核磁共振实验中三种基本脉冲序列的特点和应用

合集下载

磁共振序列名称

磁共振序列名称

磁共振序列名称
磁共振成像是一种非侵入性的影像技术,可以提供高分辨率和高对比度的图像。

在进行磁共振成像时,需要通过不同的磁共振序列来获取不同类型的图像。

磁共振序列是指在磁共振成像中使用的一种特定的脉冲序列,包括激发脉冲、相位编码、读出梯度以及回波信号等。

磁共振序列的选择可以根据病人的病情、所需的解剖学信息和研究目的等因素来确定。

在磁共振成像中,常见的磁共振序列包括:
1. T1加权序列:T1加权序列是一种以长TR(重复时间)和短TE(回波时间)为特征的序列。

在这种序列中,脂肪和水的信号强度相对较低,而肌肉和脑脊液的信号强度相对较高。

因此,T1加权序
列在检测解剖学结构和病变方面具有重要作用。

2. T2加权序列:T2加权序列是一种以长TR和长TE为特征的序列。

在这种序列中,水的信号强度相对较高,而脂肪的信号强度相对较低。

T2加权序列可以检测到水肿、炎症和肿瘤等病变。

3. 弥散加权序列:弥散加权序列是一种以梯度脉冲和长TE为特征的序列,可以检测水分子的弥散。

在这种序列中,弥散的水分子信号强度较高,而受限制的水分子信号强度较低。

弥散加权序列可以检测脑梗死、白质疾病和神经纤维损伤等。

4. 脂肪饱和序列:脂肪饱和序列可以抑制脂肪信号,使得其他
组织的信号更加明显。

这种序列对于检测肝脏、胸部和盆腔等部位的病变具有重要作用。

总之,选择合适的磁共振序列对于正确诊断疾病和评估治疗效果非常重要。

同时,随着磁共振成像技术的不断发展,还会出现更多的磁共振序列,帮助医生更好地了解病情和进行治疗。

[医学]磁共振常用脉冲序列及其临床应用-翁强

[医学]磁共振常用脉冲序列及其临床应用-翁强

FSE T1WI
优点
采集时间缩短,甚至可以进行屏气扫描
缺点
受T2弛豫污染,T1对比不如SE T1WI 模糊效应 与GRE T1WI对比速度还不够快
主要用途
T1对比要求较低,以显示结构为主的部位 患者耐受差,要求加快扫描速度时 垂体动态增强扫描 体部屏气扫描
短回波链FSE T2WI
90° 180°
90° 180°
90° 180°
90° 180°
90° 180°
FSE ______________________________________________
90° 180° 180° 180°
90°
180° 180° 180°
90° 180° 180° 180°
K 空 间
SE
优点
与SE序列相比,成像速度加快 由于回波链较短,T2对比接近SE T2WI 对磁场不均匀性不敏感,没有明显的磁敏感性伪影
缺点
扫描速度还不够快,用于体部成像时易产生运动伪影
主要用途
颅脑 腹部(配合呼吸触发和脂肪抑制技术) 骨关节
中等回波链FSE T2WI
优点
扫描速度更快
优点
结构简单,信号变化容易解释 图像的组织对比好,信噪比高 对磁场不均匀敏感性低 最常用的T1WI序列之一,较少应用于T2WI
缺点
采集时间较长 体部易产生伪影 难进行动态增强扫描 激励次数(NEX)常需2次以上,进一步增加采集时间
临床应用
常用于颅脑、颈部、骨关节、软组织、 脊柱脊髓等部位的T1WI序列
Mz(纵向磁化矢量) 100%
50%
TR(ms)
TE决定图像的T2成分

磁共振的常用序列特点及临床应用

磁共振的常用序列特点及临床应用

磁共振的常用序列特点及临床应用
磁共振的常用序列特点及临床应用主要包括:
1. SE(自旋回波)序列:临床使用最广泛的序列,安全、简单、无创,敏感性高,对钙化灶及脂肪显示好。

2. FSE(快速自旋回波)序列:T2加权像特别清晰,可作脂肪一水图
像反转,对颅骨、肌肉及关节显露较好。

该序列对含水量高、脂肪少
及钙质沉积少的病变显示效果优良。

3. STIR(短回声反转恢复序列):对于脂肪抑制效果良好的SE序列
来说,图像更为清晰。

4. 快速成像序列:如3D-TOF和VIBE(体积波影成像)等,对颅脑、
脊柱、脊髓、关节、肌肉及血管等的成像效果较好。

磁共振的临床应用非常广泛,包括诊断各种炎症性疾病、退行性疾病、外伤和出血等,还可以评估肿瘤的良恶性,以及进行肿瘤的介入治疗等。

此外,磁共振血管造影技术还可以用于脑血管造影。

以上信息仅供参考,如果需要了解更多信息,建议咨询专业医师。

磁共振脉冲序列原理与临床应用

磁共振脉冲序列原理与临床应用

自旋回波扫描时间
Scan Time=TR*Phase*NEX
如果我们要采集一个256X256,NEX=2的图像 •T1图:0.4*256*2 = 3分24秒 •T2或PD图:4*256*2 = 30分钟!!!
提高扫描速度
SE
FSE
快速自旋回波 FSE
快速自旋回波(FSE)
T2 衰减曲线 T2* 衰减曲线
所有部位的T2,T1和PD采集都适用。
FSE-XL的图像特点及临床应用
所有部位的T2,T1和PD采集都适用。
FSE-XL的图像特点及临床应用
所有部位的T2,T1和PD采集都适用。
SE扫描层数
1层 2层 3层
…………
N层
FSE扫描层数
1层 2层
…………
N层
FSE在扫描少层数解剖位置的局限
1层 N层
仍然有空余 常规的处理办法:减小TR。但是在采 集T2的图像时,可能会减低其对比。
快速翻转自旋回波序列 Fast Recovery FSE
(FRFSE)
FRFSE-XL
保持T2对比,加快扫描速度
FSE-XL
减小图像模糊
提高扫描速度
SE
FSE
快速恢复快速自旋回波序列
传统FSE序列
1800 1800 1800
• 0.5NEX——相位编码数为正常的一半,利用K 空间的共轭对称性推算出另一半,SNR会降低。
SSFSE的图像特点及临床应用
• 成像速度快,可用于屏气扫描 和不能配合的患者及儿童,还 可用于定位像。
SPECTROSCOPY
Spin Echo EPI DW EPI
Gradient Echo EPI FLAIR EPI

磁共振简易原理、脉冲序列及临床应用

磁共振简易原理、脉冲序列及临床应用
2019/6/10
IR序列应用: ①主要用于产生T1WI和PDWI; ②形成重T1WI,成像中完全除去T2作用; ③除重T1WI外,主要用于脂肪抑制和水抑制。
201I9R/6-/1T01WI, 冠状面
SE-T1WI,横断
IR-T1WI,横断面
1.短TI反转恢复序列
脂肪组织T1非常短,IR序列采用短的TI值 (≤300ms)抑制脂肪信号,该序列称短TI反转恢 复序列(short TI inversion recovery,STIR);
B
长TR 时间ms
PDWI 组织信号高低取决 于质子含量高低; 脂肪及含水的组织 均呈较高信号;
2019/6/10
SE序列 临床应用
腕关节高分辨
2019/6/10
SE-T1WI
左枕叶脑脓肿
2019/6/10
SE-T1WI
SE-T1WI增强扫描
(二)快速自旋回波序列
快速自旋回波(fast spin-echo,FSE)序列:在一个TR 周期内先发射一个90°RF脉冲,然后相继发射多个 180°RF脉冲,形成多个自旋回波;
LAD RCA
RCA LAD
2019/6/10
Courtesy oRf iNgohrtthcworeostnearnryUanritveerysity Ho
在读出梯度方向施加一对强度相同、方向相反的梯度磁场,使 离散的相位重聚而产生回波,该回波被称梯度回波。
2019/6/10
常规GRE序列的结构
• (1)射频脉冲激发角度小于90 ° • (2)回波的产生依靠读出梯度场(即频率编
码梯度场)的切换
2019/6/10
GRE序列的基本特点
(1)采用小角度激发,加快成像速度; (2)采用梯度场切换采集回波信号,进一步加快采集速度; (3)反映的是T2*弛豫信息而非T2弛豫信息; (4)GRE序列的固有信噪比较低; (5)GRE序列对磁场的不均匀性敏感; (6)GRE序列中血流常呈高信号。

拉姆齐脉冲序列

拉姆齐脉冲序列

拉姆齐脉冲序列拉姆齐脉冲序列(Ramsey Pulse Sequence)是一种在核磁共振(NMR)和电子顺磁共振(EPR)等实验中使用的脉冲序列。

它主要用于激发和操纵原子核或电子的自旋状态,以特定的物理信息。

拉姆齐脉冲序列的特点是,通过一系列精心设计的脉冲,可以实现对自旋系统的精确控制。

这种序列通常包括一个或多个180度冲,用于翻转自旋方向,以及一些90度脉冲,用于混合不同的自旋状态。

拉姆齐脉冲序列的重要性和应用范围,使其成为核磁共振和电子顺磁共振领域的一个重要研究课题。

在实验中,通过优化拉姆齐脉冲序列的参数,可以获得高质量的实验数据,从而提高物理研究的准确性和可靠性。

拉姆齐脉冲序列的名称来源于英国物理学家弗雷德里克·拉姆齐(Frederick S. Ramsey),他在1948年提出了一种用于核磁共振实验的脉冲序列,用以研究核自旋系统的动力学特性。

这种脉冲序列能够有效地将核自旋系统从初始状态转移到一个特定的目标状态,并且能够在不需要知道系统详细动力学的情况下,通过观察系统随时间的演化,推断出系统的性质。

拉姆齐脉冲序列的基本思想是通过一系列脉冲来操纵核自旋,从而在不同的时间点上观察到核自旋的演化。

这种序列通常包括一个初始的90度脉冲,用以初始化核自旋系统,随后是一系列中间的90度脉冲和180度脉冲,以及最终的测量脉冲。

通过这种方式,拉姆齐脉冲序列能够创建一个被称为“自由进动”的状态,在这种状态下,核自旋不再受到外部场的控制,而是自由地进动。

在实际应用中,拉姆齐脉冲序列被用于各种核磁共振实验,包括核磁共振成像(MRI)、核磁共振波谱(NMR Spectroscopy)和电子顺磁共振(EPR)等。

它可以用于研究核自旋的耦合常数、旋进频率、relaxation 时间等物理参数。

此外,拉姆齐脉冲序列还被扩展应用于量子计算和量子信息领域,用于实现量子逻辑操作和量子算法。

总之,拉姆齐脉冲序列是一种在核磁共振和电子顺磁共振领域非常重要的脉冲序列,它通过精确的脉冲控制,使得研究者能够操纵和观测核自旋系统的演化,从而获得有关系统性质的重要信息。

MR常用脉冲序列及其临床应用

MR常用脉冲序列及其临床应用
医大附一 翁强
脉冲序列的基本概念
磁共振信号强度的影响因素


织 的 质 子 密
T2 T1


化 学 位 移
液 体 流 动
分 子 扩等 散 运


可调整的
成像参数
射频脉冲
梯度场
信号采集时刻
我们把射频脉冲、梯度场和信号采集时刻等相关各参数
的设置及其在时序上的排列称为MRI的脉冲序列(
pulse sequence)。
常用的脉冲序列
(1)自由感应衰减类序列 (2)自旋回波类序列 (3)反转恢复类序列 (4)梯度回波类序列 (5)平面回波序列
一、自由感应衰减(FID)类序列
采集到的MRI信号为自由感应衰减(FID) 信号的脉冲序列统称为FID类序列。
MRI发展的早期,FID序列曾经在低场强的 MRI仪上有较多的应用,目前这类序列已经很少 使用。
90° 180°
90° 180°
90° 180°
90° 180°
90° 180°
FSE ______________________________________________
90° 180° 180° 180°
90°
180° 180° 180°
90° 180° 180° 180°
K 空 间
SE
脉冲序列基本构成
SE脉冲序列的基本构建 第一行是射频脉冲,SE序列的射频脉冲由多次重复的90脉冲和后随 的180脉冲构成。第二行是层面选择梯度场,在90脉冲和180脉冲 时施加。第三行是相位编码梯度场,在90脉冲后180脉冲前施加。 第四行是频率编码梯度场,必须在回波产生的过程中施加。第五行是 MR信号

脉冲序列的特点和应用

脉冲序列的特点和应用
信号测量脉冲 作用:对纵向磁化强度进行测量 射频激励脉冲 作用:建立横向磁化强度
饱和恢复序列SR
射频脉冲序列
反转恢复序列IR
自旋回波序列SE
饱和恢复序列(SR)
Saturation-Recovery
特点:射频激励脉冲 信号测量脉冲
90°脉冲 90°脉冲
饱和恢复法测纵向弛豫时间T1
Mz(t)=Mo [1- e-TR/T1]
回波信号的产生
t 0时 t 时
t 2 时
M
XY
M
0
180°脉冲使自旋绕x轴旋转180°
M
XY
M 0e
2 / T 2
自旋回波法测横向弛豫时间T2
M
XY
( M 0e
2 / T2
)e
( t 2 ) / T2

缺点: 花费时间长,每测一个回波要等Mz恢复到Mo, 每个周期要花5个T1 分子自扩散引起信号损失,使回波峰值达不到 应有高度,使得T2 偏小
抗射频干扰能力:
SE序列中,检测的是180°脉冲后的自旋回波信号,可以
避免被90°射频所干扰,抗干扰能力比较强
应用方面:
IR和SR序列主要利用样品的T1弛豫时间影响信号性质, IR序列该特点更为显著;SE序列主要特点体现在获得反 映样品的T2特性的信号方面,是NMI中最广泛应用的基
本脉冲序列
可以检测自旋回波的IR序列
核磁共振实验中三种基本 脉冲序列的特点和应用
Nuclear Magnetic Resonance Magnetic Resonance Imaging
073振原理
在恒定磁场Bo中 θ=γB1τ
γ :旋磁比 与核的种类有关

磁共振基本序列及不同厂家磁共振常用序列

磁共振基本序列及不同厂家磁共振常用序列
Siemens磁共振序列
成像稳定,对软组织分辨率高,在常规序列和特殊序列方面表现突 出。
Philips磁共振序列
功能成像技术领先,尤其在波谱成像和扩散加权成像方面具有优势。
04
序列发展与新技术
序列发展历程
早期序列
早期的磁共振成像使用自旋回波 (SE)序列,其特点是成像时间
长,图像质量较差。
快速成像序列
详细描述
磁共振成像技术能够提供高分辨率的关节图像,对于关节炎症、关节损伤、关节肿瘤等 病变的诊断具有重要意义。在实际应用中,医生可以根据患者病情选择合适的磁共振序
列,如T1加权像、T2加权像、脂肪抑制序列等,以获取更准确的诊断信息。
感谢您的观看
THANKS
详细描述
磁共振成像技术能够提供高分辨率的脊柱图像,对于脊柱骨折、椎间盘突出、脊柱肿瘤等病变的诊断具有重要意 义。在实际应用中,医生可以根据患者病情选择合适的磁共振序列,如T1加权像、T2加权像、STIR序列等,以 获取更准确的诊断信息。
病例三:关节病变诊断
总结词
磁共振成像在关节病变诊断中具有重要价值,能够清晰显示关节结构和病变,为医生提 供准确的诊断依据。
磁共振基本序列及不同厂 家磁共振常用序列
目录
• 磁共振基本序列 • 不同厂家磁共振常用序列 • 序列比较与选择 • 序列发展与新技术 • 实际应用案例分析 Nhomakorabea01
磁共振基本序列
概念与原理
概念
磁共振基本序列是磁共振成像技 术中的基础成像方式,用于获取 人体内部结构和组织信息。
原理
基于核自旋磁矩的原理,利用射 频脉冲激发人体内氢原子核,通 过测量其共振频率和弛豫时间来 反映组织特性。
详细描述

MR常用脉冲序列及其临床应用

MR常用脉冲序列及其临床应用

FIR T1WI (T1 FLAIR)
液体抑制反转恢复
用于脂肪抑制
脂肪组织T1值为200-250ms,宏观纵向磁化矢 量从反向最大到0需要时间为其T1的70%
STIR序列的TI=脂肪T1 X 70%=140-175ms TR>2000ms
临床应用
偏中心部位 形态不规则部位
COR T2 FS
50%
长TR(>2000ms)
长TE(>50ms)Mxy(横向磁化矢量)
100%
50%
TR(ms) TE(ms)
选择合适长的TE获得最好的T2对比
Mxy
100%
合适长的TE
一般TE选择两种组织T2值的平均 值附近可获得最好的T2对比
T2对比
TE(ms)
100%
Mz(纵向磁化矢量)
50%
短TR(200-600ms)
三维容积内插快速扰相GRE T1WI序列
西门子:容积内插体部检查(VIBE) GE:肝脏容积加速采集(LAVA) 飞利浦:T1高分辨力各向同性容积激发(THRIVE)
优点:
① 在层面较薄时可以保持较高的信噪比 ② 没有层间距,有利于小病灶的显示 ③ 可同时兼顾脏器实质成像和三维血管成像的需要
缺点:
长回波链FSE T2WI
优点
扫描速度快,可屏气扫描
缺点
ETL较长,图像模糊更明显 屏气不好者仍有伪影
主要用途
体部屏气T2WI 3D水成像
FSE的衍生序列
快速恢复FSE(FRFSE) 单次激发FSE序列(SS- FSE ) 半傅里叶采集单次激发FSE序列( HASTE )
FSE T1WI
优点
采集时间缩短,甚至可以进行屏气扫描

磁共振检查技术-脉冲序列

磁共振检查技术-脉冲序列
SE的扫描时间=TR×相位编码次数×NEX
(二)FSE脉冲序列
在一次90°RF脉冲后施加多次180°重聚相位脉冲,取得 多次回波。 90°RF激励脉冲-180°重聚相位脉冲-回波-180°重 聚相位脉冲-回波-180°重聚相位脉冲……
T2 衰减曲线
T2* 衰减曲线(FID)
1800 900 1800 1800 1800 1800
SE-PDWI:TR=2000ms TE=30ms
SE-PDWI:TR=2000ms TE=25ms
SE序列不同加权像与TR、TE的关系
TR(ms) T1加权像 T2加权像 PD加权像 250-700(短) >700(长) >700(长) TE(ms) 10-25(短) >60(长) 10-25(短)
磁共振检查技术-脉冲序列
一、常用脉冲序列及其应用(第一节) 二、成像参数的选择(第二节)
重点讲述
三、流动现象的补偿技术(第二节) 四、伪影的补偿技术(第二节) 五、MRI对比剂的应用(第二节) 六、人体各解剖部位MRI检查技术示例 七、MRA的临床应用 八、心脏的MR检查 九、MR水成像技术及其临床应用 十、MRS临床应用实例 十一、功能MRI(fMRI)
Image A: TE = 423 ms
Image B: TE = 740 ms
Image C: TE= 1199 ms
TE控制着横向磁化恢复的程度,因而决定着图像的T2加权程度
二、IR脉冲序列
IR脉冲序列,180°反转脉冲-90°RF激励脉冲-180°
重聚相位脉冲-回波。取得良好的T1对比,主要用于获
SE-T2WI:TR=2000ms
SE-PDWI:TR=2000ms
TE=20ms

MRI常用脉冲系列及其运用

MRI常用脉冲系列及其运用

常用脉冲系列及其运用本节学习中应重点掌握SH,IR,常规GRE,和绕相GRE系列熟悉平行稳态自由进动系列和回波平面成像(EPI)技术,了解其他系列。

所有MR信号都需要通过一定的脉冲系列才能获取。

因此,脉冲系列是MRI技术的重要组成部分,它控制着系统施加RF脉冲、梯度长和数据采集的方式,并由此决定图像信号的加权、图像质量以及显示病变的敏感性。

目前已研发出很多不同类型的脉冲系列,目的是获得不同信号对比的加权图像,但其中仅有三种类型的脉冲系列是最基本的:自旋回波(SE)、反转恢复(IR)和梯度回波(GRE)。

所有其他系列的脉冲系列,实际上都是这三种类型的异性。

一、SE脉冲系列(一)常规SE脉冲系列1、常规SE脉冲系列过程:90°RF激励脉冲-180°重聚相位脉冲-获取回波;90°RF激励脉冲……从90°脉冲至下一次90°脉冲的时间间隔为TR,从90°脉冲至获取回波时间的间隔为TE。

TR和TE是脉冲系列中最重要两个扫描定时参数。

2、在SE脉冲系列中,90°脉冲后仅使用一次180°的重聚相位脉冲,则仅取得一次回波(单回波),在实际工作中常用于获取T1WI;如90°脉冲后使用两次180°重聚相位脉冲,则能取得双回波,其中使用长TR 、短TE取得的第一次回波产生PDWI,使用长TR、长TE取得的第二次回波用于产生T2WI。

3、常规SE脉冲序列是最基本的成像序列,适用于大多数MRI检查。

T1WI具有较高的SNR,适于显示解剖结构,也是增强检查的常规序列,因为磁顺性对比剂具有缩短质子T1弛豫时间的效应。

常规SE脉冲的主要优点是SNR高,图像质量好,用途广,可获得对显示病变敏感的真正T2WI。

主要缺点是扫描时间相对较长。

(二)FSE脉冲系列1、常规SE脉冲系列在90°激励脉冲后仅施加一次180°重聚相位脉冲,取得一次回波并进行一次相位编码。

磁共振常用序列及其特点

磁共振常用序列及其特点

磁共振常用序列及其特点MRI的基本脉冲序列主要有自旋回波序列和梯度回波序列两大类。

本期简要介绍临床常用序列及其特点。

名称GE飞利浦西门子自旋回波SE SE SESE序列具有信噪比高、组织间对比度好、对磁场的均匀性不敏感等特点。

以前常用于颅脑,四肢关节的扫描,但由于SE序列在一次90度脉冲激发后,只采集一个回波信号,其扫描时间太长,现几乎不用SE序列扫描了,只有在低场强中很少的T1WI还在用SE序列。

缺点:扫描时间太长。

快速自旋回波FSE TSE TSE为了提高扫描速度,在SE序列基础上引入了回波链,衍生了FSE序列。

缺点:脂肪信号较SE序列高;SAR升高;图像较SE序列组织对比下降,易产生模糊效应。

加强快速自旋回波FSE-XL//为了缩短回波间隙和增加组织间对比,在FSE基础上开发出了FSE-XL序列。

主要用于T2WI成像。

快速翻转(恢复)快FR-FSE TSE-DRIVE TSE-Restore速自旋回波FSE序列的扫描速度还不够快,,且TR时间还存在冗余,则人为的使用了一个180度复相脉冲,加快了组织的纵向驰豫,使得TR极大的缩短,从而加快扫描速度。

缺点:不能用于T1WI成像。

单次激发快速自旋回SS-FSE SSH-TSE SSTSE/HATSE波一次90度激发脉冲后,利用连续的180度脉冲填充完整个K 空间数据,该序列一幅图像的采集速度可到达亚秒级。

主要用于胸腹部的屏气序列;水成像,如MRCP、MRU等;配合欠佳患者的颅脑扫描等。

缺点:原则上只能进行T2WI成像(T2权重很重);脂肪信号较高;SAR高;图像组织对比欠佳,易产生模糊伪影。

半傅里叶单次激发快SS-FSE half-SS-TSE SS-TSE速自旋回波原理同单次激发快速自旋回波序列,与其相比K空间只需填充一半多点数据。

扫描速度更快。

主要用于一些超快速扫描,如胸腹部的屏气序列;水成像(如MRCP、MRU等);配合欠佳患者的颅脑扫描等。

核磁共振实验中三种基本脉冲序列的特点和应用07300300061武帅

核磁共振实验中三种基本脉冲序列的特点和应用07300300061武帅

核磁共振实验中三种基本脉冲序列的特点和应用0730******* 武帅材料物理摘要核磁共振实验中,不同射频脉冲会对样品产生不同的激励,这将导致得到的核磁共振信号的差异。

因此,射频脉冲序列的恰当选择对实验的结果有着很重要的影响。

在本实验中,我们主要使用了三种基本的核磁共振脉冲序列来激励大豆油样品,对其纵向和横向弛豫时间进行测量。

本文主要就这三种基本脉冲序列的特点、应用以及演变进行讨论和总结,以达到正确选择脉冲序列来合理测量样品性质的目的。

关键词核磁共振射频脉冲引言核磁共振原理:对置于外磁场中的自旋核系统,沿着垂直于外场的方向施加一个频率与拉莫尔频率相同的射频电磁场B1,在该作用下,磁化矢量以B1为轴做章动,即圆周运动。

施加的射频脉冲使得磁化矢量Mo偏离Z方向一个角度θ,θ=βB1τ,θ=90°的是90°射频脉冲,同样若θ=180°则为180°射频脉冲。

图1 核磁共振原理图1施加的射频脉冲使得宏观磁化矢量既以外磁场为轴进动,同时也要在该射频场的作用下章动,这使得宏观磁化矢量M的运动为一条球面螺旋线。

这种使得宏观磁化矢量发生偏转的现象即为核磁共振现象。

实验中我们使用的是NMI20Analyst 台式核磁共振成像仪,采用脉冲傅里叶变换法(FT-NMR),这种方法中的射频脉冲有一定的时间宽度,射频有一定带宽,相当于多个单频连续波核磁共振波谱仪在同时进行激励,因此在较大的范围内就可以观察到核磁共振现象(NMR)。

弛豫过程:系统从激励状态恢复到原始状态的过程就叫弛豫过程。

纵向弛豫时间T1,指的是自旋核释放激励过程中吸收的射频能量返回到基态的过程所用的时间,其快慢主要取决于自旋的原子核与周围分子之间的相互作用情况。

横向弛豫时间T2,指的是激励过程使质子进动相位的一致性逐渐散相(即失去相位一致性)的过程,其散相的有效程度与质子所处的周围分子结构的均匀性有关。

结构越均匀,散相效果越差。

常用脉冲序列及其应用

常用脉冲序列及其应用

• 3.优缺点 优点是组织的T1 对比效果较好,且 信噪比较高;缺点是扫描时间较长。 • 4.应用 由于IR序列对分辨组织的T1值极为敏 感,所以IR序列主要用于获取重T1WI,以显示 解剖结构。在IR脉冲序列中通常使用短TE,目 的是尽量减少图像中T2对比成分。但有时为了 使长T2病变显示为高信号,也可使用长TE,产 生的图像不仅保持了显示解剖效果好的优点, 且长T2病变可显示为高WI:中等TI, 400~800ms;短TE,10~20ms;长TR, 2000ms以上;平均扫描时间5~15min。 ②PDWI:长TI,1800ms;短TE,10~ 20ms;长TR,2000ms以上;平均扫描时 间5~15min。③病理加权像:中等TI, 400~800ms;长TE,70ms;长TR, 2000ms以上;平均扫描时间5~15min。
四、梯度回波脉冲序列
• 梯度回波(gradient echo,GRE)序列又称为 场回波(field echo;FE)序列。GRE序列是目 前MR快速扫描序列中最为成熟的方法,不仅 可缩短扫描时间,而且图像的空间分辨力和信 噪比均无明显下降。 • GRE序列与SE序列主要有两点区别,一是使用 小于90°(常用α角度表示)的射频脉冲激发; 另一个区别是使用反转梯度取代180°复相脉 冲,产生的回波称为梯度回波。两者均可使TR 缩短,短TR最终会使扫描时间明显减少。
第三节 常用脉冲序列及其应用
• 脉冲序列(pulse sequence)是指具有一定带宽、 一定幅度的射频脉冲与梯度脉冲组成的脉冲程 序。不同的脉冲序列及序列参数决定了图像的 加权特性、图像质量以及对病变显示的敏感性。 • 目前用于临床成像的脉冲序列有很多种,而且 随着设备硬件和软件的进步,脉冲序列,特别 是快速和超快速成像序列将会有更大的发展, 临床应用的范围也会不断扩展。脉冲序列不但 品种多,而且各MR设备制造厂家均发展并形 成了自己独特的序列,并具有各自不同的名称。

脉冲序列及其应用

脉冲序列及其应用
-TR ——— T1
)e
-TE T2
T1
T2 短TE
TE
短TR
TR
常用脉冲序列及其应用
T2 加权像
长TR: 2000 ~ 4000ms 长TE: 80 ~ 120ms
SSE =f(H)g(V)(1-e
信 号 幅 度
-TR ——— T1
-TE T2
)e
T1 长TR
TR
T2 长TE TE
质子加权像
SSE =f(H)g(V)(1-e
二、 脉冲序列的参数
2、重复时间(repetition time ;TR):
是指脉冲序列执行一遍所需要的时间,也就是从第一个 RF激励脉冲出现到下一周期同一脉冲出现所经历的时间。 TR与扫描时间成正比
二、 脉冲序列的参数
3、回波时间(echo time ; TE) :
是指从第一个RF脉冲到回波信号产生所需要的时间。
K-空间中各点的数据是沿一定轨迹的顺序填充的,这 种按某种顺序填充的数据的方式称为K-空间的轨迹, K-空间的填充轨迹代表了成像中MR信号的采集过程。
二、 脉冲序列的参数
11、T2*效应:
是指在梯度回波序列中,翻转梯度可使信号读 取方向磁场均匀性被破坏,导致横向驰豫加快。 T2*仅为10ms左右明显短于T2的100~200ms。
第三篇
MRI检查技术的主要内容
1、影像显示:显示技术 检查方法 2、生物化学分析:磁共振波谱分析
(magnetic resonance spectroscopy MRS)
磁共振技术发展的两个方向:
一、探索新的成像对比度,提高成像的组织分辨力。
二、加快成像的速度。
这两方面的进步贯穿着磁共振成像的整个过程。但它们
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有180°回波产生脉冲的IR序列的射频脉冲时序
包含SE序列的IR序列的射频脉冲时序
Thank you!
反转恢复序列(IR)
Inversion-Recovery
特点: 射频激励脉冲 信号测量脉冲
180°脉冲 90°脉冲
反转恢复法测纵向弛豫时间T1
Mz(t)=Mo[1—2e-t/T1]
自旋回波序列(SE)
Spin-Echo
特点: 一个周期内有90°脉冲和 180°脉冲 其中180°脉冲为相位反转脉冲 (回波形成脉冲)
θ=180° 180°脉冲 θ=90° 90°脉冲 τ:射频脉宽 硬脉冲 τ较小 软脉冲 τ较大
驰豫过程 非平衡态 →平衡态
纵向弛豫:磁化强度的纵向分量从某个 Mz向它的最大值Mo增长的过程。 横向弛豫:磁化强度的横向分量从某个 Mxy向它的最小值零衰减的过程。
什么是脉冲序列?
产生并测量MR信号所需要的一组周期 性重复的射频脉冲的组合方式和定时 关系。
回波信号的产生
t 0时
t 2 时
M XY M 0
M XY M 0e2 /T 2
t 时 180°脉冲使自旋绕x轴旋转180°
自旋回波法测横向弛豫时间T2
M XY (M 0e
2 /T2
)e
( t 2 )/T2
缺点: 花费时间长,每测一个回波要等Mz恢复到Mo, 每个周期要花5个T1 分子自扩散引起信号损失,使回波峰值达不到 应有高度,使得T2 偏小
核磁共振实验中三种基本 脉冲序列的特点和应用
Nuclear Magnetic Resonance Magnetic Resonance Imaging
07300300061 武帅 B0
磁化强度矢量M在射频场B1作用下的运动
θ=γB1τ
γ :旋磁比 与核的种类有关
SE序列的改进: CP序列
CPMG序列
180°脉冲方向不同!施加在Y轴上,避免了 因为180°脉冲不精确而引起的误差
使用硬脉冲CPMG序列测量横向弛 豫时间T2
自旋回波序列成像
芝麻成像图
三种序列的比较
SR和IR对纵向弛豫时间的测定能力: IR序列比SR序列测量T1的准确性要高,鉴别T1不同的组织 的能力更强(由于TR的不同)
抗射频干扰能力:
SE序列中,检测的是180°脉冲后的自旋回波信号,可以
避免被90°射频所干扰,抗干扰能力比较强
应用方面:
IR和SR序列主要利用样品的T1弛豫时间影响信号性质, IR序列该特点更为显著;SE序列主要特点体现在获得反 映样品的T2特性的信号方面,是NMI中最广泛应用的基
本脉冲序列
可以检测自旋回波的IR序列
信号测量脉冲 作用:对纵向磁化强度进行测量 射频激励脉冲 作用:建立横向磁化强度
饱和恢复序列SR
射频脉冲序列
反转恢复序列IR
自旋回波序列SE
饱和恢复序列(SR)
Saturation-Recovery
特点:射频激励脉冲 信号测量脉冲
90°脉冲 90°脉冲
饱和恢复法测纵向弛豫时间T1
Mz(t)=Mo [1- e-TR/T1]
相关文档
最新文档