥BO交BF于点F,则EF⊥AC.连接D′F.∠FBD′为直线AC与BD′所成的角.则四边形BOEF为矩形,∴BF=EO=.EF=BO==.则∠FED′为二面角D′-CA-B的平面角,设为θ.则D′F2=+-2×cosθ=-5cosθ≥,cosθ=1时取等号.∴D′B的最小值==2.∴直线AC与BD′所成角的余弦的最大值===.也可以考虑利用向量法求解.故答案为:.【点评】本题考查了空间位置关系、空间角,考查了空间想象能力、推理能力与计算能力,属于难题.15.(4分)已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是.【分析】由题意可知,||+||为在上的投影的绝对值与在上投影的绝对值的和,由此可知,当与共线时,||+||取得最大值,即.【解答】解:||+||=,其几何意义为在上的投影的绝对值与在上投影的绝对值的和,当与共线时,取得最大值.∴=.故答案为:.【点评】本题考查平面向量的数量积运算,考查向量在向量方向上的投影的概念,考查学生正确理解问题的能力,是中档题.三、解答题16.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.【分析】(1)由b+c=2acosB,利用正弦定理可得:sinB+sinC=2sinAcosB,而sinC=sin(A +B)=sinAcosB+cosAsinB,代入化简可得:sinB=sin(A-B),由A,B∈(0,π),可得0<A-B<π,即可证明.(II)cosB=,可得sinB=.cosA=cos2B=2cos2B-1,sinA=.利用cosC =-cos(A+B)=-cosAcosB+sinAsinB即可得出.【解答】(1)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴sinB =sinAcosB -cosAsinB =sin(A -B),由A ,B ∈(0,π),∴0<A -B <π,∴B =A -B ,或B =π-(A -B),化为A =2B ,或A =π(舍去). ∴A =2B.(II)解:cosB =,∴sinB ==.cosA =cos2B =2cos 2B -1=,sinA ==.∴cosC =-cos(A +B)=-cosAcosB +sinAsinB =+×=.【点评】本题考查了正弦定理、和差公式、倍角公式、同角三角函数基本关系式、诱导公式,考查了推理能力与计算能力,属于中档题.17.(15分)设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N *. (Ⅰ)求通项公式a n ;(Ⅱ)求数列{|a n -n -2|}的前n 项和.【分析】(Ⅰ)根据条件建立方程组关系,求出首项,利用数列的递推关系证明数列{a n }是公比q =3的等比数列,即可求通项公式a n ;(Ⅱ)讨论n 的取值,利用分组法将数列转化为等比数列和等差数列即可求数列{|a n -n -2|}的前n 项和.【解答】解:(Ⅰ)∵S 2=4,a n +1=2S n +1,n ∈N *. ∴a 1+a 2=4,a 2=2S 1+1=2a 1+1, 解得a 1=1,a 2=3,当n ≥2时,a n +1=2S n +1,a n =2S n -1+1, 两式相减得a n +1-a n =2(S n -S n -1)=2a n , 即a n +1=3a n ,当n =1时,a 1=1,a 2=3, 满足a n +1=3a n ,∴=3,则数列{a n }是公比q =3的等比数列,则通项公式a n =3n -1.(Ⅱ)a n -n -2=3n -1-n -2,设b n =|a n -n -2|=|3n -1-n -2|,则b 1=|30-1-2|=2,b 2=|3-2-2|=1, 当n ≥3时,3n -1-n -2>0, 则b n =|a n -n -2|=3n -1-n -2, 此时数列{|a n -n -2|}的前n 项和T n =3+-=,则T==.n【点评】本题主要考查递推数列的应用以及数列求和的计算,根据条件建立方程组以及利用方程组法证明列{a}是等比数列是解决本题的关键.求出过程中使用了转化法和分组法进行n数列求和.18.(15分)如图,在三棱台ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC =1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求直线BD与平面ACFD所成角的余弦值.【分析】(Ⅰ)根据三棱台的定义,可知分别延长AD,BE,CF,会交于一点,并设该点为K,并且可以由平面BCFE⊥平面ABC及∠ACB=90°可以得出AC⊥平面BCK,进而得出BF⊥AC.而根据条件可以判断出点E,F分别为边BK,CK的中点,从而得出△BCK为等边三角形,进而得出BF⊥CK,从而根据线面垂直的判定定理即可得出BF⊥平面ACFD;(Ⅱ)由BF⊥平面ACFD便可得出∠BDF为直线BD和平面ACFD所成的角,根据条件可以求出BF=,DF=,从而在Rt△BDF中可以求出BD的值,从而得出cos∠BDF的值,即得出直线BD和平面ACFD所成角的余弦值.【解答】解:(Ⅰ)证明:延长AD,BE,CF相交于一点K,如图所示:∵平面BCFE⊥平面ABC,且AC⊥BC;∴AC⊥平面BCK,BF⊂平面BCK;∴BF⊥AC;又EF∥BC,BE=EF=FC=1,BC=2;∴△BCK为等边三角形,且F为CK的中点;∴BF⊥CK,且AC∩CK=C;∴BF⊥平面ACFD;(Ⅱ)∵BF⊥平面ACFD;∴∠BDF是直线BD和平面ACFD所成的角;∵F为CK中点,且DF∥AC;∴DF为△ACK的中位线,且AC=3;∴;又;∴在Rt△BFD中,,cos;即直线BD和平面ACFD所成角的余弦值为【点评】考查三角形中位线的性质,等边三角形的中线也是高线,面面垂直的性质定理,以及线面垂直的判定定理,线面角的定义及求法,直角三角形边的关系,三角函数的定义.19.(15分)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|-1,(Ⅰ)求p的值;(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.【分析】(Ⅰ)利用抛物线的性质和已知条件求出抛物线方程,进一步求得p值;(Ⅱ)设出直线AF的方程,与抛物线联立,求出B的坐标,求出直线AB,FN的斜率,从而求出直线BN的方程,根据A、M、N三点共线,可求出M的横坐标的表达式,从而求出m的取值范围.【解答】解:(Ⅰ)由题意可得,抛物线上点A到焦点F的距离等于A到直线x=-1的距离,由抛物线定义得,,即p=2;(Ⅱ)由(Ⅰ)得,抛物线方程为y2=4x,F(1,0),可设(t2,2t),t≠0,t≠±1,∵AF不垂直y轴,∴设直线AF:x=sy+1(s≠0),联立,得y2-4sy-4=0.y 1y2=-4,∴B(),又直线AB的斜率为,故直线FN的斜率为,从而得FN:,直线BN:y=-,则N(),设M(m,0),由A、M、N三点共线,得,于是m==,得m<0或m>2.经检验,m<0或m>2满足题意.∴点M的横坐标的取值范围为(-∞,0)∪(2,+∞).【点评】本题考查抛物线的简单性质,考查直线与圆锥曲线位置关系的应用,考查数学转化思想方法,属中档题.20.(15分)设函数f(x)=x3+,x∈[0,1],证明:(Ⅰ)f(x)≥1-x+x2(Ⅱ)<f(x)≤.【分析】(Ⅰ)根据题意,1-x+x2-x3=,利用放缩法得≤,即可证明结论成立;(Ⅱ)利用0≤x≤1时x3≤x,证明f(x)≤,再利用配方法证明f(x)≥,结合函数的最小值得出f(x)>,即证结论成立.【解答】解:(Ⅰ)证明:因为f(x)=x3+,x∈[0,1],且1-x+x2-x3==,所以≤,所以1-x+x2-x3≤,即f(x)≥1-x+x2;(Ⅱ)证明:因为0≤x≤1,所以x3≤x,所以f(x)=x3+≤x+=x+-+=+≤;由(Ⅰ)得,f(x)≥1-x+x2=+≥,且f()=+=>,所以f(x)>;综上,<f(x)≤.【点评】本题主要考查了函数的单调性与最值,分段函数等基础知识,也考查了推理与论证,分析问题与解决问题的能力,是综合性题目.。
(完整)2016年高考浙江理科数学试题及答案(word解析版),推荐文档
(16)【2016年浙江,理16,14分】在 中,内角 , , 所对的边分别为 , , ,已知 .
(1)证明: ;
(2)若 的面积 ,求角 的大小.
解:(1)由正弦定理得 , ,
于是 .又 ,故 ,所以 或 ,
因此 (舍去)或 ,所以, .
【点评】本题考查了抛物线的性质,属于基础题.
(10)【2016年浙江,理10,6分】已知 ,则 , .
【答案】 ;1
【解析】∵ , , .
【点评】本题考查了二倍角的余弦公式、两角和的正弦函数的应用,熟练掌握公式是解题的关键.
(11)【2016年浙江,理11,6分】某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.
【解析】作出不等式组对应的平面区域如图:(阴影部分),区域内的点在直线
上的投影构成线段 ,即 ,而 ,由 得 ,
即 ,由 得 ,即 ,
则 ,故选C.
【点评】本题主要考查线性规划的应用,作出不等式组对应的平面区域,利用投影的定义以及数形结合是解决本题的关键.
(4)【2016年浙江,理4,5分】命题“ , ,使得 ”的否定形式是()
∵ ,∴ ,故选C.
【点评】本题考查两直线关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.
(3)【2016年浙江,理3,5分】在平面上,过点 作直线 的垂线所得的垂足称为点 在直线 上的投影.由区域 中的点在直线 上的投影构成的线段记为 ,则 ()
(A) (B)4(C) (D)6
【答案】C
平面 的法向量为 .由 ,得 ,取 ;
由 ,得 ,取 .于是, .
2016年浙江省数学高考模拟精彩题选—平面向量含答案
2016 浙江出色题选——平面向量【一、数目积的余弦定理式】1.( 2016 名校结盟第一次)→ → →15.空间四点 A ,B ,C ,D 知足 | AB| =2,| BC| =3,| CD→ → →| =4, | DA| = 7,则 AC ·BD 的值为 ___19____.分 析: 应用 数量积 的余弦定理版,AC BD= (AB+BC) BD (AB BD )+( BC B D) = |AB| 2 |BD|2|AD|2 |BC|2 |BD|2|CD |222=192.(2016 大联考 13).如图,在三棱锥 DABC 中,已知 AB AD2 ,BC1 ,3,AC BD则 CD 7.剖析:AC BDAC (ADAB) AC |AC|2|AD|2|DC |2|AC |2|AB|2 1AD AC AB2233.(2016 镇海最后卷 15)如图,在平面四边形ABCD 中,已知 E 、 F 、G 、 H 分别是棱 AB 、 BC 、CD 、 DA 的中点,2| HF| 21 ,设 |AD|=x,|BC|=y,|AB|=z,|CD|=1, 2x y1 若|EG| 则28的最大值是z 2DGHCFAEB15.解法一:解法二:设 AC BD=O四边形 EFGH 为平行四边形EG 2 HF 2 =(EH EF )2 (EH EF)24EH EFBD AC (OD OB) (OC OA)OD OC OD OA OB OCOB OA=|OD |2|OC |2 |DC |2 |OD |2|OA|2|AD|2|OB |2 |OC |2 |BC|2222|OB|2|OA |2|A B|2 122 2 21 (x2 y 2 z 2 1) 12 =( |DC||AD| |DC | |AB|)=22z 2 x 2 y 2 3下同4.( 2016 杭二最后卷 4)ABC 中, AB = 8, AC = 6 , AD 垂直 BC 于点 D , E, F 分别为 AB, AC 的中点,若DE?DF =6,则 BC=A. 213B.10C.237D.14解: . A 。
2016届浙江省高考数学模拟试卷(文科)(解析版)
2016年浙江省高考数学模拟试卷(文科)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x∈N|x2﹣5x﹣6<0},N={x∈Z|2<x<23},则M∩N=()A.(2,6)B.{3,4,5} C.{2,3,4,5,6} D.[2,6]2.“某几何体的三视图完全相同”是“该几何体为球”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.下列函数中既是奇函数又是周期函数的是()A.y=x3 B.y=cos2x C.y=sin3x D.4.已知数列{a n}是正项等比数列,满足a n+2=2a n+1+3a n,且首项为方程x2+2x﹣3=0的一个根.则下列等式成立的是()A.a n+1=2S n+1 B.a n=2S n+1 C.a n+1=S n+1 D.a n=2S n﹣1﹣15.△ABC中,AB=5,BC=3,CA=7,若点D满足,则△ABD的面积为()A.B.C. D.56.已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,φ∈(0,π))的部分图象如图所示,则的值为()A.﹣2 B.﹣1 C.0 D.7.过双曲线=1(a,b>0)的右焦点F,且斜率为2的直线l与双曲线的相交于点A,B,若弦AB的中点横坐标取值范围为(2c,4c),则该双曲线的离心率的取值范围是()A.(3,4)B.(2,3)C.D.8.已知函数f(x)=x2﹣2ax+5(a>1),g(x)=log3x.若函数f(x)的定义域与值域均为[1,a],且对于任意的x1,x2∈[1,a+1],恒成立,则满足条件的实数t的取值范围是()A.[﹣2,8]B.[0,8]C.[0,+∞)D.[0,8)二、填空题(本大题共7小题,其中9-12题每小题两空,每题6分,13-15题每小题一空,每题4分,合计36分.请将答案填在答题纸上)9.已知等差数列{a n}的前n项和为,则首项a1=;该数列的首项a1与公差d满足的=.10.若实数x,y满足不等式组,则该不等式表示的平面区域的面积为;目标函数z=4x+3y的最大值为.11.已知函数,则=;该函数在区间上的最小值为.12.已知直线l过点P(2,1),Q(1,﹣1),则该直线的方程为;过点P与l垂直的直线m与圆x2+y2=R2(R>0)相交所得弦长为,则该圆的面积为.13.三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形,侧棱AA1与底边AB,AC所成的角均为60°.若顶点A1在下底面的投影恰在底边BC上,则该三棱柱的体积为.14.已知正数a,b满足a+2b=2,则的最小值为.15.如图所示,△ABC中,AB⊥AC,AB=6,AC=8.边AB,AC的中点分别为M,N.若O为线段MN上任一点,则的取值范围是.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.在△ABC中,AB=4,AC=6,∠BAC=60°.点A在边BC上的投影为点D.(1)试求线段AD的长度;(2)设点D在边AB上的投影为点E,在边AC上的投影为F,试求线段EF的长度.17.已知正项递增等比数列{a n}的首项为8,其前n项和记为S n,且S3﹣2S2=﹣2.(1)求数列{a n}的通项公式;(2)设数列{b n}满足,其前n项和为T n,试求数列的前n项和B n.18.四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,且∠BAD=60°,Q,M 分别为PA,BC的中点.(1)证明:直线QM∥平面PCD;(2)若二面角A﹣BD﹣Q所成角正切值为2,求直线QC与平面PAD所成角的正切值.19.已知抛物线C:y2=4x.直线l:y=k(x﹣8)与抛物线C交于A,B(A在B的下方)两点,与x轴交于点P.(1)若点P恰为弦AB的三等分点,试求实数k的值.(2)过点P与直线l垂直的直线m与抛物线C交于点M,N,试求四边形AMBN的面积的最小值.20.设a为实数,函数f(x)=2x2+(x﹣a)|x﹣a|(Ⅰ)若f(0)≥1,求a的取值范围;(Ⅱ)求f(x)在[﹣2,2]上的最小值.2016年浙江省高考数学模拟试卷(文科)参考答案与试题解析一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x∈N|x2﹣5x﹣6<0},N={x∈Z|2<x<23},则M∩N=()A.(2,6)B.{3,4,5} C.{2,3,4,5,6} D.[2,6]【考点】交集及其运算.【分析】分别求出M与N中不等式的解集,找出解集中的正整数解及整数解确定出M与N,求出两集合的交集即可.【解答】解:由M中不等式变形得:(x﹣6)(x+1)<0,解得:﹣1<x<6,x∈N,即M={0,1,2,3,4,5},由N中不等式变形得:2<x<23=8,x∈Z,即N={3,4,5,6,7},则M∩N={3,4,5},故选:B.2.“某几何体的三视图完全相同”是“该几何体为球”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】“该几何体为球”⇒“某几何体的三视图完全相同”,反之不成立,例如取几何体正方体,即可判断出.【解答】解:“该几何体为球”⇒“某几何体的三视图完全相同”,反之不成立,例如取几何体正方体,∴“某几何体的三视图完全相同”是“该几何体为球”的必要不充分条件.故选:B.3.下列函数中既是奇函数又是周期函数的是()A.y=x3 B.y=cos2x C.y=sin3x D.【考点】函数的周期性;函数奇偶性的判断.【分析】根据基本初等函数奇偶性和周期性进行判断即可.【解答】解:A.函数y=x3为奇函数,不是周期函数;B.y=cos2x是偶函数,也是周期函数,但不是奇函数;C.y=sin3x是奇函数且是周期函数;D.是周期函数,既不是奇函数也不是偶函数,综上只有C符合题意,故选:C.4.已知数列{a n}是正项等比数列,满足a n+2=2a n+1+3a n,且首项为方程x2+2x﹣3=0的一个根.则下列等式成立的是()A.a n+1=2S n+1 B.a n=2S n+1 C.a n+1=S n+1 D.a n=2S n﹣1﹣1【考点】等比数列的通项公式.【分析】设正项等比数列数列{a n}的公比为q,0,满足a n+2=2a n+1+3a n,且首项为方程x2+2x ﹣3=0的一个根.可得q2=2q+3,a1=1.再利用等比数列的通项公式及其前n项和公式即可得出.【解答】解:设正项等比数列数列{a n}的公比为q,0,满足a n+2=2a n+1+3a n,且首项为方程x2+2x﹣3=0的一个根.∴q2=2q+3,a1=1.解得q=3.∴a n=3n﹣1,a n+1=3n,S n=,则2S n+1=3n=a n+1.故选:A.5.△ABC中,AB=5,BC=3,CA=7,若点D满足,则△ABD的面积为()A. B.C. D.5【考点】向量数乘的运算及其几何意义.【分析】先求出∠B的度数,从而求出sinB,根据三角形的面积公式求出△ABD的面积即可.【解答】解:如图示:,cosB==﹣,∴∠B=120°,∴sinB=,∴S△ABD=×5×2×=,故选:A.6.已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,φ∈(0,π))的部分图象如图所示,则的值为()A.﹣2 B.﹣1 C.0 D.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】根据三角函数的图象和性质求出A,ω和φ的值进行求解即可.【解答】解:由图象知函数的最大值为1,最小值为﹣3,则,得A=2,B=﹣1,=﹣=,即T=π=,即ω=2,则f(x)=2sin(2x+φ)﹣1,∵f()=2sin(2×+φ)﹣1=1,∴sin(+φ)=1,即+φ=+2kπ,则φ=2kπ﹣,∵φ∈(0,π),∴当k=1时,φ=2π﹣=,∴f(x)=2sin(2x+)﹣1,则f()=2sin(2×+)﹣1=2sin(π+)﹣1=﹣2×﹣1=﹣1﹣1=﹣2,故选:A7.过双曲线=1(a,b>0)的右焦点F,且斜率为2的直线l与双曲线的相交于点A,B,若弦AB的中点横坐标取值范围为(2c,4c),则该双曲线的离心率的取值范围是()A.(3,4)B.(2,3)C.D.【考点】双曲线的简单性质.【分析】设右焦点F(c,0),直线l的方程为y=2(x﹣c),代入双曲线的方程可得(b2﹣4a2)x2+8ca2x﹣4a2c2﹣a2b2=0,运用韦达定理和中点坐标公式,再由条件可得2c<<4c,结合a,b,c的关系和离心率公式,计算即可得到所求范围.【解答】解:设右焦点F(c,0),直线l的方程为y=2(x﹣c),代入双曲线的方程可得(b2﹣4a2)x2+8ca2x﹣4a2c2﹣a2b2=0,设A(x1,y1),B(x2,y2),可得x1+x2=,即有AB的中点的横坐标为,由题意可得2c<<4c,化简可得2a2<b2<3a2,即有3a2<c2<4a2,即a<c<2a,可得e=∈(,2).故选:D.8.已知函数f(x)=x2﹣2ax+5(a>1),g(x)=log3x.若函数f(x)的定义域与值域均为[1,a],且对于任意的x1,x2∈[1,a+1],恒成立,则满足条件的实数t的取值范围是()A.[﹣2,8]B.[0,8]C.[0,+∞)D.[0,8)【考点】函数恒成立问题.【分析】根据二次函数的对称轴判断出函数单调性,得出a=f(1),求出a=2,进而求出只需4t+2t﹣2≥0,得出答案.【解答】解:函数f(x)=x2﹣2ax+5(a>1)的对称轴为x=a∈[1,a]∴函数f(x)=x2﹣2ax+5(a>1)在[1,a]上单调递减∵函数f(x)的定义域和值域均为[1,a]∴a=f(1)∴a=2∴f(x)=x2﹣4x+5,g(x)=log3x.∵对于任意的x1,x2∈[1,3],1≤f(x)≤2,0≤g(x)≤1,∴4t+2t﹣2≥0,∴t≥0.故选:C.二、填空题(本大题共7小题,其中9-12题每小题两空,每题6分,13-15题每小题一空,每题4分,合计36分.请将答案填在答题纸上)9.已知等差数列{a n}的前n项和为,则首项a1=﹣2;该数列的首项a1与公差d满足的=16.【考点】等差数列的前n项和.【分析】根据等差数列{a n}的前n项和求出a1,a2,a3;再根据等差中项的概念列出方程求出c的值,从而得出a1和公差d,即可得出的值.【解答】解:等差数列{a n}的前n项和为,∴a1=S1=2﹣4+c=c﹣2,a2=S2﹣S1=(8﹣8+c)﹣(c﹣2)=2,a3=S3﹣S2=(18﹣12+c)﹣c=6;又2a2=a1+a3,∴4=(c﹣2)+6,解得c=0;∴a1=﹣2,数列{a n}的公差为d=a3﹣a2=6﹣2=4,∴=(﹣2)4=16.故答案为:﹣2,16.10.若实数x,y满足不等式组,则该不等式表示的平面区域的面积为;目标函数z=4x+3y的最大值为6.【考点】简单线性规划.【分析】画出满足条件的平面区域,求出角点的坐标,得到三角形的面积,目标函数z=4x+3y可化为:y=﹣x+,显然直线过A时,求出z的最大值即可.【解答】解:画出满足条件的平面区域,如图示:,由,解得:A(1,),由,解得:B(1,﹣4),而C到AB的距离是2,∴S△ABC=|AB|•2=,目标函数z=4x+3y可化为:y=﹣x+,显然直线过A时,z最大,z的最大值是6,故答案为:,6.11.已知函数,则=+;该函数在区间上的最小值为﹣+.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】利用三角函数的诱导公式将函数进行化简,结合三角函数的图象和性质进行求解即可.【解答】解:=sinxcosx+cos2x=sin2x+×(1+cos2x)=sin2x+cos2x+=sin(2x+)+,则=sin(2×+)+=sin(+)+=cos+=+,∵﹣≤x≤,∴﹣≤2x+≤,∴当2x+=﹣时,f(x)取得最小值,此时最小值为sin(﹣)+=﹣+,故答案为:+,﹣+.12.已知直线l过点P(2,1),Q(1,﹣1),则该直线的方程为2x﹣y﹣3=0;过点P与l垂直的直线m与圆x2+y2=R2(R>0)相交所得弦长为,则该圆的面积为5π.【考点】直线与圆的位置关系.【分析】由两点式写出直线方程,化为一般式得答案;求出圆心到直线的距离,结合垂径定理求得半径,则圆的面积可求.【解答】解:由直线方程的两点式得l:,化为一般式,2x﹣y﹣3=0;直线l的斜率为2,则过点P与l垂直的直线m的斜率为,直线m的方程为y﹣1=,整理得:x+2y﹣4=0.圆x2+y2=R2的圆心到m的距离d=,∴R2=.则圆的面积为πR2=5π.故答案为:2x﹣y﹣3=0;5π.13.三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形,侧棱AA1与底边AB,AC所成的角均为60°.若顶点A1在下底面的投影恰在底边BC上,则该三棱柱的体积为3.【考点】棱柱、棱锥、棱台的体积.【分析】作出示意图,由AA1与AB,AC所成的角相等可知AA1在底面的射影为角BAC 的角平分线,利用勾股定理和余弦定理求出棱柱的高,代入体积公式计算.【解答】解:设A1在底面ABC的投影为D,连结AD,A1B,∵AA1与AB,AC所成的角均为60°,∴AD为∠BAC的平分线,∵△ABC是等边三角形,∴D为BC的中点.∴BD=1,AD==.设三棱柱的高A1D=h,则AA1==,A1B==.在△AA1B中,由余弦定理得cos60°=,即=1,解得h=.∴三棱柱的体积V==3.故答案为:3.14.已知正数a,b满足a+2b=2,则的最小值为.【考点】基本不等式.【分析】解法一:数a,b满足a+2b=2,可得a=2﹣2b>0,解得0<b<1.于是=+=f(b),利用导数研究函数的单调性极值与最值即可得出.解法二:由于(1+a)+(2+2b)=5,利用“乘1法”与基本不等式的性质即可得出.【解答】解法一:∵正数a,b满足a+2b=2,∴a=2﹣2b>0,解得0<b<1.则=+=f(b),f′(b)=﹣=,可知:当时,f′(b)<0,此时函数f(b)单调递减;当b∈时,f′(b)>0,此时函数f(b)单调递增.当b=,a=时,f(b)取得最小值,=+=+=,解法二:∵(1+a)+(2+2b)=5,∴=[(1+a)+(2+2b)]=≥=,当且仅当b=,a=时取等号.∴f(b)取得最小值.故答案为:.15.如图所示,△ABC中,AB⊥AC,AB=6,AC=8.边AB,AC的中点分别为M,N.若O为线段MN上任一点,则的取值范围是[].【考点】平面向量数量积的运算.【分析】分别以AC、AB所在直线为x、y轴建立平面直角坐标系,设O(m,n),由把O的坐标用λ表示,再把转化为关于λ的二次函数求解.【解答】解:如图,分别以AC、AB所在直线为x、y轴建立平面直角坐标系,∵AB=6,AC=8,边AB,AC的中点分别为M,N,∴A(0,0),B(0,6),C(8,0),M(0,3),N(4,0),设O(m,n),,则(m,n﹣3)=λ(4,﹣3)(0≤λ≤1),∴,则,∴O(4λ,3﹣3λ),则,,∴=4λ(8﹣4λ)+(3λ+3)(3λ﹣3)﹣4λ•4λ+(3λ+3)(3λ﹣3)﹣4λ(8﹣4λ)+(3λ﹣3)2=11λ2﹣18λ﹣9(0≤λ≤1).对称轴方程为,∴当时,有最小值为,当λ=0时,有最大值为﹣9.故答案为:[].三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.在△ABC中,AB=4,AC=6,∠BAC=60°.点A在边BC上的投影为点D.(1)试求线段AD的长度;(2)设点D在边AB上的投影为点E,在边AC上的投影为F,试求线段EF的长度.【考点】解三角形.【分析】(1)根据余弦定理求出BC的长,再根据勾股定理求出AD的长;(2)根据三角形面积相等求出DE和DF的长,根据余弦定理求出EF的长即可.【解答】解:(1)在△ABC中,AB=4,AC=6,∠BAC=60°,∴BC2=16+36﹣2×4×6×=28,∴BC=2,S△ABC=AB•AC•sin∠BAC=BC•AD,∴AD=;(2)依题意,DE=,DF=,由∠EDF=180°﹣60°=120°,∴EF2=++××=,∴EF=.17.已知正项递增等比数列{a n}的首项为8,其前n项和记为S n,且S3﹣2S2=﹣2.(1)求数列{a n}的通项公式;(2)设数列{b n}满足,其前n项和为T n,试求数列的前n项和B n.【考点】数列的求和;等比数列的通项公式.【分析】(1)通过设a n=8q n﹣1(q>1),代入S3﹣2S2=﹣2计算可知公比q=,进而计算可得结论;(2)通过(1)可知b n=2n+1,利用等比数列、等差数列的求和公式计算可知T n=n(n+2),进而裂项可知=(﹣),并项相加即得结论.【解答】解:(1)依题意,a n=8q n﹣1(q>1),∵S3﹣2S2=﹣2,即(8+8q+8q2)﹣2(8+8q)=﹣2,∴4q2﹣4q﹣3=0,解得:q=或q=﹣(舍),故数列{a n}的通项公式a n=8•;(2)由(1)可知=2+1=2n+1,故数列{b n}的前n项和为T n=2•+n=n(n+2),∴==(﹣),∴B n=(1﹣+﹣+…+﹣)=(1+﹣﹣).18.四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,且∠BAD=60°,Q,M 分别为PA,BC的中点.(1)证明:直线QM∥平面PCD;(2)若二面角A﹣BD﹣Q所成角正切值为2,求直线QC与平面PAD所成角的正切值.【考点】直线与平面所成的角;直线与平面平行的判定.【分析】(1)取AD的中点N,连结QN,MN.可通过证明平面QMN∥平面PCD得出QM∥平面PCD;(2)在平面ABCD内过C作CE⊥AD交延长线于E,连结QE,则CE⊥平面PAD,设菱形边长为1,利用勾股定理,二面角的大小,菱形的性质等计算AC,AE,AQ,得出CE,QE,于是tan∠CQE=.【解答】证明:(1)取AD的中点N,连结QN,MN.∵底面ABCD为菱形,M,N是BC,AD的中点,∴MN∥CD,∵Q,N是PA,AD的中点,∴QN∥PD,又QN⊂平面QMN,MN⊂平面QMN,QN∩MN=N,CD⊂平面PCD,PD⊂平面PCD,CD∩PD=D,∴平面QMN∥平面PCD,∵QM⊂平面QMN,∴QM∥平面PCD.(2)连结AC交BD于O,连结QO.∵PA⊥平面ABCD,∴PA⊥AB,PA⊥AD,又AD=AB,QA为公共边,∴Rt△QAD≌Rt△QAB,∴QD=QB,∵O是BD的中点,∴AO⊥BD,QO⊥BD,∴∠AOQ为二面角A﹣BD﹣Q的平面角,∴tan∠AOQ=2.在平面ABCD内过C作CE⊥AD交延长线于E,连结QE.则CE⊥平面PAD,∴∠CQE为直线QC与平面PAD所成的角.设菱形ABCD的边长为1,∵∠DAB=60°,∴AO=,AC=,∴QA=2AO=,CE==,AE=CE=,∴QE==.∴tan∠CQE==.∴直线QC与平面PAD所成角的正切值为.19.已知抛物线C:y2=4x.直线l:y=k(x﹣8)与抛物线C交于A,B(A在B的下方)两点,与x轴交于点P.(1)若点P恰为弦AB的三等分点,试求实数k的值.(2)过点P与直线l垂直的直线m与抛物线C交于点M,N,试求四边形AMBN的面积的最小值.【考点】抛物线的简单性质.【分析】(1)设A(x1,y1),B(x2,y2),不妨设=2,求出A的坐标,利用斜率公式,求实数k的值.(2)直线l:y=k(x﹣8)与抛物线方程联立得:k2x2﹣(16k2+4)x+64k2=0,由弦长公式求出|AB|、|MN|,由四边形AMBN的面积S=|AB||MN|,利用基本不等式能求出四边形AMBN 面积最小值.【解答】解:(1)设A(x1,y1),B(x2,y2),不妨设=2,∵P(8,0),∴(8﹣x2,﹣y2)=2(x1﹣8,y1),∴8﹣x2=2x1﹣8,﹣y2=2y1,∴8﹣x2=2x1﹣8,x2=4x1,∴x1=,x2=4x1=∴A(,﹣),∴k==,根据对称性,k=﹣,满足题意;(2)直线l:y=k(x﹣8)与抛物线方程联立得:k2x2﹣(16k2+4)x+64k2=0,∴x1+x2=16+,x1x2=64,由弦长公式|AB|=,同理由弦长公式得|MN|=,所以四边形AMBN的面积S=|AB||MN|=8≥8=144,当k=±1时,取“=”.故四边形AMBN面积最小值为144.20.设a为实数,函数f(x)=2x2+(x﹣a)|x﹣a|(Ⅰ)若f(0)≥1,求a的取值范围;(Ⅱ)求f(x)在[﹣2,2]上的最小值.【考点】分段函数的应用;函数的值域.【分析】(Ⅰ)原不等式即为﹣a|a|≥1,考虑a<0,解二次不等式求交集即可;(Ⅱ)将函数f(x)改写为分段函数,讨论当a≥0时,①﹣a≤﹣2,②﹣a>﹣2,当a<0时,①≤﹣2,②>﹣2,运用二次函数的单调性,即可得到最小值.【解答】解:(Ⅰ)若f(0)≥1,则﹣a|a|≥1⇒⇒a≤﹣1,则a的取值范围是(﹣∞,﹣1];(Ⅱ)函数f(x)=2x2+(x﹣a)|x﹣a|=,当a≥0时,①﹣a≤﹣2即a≥2时,f(x)在[﹣2,2]上单调递增,所以f(x)min=f(﹣2)=4﹣4a﹣a2;②﹣a>﹣2即0≤a<2时,f(x)在[﹣2,﹣a]上单调递减,在[﹣a,2]上单调递增,所以f(x)min=f(﹣a)=﹣2a2;当a<0时,①≤﹣2即a≤﹣6时,f(x)在[﹣2,2]上单调递增,所以f(x)min=f(﹣2)=12+4a+a2;②>﹣2即﹣6<a<0时,f(x)在[﹣2,]上单调递减,在[,2]上单调递增,所以f(x)min=f()=,综上可得,f(x)min=2016年6月20日。
2016年浙江省数学高考模拟精彩题选—数列解答题含答案
1 ,是否存在 n Î N * ,使得 a n 1 ,若存在,试求出 n 的最小值,若不存在,请说明理由. 2016
证明: (Ⅰ)∵
1 a n+1
1 a n+1
=
1 a n + ca n 2
∴
=
1 c 1 1 c ,即 = a n 1 + ca n a n a n + 1 1 + ca n
1 1 c = a 1 a 2 1 + ca 1 1 1 c = a 2 a 3 1 + ca 2
解:(Ⅰ) a2 = 另一方面,
a2 n -1 + 4 +4 -2 a2 n -12 - 4 a2 n + 4 a2 n- 1 + 1 5a + 8 a2 n +1 - a2 n -1 = - a2 n -1 = - a2 n -1 = 2 n- 1 - a2 n -1 = . a2 n -1 + 4 a2 n + 1 2 a + 5 2 a + 5 2 n 1 2 n 1 +1 a2 n -1 + 1 ……………7 分 由 a2 n -1 < 2 知 a2n+1 - a2n-1 0 ,即 a2 n +1 a2 n -1 .
3.(2016 嘉 兴 一 模 ) ( 本 题 满 分 15 分 ) 数 列 {a n } 各 项 均 为 正 数 , a 1 = (Ⅰ)求 a n +1 = a n + ca n (c 0) . (Ⅱ)若 c =
2
1 , 且 对 任 意 的 nÎ N * , 有 2
c c 1 的值; + + 1 + ca 1 1 + ca 2 a 3
2016年高考数学浙江试题及答案【解析版】
2016年高考数学浙江(文科)试题及答案【解析版】(总22页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2016年浙江省高考数学试卷(文科)一.选择题(共8小题)1.【2016浙江(文)】已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q=()A.{1} B.{3,5} C.{1,2,4,6} D.{1,2,3,4,5}【答案】C【解析】解:∁U P={2,4,6},(∁U P)∪Q={2,4,6}∪{1,2,4}={1,2,4,6}.2.【2016浙江(文)】已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥l B.m∥n C.n⊥l D.m⊥n【答案】C【解析】解:∵互相垂直的平面α,β交于直线l,直线m,n满足m∥α,∴m∥β或m⊂β或m⊥β,l⊂β,∵n⊥β,∴n⊥l.3.【2016浙江(文)】函数y=sinx2的图象是()A.B. C.D.【答案】D【解析】解:∵sin(﹣x)2=sinx2,∴函数y=sinx2是偶函数,即函数的图象关于y轴对称,排除A,C;由y=sinx2=0,则x2=kπ,k≥0,则x=±,k≥0,故函数有无穷多个零点,排除B,4.【2016浙江(文)】若平面区域,夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是()A.B. C.D.【答案】B【解析】解:作出平面区域如图所示:∴当直线y=x+b分别经过A,B时,平行线间的距离相等.联立方程组,解得A(2,1),联立方程组,解得B(1,2).两条平行线分别为y=x﹣1,y=x+1,即x﹣y﹣1=0,x﹣y+1=0.∴平行线间的距离为d==,5.【2016浙江(文)】已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0 C.(b﹣1)(b﹣a)<0 D.(b﹣1)(b﹣a)>0【答案】D【解析】解:若a>1,则由log a b>1得log a b>log a a,即b>a>1,此时b﹣a>0,b>1,即(b﹣1)(b﹣a)>0,若0<a<1,则由log a b>1得log a b>log a a,即b<a<1,此时b﹣a<0,b<1,即(b﹣1)(b﹣a)>0,综上(b﹣1)(b﹣a)>0,6.【2016浙江(文)】已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】解:f(x)的对称轴为x=﹣,f min(x)=﹣.(1)若b<0,则﹣>﹣,∴当f(x)=﹣时,f(f(x))取得最小值f(﹣)=﹣,即f(f(x))的最小值与f(x)的最小值相等.∴“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的充分条件.(2)若f(f(x))的最小值与f(x)的最小值相等,则f min(x)≤﹣,即﹣≤﹣,解得b≤0或b≥2.∴“b<0”不是“f(f(x))的最小值与f(x)的最小值相等”的必要条件.7.【2016浙江(文)】已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,x∈R.()A.若f(a)≤|b|,则a≤b B.若f(a)≤2b,则a≤bC.若f(a)≥|b|,则a≥b D.若f(a)≥2b,则a≥b【答案】B【解析】解:A.若f(a)≤|b|,则由条件f(x)≥|x|得f(a)≥|a|,即|a|≤|b|,则a≤b不一定成立,故A错误,B.若f(a)≤2b,则由条件知f(x)≥2x,即f(a)≥2a,则2a≤f(a)≤2b,则a≤b,故B正确,C.若f(a)≥|b|,则由条件f(x)≥|x|得f(a)≥|a|,则|a|≥|b|不一定成立,故C 错误,D.若f(a)≥2b,则由条件f(x)≥2x,得f(a)≥2a,则2a≥2b,不一定成立,即a≥b不一定成立,故D错误,8.【2016浙江(文)】如图,点列{A n}、{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+1,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N*,(P≠Q表示点P 与Q不重合)若d n=|A n B n|,S n为△A n B n B n+1的面积,则()A.{S n}是等差数列B.{S n2}是等差数列C.{d n}是等差数列D.{d n2}是等差数列【答案】A【解析】解:设锐角的顶点为O,|OA1|=a,|OB1|=b,|A n A n+1|=|A n+1A n+2|=b,|B n B n+1|=|B n+1B n+2|=d,由于a,b不确定,则{d n}不一定是等差数列,{d n2}不一定是等差数列,设△A n B n B n+1的底边B n B n+1上的高为h n,由三角形的相似可得==,==,两式相加可得,==2,即有h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,即为S n+2﹣S n+1=S n+1﹣S n,则数列{S n}为等差数列.故选:A.二.填空题(共7小题)9.【2016浙江(文)】某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.【答案】80;40.【解析】解:根据几何体的三视图,得;该几何体是下部为长方体,其长和宽都为4,高为2,表面积为2×4×4+2×42=64cm2,体积为2×42=32cm3;上部为正方体,其棱长为2,表面积是6×22=24 cm2,体积为23=8cm3;所以几何体的表面积为64+24﹣2×22=80cm2,体积为32+8=40cm3.10.【2016浙江(文)】已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是,半径是.【答案】(﹣2,﹣4),5【解析】解:∵方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,∴a2=a+2≠0,解得a=﹣1或a=2.当a=﹣1时,方程化为x2+y2+4x+8y﹣5=0,配方得(x+2)2+(y+4)2=25,所得圆的圆心坐标为(﹣2,﹣4),半径为5;当a=2时,方程化为,此时,方程不表示圆,11.【2016浙江(文)】已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A= ,b= .【答案】;1.【解析】解:∵2cos2x+sin2x=1+cos2x+sin2x=1+(cos2x+sin2x)+1=sin(2x+)+1,∴A=,b=1,12.【2016浙江(文)】设函数f(x)=x3+3x2+1,已知a≠0,且f(x)﹣f(a)=(x ﹣b)(x﹣a)2,x∈R,则实数a= ,b= .【答案】﹣2;1.【解析】解:∵f(x)=x3+3x2+1,∴f(x)﹣f(a)=x3+3x2+1﹣(a3+3a2+1)=x3+3x2﹣(a3+3a2)∵(x﹣b)(x﹣a)2=(x﹣b)(x2﹣2ax+a2)=x3﹣(2a+b)x2+(a2+2ab)x﹣a2b,且f(x)﹣f(a)=(x﹣b)(x﹣a)2,∴,解得或(舍去),13.【2016浙江(文)】设双曲线x2﹣=1的左、右焦点分别为F1、F2,若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是.【答案】().【解析】解:如图,由双曲线x2﹣=1,得a2=1,b2=3,∴.不妨以P在双曲线右支为例,当PF2⊥x轴时,把x=2代入x2﹣=1,得y=±3,即|PF2|=3,此时|PF1|=|PF2|+2=5,则|PF1|+|PF2|=8;由PF1⊥PF2,得,又|PF1|﹣|PF2|=2,①两边平方得:,∴|PF1||PF2|=6,②联立①②解得:,此时|PF1|+|PF2|=.∴使△F1PF2为锐角三角形的|PF1|+|PF2|的取值范围是().14.【2016浙江(文)】如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°,沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是.【答案】【解析】解:如图所示,取AC的中点O,∵AB=BC=3,∴BO⊥AC,在Rt△ACD′中,=.作D′E⊥AC,垂足为E,D′E==.CO=,CE===,∴EO=CO﹣CE=.过点B作BF∥BO,作FE∥BO交BF于点F,则EF⊥AC.连接D′F.∠FBD′为直线AC与BD′所成的角.则四边形BOEF为矩形,∴BF=EO=.EF=BO==.则∠FED′为二面角D′﹣CA﹣B的平面角,设为θ.则D′F2=+﹣2×cosθ=﹣5cosθ≥,cosθ=1时取等号.∴D′B的最小值==2.∴直线AC与BD′所成角的余弦的最大值===.故答案为:.15.【2016浙江(文)】已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是.【答案】【解析】解:||+||=,其几何意义为在上的投影的绝对值与在上投影的绝对值的和,当与共线时,取得最大值.∴=.三.解答题(共5小题)16.【2016浙江(文)】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.【解析】(1)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cosB=,∴sinB==.cosA=cos2B=2cos2B﹣1=,sinA==.∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.17.【2016浙江(文)】设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(Ⅰ)求通项公式a n;(Ⅱ)求数列{|a n﹣n﹣2|}的前n项和.【解析】解:(Ⅰ)∵S2=4,a n+1=2S n+1,n∈N*.∴a1+a2=4,a2=2S1+1=2a1+1,解得a1=1,a2=3,当n≥2时,a n+1=2S n+1,a n=2S n﹣1+1,两式相减得a n+1﹣a n=2(S n﹣S n﹣1)=2a n,即a n+1=3a n,当n=1时,a1=1,a2=3,满足a n+1=3a n,∴=3,则数列{a n}是公比q=3的等比数列,则通项公式a n=3n﹣1.(Ⅱ)a n﹣n﹣2=3n﹣1﹣n﹣2,设b n=|a n﹣n﹣2|=|3n﹣1﹣n﹣2|,则b1=|30﹣1﹣2|=2,b2=|3﹣2﹣2|=1,当n≥3时,3n﹣1﹣n﹣2>0,则b n=|a n﹣n﹣2|=3n﹣1﹣n﹣2,此时数列{|a n﹣n﹣2|}的前n项和T n=3+﹣=,则T n==.18.【2016浙江(文)】如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求直线BD与平面ACFD所成角的余弦值.【解析】解:(Ⅰ)证明:延长AD,BE,CF相交于一点K,如图所示:∵平面BCFE⊥平面ABC,且AC⊥BC;∴AC⊥平面BCK,BF⊂平面BCK;∴BF⊥AC;又EF∥BC,BE=EF=FC=1,BC=2;∴△BCK为等边三角形,且F为CK的中点;∴BF⊥CK,且A C∩CK=C;∴BF⊥平面ACFD;(Ⅱ)∵BF⊥平面ACFD;∴∠BDF是直线BD和平面ACFD所成的角;∵F为CK中点,且DF∥AC;∴DF为△ACK的中位线,且AC=3;∴;又;∴在Rt△BFD中,,cos;即直线BD和平面ACFD所成角的余弦值为.19.【2016浙江(文)】如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|﹣1,(Ⅰ)求p的值;(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.【解析】解:(Ⅰ)由题意可得,抛物线上点A到焦点F的距离等于A到直线x=﹣1的距离,由抛物线定义得,,即p=2;(Ⅱ)由(Ⅰ)得,抛物线方程为y2=4x,F(1,0),可设(t2,2t),t≠0,t≠±1,∵AF不垂直y轴,∴设直线AF:x=sy+1(s≠0),联立,得y2﹣4sy﹣4=0.y1y2=﹣4,∴B(),又直线AB的斜率为,故直线FN的斜率为,从而得FN:,直线BN:y=﹣,则N(),设M(m,0),由A、M、N三点共线,得,于是m==,得m<0或m>2.经检验,m<0或m>2满足题意.∴点M的横坐标的取值范围为(﹣∞,0)∪(2,+∞).20.【2016浙江(文)】设函数f(x)=x3+,x∈[0,1],证明:(Ⅰ)f(x)≥1﹣x+x2(Ⅱ)<f(x)≤.【解析】解:(Ⅰ)证明:因为f(x)=x3+,x∈[0,1],且1﹣x+x2﹣x3==,所以≤,所以1﹣x+x2﹣x3≤,即f(x)≥1﹣x+x2;(Ⅱ)证明:因为0≤x≤1,所以x3≤x,所以f(x)=x3+≤x+=x+﹣+=+≤;由(Ⅰ)得,f(x)≥1﹣x+x2=+≥,且f()=+=>,所以f(x)>;综上,<f(x)≤.绝密★启封前2016年浙江省高考数学试卷(文科)一、选择题(本大题8小题,每题5分,共40分)1.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q=()A.{1} B.{3,5} C.{1,2,4,6} D.{1,2,3,4,5}2.已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则() A.m∥l B.m∥n C.n⊥l D.m⊥n3.函数y=sinx2的图象是()A. B.C. D.4.若平面区域,夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是()A. B. C. D.5.已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0C.(b﹣1)(b﹣a)<0 D.(b﹣1)(b﹣a)>06.已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件7.已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,x∈R.()A.若f(a)≤|b|,则a≤b B.若f(a)≤2b,则a≤bC.若f(a)≥|b|,则a≥b D.若f(a)≥2b,则a≥b8.如图,点列{A n}、{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+1,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N*,(P≠Q表示点P与Q不重合)若d n=|A n B n|,S n 为△A n B n B n+1的面积,则()A.{S n}是等差数列 B.{S n2}是等差数列 C.{d n}是等差数列 D.{d n2}是等差数列二、填空题(本大题7小题,9、10、11、12每题6分,13、14、15每题4分,共36分)9.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.10.已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是,半径是.11.已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A= ,b= .12.设函数f(x)=x3+3x2+1,已知a≠0,且f(x)﹣f(a)=(x﹣b)(x﹣a)2,x∈R,则实数a= ,b= .13.设双曲线x2﹣=1的左、右焦点分别为F1、F2,若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是.14.如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°,沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是.15.已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是.三、解答题(本大题5小题,共74分)16.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.17.(15分)设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(Ⅰ)求通项公式a n;(Ⅱ)求数列{|a n﹣n﹣2|}的前n项和.18.(15分)如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求直线BD与平面ACFD所成角的余弦值.19.(15分)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|﹣1,(Ⅰ)求p的值;(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.20.(15分)设函数f(x)=x3+,x∈[0,1],证明:(Ⅰ)f(x)≥1﹣x+x2(Ⅱ)<f(x)≤.2016年浙江省高考数学试卷(文科)一、选择题1.【解答】解:∁U P={2,4,6},(∁U P)∪Q={2,4,6}∪{1,2,4}={1,2,4,6}.故选C.2.【解答】解:∵互相垂直的平面α,β交于直线l,直线m,n满足m∥α,∴m∥β或m⊂β或m⊥β,l⊂β,∵n⊥β,∴n⊥l.故选:C.3.【解答】解:∵sin(﹣x)2=sinx2,∴函数y=sinx2是偶函数,即函数的图象关于y轴对称,排除A,C;由y=sinx2=0,则x2=kπ,k≥0,则x=±,k≥0,故函数有无穷多个零点,排除B,故选:D4.【解答】解:作出平面区域如图所示:∴当直线y=x+b分别经过A,B时,平行线间的距离相等.联立方程组,解得A(2,1),联立方程组,解得B(1,2).两条平行线分别为y=x﹣1,y=x+1,即x﹣y﹣1=0,x﹣y+1=0.∴平行线间的距离为d==,故选:B.5.【解答】解:若a>1,则由log a b>1得log a b>log a a,即b>a>1,此时b﹣a>0,b>1,即(b﹣1)(b﹣a)>0,若0<a<1,则由log a b>1得log a b>log a a,即b<a<1,此时b﹣a<0,b<1,即(b﹣1)(b﹣a)>0,综上(b﹣1)(b﹣a)>0,故选:D.6.【解答】解:f(x)的对称轴为x=﹣,f min(x)=﹣.(1)若b<0,则﹣>﹣,∴当f(x)=﹣时,f(f(x))取得最小值f(﹣)=﹣,即f(f(x))的最小值与f(x)的最小值相等.∴“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的充分条件.(2)若f(f(x))的最小值与f(x)的最小值相等,则f min(x)≤﹣,即﹣≤﹣,解得b≤0或b≥2.∴“b<0”不是“f(f(x))的最小值与f(x)的最小值相等”的必要条件.故选A.7.【解答】解:A.若f(a)≤|b|,则由条件f(x)≥|x|得f(a)≥|a|,即|a|≤|b|,则a≤b不一定成立,故A错误,B.若f(a)≤2b,则由条件知f(x)≥2x,即f(a)≥2a,则2a≤f(a)≤2b,则a≤b,故B正确,C.若f(a)≥|b|,则由条件f(x)≥|x|得f(a)≥|a|,则|a|≥|b|不一定成立,故C 错误,D.若f(a)≥2b,则由条件f(x)≥2x,得f(a)≥2a,则2a≥2b,不一定成立,即a≥b不一定成立,故D错误,故选:B8.【解答】解:设锐角的顶点为O,|OA1|=a,|OB1|=c,|A n A n+1|=|A n+1A n+2|=b,|B n B n+1|=|B n+1B n+2|=d,由于a,c不确定,则{d n}不一定是等差数列,{d n2}不一定是等差数列,设△A n B n B n+1的底边B n B n+1上的高为h n,由三角形的相似可得==,==,两式相加可得,==2,即有h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,即为S n+2﹣S n+1=S n+1﹣S n,则数列{S n}为等差数列.故选:A.二、填空题9.【解答】解:根据几何体的三视图,得;该几何体是下部为长方体,其长和宽都为4,高为2,表面积为2×4×4+2×42=64cm2,体积为2×42=32cm3;上部为正方体,其棱长为2,表面积是6×22=24 cm2,体积为23=8cm3;所以几何体的表面积为64+24﹣2×22=80cm2,体积为32+8=40cm3.故答案为:80;40.10.【解答】解:∵方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,∴a2=a+2≠0,解得a=﹣1或a=2.当a=﹣1时,方程化为x2+y2+4x+8y﹣5=0,配方得(x+2)2+(y+4)2=25,所得圆的圆心坐标为(﹣2,﹣4),半径为5;当a=2时,方程化为,此时,方程不表示圆,故答案为:(﹣2,﹣4),5.11.【解答】解:∵2cos2x+sin2x=1+cos2x+sin2x=1+(cos2x+sin2x)+1 =sin(2x+)+1,∴A=,b=1,故答案为:;1.12.【解答】解:∵f(x)=x3+3x2+1,∴f(x)﹣f(a)=x3+3x2+1﹣(a3+3a2+1)=x3+3x2﹣(a3+3a2)∵(x﹣b)(x﹣a)2=(x﹣b)(x2﹣2ax+a2)=x3﹣(2a+b)x2+(a2+2ab)x﹣a2b,且f(x)﹣f(a)=(x﹣b)(x﹣a)2,∴,解得或(舍去),故答案为:﹣2;1.13.【解答】解:如图,由双曲线x2﹣=1,得a2=1,b2=3,∴.不妨以P在双曲线右支为例,当PF2⊥x轴时,把x=2代入x2﹣=1,得y=±3,即|PF2|=3,此时|PF1|=|PF2|+2=5,则|PF1|+|PF2|=8;由PF1⊥PF2,得,又|PF1|﹣|PF2|=2,①两边平方得:,∴|PF1||PF2|=6,②联立①②解得:,此时|PF1|+|PF2|=.∴使△F1PF2为锐角三角形的|PF1|+|PF2|的取值范围是().故答案为:().14.【解答】解:如图所示,取AC的中点O,∵AB=BC=3,∴BO⊥AC,在Rt△ACD′中,=.作D′E⊥AC,垂足为E,D′E==.CO=,CE===,∴EO=CO﹣CE=.过点B作BF∥AC,作FE∥BO交BF于点F,则EF⊥AC.连接D′F.∠FBD′为直线AC与BD′所成的角.则四边形BOEF为矩形,∴BF=EO=.EF=BO==.则∠FED′为二面角D′﹣CA﹣B的平面角,设为θ.则D′F2=+﹣2×cosθ=﹣5cosθ≥,cosθ=1时取等号.∴D′B的最小值==2.∴直线AC与BD′所成角的余弦的最大值===.故答案为:.15.【解答】解:||+||=,其几何意义为在上的投影的绝对值与在上投影的绝对值的和,当与共线时,取得最大值.∴=.故答案为:.三、解答题16.【解答】(1)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cosB=,∴sinB==.cosA=cos2B=2cos2B﹣1=,sinA==.∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.17.【解答】解:(Ⅰ)∵S2=4,a n+1=2S n+1,n∈N*.∴a1+a2=4,a2=2S1+1=2a1+1,解得a1=1,a2=3,当n≥2时,a n+1=2S n+1,a n=2S n﹣1+1,两式相减得a n+1﹣a n=2(S n﹣S n﹣1)=2a n,即a n+1=3a n,当n=1时,a1=1,a2=3,满足a n+1=3a n,∴=3,则数列{a n}是公比q=3的等比数列,则通项公式a n=3n﹣1.(Ⅱ)a n﹣n﹣2=3n﹣1﹣n﹣2,设b n=|a n﹣n﹣2|=|3n﹣1﹣n﹣2|,则b1=|30﹣1﹣2|=2,b2=|3﹣2﹣2|=1,当n≥3时,3n﹣1﹣n﹣2>0,则b n=|a n﹣n﹣2|=3n﹣1﹣n﹣2,此时数列{|a n﹣n﹣2|}的前n项和T n=3+﹣= ,则T n==.18.【解答】解:(Ⅰ)证明:延长AD,BE,CF相交于一点K,如图所示:∵平面BCFE⊥平面ABC,且AC⊥BC;∴AC⊥平面BCK,BF⊂平面BCK;∴BF⊥AC;又EF∥BC,BE=EF=FC=1,BC=2;∴△BCK为等边三角形,且F为CK的中点;∴BF⊥CK,且AC∩CK=C;∴BF⊥平面ACFD;(Ⅱ)∵BF⊥平面ACFD;∴∠BDF是直线BD和平面ACFD所成的角;∵F为CK中点,且DF∥AC;∴DF为△ACK的中位线,且AC=3;∴;又;∴在Rt△BFD中,,cos;即直线BD和平面ACFD所成角的余弦值为.19.【解答】解:(Ⅰ)由题意可得,抛物线上点A到焦点F的距离等于A到直线x=﹣1的距离,由抛物线定义得,,即p=2;(Ⅱ)由(Ⅰ)得,抛物线方程为y2=4x,F(1,0),可设(t2,2t),t≠0,t≠±1,∵AF不垂直y轴,∴设直线AF:x=sy+1(s≠0),联立,得y2﹣4sy﹣4=0. y1y2=﹣4,∴B(),又直线AB的斜率为,故直线FN的斜率为,从而得FN:,直线BN:y=﹣,则N(),设M(m,0),由A、M、N三点共线,得,于是m==,得m<0或m>2.经检验,m<0或m>2满足题意.∴点M的横坐标的取值范围为(﹣∞,0)∪(2,+∞).20.【解答】解:(Ⅰ)证明:因为f(x)=x3+,x∈[0,1],且1﹣x+x2﹣x3==,所以≤,所以1﹣x+x2﹣x3≤,即f(x)≥1﹣x+x2;(Ⅱ)证明:因为0≤x≤1,所以x3≤x,所以f(x)=x3+≤x+=x+﹣+=+≤;由(Ⅰ)得,f(x)≥1﹣x+x2=+≥,且f()=+=>,所以f(x)>;综上,<f(x)≤.。
2016高考数学浙江卷答案
2016高考数学浙江卷答案【篇一:2016届浙江省高考数学试卷(理科) 解析版】ass=txt>一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.21.(5分)(2016?浙江)已知集合p={x∈r|1≤x≤3},q={x∈r|x≥4},则p∪(?rq)=()a.[2,3] b.(﹣2,3] c.[1,2) d.(﹣∞,﹣2]∪[1,+∞)a.m∥l b.m∥n c.n⊥l d.m⊥n3.(5分)(2016?浙江)在平面上,过点p作直线l的垂线所得的垂足称为点p在直线l上的投影,由区域中的点在直线x+y﹣2=0上的投影构成的线段记为ab,则|ab|=()a.2 b.4 c.3 d.6*24.(5分)(2016?浙江)命题“?x∈r,?n∈n,使得n≥x”的否定形式是()*2*2a.?x∈r,?n∈n,使得n<x b.?x∈r,?n∈n,使得n<x*2*2c.?x∈r,?n∈n,使得n<x d.?x∈r,?n∈n,使得n<x25.(5分)(2016?浙江)设函数f(x)=sinx+bsinx+c,则f (x)的最小正周期()a.与b有关,且与c有关 b.与b有关,但与c无关c.与b无关,且与c无关 d.与b无关,但与c有关6.(5分)(2016?浙江)如图,点列{an}、{bn}分别在某锐角的两边上,且**|anan+1|=|an+1an+2|,an≠an+1,n∈n,|bnbn+1|=|bn+1bn+2|,bn≠bn+1,n∈n,(p≠q表示点p与q不重合)若dn=|anbn|,sn为△anbnbn+1的面积,则()a.{sn}是等差数列c.{dn}是等差数列 2b.{sn}是等差数列 2d.{dn}是等差数列7.(5分)(2016?浙江)已知椭圆c1:+y=1(m>1)与双曲线c2:2﹣y=1(n>0)2的焦点重合,e1,e2分别为c1,c2的离心率,则()a.m>n且e1e2>1 b.m>n且e1e2<1 c.m<n且e1e2>18.(5分)(2016?浙江)已知实数a,b,c.()22222a.若|a+b+c|+|a+b+c|≤1,则a+b+c<10022222b.若|a+b+c|+|a+b﹣c|≤1,则a+b+c<10022222c.若|a+b+c|+|a+b﹣c|≤1,则a+b+c<100 d.m<n且e1e2<1d.若|a+b+c|+|a+b﹣c|≤1,则a+b+c<100二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.29.(4分)(2016?浙江)若抛物线y=4x上的点m到焦点的距离为10,则m到y轴的距离是______.11.(6分)(2016?浙江)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是______cm,体积是______cm.232222212.(6分)(2016?浙江)已知a>b>1,若logab+logba=,a=b,则a=______,b=______.13.(6分)(2016?浙江)设数列{an}的前n项和为sn,若s2=4,an+1=2sn+1,n∈n,则a1=______,s5=______.*ba15.(4分)(2016?浙江)已知向量,,||=1,||=2,若对任意单位向量,均有|?|+|?|≤,则?的最大值是______.三、解答题:本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤.16.(14分)(2016?浙江)在△abc中,内角a,b,c所对的边分别为a,b,c,已知b+c=2acosb.(Ⅰ)证明:a=2b(Ⅱ)若△abc的面积s=,求角a的大小.(Ⅰ)求证:bf⊥平面acfd;(Ⅱ)求二面角b﹣ad﹣f的余弦值.18.(15分)(2016?浙江)已知a≥3,函数f(x)=min{2|x﹣1|,x﹣2ax+4a﹣2},其中min(p,q)=22(Ⅰ)求使得等式f(x)=x﹣2ax+4a﹣2成立的x的取值范围(Ⅱ)(i)求f(x)的最小值m(a)(ii)求f(x)在[0,6]上的最大值m(a)19.(15分)(2016?浙江)如图,设椭圆c:+y=1(a>1) 2(Ⅰ)求直线y=kx+1被椭圆截得到的弦长(用a,k表示)(Ⅱ)若任意以点a(0,1)为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.20.(15分)(2016?浙江)设数列满足|an﹣(Ⅰ)求证:|an|≥2n﹣1n|≤1,n∈n.*(|a1|﹣2)(n∈n)***(Ⅱ)若|an|≤(),n∈n,证明:|an|≤2,n∈n.2016年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2016?浙江)已知集合p={x∈r|1≤x≤3},q={x∈r|x≥4},则p∪(?rq)=()a.[2,3] b.(﹣2,3] c.[1,2) d.(﹣∞,﹣2]∪[1,+∞)【分析】运用二次不等式的解法,求得集合q,求得q的补集,再由两集合的并集运算,即可得到所求.【解答】解:q={x∈r|x≥4}={x∈r|x≥2或x≤﹣2},即有?rq={x∈r|﹣2<x<2},则p∪(?rq)=(﹣2,3].故选:b.【点评】本题考查集合的运算,主要是并集和补集的运算,考查不等式的解法,属于基础题.a.m∥l b.m∥n c.n⊥l d.m⊥n∴n⊥l.故选:c.【点评】本题考查两直线关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.3.(5分)(2016?浙江)在平面上,过点p作直线l的垂线所得的垂足称为点p在直线l上22的投影,由区域中的点在直线x+y﹣2=0上的投影构成的线段记为ab,则|ab|=()a.2 b.4 c.3 d.6【分析】作出不等式组对应的平面区域,利用投影的定义,利用数形结合进行求解即可.【解答】解:作出不等式组对应的平面区域如图:(阴影部分),区域内的点在直线x+y﹣2=0上的投影构成线段r′q′,即sab,而r′q′=rq,由得,即q(﹣1,1),由得,即r(2,﹣2),则|ab|=|qr|=故选:c ==3,【点评】本题主要考查线性规划的应用,作出不等式组对应的平面区域,利用投影的定义以及数形结合是解决本题的关键.4.(5分)(2016?浙江)命题“?x∈r,?n∈n,使得n≥x”的否定形式是()*2*2a.?x∈r,?n∈n,使得n<x b.?x∈r,?n∈n,使得n<x*2*2c.?x∈r,?n∈n,使得n<x d.?x∈r,?n∈n,使得n<x 【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以,命题“?x∈r,?n∈n,使得n≥x”*2的否定形式是:?x∈r,?n∈n,使得n<x.故选:d.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.5.(5分)(2016?浙江)设函数f(x)=sinx+bsinx+c,则f(x)的最小正周期()a.与b有关,且与c有关 b.与b有关,但与c无关c.与b无关,且与c无关 d.与b无关,但与c有关【分析】根据三角函数的图象和性质即可判断.2【解答】解:∵设函数f(x)=sinx+bsinx+c,∴c是图象的纵坐标增加了c,横坐标不变,故周期与c无关,当b=0时,f(x)=sinx+bsinx+c=﹣cos2x++c的最小正周期为t=当b≠0时,f(x)=﹣cos2x+bsinx++c,故f(x)的最小正周期与b有关,【篇二:2016年浙江省高考数学试卷(理科)】lass=txt>一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2016?浙江)已知集合p={x∈r|1≤x≤3},q={x∈r|x≥4},则p∪(?rq)=()a.[2,3] b.(﹣2,3] c.[1,2) d.(﹣∞,﹣2]∪[1,+∞)则()a.m∥l b.m∥n c.n⊥l d.m⊥n3.(5分)(2016?浙江)在平面上,过点p作直线l的垂线所得的垂足称为点p在直线l上2的投影,由区域中的点在直线x+y﹣2=0上的投影构成的线段记为ab,则|ab|=()a.2 b.4 c.3 d.6*24.(5分)(2016?浙江)命题“?x∈r,?n∈n,使得n≥x”的否定形式是()*2*2a.?x∈r,?n∈n,使得n<x b.?x∈r,?n∈n,使得n<x*2*2c.?x∈r,?n∈n,使得n<x d.?x∈r,?n∈n,使得n<x25.(5分)(2016?浙江)设函数f(x)=sinx+bsinx+c,则f (x)的最小正周期()a.与b有关,且与c有关 b.与b有关,但与c无关c.与b无关,且与c无关 d.与b无关,但与c有关6.(5分)(2016?浙江)如图,点列{an}、{bn}分别在某锐角的两边上,且|anan+1|=|an+1an+2|,**an≠an+1,n∈n,|bnbn+1|=|bn+1bn+2|,bn≠bn+1,n∈n,(p≠q表示点p与q不重合)若dn=|anbn|,sn为△anbnbn+1的面积,则()a.{sn}是等差数列c.{dn}是等差数列 2b.{sn}是等差数列 2d.{dn}是等差数列7.(5分)(2016?浙江)已知椭圆c1:+y=1(m>1)与双曲线c2:2﹣y=1(n>0)2的焦点重合,e1,e2分别为c1,c2的离心率,则()a.m>n且e1e2>1 b.m>n且e1e2<1 c.m<n且e1e2>18.(5分)(2016?浙江)已知实数a,b,c.()22222a.若|a+b+c|+|a+b+c|≤1,则a+b+c<10022222b.若|a+b+c|+|a+b﹣c|≤1,则a+b+c<10022222c.若|a+b+c|+|a+b﹣c|≤1,则a+b+c<100d.m<n且e1e2<1d.若|a+b+c|+|a+b﹣c|≤1,则a+b+c<100二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.29.(4分)(2016?浙江)若抛物线y=4x上的点m到焦点的距离为10,则m到y轴的距离是.b=.11.(6分)(2016?浙江)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是23cm,体积是cm.2222212.(6分)(2016?浙江)已知a>b>1,若logab+logba=,a=b,则a=,b=.*13.(6分)(2016?浙江)设数列{an}的前n项和为sn,若s2=4,an+1=2sn+1,n∈n,则a1=,s5=.点p和线段ac上的点d,满足pd=da,pb=ba,则四面体pbcd的体积的最大值是.ba15.(4分)(2016?浙江)已知向量,,||=1,||=2,若对任意单位向量,均有|?|+|?|≤,则?的最大值是.三、解答题:本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤.16.(14分)(2016?浙江)在△abc中,内角a,b,c所对的边分别为a,b,c,已知b+c=2acosb.(Ⅰ)证明:a=2b(Ⅱ)若△abc的面积s=,求角a的大小.(Ⅰ)求证:ef⊥平面acfd;(Ⅱ)求二面角b﹣ad﹣f的余弦值.18.(15分)(2016?浙江)已知a≥3,函数f(x)=min{2|x﹣1|,x﹣2ax+4a﹣2},其中min(p,q)=22(Ⅰ)求使得等式f(x)=x﹣2ax+4a﹣2成立的x的取值范围(Ⅱ)(i)求f(x)的最小值m(a)(ii)求f(x)在[0,6]上的最大值m(a)19.(15分)(2016?浙江)如图,设椭圆c:+y=1(a>1) 2(Ⅰ)求直线y=kx+1被椭圆截得到的弦长(用a,k表示)(Ⅱ)若任意以点a(0,1)为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.20.(15分)(2016?浙江)设数列满足|an﹣(Ⅰ)求证:|an|≥2n﹣1n|≤1,n∈n.*(|a1|﹣2)(n∈n)***(Ⅱ)若|an|≤(),n∈n,证明:|an|≤2,n∈n.2016年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2016?浙江)已知集合p={x∈r|1≤x≤3},q={x∈r|x≥4},则p∪(?rq)=()a.[2,3] b.(﹣2,3] c.[1,2) d.(﹣∞,﹣2]∪[1,+∞)2【解答】解:q={x∈r|x≥4}={x∈r|x≥2或x≤﹣2},即有?rq={x∈r|﹣2<x<2},则p∪(?rq)=(﹣2,3].故选:b.a.m∥l b.m∥n c.n⊥l d.m⊥n∴n⊥l.故选:c.3.(5分)(2016?浙江)在平面上,过点p作直线l的垂线所得的垂足称为点p在直线l上2的投影,由区域中的点在直线x+y﹣2=0上的投影构成的线段记为ab,则|ab|=()a.2 b.4 c.3 d.6【解答】解:作出不等式组对应的平面区域如图:(阴影部分),区域内的点在直线x+y﹣2=0上的投影构成线段r′q′,即sab,而r′q′=rq,由得,即q(﹣1,1),由得,即r(2,﹣2),则|ab|=|qr|=故选:c ==3,4.(5分)(2016?浙江)命题“?x∈r,?n∈n,使得n≥x”的否定形式是()*2*2a.?x∈r,?n∈n,使得n<x b.?x∈r,?n∈n,使得n<x*2*2c.?x∈r,?n∈n,使得n<x d.?x∈r,?n∈n,使得n<x*2【解答】解:因为全称命题的否定是特称命题,所以,命题“?x∈r,?n∈n,使得n≥x”的*2否定形式是:?x∈r,?n∈n,使得n<x.故选:d.5.(5分)(2016?浙江)设函数f(x)=sinx+bsinx+c,则f(x)的最小正周期()a.与b有关,且与c有关 b.与b有关,但与c无关c.与b无关,且与c无关 d.与b无关,但与c有关2【解答】解:∵设函数f(x)=sinx+bsinx+c,∴c是图象的纵坐标增加了c,横坐标不变,故周期与c无关,当b=0时,f(x)=sinx+bsinx+c=﹣cos2x++c的最小正周期为t=当b≠0时,f(x)=﹣cos2x+bsinx++c,故f(x)的最小正周期与b有关,故选:b6.(5分)(2016?浙江)如图,点列{an}、{bn}分别在某锐角的两边上,且|anan+1|=|an+1an+2|,**an≠an+1,n∈n,|bnbn+1|=|bn+1bn+2|,bn≠bn+1,n∈n,(p≠q表示点p与q不重合)若dn=|anbn|,a.{sn}是等差数列c.{dn}是等差数列2b.{sn}是等差数列 2d.{dn}是等差数列【篇三:2016年高考真题------理科数学(浙江卷) word版含解析】s=txt>一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的.1. 已知集合p?x?r?x?3,q?x?rx?4, 则p?(erq)?a.[2,3] b.( -2,3 ]c.[1,2) d.(??,?2]?[1,??)【答案】b 【解析】根据补集的运算得2痧rq?xx?4?(?2,2),?p?(rq)?(?2,2)??1,3????2,3?.故选b. ???2???2. 已知互相垂直的平面?,?交于直线l.若直线m,n满足m∥?,n⊥?,则a.m∥lb.m∥nc.n⊥l d.m⊥n【答案】c3. 在平面上,过点p作直线l的垂线所得的垂足称为点p在直线l 上的投影.由区域 ?x?2?0? 中的点在直线x+y?2=0上的投影构成的线段记为ab,则│ab│= ?x?y?0?x?3y?4?0?a.b.4 c.d.6【答案】c【解析】如图?pqr为线性区域,区域内的点在直线x?y?2?0上的投影构成了线段r?q?,即ab,而r?q??pq,由??x?3y?4?0?x?2得q(?1,1),由?得r(2,?2),x?y?0x?y?0??ab?qr??c.4. 命题“?x?r,?n?n*,使得n?x2”的定义形式是a.?x?r,?n?n*,使得n?x2 b.?x?r,?n?n*,使得n?x2c.?x?r,?n?n*,使得n?x2 d.?x?r,?n?n*,使得n?x2【答案】d【解析】?的否定是?,?的否定是?,n?x的否定是n?x.故选d.5. 设函数f(x)?sin2x?bsinx?c,则f(x)的最小正周期a.与b有关,且与c有关 b.与b有关,但与c无关c.与b无关,且与c无关 d.与b无关,但与c有关【答案】b 226. 如图,点列{an},{bn}分别在某锐角的两边上,且anan?1?an?1an?2,an?an?2,n?n,(p?q表示点pq与不重合). bnbn?1?bn?1bn?2,bn?bn?2,n?n*,若dn?anbn,sn为△anbnbn?1的面积,则*2a.{sn}是等差数列b.{sn}是等差数列2c.{dn}是等差数列d.{dn}是等差数列【答案】a【解析】sn表示点an到对面直线的距离(设为hn)乘以bnbn?1长度一半,即sn?1hnbnbn?1,由题目中条件可知bnbn?1的长度为定值,那么我们需要知道hn的关系式,2过a1,an和两个垂足构成了等腰梯形,那么1作垂直得到初始距离h1,那么ahn?h1?anan?1?tan?,其中?为两条线的夹角,即为定值,那么sn?11(h1?a1an?tan?)bnbn?1,sn?1?(h1?a1an?1?tan?)bnbn?1,作差后:221sn?1?sn?(anan?1?tan?)bnbn?1,都为定值,所以sn?1?sn为定值.故选a. 2x22x227. 已知椭圆c1:2+y=1(m1)与双曲线c2:2–y=1(n0)的焦点重合,e1,e2分别为c1,c2mn的离心率,则a.mn且e1e21b.mn且e1e21c.mn且e1e21d.mn且e1e21【答案】a【解析】由题意知m?1?n?1,即m?n?2,2222m2?1n2?11122(e1e2)???(1?)(1?),代入m?n?2,得m?n,(e1e2)2?1.故选a. 2222mnmn28. 已知实数a,b,ca.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2100b.若|a2+b+c|+|a2+b–c|≤1,则a2+b2+c2100c.若|a+b+c2|+|a+b–c2|≤1,则a2+b2+c2100d.若|a2+b+c|+|a+b2–c|≤1,则a2+b2+c2100【答案】d二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9. 若抛物线y2=4x上的点m到焦点的距离为10,则m到y轴的距离是_______.【答案】9【解析】xm?1?10?xm?91【解析】2cos2x?sin2xx??4)?1,所以ab?1.2311. 某几何体的三视图如图所示(单位:cm),则该几何体的表面积是,体积是 cm.【答案】7232【解析】几何体为两个相同长方体组合,长方体的长宽高分别为4,2,2,所以体积为2?(2?2?4)?32,由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为2(2?2?2?2?4?4)?2(2?2)?7212. 已知ab1.若logab+logba= 5,ab=ba,则a= ,b= . 2【答案】4 2【解析】设logba?t,则t?1,因为t??21t5?t?2?a?b2, 2因此ab?ba?b2b?bb?2b?b2?b?2,a?4.13.设数列{an}的前n项和为sn.若s2=4,an+1=2sn+1,n∈n*,则a1,s5.【答案】1121.【答案】1 2【解析】?abc中,因为ab?bc?2,?abc?120?,所以?bad?bca?30.222由余弦定理可得ac?ab?bc?2ab?bccosb ??22?22?2?2?2cos120??12,所以ac?设ad?x,则0?t?dc?x.222在?abd中,由余弦定理可得bd?ad?ab?2ad?abcosa?x2?22?2x?2cos30??x2??4.故bd?.在?pbd中,pd?ad?x,pb?ba?2.pd2?pb2?bd2x2?22?(x2??4)??由余弦定理可得cos?bpd?,2pd?pb2?x?22所以?bpd?30. ?ceab过p作直线bd的垂线,垂足为o.设po?d11bd?d?pd?pbsin?bpd,221d?x?2sin30?,2则s?pbd?解得d?.111cd?bcsin?bcd?x)?2sin30??x). 222设po与平面abc所成角为?,则点p到平面abc的距离h?dsin?. 故四面体pbcd的体积而?bcd的面积s?11111 v?s?bcd?h?s?bcddsin??s?bcd?d??x)33332?.?0?x?1?t?2.设t?则|x?(2?x?|x?x?故x?。
2016年浙江省数学高考模拟精彩题选——阅读理解题Word版含答案
2016浙江精彩题选——阅读理解题1.(2016温州一模7).已知集合22{(,)|1}M x y x y ,若实数,满足:对任意的(,)x y M ,都有(,)x y M ,则称(,)是集合M 的“和谐实数对”。
则以下集合中,存在“和谐实数对”的是( C )A.}4|),{(B.}4|),{(22C.}44|),{(2 D.}4|),{(22分析:由题意,||1,||1,问题转化为选项中的图与||1,||1围成的正方形的图有无公共点问题.2.(2016嘉兴期末)设)4(,,,21n A A A n 为集合n S ,,2,1的n 个不同子集,为了表示这些子集,作n 行n 列的数阵,规定第i 行第j 列的数为:jjij A i Ai a ,1,0.则下列说法中,错误的是( C )A .数阵中第一列的数全是0当且仅当1A B .数阵中第n 列的数全是1当且仅当SA n C .数阵中第j 行的数字和表明集合j A 含有几个元素D .数阵中所有的2n 个数字之和不超过12n n 解析:数阵中第一列的数全是0,当且仅当111,,2,1A n A A ,∴A 正确;数阵中第n 列的数全是1当且仅当n n n A n A A ,,2,1,∴B 正确;当n A A A ,,,21中一个为S 本身,其余1n 个子集为S 互不相同的1n 元子集时,数阵中所有的2n 个数字之和最大,且为1)1(22n n n n ,∴D 正确;数阵中第j 行的数字和表明元素j 属于几个子集,∴C 错误.3.(2016丽水一模8).已知二次函数)2()(2a b bx ax x f ,定义}11)({)(1x t t f m a x x f ,}11)({)(2x t t f min x f ,其中}{b a max ,表示b a,中的较大者,}{b a min ,表示b a,中的较小者,则下列命题正确的是.(D )A .若)1()1(11f f ,则)1()1(f fB .若)1()1(22f f ,则)1()1(f f C .若)1()1(f f ,则)1()1(22f f D .若)1()1(12f f ,则)1()1(11f f nnn n nna a a a a a a a a ,,,,,,,,,212222111211题目的意思是在变区间上的最值情况,1,11t x x ,t 的范围是变的。
2016年浙江省数学高考模拟精彩题选——三角函数 Word版含答案
2016浙江精彩题选——三角函数1.(2016宁波十校16).(本题满分14分)在ABC △中,角,,A B C 的对边分别是,,a b c ,且向量(54,4)m a c b =-与向量(cos ,cos )n C B =共线.(Ⅰ)求cos B ;(Ⅱ)若5b c a c ==<,,且2AD DC =,求BD 的长度. 解:(Ⅰ)(45,5)m a c b =-与(cos ,cos )n C B =共线,54cos 5sin 4sin 4cos 4sin a c C A Cb B B--∴==4sin cos 4cos sin 5sin cos B C B C A B ∴+= 4sin()4sin 5sin cos B C A A B ∴+==在三角形ABC △中,sin 0A ≠4cos 5B ∴=……………………………………………………7分(Ⅱ)5b c a c ==<,且4cos 5B =2222cos a c ac B b ∴+-=即242525105a a ∴+-⋅⋅=解得35a a ==或(舍)……………………………………………9分2AD DC =1233BD BA BC ∴=+22222141214122c 2cos 99339933BD BA BC BA BC a a c B ∴=++⋅⋅∙=++⋅⋅⋅⋅将3a =和5c =代入得:21099BD ==3BD ∴……………………………………………14分 2.(2016嘉兴二模16)(本题满分14分)在△ABC 中,设边c b a ,,所对的角为C B A ,,,且C B A ,,都不是直角,22cos cos )8(b a B ac A bc -=+-.(Ⅰ)若5=+c b ,求c b ,的值;(Ⅱ)若5=a ,求△ABC 面积的最大值.解:(Ⅰ)2222222222)8(b a acb c a ac bc a c b bc -=-+⋅+-+⋅-222222222222282b a b c a bc a c b a c b -=-++-+⋅--+028222222=-+⋅--+bca cb ac b , ∵△A B C不是直角三角形,∴04=-bc 故4=bc ,又∵5=+c b ,解得⎩⎨⎧==41c b 或⎩⎨⎧==14c b(Ⅱ)∵5=a ,由余弦定理可得A A bc bc A bc c b cos 88cos 22cos 2522-=-≥-+=,所以83cos ≥A , 所以855sin ≤A ,所以455sin 21≤=∆A bc S ABC . 所以△ABC 面积的最大值是455,当83cos =A 时取到.3.(2016衢州二模 16)(本题满分14分)已知2()cos cos f x x x x =⋅+. (Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)在锐角△ABC 的三个角,,A B C 所对的边分别为,,a b c ,且()1f C =,求222a b c ab++的取值范围.解:(I)2()cos cos f x x x x =⋅+∴ ()2sin(2)6f x x π=+Q 222262k x k πππππ-≤+≤+ ∴36k x k ππππ-≤≤+∴函数()f x 的单调递增区间,,36Z k k k ππππ⎡⎤-+∈⎢⎥⎣⎦(II )Q ()1f C = ∴()2sin(2)16f C C π=+=∴2266C k πππ+=+或52266C k πππ+=+ k ∈Z∴3C π=由余弦定理得:222c a b ab =+-∴222222()12()1a b c a b b a ab ab a b +++=-=+- Q △ABC 为锐角三角形 ∴022032{A A πππ<<<-<∴62,A ππ<<由正弦定理得:2sin()sin 113,2sin sin 22A b B a A A π-⎛⎫===+∈ ⎪⎝⎭∴[)2223,4a b c ab++∈点评:注意题中的锐角这个条件4.(2016五校联考二16)(本小题满分15分)如图,四边形ABCD ,60DAB ∠=,,CD AD CB AB ⊥⊥。
2016年浙江高考数学试题(文)(解析版)
一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集U ={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则U P Q ()e =()A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5}【答案】C考点:补集的运算.2. 已知互相垂直的平面,交于直线l.若直线m ,n 满足m ∥α,n ⊥β,则()A.m ∥lB.m ∥nC.n ⊥lD.m ⊥n【答案】C 【解析】试题分析:由题意知,l l,,n n l .故选C .考点:线面位置关系.3. 函数y=sinx 2的图象是()【答案】D 【解析】试题分析:因为2sin y x 为偶函数,所以它的图象关于y 轴对称,排除A 、C 选项;当22x,即2x时,1maxy ,排除B 选项,故选 D.考点:三角函数图象.4. 若平面区域30,230,23xy x y xy夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是()A.355B.2C.322D.5【答案】B考点:线性规划.5. 已知a ,b>0,且a ≠1,b ≠1,若4log >1b ,则()A.(1)(1)0a bB. (1)()0a a bC. (1)()0b b a D. (1)()0b b a 【答案】D 【解析】试题分析:log log 1a a b a ,当1a 时,1b a ,10,0a b a ,(1)()0a b a ;当01a时,1ba,10,0a b a ,(1)()0a b a .故选D .考点:对数函数的性质.6. 已知函数f (x )=x 2+bx ,则“b<0”是“f (f (x ))的最小值与f (x )的最小值相等”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A考点:充分必要条件.7. 已知函数()f x 满足:()f x x 且()2,xf x xR .()A.若()f a b ,则a bB.若()2bf a ,则a b C.若()f a b,则abD.若()2bf a ,则ab【答案】B 【解析】试题分析:由已知可设2(0)()2(0)xxx f x x,则2(0)()2(0)aaa f a a,因为()f x 为偶函数,所以只考虑0a 的情况即可.若()2bf a ,则22ab,所以ab .故选B .考点:函数的奇偶性.8. 如图,点列,n n A B 分别在某锐角的两边上,且*1122,,n n n nnn A A A A A A n N ,*1122,,n nn n nn B B B B B B nN .(P ≠Q 表示点P 与Q 不重合)若nn n d A B ,n S 为1n n n A B B △的面积,则()A.n S 是等差数列B.2nS是等差数列C.n d 是等差数列D.2nd是等差数列【答案】A考点:新定义题、三角形面积公式.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)9. 某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm3.【答案】80;40.【解析】试题分析:由三视图知该组合体是一个长方体上面放置了一个小正方体,22262244242280S 表,3244240V.考点:三视图. 10. 已知aR ,方程222(2)4850a xa yx y a 表示圆,则圆心坐标是_____,半径是______.【答案】(2,4);5.考点:圆的标准方程. 11. 已知22cos sin 2sin()(0)x xA x b A ,则A______.【答案】2;1.【解析】试题分析:22cos sin21cos2sin22sin(2)14x xx x x,所以2, 1.A b 考点:三角恒等变换.12.设函数f (x)=x 3+3x 2+1.已知a ≠0,且f (x)–f(a)=(x –b)(x –a)2,x ∈R ,则实数a=_____,b=______.【答案】-2;1.【解析】试题分析:32323232()()313133f x f a xxa ax xaa ,23222()()(2)(2)x b x a xa b x aab x a b ,所以223223203a baaba b aa,解得21a b .考点:函数解析式.13.设双曲线x 2–23y=1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是_______.【答案】(27,8).考点:双曲线的几何性质.14.如图,已知平面四边形ABCD ,AB=BC=3,CD =1,AD =5,∠ADC =90°.沿直线AC 将△ACD 翻折成△ACD',直线AC 与BD'所成角的余弦的最大值是______.【答案】69所以cos cos',BD nuuu r r ''BD n BD nuuu r r uuu r r =6395cos,所以cos 1时,cos 取最大值69.考点:异面直线所成角.15.已知平面向量a ,b ,|a |=1,|b |=2,a ・b =1.若e 为平面单位向量,则|a ・e |+|b ・e |的最大值是______.【答案】7【解析】考点:平面向量的数量积和模.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.(本题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b+c=2acos B .(Ⅰ)证明:A=2B ;(Ⅱ)若cos B=23,求cos C 的值.【答案】(1)证明详见解析;(2)22cos 27C .【解析】试题分析:本题主要考查三角函数及其变换、正弦和余弦定理等基础知识,同时考查运算求解能力.试题解析:(1)由正弦定理得sin sin 2sin cos B C A B ,故2sin cos sin sin()sin sin cos cos sin A B B AB BA BA B ,于是,sin sin()B AB ,又,(0,)A B ,故0AB,所以()B A B 或BA B ,因此,A (舍去)或2A B ,所以,2AB .(2)由2cos 3B,得5sin 3B,21cos22cos 19B B ,故1cos 9A,45sin 9A ,22cos cos()cos cos sin sin 27C AB A B A B.考点:三角函数及其变换、正弦和余弦定理.17. (本题满分15分)设数列{n a }的前n 项和为n S .已知2S =4,1n a =2n S +1,*N n.(I )求通项公式n a ;(II )求数列{2na n }的前n 项和.【答案】(1)1*3,n na nN ;(2)2*2,13511,2,2nnn T nn n n N.考点:等差、等比数列的基础知识.18. (本题满分15分)如图,在三棱台ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(I)求证:BF⊥平面ACFD;(II)求直线BD与平面ACFD所成角的余弦值.【答案】(1)证明详见解析;(2)21 7.考点:空间点、线、面位置关系、线面角.y px p的焦点为F,抛物线上的点A到y轴的距离等于|AF|-1.19. (本题满分15分)如图,设抛物线22(0)(I)求p的值;(II)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x 轴交于点M.求M的横坐标的取值范围.【答案】(1)p=2;(2),02,.考点:抛物线的几何性质、直线与抛物线的位置关系. 20. (本题满分15分)设函数()f x =311x x ,[0,1]x .证明:(I )()f x 21x x ;(II )34()f x 32. 【答案】(Ⅰ)证明详见解析;(Ⅱ)证明详见解析. 【解析】试题分析:本题主要考查函数的单调性与最值、分段函数等基础知识,同时考查推理论证能力、分析问题和解决问题的能力.第一问,利用放缩法,得到41111x x x ,从而得到结论;第二问,由01x 得3x x ,进行放缩,得到32f x ,再结合第一问的结论,得到34f x ,从而得到结论. 试题解析:(Ⅰ)因为4423111,11x x x x x x x考点:函数的单调性与最值、分段函数.。
2016年浙江省数学高考模拟精彩题选—函数含答案
5 ,则下列不 正确的是 . 2
(
D
)
B. sin x 2 sin( 2 y )
C. sin( 2 x 2 ) sin y
D. sin x 2 cos( y 1)
解析: 因为 x 0 ,x 2 x x 2 y 所以 1 y 由 x2 y
5 . 2
② x 0 时化为
6.(2016 绍兴二模 8)设函数 f ( x ) x mx n , g ( x ) x (m 2) x n m 1 ,其中 x R ,若
2 2 2 2
对任意的 t R 。 f (t ), g (t ) 至少有一个为非负值,则实数 m 的最大值是 A.1 B. 3 C.2 D.
由 2 x2 y 得
1 1.44 x 2 2 y ,所以 sin x 2 sin( 2 y ) ,故 B 正确; 2 2 2 1 , y 时,显然不成立,所以 C 不正确; 2 2 2
对于 C,取 2 x 2 由 x2 y
4a f (m 3) f (m) f (m 2) f (m 1) | f (m 3) | | f (m) | | f (m 2) | | f (m 1) | 4
1 1 4
5.(2016 绍兴期末 15)已知函数 y | x 1| 的图像与函数 y kx (k 2) x 2 的图像恰有两个不同的 公共点,则实数 k 的取值范围是
|x| ,如果关于 x 的方程 f(x)=kx2 有四个不同的实数解,求实数 k x+2
的取值范围. |x| |x| 解 ∵f(x)= ,∴原方程即 =kx2. x+2 x+2 ①x=0 恒为方程(*)的一个解.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016浙江精彩题选——阅读理解题
1.(2016温州一模7).已知集合22
{(,)|1}M x y x y =+≤,若实数,λμ满足:对任意的(,)x y M ∈,都有(,)x y M λμ∈,则称(,)λμ是集合M 的“和谐实数对”。
则以下集合中,存在“和谐实数对”的是(C )A.}
4|),{(=+μλμλ B.}4|),{(22=+μλμλC.}44|),{(2=-μλμλ D.}
4|),{(22=-μλμλ分析:由题意,||1,||1λμ≤≤,问题转化为选项中的图与||1,||1λμ≤≤围成的正方形的图有无公共点问题.
2.(2016嘉兴期末)设)4(,,,21≥n A A A n 为集合{
}n S ,,2,1 =的n 个不同子集,为了表示这些子集,作n 行n 列的数阵,规定第i 行第j 列的数为:⎪⎩⎪⎨⎧∈∉=j j ij A i A i a ,1,0.则下列说法中,错误的是(C )
A .数阵中第一列的数全是0当且仅当φ=1A
B .数阵中第n 列的数全是1当且仅当S A n =
C .数阵中第j 行的数字和表明集合j A 含有几个元素
D .数阵中所有的2n 个数字之和不超过12+-n n 解析:数阵中第一列的数全是0,当且仅当111,,2,1A n A A ∉∉∉ ,∴A 正确;
数阵中第n 列的数全是1当且仅当n n n A n A A ∈∈∈,,2,1 ,∴B 正确;
当n A A A ,,,21 中一个为S 本身,其余1-n 个子集为S 互不相同的1-n 元子集时,数阵中所有的2n 个数字之和最大,且为1)1(22+-=-+n n n n ,∴D 正确;数阵中第j 行的数字和表明元素j 属于几个子集,∴C 错误.
3.(2016丽水一模8).已知二次函数)2()(2
a b bx ax x f ≤+=,定义}11)({)(1≤≤≤-=x t t f max x f ,}11)({)(2≤≤≤-=x t t f min x f ,其中}{b a max ,表示b a ,中的较大者,}{b a min ,表示b a ,中的较小者,则下列命题正确的是.
(D )A .若)1()1(11f f =-,则)
1()1(f f >-B .若)1()1(22f f =-,则)1()1(f f >-C .若)1()1(f f =-,则)1()1(22f f >-D .若)1()1(12-=f f ,则)
1()1(11f f <-nn n n n n a a a a a a a a a ,,,,,,,,,212222111211
题目的意思是在变区间上的最值情况,1,11t x x -≤≤-≤≤,t 的范围是变的。
4.(2016十二校联考8).在n 元数集12{,,...,}n S a a a =中,设12()n a a a S n
χ+++= ,若S 的非空子集A 满足()()A S χχ=,则称A 是集合S 的一个“平均子集”,并记数集S 的k 元“平均子集”的个数为()S f k .已知集合{1,2,3,4,5,6,7,8,9}S =,{}4,3,2,1,0,1,2,3,4T =----,则下列说法错误..
的是(C )A .(4)(5)
S S f f =B .(4)(5)
S T f f =C .(1)(3)(5)S S T f f f +=D .(2)(3)(4)
S S T f f f +=分析:因1945++= ,(4)s f 中四个数相加为20,剩下五个相加就是25,所以(4)(5)S S f f =;(5)T f 与(5)
S f 是一回事;(4)s f 有12组:1928,1937,1946,2837,2846,3746,2945,2936,3926,4925,8345,8516。