2019-2020学年山东省威海市乳山市七年级(上)期末数学试卷(五四学制)

合集下载

七年级(上)期末数学试卷(五四学制)(解析).doc

七年级(上)期末数学试卷(五四学制)(解析).doc

七年级(上)期末数学试卷(五四学制)一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题4分,共48分,错选、不选或选出的答案超过一个,均记0分.1. (4分)下列各式中,正确的是()A.寸(一3)2二-3B. -7^二一3C.寸(±3)2二±3D.佇二±32. (4分)直线y= - |x - 3与育线y=a (a为常数)的交点在第四象限,则a可能的值为()A. - 3B.・ 4C. 3D. 43. (4分)如图,在AABC屮,AB=AC,点D, E分别在边BC」和AC上,若AD=AE,则下列结论错误的是() 4 5 64 (4分)下列说法中错误的是()A. 两个对称的图形对应点连线的垂直平分线就是它们的对称轴B. 关于某直线对称的两个图形全等C. 面积相等的两个四边形对称D. 轴对称指的是两个图形沿着某一条直线对折后能」完全重合5 (4分)下列说法中正确的是()A. 已知a, b, c是三角形的三边,则a2+b2=c2B. 在直角三角形中两边和的平方等于第三边的平方C. 在RtAABC 中,ZC二90°,所以a2+b2=c2D. 在RtAABC 中,ZB=90°,所以a2+b2=c21 2 A/A. V3B. V5C. V6D.听9. (4分)王老师给出了下列三条•线段的长度,其中能首尾相接构成育角三角形的是()C・ ZB=ZCD・ ZBAD=ZBDAA. 1, 2, 3B.品、苗,75 JC. 6, 8, 9D. 5, 12, 1310. (4分)如图,在钝角△ ABC屮,过钝角顶点B作BD±BC交AC于点D.用尺规作图法在BC边上找一点P,使得点P到AC的距离等于BP的长,下列作法正确的是()的度数是( )A. 45°B. 55° C ・ 60° D ・ 75°A. 4B. 5C. 6 D ・ 7 & (4分)如图,数轴上点A, B 分别对应1, 2,过点B 作PQ 丄AB,以点B 为 圆心,AB 长为半径画弧,交PQ 于点C,以原点O 为圆心,OC 长为半径画弧, 交数轴于点M,则点M 对应的数是()7. (4分)在实数:瑞卜, 品,2n, 迈,0.36, 0/ 3737737773...(相邻两个3之间7的个数逐次加1),514 2f V9 无理数的个数为(A.作ZBAC的角平分线与BC的交点B. 作ZBDC的角平分线与BC的交点C. 作线段BC的垂直平分线与BC的交点D. 作线段CD的垂直平分线与BC的交点口・(4分)如图所示的计算程序中,y与x之间的函数关系所对应的图象应为x(・3)取相矽12. (4分)如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是()10 4A・ 2+V10 B. 2+2后 C. 12 D・ 18二、填空题:本题共5小题,每小题4分,共20分,只要求填写最后结果.13. (4分)27的立方根为_______ ・14. (4分)已知一次函数y二kx+b (kHO)的图象经过点(3, - 3),且与直线y二-|x平行,求此一次函数的图象与两坐标轴围成的三角形的面积___________ ・15. (4分)在RtAABC中,ZACB=90°, ZA与ZB的内角平分线交于点F,则ZAFB的度数是________ ・16. (4分)我们可以利用计算器求一个正数a的算术平方根,其操作方法是按顺序进行按键输入尸回日•小明按键输入因口]⑥日显示结果为4, 则他按键因\T\ 0 00 日输入显示结果应为__________________________________ .17. (4分)小明从家跑步到学校,接着马上原路步行冋家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行___ 米. Array三、解答题:本大题共7小题,共52分.解答要写出必要的文字说明、推理过程或演算步骤.18. (6分)已知a是16的算术平方根,b是9的平方根,c是- 27的立方根,求a2+b2+c3+a - c+2 的值.19. (7分)如图,在ZXABD和AFEC中,点B, C, D, E在同一直线上,且AB=FE, BODE, ZB二ZE,试说明:ZXCDM是等腰三角形.20. (7 分)如图,在AABC 中,AB=AC, ZA=36°, BD 平分ZABC 交AC 于点 D.21. (8 分)如图,在AABC 中,ZC=90°, ZA=30°, BD 是ZABC 的平分线,CD=5cm,求AB 的长.屮,ZC=90°, AC=3, BC=4.(1)若点B 的坐标为(-3, 5),试在图中画出直角坐标系,并写出A 、C 两点 的坐标;(2)根据(1)的坐标系作出与AABC 关于x 轴对称的图形△ AiBiCi ,并写出Bi 、 Ci 两点的坐标.23. (8分)学校广场有一块如图所示的草坪,已知AB=3米,BC=4米,CD=12 米,DA=13米;且AB 丄BC,求这块草坪的面积.每个小正方形的边长均为1个单位.在RtAABC求证:AD=BC.OMiiiiielsuiiiiiO24. (9分)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1 元在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元; 一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x为非负整数).(1)根据题意,填写下表:一次复印页数(页)530• • •1020甲复印店收费(元)0.52• • •乙复印店收费(元)0.6 2.4• • •(2)设在甲复印店复印收费“元,在乙复印店复印收费y元,分别写tByi,y2 关于x 的函数关系式;(3)当x>70时,顾客在哪家复印丿占复印花费少?请说明理由.参考答案与试题解析一、选择题:本题共12小题,在每小题所给出的四个」选项中,只有一个是正确的,请把正确的选项选出来.每小题4分,共48分,错选、不选或选出的答案超过一个,均记0分.1. (4分)下列各式中,正确的是()A、讥一3)2二-3 B. 二一3 C.寸(±3)2二±3 D. 佇二±3【解答】解:A、V(-3)2= -3|=3;故A错误;B、- | 3 | = - 3;故 B 正确;C、7(± 3)2= ±3 二3;故 C 错误;D、4 =3;故D错误・故选:B.2. (4分)直线y= - |x - 3与直线y=a (a为常数)的交点在第四象限,则a可能的值为()A. - 3 B・一 4 C. 3 D. 4【解答】解:;•直线y二-彳x - 3与y轴的交点为(0, -3),而直线y二-与直线y=a (a为常数)的交点在第四象限,Aa< - 3.故」选:B.4 (4分)如图,在AABC中,AB=AC,点D, E分别在边BC和AC上,若AD=AE,则下列结论错误的是()AA. ZADB二ZACB+ZCAD B・ ZADE=ZAEDC・ ZB=ZCD. ZBAD=ZBDA【解答】解:VZADB是ZXACD的外角,A ZADB=ZACB+ZCAD,选项 A 正确;VAD=AE,・・・ZADE二ZAED,选项B正确;TAB二AC,/. ZB=ZC,选项C正确;・.・ABHBD,A ZBAD=ZBDA不成立,选项D错误;故选:D.4. (4分)下列•说法中错误的是()A. 两个对称的图形对应点连线的垂肓平分线就是它们的对称轴B. 关于某直线对称的两个图形全等C. 面积相等的两个四边形对称D. 轴对称指的是两个图形沿着某一条直线对折后能完全重合【解答】解:A、B、D都正确;C、面积相等的两个四边形不一定全等,故不一定轴对称,错误. 故选:C. 55 (4分)下列说法中正确的是()A. 已知a, b, c是三角形的三边,则a2+b2=c2B. 在直角三角形中两边和的平方等于第三边的平方C. 在RtAABC 中,ZC=90°,所以a2+b2=c2【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故木命题错误,即B选项错误;C、Z C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、Z B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选:C.6. (4分)如图:等边三角形ABC中,BD二CE, AD与BE相交于点P,则ZAPE 的度数是()D.在RtAABC 中,ZB=90°,所以a2+b2=c2A. 45°B. 55°C. 60°D. 75°【解答】解:・・•等边AABC,・•・ ZABD=ZC, AB=BC,(AB 二BC在BCE 屮,]ZABD 二ZC,〔BD 二CEAAABD^ABCE (SAS),・・・ ZBAD=ZCBE,V ZABE+ZEBC=60°,A ZABE+ZBAD=60°,・•・ ZAPE 二ZABE+ZBAD 二60°,・•・ZAPE=60°・故选:C.A. 4B. 5C. 6D. 7【解答】解:因为存3, =2, Jj =|,所以无理数有:71,忑,271, 0.3737737773...(相邻两个3之间7的个数逐次加1) 共4个.故选:A.& (4分)如图,数轴上点A, B 分别对应1, 2,过点B 作PQ 丄AB,以点B 为 圆心,AB 长为半径画弧,交PQ 于点C,以原点O 为圆心,OC 长为半径画弧, 交数轴于点M,则点M 对应的数是( )(相邻7. (4分)在实数: 2017 2018 n, 典, 品,2n, 换,0.36, 0.3737737773... 两个3 Z 间7的个数逐次加1),購,无理数的个数为(OA. V3B. V5C. V6D. ^7【解答】解:如图所示:连接OC, 由题意可得:OB=2, BC=1, 则OC二心2+ 12沁' 故点M对应的数是:晶.故选:B. 9的是()A、1, 2, 3B. V3»两,V5 C・ 6, 8, 9D・ 5, 12, 13 【解答】解:A、由22+l2=5^32,故本选项错误;B、由(馅)2+(V4)J7工(75) r故木选项错误;C、由62+82=100^92,故本选项错误;D、由52+122=169=132,故本项正确.故选:D.10. (4分)如图,在钝角AABC中,过钝角顶点B作BD丄BC交AC于点D.用尺规作图法在BC边上找一点P,使得点P到AC的距离等于BP的长,下列作法正确的是()B. 作ZBDC的角平分线与BC的交点C. 作线段BC的垂宜平分线与BC的交点D. 作线段CD的垂直平分线与BC的交点9 (4分)王老师给出了下列三条线段的长度,其中能首尾相接构成直角三角形【解答】解:如图作ZBDC的平分线DP交BC于P,作PE丄AC于E.•・・PB丄BD, PE丄CD, PD平分ZBDC,・・.PE二PB・故选:B.口・(4分)如图所示的计算程序中,y与x之间的函数关系所对应的图象应为取相題【解答】解:根据程序框图可得y=-xX (-3) -6=3x-6,化简,得y=3x - 6, y=3x - 6的图象与y轴的交点为(0, -6),与x轴的交点为(2, 0).故选:D.12. (4分)如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是()10 4A. 2+J16B. 2+2^10 C・ 12 D・ 18【解答】解:展开后等腰三角形的底边长为2X (10^2・4)二2;-6x(・3)腰长=\^ l2 + 32=V10»所以展开后三角形的周长是2+2伍,故选B.二、填空题:本题共5小题,每小题4分,共20分, 只要求」填写最【后结果.13. (4分)27的立方根为3【解答】解:V33=27,A 27的立方根是3,故答案为:3.14. (4分)已知一次函数y二kx+b (kHO)的图象经过点(3, - 3),且与直线y= -|x平行,求此一次函数的图象与两坐标轴围成的三角形的面积Ik-旦【解答】解:由题意: 3 ,解得《3,〔3k+b 二-3 lb=ly= - yx+1,・••直线与正半轴的交点为(0, 1)或(4, 0),此一次函数的图象与两坐标轴围成的三角形的面积丄X4X1二2, 故答案为2・15. (4分)在RtAABC屮,ZACB=90°, ZA与ZB的内角平分线交于点F,则【解答】解:ZAFB的度数是135。

威海市乳山市2019学年七年级上期末数学试卷含答案解析

威海市乳山市2019学年七年级上期末数学试卷含答案解析

山东省威海市乳山市2015~2016学年度七年级上学期期末数学试卷一、精心选一选(本大题公共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的,每小题选对得3分,选错、不选或多选,均不得分)1.下列结论正确的是()A.=﹣2 B.=﹣2 C.=±2 D.=±22.下列几组数能作为直角三角形的三边长的是()A.2,2,B.,2,C.9,12,18 D.12,15,203.通过估算比较大小,下列结论不正确的是()A.B.﹣>C.D.4.已知点(﹣3,y1),(1,y2)都在直线y=kx+2(k<0)上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较5.如图,AB=AC,添加下列条件,不能使△ABE≌△ACD的是()A.∠B=∠C B.∠AEB=∠ADC C.AE=AD D.BE=DC6.如图,在△ABC中,∠B=30°,ED垂直平分BC,若BC=6,则BE=()A.2B.3 C.D.67.如图是中国象棋棋盘的一部分,若位于点(1,﹣1),则位于点()A.(3,﹣2)B.(2,﹣3)C.(﹣2,3)D.(﹣3,2)8.关于一次函数y=2x﹣1,y=﹣2x+1的图象,下列说法正确的是()A.关于直线y=﹣x对称B.关于x轴对称C.关于y轴对称 D.关于直线y=x对称9.如图为正方形网格,则∠1+∠2+∠3=()A.105°B.120°C.115°D.135°10.如图,直线l是一次函数y=kx+b的图象,当﹣1<x<0时,y的取值范围是()A.1<y<B.<y<1 C.y>1 D.0<y11.如图,网格中的每个小正方形的边长为1,A,B是格点,则以A,B,C为等腰三角形顶点的所有格点C的位置有()A.2个B.3个C.4个D.5个12.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,BE=4,则AD的长是()A.4 B.2 C.6 D.2二、细心填一填(本大题共6小题,每小题3分,共18分,只要求填出最后结果)13.52的平方根是.14.已知与互为相反数,则ab的值为.15.如图,AB∥EF,∠C=∠D=85°,CF=BD,若∠A=40°,则∠EFD=.16.若一次函数y=kx+b的图象沿y轴向上平移3个单位后,得到图象的关系式是y=2x+2,则原一次函数的关系式为.17.已知点P的坐标为(1+a,2a﹣2),且点P到两坐标轴的距离相等,则a的值是.18.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在D′处,若AB=3,AD=4,则S△CED′:S△CEA=.三、耐心做一做(本大题共7个小题,共66分,要写出必要的文字说明、证明过程或演算步骤)19.计算:﹣++||(精确到0.01)20.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0)、(﹣3,1),AB=AC.(1)求点C的坐标;(2)比较点C的横坐标与﹣3.3的大小.21.如图,△ABC是等边三角形,D是AC上一点,BD=CE,∠1=∠2,试判断BC与AE的位置关系,并证明你的结论.22.利群超市经销某品牌童装,单价为每件40元时,每天销量为60件,当从单价每件40元降了20元时,一天销量为100件,设降x元时,一天的销量为y千克.已知y是x的一次函数.(1)求y与x之间的关系式;(2)若某天销售童装80件,则该天童装的单价是多少?23.某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.(1)有月租费的收费方式是(填①或②),月租费是元;(2)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.24.如图,∠ABC=90°,∠EBE′=90°,AB=BC,BE=BE′,若AE=1,BE=2,∠BE′C=135°,求EC的长.25.如图,在△ABC中,点E,F在BC上,EM垂直平分AB交AB于点M,FN垂直平分AC交AC于点N,∠EAF=90°,BC=12,EF=5.(1)求∠BAC的度数;(2)求S△EAF.山东省威海市乳山市2015~2016学年度七年级上学期期末数学试卷参考答案与试题解析一、精心选一选(本大题公共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的,每小题选对得3分,选错、不选或多选,均不得分)1.下列结论正确的是()A.=﹣2 B.=﹣2 C.=±2 D.=±2【考点】立方根;算术平方根.【分析】依据立方根、平方根和算术平方根的定义回答即可.【解答】解:A、=2,故A错误;B、=﹣2,故B正确;C、=2,故C错误;D、=2,故D错误.故选:B.【点评】本题主要考查的是立方根、平方根和算术平方根的定义和性质,掌握立方根、平方根和算术平方根的定义和性质是解题的关键.2.下列几组数能作为直角三角形的三边长的是()A.2,2,B.,2,C.9,12,18 D.12,15,20【考点】勾股定理的逆定理.【分析】分别计算较小两数的平方和,看是否等于最大数的平方,若等于就是直角三角形,否则就不是直角三角形.【解答】解:A、22+22=()2,能作为直角三角形的三边长,故本选项符合题意.B、()2+22≠()2,不能作为直角三角形的三边长,故本选项不符合题意.C、92+122≠182,不能作为直角三角形的三边长,故本选项不符合题意.D、152+122≠202,不能作为直角三角形的三边长,故本选项不符合题意.故选A.【点评】本题考查勾股定理的逆定理,关键知道两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形.3.通过估算比较大小,下列结论不正确的是()A.B.﹣>C.D.【考点】实数大小比较;估算无理数的大小.【分析】根据算术平方根的定义和立方根的定义估算各根式的大小,然后再比较大小即可.【解答】解:A、因为64<69,所以4<,由=4,可知,故A正确,与要求不符;B、=﹣3,<﹣=﹣3,故<,故B错误,与要求相符;C、<3,故此,<1,故此,则C正确,与要求不符;D、2=,,故D正确,与要求不符.故选:B.【点评】本题主要考查的是实数大小比较,掌握无理数的大小的方法是解题的关键.4.已知点(﹣3,y1),(1,y2)都在直线y=kx+2(k<0)上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较【考点】一次函数图象上点的坐标特征.【分析】直线系数k<0,可知y随x的增大而减小,﹣3<1,则y1>y2.【解答】解:∵直线y=kx+2中k<0,∴函数y随x的增大而减小,∵﹣3<1,∴y1>y2.故选A.【点评】本题考查的是一次函数的性质.解答此题要熟知一次函数y=kx+b:当k>0时,y随x的增大而增大;当k <0时,y随x的增大而减小.5.如图,AB=AC,添加下列条件,不能使△ABE≌△ACD的是()A.∠B=∠C B.∠AEB=∠ADC C.AE=AD D.BE=DC【考点】全等三角形的判定.【分析】本题要判定△ABE≌△ACD,已知AB=AC,∠A是公共角,具备了一组边对应相等和一角相等的条件,故添加∠B=∠C、∠AEB=∠ADC、AE=AD后可分别根据ASA、AAS、SAS判定△ABE≌△ACD,而添加BE=DC后则不能.【解答】解:A、添加∠B=∠C可利用ASA证明△ABE≌△ACD,故此选项不合题意;B、添加∠AEB=∠ADC可利用AAS证明△ABE≌△ACD,故此选项不合题意;C、添加AE=AD可利用SAS证明△ABE≌△ACD,故此选项不合题意;D、添加EB=DC不能证明△ABE≌△ACD,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.如图,在△ABC中,∠B=30°,ED垂直平分BC,若BC=6,则BE=()A.2B.3 C.D.6【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】由ED垂直平分BC,得到BD=BC=3,∠BDE=90°,根据直角三角形的性质得到DE=BE,根据勾股定理列方程即可得到结论.【解答】解:∵ED垂直平分BC,∴BD=BC=3,∠BDE=90°,∵∠B=30°,∴DE=BE,∴BE2=DE2+BD2,即:BE2=(2BE)2+32,解得:BE=2,故选A.【点评】此题考查了线段垂直平分线的性质与直角三角形的性质.解题的关键是熟练掌握线段垂直平分线的性质.7.如图是中国象棋棋盘的一部分,若位于点(1,﹣1),则位于点()A.(3,﹣2)B.(2,﹣3)C.(﹣2,3)D.(﹣3,2)【考点】坐标确定位置.【分析】根据已知点的位置,建立符合条件的坐标系,从而确定其它点的位置.【解答】解:由“位于点(1,﹣1)”知,y轴为从左向右数的第四条竖直直线,且向上为正方向,x轴是从上往下数第四条水平直线,这两条直线交点为坐标原点.那么“”的位置为(﹣3,2).故选D.【点评】本题考查了点的位置的确定,解题的关键是确定坐标原点和x,y轴的位置及方向.8.关于一次函数y=2x﹣1,y=﹣2x+1的图象,下列说法正确的是()A.关于直线y=﹣x对称B.关于x轴对称C.关于y轴对称 D.关于直线y=x对称【考点】一次函数的图象.【分析】由y=﹣2x+1=﹣(2x﹣1)得到﹣y=2x﹣1,即可判断一次函数y=2x﹣1,y=﹣2x+1的图象关于x轴对称.【解答】解:∵y=﹣2x+1=﹣(2x﹣1),∴﹣y=2x﹣1,∴一次函数y=2x﹣1,y=﹣2x+1的图象关于x轴对称,故选B.【点评】本题考查了一次函数的图象,解答此题的关键是根据一次函数图象上点的坐标特征解决问题.9.如图为正方形网格,则∠1+∠2+∠3=()A.105°B.120°C.115°D.135°【考点】全等图形.【分析】首先证明△ABC≌△AEF,然后证明∠1+∠3=90°,再根据等腰直角三角形的性质可得∠2=45°,进而可得答案.【解答】解:∵在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴∠4=∠3,∵∠1+∠4=90°,∴∠1+∠3=90°,∵AD=MD,∠ADM=90°,∴∠2=45°,∴∠1+∠2+∠3=135°,故选:D.【点评】此题主要考查了全等三角形的判定和性质,以及等腰直角三角形的性质,关键是掌握全等三角形对应角相等.10.如图,直线l是一次函数y=kx+b的图象,当﹣1<x<0时,y的取值范围是()A.1<y<B.<y<1 C.y>1 D.0<y【考点】一次函数的性质.【分析】先利用待定系数法求出一次函数y=kx+b的解析式,再求出x=﹣1时y的值.进而可得出结论.【解答】解:∵由图可知,一次函数y=kx+b的图象与坐标轴的交点分别为(0,1),(2,0),∴,解得,∴一次函数的解析式为y=﹣x+1,∴当x=﹣1时,y=,∴当﹣1<x<0时,y的取值范围是1<y<.故选A.【点评】本题考查的是一次函数的性质,熟知一次函数的增减性及一次函数图象上点的坐标特点是解答此题的关键.11.如图,网格中的每个小正方形的边长为1,A,B是格点,则以A,B,C为等腰三角形顶点的所有格点C的位置有()A.2个B.3个C.4个D.5个【考点】等腰三角形的判定.【专题】网格型.【分析】由勾股定理求出AB==,分三种情况讨论:①当A为顶角顶点时;②当B为顶角顶点时;③当C为顶角顶点时;即可得出结果.【解答】解:由勾股定理得:AB==,分三种情况:如图所示:①当A为顶角顶点时,符合△ABC为等腰三角形的C点有1个;②当B为顶角顶点时,符合△ABC为等腰三角形的C点有2个;③当C为顶角顶点时,符合△ABC为等腰三角形的C点有1个;综上所述:以A,B,C为等腰三角形顶点的所有格点C的位置有1+2+1=4(个);故选:C.【点评】本题考查了等腰三角形的判定、勾股定理、正方形的性质;熟练掌握等腰三角形的判定,分情况讨论是解决问题的关键.12.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,BE=4,则AD的长是()A.4 B.2 C.6 D.2【考点】线段垂直平分线的性质.【分析】由AB的垂直平分线DE交AC于E,得到AE=BE=4,根据三角形的内角和和对顶角的性质得到∠AED=∠CEF=60°,求得∠A=30°,于是得到结论.【解答】解:∵AB的垂直平分线DE交AC于E,∴AE=BE=4,∵∠ACB=90°,∠F=30°,∴∠AED=∠CEF=60°,∴∠A=30°,∴AD=AE=2,故选D.【点评】此题考查了线段垂直平分线的性质以及含30°的直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.二、细心填一填(本大题共6小题,每小题3分,共18分,只要求填出最后结果)13.52的平方根是±5.【考点】平方根.【分析】先求得52=25,然后再求25的平方根即可.【解答】解:52=25,∵(±5)2=25,∴25的平方根是±5,即52的平方根是±5.故答案为:±5.【点评】本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键.14.已知与互为相反数,则ab的值为﹣12.【考点】非负数的性质:算术平方根.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:∵与,∴a﹣3=0,4+b=0,解得a=3,b=﹣4,∴ab=3×(﹣4)=﹣12,故答案为﹣12.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.如图,AB∥EF,∠C=∠D=85°,CF=BD,若∠A=40°,则∠EFD=55°.【考点】全等三角形的判定与性质.【分析】利用已知条件证明△ABC≌△DFE(ASA),得到∠A=∠E=40°,再利用三角形的内角和为180°,即可解答.【解答】解:∵AB∥EF,∴∠ABC=∠EFD,∵CF=BD,∴CF+BF=BD+BF,∴BC=DF,在△ABC和△DFE中,∴△ABC≌△DFE(ASA),∴∠A=∠E=40°,∴∠EFD=180°﹣∠D﹣∠E=180°﹣85°﹣40°=55°.【点评】本题考查了全等三角形的性质定理与判定定理,解决本题的关键是证明△ABC≌△DFE(ASA).16.若一次函数y=kx+b的图象沿y轴向上平移3个单位后,得到图象的关系式是y=2x+2,则原一次函数的关系式为y=2x﹣1.【考点】一次函数图象与几何变换.【分析】根据平移法则上加下减可得出平移后的解析式.【解答】解:由题意得:平移后的解析式为:y=kx+b+3=2x+2.∴k=2,b=﹣1,∴y=2x﹣1,故答案为:y=2x﹣1.【点评】本题考查了一次函数图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.17.已知点P的坐标为(1+a,2a﹣2),且点P到两坐标轴的距离相等,则a的值是3或.【考点】点的坐标.【分析】根据到坐标轴的距离相等列出绝对值方程,然后求解即可.【解答】解:∵点P(1+a,2a﹣2)到两坐标轴的距离相等,∴|1+a|=|2a﹣2|,∴1+a=2a﹣2或1+a=﹣(2a﹣2),解得a=3或a=.故答案为:3或.【点评】本题考查了点的坐标,是基础题,难点在于列出绝对值方程并求解.18.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在D′处,若AB=3,AD=4,则S△CED′:S△CEA=3:5.【考点】翻折变换(折叠问题).【分析】由矩形的性质可知DC=AB=3,由勾股定理可求得AC=5,由翻折的性质可知D′C=DC=3,最后根据S△CED′:S△CEA=D′C:AC求解即可.【解答】解:∵四边形ABCD为长方形,∴DC=AB=3.在Rt△ADC中,AC==5.∵由翻折的性质可知:D′C=DC=3,∴S△ECD′:S△CEA=D′C:AC=3:5.故答案为:3:5.【点评】本题主要考查的是翻折变换、勾股定理的应用,明确S△ECD′:S△CEA=D′C:AC是解题的关键.三、耐心做一做(本大题共7个小题,共66分,要写出必要的文字说明、证明过程或演算步骤)19.计算:﹣++||(精确到0.01)【考点】实数的运算.【分析】先化简绝对值,然后≈1.414,≈1.732,代入计算.【解答】解:原式=﹣++﹣≈﹣+≈1.63.【点评】本题主要考查的是实数的运算,主要利用了实数的近似值,比较简单,关键记住,的近似值.20.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0)、(﹣3,1),AB=AC.(1)求点C的坐标;(2)比较点C的横坐标与﹣3.3的大小.【考点】勾股定理;坐标与图形性质.【分析】(1)由勾股定理得出AB=AC==,求出OC=1+,即可得出点C的坐标;(2)由≈2.236,得出|1+|<3.3,即可得出结果.【解答】解:(1)由勾股定理得:AB=AC==,∴OC=1+,∴点C的坐标为(﹣1﹣,0);(2)∵≈2.236,∴|1+|<3.3,∴﹣1﹣>﹣3.3,即C的横坐标>﹣3.3.【点评】本题考查了勾股定理、坐标与图形性质、实数大小的比较;熟练掌握勾股定理,由勾股定理得出AB是解决问题的关键.21.如图,△ABC是等边三角形,D是AC上一点,BD=CE,∠1=∠2,试判断BC与AE的位置关系,并证明你的结论.【考点】全等三角形的判定与性质.【分析】由△ABC是等边三角形,得出∠BAD=∠BCA=60°,AB=AC,由SAS证得△ABD≌△ACE,得出∠BAD=∠CAE=∠BCA,即可得出结论.【解答】解:BC与AE的位置关系是:BC∥AE;理由如下:∵△ABC是等边三角形,∴∠BAD=∠BCA=60°,AB=AC,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠BAD=∠CAE=60°,∴∠CAE=∠BCA,∴BC∥AE.【点评】本题考查了全等三角形的判定与性质、等边三角形的性质、平行线的判定等知识;熟练掌握全等三角形的判定与性质是解决问题的关键.22.利群超市经销某品牌童装,单价为每件40元时,每天销量为60件,当从单价每件40元降了20元时,一天销量为100件,设降x元时,一天的销量为y千克.已知y是x的一次函数.(1)求y与x之间的关系式;(2)若某天销售童装80件,则该天童装的单价是多少?【考点】一次函数的应用.【分析】(1)设y=kx+b,把(0,60)和代入解答即可;(2)根据题意得出方程80=2x+60,进而解答即可.【解答】解:(1)y=kx+b,由题意知,当x=0时,y=60,可得:b=60,所以解析式为y=kx+60,当x=20时,y=100,可得:100=20k+60,解得:k=2,所以y与x之间的关系式为y=2x+60;(2)由80=2x+60,解得x=10,所以40﹣10=30(元),所以该天童装的单价是每件30元.【点评】本题考查一次函数问题,关键是一次函数的解析式的求解即可.23.某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.(1)有月租费的收费方式是①(填①或②),月租费是30元;(2)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.【考点】一次函数的应用.【专题】应用题.【分析】(1)根据当通讯时间为零的时候的函数值可以得到哪种方式有月租,哪种方式没有,有多少;(2)根据图象经过的点的坐标设出函数的解析式,用待定系数法求函数的解析式即可;(3)求出当两种收费方式费用相同的时候自变量的值,以此值为界说明消费方式即可.【解答】解:(1)①;30;(2)设y1=k1x+30,y2=k2x,由题意得:将(500,80),(500,100)分别代入即可:500k1+30=80,∴k1=0.1,500k2=100,∴k2=0.2故所求的解析式为y1=0.1x+30;y2=0.2x;(3)当通讯时间相同时y1=y2,得0.2x=0.1x+30,解得x=300;当x=300时,y=60.故由图可知当通话时间在300分钟内,选择通话方式②实惠;当通话时间超过300分钟时,选择通话方式①实惠;当通话时间在300分钟时,选择通话方式①、②一样实惠.【点评】本题考查的是用一次函数解决实际问题,此类题是近年2016届中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.24.如图,∠ABC=90°,∠EBE′=90°,AB=BC,BE=BE′,若AE=1,BE=2,∠BE′C=135°,求EC的长.【考点】全等三角形的判定与性质;勾股定理.【分析】根据SAS证明△ABE与△CBE'全等,再利用直角三角形的性质解答即可.【解答】解:∵∠ABE+∠EBC=∠ABC=90°,∠E'BC+∠EBC=∠E'BE=90°,∴∠ABE=∠E'BC,在△ABE与△CBE'中,,∴△ABE≌△CBE'(SAS),∴CE'=AE=1,∵∠EBE'=90°,BE=BE'=2,∴EE'2=22+22=8,∵∠EBE'=90°,BE=BE',∴∠BE'E=45°,∵∠BE'C=135°,∴∠EE'C=135°﹣45°=90°,∴.【点评】此题考查全等三角形的判定和性质,关键是根据根据SAS证明△ABE与△CBE'全等.25.如图,在△ABC中,点E,F在BC上,EM垂直平分AB交AB于点M,FN垂直平分AC交AC于点N,∠EAF=90°,BC=12,EF=5.(1)求∠BAC的度数;(2)求S△EAF.【考点】线段垂直平分线的性质.【分析】(1)先根据线段垂直平分线的性质得出∠B=∠BAE,∠C=∠CAF,再由三角形内角和定理得出∠BEA+∠CAF=45°,由∠BAC=∠BEA+∠EAF+∠CAF即可得出结论;(2)先根据线段垂直平分线的性质得出EB=EA,FA=FC,根据EA•FA的值即可得出结论.【解答】解:(1)∵EM垂直平分AB,∴∠B=∠BAE.∵FN垂直平分AC,∴∠C=∠CAF.∵∠B+∠BAE+∠EAF+∠C+∠CAF=180°,∠EAF=90°,∴2∠BEA+2∠CAF=90°,∴∠BEA+∠CAF=45°,∴∠BAC=∠BEA+∠EAF+∠CAF=45°+90°=135°;(2)∵EM垂直平分AB,∴EB=EA.∵FN垂直平分AC,∴FA=FC.∵BC=12,EF=5,∴EA+FA=12﹣5=7.∵EF=5,∠EAF=90°,∴EA2+FA2=(EA+FA)2﹣2EA•FA=EF2=25,∴EA•FA=6,∴S△EAF=6.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.。

山东省乳山市七年级上期末数学试卷(附答案解析)

山东省乳山市七年级上期末数学试卷(附答案解析)

第 1 页 共 20 页
2020-2021学年山东省乳山市七年级上期末数学试卷
一.选择题(共12小题,满分36分,每小题3分)
1.点P (a ,b )在函数y =3x +2的图象上,则代数式6a ﹣2b +1的值等于( )
A .5
B .3
C .﹣3
D .﹣1 2.√83的平方根是( )
A .2
B .﹣2
C .±√2
D .±2
3.一个三角形的两边长分别为2和5,且第三边长为整数,这样的三角形的周长最大值是
( )
A .11
B .12
C .13
D .14
4.如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,ED ⊥AB 于D .如果∠A =30°,
AE =8cm ,那么CE =( )
A .2cm
B .3cm
C .4cm
D .5cm
5.估计√6+1的值在( )
A .2 到3 之间
B .3 到4 之间
C .4 到5 之间
D .5 到6 之间
6.将一副三角板按图中的方式叠放,则∠1的度数为( )
A .105°
B .100°
C .95°
D .110°
7.在平面直角坐标系中,点A 的坐标是(3a ﹣5,a +1).若点A 到x 轴的距离与到y 轴的
距离相等,且点A 在y 轴的右侧,则a 的值为( )
A .1
B .2
C .3
D .1 或 3
8.取一张长方形纸片,按图中所示的方法折叠一角,得到折痕EF ,若∠BEF =54°,则∠
BFC 等于( )。

威海市七年级上册数学期末试卷(带答案)-百度文库

威海市七年级上册数学期末试卷(带答案)-百度文库

威海市七年级上册数学期末试卷(带答案)-百度文库一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( )A .(b ﹣a )元B .(b ﹣10)元C .(10a ﹣b )元D .(b ﹣10a )元2.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b3.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .3 4.-2的倒数是( )A .-2B .12-C .12D .25.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒ 6.计算(3)(5)-++的结果是( )A .-8B .8C .2D .-27.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠8.下列说法中正确的有( )A .连接两点的线段叫做两点间的距离B .过一点有且只有一条直线与已知直线垂直C .对顶角相等D .线段AB 的延长线与射线BA 是同一条射线9.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°10.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )A .97B .102C .107D .11211.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘 45 人,则还有 5 人不能上车.有下列四个等式:① 40m +25=45m +5 ;②2554045n n +-=;③2554045n n ++=;④ 40m +25 = 45m - 5 .其中正确的是( ) A .①③ B .①② C .②④ D .③④ 12.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .1202013.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( )A .1B .﹣1C .3D .﹣3 14.解方程121123x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1C .3(x +1)﹣2(2x ﹣1)=6D .3(x +1)﹣2×2x ﹣1=6 15.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD∠的度数为( )A .100B .120C .135D .150二、填空题16.一个角的余角等于这个角的13,这个角的度数为________. 17.若|x |=3,|y |=2,则|x +y |=_____. 18.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………19.已知关于x 的一元一次方程320202020x x n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 20.把5,5,35按从小到大的顺序排列为______.21.已知单项式245225n m x y x y ++与是同类项,则m n =______.22.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。

2019-2020年七年级(上)期末数学试卷(解析版)

2019-2020年七年级(上)期末数学试卷(解析版)

2019-2020年七年级(上)期末数学试卷(解析版)一、选择题(共12小题,每小题3分,满分36分)1.下列说法中,正确的是()A.0是最小的有理数B.0是最小的整数C.0的倒数和相反数都是0 D.0是最小的非负数2.下列说法中正确的个数为()(1)过两点有且只有一条直线;(2)连接两点的线段叫两点间的距离;(3)两点之间所有连线中,线段最短;(4)射线比直线小一半.A.1个B.2个C.3个D.4个3.如图不能折叠成正方体的是()A. B.C. D.4.甲数为x,乙数为y,则甲数的3倍与乙数的和除甲数与乙数的3倍的差,可表示为()A. B. C. D.5.为了解某校七年级500名学生身高情况,从中抽取了50名学生进行检测,这50名学生的身高是()A.总体 B.个体C.样本容量 D.总体的一个样本6.已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A.﹣5x﹣1 B.5x+1 C.﹣13x﹣1 D.13x+17.国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期的利率为2.25%,屠呦呦获得诺贝尔医学奖,假设她把所有奖金存入银行一年,预计一年到期后,提取本金及利息时要交纳13500元利息税,则屠呦呦的奖金是()元.A.3×105B.3×106C.3×107D.3×1088.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,则t的值是()A.2或2.5 B.2或10 C.10或12.5 D.2或12.59.如图是某人骑自行车的行驶路程s(千米)与行驶时间t(时)的函数图象,下列说法不正确的是()A.从0时到3时,行驶了30千米B.从1时到2时匀速前进C.从1时到2时在原地不动D.从0时到1时与从2时到3时的行驶速度相同10.在排成每行七天的日历表中,取下一个3×3方块如图所示,若所有日期之和为81,则n 的值为()A.9 B.15 C.11 D.2711.已知下列方程:①x﹣2=;②0.2x=1;③;④x﹣y=6;⑤x=0,其中一元一次方程有()A.2个B.3个C.4个D.5个12.一学生从家去学校每小时走5千米,按原路返回时,每小时走4千米,结果返回的时间比去的时间多用10分钟,设去学校所用的时间为x小时,则正确列出的方程是()A.5x=4(x+)B.5x=4(x﹣)C.5(x﹣)=4x D.5(x+)=4x二、填空题(共6小题,每小题4分,满分24分)13.单项式﹣πx2y的系数是,次数是.14.从M点向同一方向作两条线段MN=10cm,MP=16cm,若MN的中点为A,MP的中点为B,则AB=cm.15.若2x3y2n和﹣5x m y4是同类项,那么m+n=.16.方程2+3x=1与3a﹣(1+x)=0的解相同,则a=.17.按照如图所示的操作步骤,若输入x的值为﹣2,则输出的值为.18.如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中的基础图形个数为(用含n的式子表示).三、解答题(共6小题,满分60分)19.已知有理数a,b在数轴上的位置如图所示.(1)在数轴上标出﹣a,﹣b的位置,并比较a,b,﹣a,﹣b的大小:(2)化简|a+b|+|a﹣b|.20.x2﹣[2+(x2﹣y2)]﹣(﹣),其中x=﹣2,y=﹣.21.计算:(1)(﹣4)2×[(﹣1)5+(﹣)3)](2).22.据测定,海底扩张的速度是很缓慢的,在太平洋海底,某海沟的某处宽度为100米,某两侧的地壳向扩张的速度是每年6厘米,假设海沟扩张速度恒定,扩张时间为x年,海沟的宽度为y米.(1)写出海沟扩张时间x年与海沟的宽度y之间的表达式;(2)你能计算以下当海沟宽度y扩张到400米时需要多少年吗?23.同学们,今天我们来学习一个新知识.这是一个高中或者大学里常见的数学指示,但是只要你开动脑筋,用你所学的七年级数学知识同样可以完美解决,敢不敢挑战一下?相信自己是最棒的!形如的式子叫做二阶行列式,它的运算法则用公式表示为=ad﹣bc,解决以下问题:(1)你能仿照上面的解释,表示出的结果吗?(2)依此法则计算的结果是多少?(3)再进一步,挑战一下!如果=4,那么x的值为多少?24.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A、1.5小时以上;B、1~1.5小时;C、0.5~1小时;D、0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.xx学年山东省潍坊市寿光市七年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列说法中,正确的是()A.0是最小的有理数B.0是最小的整数C.0的倒数和相反数都是0 D.0是最小的非负数【考点】有理数.【分析】根据零的意义,可得答案.【解答】解:A、没有最小的有理数,故A错误;B、没有最小的整数,故B错误;C、0没有倒数,故C错误;D、0是最小的非负数,故D正确;故选:D.【点评】本题考查了有理数,零是自然数,是最小的非负数,是整数,注意零既不是正数也不是负数.2.下列说法中正确的个数为()(1)过两点有且只有一条直线;(2)连接两点的线段叫两点间的距离;(3)两点之间所有连线中,线段最短;(4)射线比直线小一半.A.1个B.2个C.3个D.4个【考点】直线、射线、线段;直线的性质:两点确定一条直线;线段的性质:两点之间线段最短;两点间的距离.【分析】根据直线、射线等相关的定义或定理分别判断得出答案即可.【解答】解:(1)过两点有且只有一条直线,此选项正确;(2)连接两点的线段的长度叫两点间的距离,此选项错误;(3)两点之间所有连线中,线段最短,此选项正确;(4)射线比直线小一半,根据射线与直线都无限长,故此选项错误;故正确的有2个.故选:B.【点评】本题主要考查学生对直线、射线概念公理的理解及掌握程度,熟记其内容是解题关键.3.如图不能折叠成正方体的是()A. B.C. D.【考点】展开图折叠成几何体.【分析】根据正方体展开图的类型,1﹣4﹣1型,2﹣3﹣1型,2﹣2﹣2型,3﹣3型,只有C不属于其中的类型,不能折成正方体,据此解答即可.【解答】解:选项A,B,D折叠后都可以围成一个正方体,只有C折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体.故选C.【点评】本题考查了平面图形的折叠及正方体的展开图,解决此题的关键是记住正方体展开图的基本类型1﹣4﹣1型,2﹣3﹣1型,2﹣2﹣2型,3﹣3型.4.甲数为x,乙数为y,则甲数的3倍与乙数的和除甲数与乙数的3倍的差,可表示为()A. B. C. D.【考点】列代数式.【分析】由题意可知:甲数的3倍与乙数的和为3x+y,甲数与乙数的3倍的差为x﹣3y,再进一步相除得出答案即可.【解答】解:甲数的3倍与乙数的和除甲数与乙数的3倍的差为.故选:C.【点评】此题考查列代数式,理解题意,找出题目叙述的运算顺序是解决问题的关键.5.为了解某校七年级500名学生身高情况,从中抽取了50名学生进行检测,这50名学生的身高是()A.总体 B.个体C.样本容量 D.总体的一个样本【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:为了解某校七年级500名学生身高情况,从中抽取了50名学生进行检测,这50名学生的身高是总体的一个样本,故选:D.【点评】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A.﹣5x﹣1 B.5x+1 C.﹣13x﹣1 D.13x+1【考点】整式的加减.【专题】计算题;整式.【分析】根据和减去一个加数等于另一个加数,计算即可得到结果.【解答】解:根据题意得:(3x2+4x﹣1)﹣(3x2+9x)=3x2+4x﹣1﹣3x2﹣9x=﹣5x﹣1,故选A.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.7.国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期的利率为2.25%,屠呦呦获得诺贝尔医学奖,假设她把所有奖金存入银行一年,预计一年到期后,提取本金及利息时要交纳13500元利息税,则屠呦呦的奖金是()元.A.3×105B.3×106C.3×107D.3×108【考点】科学记数法—表示较大的数.【分析】首先利用已知求出奖金总数,再利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:设屠呦呦的奖金是x元,根据题意可得:2.25%•x×20%=13500,解得:x=3000000,将3000000用科学记数法表示为:3×106.故选:B.【点评】此题考查了一元一次方程的应用以及科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,则t的值是()A.2或2.5 B.2或10 C.10或12.5 D.2或12.5【考点】一元一次方程的应用.【专题】行程问题;压轴题.【分析】如果甲、乙两车是在环形车道上行驶,则本题应分两种情况进行讨论:一、两车在相遇以前相距50千米,在这个过程中存在的相等关系是:甲的路程+乙的路程=(450﹣50)千米;二、两车相遇以后又相距50千米.在这个过程中存在的相等关系是:甲的路程+乙的路程=450+50=500千米.已知车的速度,以及时间就可以列代数式表示出路程,得到方程,从而求出时间t的值.【解答】解:(1)当甲、乙两车未相遇时,根据题意,得120t+80t=450﹣50,解得t=2;(2)当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50,解得t=2.5.故选A.【点评】本题解决的关键是:能够理解有两种情况、能够根据题意找出题目中的相等关系.9.如图是某人骑自行车的行驶路程s(千米)与行驶时间t(时)的函数图象,下列说法不正确的是()A.从0时到3时,行驶了30千米B.从1时到2时匀速前进C.从1时到2时在原地不动D.从0时到1时与从2时到3时的行驶速度相同【考点】函数的图象.【专题】压轴题;数与式.【分析】根据折线图,把某人骑自行车的行分为三段,即行驶﹣停止﹣行驶,再根据时间段进行判断.【解答】解:根据图象从0到1时,以及从2时到3时,这两段时间,行驶路程s与行驶时间t的函数都是一次函数关系,因而都是匀速行驶,同时,两直线平行,因而速度相同,D正确;由图可知,从0时到3时,行驶了30千米,A正确;而从1时到2时,路程S不变,因而这段时间这个人原地未动,C正确;说法B不正确.故选B.【点评】正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.10.在排成每行七天的日历表中,取下一个3×3方块如图所示,若所有日期之和为81,则n 的值为()A.9 B.15 C.11 D.27【考点】一元一次方程的应用.【分析】观察图片,可以发现日历的排布规律,因此可得出日历每个方块的代数式,从而求出n的值.【解答】解:日历的排布是有一定的规律的,在日历表中取下一个3×3方块,当中间那个是n的话,它的上面的那个就是n﹣7,下面的那个就是n+7,左边的那个就是n ﹣1,右边的那个就是n+1,左边最上面的那个就是n﹣1﹣7,最下面的那个就是n﹣1+7,右边最上面的那个就是n+1﹣7,最下面的那个就是n+1+7,若所有日期数之和为81,则n+1+7+n+1﹣7+n﹣1+7+n﹣1﹣7+n+1+n﹣1+n+7+n﹣7+n=81,9n=81,解得:n=9.故选:A.【点评】考查了一元一次方程的应用,此题的关键是联系生活实际找出日历的规律,所以学生平时要养成爱观察爱动脑的习惯.11.已知下列方程:①x﹣2=;②0.2x=1;③;④x﹣y=6;⑤x=0,其中一元一次方程有()A.2个B.3个C.4个D.5个【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:①不是整式方程,不是一元一次方程;②0.2x=1是一元一次方程;③=x﹣3是一元一次方程;④x﹣y=6,函数2个未知数,不是一元一次方程;⑤x=0是一元一次方程.一元一次方程有:②③④共3个.故选B.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.12.一学生从家去学校每小时走5千米,按原路返回时,每小时走4千米,结果返回的时间比去的时间多用10分钟,设去学校所用的时间为x小时,则正确列出的方程是()A.5x=4(x+)B.5x=4(x﹣)C.5(x﹣)=4x D.5(x+)=4x【考点】由实际问题抽象出一元一次方程.【专题】探究型.【分析】根据一学生从家去学校每小时走5千米,按原路返回时,每小时走4千米,结果返回的时间比去的时间多用10分钟,设去学校所用的时间为x小时,可知去学校和返回家的路程是一定的,从而可以列出相应的方程,本题得以解决.【解答】解:设去学校所用的时间为x小时,则5x=4(x+).故选A.【点评】本题考查由实际问题抽象出一元一次方程,解题的关键是明确题意,列出相应的方程.二、填空题(共6小题,每小题4分,满分24分)13.单项式﹣πx2y的系数是﹣π,次数是3.【考点】单项式.【分析】由单项式中数字因数叫做单项式的系数,所有字母的指数和是单项式的次数,由此即可求解.【解答】解:单项式﹣πx2y的系数是﹣π,次数是3,故答案为:﹣π,3.【点评】此题主要考查了单项式的系数及其次数的定义,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.注意π是常数.14.从M点向同一方向作两条线段MN=10cm,MP=16cm,若MN的中点为A,MP的中点为B,则AB=3cm.【考点】两点间的距离.【分析】根据线段中点的性质,可得MA,MB的长,根据线段的和差,可得AB的长.【解答】解:由MN的中点为A,MP的中点为B,得MA=MN=×10=5cm,MB=MP=×16=8cm,由线段的和差,得AB=MB﹣MA=8﹣5=3cm,故答案为:3.【点评】本题考查了两点间的距离,利用线段中点的性质得出MA,MB的长是解题关键.15.若2x3y2n和﹣5x m y4是同类项,那么m+n=5.【考点】同类项.【分析】由同类项的定义可知:m=3,2n=4,从而可求得m、n的值,然后计算即可.【解答】解:∵2x3y2n和﹣5x m y4是同类项,∴m=3,2n=4.∴n=2.∴m+n=3+2=5.故答案为;5.【点评】本题主要考查的是同类项的定义,根据同类项的定义求得m、n的值是解题的关键.16.方程2+3x=1与3a﹣(1+x)=0的解相同,则a=.【考点】同解方程.【分析】先得出方程2+3x=1的解,然后代入3a﹣(1+x)=0可得出关于a的方程,解出即可.【解答】解:2+3x=1,解得:x=﹣,将x=﹣代入3a﹣(1+x)=0可得:3a﹣(1﹣)=0,解得:a=.故答案为:.【点评】本题考查了同解方程的知识,解决的关键是能够求解关于x的方程,要正确理解方程解的含义.17.按照如图所示的操作步骤,若输入x的值为﹣2,则输出的值为7.【考点】有理数的混合运算.【专题】图表型.【分析】把x=﹣2代入运算程序中计算即可.【解答】解:把x=﹣2代入运算程序中得:(﹣2)2×3﹣5=12﹣5=7,故答案为:7【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中的基础图形个数为3n+1(用含n的式子表示).【考点】规律型:图形的变化类.【专题】规律型.【分析】先写出前三个图案中基础图案的个数,并得出后一个图案比前一个图案多3个基础图案,从而得出第n个图案中基础图案的表达式.【解答】解:观察可知,第1个图案由4个基础图形组成,4=3+1第2个图案由7个基础图形组成,7=3×2+1,第3个图案由10个基础图形组成,10=3×3+1,…,第n个图案中基础图形有:3n+1,故答案为:3n+1.【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.三、解答题(共6小题,满分60分)19.已知有理数a,b在数轴上的位置如图所示.(1)在数轴上标出﹣a,﹣b的位置,并比较a,b,﹣a,﹣b的大小:(2)化简|a+b|+|a﹣b|.【考点】有理数大小比较;数轴;绝对值.【专题】作图题;实数.【分析】(1)首先根据﹣a与a,﹣b与b互为相反数,﹣a与a,﹣b与b表示的点关于原点对称,在数轴上标出﹣a,﹣b的位置;然后根据数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,比较a,b,﹣a,﹣b的大小即可.(2)根据有理数a,b在数轴上的位置,可得a>0>b,而且|a|<|b|,所以a+b<0,a﹣b>0,据此化简|a+b|+|a﹣b|即可.【解答】解:(1)如图所示:,b<﹣a<a<﹣b.(2)∵a>0>b,而且|a|<|b|,∴a+b<0,a﹣b>0,∴|a+b|+|a﹣b|=﹣(a+b)+(a﹣b)=﹣a﹣b+a﹣b=﹣2b【点评】(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)此题还考查了数轴的特征和在数轴上表示数的方法,要熟练掌握,解答此题的关键是要明确:一般来说,当数轴方向朝右时,右边的数总比左边的数大.(3)此题还考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.20.x2﹣[2+(x2﹣y2)]﹣(﹣),其中x=﹣2,y=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x2﹣2﹣x2+y2+x2﹣y2=x2+y2﹣2,当x=﹣2,y=﹣时,原式=4+﹣2=2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.计算:(1)(﹣4)2×[(﹣1)5+(﹣)3)](2).【考点】有理数的混合运算;解一元一次方程.【专题】计算题;实数.【分析】(1)原式先计算乘方运算,再利用乘法分配律计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=8×(﹣1+﹣)=﹣8+6﹣1=﹣3;(2)去分母得:4x﹣2﹣2x﹣1=﹣6,移项合并得:2x=﹣3,解得:x=﹣1.5.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.据测定,海底扩张的速度是很缓慢的,在太平洋海底,某海沟的某处宽度为100米,某两侧的地壳向扩张的速度是每年6厘米,假设海沟扩张速度恒定,扩张时间为x年,海沟的宽度为y米.(1)写出海沟扩张时间x年与海沟的宽度y之间的表达式;(2)你能计算以下当海沟宽度y扩张到400米时需要多少年吗?【考点】函数关系式.【分析】(1)根据题意得出扩张时间x年时海狗增加的宽度为6x米,即可得出结果;(2)根据y与x的表达式得出当y=400时,6x+100=400,解方程即可.【解答】解:(1)根据题意得:海狗增加的宽度为6x米,∴海沟扩张时间x年与海沟的宽度y之间的表达式为:y=6x+100;(2)当y=400时,6x+100=400,解得:x=50,答:当海沟宽度y扩张到400米时需要50年.【点评】本题考查了函数表达式的确定以及应用;根据题意得出函数表达式是解决问题的关键.23.同学们,今天我们来学习一个新知识.这是一个高中或者大学里常见的数学指示,但是只要你开动脑筋,用你所学的七年级数学知识同样可以完美解决,敢不敢挑战一下?相信自己是最棒的!形如的式子叫做二阶行列式,它的运算法则用公式表示为=ad﹣bc,解决以下问题:(1)你能仿照上面的解释,表示出的结果吗?(2)依此法则计算的结果是多少?(3)再进一步,挑战一下!如果=4,那么x的值为多少?【考点】解一元一次方程;有理数的混合运算.【专题】新定义;实数.【分析】(1)根据题中的新定义化简原式即可;(2)原式利用题中的新定义计算即可得到结果;(3)已知等式利用题中的新定义化简,计算即可求出x的值.【解答】解:(1)根据题意得:原式=mq﹣np;(2)原式=8+3=11;(3)已知等式化简得:5x﹣3(x+1)=4,去括号得:5x﹣3x﹣3=4,移项合并得:2x=7,解得:x=3.5.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.24.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A、1.5小时以上;B、1~1.5小时;C、0.5~1小时;D、0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.【考点】扇形统计图;用样本估计总体;条形统计图.【专题】图表型.【分析】(1)读图可得:A类有60人,占30%即可求得总人数;(2)计算可得:“B”是100人,据此补全条形图;(3)用样本估计总体,若该校有3000名学生,则学校有3000×5%=150人平均每天参加体育锻炼在0.5小时以下.【解答】解:(1)读图可得:A类有60人,占30%;则本次一共调查了60÷30%=200人;本次一共调查了200位学生;(2)“B”有200﹣60﹣30﹣10=100人,画图正确;(3)用样本估计总体,每天参加体育锻炼在0.5小时以下占5%;则3000×5%=150,学校有150人平均每天参加体育锻炼在0.5小时以下.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小..。

2019学年山东威海市七年级(上)数学期末试卷(含解析)

 2019学年山东威海市七年级(上)数学期末试卷(含解析)

2019学年山东威海市七年级(上)数学期末试卷一、选择题(本大题共12小题,每小题3分,共36分.下列各题所给出的四个选项中,只有一个是正确的,每小题选对得3分,选错、不选或多选,均不得分.)1.下列图形中,是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】P3:轴对称图形.【分析】直接利用轴对称图形的定义进而判断得出答案.【解答】解:根据题意可得:从左起第2,3,4个图形,沿某条直线折叠后直线两旁的部分能够完全重合,都是轴对称图形,第1个图形不能重合,故选:C.2.如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2 B.4 C.6 D.8【考点】K6:三角形三边关系.【分析】已知三角形的两边长分别为2和4,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围.【解答】解:设第三边长为x,则由三角形三边关系定理得4﹣2<x<4+2,即2<x<6.因此,本题的第三边应满足2<x<6,把各项代入不等式符合的即为答案.2,6,8都不符合不等式2<x<6,只有4符合不等式.故选:B.3.若=3,则a的值为()A.3 B.±3 C.D.﹣3【考点】21:平方根;22:算术平方根.【专题】1:常规题型.【分析】直接利用算术平方根的定义计算得出答案.【解答】解:∵=3,∴a=±3.故选:B.4.下列各组数,互为相反数的是()A.﹣2与B.|﹣|与C.﹣2与(﹣)2 D.2与【考点】14:相反数;15:绝对值;22:算术平方根;24:立方根;28:实数的性质.【专题】11:计算题;511:实数.【分析】利用相反数定义判断即可.【解答】解:﹣2与(﹣)2互为相反数,故选:C.5.将△ABC各顶点的横坐标都乘以﹣1,纵坐标不变,顺次连接这三个点,得到另一个三角形,下列选项正确的是()A.B.C.D.【考点】P5:关于x轴、y轴对称的点的坐标.【专题】1:常规题型.【分析】根据将△ABC各顶点的横坐标都乘以﹣1,纵坐标不变,可得出对应点关于y轴对称,进而得出答案.【解答】解:∵将△ABC各顶点的横坐标都乘以﹣1,纵坐标不变,顺次连接这三个点,得到另一个三角形,∴对应点的坐标关于y轴对称,只有选项A符合题意.故选:A.6.若点A(x1,y1)和B(x2,y2)是直线y=﹣x+1上的两点,且x1>x2,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定【考点】F8:一次函数图象上点的坐标特征.【专题】1:常规题型.【分析】根据k=﹣<0,y将随x的增大而减小,然后根据一次函数的性质得出y1与y2的大小关系.【解答】解:∵k=﹣<0,∴y将随x的增大而减小,∵x1>x2,∴y1<y2.故选:A.7.△ABC的三边分别为a、b、c,其对角分别为∠A、∠B、∠C.下列条件不能判定△ABC是直角三角形的是()A.∠B=∠A﹣∠C B.a:b:c=5:12:13C.b2﹣a2=c2D.∠A:∠B:∠C=3:4:5【考点】K7:三角形内角和定理;KS:勾股定理的逆定理.【专题】11:计算题.【分析】根据三角形内角和定理判断A、D即可;根据勾股定理的逆定理判断B、C即可.【解答】解:A、∵∠B=∠A﹣∠C,∴∠B+∠C=∠A,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,即△ABC是直角三角形,故本选项错误;B、∵52+122=132,∴△ABC是直角三角形,故本选项错误;C、∵b2﹣a2=c2,∴b2=a2+c2,∴△ABC是直角三角形,故本选项错误;D、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形,故本选项正确;故选:D.8.如图,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19 cm,△ABD的周长为13 cm,则AE的长为()A.3 cm B.6 cm C.12 cm D.16 cm【考点】KG:线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质得到DA=DC,根据三角形的周长公式计算即可.【解答】解:∵DE是AC的垂直平分线,∴DA=DC,∵△ABC的周长为19 cm,△ABD的周长为13 cm,∴AB+BC+AC=19cm,AB+BD+AD=AB+BC+DC=AB+BC=13 cm,∴AC=6cm,∵DE是AC的垂直平分线,∴AE=AC=3cm,故选:A.9.如图,盒内长、宽、高分别是6cm、3cm、2cm,盒内可放木棒最长的长度是()A.6cm B.7cm C.8cm D.9cm【考点】KU:勾股定理的应用.【专题】554:等腰三角形与直角三角形.【分析】两次运用勾股定理:两直角边的平方和等于斜边的平方即可解决.【解答】解:本题需先求出长和宽组成的长方形的对角线长为=3cm.这根最长的棍子和矩形的高,以及长和宽组成的长方形的对角线组成了直角三角形.盒内可放木棒最长的长度是=7cm.故选:B.10.已知A,B两点的坐标是A(5,a),B(b,4),若AB平行于x轴,且AB=3,则a+b的值为()A.﹣1 B.9 C.12 D.6或12【考点】D6:两点间的距离公式.【专题】55:几何图形.【分析】根据平行于x轴的直线上的点的纵坐标相等求出a的值,再根据A、B为不同的两点确定b的值.【解答】解:∵AB∥x轴,∴a=4,∵AB=3,∴b=5+3=8或b=5﹣3=2.则a+b=4+8=12,或a+b=2+4=6,故选:D.11.如图,△ABC中,点D是边AB上一点,点E是边AC的中点,过点C作CF∥AB与DE的延长线相交于点F.下列结论不一定成立的是()A.DE=EF B.AD=CF C.DF=AC D.∠A=∠ACF 【考点】KD:全等三角形的判定与性质.【专题】55:几何图形.【分析】根据平行线性质得出∠1=∠F,∠2=∠A,求出AE=EC,根据AAS证△ADE ≌△CFE,根据全等三角形的性质推出即可.【解答】解:∵CF∥AB,∴∠1=∠F,∠2=∠A,∵点E为AC的中点,∴AE=EC,在△ADE和△CFE中,∴△ADE≌△CFE(AAS),∴DE=EF,AD=CF,∠A=∠ACF,故选:C.12.A,B两地相距80km,甲、乙两人骑车分别从A,B两地同时相向而行,他们都保持匀速行驶.如图,l1,l2分别表示甲、乙两人离B地的距离y(km)与骑车时间x(h)的函数关系.根据图象得出的下列结论,正确的个数是()①甲骑车速度为30km/小时,乙的速度为20km/小时;②l1的函数表达式为y=80﹣30x;③l2的函数表达式为y=20x;④小时后两人相遇.A.1个B.2个C.3个D.4个【考点】FH:一次函数的应用.【专题】533:一次函数及其应用.【分析】根据速度=,即可求出两人的速度,利用待定系数法求出一次函数和正比例函数解析式即可判定②③正确,利用方程组求出交点的横坐标即可判断④即可.【解答】解:甲骑车速度为=30km/小时,乙的速度为=20km/小时,故①正确,设l1的表达式为y=kx+b,把(0,80),(1,50)代入得到:,解得,∴直线l1的解析式为y=﹣30x+80,故②正确,设直线l2的解析式为y=k′x,把(3,60)代入得到k′=20,∴直线l2的解析式为y=20x,故③正确,由,解得x=,∴小时后两人相遇,故④正确,故选:D.二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)13.的平方根是±2.【考点】21:平方根;22:算术平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±214.如果点P在第四象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为(3,﹣4).【考点】D1:点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点P在第四象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P 的坐标为(3,﹣4),故答案为:(3,﹣4).15.如图,已知△ABC≌△DEF,∠A=50°,∠ACB=30°,则∠E=100°【考点】KA:全等三角形的性质.【专题】55:几何图形.【分析】根据全等三角形的性质可得∠A=∠EDC=50°,∠ACB=∠F=30°,然后利用三角形内角和定理可得答案.【解答】解:∵△ABC≌△DEF,∴∠A=∠EDC=50°,∠ACB=∠F=30°,∴∠E=180°﹣30°﹣50°=100°.故答案为:100°.16.把直线y=2x﹣1向上平移三个单位,则平移后直线与x轴的交点坐标是(﹣1,0).【考点】F8:一次函数图象上点的坐标特征;F9:一次函数图象与几何变换.【专题】53:函数及其图象.【分析】利用一次函数平移规律,上加下减进而得出平移后函数解析式,再求出图象与坐标轴交点即可.【解答】解:直线y=2x﹣1沿y轴向上平移3个单位,则平移后直线解析式为:y=2x﹣1+3=2x+2,当y=0时,则x=﹣1,故平移后直线与x轴的交点坐标为:(﹣1,0).故答案为:(﹣1,0).17.如图,有一块直角三角形纸片,两直角边AC=12,BC=16,现将直角边AC沿AD折叠,使它落在斜边AB上,且与AE重合,则△ADB的面积为60【考点】PB:翻折变换(折叠问题).【专题】55:几何图形.【分析】先根据勾股定理求得AB的长,再根据折叠的性质求得AE,BE的长,从而利用勾股定理可求得DE的长,进而利用三角形面积解答.【解答】解:∵AC=12,BC=16,∴AB=20,∵AE=12(折叠的性质),∴BE=8,设CD=DE=x,则在Rt△DEB中,82+x2=(16﹣x)2,解得x=6,即DE等于6,所以△ADB的面积=,故答案为:6018.已知一次函数y=kx+2(k≠0)与两坐标轴围成的三角形面积为2,则一次函数的表达式为y=x+2或y=﹣x+2.【考点】F8:一次函数图象上点的坐标特征;FA:待定系数法求一次函数解析式.【专题】53:函数及其图象.【分析】先求出一次函数y=kx+b与x轴和y轴的交点,再利用三角形的面积公式得到关于k的方程,解方程即可求出k的值.【解答】解:可得一次函数y=kx+2(k≠0)图象过点(0,2),令y=0,则x=﹣,∵函数图象与两坐标轴围成的三角形面积为2,∴×2×|﹣|=2,即||=2,解得:k=±1,则函数的解析式是y=x+2或y=﹣x+2.故答案为:y=x+2或y=﹣x+2三、解答题(本大题共7小题,共66分)19.计算:(1)﹣﹣;(2)+|﹣3|+(2﹣)0;(3)已知2x+1的平方根是±3,3x+y﹣2的立方根是﹣3,求x﹣y的平方根.【考点】21:平方根;24:立方根;2C:实数的运算;6E:零指数幂.【专题】11:计算题;511:实数.【分析】(1)原式利用平方根,立方根定义计算即可求出值;(2)原式利用绝对值的代数意义,以及零指数幂法则计算即可求出值;(3)利用平方根,立方根定义求出x与y的值,即可求出所求.【解答】解:(1)原式=﹣3﹣﹣9=﹣12;(2)原式=+3﹣+1=4;(3)根据题意得:2x+1=9,3x+y﹣2=﹣27,解得:x=4,y=﹣37,则x﹣y=4﹣(﹣37)=41,即41的平方根是±.20.尺规作图:(不要求写作法,只保留作图痕迹)如图,工厂A和工厂B,位于两条公路OC、OD之间的地带,现要建一座货物中转站P.若要求中转站P到两条公路OC、OD的距离相等,且到工厂A和工厂B的距离之和最短,请用尺规作出P的位置.【考点】KF:角平分线的性质;N4:作图—应用与设计作图;PA:轴对称﹣最短路线问题.【专题】1:常规题型.【分析】结合角平分线的作法以及利用轴对称求最短路线的方法分析得出答案.【解答】解:如图所示:点P即为所求.21.如图,某港口P位于东西方向的海岸线上,A、B两艘轮船同时从港口P出发,各自沿一固定方向航行,A轮船每小时航行12海里,B轮船每小时航行16海里.它们离开港口一个半小时后分别位于点R、Q处,且相距30海里.已知B轮船沿北偏东60°方向航行.(1)A轮船沿哪个方向航行?请说明理由;(2)请求出此时A轮船到海岸线的距离.【考点】KU:勾股定理的应用;TB:解直角三角形的应用﹣方向角问题.【专题】554:等腰三角形与直角三角形.【分析】(1)直接得出RP=18海里,PQ=24海里,QR=30海里,利用勾股定理逆定理以及方向角得出答案;(2)直接利用sin60°=,得出答案.【解答】解:(1)由题意可得:RP=18海里,PQ=24海里,QR=30海里,∵182+242=302,∴△RPQ是直角三角形,∴∠RPQ=90°,∵B轮船沿北偏东60°方向航行,∴∠RPS=30°,∴A轮船沿北偏西30°方向航行;(2)过点R作RM⊥PE于点M,则∠RPM=60°,则sin60°=,解得:RM=9.答:此时A轮船到海岸线的距离为9海里.22.(1)点P的坐标为(x,y),若x=y,则点P在坐标平面内的位置是在一、三象限的角平分线上;若x+y=0,则点P在坐标平面内的位置是在二、四象限的角平分线上;(2)已知点Q的坐标为(2﹣2a,a+8),且点Q到两坐标轴的距离相等,求点Q的坐标.【考点】F3:一次函数的图象;F4:正比例函数的图象.【专题】533:一次函数及其应用;66:运算能力;67:推理能力.【分析】(1)根据互为相反数的两个数的和等于0判断出x、y互为相反数,然后解答.(2)根据点Q到两坐标轴的距离相等列出方程,然后求解得到a的值,再求解即可.【解答】解:(1)∵点P的坐标为(x,y),若x=y,∴点P在一、三象限内两坐标轴夹角的平分线上.∵x+y=0,∴x、y互为相反数,∴P点在二、四象限内两坐标轴夹角的平分线上.故答案为:在一、三象限的角平分线上.在二、四象限的角平分线上.(2)∵点Q到两坐标轴的距离相等,∴|2﹣2a|=|8+a|,∴2﹣2a=8+a或2﹣2a=﹣8﹣a,解得a=﹣2或a=10,当a=﹣2时,2﹣2a=2﹣2×(﹣2)=6,8+a=8﹣2=6,当a=10时,2﹣2a=2﹣20=﹣18,8+a=8+10=18,所以,点Q的坐标为(6,6)或(﹣18,18).23.如图,E、F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE、BF交于点P.(1)求证:CE=BF;(2)求∠BPC的度数.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质.【分析】(1)欲证明CE=BF,只需证得△BCE≌△ABF;(2)利用(1)中的全等三角形的性质得到∠BCE=∠ABF,则由图示知∠PBC+∠PCB =∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,所以根据三角形内角和定理求得∠BPC=120°.【解答】(1)证明:如图,∵△ABC是等边三角形,∴BC=AB,∠A=∠EBC=60°,∴在△BCE与△ABF中,,∴△BCE≌△ABF(SAS),∴CE=BF;(2)解:∵由(1)知△BCE≌△ABF,∴∠BCE=∠ABF,∴∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,∴∠BPC=180°﹣60°=120°.即:∠BPC=120°.24.如图,点A的坐标为(﹣,0),点B的坐标为(0,3).(1)求过A,B两点直线的函数表达式;(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.【考点】F8:一次函数图象上点的坐标特征;FA:待定系数法求一次函数解析式.【专题】1:常规题型.【分析】(1)设直线l的解析式为y=ax+b,把A、B的坐标代入求出即可;(2)分为两种情况:①当P在x轴的负半轴上时,②当P在x轴的正半轴上时,求出AP和OB,根据三角形面积公式求出即可.【解答】解:(1)设过A,B两点的直线解析式为y=ax+b(a≠0),则根据题意,得,解得,,则过A,B两点的直线解析式为y=2x+3;(2)设P点坐标为(x,0),依题意得x=±3,所以P点坐标分别为P1(3,0),P2(﹣3,0).==,=×(3﹣)×3=,所以,△ABP的面积为或.25.如图,在△ABC中,∠BAC=90°,BE平分∠ABC,AM⊥BC于点M,交BE于点G,AD平分∠MAC,交BC于点D,交BE于点F.(1)判断直线BE与线段AD之间的关系,并说明理由;(2)若∠C=30°,图中是否存在等边三角形?若存在,请写出来并证明;若不存在,请说明理由.【考点】K7:三角形内角和定理;KL:等边三角形的判定.【专题】552:三角形.【分析】(1)根据余角的性质即可得到∠5=∠C;由AD平分∠MAC,得到∠3=∠4,根据三角形的外角的性质得到∠BAD=∠ADB,推出△BAD是等腰三角形,于是得到结论.(2)根据∠5=∠C=30°,AM⊥BC,可得∠ABD=60°,∠CAM=60°,进而得到∠ADB=∠3+∠C=60°,∠BAD=60°,依据∠ABD=∠BDA=∠BAD,可得△ABD是等边三角形;依据∠AEG=∠AGE=∠GAE,即可得到△AEG是等边三角形.【解答】解:(1)BE垂直平分AD,理由:∵AM⊥BC,∴∠ABC+∠5=90°,∵∠BAC=90°,∴∠ABC+∠C=90°,∴∠5=∠C;∵AD平分∠MAC,∴∠3=∠4,∵∠BAD=∠5+∠3,∠ADB=∠C+∠4,∠5=∠C,∴∠BAD=∠ADB,∴△BAD是等腰三角形,又∵∠1=∠2,∴BE垂直平分AD.(2)△ABD、△GAE是等边三角形.理由:∵∠5=∠C=30°,AM⊥BC,∴∠ABD=60°,∵∠BAC=90°,∴∠CAM=60°,∵AD平分∠CAM,∴∠4=∠CAM=30°,∴∠ADB=∠3+∠C=60°,∴∠BAD=60°,∴∠ABD=∠BDA=∠BAD,∴△ABD是等边三角形.∵Rt△BGM中,∠BGM=60°=∠AGE,又∵Rt△ACM中,∠CAM=60°,∴∠AEG=∠AGE=∠GAE,∴△AEG是等边三角形.。

威海市七年级数学上册期末测试卷及答案

威海市七年级数学上册期末测试卷及答案

威海市七年级数学上册期末测试卷及答案一、选择题1.在数3,﹣3,13,13-中,最小的数为( ) A .﹣3B .13C .13-D .32.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q3.若34(0)x y y =≠,则( ) A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 4.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .125.下列数或式:3(2)-,61()3-,25- ,0,21m +在数轴上所对应的点一定在原点右边的个数是( ) A .1B .2C .3D .46.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b7.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=40°时,∠BOD 的度数是( ) A .50°B .130°C .50°或 90°D .50°或 130°8.方程3x ﹣1=0的解是( ) A .x =﹣3B .x =3C .x =﹣13D .x =139.如图是由下列哪个立体图形展开得到的?( )A .圆柱B .三棱锥C .三棱柱D .四棱柱 10.单项式﹣6ab 的系数与次数分别为( )A .6,1B .﹣6,1C .6,2D .﹣6,2 11.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( ) A .2B .4C .﹣2D .﹣412.如图的几何体,从上向下看,看到的是( )A .B .C .D .二、填空题13.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.14.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.15.已知方程22x a ax +=+的解为3x =,则a 的值为__________. 16.已知|x |=3,y 2=4,且x <y ,那么x +y 的值是_____.17.已知a ,m ,n 均为有理数,且满足5,3a m n a -=-=,那么m n -的值为 ______________. 18.当a=_____时,分式13a a --的值为0. 19.如果向东走60m 记为60m +,那么向西走80m 应记为______m.20.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.21.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________; 22.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.23.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.24.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .三、解答题25.先化简,再求值:()()22326m n mn mn m n +--,其中3m =,2n =-.26.先化简,再求值: 22212144x x x x--+--,其中5x =. 27.计算(﹣1)2019+36×(11-32)﹣3÷(﹣34) 28.如图,在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB =2BC ,设点A ,B ,C 所对应数的和是m .(1)若点C 为原点,BC =1,则点A ,B 所对应的数分别为 , ,m 的值为 ;(2)若点B 为原点,AC =6,求m 的值.(3)若原点O 到点C 的距离为8,且OC =AB ,求m 的值.29.某快车的计费规则如表1,小明几次乘坐快车的情况如表2,请仔细观察分析表格解答以下问题:(1)填空:a = ,b = ; (2)列方程求解表1中的x ;(3)小明的爸爸23:10打快车从机场回家,快车行驶的平均速度是100公里/小时,到家后小明爸爸支付车费603元,请问机场到小明家的路程是多少公里?(用方程解决此问题)表1:某快车的计费规则里程费(元/公里)时长费(元/分钟)远途费(元/公里)5:00﹣23:00a9:00﹣18:00x 12公里及以下23:00﹣次日5:00 3.218:00﹣次日9:000.5超出12公里的部分1.6(说明:总费用=里程费+时长费+远途费)表2:小明几次乘坐快车信息上车时间里程(公里)时长(分钟)远途费(元)总费用(元)7:3055013.510:052018b66.730.解方程:4x﹣3(20﹣x)+4=0四、压轴题31.如图,在数轴上的A1,A2,A3,A4,……A20,这20个点所表示的数分别是a1,a2,a3,a4,……a20.若A1A2=A2A3=……=A19A20,且a3=20,|a1﹣a4|=12.(1)线段A3A4的长度=;a2=;(2)若|a1﹣x|=a2+a4,求x的值;(3)线段MN从O点出发向右运动,当线段MN与线段A1A20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN=5,求线段MN的运动速度.32.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t(t >0)秒,数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)若点P、Q同时出发,求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?33.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:∵3>13>13->﹣3,∴在数3,﹣3,13,13-中,最小的数为﹣3.故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.B解析:B【解析】【分析】【详解】∵实数-3,x ,3,y 在数轴上的对应点分别为M 、N 、P 、Q , ∴原点在点P 与N 之间,∴这四个数中绝对值最小的数对应的点是点N . 故选B .3.D解析:D 【解析】 【分析】根据选项进行一一排除即可得出正确答案. 【详解】解:A 中、34y 0x +=,可得34y x =-,故A 错; B 中、8-6y=0x ,可得出43x y =,故B 错; C 中、3+4x y y x =+,可得出23x y =,故C 错;D 中、43x y=,交叉相乘得到34x y =,故D 对. 故答案为:D. 【点睛】本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.4.C解析:C 【解析】 【分析】根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可. 【详解】解:根据题意可得: 设BC x =,则可列出:()223x x +⨯= 解得:4x =,12BC AB =, 28AB x ∴==. 故答案为:C. 【点睛】 本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.5.B解析:B【解析】 【分析】点在原点的右边,则这个数一定是正数,根据演要求判断几个数即可得到答案. 【详解】()32-=-8,613⎛⎫- ⎪⎝⎭=1719,25-=-25 ,0,21m +≥1 在原点右边的数有613⎛⎫- ⎪⎝⎭和 21m +≥1 故选B 【点睛】此题重点考察学生对数轴上的点的认识,抓住点在数轴的右边是解题的关键.6.D解析:D 【解析】 【分析】根据各点在数轴上的位置得出a 、b 两点到原点距离的大小,进而可得出结论. 【详解】解:∵由图可知a <0<b , ∴ab <0,即-ab >0 又∵|a |>|b |, ∴a <﹣b . 故选:D . 【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.7.D解析:D 【解析】 【分析】根据题意画出图形,再分别计算即可. 【详解】根据题意画图如下; (1)∵OC ⊥OD ,∴∠COD=90°,∵∠AOC=40°,∴∠BOD=180°﹣90°﹣40°=50°,(2)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠AOD=50°,∴∠BOD=180°﹣50°=130°,故选D.【点睛】此题考查了角的计算,关键是根据题意画出图形,要注意分两种情况画图.8.D解析:D【解析】【分析】方程移项,把x系数化为1,即可求出解.【详解】解:方程3x﹣1=0,移项得:3x=1,解得:x=13,故选:D.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.9.C解析:C【解析】【分析】三棱柱的侧面展开图是长方形,底面是三角形.【详解】解:由图可得,该展开图是由三棱柱得到的,故选:C.此题主要考查了几何体展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.10.D解析:D【解析】【分析】直接利用单项式的次数与系数确定方法分析得出答案.【详解】解:单项式﹣6ab的系数与次数分别为﹣6,2.故选:D.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.11.B解析:B【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到x的值.【详解】解:根据题意得:3x﹣9﹣3=0,解得:x=4,故选:B.【点睛】此题考查了相反数的性质及解一元一次方程,熟练掌握运算法则是解本题的关键.12.A解析:A【解析】【分析】根据已知图形和空间想象能力,从上面看图形,根据看的图形选出即可.【详解】从上面看是水平方向排列的两列,上一列是二个小正方形,下一列是右侧一个正方形,故A符合题意,故选:A.【点睛】本题考查了简单组合体的三视图的应用,主要培养学生的观察能力和空间想象能力.二、填空题13.14因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x, 因为M,N分别是AC,DB的中点,所以CM=,DN=,因为mn=17cm,所以x+4x+=1解析:14【解析】因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x,因为M,N分别是AC,DB的中点,所以CM=12AC x=,DN=1722BD x=,因为mn=17cm,所以x+4x+72x=17,解得x=2,所以BD=14,故答案为:14.14.8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点解析:8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点睛】此题考查多边形的对角线,解题关键在于掌握计算公式.15.2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能解析:2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.﹣1或﹣5【解析】【分析】利用绝对值和乘方的知识确定x、y的值,然后计算即可解答.【详解】解:∵|x|=3,y2=4,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=±2,当x=﹣解析:﹣1或﹣5【解析】【分析】利用绝对值和乘方的知识确定x、y的值,然后计算即可解答.【详解】解:∵|x|=3,y2=4,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=±2,当x=﹣3,y=2时,x+y=﹣1,当x=﹣3,y=﹣2时,x+y=﹣5,所以,x+y的值是﹣1或﹣5.故答案为:﹣1或﹣5.【点睛】本题主要考查了有理数的乘方、绝对值的性质有理数的加法等知识,,解题的关键是确定x、y的值.17.2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n解析:2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n−a=3时,|m-n|=8;当a−m=5,n−a=-3时,|m-n|=2;当a−m=-5,n−a=3时,|m-n|=2;当a−m=-5,n−a=-3时,|m-n|=8故本题答案应为:2或8【点睛】绝对值的性质是本题的考点,熟练掌握其性质、分类讨论是解题的关键18.1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式解析:1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a =1,故答案为:1.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.19.-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为,那么向西走80m 应记为.故答案为.【点睛】本题考查正数和负数解析:-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为60m +,那么向西走80m 应记为80m -.故答案为80-.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.20.60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.【详解】解:,,,平分,.故答案为60.【点睛】解析:60【解析】【分析】 本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可.【详解】 解:ABC 90∠=,CBD 30∠=,ABD 120∠∴=,BP 平分ABD ∠,ABP 60∠∴=.故答案为60.【点睛】角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到.21.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.22.5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么9 8.5对应的数记为﹣1.5.故答案为:﹣1.解析:5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.5.【点睛】本题考查了“正数”和“负数”..解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.依据这一点可以简化数的求和计算.23.6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1解析:6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1+3+3=7个基础图案,第3个图案中有1+3+3+3=10个基础图案,……第n个图案中有1+3+3+3+…3=(1+3n)个基础图案,当n=2013时,1+3n=1+3×2013=6040,故答案为:6040.【点睛】本题考查图形规律问题,由前3个图案得出规律,写出第n 个图案中的基础图形个数表达式是解题的关键.24.4000【解析】【分析】设铁块沉入水底后水面高hcm ,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm ,由题意得:50×40×8+20×20×h=解析:4000【解析】【分析】设铁块沉入水底后水面高hcm ,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm ,由题意得:50×40×8+20×20×h=50×40×h ,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm ),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm 3).故答案为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键.三、解答题25.24m n ;-72【解析】【分析】由题意先利用整式加减运算法则对式子进行化简,再将3m =,2n =-代入求解即可.【详解】解:()()22326m n mn mn m n +--=22366m n mn mn m n +-+=24m n ;将3m =,2n =-代入得到243(2)72.⨯⨯-=-【点睛】本题考查整式加减运算中的化简求值,利用合并同类项原则对式子先化简再代入计算求值.26.2x x +;57. 【解析】【分析】 直接利用分式的加减运算法则化简,然后代入求值,进而得出答案.【详解】解: 原式221214x x x --+=-222(2)4(2)(2)2x x x x x x x x x --===-+-+; 当x=5时,原式=57. 【点睛】 此题主要考查了分式的化简求值,正确掌握分式的加减运算法则是解题关键.27.-3【解析】【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:原式=﹣1+12﹣18+4=﹣3.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.28.(1)﹣3,﹣1,﹣4;(2)﹣2;(3)8或-40.【解析】【分析】(1)根据数轴上的点对应的数即可求解;(2)根据数轴上原点的位置确定其它点对应的数即可求解;(3)根据原点在点C 的右边先确定点C 对应的数,进而确定点B 、点A 所表示的数即可求解.【详解】解:(1)∵点C 为原点,BC =1,∴B 所对应的数为﹣1,∵AB =2BC ,∴AB =2,∴点A 所对应的数为﹣3,∴m =﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B 为原点,AC =6,AB =2BC ,AB+BC=AC ,∴AB=4,BC=2,∴点A 所对应的数为﹣4,点C 所对应的数为2,∴m =﹣4+2+0=﹣2;(3)∵原点O 到点C 的距离为8,∴点C 所对应的数为±8,∵OC =AB ,∴AB =8,当点C 对应的数为8,∵AB =8,AB =2BC ,∴BC =4,∴点B 所对应的数为4,点A 所对应的数为﹣4,∴m =4﹣4+8=8;当点C 所对应的数为﹣8,∵AB =8,AB =2BC ,∴BC =4,∴点B 所对应的数为﹣12,点A 所对应的数为﹣20,∴m =﹣20﹣12﹣8=﹣40.【点睛】本题考查了数轴,解决本题的关键是数形结合思想的灵活运用.29.(1)2.2,12.8;(2)x =0.55;(3)机场到小明家的路程是122公里.【解析】【分析】(1)根据表中数据列方程,可求得a 的值,b 的值按照题中计费方式列式计算即可; (2)根据里程费+时长费+远途费=总费用,列方程求解即可;(3)设机场到小明家的路程是y 公里,则按照夜间乘车的计费方式,列方程求解即可.【详解】解:(1)由题意得:5a +5×0.5=13.5解得:a =2.2b =(20﹣12)×1.6=12.8故答案为:2.2,12.8;(2)由题意得:20×2.2+12.8+18x =66.718x =9.9x =0.55(3)设机场到小明家的路程是y 公里,则3.2y +0.5×100y ×60+(y ﹣12)×1.6=603 解得y =122 答:机场到小明家的路程是122公里.【点睛】本题考查了一元一次方程在乘车问题中的应用,理清题中的数量关系,正确列方程,是解题的关键.30.x =8【解析】【分析】按照去括号、移项、合并同类项、系数化为1的步骤进行解答即可.【详解】解:4x﹣60+3x+4=0,4x+3x=60﹣4,7x=56,x=8.【点睛】本题考查了一元一次方程的解法,其一般步骤为去分母、去括号、移项、合并同类项、系数化为1.四、压轴题31.(1)4,16;(2)x=﹣28或x=52;(3)线段MN的运动速度为9单位长度/秒.【解析】【分析】(1)由A1A2=A2A3=……=A19A20结合|a1﹣a4|=12可求出A3A4的值,再由a3=20可求出a2=16;(2)由(1)可得出a1=12,a2=16,a4=24,结合|a1﹣x|=a2+a4可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(3)由(1)可得出A1A20=19A3A4=76,设线段MN的运动速度为v单位/秒,根据路程=速度×时间(类似火车过桥问题),即可得出关于v的一元一次方程,解之即可得出结论.【详解】解:(1)∵A1A2=A2A3=……=A19A20,|a1﹣a4|=12,∴3A3A4=12,∴A3A4=4.又∵a3=20,∴a2=a3﹣4=16.故答案为:4;16.(2)由(1)可得:a1=12,a2=16,a4=24,∴a2+a4=40.又∵|a1﹣x|=a2+a4,∴|12﹣x|=40,∴12﹣x=40或12﹣x=﹣40,解得:x=﹣28或x=52.(3)根据题意可得:A1A20=19A3A4=76.设线段MN的运动速度为v单位/秒,依题意,得:9v=76+5,解得:v=9.答:线段MN的运动速度为9单位长度/秒.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离以及规律性:图形的变化类,解题的关键是:(1)由相邻线段长度相等求出线段A3A4的长度及a2的值;(2)由(1)的结论,找出关于x的含绝对值符号的一元一次方程;(3)找准等量关系,正确列出一元一次方程.32.(1)﹣4,6﹣5t;(2)①当点P运动5秒时,点P与点Q相遇;②当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【解析】【分析】(1)根据题意可先标出点A,然后根据B在A的左侧和它们之间的距离确定点B,由点P 从点A出发向左以每秒5个单位长度匀速运动,表示出点P即可;(2)①由于点P和Q都是向左运动,故当P追上Q时相遇,根据P比Q多走了10个单位长度列出等式,根据等式求出t的值即可得出答案;②要分两种情况计算:第一种是点P追上点Q之前,第二种是点P追上点Q之后.【详解】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为5t,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣5t,故答案为﹣4,6﹣5t;(2)①点P运动t秒时追上点Q,根据题意得5t=10+3t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+3a﹣5a=8,解得a=1;当P超过Q,则10+3a+8=5a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【点睛】在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.33.(1)90°;(2)30°;(3)12秒或48秒.【解析】【分析】(1)依据图形可知旋转角=∠NOB,从而可得到问题的答案;(2)先求得∠AOC的度数,然后依据角的和差关系可得到∠NOC=60°-∠AON,∠AOM=90°-∠AON,然后求得∠AOM与∠NOC的差即可;(3)可分为当OM为∠BOC的平分线和当OM的反向延长为∠BOC的平分线两种情况,然后再求得旋转的角度,最后,依据旋转的时间=旋转的角度÷旋转的速度求解即可.【详解】(1)由旋转的定义可知:旋转角=∠NOB=90°.故答案为:90°(2)∠AOM﹣∠NOC=30°.理由:∵∠AOC:∠BOC=1:2,∠AOC+∠BOC=180°,∴∠AOC=60°.∴∠NOC=60°﹣∠AON.∵∠NOM=90°,∴∠AOM=90°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.(3)如图1所示:当OM为∠BOC的平分线时,∵OM为∠BOC的平分线,∴∠BOM=∠BOC=60°,∴t=60°÷5°=12秒.如图2所示:当OM的反向延长为∠BOC的平分线时,∵ON为为∠BOC的平分线,∴∠BON=60°.∴旋转的角度=60°+180°=240°.∴t=240°÷5°=48秒.故答案为:12秒或48秒.【点睛】本题主要考查的是三角形的综合应用,解答本题主要应用了旋转的定义、直角三角形的定义以及角的和差计算,求得三角板旋转的角度是解题的关键.。

【名校名卷】山东省威海市2019年数学七上期末学业水平测试试题

【名校名卷】山东省威海市2019年数学七上期末学业水平测试试题

山东省威海市2019年数学七上期末学业水平测试试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题1.如图,直线AE 与CD 相交于点B ,60ABC ∠=︒,95FBE ∠=︒,则DBF ∠的度数是( ).A.35︒B.40︒C.45︒D.60︒2.如图,∠1=15°,∠AOC=90°,点B ,O ,D 在同一直线上,则∠2的度数为( )A.75°B.105°C.15°D.165°3.下列命题中:①.有理数和数轴上的点一一对应;②.内错角相等;③.平行于同一条直线的两条直线互相平行;④.邻补角一定互补.其中真命题的个数是( ) A .1个 B .2个C .3个D .4个 4.方程x ﹣4=3x+5移项后正确的是( ) A .x+3x =5+4B .x ﹣3x =﹣4+5C .x ﹣3x =5﹣4D .x ﹣3x =5+45.下列解方程去分母正确的是( ) A.由,得2x ﹣1=3﹣3x B.由,得2x ﹣2﹣x =﹣4 C.由,得2y-15=3yD.由,得3(y+1)=2y+66.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9B .12C .18D .247.多项式8x 2﹣3x+5与3x 3﹣4mx 2﹣5x+7多项式相加后,不含二次项,则m 的值是( ) A .2B .4C .﹣2D .﹣48.下列根据等式的性质变形正确的是( ) A.若3x+2=2x ﹣2,则x =0 B.若12x =2,则x =1 C.若x =3,则x 2=3x D.若213x +﹣1=x ,则2x+1﹣1=3x 9.观察下列等式: 第一层 1+2=3 第二层 4+5+6=7+8第三层 9+10+11+12=13+14+15 第四层 16+17+18+19+20=21+22+23+24 ……在上述的数字宝塔中,从上往下数,2018在( ) A .第42层B .第43层C .第44层D .第45层10.下列计算中正确的是 ( ) A.-3-3=0B.(-2)×(-5)=-10C.5÷15=1 D .-2+2=0 11.若a+b <0,ab <0,则( ) A .a >0,b >0 B .a <0,b <0C .a ,b 两数一正一负,且正数的绝对值大于负数的绝对值D .a ,b 两数一正一负,且负数的绝对值大于正数的绝对值 12.若x 是2的相反数,|y|=4,且x+y<0,则x –y=( ) A .–6 B .6 C .–2 D .2 二、填空题13.一个角的余角比它的补角的13还少20°,则这个角是_____________. 14.如图,直线AB 、CD 相交于点O ,∠COE 为直角,∠AOE=60°,则∠BOD=__________°.15.定义一种新运算“⊕”:a b=2a-b ⊕,比如:1-3=21--3=5⊕⨯()(),若3x-2x+1=2⊕()(),那么x 的值为____. 16.已知关于x 的方程=2的解是x=2,则m=__________.17.有理数a 、b 、c 在数轴上的位置如图,则a c c b a b ++--+=______.18.若4x 3y 5+=,则()()38y x 5x 6y 2--++的值等于______.19.如果一个零件的实际长度为a,测量结果是b,则称|b﹣a|为绝对误差,b aa为相对误差.现有一零件实际长度为5.0cm,测量结果是4.8cm,则本次测量的相对误差是_____.20.将0.66,23,60%按从小到大的顺序排列:_________(用“<”连接).三、解答题21.如图1,点为直线上一点,过点作射线,使,将一直角三角板的直角顶点放在点处,一边在射线上,另一边在直线的下方.(1)将图1中的三角板绕点逆时针旋转至图,使一边在的内部,且恰好平分,问:此时直线是否平分?请直接写出结论:直线______(平分或不平分).(2)将图1中的三角板绕点以每秒的速度沿逆时针方向旋转一周,在旋转的过程中,第秒时,直线恰好平分锐角,则的值为_______.(直接写出结果)(3)将图1中的三角板绕点顺时针旋转,请探究:当始终在的内部时(如图3),与的差是否发生变化?若不变,请求出这个差值;若变化,请举例说明.22.(1)如图1所示,将一副三角尺的直角顶点重合在点O处.①∠AOC与∠BOD相等吗?说明理由;②∠AOD与∠BOC数量上有什么关系吗?说明理由.(2)若将这副三角尺按图2所示摆放,直角顶点重合在点O处,不添加字母,分析图中现有标注字母所表示的角;①找出图中相等关系的角;②找出图中互补关系的角,并说明理由.23.甲乙两人同时从A地前往相距25.5千米的B地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍还快2千米/时,甲先到达B地后,立即由B地沿原路返回.在途中遇到乙,这时距他们出发时间刚好为3小时,求两人的速度.24.已知数轴上三点M,O,N对应的数分别为-1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.(4)如果点P 以每分钟1个单位长度的速度从点O 向左运动,同时点M 和点N 分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动. 设t 分钟时点P 到点M 、点N 的距离相等,求t 的值.25.先化简,再求值:已知|2a +1|+(4b -2)2=0,求3ab 2-[2221522a b ab ab ⎛⎫+-+ ⎪⎝⎭]+6a 2b 的值. 26.先化简,再求值:2(2)()(2)5()a b a b a b a a b +-+---,其中1,2a b =-=.27.计算:(1)225(3)()39⎡⎤-⨯-+-⎢⎥⎣⎦;(2)62311(10.5)2(3)5⎡⎤---⨯⨯+-⎣⎦ 28.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.(1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置; (2)小明家与小刚家相距多远?【参考答案】*** 一、选择题 1.A 2.B 3.B 4.D 5.D 6.C 7.A 8.C 9.C 10.D 11.D 12.D 二、填空题13.75° 14.15015. SKIPIF 1 < 0 解析:7516.0 17.18. SKIPIF 1 < 0 解析:20- 19.0420.60%<0.66< SKIPIF 1 < 0解析:60%<0.66<23三、解答题21.(1)平分(2)或49(3)不变,22.(1)①∠AOC 与∠BOD 相等,见解析;②∠AOD+∠BOC=180°,见解析;(2)①∠AOB=∠COD ,∠AOC=∠BOD ;②∠AOB 与∠COD ,∠AOD 与∠BOC ,见解析. 23.甲的速度为12千米/小时,乙的速度是5千米/时. 24.(1)4;(2)1;(3)x 的值是﹣3或5(4)t 的值为23或4. 25.a 2b +1;98. 26.22ab b ,-8 27.(1)-11(2)0.25.28.(1)见解析;(2)9千米.。

威海市七年级上册数学期末试卷(含答案)

威海市七年级上册数学期末试卷(含答案)

威海市七年级上册数学期末试卷(含答案)一、选择题1.球从空中落到地面所用的时间t (秒)和球的起始高度h (米)之间有关系式t =,若球的起始高度为102米,则球落地所用时间与下列最接近的是( )A .3秒B .4秒C .5秒D .6秒 2.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+=C .6352x x -+=D .6352x x --= 3.如果﹣2xy n+2与 3x 3m-2y 是同类项,则|n ﹣4m|的值是( )A .3B .4C .5D .64.下列因式分解正确的是()A .21(1)(1)x x x +=+- B .()am an a m n +=- C .2244(2)m m m +-=-D .22(2)(1)a a a a --=-+ 5.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( ) A .22()m n - B .2(2m-n) C .22m n -D .2(2)m n - 6.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式7.方程3x ﹣1=0的解是( )A .x =﹣3B .x =3C .x =﹣13D .x =138.下列各数中,绝对值最大的是( )A .2B .﹣1C .0D .﹣39.下列调查中,最适合采用全面调查(普查)的是( )A .对广州市某校七(1)班同学的视力情况的调查B .对广州市市民知晓“礼让行人”交通新规情况的调查C .对广州市中学生观看电影《厉害了,我的国》情况的调查D .对广州市中学生每周课外阅读时间情况的调查10.3的倒数是( )A .3B .3-C .13D .13- 11.已知a ﹣b=﹣1,则3b ﹣3a ﹣(a ﹣b )3的值是( )A .﹣4B .﹣2C .4D .212.如图的几何体,从上向下看,看到的是( )A .B .C .D .二、填空题 13.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.14.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.15.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____.16.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………17.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.18.单项式﹣22πa b 的系数是_____,次数是_____. 19.已知23,9n m n a a -==,则m a =___________.20.16的算术平方根是 .21.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______.22.若α与β互为补角,且α=50°,则β的度数是_____.23.将520000用科学记数法表示为_____.24.定义:从一个角的顶点出发,把这个角分成1: 2 的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.如图,90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,以O 为中心,将∠COD 顺时针最少旋转__________ ,OA 恰好是∠COD 的三等分线.三、压轴题25.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.26.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数;(3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.27.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.(2)请你根据他们的谈话内容,求出图1中∠MON 的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.28.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.29.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____;灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;(3)若∣a-2∣+∣a+4∣=10,则a =______;实际应用:已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。

鲁教版(五四制2019---2020学年度第一学期期末考试七年级数学试卷

鲁教版(五四制2019---2020学年度第一学期期末考试七年级数学试卷

鲁教版(五四制2019---2020学年度第一学期期末考试七年级数学试卷考试时间:100分钟;满分120分题号一二三总分得分评卷人得分一、单选题1.(3分)同学们,交通安全要时刻牢记.下列交通标志图案中,是轴对称图形的是( ).A.B.C.D.2.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE3.(3分)在实数5、227、π、327、0.1212212221…(两个1之间依次多一个2)中,其中无理数的个数有( )A.1个B.2个C.3个D.4个4.(3分)直角三角形ABC的两条直角边的长分别为1、2,则它的斜边长为()A.3B.5C.2 D.35.(3分)下列式子中,正确的是()A.B.C.D.6.(3分)在平面直角坐标系中,点P(3,﹣2)到y轴的距离为()A.3 B.﹣3 C.2 D.﹣27.(3分)重庆一中寄宿学校北楼,食堂,含弘楼的位置如图所示,如果北楼的位置用(-1,2)表示,食堂的位置用(2,1)表示,那么含弘楼的位置表示成()A .(0,0)B .(0,4)C .(-2,0)D .(1,5)8.(3分)等腰三角形周长为20cm ,底边长ycm 与腰长xcm 之间的函数关系是( ) A .y=20-2x(0<x <10) B .y=20-2x(5<x <10) C .y=10-x(5<x <10)D .y=10-0.5x(10<x <20)9.(3分)如图,一架长25m 的梯子AB 斜靠在墙AC 上,这时梯足距墙面AC 距离为7m ,如果梯子顶端沿墙下滑4m ,那么梯足将向外滑动的距离BB 1为( )A .15mB .9mC .8mD .5m10.(3分)若点A (﹣3,y 1),B (2,y 2),C (4,y 3)是函数y=kx+2(k <0)图象上的点,则( ) A .1y <2y <3y B .1y >2y >3y C .1y <3y <2y D .2y >3y >1y评卷人 得分二、填空题11.(4分)化简: 43ππ-+-=________12.(4分)如图,为了加固小板凳,用两枚钉子A ,B 将一根木条钉在它上面,这种做法的几何原理是利用了三角形的_____.13.(4分)如图,小明从A 地沿北偏东60°方向走2千米到B 地,再从B 地向正南方向走3千米到C 地,此时小明距离A 地 千米(结果可保留根号).14.(4分)若某个正数的两个平方根分别是2a ﹣1与2a+5,则a=_____.15.(4分)如图,将直线OA 向上平移2个单位,得到一个一次函数的图象,则这个一次函数的表达式为__________.16.(4分)在平面直角坐标系中,已知一次函数23y x =-的图象经过P 1(x 1,y 1)、P 2(x 2,y 2)两点,若x 1>x 2,则y 1____y 2(填“>”或“<”).17.(4分)如图,在锐角△ABC 中,AC =8,△ABC 的面积为20,∠BAC 的平分线交BC 于点D ,M ,N 分别是AD 和AB 上的动点,则BM +MN 的最小值是________.18.(4分)小婷家与学校之间是一条笔直的公路,小婷从家步行前往学校的途中发现忘记带昨天的回家作业本,便向路人借了手机打给妈妈,妈妈接到电话后,带上作业本马上赶往学校,同时小婷沿原路返回.两人相遇后,小婷立即赶往学校,妈妈沿原路返回家,并且小婷到达学校比妈妈到家多用了5分钟,若小婷步行的速度始终是每分钟100米,小婷和妈妈之间的距离y 与小婷打完电话后步行的时间x 之间的函数关系如图所示(1)妈妈从家出发_____分钟后与小婷相遇;(2)相遇后妈妈回家的平均速度是每分钟_____米,小婷家离学校的距离为_____米.评卷人得分三、解答题19.(7分)求下列各等式中x的值(1)4(x﹣1)2=9 (2)3(1﹣x)3﹣81=020.(7分)在数轴上找出13对应的点.21.(7分)如果一个正数m的两个平方根为a+1和2a﹣7,请你求出这个正数.22.(7分)如图,已知DA⊥AC,EC⊥AC,点B在AC上,且DB⊥EB,AD=CB.求证:EB=BD.23.(7分)已知:如图,已知△ABC,(1)画出与△ABC关于轴对称的图形△A1B1C1.(2)求△ABC的面积.24.(7分)在一次消防演习中,消防员架起一架25米长的云梯,如图斜靠在一面墙上,梯子底端离墙7米.(1)求这个梯子的顶端距地面有多高?(2)如果消防员接到命令,要求梯子的顶端下降4米(云梯长度不变),那么云梯的底部在水平方向应滑动多少米?25.(8分)已知:一次函数y=kx+b的图象经过M(0,2),(1,3)两点.求该图象与x轴交点的坐标.26.(8分)如图,一次函数y=kx+b的图象经过(2,4)、(0,2)两点,与x轴相交于点C.求:(1)此一次函数的解析式;(2)△AOC的面积.参考答案1.B2.B3.C4.B5.A6.A7.C8.B9.C10.B11.112.稳定性13.14.-115.y=2x+216.>17.518.860210019.(1)x=52或x=﹣12;(2)x=﹣2.20.见解析21.922.见解析. 23.(1)如图所示:(2)524.(1)24米;(2)8米.25.(-2,0)26.(1)y=x+2;(2)4。

2019-2020学年山东省威海市数学七年级(上)期末统考模拟试题

2019-2020学年山东省威海市数学七年级(上)期末统考模拟试题

2019-2020学年山东省威海市数学七年级(上)期末统考模拟试题一、选择题1.如图,∠AOB 是直角,OA 平分∠COD ,OE 平分∠BOD ,若∠BOE=23°,则∠BOC 的度数是()A.113°B.134°C.136°D.144°2.平面内有n 条直线(n ≥2),这n 条直线两两相交,最多可以得到a 个交点,最少可以得到b 个交点,则a+b 的值是()A.1n n B.21nn C.22nn D.222nn 3.解方程2x 13x4134时,去分母正确的是()A.4(2x-1)-9x-12=1B.8x-4-3(3x-4)=12C.4(2x-1)-9x+12=1D.8x-4+3(3x-4)=124.鸡兔同笼问题是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?经计算可得()A.鸡12只,兔23只B.鸡15只,兔20只C.鸡20只,兔15只D.鸡23只,兔12只5.若代数式222xax y 62bx3x 5y 1(a,b 为常数)的值与字母x 的取值无关,则代数式a 3b 的值为()A .0B .1C .2或2D .66.已知整式252x x 的值为6,则整式2x 2-5x+6的值为()A .9B .12C .18D .247.2018年国庆假期里,民航提供的运力满足了旅客出行需求,中国民航共保障国内外航班近77800班,将77800用科学记数法表示应为().A.0.778×105B.7.78×105C.7.78×104D.77.8×1038.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为()A .55×105B .5.5×104C .0.55×105D .5.5×1059.2018的倒数是()A.12018B.12018C.2018D.201810.下列说法中,错误..的是()A.在所有正整数中,除2外所有的偶数都是合数B.在所有正整数中,除了素数都是合数C.一个合数至少有3个因数D.两个合数有可能是互素11.如图,∠1>∠2,那么∠2的余角是( )A.12∠1 B.12(∠1+∠2) C.12(∠1﹣∠2) D.不能确定12.如图,两个半径都是4cm的圆有一个公共点C,一只蚂蚁由点A开始依A、B、C、D、E、F、C、G、A 的顺序沿着圆周上的8段长度相等的路径绕行,蚂蚁在这8段路径上不断爬行,直到行走2014πcm后才停下来,则蚂蚁停的那一个点为( )A.D点B.E点C.F点D.G点二、填空题13.如图,C、D是线段AB上的两点,CD=1cm,点M是AD的中点,点N是BC的中点,且MN=3.5cm,则AB=______cm.14.∠α=0'402035",它的补角β=__________;15.某西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.当降至 2.6元/千克出售时,每天可赢利_____元.16.众所周知,中华诗词博大精深,集大量的情景、情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数反而少了20个字.根据题意可知七言绝句有____首.17.若x=y+3,则14(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+310(x﹣y)+7等于_____.18.数a、b在数轴上的位置如图所示,化简b﹣|b﹣a|=_____.19.若|a|=4,|b|=3,且a<0<b,则a b的值为_______. 20.由四舍五入法得到的近似数 1.230万,它是精确到_____位.三、解答题21.如图,已知点O 是直线AB 上的一点,40BOC ,OD 、OE 分别是BOC 、AOC 的角平分线.(1)求AOE 的度数;(2)写出图中与EOC 互余的角;(3)图中有COE 的补角吗?若有,请把它找出来,并说明理由.22.(背景知识)数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则A ,B 两点之间的距离AB=|a –b|,线段AB 的中点表示的数为2a b.(问题情境)如图,数轴上点A 表示的数为–2,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t>0).(综合运用)(1)填空:①A 、B 两点间的距离AB=__________,线段AB 的中点表示的数为__________;②用含t 的代数式表示:t 秒后,点P 表示的数为__________;点Q 表示的数为__________.(2)求当t 为何值时,P 、Q 两点相遇,并写出相遇点所表示的数;(3)求当t 为何值时,PQ=12AB ;(4)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.23.我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的23,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?24.以直线AB 上点O 为端点作射线OC ,使∠BOC=60°,将直角△DOE 的直角顶点放在点O 处.(1)如图1,若直角△DOE 的边OD 放在射线OB 上,则∠COE= ;(2)如图2,将直角△DOE 绕点O 按逆时针方向转动,使得OE 平分∠AOC ,说明OD 所在射线是∠BOC 的平分线;(3)如图3,将直角△DOE 绕点O 按逆时针方向转动,使得∠COD=15∠AOE .求∠BOD 的度数.25.先化简,再求值:[(x﹣y)2+(x+y)(x﹣y)]÷2x,其中x=﹣1,y=2.26.化简求值:(1)3(2x+1)+(3﹣x),其中x=﹣1;(2)(2a2﹣ab+4)﹣2(5ab﹣4a2+2),其中a=﹣1,b=﹣2.27.计算(每小题5分,共10分)(1)123(0.6)(3)(7)2454-︱-2︱(2)—1×—(0.5—1) ×3÷(—32—1)28.如图,已知数轴上点 A 表示的数为 6,B 是数轴上在 A 左侧的一点,且 A, B 两点间的距离为10.动点 P 从点 A 出发,以每秒 6 个单位长度的速度沿数轴向左匀速运动,设运动时间为 t(t>0)秒.(1)数轴上点 B 表示的数是,点 P 表示的数是(用含 t 的代数式表示);(2)动点 Q 从点 B 出发,以每秒 4 个单位长度的速度沿数轴向左匀速运动,若点 P、Q 时出发.求:①当点 P 运动多少秒时,点 P 与点 Q 相遇?②当点 P 运动多少秒时,点 P 与点 Q 间的距离为 8 个单位长度?【参考答案】一、选择题1.B2.D3.B4.D5.B6.C7.C8.B9.A10.B11.C12.D二、填空题13.814.139°39′25″15.21616.3517.1018.2b﹣a.19.-6420.十三、解答题21.(1)70°;(2)∠DOC,∠DOB;(3)∠EOB.22.(1)①10,3;②-2+3t,8-2t;(2)当t=2时,P、Q相遇,相遇点表示的数为4;(3)t=1或3;(4)5.23.这批书共有1500本.24.(1)30;(2)答案见解析;(3)65°或52.5°.25.x-y,-3.26.(1)5x+6, 1;(2)10a2﹣11ab,﹣12.27.(1)-4 (2)17 2028.(1)﹣4;6﹣6t;(2)①t=5,②当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.。

山东省威海市2019-2020学年数学七上期末学业水平测试试题

山东省威海市2019-2020学年数学七上期末学业水平测试试题

注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题1.下列几何体是棱锥的是( )A. B. C.D.2.如右图,射线OA的方向是北偏西60︒,射线OB的方向是南偏东25︒,则∠AOB的度数为( )A.120︒B.145︒C.115︒D.130︒3.∠A 的余角与∠A 的补角互为补角,那么 2∠A 是()A.直角B.锐角C.钝角D.以上三种都有可能4.若x=﹣1是关于x的方程2x﹣m﹣5=0的解,则m的值是()A.7B.﹣7C.﹣1D.15.方程1﹣22x-=13x+去分母得()A.1﹣3(x﹣2)=2(x+1)B.6﹣2(x﹣2)=3(x+1)C.6﹣3(x﹣2)=2(x+1)D.6﹣3x﹣6=2x+26.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价()A.40% B.20% C.25% D.15%7.某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是( )A.(1-10%)(1+15%)x万元B.(1-10%+15%)x万元C.(x-10%)(x+15%)万元D.(1+10%-15%)x万元8.下列判断中正确的是()A .3a 2bc 与bca 2不是同类项B .25m n 不是整式C .单项式-x 3y 2的系数是-1D .3x 2-y +5xy 2是二次三项式 9.单项式4x 2的系数是( )A .4B .3C .2D .1 10.在数轴上表示﹣2,0,6.3,15的点中,在原点右边的点有( ) A.0个 B.1个 C.2个 D.3个11.下列说法正确的是( )A.3-的倒数是13B.2-的绝对值是2-C.()5--的相反数是5-D.x 取任意实数时,4x都有意义 12.a 是负无理数,下列判断正确的是( )A.-a a <B.2a a >C.23a a <D.2a a <二、填空题13.57.32° = _______(________________)' ______ "14.将一副三角板如图放置,若∠AOD=30°,则∠BOC=______.15.某市在端午节准备举行划龙舟大赛,预计15个队共330人参加.已知每个队一条船,每条船上人数相等,且每条船上有1人击鼓,1人掌舵,其余的人同时划桨.设每条船上划桨的有x 人,那么可列出一元一次方程为__.16.小王用一笔钱购买了某款一年期年利率为2%的理财产品,到期支取时得本利和为5100元,则当时小王花________元钱购买理财产品.17.若多项式A 满足A +(2a 2-b 2)=3a 2-2b 2,则A =______.18.将一列有理数﹣1,2,﹣3,4,﹣5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C 的位置)是有理数4,那么,“峰6”中C 的位置是有理数_____,2018应排在A ,B ,C ,D ,E 中的_____位置.19.小明家的冰箱冷冻室的温度为﹣5℃,调高4℃后的温度是_____℃.20.下列说法:①-a 是负数;②一个数的绝对值一定是正数;③一个有理数不是正数就是负数;④平方等于本身的数是0和1.其中正确的是________.三、解答题21.图1所示的三棱柱,高为7cm ,底面是一个边长为5cm 的等边三角形.(1)这个三棱柱有 条棱,有 个面;(2)图2方框中的图形是该三棱柱的表面展开图的一部分,请将它补全;(3)要将该三棱柱的表面沿某些棱剪开,展开成一个平面图形,需剪开 条棱,需剪开棱的棱长的和的最大值为 cm .22.按要求画图:直线l 经过A ,B ,C 三点,且C 点在A ,B 之间,点P 是直线l 外一点,画直线BP ,射线PC ,线段AP .23.满足方程|2|2x -4|-3|=2x -1的所有解的和为多少?24.目前节能灯在城市已基本普及,某商场计划购进甲、乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:(1)如何进货,进货款恰好为46000元?(2)为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?25.若8x 2m y 3与﹣3xy 2n 是同类项,求2m ﹣2n 的值.26.先观察下列式子的变形规律:111122=-⨯; 1112323=-⨯; 1113434=-⨯; 然后解答下列问题:()1类比计算:120182019=⨯______. ()2归纳猜想:若n 为正整数,那么猜想()1n n 1=+______.()3知识运用:运用上面的知识计算111112233420182019+++⋯⋯+⨯⨯⨯⨯的结果. ()4知识拓展:试着写出111113355779+++⨯⨯⨯⨯的结果.(只要结果,不用写步骤). 27.计算:(1)3﹣6×11()23-(2)﹣13﹣(1﹣12)÷3×[3﹣(﹣3)2]. 28.观察下列等式:第一个等式:122211a 132222121==-+⨯+⨯++ 第二个等式:2222223211a 1322(2)2121==-+⨯+⨯++ 第三个等式:3333234211a 1322(2)2121==-+⨯+⨯++ 第四个等式:4444245211a 1322(2)2121==-+⨯+⨯++ 按上述规律,回答下列问题:()1请写出第六个等式:6a =______=______;()2用含n 的代数式表示第n 个等式:n a =______=______;()1234563a a a a a a +++++=______(得出最简结果);()4计算:12n a a a ++⋯+.【参考答案】***一、选择题1.D2.B3.A4.B5.C6.B7.A8.C9.A10.C11.C12.D二、填空题13.19 1214.150°15.15(x+2)=33016.500017.a2-b218.﹣29 B19.-120.④三、解答题21.(1)9,5;(2)见解析;(3)5,31.22.见解析.23.824.(1)购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元;(2)9折.25.-226.(1)1120182019-;(2) 11n n 1-+;()201832019;()449. 27.(1)2(2)028.(1)()6266213222+⨯+⨯,6121+-7121+;(2)()2213222n n n +⨯+⨯,121n +-1121n ++;(3)1443;(4)()1122321n n ++-+.。

山东省乳山市七年级上期末数学试卷及答案解析

山东省乳山市七年级上期末数学试卷及答案解析

第 1 页 共 20 页2020-2021学年山东省乳山市七年级上期末数学试卷一.选择题(共12小题,满分36分,每小题3分)1.(3分)点P (a ,b )在函数y =3x +2的图象上,则代数式6a ﹣2b +1的值等于( )A .5B .3C .﹣3D .﹣1 2.(3分)√83的平方根是( )A .2B .﹣2C .±√2D .±23.(3分)一个三角形的两边长分别为2和5,且第三边长为整数,这样的三角形的周长最大值是( )A .11B .12C .13D .144.(3分)如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,ED ⊥AB 于D .如果∠A =30°,AE =8cm ,那么CE =( )A .2cmB .3cmC .4cmD .5cm5.(3分)估计√6+1的值在( )A .2 到3 之间B .3 到4 之间C .4 到5 之间D .5 到6 之间6.(3分)将一副三角板按图中的方式叠放,则∠1的度数为( )A .105°B .100°C .95°D .110°7.(3分)在平面直角坐标系中,点A 的坐标是(3a ﹣5,a +1).若点A 到x 轴的距离与到y 轴的距离相等,且点A 在y 轴的右侧,则a 的值为( )A .1B .2C .3D .1 或 38.(3分)取一张长方形纸片,按图中所示的方法折叠一角,得到折痕EF ,若∠BEF =54°,则∠BFC 等于( )。

山东省威海市七年级上学期数学期末考试试卷

山东省威海市七年级上学期数学期末考试试卷

山东省威海市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)通过画数轴,下列说法正确的是()A . 有理数集合中没有最小数,也没有最大数;B . 有理数集合中有最小数,也有最大数;C . 有理数集合中有最小数,没有最大数;D . 有理数集合中有最大数,没有最小数;2. (2分) (2017七上·商城期中) 下列各式计算中,正确的是()A . 2a+2=4aB . ﹣2x2+4x2=2x2C . x+x=x2D . 2a+3b=5ab3. (2分) (2016七上·禹州期末) 一个正方体的平面展开图如图所示,折叠后可折成的图形是()A .B .C .D .4. (2分)下列去括号正确的是()A . a-(b-c)=a-b-cB . x2-[-(-x+y)]=x2-x+yC . m-2(p-q)=m-2p+qD . a+(b-c-2d)=a+b-c+2d5. (2分)两平行直线被第三条直线所截,内错角的平分线()A . 互相重合B . 互相平行C . 互相垂直D . 无法确定6. (2分)在、、、、、0中,整式的个数是()。

A . 6B . 3C . 4D . 57. (2分) (2020七上·来宾期末) 把一副三角尺按如图所示拼在一起,则等于()A .B .C .D .8. (2分)(2017·宛城模拟) 如图,半径为2的正六边形ABCDEF的中心在坐标原点O,点P从点B出发,沿正六边形的边按顺时针方向以每秒2个单位长度的速度运动,则第2017秒时,点P的坐标是()A . (1,)B . (﹣1,﹣)C . (1,﹣)D . (﹣1,)二、填空题 (共8题;共9分)9. (1分) (2017七下·江都期中) 计算 2﹣22﹣23﹣24…﹣299+2100=________.10. (1分) (2016七上·微山期中) 由四舍五入法得到的近似数10.560精确到________位.11. (1分)(2019·云南) 如图,若AB∥CD,∠1=40度,则∠2=________度.12. (1分) (2019七上·开州期中) 开州区隶属于重庆市,位于重庆市东北部,三峡库区小江支流回水末端,北依巴山,南近长江,西与四川省接壤。

威海市七年级数学上册期末测试卷及答案

威海市七年级数学上册期末测试卷及答案

威海市七年级数学上册期末测试卷及答案 一、选择题1.在数3,﹣3,13,13-中,最小的数为( ) A .﹣3 B .13 C .13- D .3 2.下列判断正确的是( )A .3a 2bc 与bca 2不是同类项B .225m n 的系数是2 C .单项式﹣x 3yz 的次数是5D .3x 2﹣y +5xy 5是二次三项式3.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .4.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( ) A .30分钟 B .35分钟 C .42011分钟 D .36011分钟 5.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( )A .()121826x x =-B .()181226x x =-C .()2181226x x ⨯=-D .()2121826x x ⨯=- 6.一个角是这个角的余角的2倍,则这个角的度数是( )A .30B .45︒C .60︒D .75︒ 7.互不相等的三个有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C 。

若:||||||a b b c a c -+-=-,则点B ( )A .在点 A, C 右边B .在点 A,C 左边 C .在点 A, C 之间D .以上都有可能8.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n -9.下列调查中,调查方式选择正确的是( )A .为了了解1 000个灯泡的使用寿命,选择全面调查B .为了了解某公园全年的游客流量, 选择抽样调查C .为了了解生产的一批炮弹的杀伤半径,选择全面调查D .为了了解一批袋装食品是否含有防腐剂,选择全面调查10.如果单项式13a xy +与2b x y 是同类项,那么a b 、的值分别为( ) A .2,3a b == B .1,2a b == C .1,3a b == D .2,2a b ==11.如图,4张如图1的长为a ,宽为b (a >b )长方形纸片,按图2的方式放置,阴影部分的面积为S 1,空白部分的面积为S 2,若S 2=2S 1,则a ,b 满足( )A .a =32b B .a =2b C .a =52b D .a =3b12.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 中点个数有 ( ) ①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB . A .1个B .2个C .3个D .4个 二、填空题13.已知x=5是方程ax ﹣8=20+a 的解,则a= ________14.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.15.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.16.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.17.已知a ,m ,n 均为有理数,且满足5,3a m n a -=-=,那么m n -的值为 ______________.18.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____.19.计算:()222a -=____;()2323x x ⋅-=_____.20.因式分解:32x xy -= ▲ .21.化简:2x+1﹣(x+1)=_____.22.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.23.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____.24.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.三、压轴题25.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.26.如图1,线段AB 的长为a .(1)尺规作图:延长线段AB 到C ,使BC =2AB ;延长线段BA 到D ,使AD =AC .(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB 所在的直线画数轴,以点A 为原点,若点B 对应的数恰好为10,请在数轴上标出点C ,D 两点,并直接写出C ,D 两点表示的有理数,若点M 是BC 的中点,点N 是AD 的中点,请求线段MN 的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D 处开始,在点C ,D 之间进行往返运动;乙从点N 开始,在N ,M 之间进行往返运动,甲、乙同时开始运动,当乙从M 点第一次回到点N 时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.27.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t(t >0)秒,数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)若点P、Q同时出发,求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?28.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角尺(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)若将图1中的三角尺绕点O以每秒5°的速度,沿顺时针方向旋转t秒,当OM恰好平分∠BOC时,如图2.①求t值;②试说明此时ON平分∠AOC;(2)将图1中的三角尺绕点O顺时针旋转,设∠AON=α,∠COM=β,当ON在∠AOC内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O以每秒5°的速度沿顺时针方向旋转的同时,射线OC也绕点O以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC第一次平分∠MON?请说明理由.29.点A在数轴上对应的数为﹣3,点B对应的数为2.(1)如图1点C在数轴上对应的数为x,且x是方程2x+1=12x﹣5的解,在数轴上是否存在点P使PA+PB=12BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(2)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM﹣34BN的值不变;②13PM24BN的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值30.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段BP的中点(1)若AP=2时,PM=____;(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直..向右运动,当点Q的运动时间为多少时,满足QM=2PM.31.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x xx xx x>⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x++-时,可令10x+=和20x-=,分别求得1x=-,2x=(称1-、2分别为|1|x+与|2|x-的零点值).在有理数范围内,零点值1x=-和2x=可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x<-;(2)1-≤2x<;(3)x≥2.从而化简代数式|1||2|x x++-可分为以下3种情况:(1)当1x<-时,原式()()1221x x x=-+--=-+;(2)当1-≤2x<时,原式()()123x x=+--=;(3)当x≥2时,原式()()1221x x x=++-=-综上所述:原式21(1)3(12)21(2)x xxx x-+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x+与|4|x-的零点值分别为;(2)化简式子324x x-++.32.已知:如图,点M是线段AB上一定点,12AB cm=,C、D两点分别从M、B 出发以1/cm s、2/cm s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)()1若4AM cm=,当点C、D运动了2s,此时AC=________,DM=________;(直接填空)()2当点C、D运动了2s,求AC MD+的值.()3若点C、D运动时,总有2MD AC=,则AM=________(填空)()4在()3的条件下,N是直线AB上一点,且AN BN MN-=,求MNAB的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:∵3>13>13->﹣3,∴在数3,﹣3,13,13-中,最小的数为﹣3.故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.C解析:C【解析】【分析】根据同类项的定义,单项式和多项式的定义解答.【详解】A.3d2bc与bca2所含有的字母以及相同字母的指数相同,是同类项,故本选项错误.B.225m n的系数是25,故本选项错误.C.单项式﹣x3yz的次数是5,故本选项正确.D.3x2﹣y+5xy5是六次三项式,故本选项错误.故选C.【点睛】本题考查了同类项,多项式以及单项式的概念及性质.需要学生对概念的记忆,属于基础题.3.C解析:C【解析】【分析】根据余角与补角的性质进行一一判断可得答案..【详解】解:A,根据角的和差关系可得∠α=∠β=45o;B,根据同角的余角相等可得∠α=∠β;C,由图可得∠α不一定与∠β相等;D,根据等角的补角相等可得∠α=∠β.故选C.【点睛】本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等. 4.D解析:D【解析】【分析】由题意知,开始写作业时,分针和时针组成一平角,写完作业时,分针和时针重合.设小强做数学作业花了x分钟,根据分针追上时针时多转了180°列方程求解即可.【详解】分针速度:30度÷5分=6度/分;时针速度:30度÷60分=0.5度/分.设小强做数学作业花了x分钟,由题意得6x-0.5x=180,解之得x= 360 11.故选D.【点睛】本题考查了一元一次方程的应用---追击问题,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.5.D解析:D【解析】【分析】设分配x名工人生产螺栓,则(26-x)名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程.【详解】解:设分配x名工人生产螺栓,则(26-x)名生产螺母,∵要使每天生产的螺栓和螺母按1:2配套,每人每天能生产螺栓12个或螺母18个, ∴可得2×12x=18(26-x ).故选:D .【点睛】本题考查了根据实际问题抽象一元一次方程,要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.6.C解析:C【解析】【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解.【详解】解:根据题意列方程的:2(90°-α)=α,解得:α=60°.故选:C .【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).7.C解析:C【解析】【分析】 根据a b b c -+-表示数b 的点到a 与c 两点的距离的和,a c -表示数a 与c 两点的距离即可求解.【详解】∵绝对值表示数轴上两点的距离a b -表示a 到b 的距离b c -表示b 到c 的距离a c -表示a 到c 的距离∵a b b c a c -+-=-丨丨丨丨丨丨∴B 在A 和C 之间故选:C【点睛】本题考查的是数轴的特点,熟知数轴上两点之间的距离公式是解答此题的关键.8.C解析:C【解析】【分析】根据题意可以用代数式表示m的2倍与n平方的差.【详解】用代数式表示“m的2倍与n平方的差”是:2m-n2,故选:C.【点睛】本题考查了列代数式,解题的关键是明确题意,列出相应的代数式.9.B解析:B【解析】选项A、C、D,了解1000个灯泡的使用寿命,了解生产的一批炮弹的杀伤半径,了解一批袋装食品是否含有防腐剂,都是具有破坏性的调查,无法进行普查,不适于全面调查,适用于抽样调查.选项B,了解某公园全年的游客流量,工作量大,时间长,需要用抽样调查.故选B.10.C解析:C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.11.B解析:B【解析】【分析】从图形可知空白部分的面积为S2是中间边长为(a﹣b)的正方形面积与上下两个直角边为(a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形面积与空白部分面积之差,再由S2=2S1,便可得解.【详解】由图形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故选B.【点睛】本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.12.A解析:A【解析】①项,因为AP=BP,所以点P是线段AB的中点,故①项正确;②项,点P可能是在线段AB的延长线上且在点B的一侧,此时也满足BP=12AB,故②项错误;③项,点P可能是在线段BA的延长线上且在点A的一侧,此时也满足AB=2AP,故③项错误;④项,因为点P为线段AB上任意一点时AP+PB=AB恒成立,故④项错误.故本题正确答案为①.二、填空题13.7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解析:7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解得:a=7.故答案为7.考点:方程的解.14.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和解析:09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.15.【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为解析:【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x的一元一次方程,解之即可得出x的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.【详解】解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x=12+6x,解得:x=3,∴盒子底部长方形的面积=4×3=12.故答案为:12.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.16.-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果,此时就需要将结果返回重新计算,直到结果,才能输出结果.【详解】解:根据如图所示:当输入的是的时候,,此时结果解析:-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1>-,此时就需要将结果返回重新计算,直到结果1<-,才能输出结果.【详解】解:根据如图所示:当输入的是1-的时候,1(3)21-⨯--=,此时结果1>-需要将结果返回,即:1(3)25⨯--=-,此时结果1<-,直接输出即可,故答案为:5-.【点睛】本题考查程序设计题,解题关键在于数的比较大小和读懂题意.17.2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n解析:2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n−a=3时,|m-n|=8;当a−m=5,n−a=-3时,|m-n|=2;当a−m=-5,n−a=3时,|m-n|=2;当a−m=-5,n−a=-3时,|m-n|=8故本题答案应为:2或8【点睛】绝对值的性质是本题的考点,熟练掌握其性质、分类讨论是解题的关键18.-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3解析:-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.19.【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键解析:44a 56x -【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】()222a -=44a ()2323x x ⋅-=56x -【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键20.x (x ﹣y )(x+y ).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因解析:x (x ﹣y )(x+y ).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】x 3﹣xy 2=x (x 2﹣y 2)=x (x ﹣y )(x+y ),故答案为x (x ﹣y )(x+y ).21.x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x ﹣1=x ,故答案为:x .【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.22.40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.解析:40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.23.17【解析】【分析】【详解】解:根据题意可得:+3x=7,则原式=2(+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键解析:17【解析】【分析】【详解】解:根据题意可得:2x+3x=7,则原式=2(2x+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键24.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是-︒解析:18.4C【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.三、压轴题25.(1)1,-3,-5(2)i)存在常数m,m=6这个不变化的值为26,ii)11.5s【解析】【分析】(1)根据非负数的性质求得a、b、c的值即可;(2)i)根据3BC-k•AB求得k的值即可;ii)当AC=13AB时,满足条件.【详解】(1)∵a、b满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a,b,c的值分别为1,-3,-5.(2)i)假设存在常数k,使得3BC-k•AB不随运动时间t的改变而改变.则依题意得:AB=5+t,2BC=4+6t.所以m•AB-2BC=m(5+t)-(4+6t)=5m+mt-4-6t与t的值无关,即m-6=0,解得m=6,所以存在常数m,m=6这个不变化的值为26.ii)AC=13 AB,AB=5+t,AC=-5+3t-(1+2t)=t-6,t-6=13(5+t),解得t=11.5s.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.26.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767.【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35(3)设乙从M点第一次回到点N时所用时间为t,则t=223522MN⨯==35(秒)那么甲在总的时间t内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123这时甲和乙所对应的有理数为112 3④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有5t4﹣1123﹣30﹣15+2t4=1123,t4=91621(秒)此时甲的位置:5×91621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767这时甲和乙所对应的有理数为﹣767.四次相遇所用时间为:5+10+203+91621=3137(秒),剩余运行时间为:35﹣3137=347(秒)当时间为35秒时,乙回到N点停止,甲在剩余的时间运行距离为5×347=5257=1767.位置在﹣767+1767=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、1123、﹣767.【点睛】本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.27.(1)﹣4,6﹣5t;(2)①当点P运动5秒时,点P与点Q相遇;②当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【解析】【分析】(1)根据题意可先标出点A,然后根据B在A的左侧和它们之间的距离确定点B,由点P 从点A出发向左以每秒5个单位长度匀速运动,表示出点P即可;(2)①由于点P和Q都是向左运动,故当P追上Q时相遇,根据P比Q多走了10个单位长度列出等式,根据等式求出t的值即可得出答案;②要分两种情况计算:第一种是点P追上点Q之前,第二种是点P追上点Q之后.【详解】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为5t,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣5t,故答案为﹣4,6﹣5t;(2)①点P运动t秒时追上点Q,根据题意得5t=10+3t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+3a﹣5a=8,解得a=1;当P超过Q,则10+3a+8=5a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【点睛】在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.28.(1)①t=3;②见解析;(2)β=α+60°;(3)t=5时,射线OC第一次平分∠MON.【解析】【分析】(1)根据角平分线的性质以及余角补角的性质即可得出结论;(2)根据∠NOC=∠AOC-∠AON=90°-∠MOC即可得到结论;(3)分别根据转动速度关系和OC平分∠MON列方程求解即可.【详解】(1)①∵∠AOC=30°,OM平分∠BOC,∴∠BOC=2∠COM=2∠BOM=150°,∴∠COM=∠BOM=75°.∵∠MON=90°,∴∠CON=15°,∠AON+∠BOM=90°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,∴∠AON=∠CON,∴t=15°÷3°=5秒;②∵∠CON=15°,∠AON=15°,∴ON平分∠AOC.(2)∵∠AOC=30°,∴∠NOC=∠AOC-∠AON=90°-∠MOC,∴30°-α=90°-β,∴β=α+60°;(3)设旋转时间为t秒,∠AON=5t,∠AOC=30°+8t,∠CON=45°,∴30°+8t=5t+45°,∴t=5.即t=5时,射线OC第一次平分∠MON.【点睛】本题考查了一元一次方程的应用以及角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.29.(1)存在满足条件的点P,对应的数为﹣92和72;(2)正确的结论是:PM﹣34BN的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.解方程2x+1=12x﹣5得x=﹣4.所以BC=2﹣(﹣4)=6.所以.设存在点P满足条件,且点P在数轴上对应的数为a,①当点P在点a的左侧时,a<﹣3,PA=﹣3﹣a,PB=2﹣a,所以AP+PB=﹣2a﹣1=8,解得a=﹣,﹣<﹣3满足条件;②当点P在线段AB上时,﹣3≤a≤2,PA=a﹣(﹣3)=a+3,PB=2﹣a,所以PA+PB=a+3+2﹣a=5≠8,不满足条件;③当点P在点B的右侧时,a>2,PA=a﹣(﹣3)=a+3,PB=a﹣2.,所以PA+PB=a+3+a﹣2=2a+1=8,解得:a=,>2,所以,存在满足条件的点P,对应的数为﹣和.(2)设P点所表示的数为n,∴PA=n+3,PB=n﹣2.∵PA的中点为M,∴PM=12PA=.N为PB的三等分点且靠近于P点,∴BN=PB=×(n﹣2).∴PM﹣34BN=﹣34××(n﹣2),=(不变).②12PM +34BN =+34××(n ﹣2)=34n ﹣(随P 点的变化而变化). ∴正确的结论是:PM ﹣BN 的值不变,且值为2.5.【点睛】本题考查了一元一次方程的解,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.30.(1)5 ;(2)点F 表示的数是11.5或者-6.5;(3)127t =或6t =. 【解析】【分析】(1)由AP=2可知PB=12-2=10,再由点M 是PB 中点可知PM 长度;(2)点P 运动3秒是9个单位长度,M 为PB 的中点,则可求解出点M 表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.【详解】(1)5 ;(2)∵点A 表示的数是5-∴点B 表示的数是7∵点P 运动3秒是9个单位长度,M 为PB 的中点 ∴PM=12PB=4.5,即点M 表示的数是2.5 ∵FM=2PM∴FM=9∴点F 表示的数是11.5或者-6.5(3)设Q 运动的时间为t 秒, 当04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,则AB=AQ+QP+PB ,而QP=QM-PM=2PM-PM=12BP ,则可得12=2.5t+12⨯3t+3t=7t ,解得t=127; 当48t <≤时,由题可知QM=2PM=BP ,故点Q 位于点B 右侧,则PB=2QB ,则可得,()()123422.512t t --=-,整理得8t=48,解得6t =.。

威海市七年级上册数学期末试卷(带答案)-百度文库

威海市七年级上册数学期末试卷(带答案)-百度文库

威海市七年级上册数学期末试卷(带答案)-百度文库一、选择题1.若34(0)x y y =≠,则( )A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 2.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .3.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠4.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( ) A .1B .2C .3D .45.9327-,3-,(3)--,化简后结果为3-的是( ) A 9B 327-C .3-D .(3)--6.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .592 7.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣78.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( )A .(-1)n -1x 2n -1B .(-1)n x 2n -1C .(-1)n -1x 2n +1D .(-1)n x 2n +1 9.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n - 10.解方程121123x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1 C .3(x +1)﹣2(2x ﹣1)=6 D .3(x +1)﹣2×2x ﹣1=611.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( ) A .∠AOC=∠BOC B .∠AOB=2∠BOC C .∠AOC=12∠AOB D .∠AOC+∠BOC=∠AOB12.下列等式的变形中,正确的有( ) ①由5 x =3,得x =53;②由a =b ,得﹣a =﹣b ;③由﹣x ﹣3=0,得﹣x =3;④由m =n ,得mn=1. A .1个 B .2个 C .3个 D .4个 13.单项式﹣6ab 的系数与次数分别为( )A .6,1B .﹣6,1C .6,2D .﹣6,214.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+15.下列各数中,比73-小的数是( ) A .3-B .2-C .0D .1-二、填空题16.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 . 17.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.18.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 19.若523m xy +与2n x y 的和仍为单项式,则n m =__________.20.化简:2xy xy +=__________. 21.单项式﹣22πa b的系数是_____,次数是_____.22.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.23.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______.24.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x 人,则可列方程______. 25.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______. 26.如果一个数的平方根等于这个数本身,那么这个数是_____.27.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)28.8点30分时刻,钟表上时针与分针所组成的角为_____度. 29.-2的相反数是__.30.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .三、压轴题31.已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF=14°时,t=秒.32.已知多项式3x6﹣2x2﹣4的常数项为a,次数为b.(1)设a与b分别对应数轴上的点A、点B,请直接写出a=,b=,并在数轴上确定点A、点B的位置;(2)在(1)的条件下,点P以每秒2个单位长度的速度从点A向B运动,运动时间为t 秒:①若PA﹣PB=6,求t的值,并写出此时点P所表示的数;②若点P从点A出发,到达点B后再以相同的速度返回点A,在返回过程中,求当OP=3时,t为何值?33.如图,数轴上点A表示的数为4-,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t0)>.()1A,B两点间的距离等于______,线段AB的中点表示的数为______;()2用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;()3求当t为何值时,1PQ AB2=?()4若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN 的长.34.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇? (2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.35.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?36.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n 的式子表示第n 个图的钢管总数. (分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n的式子列式,并计算第n个图的钢管总数.37.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数______;点P表示的数______(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P、Q 同时出发,问点P运动多少秒时追上Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.38.在数轴上,图中点A表示-36,点B表示44,动点P、Q分别从A、B两点同时出发,相向而行,动点P、Q的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P到达原点O,动点Q到达点C,设运动的时间为t(t>0)秒.(1)求OC的长;(2)经过t秒钟,P、Q两点之间相距5个单位长度,求t的值;(3)若动点P 到达B 点后,以原速度立即返回,当P 点运动至原点时,动点Q 是否到达A 点,若到达,求提前到达了多少时间,若未能到达,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据选项进行一一排除即可得出正确答案. 【详解】解:A 中、34y 0x +=,可得34y x =-,故A 错; B 中、8-6y=0x ,可得出43x y =,故B 错; C 中、3+4x y y x =+,可得出23x y =,故C 错;D 中、43x y=,交叉相乘得到34x y =,故D 对. 故答案为:D. 【点睛】本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.2.A解析:A 【解析】 【分析】从正面看:共分3列,从左往右分别有1,1,2个小正方形,据此可画出图形. 【详解】∵从正面看:共分3列,从左往右分别有1,1,2个小正方形, ∴从正面看到的平面图形是,故选:A . 【点睛】本题考查简单组合体的三视图,解题时注意:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3.C解析:C【解析】【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的12(∠1+∠2)代入②中,即可求得结果.【详解】解:由图知:∠1+∠2=180°,∴12(∠1+∠2)=90°,∴90°-∠1=12(∠1+∠2)-∠1=12(∠2-∠1).故选:C.【点睛】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.4.B解析:B【解析】【分析】根据线段中点的性质,可得AC的长.【详解】解:由线段中点的性质,得AC=12AB=2.故选B.【点睛】本题考查了两点间的距离,利用了线段中点的性质.5.B解析:B【解析】【分析】由题意直接利用求平方根和立方根以及绝对值的性质和去括号分别化简得出答案.【详解】解:,故排除A;=3-,选项B 正确; C. 3-=3,故排除C; D. (3)--=3,故排除D. 故选B. 【点睛】本题主要考查求平方根和立方根以及绝对值的性质和去括号原则,正确掌握相关运算法则是解题关键.6.C解析:C 【解析】 【分析】由题意设第一列第一行的数为x ,依次表示每个数,并相加进行分析得出选项. 【详解】解:设第一列第一行的数为x ,第一行四个数分别为,1,2,3x x x x +++, 第二行四个数分别为7,8,9,10x x x x ++++, 第三行四个数分别为14,15,16,17x x x x ++++, 第四行四个数分别为21,22,23,24x x x x ++++,16个数相加得到16192x +,当相加数为208时x 为1,当相加数为480时x 为18,相加数为496时x 为19,相加数为592时x 为25,由数字卡片可知,x 为19时,不满足条件. 故选C. 【点睛】本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.7.A解析:A 【解析】 【分析】由已知可得3b ﹣6a+5=-3(2a ﹣b )+5,把2a ﹣b =3代入即可. 【详解】3b ﹣6a+5=-3(2a ﹣b )+5=-9+5=-4. 故选:A 【点睛】利用乘法分配律,将代数式变形.8.C解析:C 【解析】 【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得.【详解】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负, 指数为从第3开始的奇数,所以指数部分规律为21n , ∴第n 个单项式是 (-1)n -1x 2n +1 , 故选C. 【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.9.C解析:C 【解析】 【分析】根据题意可以用代数式表示m 的2倍与n 平方的差. 【详解】用代数式表示“m 的2倍与n 平方的差”是:2m-n 2, 故选:C . 【点睛】本题考查了列代数式,解题的关键是明确题意,列出相应的代数式.10.C解析:C 【解析】 【分析】方程两边都乘以分母的最小公倍数即可. 【详解】解:方程两边同时乘以6,得:3(1)2(21)6x x +--=, 故选:C . 【点睛】本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.11.D解析:D 【解析】A. ∵∠AOC =∠BOC , ∴OC 平分∠AOB ,即OC 是∠AOB 的角平分线,正确,故本选项错误; B. ∵∠AOB =2∠BOC =∠AOC +∠BOC , ∴∠AOC =∠BOC ,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;C. ∵∠AOC=12∠AOB,∴∠AOB=2∠AOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;D. ∵∠AOC+∠BOC=∠AOB,∴假如∠AOC=30°,∠BOC=40°,∠AOB=70°,符合上式,但是OC不是∠AOB的角平分线,故本选项正确.故选D.点睛:本题考查了角平分线的定义,注意:角平分线的表示方法,①OC是∠AOB的角平分线,②∠AOC=∠BOC,③∠AOB=2∠BOC(或2∠AOC),④∠AOC(或∠BOC)=12∠AOB.12.B 解析:B 【解析】①若5x=3,则x=35,故本选项错误;②若a=b,则-a=-b,故本选项正确;③-x-3=0,则-x=3,故本选项正确;④若m=n≠0时,则nm=1,故本选项错误.故选B.13.D解析:D【解析】【分析】直接利用单项式的次数与系数确定方法分析得出答案.【详解】解:单项式﹣6ab的系数与次数分别为﹣6,2.故选:D.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.14.D解析:D【解析】【分析】方程两边同乘12即可得答案.【详解】方程212134x x-+=-两边同时乘12得:4(21)123(2)x x-=-+故选:D.【点睛】本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.15.A解析:A【解析】【分析】先根据正数都大于0,负数都小于0,可排除C,再根据两个负数,绝对值大的反而小进行判断即可.【详解】解:根据两个负数,绝对值大的反而小可知-3<73 -.故选:A.【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.二、填空题16.3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.解析:3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.17.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.18.-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、解析:-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、3,所以最小的整数是﹣3.故答案为:﹣3.【点睛】本题考查了数轴,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.19.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9. 解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.20..【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:故填.【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键. 解析:3xy .【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:23.xy xy xy +=故填3xy .【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.21.﹣; 3.【解析】【分析】根据单项式的次数、系数的定义解答.【详解】解:单项式﹣的系数是﹣,次数是2+1=3,故答案是:﹣;3.【点睛】本题考查了单项式系数、次数的定义解析:﹣2π; 3. 【解析】【分析】 根据单项式的次数、系数的定义解答.【详解】解:单项式﹣22πa b 的系数是﹣2π,次数是2+1=3, 故答案是:﹣2π;3. 【点睛】本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键. 22.20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.解析:20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB ,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB =90°,∴∠2+∠3=90°.∴∠3=90°−∠2.∵a ∥b ,∠2=2∠1,∴∠3=∠1+∠CAB ,∴∠1+30°=90°−2∠1,∴∠1=20°.故答案为:20.【点睛】此题考查平行线的性质,关键是根据平行线的性质和直角三角形的性质得到角之间的关系.23.2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为,把代入方程得:,解得:,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能解析:2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为1-,把x 1=-代入方程2x 3a 4+=得:23a 4-+=,解得:a 2=,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能得出关于a 的一元一次方程是解此题的关键.24.【解析】【分析】设应派往甲处x 人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处人,解析:()27x 21920x ⎡⎤+=+-⎣⎦【解析】【分析】设应派往甲处x 人,则派往乙处()20x -人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处()20x -人,根据题意得:()27x 21920x ⎡⎤+=+-⎣⎦.故答案为()27x 21920x ⎡⎤+=+-⎣⎦.【点睛】本题考查由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.25.-5【解析】【分析】根据题意确定出a 的最大值,b 的最小值,即可求出所求.【详解】解:,,,,则原式,故答案为【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.解析:-5【解析】【分析】根据题意确定出a 的最大值,b 的最小值,即可求出所求.【详解】解:459<<,23∴<<,a 2∴=,b 3=,则原式495=-=-,故答案为5-【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.26.0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵±=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】解析:0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.27.270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程解析:270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程式,求解即可.【详解】设∠DOE=x,根据OC平分∠AOD,∠BOD=4∠DOE,∠COE=α,∴∠BOD=4x,∠AOC=∠COD=α-x,由∠BOD+∠AOD=180°,∴4x+2(α-x )=180°解得x=90°-α,∴∠BOE=3x=3(90°-α)=270°-3α,故答案为:270°-3α.【点睛】本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.28.75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.解析:75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.29.2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.解析:2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.30.5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的 .考点:几何体的三视图.解析:5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的 .考点:几何体的三视图.三、压轴题31.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4.【解析】【分析】(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+,解方程即可求出t 的值. 【详解】 解:(1)∵OE 平分∠AOC ,OF 平分∠BOD ,∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;(2)∠AOE ﹣∠BOF 的值是定值 由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;(3)根据题意得∠BOF =(3t+14)°,∴3314202t t +=+, 解得4t =.故答案为4.【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键. 32.(1)﹣4,6;(2)①4;②1319,22或 【解析】【分析】(1)根据多项式的常数项与次数的定义分别求出a ,b 的值,然后在数轴上表示即可; (2)①根据PA ﹣PB =6列出关于t 的方程,解方程求出t 的值,进而得到点P 所表示的数;②在返回过程中,当OP =3时,分两种情况:(Ⅰ)P 在原点右边;(Ⅱ)P 在原点左边.分别求出点P 运动的路程,再除以速度即可.【详解】(1)∵多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b ,∴a =﹣4,b =6.如图所示:故答案为﹣4,6;(2)①∵PA =2t ,AB =6﹣(﹣4)=10,∴PB =AB ﹣PA =10﹣2t .∵PA ﹣PB =6,∴2t ﹣(10﹣2t )=6,解得t =4,此时点P 所表示的数为﹣4+2t =﹣4+2×4=4;②在返回过程中,当OP =3时,分两种情况:(Ⅰ)如果P 在原点右边,那么AB+BP =10+(6﹣3)=13,t =132; (Ⅱ)如果P 在原点左边,那么AB+BP =10+(6+3)=19,t =192. 【点睛】本题考查了一元一次方程的应用,路程、速度与时间关系的应用,数轴以及多项式的有关定义,理解题意利用数形结合是解题的关键.33.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.【解析】【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.(3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变.【详解】 解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6 ()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t -()13PQ AB 2= ()43t 162t 10∴-+--=t 2∴=或6答:t 2=或6时,1PQ AB 2= ()4线段MN 的长度不会变化,点M 为PA 的中点,点N 为PB 的中点,1PM PA 2∴=,1PN PB 2= ()1MN PM PN PA PB 2∴=-=- 1MN AB 102∴== 【点睛】本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.34.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .【解析】【分析】(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.【详解】解:(1)设经过ts 后,点P Q 、相遇.依题意,有2330t t +=,解得:6t =.答:经过6秒钟后,点P Q 、相遇;(2)设经过xs ,P Q 、两点相距10cm ,由题意得231030x x ++=或231030x x +-=,解得:4x =或8x =.答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;(3)点P Q 、只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为:()120430s =或()1201801030s +=, 设点Q 的速度为/ycm s ,则有4302y =-,解得:7y =;或10306y =-,解得 2.4y =,答:点Q 的速度为7/cm s 或2.4/cm s .【点睛】本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.35.(1)﹣4,6﹣5t ;(2)①当点P 运动5秒时,点P 与点Q 相遇;②当点P 运动1或9秒时,点P 与点Q 间的距离为8个单位长度.【解析】【分析】(1)根据题意可先标出点A ,然后根据B 在A 的左侧和它们之间的距离确定点B ,由点P 从点A 出发向左以每秒5个单位长度匀速运动,表示出点P 即可;(2)①由于点P 和Q 都是向左运动,故当P 追上Q 时相遇,根据P 比Q 多走了10个单位长度列出等式,根据等式求出t 的值即可得出答案;②要分两种情况计算:第一种是点P 追上点Q 之前,第二种是点P 追上点Q 之后.【详解】解:(1)∵数轴上点A 表示的数为6,∴OA =6,则OB =AB ﹣OA =4,点B 在原点左边,∴数轴上点B 所表示的数为﹣4;点P 运动t 秒的长度为5t ,∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,∴P 所表示的数为:6﹣5t ,故答案为﹣4,6﹣5t ;(2)①点P 运动t 秒时追上点Q ,根据题意得5t =10+3t ,解得t =5,答:当点P 运动5秒时,点P 与点Q 相遇;②设当点P 运动a 秒时,点P 与点Q 间的距离为8个单位长度,当P 不超过Q ,则10+3a ﹣5a =8,解得a =1;当P 超过Q ,则10+3a+8=5a ,解得a =9;答:当点P 运动1或9秒时,点P 与点Q 间的距离为8个单位长度.【点睛】在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.36.(1)3456;45678S S =+++=++++ ;(2) 方法不唯一,见解析;(3)方法不唯一,见解析【解析】【分析】先找出前几项的钢管数,在推出第n 项的钢管数.【详解】(1)3456;45678S S =+++=++++(2)方法不唯一,例如:12S =+ 1233S =+++ 123444S =+++++ 12345555S =+++++++ (3)方法不唯一,例如:()()12.....2S n n n n =++++++()()()()=.....12.. (1112)n n n n n n n n +++++++=+++ ()312n n =+ 【点睛】此题主要考察代数式的规律探索及求和,需要仔细分析找到规律.37.(1)-12,8-5t ;(2)94或114;(3)10;(4)MN 的长度不变,值为10. 【解析】【分析】(1)根据已知可得B 点表示的数为8﹣20;点P 表示的数为8﹣5t ;(2)运动时间为t 秒,分点P 、Q 相遇前相距2,相遇后相距2两种情况列方程进行求解即可;(3)设点P 运动x 秒时追上Q ,根据P 、Q 之间相距20,列方程求解即可;(4)分①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差求出MN 的长即可.【详解】(1)∵点A 表示的数为8,B 在A 点左边,AB=20,∴点B 表示的数是8﹣20=﹣12,∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒,∴点P 表示的数是8﹣5t ,故答案为﹣12,8﹣5t ;(2)若点P 、Q 同时出发,设t 秒时P 、Q 之间的距离恰好等于2;分两种情况:①点P 、Q 相遇之前,由题意得3t+2+5t=20,解得t=94; ②点P 、Q 相遇之后,由题意得3t ﹣2+5t=20,解得t=114, 答:若点P 、Q 同时出发,94或114秒时P 、Q 之间的距离恰好等于2; (3)如图,设点P 运动x 秒时,在点C 处追上点Q ,则AC=5x ,BC=3x ,∵AC ﹣BC=AB ,∴5x ﹣3x=20,。

山东省威海市乳山市2019-2020学年七年级上学期期末数学试题

山东省威海市乳山市2019-2020学年七年级上学期期末数学试题

初二数学亲爱的同学:你好!答题前,请仔细阅读以下说明:1.本试卷分第1卷、第I 卷两部.第I 卷为选择题,第1I 卷为非选择题,考试时120分钟. 2.不允许使用计算器,3.本次考试另设10分卷面分.希望你能愉快地度过这120分钟,祝你成功!一、 选择题 (本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.直线23y x =-与y 轴的交点坐标是( )A. ()0,2B. 30,2⎛⎫ ⎪⎝⎭ C. ()0,3 D. ()0,3-)A. 2B. 2±C.D.3. 若三角形的两边长分别为6 ㎝,9 cm ,则其第三边的长可能为A. 2㎝B. 3 cmC. 7㎝D. 16 cm4.如图,在ABC ∆中,90,ACB BE ∠=︒平分, ABC ED AB ∠⊥于D .如果30A ∠=︒,8AE cm =,那么CE =( )A. 2cmB. 3cmC. 4cmD. 5cm5.介于( )A. 0.4与0.5之间B. 0.5与0.6之间C. 0.6与0.7之间D. 0.7与0.8之间6.将一副三角板按图中的方式叠放,则1∠的度数为( )A. 105︒B. 100︒C. 95︒D. 110︒7.在平面直角坐标系中,若点(), P a b 在第二象限,则点() , Q b a 所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.如图,在Rt ABC ∆中,90,55∠=︒∠=︒ACB A ,将其折叠,使点A 落在边CB 上'A 处,折痕为CD ,则' A DB ∠的度数为( )A. 10︒B. 15︒C. 20︒D. 25︒9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 Km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x Km ,邮箱中剩油量为y L ,则y 与x 之间的函数解析式和自变量取值范围分别是( )A. y=0.12x ,x >0B. y=60﹣0.12x ,x >0C. y=0.12x ,0≤x≤500D. y=60﹣0.12x ,0≤x≤500 10.已知点()3,P a 关于x 轴的对称点为(),2Q b ,则ab =( )A. 6B. 6-C. 5D. 5-11.如图,在Rt ABC ∆中,9AB =,6BC =,90B ∠=︒,将ABC ∆折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A. 52B. 53C. 4D. 512.,A B 两地相距20千米,甲、乙两人都从A 地去B 地,图中1l 和2l 分别表示甲、乙两人所走路程s (千米)与时间t (小时)之间的关系.对于下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是6千米/小时;④乙先到达B 地,其中正确的个数是( )A. 4个B. 3个C. 2个D. 1个第II 卷(非选择题,共84分)二、填空题:(每题3分,共18分)13.如图,AB=AC ,要使△ABE≌△ACD ,应添加的条件是 (添加一个条件即可).14.若1k k <<+ (k 是整数),则k =__________.15.如图,在ABC ∆中,AB AC =, D 为BC 上一点,且,DA DC BD BA ==,则B ∠=__________.16.若()(),,0,42,7,10()A B C a -三点在同一直线上,则a = ___________.17.《九章算术》是我国古代重要的数学著作之一,在“勾股”中记载了一道“折竹抵地”问题:“今今今今今今,未折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,今ABC 中,今ACB =90°,AC +AB =10,BC =3,求AC 的长,如果设AC =x ,则可列方程求出AC 的长为____________.18.在平面直角坐标系中,点P(-2,3)关于直线y=x -1对称的点的坐标是_______.三.解答下列各题:(每题7分,共66分)19.()2202 3.143π-⎛⎫-+-- ⎪⎝⎭ 20.如图,在ABC ∆中,AD 是BC 边上的高,AE 平分4610,,∠∠=︒∠=︒BAC C DAE ,求B Ð的度数.21.如图,AD 与BC 交于点E ,连接, , , AC BD AD BC AC BD ==.写出CE 与DE 相等的理由.22.如图,在四边形ABCD 中,6, 60==∠=︒AB AD A , 150,4ADC BC CD ∠=︒-=,求四边形ABCD周长.23.公司销售部门提供了某种产品销售收入(记为: 1y /元)、销售成本(记为:2y /元)、销售量(记为: x /吨)方面的信息如下:①0x =时,22000y =;②2x =时,12000,y = 23000y =; ③1y 与x 成正比例函数关系;④2y 与x 成一次函数关系. 依据上述信息,解决下列问题: (1)分别求出12,y y 与x 的函数关系式; (2)销售量多少吨时,销售收入与销售成本相同?(3)若销售量为6吨时,求公司的利润. (利润=销售收入-销售成本) 24.如图,点A 坐标为()0, 4,点B 的坐标为()8, 2,点P 是x 轴上一点,且PA PB +的值最小,(1)确定点P 位置,并求点P 的坐标; (2)求PA PB +的最小值. 的25.[材料阅读]材料一:如图,90AOB ∠=︒,点P 在AOB ∠的平分线OM 上,90CPD ∠=o ,点C ,D 分别在, OA OB 上.可求得如下结论:-PC PD , OC OD +为定值.材料二(性质):四边形内角和为360︒.[问题解决](1)如图,点P 在AOB ∠的平分线OM 上,, , ,PE OA OP m PE n CPD ⊥==∠的边与, OA OB 交于点,C D ,且180∠+∠=︒AOB CPD ,求OC OD +的值(用含, m n 的式子表示).(2)如图,在平面直角坐标系中,直线7y x =-+与y 轴,x 轴分别交于,A B 两点,点P 是AB 的中点,90CPD ∠=︒,PC 与y 轴交于点C ,PD 与x 轴的正半轴交于点,2D OC =,连接CD .求CD 的长度.的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年山东省威海市乳山市七年级(上)期末数学试卷(五四学制)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1. 直线y=2x−3与y轴的交点坐标是()) C.(0, 3) D.(0, −3)A.(0, 2)B.(0,32【答案】D【考点】一次函数图象上点的坐标特点【解析】根据y轴上点的坐标特征得到直与y轴的交点的横坐标为0,然后把x=0代入直线解析式求出对应的y的值即可.【解答】把x=0代入y=2x−3得y=−3,所以直线y=2x−3与y轴的交点坐标是(0, −3).3的平方根是()2. √8A.2B.−2C.±√2D.±2【答案】C【考点】平方根立方根的性质【解析】利用立方根定义计算即可求出值.【解答】3=2,2的平方根是±√2,√83. 若三角形的两边长分别为6cm,9cm,则其第三边的长可能为()A.2cmB.3cmC.7cmD.16cm【答案】C【考点】三角形三边关系【解析】已知三角形的两边长分别为6cm和9cm,根据在三角形中任意两边之和>第三边,或者任意两边之差<第三边,即可求出第三边长的范围.【解答】设第三边长为xcm.由三角形三边关系定理得9−6<x<9+6,解得3<x<15.4. 如图,在△ABC中,∠ACB=90∘,BE平分∠ABC,ED⊥AB于D.如果∠A=30∘,AE=8cm,那么CE=()A.2cmB.3cmC.4cmD.5cm【答案】C【考点】含30度角的直角三角形角平分线的性质【解析】先根据角平分线的性质得到ED=EC,再利用含30度的直角三角形三边的关系计算出DE,从而得到CE的长.【解答】∵BE平分∠ABC,ED⊥AB,EC⊥AC,∴ED=EC,在Rt△ADE中,∵∠A=30∘,∴ED=12AE=12×8=4,∴CE=4cm.5. 估计√5−12介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间【答案】C【考点】估算无理数的大小【解析】先估算√5的范围,再进一步估算√5−12,即可解答.【解答】解:∵√5≈2.235,∴√5−1≈1.235,∴√5−12≈0.617,∴√5−12介于0.6与0.7之间,故选:C.6. 将一副三角板按图中的方式叠放,则∠1的度数为()A.105∘B.100∘C.95∘D.110∘【答案】A【考点】三角形内角和定理三角形的外角性质【解析】先求出∠2=45∘、∠3=30∘,再根据三角形的内角和列式计算即可得解.【解答】由图可知,∠2=90∘−45∘=45∘,∴∠1=180−45∘−30∘=105∘.7. 在直角坐标系中,若点P(a, b)在第二象限中,则点Q(−a, −b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【考点】点的坐标【解析】根据点P在第二象限判断出a,b的符号,进而得到−a,−b的符号判断出Q所在象限即可.【解答】∵点P(a, b)在第二象限中,∴a<0,b>0,∴−a>0,−b<0,∴点Q(−a, −b)在第四象限,8. 如图,Rt△ABC中,∠ACB=90∘,∠A=55∘,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=( )A.40∘B.30∘C.20∘D.10∘【答案】C【考点】三角形的外角性质直角三角形的性质翻折变换(折叠问题)【解析】在直角三角形ABC中,由∠ACB与∠A的度数,利用三角形的内角和定理求出∠B的度数,再由折叠的性质得到∠CA′D=∠A,而∠CA′D为三角形A′BD的外角,利用三角形的外角性质即可求出∠A′DB的度数.【解答】解:在Rt△ABC中,∠ACB=90∘,∠A=55∘,∴∠B=180∘−90∘−55∘=35∘,由折叠可得:∠CA′D=∠A=55∘,又∵∠CA′D为△A′BD的外角,∴∠CA′D=∠B+∠A′DB,则∠A′DB=55∘−35∘=20∘.故选C.,9. 某油箱容量为60 L的汽车,加满汽油后行驶了100 km时,油箱中的汽油大约消耗了15如果加满汽油后汽车行驶的路程为xkm,油箱中剩油量为yL,则y与x之间的函数解析式和自变量取值范围分别是()A.y=0.12x,x>0B.y=60−0.12x,x>0C.y=0.12x,0≤x≤500D.y=60−0.12x,0≤x≤500【答案】D【考点】根据实际问题列一次函数关系式【解析】根据题意列出一次函数解析式,即可求得答案.【解答】因为油箱容量为60 L的汽车,加满汽油后行驶了100 km时,油箱中的汽油大约消耗了1,5×60÷100=0.12L/km,60÷0.12=500(km),可得:15所以y与x之间的函数解析式和自变量取值范围是:y=60−0.12x,(0≤x≤500),10. 已知点P(3, a)关于x轴的对称点为Q(b, 2),则ab=()A.6B.−6C.5D.−5【答案】【考点】关于x轴、y轴对称的点的坐标【解析】根据关于x轴对称点的坐标特点:纵坐标互为相反数,横坐标不变,可得a=−2,b=3,进而可得答案.【解答】∵点P(3, a)关于x轴的对称点为Q(b, 2),∴a=−2,b=3,∴ab=−6,11. 如图,Rt△ABC中,AB=9,BC=6,∠B=90∘,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为( )A.5 3B.52C.4D.5【答案】C【考点】勾股定理翻折变换(折叠问题)【解析】设BN=x,则由折叠的性质可得DN=AN=9−x,根据中点的定义可得BD=3,在Rt△BDN中,根据勾股定理可得关于x的方程,解方程即可求解.【解答】解:设BN=x,由折叠的性质可得DN=AN=9−x,∵D是BC的中点,∴BD=3,在Rt△BDN中,x2+32=(9−x)2,解得x=4.故线段BN的长为4.故选C.12. A,B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系.对于下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是6千米/小时;④乙先到达B地.其中正确的个数是( )A.4个B.3个C.2个D.1个【答案】B【考点】一次函数的应用一次函数的图象【解析】根据函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【解答】解:由图可知,乙晚出发1小时,故①正确;乙出发3−1=2小时后追上甲,故②错误;甲的速度是:18÷3=6(千米/小时),故③正确;乙先到达B地,故④正确.故选B.二、填空题:(每题3分,共18分)如图,AB=AC,要使△ABE≅△ACD,依据ASA,应添加的一个条件是________.【答案】∠C=∠B【考点】全等三角形的判定【解析】添加∠C=∠B,再加上公共角∠A=∠A,已知条件AB=AC可利用ASA判定△ABE≅△ACD.【解答】添加∠C=∠B,在△ACD和△ABE中,{∠A=∠A AB=AC ∠C=∠B,∴△ABE≅△ACD(ASA).若k<√90<k+1(k是整数),则k=________.【答案】9【考点】估算无理数的大小【解析】估算确定出k的值即可.【解答】∵81<90<100,∴9<√90<10,则k=9,如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为________.【答案】36∘【考点】等腰三角形的性质【解析】根据AB=AC可得∠B=∠C,CD=DA可得∠ADB=2∠C=2∠B,BA=BD,可得∠BDA=∠BAD=2∠B,在△ABD中利用三角形内角和定理可求出∠B.【解答】∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,又∵∠B+∠BAD+∠BDA=180∘,∴5∠B=180∘,∴∠B=36∘,若A(0, 4),B(2, 7),C(a, −10)三点在同一直线上,则a=________【答案】−28 3【考点】一次函数图象上点的坐标特点【解析】根据点A、B的坐标利用待定系数法求出直线AB的解析式,再根据一次函数图象上点的坐标特征即可求出a值.【解答】设直线AB的解析式为y=kx+b,将A(0, 4),B(2, 7)代入y=kx+b中,得:{b=42k+b=7,解得:{b=4k=1.5,∴直线AB的解析式为y=1.5x+4.当y=−10时,有1.5a+4=−10,解得:a=−283.《九章算术》是我国古代重要的数学著作之一.其中记载了一道“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?译为:如图所示,△ABC中,∠ACB=90∘,AC+AB=10,BC=3,求AC的长.在这个问题中,可求得AC的长为________.【答案】4.55【考点】勾股定理的应用【解析】设AC=x,可知AB=10−x,再根据勾股定理即可得出结论.【解答】设AC=x,∵AC+AB=10,∴AB=10−x.在Rt△ABC中,∠ACB=90∘,∴AC2+BC2=AB2,即x2+32=(10−x)2.解得:x=4.55,即AC=4.55.如图所示,在△ABC中,∠C=90∘,AC+AB=10,BC=3,求AC的长度.在这个问题中,可求得AC的长度为________.【答案】9120【考点】三角形三边关系勾股定理【解析】根据题意得到AB =10−AC ,根据勾股定理列出关于AC 的方程,解方程得到答案.【解答】∵ AC +AB =10,∴ AB =10−AC ,由勾股定理得,AC 2+BC 2=AB 2,即AC 2+32=(10−AC)2,解得,AC =9120,三.解答下列各题:(每题7分;,共66分)计算:√64−√183+(−23)−2+(π−3.14)0−(√32)2 【答案】 √64−√183+(−23)−2+(π−3.14)0−(√32)2 =8−12+94+1−32=914 【考点】零指数幂、负整数指数幂零指数幂实数的运算【解析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】 √64−√183+(−23)−2+(π−3.14)0−(√32)2 =8−12+94+1−32=914如图,在△ABC中,AD是BC边上的高,AE平分∠BAC,∠C=46∘,∠DAE=10∘,求∠B的度数.【答案】∵AD⊥BC,∴∠ADC=90∘,∵∠C=46∘∴∠CAD=44∘,∵∠DAE=10∘,∴∠CAE=34∘,∵AE平分∠BAC,∴∠BAC=2∠EAC=68∘,∴∠B=180∘−68∘−46∘=66∘.【考点】三角形内角和定理【解析】分别求出∠DAC,∠EAC,利用角平分线的性质定理求出∠BAC,再利用三角形内角和定理求出∠B即可.【解答】∵AD⊥BC,∴∠ADC=90∘,∵∠C=46∘∴∠CAD=44∘,∵∠DAE=10∘,∴∠CAE=34∘,∵AE平分∠BAC,∴∠BAC=2∠EAC=68∘,∴∠B=180∘−68∘−46∘=66∘.如图,AD与BC交于点E,连接AC,BD,AD=BC,AC=BD.写出CE与DE相等的理由.【答案】CE=DE,理由如下:连接CD,在△ACD和△BDC中{AD=BC AC=BD CD=DC,∴△ACD≅△BDC(SSS),∴∠ADC=∠BCD,∴CE=DE.【考点】全等三角形的性质与判定【解析】CE=DE,连接CD,由已知条件易证△ACD≅△BDC,进而可证明CE=DE.【解答】CE=DE,理由如下:连接CD,在△ACD和△BDC中{AD=BC AC=BD CD=DC,∴△ACD≅△BDC(SSS),∴∠ADC=∠BCD,∴CE=DE.如图,在四边形ABCD中,AB=AD=6,∠A=60∘,∠ADC=150∘,BC−CD=4.求四边形ABCD的周长.【答案】连接BD,∵AB=AD=6,∠A=60∘,∴△ABD是等边三角形,∴∠ADB=60∘,AB=AD=BD=6,∵∠ADC=150∘,∴∠BDC=90∘,设CD=x,则BC=x+4,在Rt△BCD中,可得x2+36=(x+4)2,解得x=52,∴BC=52+4=132,所以,四边形ABCD的周长为6+6+2×132+4=21.【考点】勾股定理【解析】连接BD,先证△ABD是等边三角形得∠ADB=60∘,AB=AD=BD=6,结合∠ADC=150∘知∠BDC=90∘,设CD=x,则BC=x+4,在Rt△BCD中利用勾股定理可得x的值,从而得出答案.【解答】连接BD,∵AB=AD=6,∠A=60∘,∴△ABD是等边三角形,∴∠ADB=60∘,AB=AD=BD=6,∵∠ADC=150∘,∴∠BDC=90∘,设CD=x,则BC=x+4,在Rt△BCD中,可得x2+36=(x+4)2,解得x=52,∴BC=52+4=132,所以,四边形ABCD的周长为6+6+2×132+4=21.公司销售部门提供了某种产品销售收入(记为:y1/元)、销售成本(记为:y2/元)、销售量(记为:x/吨)方面的信息如下:①x=0时,y2=2000;②x=2时,y1=2000,y2=3000;③y1与x成正比例函数关系;④y2与x成一次函数关系.1月亦团城8依据上述信息,解决下列问题:(1)分别求出y1,y2与x的函数关系式;(2)销售量为多少吨时,销售收入与销售成本相同?(3)若销售量为6吨时,求公司的利润.(利润=销售收入-销售成本)【答案】设y1与x的函数关系式是y1=kx,2k=2000,得k=1000,即y1与x的函数关系式y1=1000x,设y2与x的函数关系式是y2=ax+b,{b=2000 2a+b=3000,解得{a=500b=2000,即y2与x的函数关系式是y2=500x+2000;令1000x=500x+2000,得x=4,所以,销售量为4吨时,销售收入与销售成本相同;1000x−(500x+2000)=500x−2000.把x=6代入上式,得500×6−2000=1000所以,利润为1000元.【考点】一次函数的应用【解析】(1)根据题意利用待定系数法即可得出y1,y2与x的函数关系式;(2)根据(1)的关系式列方程解答即可;(3)根据“利润=销售收入-销售成本”用x的代数式表示出利润,再把x=6代入计算即可.【解答】设y1与x的函数关系式是y1=kx,2k=2000,得k=1000,即y1与x的函数关系式y1=1000x,设y2与x的函数关系式是y2=ax+b,{b=2000 2a+b=3000,解得{a=500b=2000,即y2与x的函数关系式是y2=500x+2000;令1000x=500x+2000,得x=4,所以,销售量为4吨时,销售收入与销售成本相同;1000x−(500x+2000)=500x−2000.把x=6代入上式,得500×6−2000=1000所以,利润为1000元.如图,点A的坐标为(0, 4),点B的坐标为(8, 2),点P是x轴上一点,且PA+PB的值最小,(1)确定点P的位置,并求点P的坐标;(2)求PA+PB的最小值.【答案】如图,点P就是所要求作的点.∵点C与点A关于x轴对称,∴点C的坐标为(0, −4).设直线BC的表达式为u=kx−4,将点B的坐标(8, 2)代入,得8k−4=2,k=34,∴直线BC的解析式为y=34x−4,令34x−4=0,解得x=163所以,点P的坐标为(163, 0).∵A,C关于x轴对称,∴PA=PC,∴PA+PB=PB+PC=BC,∵B(8, 2),C(0, −4),∴PA+PB的最小值=BC=√82+62=10.【考点】坐标与图形性质轴对称——最短路线问题【解析】(1)作点A关于X轴的对称点C,连接BC交x轴于P,连接PA,此时PA+PB的值最小.(2)利用两点之间的距离公式计算即可.【解答】如图,点P就是所要求作的点.∵点C与点A关于x轴对称,∴点C的坐标为(0, −4).设直线BC的表达式为u=kx−4,将点B的坐标(8, 2)代入,得8k−4=2,k=34,∴直线BC的解析式为y=34x−4,令34x−4=0,解得x=163所以,点P的坐标为(163, 0).∵A,C关于x轴对称,∴PA=PC,∴PA+PB=PB+PC=BC,∵B(8, 2),C(0, −4),∴PA+PB的最小值=BC=√82+62=10.[材料阅读]材料一:如图1,∠AOB=90∘,点P在∠AOB的平分线OM上,∠CPD=90∘,点C,分别在OA,OB上.可求得如下结论:PC−PD;OC+OD为定值.材料二:(性质):四边形的内角和为360∘.[问题解决](1)如图2,点P在∠AOB的平分线OM上,PE⊥OA,OP=m,PE=n,∠CPD的边OA,OB交于点C,D,且∠AOB+∠CPD=180∘,求OC+OD的值(用含m.n的式子表示).(2)如图2,在平面直角坐标系中,直线y=−x+7与y轴,x轴分别交于A,B两点,点P是AB的中点,∠CPD=90∘,PC与y轴交于点C,PD与x轴的正半轴交于点D,OC=2,连接CD.求CD的长度.【答案】如图1,作PF⊥OB,PE⊥OC,P在∠AOB的平分线OM上,则PE=PF,则△PFD≅△PEC(AAS),∴EC=ED,而OE=OF所以CO+OD=2OE,在Rt△OPE中,OE=√OP2−PE2=√m2−n2所以OC+OD=2√m2−n2;当点C在y轴上方时,如图2,连接OP同理可得:△OPC≅△BPD(AAS),所以OC=BD=2,.由直线y=−x+7,可得B(7, 0),在Rt△OCD中,CD=√22+52=√29,当点C在y轴下方时,如图3,连接OP同理可得△OPC≅△BPD(AAS);所以CO=BD=2,.由B(7, 0),可得OD=9,在Rt△OCD中,CD=√22+92=√85;综上所述,CD的长度为√29或√85.【考点】一次函数的综合题【解析】(1)证明△PFD≅△PEC(AAS),EC=ED,而OE=OF,所以CO+OD=2OE,在Rt△OPE中,OE=√OP2−PE2=√m2−n2(2)当点C在y轴上方时,可得:△OPC≅△BPD(AAS),在Rt△OCD中,CD=√22+52=√29;当点C在y轴下方时,同理可得△OPC≅△BPD(AAS),即可求解,【解答】如图1,作PF⊥OB,PE⊥OC,P在∠AOB的平分线OM上,则PE=PF,则△PFD≅△PEC(AAS),∴EC=ED,而OE=OF所以CO+OD=2OE,在Rt△OPE中,OE=√OP2−PE2=√m2−n2所以OC+OD=2√m2−n2;当点C在y轴上方时,如图2,连接OP同理可得:△OPC≅△BPD(AAS),所以OC=BD=2,.由直线y=−x+7,可得B(7, 0),在Rt△OCD中,CD=√22+52=√29,当点C在y轴下方时,如图3,连接OP同理可得△OPC≅△BPD(AAS);所以CO=BD=2,.由B(7, 0),可得OD=9,在Rt△OCD中,CD=√22+92=√85;综上所述,CD的长度为√29或√85.。

相关文档
最新文档