2019年临泉一中高考数学选择题专项训练(一模)

合集下载

2019届高三第一次模拟考试数学(理)试卷.docx

2019届高三第一次模拟考试数学(理)试卷.docx

第I 卷(选择题满分60分)一、选择题(本大题共12小题,每小题5分,共60分)1. 已知集合 A = |x|log 2(x+1)<1|,B = * xA ・(-1,0) B. (-oo,0) C.(0,1) D. (1,-Ko) 2. 下列函数中,既是偶函数,又在区间(0,+oo)单调递减的函数是()4. 设d>0且GH1,则“函数/(x)=/在/?上是减函数”是“函数g(x) =(2 — dX 在R 上 递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4 2 \_ 5. 已知a = 2§# = 46c = 25§,则( )A. c <a<bB. a <b <cC. b <a <cD. b <c < a6. 若实数满足2" =3,3〃 =2,则函数f{x) = a x +x-b 的零点所在的区间是()A. (-2,-1)B. (-1,0) C ・(0,1) D ・(1,2)7. 已知命题p : " 3x () e 7?,使得谕+2% + l<0成立”为真命题,则实数d 满足()A. [-1,1)B. (—00,—1)kJ(l,4-oo)C. (1,+ oo)D. (—oo,—1)8. 定义在上的奇函数/(x)满足/(x-4) = -/(x),且在区间[0,2]上递增,则()A. /(—25) < /(11) < /(80)B. /(80) < /(11) < /(—25)C. /(-25)</(80)</(11)D. /(11)</(80)</(-25)9. 己知函数y = f{x+1)是定义域为/?的偶函数,且/(x)在[l, + oo)上单调递减,则不等式 /(2x-l)>/(x + 2)的解集为()盯,则A B=()A. y = -x 3B. y = }n xC. y = cosxD. y = 2 一卜cin X3•函数的图象可能是()DA.[B. [1,3)C. <D.10.若曲线G =(无 >())与曲线C 2:y = e x 存在公共点,则Q 的取值范围是() ( 2 ' ( 2' 、 「A. 0,— < 8_ B. C. e ——,+ooD. e —,+oo _4丿 11. 函数 /(x ) = 2加彳一3凡/+10(加>()/>())有两个不同的零点,则 5(lg m )2 +9(lg/i )2 的最小值是()< 5 13 1A. 6B. —C. —D. l 9 9 12. 函数于(兀)是定义在(0,+oc )上的可导函数,导函数记为/(X ),当兀>0且兀Hl 时, 2/(兀)+ 〃(兀)>0,若曲线歹=于(切在x = l 处的切线斜率为-土,则/⑴二() x-1 52 3 4 A. — B. — C. — D. I 5 5 5第II 卷 (非选择题 满分90分)二、填空题(每小题5分,共20分)13. 任意幕函数都经过定点,则函数/'(兀)=卅+log “ (x-7?z )(6z >0且a 丰1)经过定 点 _____ •14. __________________________________________________ 函数/G ) = lnx-a 兀在[1, + oo )上递减,则a 的取值范围是 ___________________________ .— x — 2 r 〉0 '-的零点个数为 X 2+2X ,X <0+ r +116. __________________ 若函数/(兀)满足:V XG /?, /(x ) + /(-x ) = 2,则函数g (x ) = —j- + /(x )的最大 值与最小值的和为 • 三、解答题(本大题共6个小题,共70分) 17. (本小题满分10分)己知命题°:方程x 2^ax^ — = 0有两个不相等的负实数根;命题q :关于Q 的不等式 16丄〉1.如果“ p 或q”为真命题,“ p Hq ”为假命题,求实数°的取值范围. a18. (本小题满分12分)1-%2已知函数f(x)=—. 1 + X⑴判断/(兀)的奇偶性;(2) /令 + /(|) + + /(|) + /(0) + /(I) + /(2) + + /(9) + /(10)的值.19.(本小题满分12分)己知函数/(x) = 2V的定义域是[0,3],设g(x) = /(2x)-/(x + 2)・(1)求g(x)的解析式及定义域;(2)求函数g(x)的最大值和最小值.20.(本小题满分12分)已知函数/(x) = log, (x2— 2祇+ 3)・2(1)若函数/(X)的定义域为/?,值域为(-00,-1],求实数Q的值;⑵若函数/(兀)在(Y0,l]上为增函数,求实数d的取值范围.21.(本小题满分12分)已知函数f\x) = e x(ca-^b)-x2-4x,曲线y二f(x)在点(0,/(0))处的切线方程为y = 4x + 4.(1)的值;(2)讨论/(兀)的单调性,并求/(兀)的极大值.22.(本小题满分12分)已知a > 0,函数f(x) = ax2 -x9g(x) = lnx.(1)若a =-,求函数y = f(x)-2g(x)的极值.2(2)是否存在实数①使得f(x)>g(ax)成立?若存在求出a的取值集合,若不存在,说明理由.理科答案ADAAC BBCDD BA(2,1) a>\ 2 417. 0 v a S —或a 21 21&偶函数;119. g(x) = 22X - 2v+2,x G [0,1];最大值为-3,最小值为-4 20.a = ±1 ; 1 < a < 2(1)当a =—时,y = f(x)-2g(x) = — x 2 -x-21nx 2 2 (兀+1)(兀 - 2)当兀 G (0,2)1 寸,y < 0;当x e (2,+oo )0寸,y >0 .•・在兀=2处取得极小值几2) - 2g ⑵=-In 4 (2 冷/心)=2/(x ) 一 g{ax ) = 6rx 2 一兀一 In (a 兀),即力(尤)罰-0 /.^(x ) = 0有两个不等慚,兀2,(西<0<x 2), /.力(兀旌(0,兀2 )递减k X 2,+°°)递增,/. /z (x J=么才一无2 -ln (a 吃)> 0成立, /. x 2 — 1 代入2°牯—x 2 — 1 = 0得 a = 1 /. a G {1} 21 • Q = 4" = 4; (-OO ,-2),(in 丄 递增, -2,% 递减;极大值为4 - 4幺 •/ 2ax^ -x 2 -1 = 0/. k(x 2) < k(V) = 0。

2019年临泉县郁文中学高考数学选择题专项训练(一模)

2019年临泉县郁文中学高考数学选择题专项训练(一模)

2019年临泉县郁文中学高考数学选择题专项训练(一模)抽选各地名校试卷,经典试题,有针对性的应对高考数学考点中的难点、重点和常规考点进行强化训练。

第 1 题:来源:河北省石家庄市2017_2018学年高一数学上学期期中试题试卷及答案函数的零点所在区间为( )A. B. C. D.【答案】 C第 2 题:来源:安徽省蚌埠市2017_2018学年高二数学上学期期中试题理试卷及答案一条光线从点射出,倾斜角为角,遇轴后反射,则反射光线的直线方程为A. B.C. D.【答案】C第 3 题:来源:安徽省定远重点中学2018_2019学年高一数学下学期开学考试试题设全集U=R,集合A={x|x≤1或x≥3},集合B={x|k<x<k+1,k∈R},且B∩∁UA≠∅,则( )A.k<0或k>3 B. 2<k<3 C. 0<k<3 D.-1<k<3【答案】C第 4 题:来源:河北省保定市2016_2017学年高二数学3月月考试题理试卷及答案抛物线在点的切线的倾斜角是()A.30° B.45° C.60°D.90°【答案】B ,故选B.第 5 题:来源: 2019高中数学第四章框图测评(含解析)新人教A版选修1_2下列情况通常用结构图表示的是( )A.某同学参加高考报名的程序B.某企业生产某产品的生产工序C.某学校学生会各个部的分工情况D.数学某一章节内容学习先后顺序的安排【答案】C解析:本题考查结构图与流程图的区别.A,B,D应该使用流程图,选项C中各个部的分工情况有明显的从属关系.第 6 题:来源:广东省佛山市2017_2018学年高一数学上学期第一次段考(10月)试题试卷及答案值域为的函数是()【答案】 B【解析】解:A:函数定义域为,令,则,不符合题意;B:函数定义域为R,令,则,满足题意;C:函数定义域为,令,则,不满足题意;D:函数定义域为,令,则,不满足题意;故选: B 首先求出各选项定义域,利用换元法求函数的值域即可.本题主要考查了函数的基本性质,以及利用换元法求函数值域的知识点,属基础题.第 7 题:来源:河南省鹤壁市2016_2017学年高二数学下学期第二次月考试卷理(含解析)已知i为虚数单位,若复数z1=1﹣i,z2=2+i,则z1•z2=()A.3﹣i B.2﹣2i C.1+i D.2+2i【答案】A【考点】A5:复数代数形式的乘除运算.【分析】两个复数代数形式的乘法,按多项式乘以多项式的方法进行,再利用虚数单位i的幂运算性质化简.【解答】解:z1•z2 =(1﹣i)(2+i)=3﹣i,第 8 题:来源:河北省武邑中学2018_2019学年高二数学上学期第二次月考试题文一个几何体的三视图如图所示,已知这个几何体的体积为,则()A. B. C. D.【答案】A第 9 题:来源: 2019高中数学第二章推理与证明测评(含解析)新人教A版选修1_2.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:16进制0 1 2 3 4 5 6 7 8 9 A B C D E F10进制0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 例如,用十六进制表示E+D=1B,则A×B等于( )A.6EB.72C.5FD.B0【答案】A第 10 题:来源:山西省山西大学附中2018_2019学年高二数学下学期2月模块诊断试题理设是两个不同的平面,是两条不同直线,则下列结论中错误的是()A.若,则B.若,则与所成的角相等C.若,则D.若,则【答案】D第 11 题:来源:重庆市万州三中2018_2019学年高二数学下学期期中试题理设在可导,则等于()A.B.C.D.【答案】A第 12 题:来源: 2016-2017学年福建省漳州市芗城区高一数学上学期期中试题试卷及答案设,且,则( )A. B.10 C.20 D.100【答案】A第 13 题:来源:山西省山西大学附中2018_2019学年高二数学下学期2月模块诊断试题理到两定点、的距离之差的绝对值等于的点的轨迹为()A.椭圆 B.线段 C.双曲线 D.两条射线【答案】D第 14 题:来源:湖北省黄冈中学2016-2017学年高二数学上学期期末模拟测试试题试卷及答案(2)理若命题所有对数函数都是单调函数,则为A.所有对数函数都不是单调函数 B.所有单调函数都不是对数函数C.存在一个对数函数不是单调函数 D.存在一个单调函数不是对数函数【答案】C第 15 题:来源:新疆维吾尔自治区阿克苏市2017_2018学年高二数学上学期第二次月考试题试卷及答案理安排3名志愿者完成5项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A. 90种B. 150种C. 180种D. 300种【答案】B. 【解析】按每个人工作的项目数,分两种情况:(1)1+1+3,所以先选分组,再排列,(2)2+2+1,先分组,为均分组,再排列,,总方法数150,选B. 第 16 题:来源:山东省济南市2018届高三数学上学期12月考试试题理试卷及答案已知是定义在上的函数,是的导函数,且满足,,则的解集为()A. B. C. D.【答案】B第 17 题:来源: 2018届高考数学文科总复习课时跟踪检测试卷(10)对数与对数函数试卷及答案如果log x<log y<0,那么( )A.y<x<1B.x<y<1C.1<x<yD.1<y<x【答案】D log x<log y<log1,∴x>y>1.第 18 题:来源:四川省棠湖中学2018_2019学年高一数学上学期期中试题设常数,实数满足=,若的最大值为,则的值为A. B. C.D.【答案】B第 19 题:来源:吉林省长春市朝阳区2016_2017学年度高一数学下学期期末考试试题与向量a=(-5,12)方向相反的单位向量是(A)(5,-12) (B)(-,)(C)(,-) (D)(,-)【答案】 D第 20 题:来源:山东省烟台市2016_2017学年高二数学下学期期末自主练习试题理试卷及答案若在上不是单调函数,则实数的取值范围是()A.B.或 C.D.或【答案】 D第 21 题:来源:宁夏银川市2017_2018学年高二数学上学期期中试题理试卷及答案已知定点A、B,且|AB|=4,动点P满足|PA|-|PB|=3,则|PA|的最小值是A. B. C. D.5【答案】C第 22 题:来源:黑龙江省牡丹江市2017_2018学年高二数学上学期期中试题理试卷及答案已知F1,F2是椭圆的左、右焦点,点P在椭圆上,且记线段PF1与y轴的交点为Q,O为坐标原点,若△F1OQ与四边形OF2PQ的面积之比为1: 2,则该椭圆的离心率等于 ( )A.B.C.D.【答案】D第 23 题:来源:山东省菏泽市2016-2017学年高二数学上学期期末学分认定考试试题(B卷)理试卷及答案设条件条件,则p是q的()A.充要条件B.充分不必要条件C.必要不充分条件;D.既不充分也不必要条件【答案】 B第 24 题:来源:湖北省武汉外国语学校2018_2019学年高二数学10月月考试题(含解析)执行如图所示的程序框图,若输出k的值为8,则判断框内可填入的条件是( )A. s≤?B. s≤?C. s≤?D. s≤?【答案】C【解析】试题分析:模拟执行程序框图,的值依次为,因此(此时),因此可填,故选C.考点:程序框图及循环结构.第 25 题:来源:贵州省思南中学2018_2019学年高二数学下学期期末考试试题理复数z满足,则复数的虚部是()A.1 B.-1 C. D.【答案】C第 26 题:来源:甘肃省嘉峪关市2017_2018学年高一数学上学期期中试题试卷及答案下列函数中,既是偶函数又在单调递增的函数是()A、B、 C、D、第 27 题:来源:内蒙古杭锦后旗2017_2018学年高一数学上学期期中试题(艺术班)试卷及答案下列四个函数中,与y=x表示同一函数的是( )A.y=()2 B.y= C.y= D.y=【答案】 B第 28 题:来源: 2019高考数学一轮复习第10章概率统计和统计案例第4讲用样本估计总体分层演练文2018091017某高校从参加今年自主招生考试的1 000名学生中随机抽取100名学生的成绩进行统计,得到如图所示的样本频率分布直方图.若规定60分及以上为合格,则估计这1 000 名学生中合格的人数是( )A.600 B.650 C.700 D.750 【答案】C.样本中合格的频率是1-0.1-0.2=0.7,故估计这1 000名学生中合格的人数是1 000×0.7=700.故选C.第 29 题:来源:吉林省乾安县2017_2018学年高二数学上学期期中试题理试卷及答案设Sn是等差数列{an}的前n项和,若=,则= ( )A. B. C.D.【答案】D第 30 题:来源:内蒙古乌兰察布市2015_2016学年高二数学下学期期末考试试题理已知函数,则函数的定义域是()A. B. C. D.【答案】C第 31 题:来源:河南省安阳市2016_2017学年高一数学5月月考试题试卷及答案的值是()A.B.C.D.第 32 题:来源:安徽省滁州市定远县育才学校2018_2019学年高二数学下学期第一次月考试题(普通班)理下列运算正确的是( )A.(sin)′=cos B.(logax)′=C.(3x)′=x3x-1 D. ()′=-【答案】D第 33 题:来源: 2016_2017学年山东省淄博市高青县高二数学3月月考试题理试卷及答案用三段论推理:“任何实数的平方大于0,因为a是实数,所以a2>0”,你认为这个推理()A.大前提错误B.小前提错误 C推理形式错误 D.是正确的【答案】A第 34 题:来源:广东省东莞市2016_2017学年高一数学下学期期初考试试题理试卷及答案已知圆的方程为.设该圆过点(-1,4)的最长弦和最短弦分别为和,则四边形的面积为()A.15 B.30 C.45 D.60【答案】B第 35 题:来源:湖北省六校联合体2017届高三4月联考数学试题(理)含答案执行如下图所示程序框图,若输出的值为-52,则条件框内应填写()A. B.C. D.【答案】B第 36 题:来源: 2019高考数学一轮复习第8章立体几何第3讲空间点直线平面之间的位关系分层演练文201809101111四条线段顺次首尾相连,它们最多可确定的平面个数有( )A.4个 B.3个C.2个 D.1个【答案】A.首尾相连的四条线段每相邻两条确定一个平面,所以最多可以确定四个平面.第 37 题:来源:云南省昆明市2017_2018学年高二数学12月月考试题理试卷及答案已知平面向量,,且,则=()A、4B、﹣6C、﹣10D、10【答案】C第 38 题:来源:(通用版)2019版高考数学二轮复习4套“12+4”限时提速练检测理(普通生,含解析)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A.5π+18 B.6π+18C.8π+6 D.10π+6【答案】C 由三视图可知该几何体是由一个半圆柱和两个半球构成的,故该几何体的表面积为2××4π×12+2××π×12+2×3+×2π×1×3=8π+6.第 39 题:来源:江西省吉安市新干县2016_2017学年高二数学下学期第一次段考试题(1、2班)试卷及答案如图12-1,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是( )A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABC【答案】D第 40 题:来源:湖北省荆州市沙市区2017_2018学年高二数学上学期第二次双周考试题理试卷及答案与直线y=-3x+1平行,且与直线y=2x+4交于x轴上的同一点的直线方程是( )A.y=-3x+4 B.y=x+4 C.y=-3x-6 D.y=x+【答案】C。

安徽省阜阳市临泉县第一中学2019届高三数学上学期第三次模拟(12月)试题理(扫描版)

安徽省阜阳市临泉县第一中学2019届高三数学上学期第三次模拟(12月)试题理(扫描版)

安徽省阜阳市临泉县第一中学2019届高三数学上学期第三次模拟(12月)试题理(扫描版)高三上学期第三次月考数学(理科答案)一、选择题:AACCD DDBDD CB二、填空题:13、14、15、16、三、解答题:17.解析:(1)m=2……5分 (2) m>5或m<-3…………………10分18.在中,据正弦定理,有∵,,,∴. …………………5分(2)由平面几何知识,可知,在中,∵,,∴∴在中,据余弦定理,有∴…………………12分19.(1),…………………3分当时,得∴的单调递增区间为,…………………6分(2)∵,由正弦定理得,∵的最大值为∴,∴,又∴…………………9分在中,由余弦定理得:∴∴的面积…………………12分解:(Ⅰ)设DN的长为x(x>0)米,则|AN|=(x+2)米∵,∴∴由S AMPN>32得又x>0得3x2﹣20x+12>0解得:0<x<或x>6 即DN的长取值范围是(Ⅱ)矩形花坛的面积为当且仅当3x=,即x=2时,矩形花坛的面积最小为24平方米.21.解:(1)∵,∴,∴·2分又当时,由得符合,∴, (3)分∴数列是以1为首项,3为公比的等比数列,通项公式为;·········4分(2)∵,∴是以3为首项,3为公差的等差数列,·5分∴,··················6分∴,即,即对有解,········7分设,∵,········9分∴当时,,当时,,∴,················ 11分∴,∴.·········12分22.解法一:(1)解:函数的定义域为,…………………………1分因为,所以.…………………2分所以当时,,在上是增函数;当时,,在上是减函数.……………………4分所以在上是增函数,在上是减函数.………………5分(2)证明:由题意可得,当时,有解,即有解.……………………6分令,则.…………………7分设函数,所以在上单调递增.又,所以在上存在唯一的零点.………………8分故在上存在唯一的零点.设此零点为,则.…………9分当时,;当时,.所以在上的最小值为.……………………………10分又由,可得,所以,………………11分因为在上有解,所以,即.………………12分解法2:(2)证明:由题意可得,当时,有解,由(1)可知在上是增函数,在上是减函数,且.①当,即。

临泉一中2018-2019学年上学期期中高考数学模拟题

临泉一中2018-2019学年上学期期中高考数学模拟题

临泉一中2018-2019学年上学期期中高考数学模拟题班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知集合{}{2|5,x |y ,A y y x B A B ==-+===( )A .[)1,+∞B .[]1,3C .(]3,5D .[]3,5【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力. 2. 已知全集R U =,集合{|||1,}A x x x R =≤∈,集合{|21,}xB x x R =≤∈,则集合U AC B 为( )A.]1,1[-B.]1,0[C.]1,0(D.)0,1[- 【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力. 3. 已知函数1)1(')(2++=x x f x f ,则=⎰dx x f 1)(( )A .67-B .67C .65D .65- 【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.4. 若关于x 的不等式07|2||1|>-+-++m x x 的解集为R ,则参数m 的取值范围为( ) A .),4(+∞ B .),4[+∞ C .)4,(-∞ D .]4,(-∞【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.5. 2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分层抽样的方法,应从青年职工中抽取的人数为( ) A. 5 B.6 C.7D.10【命题意图】本题主要考查分层抽样的方法的运用,属容易题.6. 已知数列{}n a 的各项均为正数,12a =,114n n n na a a a ++-=+,若数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n =( )A .35B . 36C .120D .1217. 若集合,则= ( )ABC D8. 已知e 为自然对数的底数,若对任意的1[,1]x e∈,总存在唯一的[1,1]y ∈-,使得2ln 1yx x a y e -++= 成立,则实数a 的取值范围是( )A.1[,]e eB.2(,]e eC.2(,)e +∞D.21(,)e e e+【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力.9. 已知实数[]4,0x ∈-,[]0,3y ∈,则点(,)P x y 落在区域00240x y y x y x ≤⎧⎪≥⎪⎨+≤⎪⎪--≤⎩内的概率为( )A .56B .12C .512D .712【命题意图】本题考查线性规划、几何概型等基础知识,意在考查基本运算能力. 10.执行如图所示的程序,若输入的3x =,则输出的所有x 的值的和为( ) A .243 B .363 C .729 D .1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力. 11.已知集合A ={-1,0,1,2,3},B ={x|-1<x <2},则A ∩B =( ) A .{0,1,2} B .{0,1} C .{1,2}D .{-1,0,1}12.已知向量(,1)a t =,(2,1)b t =+,若||||a b a b +=-,则实数t =( ) A.2- B.1- C. 1 D. 2【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.(本小题满分12分)点M (2pt ,2pt 2)(t 为常数,且t ≠0)是拋物线C :x 2=2py (p >0)上一点,过M 作倾斜角互补的两直线l 1与l 2与C 的另外交点分别为P 、Q .(1)求证:直线PQ 的斜率为-2t ;(2)记拋物线的准线与y 轴的交点为T ,若拋物线在M 处的切线过点T ,求t 的值.14.函数)(x f (R x ∈)满足2)1(=f ,且)(x f 在R 上的导函数)('x f 满足3)('>x f ,则不等式123)2(-⋅<x x f 的解集为 .【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.15.设x R ∈,记不超过x 的最大整数为[]x ,令{}[]x x x =-.现有下列四个命题: ①对任意的x ,都有1[]x x x -<≤恒成立; ②若(1,3)x ∈,则方程{}22sincos []1x x +=的实数解为6π-;③若3n n a ⎡⎤=⎢⎥⎣⎦(n N *∈),则数列{}n a 的前3n 项之和为23122n n -;④当0100x ≤≤时,函数{}22()sin []sin1f x x x =+-的零点个数为m ,函数{}()[]13xg x x x =⋅--的 零点个数为n ,则100m n +=.其中的真命题有_____________.(写出所有真命题的编号)【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。

2019年数学高考一模试卷(带答案)

2019年数学高考一模试卷(带答案)

2019年数学高考一模试卷(带答案)一、选择题1.已知2a ib i i+=+ ,,a b ∈R ,其中i 为虚数单位,则+a b =( ) A .-1 B .1C .2D .32.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是( )A .①③④B .②④C .②③④D .①②③3.()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为( ) A .15B .20C .30D .354.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144+AB AC D .1344+AB AC 5.将编号为1,2,3,4,5,6的六个小球放入编号为1,2,3,4,5,6的六个盒子,每个盒子放一个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的放法种数是( ) A .40 B .60 C .80 D .1006.如图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为1214,,A A A ,下图是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图,那么算法流程图输出的结果是( )A .7B .8C .9D .107.已知向量a ,b 满足2a =,||1b =,且2b a +=,则向量a 与b 的夹角的余弦值为( ) A .2 B .23C .28D .248.函数y ()y ()f x f x ==,的导函数的图像如图所示,则函数y ()f x =的图像可能是A .B .C .D .9.已知a 为函数f (x )=x 3–12x 的极小值点,则a= A .–4B .–2C .4D .210.已知当m ,[1n ∈-,1)时,33sin sin22mnn m ππ-<-,则以下判断正确的是( )A .m n >B .||||m n <C .m n <D .m 与n 的大小关系不确定11.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( )A .B .C .D .12.已知非零向量AB 与AC 满足0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭且12AB AC AB AC ⋅=,则ABC 的形状是( ) A .三边均不相等的三角形 B .等腰直角三角形 C .等边三角形D .以上均有可能二、填空题13.函数()22,026,0x x f x x lnx x ⎧-≤=⎨-+>⎩的零点个数是________.14.已知函数21,1()()1a x x f x x a x ⎧-+≤=⎨->⎩,函数()2()g x f x =-,若函数()()y f x g x =-恰有4个不同的零点,则实数a 的取值范围为______. 15.若函数3211()232f x x x ax =-++ 在2,3⎡⎫+∞⎪⎢⎣⎭上存在单调增区间,则实数a 的取值范围是_______.16.双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a=_______________. 17.学校里有一棵树,甲同学在A 地测得树尖D 的仰角为45︒,乙同学在B 地测得树尖D 的仰角为30,量得10AB AC m ==,树根部为C (,,A B C 在同一水平面上),则ACB =∠______________.18.高三某班一学习小组的,,,A B C D 四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A 不在散步,也不在打篮球;②B 不在跳舞,也不在散步;③“C 在散步”是“A 在跳舞”的充分条件;④D 不在打篮球,也不在散步;⑤C 不在跳舞,也不在打篮球.以上命题都是真命题,那么D 在_________.19.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若cos 1cos2cos 1cos2b C Cc B B+=+,C 是锐角,且27a =,1cos 3A =,则ABC △的面积为______. 20.已知双曲线1C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,第一象限内的点00(,)M x y 在双曲线1C 的渐近线上,且12MF MF ⊥,若以2F 为焦点的抛物线2C :22(0)y px p =>经过点M ,则双曲线1C 的离心率为_______.三、解答题21.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为62,求直线AP 的方程. 22.如图,直三棱柱ABC-A 1B 1C 1中,D,E 分别是AB ,BB 1的中点.(Ⅰ)证明: BC 1//平面A 1CD;(Ⅱ)设AA 1= AC=CB=2,2,求三棱锥C 一A 1DE 的体积.23.已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线214y x =25. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)过椭圆C 的右焦点F 作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若1MA AF λ=,2MB BF λ=,求12λλ+的值.24.已知0,0a b >>.(1)211a b≥+ ; (2)若a b >,且2ab =,求证:224a b a b+≥-.25.在直角坐标平面内,以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A ,B 的极坐标分别为()π42,,5π4⎛⎫ ⎪⎝⎭,,曲线C 的方程为r ρ=(0r >).(1)求直线AB 的直角坐标方程;(2)若直线AB 和曲线C 有且只有一个公共点,求r 的值. 26.已知数列{}n a 与{}n b 满足:*1232()n n a a a a b n N ++++=∈,且{}n a 为正项等比数列,12a =,324b b =+. (1)求数列{}n a 与{}n b 的通项公式; (2)若数列{}n c 满足*2211()log log n n n c n N a a +=∈,n T 为数列{}n c 的前n 项和,证明:1n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】利用复数除法运算法则化简原式可得2ai b i -=+,再利用复数相等列方程求出,a b 的值,从而可得结果. 【详解】因为22222a i ai i ai b i i i+--==-=+- ,,a b ∈R , 所以2211b b a a ==⎧⎧⇒⎨⎨-==-⎩⎩,则+1a b =,故选B. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.A解析:A 【解析】 【分析】分别当截面平行于正方体的一个面时,当截面过正方体的两条相交的体对角线时,当截面既不过体对角线也不平行于任一侧面时,进行判定,即可求解. 【详解】由题意,当截面平行于正方体的一个面时得③;当截面过正方体的两条相交的体对角线时得④;当截面既不过正方体体对角线也不平行于任一侧面时可能得①;无论如何都不能得②.故选A. 【点睛】本题主要考查了正方体与球的组合体的截面问题,其中解答中熟记空间几何体的结构特征是解答此类问题的关键,着重考查了空间想象能力,以及推理能力,属于基础题.3.C解析:C 【解析】 【分析】利用多项式乘法将式子展开,根据二项式定理展开式的通项即可求得2x 的系数. 【详解】根据二项式定理展开式通项为1C r n r rr n T a b -+=()()()66622111111x x x x x ⎛⎫++=++⋅+ ⎪⎝⎭则()61x +展开式的通项为16r rr T C x +=则()62111x x ⎛⎫++ ⎪⎝⎭ 展开式中2x 的项为22446621C x C x x ⎛⎫+⋅ ⎪⎝⎭ 则()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为2466151530C C +=+= 故选:C【点睛】本题考查了二项定理展开式的应用,指定项系数的求法,属于基础题.4.A解析:A 【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得1122BE BA BC =+,之后应用向量的加法运算法则-------三角形法则,得到BC BA AC =+,之后将其合并,得到3144BE BA AC =+,下一步应用相反向量,求得3144EB AB AC =-,从而求得结果. 详解:根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++ 1113124444BA BA AC BA AC =++=+, 所以3144EB AB AC =-,故选A. 点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.5.A解析:A【解析】解:三个小球放入盒子是不对号入座的方法有2 种,由排列组合的知识可得,不同的放法总数是: 36240C = 种.本题选择A 选项.6.C解析:C 【解析】 【分析】根据流程图可知该算法表示统计14次考试成绩中大于等于90的人数,结合茎叶图可得答案. 【详解】根据流程图所示的顺序,可知该程序的作用是累计14次考试成绩超过90分的次数.根据茎叶图可得超过90分的次数为9. 故选:C . 【点睛】本题主要考查了循环结构,以及茎叶图的认识,解题的关键是弄清算法流程图的含义,属于基础题.7.D解析:D 【解析】 【分析】根据平方运算可求得12a b ⋅=,利用cos ,a b a b a b ⋅<>=求得结果. 【详解】由题意可知:2222324b a b a b a a b +=+⋅+=+⋅=,解得:12a b ⋅=cos ,422a b a b a b⋅∴<>===本题正确选项:D 【点睛】本题考查向量夹角的求解问题,关键是能够通过平方运算求得向量的数量积.8.D解析:D 【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数'()f x 的正负,得出原函数()f x 的单调区间.9.D解析:D 【解析】试题分析:()()()2312322f x x x x ==+'--,令()0f x '=得2x =-或2x =,易得()f x 在()2,2-上单调递减,在()2,+∞上单调递增,故()f x 的极小值点为2,即2a =,故选D.【考点】函数的导数与极值点【名师点睛】本题考查函数的极值点.在可导函数中,函数的极值点0x 是方程'()0f x =的解,但0x 是极大值点还是极小值点,需要通过这个点两边的导数的正负性来判断,在0x 附近,如果0x x <时,'()0f x <,0x x >时'()0f x >,则0x 是极小值点,如果0x x <时,'()0f x >,0x x >时,'()0f x <,则0x 是极大值点.10.C解析:C 【解析】 【分析】由函数的增减性及导数的应用得:设3()sin,[1,1]2xf x x x π=+∈-,求得可得()f x 为增函数,又m ,[1n ∈-,1)时,根据条件得()()f m f n <,即可得结果.【详解】解:设3()sin ,[1,1]2xf x x x π=+∈-, 则2()3cos022xf x x ππ'=+>,即3()sin,[1,1]2xf x x x π=+∈-为增函数,又m ,[1n ∈-,1),33sin sin22mnn m ππ-<-,即33sinsin22mnm n ππ+<+,所以()()f m f n <,所以m n <. 故选:C . 【点睛】本题考查了函数的增减性及导数的应用,属中档题.11.D解析:D 【解析】 【分析】本题通过讨论a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查. 【详解】当01a <<时,函数xy a =过定点(0,1)且单调递减,则函数1x y a=过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1xy a =过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性.12.C解析:C 【解析】 【分析】ABAB 和ACAC 分别表示向量AB 和向量AC 方向上的单位向量,0AB AC BC AB AC ⎛⎫⎪+⋅= ⎪⎝⎭表示A ∠平分线所在的直线与BC 垂直,可知ABC 为等腰三角形,再由12AB AC ABAC⋅=可求出A ∠,即得三角形形状。

2019年高考数学一模试题(附答案)

2019年高考数学一模试题(附答案)

2019年高考数学一模试题(附答案)一、选择题1.函数ln ||()xx f x e =的大致图象是( ) A . B .C .D .2.123{3x x >>是12126{9x x x x +>>成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .即不充分也不必要条件3.将编号为1,2,3,4,5,6的六个小球放入编号为1,2,3,4,5,6的六个盒子,每个盒子放一个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的放法种数是( ) A .40 B .60 C .80 D .1004.设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( ) A .-15x 4B .15x 4C .-20i x 4D .20i x 45.在二项式42nx x 的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为( )A .16B .14C .512D .136.若()34i x yi i +=+,,x y R ∈,则复数x yi +的模是 ( )A .2B .3C .4D .57.已知sin cos 0θθ<,且cos cos θθ=,则角θ是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角8.下列各组函数是同一函数的是( )①()32f x x =-与()2f x x x =-()3f x 2x y x 2x 与=-=-()f x x =与()2g x x =;③()0f x x =与()01g x x=;④()221f x x x =--与()221g t t t =--. A .① ② B .① ③ C .③ ④ D .① ④ 9.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( )A .2B .3C .22D .3210.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .32411.样本12310,?,?,? a a a a ⋅⋅⋅的平均数为a ,样本12310,?,?,? b b b b ⋅⋅⋅的平均数为b ,那么样本1122331010,? ,,? ,?,,?,? a b a b a b a b ⋅⋅⋅的平均数为( )A .()a b +B .2()a b +C .1()2a b + D .1()10a b + 12.在△ABC 中,AB=2,AC=3,1AB BC ⋅=则BC=______ A 3B 7C 2D 23二、填空题13.已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a= .14.设25a b m ==,且112a b+=,则m =______. 15.若过点()2,0M 3的直线与抛物线()2:0C y ax a =>的准线l 相交于点B ,与C 的一个交点为A ,若BM MA =,则a =____.16.如图所示,平面BCC 1B 1⊥平面ABC ,∠ABC =120︒,四边形BCC 1B 1为正方形,且AB =BC =2,则异面直线BC 1与AC 所成角的余弦值为_____.17.在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆2cos ρθ=相切,则a =__________.18.如图,圆C (圆心为C )的一条弦AB 的长为2,则AB AC ⋅=______.19.已知1OA =,3OB =0OA OB •=,点C 在AOB ∠内,且AOC 30∠=,设OC mOA nOB =+,(,)m n R ∈,则mn=__________. 20.函数232x x --的定义域是 .三、解答题21.已知向量()2sin ,1a x =+,()2,2b =-,()sin 3,1c x =-,()1,d k =(),x R k R ∈∈(1)若,22x ππ⎡⎤∈-⎢⎥⎣⎦,且()//a b c +,求x 的值. (2)若函数()f x a b =⋅,求()f x 的最小值.(3)是否存在实数k ,使得()()a dbc +⊥+?若存在,求出k 的取值范围;若不存在,请说明理由.22.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.()1设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; ()2设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.23.在平面直角坐标系xOy 中,已知直线l 的参数方程为1231x t y ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数).在以坐标原点O 为极点,x 轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C 的极坐标方程是22sin 4πρθ⎛⎫=+⎪⎝⎭. (1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)设点()0,1P -.若直l 与曲线C 相交于两点,A B ,求PA PB +的值. 24.在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m m y k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设()3:cos sin 20l ρθθ+-=,M 为l 3与C 的交点,求M 的极径.25.红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.(I )求红队至少两名队员获胜的概率;(II )用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ.26.如图,在边长为4的正方形ABCD 中,点E,F 分别是AB,BC 的中点,点M 在AD 上,且14AM AD =,将AED,DCF 分别沿DE,DF 折叠,使A,C 点重合于点P ,如图所示2.()1试判断PB 与平面MEF 的位置关系,并给出证明; ()2求二面角M EF D --的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】由函数解析式代值进行排除即可. 【详解】 解:由()xln x f x =e,得()f 1=0,()f 1=0-又()1f e =0e e >,()1f e =0ee --> 结合选项中图像,可直接排除B ,C ,D 故选A 【点睛】本题考查了函数图像的识别,常采用代值排除法.2.A解析:A 【解析】 试题分析:因为123{3x x >>12126{9x x x x +>⇒>,所以充分性成立;1213{1x x ==满足12126{9x x x x +>>,但不满足123{3x x >>,必要性不成立,所以选A.考点:充要关系3.A解析:A【解析】解:三个小球放入盒子是不对号入座的方法有2 种,由排列组合的知识可得,不同的放法总数是: 36240C = 种.本题选择A 选项.4.A解析:A 【解析】 试题分析:二项式的展开式的通项为,令,则,故展开式中含的项为,故选A.【考点】二项展开式,复数的运算【名师点睛】本题考查二项式定理及复数的运算,复数的概念及运算也是高考的热点,几乎是每年必考的内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.二项式可以写为,则其通项为,则含的项为.5.C解析:C 【解析】 【分析】先根据前三项的系数成等差数列求n ,再根据古典概型概率公式求结果 【详解】因为n前三项的系数为1212111(1)1,,112448n n n n n n C C C C n -⋅⋅∴=+⋅∴-= 163418118,0,1,2,82rr r r n n T C x r -+>∴=∴=⋅=,当0,4,8r =时,为有理项,从而概率为636799512A A A =,选C. 【点睛】本题考查二项式定理以及古典概型概率,考查综合分析求解能力,属中档题.6.D解析:D 【解析】试题分析:根据题意可知34xi y i -=+,所以有3{4y x =-=,故所给的复数的模该为5,故选D.考点:复数相等,复数的模.7.D解析:D 【解析】 【分析】由cos cos θθ=以及绝对值的定义可得cos 0θ≥,再结合已知得sin 0,cos 0θθ<>,根据三角函数的符号法则可得. 【详解】由cos cos θθ=,可知cos 0θ≥,结合sin cos 0θθ<,得sin 0,cos 0θθ<>, 所以角θ是第四象限角, 故选:D 【点睛】本题考查了三角函数的符号法则,属于基础题.8.C解析:C 【解析】 【分析】定义域相同,对应关系一致的函数是同一函数,由此逐项判断即可. 【详解】①中()f x =的定义域为(),0∞-,()f x =(),0∞-,但()f x ==-与()f x =②中()f x x =与()g x =R ,但()g x x ==与()f x x =对应关系不一致,所以②不是同一函数;③中()0f x x =与()01g x x =定义域都是{}|0x x ≠,且()01f x x ==,()011g x x==对应关系一致,所以③是同一函数;④中()221f x x x =--与()221g t t t =--定义域和对应关系都一致,所以④是同一函数.故选C 【点睛】本题主要考查同一函数的概念,只需定义域和对应关系都一致即可,属于基础题型.9.C解析:C 【解析】 【分析】两圆方程相减,得到公共弦所在的直线方程,然后利用其中一个圆,结合弦长公式求解. 【详解】因为圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0, 两式相减得20x y --=,即公共弦所在的直线方程. 圆C 1:x 2+y 2=4,圆心到公共弦的距离为d =,所以公共弦长为:l ==. 故选:C 【点睛】本题主要考查直线与圆,圆与圆的位置关系,还考查了运算求解的能力,属于基础题.10.B解析:B 【解析】 【分析】先由三视图还原出原几何体,再进行计算 【详解】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯= ⎪⎝⎭. 故选B. . 【点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心计算11.C解析:C 【解析】 【分析】 【详解】由题意可知1210121010,10a a a a b b b b +++=+++=,所以所求平均数为()121012101210121012020202a a ab b b a a a b b b a b +++++++++++++=+=+考点:样本平均数12.A解析:A 【解析】 【分析】 【详解】2222149||||cos ()122BC AB BC AB BC B AB BC AC +-⋅=-⋅=-+-=-=|BC ∴故选:A 【点评】本题考查平面向量的数量积运算、余弦定理等知识.考查运算能力,考查数形结合思想、等价转化思想等数学思想方法.二、填空题13.8【解析】试题分析:函数在处的导数为所以切线方程为;曲线的导函数的为因与该曲线相切可令当时曲线为直线与直线平行不符合题意;当时代入曲线方程可求得切点代入切线方程即可求得考点:导函数的运用【方法点睛】解析:8 【解析】试题分析:函数ln y x x =+在(1,1)处的导数为111|1|2x x y x===+=',所以切线方程为;曲线2(2)1y ax a x =+++的导函数的为,因与该曲线相切,可令,当时,曲线为直线,与直线平行,不符合题意;当时,代入曲线方程可求得切点,代入切线方程即可求得.考点:导函数的运用.【方法点睛】求曲线在某一点的切线,可先求得曲线在该点的导函数值,也即该点切线的斜率值,再由点斜式得到切线的方程,当已知切线方程而求函数中的参数时,可先求得函数的导函数,令导函数的值等于切线的斜率,这样便能确定切点的横坐标,再将横坐标代入曲线(切线)得到纵坐标得到切点坐标,并代入切线(曲线)方程便可求得参数.14.【解析】【分析】变换得到代入化简得到得到答案【详解】则故故答案为:【点睛】本题考查了指数对数变换换底公式意在考查学生的计算能力 10【解析】 【分析】变换得到2log a m =,5log b m =,代入化简得到11log 102m a b+==,得到答案. 【详解】25a b m ==,则2log a m =,5log b m =,故11log 2log 5log 102,10m m m m a b+=+==∴= 10 【点睛】本题考查了指数对数变换,换底公式,意在考查学生的计算能力.15.【解析】【分析】由直线方程为与准线得出点坐标再由可得点为线段的中点由此求出点A 的坐标代入抛物线方程得出的值【详解】解:抛物线的准线方程为过点且斜率为的直线方程为联立方程组解得交点坐标为设A 点坐标为因 解析:8【解析】 【分析】由直线方程为3(2)y x =-与准线:al x 4=-得出点B 坐标,再由BM MA =可得,点M 为线段AB 的中点,由此求出点A 的坐标,代入抛物线方程得出a 的值.【详解】解:抛物线()2:0C y ax a =>的准线方程为:a l x 4=-过点()2,0M2)y x =-,联立方程组2)4y x a x ⎧=-⎪⎨=-⎪⎩,解得,交点B坐标为)(,)a a 844+-, 设A 点坐标为00(,)x y , 因为BM MA =,所以点M 为线段AB 的中点,所以00()442402a x y ⎧+-⎪=⎪⎪⎨⎪+⎪=⎪⎩,解得)()a a 8A 444++,将(a A 44+代入抛物线方程,即()2aa 44=+, 因为0a >, 解得8a =. 【点睛】本题考查了抛物线的性质、向量相等等知识,解决几何问题时,往往可以转化为代数问题来进行研究,考查了数形结合的思想.16.【解析】【分析】将平移到和相交的位置解三角形求得线线角的余弦值【详解】过作过作画出图像如下图所示由于四边形是平行四边形故所以是所求线线角或其补角在三角形中故【点睛】本小题主要考查空间两条直线所成角的解析:4【解析】 【分析】将AC 平移到和1BC 相交的位置,解三角形求得线线角的余弦值. 【详解】过B 作//BD AC ,过C 作//CD AB ,画出图像如下图所示,由于四边形ABCD 是平行四边形,故//BD AC ,所以1C BD ∠是所求线线角或其补角.在三角形1BC D中,11BC C D BD ===1cos C BD ∠==.【点睛】本小题主要考查空间两条直线所成角的余弦值的计算,考查数形结合的数学思想方法,属于中档题.17.【解析】【分析】根据将直线与圆极坐标方程化为直角坐标方程再根据圆心到直线距离等于半径解出【详解】因为由得由得即即因为直线与圆相切所以【点睛】(1)直角坐标方程化为极坐标方程只要运用公式及直接代入并化 解析:12【解析】 【分析】根据222,cos ,sin x y x y ρρθρθ=+==将直线与圆极坐标方程化为直角坐标方程,再根据圆心到直线距离等于半径解出a . 【详解】因为222,cos ,sin x y x y ρρθρθ=+==, 由cos sin (0)a a ρθρθ+=>,得(0)x y a a +=>,由2cos ρθ=,得2=2cos ρρθ,即22=2x y x +,即22(1)1x y -+=,111201 2.2a a a a -=∴=±>∴=+,,,【点睛】(1)直角坐标方程化为极坐标方程,只要运用公式cos x ρθ=及sin y ρθ=直接代入并化简即可;(2)极坐标方程化为直角坐标方程时常通过变形,构造形如2cos ,sin ,ρθρθρ的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.18.2【解析】【分析】过点C 作CD ⊥AB 于D 可得Rt △ACD 中利用三角函数的定义算出再由向量数量积的公式加以计算可得的值【详解】过点C 作CD ⊥AB 于D 则D 为AB 的中点Rt △ACD 中可得cosA==2故答解析:2 【解析】 【分析】过点C 作CD⊥AB 于D ,可得1AD AB 12==,Rt△ACD 中利用三角函数的定义算出1cos A AC=,再由向量数量积的公式加以计算,可得AB AC ⋅的值. 【详解】过点C 作CD ⊥AB 于D ,则D 为AB 的中点.Rt △ACD 中,1AD AB 12==, 可得cosA=11,cosA AD AB AC AB AC AB AC AB AC AC AC=∴⋅=⋅=⋅⋅==2. 故答案为2 【点睛】本题已知圆的弦长,求向量的数量积.着重考查了圆的性质、直角三角形中三角函数的定义与向量的数量积公式等知识,属于基础题.19.3【解析】因为所以从而有因为所以化简可得整理可得因为点在内所以所以则解析:3 【解析】因为30AOC ∠=,所以3cos cos302OC OA AOC OC OA⋅∠===⋅,从而有2222232||2m OA n OB mn OA OB OA=++⋅⋅⋅.因为1,3,0OA OB OA OB ==⋅=22323m n=+,化简可得222334m m n =+,整理可得229m n =.因为点C 在AOB ∠内,所以0,0m n >>,所以3m n =,则3mn= 20.【解析】试题分析:要使函数有意义需满足函数定义域为考点:函数定义域解析:[]3,1-【解析】试题分析:要使函数有意义,需满足2232023031x x x x x --≥∴+-≤∴-≤≤,函数定义域为[]3,1- 考点:函数定义域三、解答题21.(1)6x π=-;(2)0;(3)存在[]5,1k ∈--【解析】 【分析】(1)由向量平行的坐标表示可求得sin x ,得x 值;(2)由数量积的坐标表示求出()f x ,结合正弦函数性质可得最值;(3)计算由()()0a d b c +⋅+=得k 与sin x 的关系,求出k 的取值范围即可. 【详解】 (1)()sin 1,1b c x +=--,()//a b c +,()2sin sin 1x x ∴-+=-,即1sin 2x =-.又,22x ππ⎡⎤∈-⎢⎥⎣⎦,6x π∴=-.(2)∵()2sin ,1a x =+,()2,2b =-,()()22sin 22sin 2f x a b x x ∴=⋅=+-=+.x R ∈,1sin 1x ∴-,()04f x ∴,()f x ∴的最小值为0.(3)∵()3sin ,1a d x k +=++,()sin 1,1b c x +=--,若()()a dbc +⊥+,则()()0a d b c +⋅+=,即()()()3sin sin 110x x k +--+=,()22sin 2sin 4sin 15k x x x ∴=+-=+-,由[]sin 1,1x ∈-,得[]5,1k ∈--,∴存在[]5,1k ∈--,使得()()a dbc +⊥+ 【点睛】本题考查平面得数量积的坐标运算,考查正弦函数的性质.属于一般题型,难度不大. 22.(1)13; (2)()1E X =. 【解析】 【分析】(1)可根据题意分别计算出“从10人中选出2人”以及“2人参加义工活动的次数之和为4”的所有可能情况数目,然后通过概率计算公式即可得出结果;(2)由题意知随机变量X 的所有可能取值,然后计算出每一个可能取值所对应的概率值,写出分布列,求出数学期望值. 【详解】(1)由已知有1123432101()3C C C P A C ⋅+==,所以事件A 的发生的概率为13; (2)随机变量X 的所有可能的取值为0,1,2;2223342104(0)15C C C P X C ++===;111133342107(1)15C C C C P X C ⋅+⋅===; 11342104(2)15C C P X C ⋅===; 所以随机变量X 的分布列为:数学期望为0121151515E X . 【点睛】本题考查了离散型随机变量的分布列与数学期望的计算问题,能否正确计算出每一个随机变量所对应的的概率是解决本题的关键,考查推理能力,是中档题. 23.(110y --=,22(1)(1)2x y -+-=;(2)1. 【解析】 【分析】(1)利用代入法消去参数方程中的参数可求直线l 的普通方程,极坐标方程展开后,两边同乘以ρ,利用222,cos ,sin xy x y ρρθρθ=+== ,即可得曲线C 的直角坐标方程;(2)直线l 的参数方程代入圆C 的直角坐标方程,利用韦达定理、直线参数方程的几何意义即可得结果. 【详解】(1)将直线l 的参数方程消去参数t 并化简,得 直线l 10y --=.将曲线C 的极坐标方程化为2sin 22ρθθ⎛⎫=+ ⎪ ⎪⎝⎭.即22sin2cos ρρθρθ=+.∴x 2+y 2=2y+2x.故曲线C 的直角坐标方程为()()22112x y -+-=.(2)将直线l 的参数方程代入()()22112x y -+-=中,得2211222t ⎫⎛⎫-+-=⎪ ⎪⎪⎝⎭⎝⎭. 化简,得(2130t t -++=.∵Δ>0,∴此方程的两根为直线l 与曲线C 的交点A ,B 对应的参数t 1,t 2.由根与系数的关系,得121t t +=,123t t =,即t 1,t 2同正. 由直线方程参数的几何意义知,12121PA PB t t t t +=+=+=.【点睛】本题主要考查参数方程和普通方程的转化、极坐标方程和直角坐标方程的转化以及直线参数方程的应用,属于中档题. 消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法;极坐标方程化为直角坐标方程,只要将cos ρθ和sin ρθ换成x 和y 即可.24.(1)()2240x y y -=≠(2【解析】(1)消去参数t 得1l 的普通方程()1:2l y k x =-;消去参数m 得l 2的普通方程()21:2l y x k=+. 设(),P x y ,由题设得()()212y k x y x k ⎧=-⎪⎨=+⎪⎩,消去k 得()2240x y y -=≠. 所以C 的普通方程为()2240x y y -=≠.(2)C 的极坐标方程为()()222cos sin 402π,πρθθθθ-=<<≠.联立()()222cos sin 4,cos sin 0ρθθρθθ⎧-=⎪⎨+=⎪⎩得()cos sin 2cos sin θθθθ-=+.故1tan 3θ=-, 从而2291cos ,sin 1010θθ==. 代入()222cos sin 4ρθθ-=得25ρ=,所以交点M【名师点睛】本题考查了极坐标方程的求法及应用,重点考查了转化与化归能力.遇到求曲线交点、距离、线段长等几何问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解,或者直接利用极坐标的几何意义求解.要结合题目本身特点,确定选择何种方程. 25.(Ⅰ)0.55;(Ⅱ)详见解析 【解析】 【分析】 【详解】解:(I )设甲胜A 的事件为D ,乙胜B 的事件为E ,丙胜C 的事件为F ,则,,D E F 分别表示甲不胜A 、乙不胜B ,丙不胜C 的事件.因为()0.6,()0.5,()0.5===P D P E P F ,()0.4,()0.5,()0.5∴===P D P E P F . 红队至少两人获胜的事件有:,,,DEF DEF DEF DEF ,由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率()()()()0.60.50.50.60.50.50.40.50.50.60.50.50.55P P DEF P DEF P DEF P DEF =+++=⨯⨯+⨯⨯+⨯⨯+⨯⨯=(II )由题意知ξ可能的取值为0,1,2,3.又由(I )知,,DEF DEF DEF 是两两互斥事件,且各盘比赛的结果相互独立, 因此(0)()0.40.50.50.1P P DEF ξ===⨯⨯=,(1)()()()ξ==++P P DEF P DEF P DEF(1)0.40.50.50.40.50.50.60.50.50.35ξ==⨯⨯+⨯⨯+⨯⨯=P (3)()0.60.50.50.15P P DEF ξ===⨯⨯=,由对立事件的概率公式得(2)1[(0)(1)(3)]0.4.P P P P ξξξξ==-=+=+== 所以ξ的分布列为:因此26.(1)见解析;(2 【解析】 【分析】(1)根据线面平行的判定定理直接证明即可;(2)连接BD 交EF 与点N ,先由题中条件得到MND ∠为二面角M EF D ﹣﹣的平面角,再解三角形即可得出结果. 【详解】(1)PB 平面MEF .证明如下:在图1中,连接BD ,交EF 于N ,交AC 于O , 则1124BN BO BD ==, 在图2中,连接BD 交EF 于N ,连接MN ,在DPB 中,有14BN BD =,14PM PD =, MN PB ∴.PB ⊄平面MEF ,MN ⊂平面MEF ,故PB 平面MEF ;(2)连接BD 交EF 与点N ,图2中的三角形PDE 与三角形PDF 分别是图1中的Rt ADE 与Rt CDF ,PD PE PD PF ∴⊥⊥,,又PE PE P ⋂=,PD ∴⊥平面PEF ,则PD EF ⊥,又EF BD ⊥,EF ∴⊥平面PBD , 则MND ∠为二面角M EF D ﹣﹣的平面角.可知PM PN ⊥,则在Rt MND 中,12PM PN =,=,则22PM PN 3MN =+=.在MND 中,332MD DN ==,,由余弦定理,得22262MN DN MD cos MND MN DN +-∠==⋅. ∴二面角M EF D ﹣﹣的余弦值为63.【点睛】本题主要考查线面平行的判定,以及二面角的求法,熟记线面平行的判定定理以及二面角的概念即可,属于常考题型.。

2019届全国1卷高三文科数学高考模拟试题一(精校版,word版)

2019届全国1卷高三文科数学高考模拟试题一(精校版,word版)

2019届全国1卷高三文科数学高考模拟试题一一、选择题:本题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1,2,3}A =-,{1,1}B =-,则AB =A .{1,2}B .{0,1,2}C .{0,2,3}D .{0,1,2,3}2.复数221z i i=++-的虚部是 A .3B .2C .2iD .3i3.“0a b ⋅≥”是“a 与b 的夹角为锐角”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知函数2()2xaf x -=,1(3)4f =,则(2)f = A .1 B .18- C .12 D .185.记等比数列{}n a 的前n 项和为n S ,已知132,6S S =-=-,且公比1q ≠,则3a =A .-2B .2C .-8D .-2或-86. 若点(2,2)A 在抛物线2:2C y px =上,记抛物线C 的焦点为F ,则直线AF 的斜率为A .24 B .423 C .22 D .237. 已知[0,]x π∈,且3sin1sin 2x x =+tan 2x= A .12- B .12 C .43D .28. 右图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.则下列结论中表述不正确...的是 A.从2000年至2016年,该地区环境基础 设施投资额逐年增加;B.2011年该地区环境基础设施的投资额比 2000年至2004年的投资总额还多;C.2012年该地区基础设施的投资额比2004年的投资额翻了两番 ;D.为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立了投资额y 与时间变量t 的线性回归模型ˆ9917.5y t =+,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.9.函数1()ln ||f x x x=+的图象大致为10.若,x y 满足约束条件102100x y x y x --≤⎧⎪-+≥⎨⎪≥⎩,则2x z y =-+的最小值为A . -1B .-2C .1D . 211.某几何体示意图的三视图如图示,已知其主视图的周长为8,则该几何体侧面积的最大值为 A .πB .2πC .4πD .16π12.已知函数312()423x x f x x x e e=-+-,其中e 是自然对数的底, 若2(1)(2)0f a f a -+≤,则实数a 的取值范围是A .(,1]-∞-B .1[,)2+∞C .1(1,)2-D .1[1,]2-二、填空题:本题共4小题,每小题5分,共20分.13.已知向量(1,)a x =、(1,2)b =--,若a b ⊥,则||a = _____;14.已知双曲线22221x y a b-=(0,0)a b >>的一条渐近线方程为3y x =,则该双曲线的离心率为____;15. 如图,圆柱O 1 O 2 内接于球O ,且圆柱的高等于球O 的半径,则从球O 内任取一点,此点取自圆柱O 1 O 2 的概率为 ; 16. 已知数列{}n a 满足119a =-,181n n n a a a +=+()n N *∈,则数列{}n a 中最大项的值为 . 三、解答题:17.(12分)在ABC ∆中,内角A 、B 、C 所对的边分别是a 、b 、c ,且2sin cos sin 0a B A b A -=, (1)求A ;(2)当函数()sin 3)6f x B C π=+-取得最大值时,试判断ABC ∆的形状.1 1 -1-1 xy 1 1 -1-1 xy 1 1 -1-1xy 1 1 -1-1 xyOHCAP18.(12分)如图,在三棱锥P-ABC 中,正三角形PAC 所在平面与等腰三角形 ABC 所在平面互相垂直,AB =BC ,O 是AC 中点,OH ⊥PC 于H .(1)证明:PC ⊥平面BOH ;(2)若OH OB ==A-BOH 的体积.19.(12分)某公司培训员工某项技能,培训有如下两种方式,方式一:周一到周五每天培训1小时,周日测试;方式二:周六一天培训4小时,周日测试.公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如下表:(1)用方式一与方式二进行培训,分别估计员工受训的平均时间(精确到0.1),并据此判断哪种培训方式效率更高?(2)在甲乙两组中,从第三周...培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.20.(12分)设椭圆()222210x y a b a b+=>>的右顶点为A ,下顶点为B ,过A 、O 、B (O 为坐标原点)三点的圆的圆心坐标为1)2-. (1)求椭圆的方程;(2)已知点M 在x 轴正半轴上,过点B 作BM 的垂线与椭圆交于另一点N ,若∠BMN =60°,求点M 的坐标.21.(12分) 已知函数()()21322xf x x e x x =--+. (1)求函数()f x 的单调递减区间;(2)求实数a 的值,使得2x =是函数()()3213g x f x ax ax =+-唯一的极值点.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22. [选修4-4:坐标系与参数方程] (10分)已知曲线C 的参数方程为22x ty t =⎧⎨=⎩,(t 为参数),以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,过极点的两射线1l 、2l 相互垂直,与曲线C 分别相交于A 、B 两点(不同于点O ),且1l 的倾斜角为锐角α.(1)求曲线C 和射线2l 的极坐标方程;(2)求△OAB 的面积的最小值,并求此时α的值.23. [选修4-5:不等式选讲] (10分)已知函数()|2||2|f x x a x =--+.(1)当2a =时,求不等式()2f x <的解集;(2)当[2,2]x ∈-时,不等式()f x x ≥恒成立,求a 的取值范围.2019届全国1卷高三文科数学高考模拟试题一参考答案解析:11. 三视图知,该几何体为圆锥,设底面的半径为r ,母线的长为l ,则2284r l r l +=⇒+=,S 侧=2()42r l rl πππ+≤=(当且仅当r l =时“=”成立) 12. 由222'()42240x x f x x e e x x -=-++≥-+=≥,知()f x 在R 上单调递增,且31()422()3x x f x x x e e f x --=-++-=-,即函数()f x 为奇函数, 故2(1)(2)0f a f a -+≤2(1)(2)f a f a ⇔-≤-212a a ⇔-≤-2210a a ⇔+-≤,解得112a -≤≤. 二、填空题解析:16. 由181n n n a a +=+得18n n n n a a a +==+18n na a +⇒-=, 即数列1{}n a 是公差为8的等差数列,故111(1)8817n n n a a =+-⨯=-,所以1817n a n =-, 当1,2n =时0n a <;当3n ≥时,0n a >,数列{}n a 递减,故最大项的值为317a =.三、解答题17.解:(1)由正弦定理sin sin a bA B=得sin sin 0a B b A =≠,----------------------------------2分 又2sin cos sin 0a B A b A -=,∴2cos 1A =,即1cos 2A =,------------------------------------------------------------------------4分∵0A π<< ∴3A π=.-----------------------------------------------------------------------------6分(2)解法一:∵3A π=∴23C B π=-,从而62C B ππ-=-, ------------------------------7分OHCB AP∴()sin sin()2f x B B π=-sin B B =------------------------------------------8分12(sin )2B B =+2sin()3B π=+---------------------------------------------10分∵33B πππ<+<,∴当6B π=时,函数()f x 取得最大值,这时632C ππππ=--=,即ABC ∆是直角三角形. -------------------------------------------12分【解法二:∵3A π=∴23B C π=-, -----------------------------------------------------------------7分∴2()sin())36f x C C ππ=-+-11cos sin cos )2222C C C C =++- 2sin C =--------------------------------------------------------------------------------------10分 ∵203C π<<,∴当2C π=时,函数()f x 取得最大值,∴ABC ∆是直角三角形.------------------- --------------------------------------------------------12分】18.解:(1)∵AB =BC ,O 是AC 中点,∴ BO ⊥AC , -------------------------------------------------------------------------------------------1分 又平面PAC ⊥平面ABC ,且BO ⊂平面ABC ,平面PAC ∩平面ABC =AC , ∴ BO ⊥平面PAC ,----------------------------------------------3分 ∴ BO ⊥PC ,------------------------------------------------------4分 又OH ⊥PC ,BO ∩OH =O ,∴ PC ⊥平面BOH ;---------------------------------------------6分(2)解法1:∵△HAO 与△HOC 面积相等,∴A BOH B HAO B HOC V V V ---==,∵BO ⊥平面PAC , ∴13B HOC OHC V S OB -∆=⋅, -------------------------------------------------8分∵OH =,∠HOC=30° ∴1HC =,∴12OHC S CH OH ∆=⋅=分∴1132B OCHV -==,即12A BOH V -=.----------------------------------------------------12分 【其它解法请参照给分】19.解:(1)设甲乙两组员工受训的平均时间分别为1t 、2t ,则120525*********1060t ⨯+⨯+⨯+⨯==(小时) ----------------------------------------2分2841682012161610.960t ⨯+⨯+⨯+⨯=≈(小时)----------------------------------------4分据此可估计用方式一与方式二培训,员工受训的平均时间分别为10小时和10.9小时,因1010.9<,据此可判断培训方式一比方式二效率更高;---------------------------------------------6分 (2)从第三周培训后达标的员工中采用分层抽样的方法抽取6人,则这6人中来自甲组的人数为:610230⨯=,--------------------------------------------------7分 来自乙组的人数为:620430⨯=,----------------------------------------------------------------8分 记来自甲组的2人为:a b 、;来自乙组的4人为:c d e f 、、、,则从这6人中随机抽取 2人的不同方法数有:(,),(,),(,),(,),(,)a b a c a d a e a f ,(,),(,),(,),(,)b c b d b e b f ,(,),(,),(,)c d c e c f ,(,),(,),(,)d e d f e f ,共15种,----------------------------------------------10分其中至少有1人来自甲组的有:(,),(,),(,),(,),(,)a b a c a d a e a f ,(,),(,),(,),(,),b c b d b e b f 共9种,故所求的概率93155P ==.----------------------------------------------------------------------12分 20.解:(1)依题意知(,0)A a ,(0,)B b -,------------------------------------------------------------------1分 ∵△AOB 为直角三角形,∴过A 、O 、B 三点的圆的圆心为斜边AB 的中点,∴1,2222a b =-=-,即1a b ==,--------------------------------3分 ∴椭圆的方程为2213x y +=.-----------------------------------------4分 (2)由(1)知(0,1)B -,依题意知直线BN 的斜率存在且小于0,设直线BN 的方程为1(0)y kx k =-<,则直线BM 的方程为:11y x k=--,------------------------------------------------------------5分由2233,1.x y y kx ⎧+=⎨=-⎩消去y 得22(13)60k x kx +-=,----------------------------------------------6分解得:2613N kx k =+,1N N y kx =-,---------------------------------------------------------------7分∴||BN =|N x ==∴|||N B BN x x =-26||13k k=+,------------------------------------------------8分 【注:学生直接代入弦长公式不扣分!】在11y x k=--中,令0y =得x k =-,即(,0)M k -∴||BM =-----------------------------------------------------------------------------------9分在Rt △MBN 中,∵∠BMN=60°,∴|||BN BM =,26||3k k=23|10k k -+=,解得||3k =,∵0k <,∴3k =-,------------------------------------------------------11分∴点M 的坐标为3.---------------------------------------------------------------------------12分 21.解:(1)()()()21x f x x e '=--,-----------------------------------------------------------------1分令()0f x '<,得2010x x e -<⎧⎨->⎩或2010x x e ->⎧⎨-<⎩,-----------------------------------------------------2分由2010xx e -<⎧⎨->⎩得02x <<,而不等式组2010xx e ->⎧⎨-<⎩的解集为φ-----------------------------3分∴函数()f x 的单调递减区间为()0,2;----------------------------------------------------------4分 (2)依题意得()()()()()221x g x f x ax x x e ax ''=+-=-+-,显然()20g '=,---5分记()1xh x e ax =+-,x R ∈,则()00h =,当0a =时,()110h e =->;当0a ≠时,110a h e a ⎛⎫=> ⎪⎝⎭;由题意知,为使2x =是函数()g x 唯一的极值点,则必须()0h x ≥在R 上恒成立;----------7分只须()min 0h x ≥,因'()xh x e a =+,①当0a ≥时,'()0xh x e a =+>,即函数()h x 在R 上单调递增,而()1110h a e-=--<,与题意不符; --------------------------------------------------------8分 ②当0a <时,由()0h x '<,得()ln x a <-,即()h x 在()(),ln a -∞-上单调递减,由()0h x '>,得()ln x a >-,即()h x 在()()ln ,a -+∞上单调递增,故()()()min ln h x h a =-, ------------------------------------------------------------------------10分 若1a =-,则()()min ()00h x h x h ≥==,符合题意;------------------------------------11分 若1a ≠-,则()()()min 00()ln h h x h a =≥=-,不合题意;综上所述,1a =-.----------------------------------------------------------------------------------12分 【或由()min 0h x ≥,及(0)0h =,得()min (0)h h x =,∴()ln 0a -=,解得1a =-. -----------------------------------------------------------------12分】 22. 解:(1)由曲线C 的参数方程,得普通方程为24y x =,由cos x ρθ=,sin y ρθ=,得224sin cos ρθρθ=, 所以曲线C 的极坐标方程为2cos 4sin ρθθ=,[或24sin cos θρθ=] --------------------------3分2l 的极坐标方程为2πθα=+;----------------------------------------------------------------------5分(2)依题意设(,),(,)2A B A B πραρα+,则由(1)可得24sin cos A αρα=, 同理得24sin()2cos ()2B παρπα+=+,即24cos sin B αρα=,--------------------------------------------------7分 ∴11||||||22OAB A B S OA OB ρρ∆=⋅=⋅228|sin cos |cos sin αααα⋅=⋅ ∵02πα<<∴0απ<<,∴8cos sin OAB S αα∆=⋅16sin 2α=16≥, ----------------9分△OAB 的面积的最小值为16,此时sin 21α=,得22πα=,∴4πα=. -------------------------------------------------------------------------10分23.解:(1)①当2x <-时,()22(2)62f x x x x =-+++=+<,解得4x <-,-------------------------------------------------------------------------------------------1分 ②当22x -≤<时,()22(2)322f x x x x =-+-+=--<, 解得423x -<<,--------------------------------------------------------------------------------------2分 ③当2x ≥时,()22(2)62f x x x x =--+=--<解得2x ≥,---------------------------------------------------------------------------------------------3分上知,不等式()2f x <的解集为4(,4)(,)3-∞--+∞;-----------------------------------5分 (2)解法1:当[2,2]x ∈-时,()2(2)(1)2(1)f x x a x a x a =--+=-++-,------------6分 设()()g x f x x =-,则[2,2]x ∀∈-,()(2)2(1)0g x a x a =-++-≥恒成立,只需(2)0(2)0g g -≥⎧⎨≥⎩,-------------------------------------------------------------------------------------8分即60420a ≥⎧⎨--≥⎩,解得12a ≤---------------------------------------------------------------------10分【解法2:当[2,2]x ∈-时,()2(2)f x x a x =--+,----------------------------------------------6分()f x x ≥,即2(2)x a x x --+≥,即(2)2(1)x a x +≤----------------------------------7分①当2x =-时,上式恒成立,a R ∈;------------------------------------------8分 ②当(2,2]x ∈-时,得2(1)2x a x -≤+622x =-++恒成立, 只需min61(2)22a x ≤-+=-+,综上知,12a ≤-.----------------------------------------------------------------10分】。

2019年甘肃省高考数学一诊试卷(理科)-含详细解析

2019年甘肃省高考数学一诊试卷(理科)-含详细解析

2019年甘肃省高考数学一诊试卷(理科)副标题一、选择题(本大题共12小题,共60.0分)1.=()A. B. C. D.2.已知全集U=R,集合A={x|-3≤x≤1},B={x|x<-2,或x>2},那么集合A∩(∁U B)=()A. B.C. D. ,或3.已知平面向量,的夹角为,=(0,-1),||=2,则|2+|=()A. 4B. 2C.D.4.抛物线y2=8x的焦点到双曲线-x2=1的渐近线的距离是()A. B. C. D.5.已知函数f(x)的图象如图所示,则f(x)的解析式可能是()A.B.C.D.6.若函数f(x)=a sin x+cos x在[-,]为增函数,则实数a的取值范围是()A. B.C. D.7.若某程序框图如图所示,则该程序运行后输出的值是()A.B.C.D.8.《数术记遗》是《算经十书》中的一部,相传是汉末徐岳(约公元2世纪)所著,该书主要记述了:积算(即筹算)太乙、两仪、三才、五行、八卦、九宫、运筹、了知、成数、把头、龟算、珠算计数14种计算器械的使用方法某研究性学习小组3人分工搜集整理14种计算器械的相关资料,其中一人4种、另两人每人5种计算器械,则不同的分配方法有()A. B. C. D.9.在△ABC中,A=120°,BC=14,AB=10,则△ABC的面积为()A. 15B.C. 40D.10.四棱锥P-ABCD的顶点均在一个半径为3的球面上,若正方形ABCD的边长为4,则四棱锥P-ABCD的体积最大值为()A. B. C. D.11.直线l过抛物线y2=2px(p>0)的焦点,且交抛物线于A,B两点,交其准线于C点,已知,,则p=()A. 2B.C.D. 412.已知函数f'(x)是函数f(x)的导函数,,对任意实数都有f(x)-f'(x)>0,则不等式f(x)<e x-2的解集为()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.若实数x,y满足约束条件,则z=x-y的最大值是______.14.已知α,β均为锐角,cosα=,tan(α-β)=-,则cosβ=______.15.直三棱柱ABC-A1B1C1中,底面为正三角形,AB=2,D是AB的中点,异面直线AC1与CD所成角的余弦值是,则三棱柱ABC-A1B1C1的表面积等于______.16.已知定义在R上的偶函数f(x),满足f(x+4)=f(x)+f(2),且在区间[0,2]上是增函数,①函数f(x)的一个周期为4;②直线x=-4是函数f(x)图象的一条对称轴;③函数f(x)在[-6,-5)上单调递增,在[-5,-4)上单调递减;④函数f(x)在[0,100]内有25个零点;其中正确的命题序号是______(注:把你认为正确的命题序号都填上)三、解答题(本大题共7小题,共82.0分)17.已知等差数列{a n}满足a3-a2=3,a2+a4=14.(Ⅰ)求{a n}的通项公式;(Ⅱ)设S n是等比数列{b n}的前n项和,若b2=a2,b4=a6,求S7.18.为了解某养殖产品在某段时间内的生长情况,在该批产品中随机抽取了120件样本,测量其增长长度(单位:cm),经统计其增长长度均在区间[19,31]内,将其按[19,21),[21,23),[23,25),[25,27),[27,29),[29,31]分成6组,制成频率分布直方图,如图所示其中增长长度为27cm及以上的产品为优质产品.(Ⅰ)求图中a的值;(Ⅱ)已知这120件产品来自于A,B两个试验区,部分数据如下列联表:的把握认为优质产品与A,B两个试验区有关系,并说明理由;下面的临界值表仅供参考:(参考公式:,其中n=a+b+c+d)(Ⅲ)以样本的频率代表产品的概率,从这批产品中随机抽取4件进行分析研究,计算抽取的这4件产品中含优质产品的件数X的分布列和数学期望EX.19.如图,四棱锥P-ABCD中,PD⊥底面ABCD,AB∥CD,∠ADC=120°,PD=AD=AB=2,CD=4,点M为棱PC的中点.(Ⅰ)证明:BM∥平面PAD;(Ⅱ)求二面角A-BM-C的余弦值.20.已知椭圆C:+=1(a>b>0)的离心率为,且经过点M(,).(Ⅰ)求椭圆C的方程;(Ⅱ)与x轴不垂直的直线l经过N(0,),且与椭圆C交于A,B两点,若坐标原点O在以AB为直径的圆内,求直线l斜率的取值范围.21.已知函数f(x)=x2-x lnx.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若+-<0在(1,+∞)上恒成立,求实数k的取值范围.22.在平面直角坐标系xOy中,直线C1的参数方程为(其中t为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线C2的极坐标方程为ρ=.(Ⅰ)求C1和C2的直角坐标方程;(Ⅱ)过点P(3,2)作直线C1的垂线交曲线C2于M,N两点,求|PM|•|PN|.23.已知函数f(x)=|x-2|(Ⅰ)解不等式;f(x)+f(2x+1)≥6;(Ⅱ)已知a+b=1(a,b>0).且对于∀x∈R,f(x-m)-f(-x)≤恒成立,求实数m的取值范围.答案和解析1.【答案】A【解析】解:=.故选:A.直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,是基础题.2.【答案】C【解析】解:∁U B={x|-2≤x≤2};∴A∩(∁U B)={x|-2≤x≤1}.故选:C.进行交集、补集的运算即可.考查描述法的定义,以及交集和补集的运算.3.【答案】B【解析】解:由题意,∵=(0,-1),=1.∴|2+|2=()2=42+2+4=4•1+4+4=8+4•cos=8+4•1•2•(-)=4.∴|2+|=2.故选:B.本题可将模进行平方一下,然后根据向量性质计算,最后得出模平方的值,最终算出结果.本题主要根据向量性质进行计算,属基础题.4.【答案】C【解析】解:抛物线y2=8x的焦点为(2,0),双曲线-x2=1的渐近线方程设为y=2x,可得抛物线的焦点到双曲线的渐近线距离为=.故选:C.求得抛物线的焦点和双曲线的一条渐近线方程,运用点到直线的距离公式可得所求距离.本题考查抛物线和双曲线的方程和性质,考查渐近线方程和焦点的求法,考查方程思想和运算能力,属于基础题.5.【答案】D【解析】解:由图可知f()>0,故可排除A,B;对于C:f(x)=e|x|+cosx,当x∈(0,1)时f(x)>0,故可排除C.故选:D.采用排除法排除A,B,C.本题考查了函数图象与图象的变换,属中档题.6.【答案】A【解析】解:①当a=0时,函数f(x)=asinx+cosx在[-,]上先增后减,结论不成立.②当a≠0时,f(x)=asinx+cosxf′(x)=acosx-sinx,若f(x)在[-,]上为单调增函数,则acosx-sinx≥0在[-,]上恒成立,故a≥tanx在[-,]上恒成立,而y=tanx在[-,]上的最大值是1,∴a≥1.∴实数a的取值范围是[1,+∞).故选:A.先看a=0时,已知条件不成立,再看a≠0时,求出函数的导数,结合三角函数的性质求出a的范围即可.本题主要考查了三角函数的性质,三角函数的单调性,属于中档题.7.【答案】C【解析】解:由程序框图知:算法的功能是求S=+++…+=1-+-+…+-=1-,∵满足条件k>10的最小k=11,∴当k=11时,程序运行终止,此时S=1-=.故选:C.算法的功能是求S=+++…,判断当k=11时,程序运行终止,利用裂项相消法求出S值.本题考查了循环结构的程序框图,由框图的流程判断算法的功能是解答此类问题的关键.8.【答案】A【解析】解:将14种计算器械的相关资料分成满足题意的3组只有4,5,5则不同的分配方法有,故选:A.根据题意,分析有14种计算器械的相关资料分成满足题意的3组只有4,5,5,计算即可本题考查分组分配的问题,先分组再分配时关键,属于中档题.9.【答案】B【解析】解:∵A=120°,BC=14,AB=10,∴由余弦定理可得:142=102+AC2-2×10×AC×cosA,可得:AC2+10AC-96=0,∴解得:AC=6,或-16(舍去),∴S △ABC=AB•AC•sinA==15.故选:B.由已知利用余弦定理可求AC的值,根据三角形的面积公式即可计算得解.本题主要考查了余弦定理,三角形的面积公式在解三角形中的应用,属于基础题.10.【答案】D【解析】解:四棱锥P-ABCD的所有顶点都在同一球面上,底面ABCD为正方形,球的半径为3,下底面的边长为4,若四棱锥P-ABCD的体积最大,则球心在高上,且四棱锥为正四棱锥.设四棱锥的高为h,则下底面的中心G到B的距离GB=,可得OG2+GB2=OB2,即,可得h=2(舍)或h=4.则该四棱锥的体积的最大值V=.故选:D.由题意,可得当四棱锥P-ABCD为正四棱锥时体积最大,画出图形,求出四棱锥的高,代入棱锥体积公式求解.本题考查球内接多面体体积最值的求法,明确当四棱锥P-ABCD为正四棱锥时体积最大是关键,是中档题.11.【答案】C【解析】解:过A,B分别作准线的垂线交准线于E,D.∵,∴|AE|=4,|CB|=3|BF|,且|BF|=|BD|,设|BF|=|BD|=a,则|BC|=3a,根据三角形的相似性可得,即,解得a=2,∴,即,∴.故选:C.利用抛物线的定义、相似三角形的性质即可求出.熟练掌握抛物线的定义、相似三角形的性质是解题的关键.12.【答案】B【解析】解:设g(x)=,则g′(x)==.∵对任意实数都有f(x)-f'(x)>0,∴g′(x)<0,即g(x)为R上的减函数.g(1)=.由f(x)<e x-2,得,即g(x)<g(1).∵g(x)为R上的减函数,∴x>1.∴不等式f(x)<e x-2的解集为(1,+∞).故选:B.由已知f(x)-f'(x)>0,可联想构造函数g(x)=,利用导数得其单调性,把要求解的不等式转化为g(x)<g(1)得答案.本题考查利用导数研究函数的单调性,构造函数是解答该题的关键,是中档题.13.【答案】8【解析】解:画出约束条件表示的平面区域如图所示,由图形知,当目标函数z=x-y过点A时取得最大值,由,解得A(6,-2),代入计算z=6-(-2)=8,所以z=x-y的最大值为8.故答案为:8.画出约束条件表示的平面区域,利用图形求出最优解,计算目标函数的最大值.本题考查了简单的线性规划应用问题,是基础题.14.【答案】【解析】解:∵0<α<,cosα=,∴sinα=,∴tanα=.∵tan(α-β)===-,解得tanβ=.联立,解得cosβ=(β为锐角).故答案为:.由已知求得tanα,进一步求得tanβ,结合平方关系即可求得cosβ.本题考查了三角函数的基本关系式、正切公式、两角和的余弦公式等基础知识与基本方法,属于基础题.15.【答案】【解析】解:设三棱柱高为h,以A为坐标原点,建立如图坐标系,则A(0,0,0),B(1,,0),C(2,0,0),D(,,0),C1,(2,0,h),∴=(2,0,h),=(-2,,0)=(-,,0),异面直线AC1与CD所成角的余弦值是,∴与所成角的余弦值的绝对值为,∴==,解得h=2,∴三棱柱的表面积为:S=2×+(2+2+2)×2=.故填:14.设三棱柱的高为h,建立坐标系后,根据异面直线AC1与CD所成角的余弦值是,求出h,即可求出表面积.本题适合用坐标法处理,但是要注意向量夹角与直线夹角的区别,属于基础题.16.【答案】①②④【解析】解:∵偶函数f(x),满足f(x+4)=f(x)+f(2),∴令x=-2得满足f(-2+4)=f(-2)+f(2),即f(2)=f(2)+f(2)得f(2)=0,则f(x+4)=f(x)即函数f(x)是周期为4的周期函数,故①正确,∵f(x)是偶函数,∴图象关于y轴即x=0对称,函数的周期是4,∴x=-4是函数f(x)图象的一条对称轴,故②正确,∵在区间[0,2]上是增函数,∴在区间[-2,0]上是减函数,则在区间[-6,-4]上是减函数,故③错误,∵f(2)=0,∴f(-2)=0,即函数在一个周期[0,4)内只有一个零点,则函数f(x)在[0,100]内有25个零点,故④正确,故正确的是①②④,故答案为:①②④.根据函数的奇偶性和条件,得到f(2)=0,即函数是周期为4的周期函数,结合的周期性,奇偶性以及对称性的性质分别进行判断即可.本题主要考查命题的真假判断,涉及函数的奇偶性,周期性,对称性以及单调性的性质是应用,根据条件求出函数的周期是解决本题的关键.17.【答案】解:(I)设等差数列{a n}的公差为d,∵a3-a2=3,a2+a4=14.∴d=3,2a1+4d=14,解得a1=1,d=3,∴a n=1+3(n-1)=3n-2.(Ⅱ)设等比数列{b n}的公比为q,b2=a2=4=b1q,b4=a6=16=b1q3,联立解得b1=2=q,b1=-2=q,∴S7==254,或S7==-86.【解析】(I)设等差数列{a n}的公差为d,由a3-a2=3,a2+a4=14.可得d=3,2a1+4d=14,联立解得a1,d,即可得出.(Ⅱ)设等比数列{b n}的公比为q,b2=a2=4=b1q,b4=a6=16=b1q3,联立解得b1,q,利用求和公式即可得出.本题考查了等差数列与等比数列的通项公式及其求和公式,考查了推理能力与计算能力,属于中档题.18.【答案】解:(Ⅰ)根据频率分布直方图数据,得:2(a+a+2a+0.2+0.2)=1,解得a=0.025.(Ⅱ)根据频率分布直方图得:样本中优质产品有120(0.100×2+0.025×2)=30,列联表如下表所示:∴=≈10.3<10.828,∴有99.9%的把握认为优质产品与A,B两个试验区有关系.(Ⅲ)由已知从这批产品中随机抽取一件为优质产品的概率是,随机抽取4件中含有优质产品的件数X的可能取值为0,1,2,3,4,且X~B(4,),∴P(X=0)==,P(X=1)=,P(X=2)==,P(X=3)==,P(X=4)==,EX=4×=1.【解析】(Ⅰ)根据频率分布直方图的性质列方程能求出a.(Ⅱ)根据频率分布直方图得样本中优质产品有30,作出列联表,求出k2≈10.3<10.828,从而有99.9%的把握认为优质产品与A,B两个试验区有关系.(Ⅲ)由已知从这批产品中随机抽取一件为优质产品的概率是,随机抽取4件中含有优质产品的件数X的可能取值为0,1,2,3,4,且X~B(4,),由此能求出抽取的这4件产品中含优质产品的件数X的分布列和数学期望EX.本题考查频率、独立检验、离散型随机变量的分布列、数学期望的求法,考查频率分布直方图、二项分布等基础知识,考查运算求解能力,是中档题.19.【答案】证明:(Ⅰ)取PD 的中点E ,连结AE ,EM ,∵M 是棱PC 的中点,∴EM ∥CD ,且EM =CD ,∵AB ∥CD ,AB =2,CD =4, ∴EM ∥AB ,EM =AB ,∴四边形ABME 是平行四边形,∴BM ∥AE , ∵BM ⊄平面PAD ,AE ⊂平面PAD , ∴BM ∥平面PAD .解:(Ⅱ)以D 为原点,以DC 、DP 分别为y 轴,z 轴,建立如图所示的空间直角坐标系,则D (0,0,0),P (0,0,2),A ( ,-1,0),B ( ,1,0),C (0,4,0),M (0,2,1), =(0,2,0), =(- ,1,1), =(- ,3,0), 设=(x ,y ,z )是平面ABM 的一个法向量, 由,即 ,令x = ,得 =( , , ), 设=(x ,y ,z )是平面CBM 的法向量, 由,即 ,令y =1,得 =( ,1,2), cos < , >===, ∵二面角A -BM -C 的平面角为钝角,∴二面角A -BM -C 的余弦值为-. 【解析】(Ⅰ)取PD 的中点E ,连结AE ,EM ,推导出四边形ABME 是平行四边形,从而BM ∥AE ,由此能证明BM ∥平面PAD .(Ⅱ)以D 为原点,以DC 、DP 分别为y 轴,z 轴,建立空间直角坐标系,利用向量法能求出二面角A-BM-C 的余弦值.本题考查线面平行的证明,考查二面角的余弦值求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20.【答案】解:(Ⅰ)由题意可得,解得a =2,b =1, ∴椭圆C 的方程为+y 2=1.(Ⅱ)设直线l 的方程为y =kx + ,代入椭圆方程+y 2=1整理可得得(1+4k 2)x2+8 kx +4=0,△=(8k)2-16(1+4k2)>0,解得k>或k<-,设A(x1,y1),B(x2,y2),又x1+x2=-,x1•x2=,∴y1y2=k2x1x2+k(x1+x2)+2,∵坐标原点O在以AB为直径的圆内,∴•<0∴x1x2+y1y2=(1+k2)x1x2+k(x1+x2)+2=(1+k2)+k(-)+2<0,解得k<-或k>故直线l斜率的取值范围为(-∞,-)(,+∞).【解析】(Ⅰ)由题意可得,解得a=2,b=1,即可求出椭圆方程,(Ⅱ)由此利用根的判别式、韦达定理、向量的数量积,即可直线l斜率的取值范围.本题考查椭圆方程,考查向量的运算,解题时要认真审题,注意根的判别式、韦达定理、数量积的合理运用,属于中档题.21.【答案】解:(Ⅰ)f(x)=x2-x lnx的导数为f′(x)=2x-(ln x+1),可得切线的斜率为1,切点为(1,1),切线方程为y-1=x-1,即y=x;(Ⅱ)若+-<0在(1,+∞)上恒成立,可得k<-x lnx+x2在(1,+∞)上恒成立,令y=-x lnx+x2,则y′=-ln x-1+x,y″=-+1>0,可得y′在(1,+∞)上单调递增,则y′>-ln1-1+1=0,可得y在(1,+∞)上单调递增,则y>,则k≤.【解析】(Ⅰ)求得f(x)的导数,可得切线的斜率和切点,由点斜式方程可得切线方程;(Ⅱ)由题意可得k<-xlnx+x2在(1,+∞)上恒成立,利用导数确定单调性,求出最值,即可求实数k的取值范围.本题以函数为载体,考查导数的运用,考查利用导数求切线方程和函数的单调区间,同时考查了不等式恒成立问题解法,有一定的综合性.22.【答案】解:(Ⅰ)直线C1的参数方程为(其中t为参数)消去t可得:x-y-1=0,由ρ=得ρ2sin2θ=4ρcosθ,的y2=4x.(x≠0)(Ⅱ)过点P(3,2)与直线C1垂直的直线的参数方程为:(t为参数),代入y2=4x可得t2+8t-16=0设M,N对应的参数为t1,t2,则t1t2=-16,所以|PM||PN|=|t1t2|=16.【解析】(Ⅰ)直线C1的参数方程为(其中t为参数)消去t可得:x-y-1=0,由ρ=得ρ2sin2θ=4ρcosθ,的y2=4x.(x≠0);(Ⅱ)代入直线的参数方程到曲线C2中,利用参数的几何意义可得.本题考查了简单曲线的极坐标方程,属中档题.23.【答案】解:(Ⅰ),<,,>,(2分)当<时,由3-3x≥6,解得x≤-1;当时,x+1≥6不成立;当x>2时,由3x-3≥6,解得x≥3.所以不等式f(x)≥6的解集为(-∞,-1][3,+∞).…(5分)(Ⅱ)∵a+b=1(a,b>0),∴(6分)∴对于∀x∈R,恒成立等价于:对∀x∈R,|x-2-m|-|-x-2|≤9,即[|x-2-m|-|-x-2|]max≤9(7分)∵|x-2-m|-|-x-2|≤|(x-2-m)-(x+2)|=|-4-m|∴-9≤m+4≤9,(9分)∴-13≤m≤5(10分)【解析】(Ⅰ)根据绝对值不等式的解法,利用分类讨论进行求解即可.(Ⅱ)利用1的代换,结合基本不等式先求出的最小值是9,然后利用绝对值不等式的性质进行转化求解即可.本题主要考查绝对值不等式的解法,以及不等式恒成立问题,利用1的代换结合基本不等式,将不等式恒成立进行转化求解是解决本题的关键.。

2019届高三数学一模考试试题文

2019届高三数学一模考试试题文

2019届高三数学一模考试试题文第I卷一、选择题(本大题共12小题,每小题5分,共60分)1、设集合,集合为函数的定义域,则()A. B. C. D.2.下列说法正确的是()A.若命题都是真命题,则命题“”为真命题B.命题“若,则或”的否命题为“若,则或”C.命题“”的否定是“”D.“”是“”的必要不充分条件3.已知角α的始边与轴非负半轴重合,终边在射线上,则的值为( )A. B. C. D.4.已知曲线在点处的切线与直线垂直,则的值是()A. B.1 C. D.5.函数f()=的单调递增区间是( )A.(-∞,-2) B.(-∞,1) C.(1,+∞)D.(4,+∞) 6.函数f()=(--1)是幂函数,且在∈(0,+∞)上为增函数,则实数的值是( )A.-1 B.2 C.3 D.-1或2 7.设f()=ln +-2,则函数f()的零点所在的区间为( )A.(0,1) B.(1,2) C.(2,3) D.(3,4)8.设函数,则f(-2)+f(log212)=( ) A.3 B.6 C.9D.129.若函数f()、g()分别为R上的奇函数、偶函数,满足f()-g()=ex,则有( )A.f(2)<f(3)<g(0) B.g(0)<f (3)<f(2)C.f(2)<g(0)<f(3)D.g(0)<f(2)<f(3)10.已知定义在R上的奇函数f()满足,且在区间[0,2]上是增函数,则( )A.f(-25)<f(11)<f(80) B.f(80)<f(11)<f(-25)C.f(11)<f(80)<f(-25) D.f(-25)<f(80)<f(11)11.已知函数的导函数f′()=的图象如图所示,则f()的图象可能是( )12.若函数y=f()的图象上存在不同的两点M,N关于原点对称,则称点对(M,N)是函数y=f()的一对“和谐点对”.已知函数f()=则此函数的“和谐点对”有( )A.1对 B.2对 C.3对D.4对第II卷二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数的导函数为,且满足,则_____.14、已知函数f(x)=x3+ax2+(a+6)x+1在上无极值点,则实数a的取值范围是________.15.已知,g(x)=,若对存在总任意,使成立,则实数m的取值范围是__________.16.已知函数f()=关于x的方程f()+-a=0有且只有一个实根,则实数a的取值范围是_______.三、解答题(本大题共6小题,共70分)(本小题满分10分)已知,,若是的充分不必要条件,求的取值范围。

2019年县一中高考数学选择题专项训练(一模)

2019年县一中高考数学选择题专项训练(一模)

2019年县一中高考数学选择题专项训练(一模)抽选各地名校试卷,经典试题,有针对性的应对高考数学考点中的难点、重点和常规考点进行强化训练。

第 1 题:来源:广东省天河区普通高中2017_2018学年高二数学11月月考试题08试卷及答案设P为椭圆上的一点,、为该椭圆的两个焦点,若,则的面积等于()A.3B.C.2D.2【答案】B第 2 题:来源:辽宁省大石桥市2018届高三数学上学期期初考试试题理已知向量满足,,则A. B. C. D.【答案】B第 3 题:来源:内蒙古杭锦后旗2017_2018学年高一数学上学期期中试题试卷及答案下列四个命题: (1)函数的定义域,在时是增函数,也是增函数,则在定义域上是增函数;(2)函数是非奇非偶函数;(3)的递增区间为; (4) 和表示相同函数。

其中正确命题的个数是( )A.0 B.1 C.2 D.3【答案】A第 4 题:来源:陕西省黄陵县2018届高三数学上学期期中试题(重点班)理试卷及答案已知直线l过点P(3,4)且与点A(-2,2),B(4,-2)等距离,则直线l的方程为( )A.2x+3y-18=0B.2x-y-2=0C.3x-2y+18=0或x+2y+2=0D.2x+3y-18=0或2x-y-2=0【答案】D第 5 题:来源:重庆市万州三中2018_2019学年高一数学下学期期中试题.的值为( )A. B. C. D.【答案】D第 6 题:来源:高中数学第三章数系的扩充与复数的引入章末测试试卷及答案B 新人教A版选修1-2设a,b∈R,i是虚数单位,则“ab=0”是“复数a+为纯虚数”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B第 7 题:来源:山东省青州市2017_2018学年高一数学10月月考试题试卷及答案若φ(x),g(x)都是奇函数,f(x)=aφ(x)+bg(x)+2在(0,+∞)上有最大值5,则f(x)在(-∞,0)上有( )A.最小值-5 B.最大值-5 C.最小值-1 D.最大值-3【答案】C第 8 题:来源:高中数学第三章导数及其应用3.3导数的应用3.3.3导数的实际应用课后训练新人教B版选修1_120171101254已知圆柱的表面积为定值S,则当圆柱的容积V最大时,圆柱的高h的值为( )A.B.C.D.【答案】B 设圆柱的底面半径为r,高为h,则S=2πr2+2πrh.∴.又圆柱的体积V(r)=πr2h=(S-2πr2)=.而,令V′(r)=0,得S=6πr2,∴h=2r,又,∴.即当圆柱的容积V最大时,圆柱的高h为.第 9 题:来源:四川省蓉城名校联盟2018_2019学年高一数学上学期期中试题方程有两个实根,且满足,则的取值范围是A. B.C. D.【答案】A第 10 题:来源:黑龙江省大庆市2017届高三第三次教学质量检测(三模)数学试题(理)含答案已知某几何体的三视图如图所示,则该几何体的表面积为()A.B. C.D.【答案】D第 11 题:来源:河北省邯郸市2016_2017学年高二数学上学期期中试题在中,角所对的边分别为,若,,,则角的大小为()A. B. C. D.或【答案】B【解析】由,两边平方得,所以,即,所以,又因为,,所以在中,由正弦定理得,解得,又,所以,故选B.考点:正弦定理;三角函数的基本关系式.第 12 题:来源:江西省南昌市第二中学2016-2017学年高一数学上学期期末考试试题试卷及答案若,则的值为().A.- B. C.- D.【答案】B第 13 题:来源:山东省曲阜市2016_2017学年高二数学下学期第一次月考试题理试卷及答案若函数是上的单调函数,则实数的取值范围是()A. B. C. D.【答案】C第 14 题:来源:宁夏银川市2016_2017学年高二数学下学期第一次月考试题试卷及答案理先阅读下面文字:“求的值时,采用了如下方法:令,则有,两边平方得,解得(负值已舍去)。

2019年安徽省阜阳市临泉县第一中学高三数学理上学期期末试题含解析

2019年安徽省阜阳市临泉县第一中学高三数学理上学期期末试题含解析

2019年安徽省阜阳市临泉县第一中学高三数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1.若 (a-2i ) i = b-i,其中a、b∈R,i是虚数单位,则a 2 + b 2等于()(A) 0 (B) 2 (C) (D) 5参考答案:答案:D2. 由9个互不相等的正数组成的矩阵中,每行中的三个数成等差数列,且、、成等比数列,下列三个判断正确的有……………………()①第2列必成等比数列②第1列不一定成等比数列③(A)3个(B)2个(C)1个(D)0个参考答案:A3. 若抛物线y2=4x上一点P到其焦点F的距离为2,O为坐标原点,则△OFP的面积为()A. B. 1 C. D. 2参考答案:B由抛物线的方程,知其准线为,,设,则由抛物线的定义,有,所以,所以,所以,故选B.4. 函数为定义在上的减函数,函数的图像关于点(1,0)对称,满足不等式,,为坐标原点,则当时,的取值范围为()A. B. C.D.参考答案:D因为函数的图像关于点(1,0)对称,所以的图象关于原点对称,即函数为奇函数,由得,所以,所以,即,画出可行域如图,可得=x+2y∈[0,12].故选D.5. 已知复数,则复数z的共轭复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限参考答案:B6. 如图所示的程序框图,若输入的n是100,则输出的变量S和T的值依次是( )A.2500,2500 B.2550,2550 C.2500,2550D.2550,2500参考答案:D7. 已知双曲线与抛物线有共同的焦点F,且点F到双曲线渐近线的距离等于1,则双曲线的方程为()A.B.C.D.参考答案:A抛物线的焦点坐标为,可得双曲线的焦点为,化为,得,双曲线的一条渐近线方程为,由点到双曲线渐近线的距离等于1,得, 即,①又,即,②联立①②解得,双曲线的方程为,故选A .8.A. B. C.D.参考答案:C9. 已知命题甲:a+b≠4,命题乙:a≠1且b≠3,则命题甲是命题乙的()A.充分必要条件B.既不充分也不必要条件C.充分不必要条件D.必要不充分条件参考答案:B【考点】必要条件、充分条件与充要条件的判断.【分析】由于已知的两个命题均为含否定词的命题,故可考虑使用等假命题法判断命题的真假,进而判断两命题间的充要关系【解答】解:∵“若a=1或b=3,则a+b=4”为假命题,故它的等假命题“若a+b≠4,则≠1且b≠3”为假命题;∵“若a+b=4,则a=1或b=3”为假命题,故其等价命题“若a≠1且b≠3,则a+b≠4”为假命题∴命题甲:a+b≠4,是命题乙:a≠1且b≠3的既不充分也不必要条件故选:B.10. 执行如图所示程序框图,若输入的,则输出的x的取值范围为()A.[0,1] B.[-1,1] C. [-3,1] D.[-7,1]参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 已知直线l⊥平面α,直线m包含于平面β,则下列四个命题:①若α∥β,则l⊥m;②若α⊥β,则l∥m;③若l∥m,则α⊥β;④若l⊥m,则α∥β.其中正确命题的序号是___________.参考答案:①③略12. 已知实数满足,则的最大值为 .参考答案:413. 在极坐标系中,若圆的极坐标方程为,若以极点为原点,以极轴为轴的正半轴建立相应的平面直角坐标系,则在直角坐标系中,圆心的直角坐标是 .参考答案:略14. 已知数列{a n}的前n项和为S n,满足:a1=1,S n+1-S n=(n∈N*),则该数列的前2017项和S2017=.参考答案:31009﹣2【考点】数列的求和.【分析】由a1=1,,可得a n+1a n=3n,n=1时,a2=3.n≥2时,a n a n﹣=3n﹣1,可得=3.因此数列{a n}的奇数项与偶数项都成等比数列,公比为3.即可得1出.【解答】解:∵a1=1,,∴a n+1a n=3n,n=1时,a2=3.n≥2时,a n a n﹣1=3n﹣1,可得=3.∴数列{a n}的奇数项与偶数项都成等比数列,公比为3.∴S2017=(a1+a3+…+a2017)+(a2+a4+…+a2016)=+=31009﹣2.故答案为:31009﹣2.15. 已知中,AB=,BC=1,tanC=,则AC等于______.参考答案:2由,所以。

安徽省阜阳市临泉县第一中学高三上学期第一次模拟考试

安徽省阜阳市临泉县第一中学高三上学期第一次模拟考试

安徽省阜阳市临泉县第一中学 2018届高三上学期第一次模拟考试数学(理)试题一、选择题(每小题5分,共60分)1.已知集合{}{}1log ,122<=<=x x B x x A ,则等于( ) A. B. C. D.2.下列函数中与y=x 有相同图像的是( )A .B .C .(且)D .log 0,1)xa y a a a =>≠(3.购物大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( ) A. 充分条件 B. 必要条件 C. 充分必要条件 D. 既非充分也非必要条件4.已知函数,则为 ( )A.是奇函数,且在上是增函数B.是偶函数,且在上是增函数C.是奇函数,且在上是减函数D.是偶函数,且在上是减函数5.设二次函数()()20f x x x a a =-+>,若,则的值为( )A .正数B .负数C .非负数D .正数、负数和零都有可能 6.已知是定义在上的偶函数,且在上是增函数,设,,,则的大小关系是 ( ) A. B. C. D.7. 已知分别是定义在R 上的偶函数和奇函数,且()()123++=-x x x g x f ,则( ) A.B.C.D.8. 若实数满足,则关于的函数的图像大致形状是( )9.已知函数是奇函数,且,则为( )A.0B.1C.-1D.410..对于函数和,设,,若存在,使得,则称和互为“零点相邻函数”,若函数与()23g x x ax a =--+互为“零点相邻函数”,则实数的取值范围是( ) A. B. C. D.11.若定义在上的函数满足满足,且当时,,函数 ⎩⎨⎧≤>=1,21),1-(log )(3x x x x g x ,则函数在区间内的零点的个数( )A .6B .7C .8D .912.已知函数()21,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程有四个不同的解,且,则的取值范围是( )A .B .C .D . 二、填空题(每小题5分,共20分) 13.命题“,使得”的否定:_____ ___;14.设是定义在上的周期为的函数,当时, ⎩⎨⎧<≤<≤-+-=10,201,24)(2x x x x x f ,则=___________;15.已知正数满足,则的最小值为 ; 16.下列命题中:①若集合{}0442=++=x kx x A 中只有一个元素,则; ②已知函数的定义域为,则函数的定义域为; ③函数在上是增函数; ④方程的实根的个数是2.所有正确命题的序号是 (请将所有正确命题的序号都填上) 三、解答题(本题满分70分)17.(本题满分10分)已知幂函数2242()(1)m m f x m x -+=-在上单调递增,函数. (Ⅰ)求的值;(Ⅱ)当时,记,的值域分别为集合,设命题,命题,若命题是成立的必要条件,求实数的取值范围.18.(本题满分12分)设函数.(1)解不等式;(2)若存在使不等式成立,求实数的取值范围.19.(本题满分12分)已知极坐标系的极点在直角坐标系的原点处,极轴与轴非负半轴重合,直线的参数方程为:1(12xty t⎧=-+⎪⎪⎨⎪=⎪⎩为参数), 曲线的极坐标方程为:.(Ⅰ)写出曲线的直角坐标方程和直线的普通方程;(Ⅱ)设直线与曲线相交于两点, 求的值.20.(本题满分12分)已知定义在R上的函数)3)(2()(++-=mxmxmxf,.(1)若函数与有相同的单调区间,求值;(2)x∈, ,求的取值范围.21.(本题满分12分)心理学家发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何和代数各一题,让各位同学自由选择一道题进行解答.选情况如下表:(单位:人)(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?(2)经过多次测试后,女生甲每次解答一道几何题所用的时间在5---7分钟,女生乙每次解答一道几何题所用的时间在6—8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.(3)现从选择几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生中被抽到的人数为,求的分布列及数学期望.附表及公式()()()()()22n ad bcka b c d a c b d-=++++.22.(本题满分12分)已知函数和.其中.(1)若函数与的图像的一个公共点恰好在轴上,求的值;(2)若和是方程的两根,且满足,证明:当时,.参考答案二、选择题(每小题5分,共60分)C D B C A B A B C D C D二、填空题(每小题5分,共20分) 13.使得; 14. ; 15.; 16.③④ 三、解答题(本题满分70分) 17.(本题满分10分) 解:(Ⅰ)依题意得:或当时,在上单调递减,与题设矛盾,舍去. ……………4分 (Ⅱ)当时,,单调递增, [1,4],[2,4]A B k k ==--, 由命题是成立的必要条件,得,210144k k k -≥⎧⇒≤≤⎨-≤⎩. ……………10分 18.(本题满分12分)解:(Ⅰ)132)(-++=x x x f ,⎪⎪⎪⎩⎪⎪⎪⎨⎧-<--≤≤-+>+=∴23,23123,41,23)(x x x x x x x f ⎪⎩⎪⎨⎧>---<⎪⎩⎪⎨⎧>+≤≤⎩⎨⎧>+>⇔>∴4232344123-42314)(x x x x x x x f 或或2101-<≤<>⇔x x x 或或 综上所述,不等式的解集为:............6分 (Ⅱ)若存在使不等式成立 由(Ⅰ)知时,,得时∴实数的取值范围为..........12分19.(本题满分12分) 解:(Ⅰ)24cos ,4cos ρθρρθ=∴=, 由222,cos x y x ρρθ=+=,得,所以曲线的直角坐标方程为. (2分)由112x y t ⎧=-+⎪⎪⎨⎪=⎪⎩,消去得:.所以直线l 的普通方程为. .........................................................(5分)(Ⅱ)把112x y t ⎧=-+⎪⎪⎨⎪=⎪⎩ 代入,整理得, (7分) 因为,设其两根分别为,则 (9分)所以12PQ t t =-=. (12分) 20.(本题满分12分)解:(1) 函数)1()1(2222|)(|<≥⎩⎨⎧--==x x x g y xx ,在上是减函数,在上是增函数. 对于,时为二次函数,两个零点 其对称轴为23232-=--=m m m x ,则.........5分 (2)时,,(,4),()0x f x ∴∃∈-∞->. 考虑其否定:(,4),()0x f x ∀∈-∞-≤. 对于,时为二次函数,两个零点,则有02434<⎧⎪≥-⎨⎪--≥-⎩m m m ,,,解得.(,4),()0x f x ∴∃∈-∞->,则 (12)分21.(本题满分12分)解:(1)由表中数据得的观测值()225022128850 5.556 5.024*********K ⨯⨯-⨯==≈>⨯⨯⨯,所以根据统计有97.5%的把握认为视觉和空间能力与性别有关........3分 (2)设甲、乙解答一道几何题的时间分别为分钟,则基本事件满足的区域为,设事件为“乙比甲先做完此道题”,则满足的区域为∴由几何概型()11112228P A ⨯⨯==⨯即乙比甲先解答完的概率.............7分 (3)由题可知在选择做几何题的8名女生中任意抽取两人,抽取方法有种,其中甲、乙两人没有一个被抽到有种;恰有一人被抽到有种;两人都被抽到有种,∴可能取值为0,1,2,,, 的分布列为:∴()1512110122828282E X =⨯+⨯+⨯=.......................12分22.(本题满分12分)解:(1)由在轴的交点为,又点也在函数的图像上, ,而......................(4分)(2)由题意可知()()()()f x g x a x p x q -=--. ∵,∴,∴当时,,即............(8分)又()()()()()()(1)f x p a a x p x q x a p a x p ax aq --=--+---=--+, ,且110ax aq aq -+>->,∴,∴, 综上可知,..........................(12分)。

2019届高三年级(一模)考试数学试题分类汇编--函数(K12教育文档)

2019届高三年级(一模)考试数学试题分类汇编--函数(K12教育文档)

2019届高三年级(一模)考试数学试题分类汇编--函数(word版可编辑修改) 2019届高三年级(一模)考试数学试题分类汇编--函数(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高三年级(一模)考试数学试题分类汇编--函数(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高三年级(一模)考试数学试题分类汇编--函数(word版可编辑修改)的全部内容。

12上海市2019届高三年级(一模)考试数学试题分类汇编--函数 一、填空、选择题1、(宝山区2019届高三)方程ln(931)0x x +-=的根为 .2、(崇明区2019届高三)若函数2()log 1x a f x x -=+的反函数的图像经过点(3,7)-,则a =3、(奉贤区2019届高三)设函数()2xy f x c ==+的图像经过点(2,5),则()y f x =的反函数1()f x -=4、(虹口区2019届高三)设常数a ∈R ,若函数3()log ()f x x a =+的反函数的图像经过点(2,1),则a =5、(金山区2019届高三)已知函数2()1log f x x =+,则1(5)f -=6、(浦东新区2019届高三)若函数()y f x =的图像恒过点(0,1),则函数1()3y f x -=+的图像一定经过定点7、(普陀区2019届高三)函数2()f x x=的定义域为8、(青浦区2019届高三)已知函数()2f x +=,当(0,1]x ∈时,2()f x x =,若在区间[1,1]-内()()(1)g x f x t x =-+有两个不同的零点,则实数t 的取值范围是 9、(松江区2019届高三)已知函数()y f x =的图像与函数xy a =(0,1)a a >≠的图像关于直线y x =对称,且点(4,2)P 在函数()y f x =的图像上,则实10、(徐汇区2019届高三)已知函数()f x 是以2为周期的偶()lg(1)f x x =+,令函数[]()()(1,2)g x f x x =∈,则g______________________. 11、(杨浦区2019届高三)下列函数中既是奇函数,又在区间( )A 。

临泉县第一中学2018-2019学年高三上学期11月月考数学试卷含答案

临泉县第一中学2018-2019学年高三上学期11月月考数学试卷含答案

临泉县第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( ) A .3B .2C .3D .42. 函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为( ) A .0<a ≤ B .0≤a ≤ C .0<a < D .a >3. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(﹣∞,﹣1) C.D.4. 已知点P (1,﹣),则它的极坐标是( )A.B.C.D.5. 设f (x )是定义在R 上的恒不为零的函数,对任意实数x ,y ∈R ,都有f (x )•f (y )=f (x+y ),若a 1=,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围是( ) A .[,2) B .[,2]C .[,1) D .[,1]6. 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法........从该地区调查了500位老年人,结果如由22()()()()()n ad bc K a b c d a c b d -=++++算得22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯ 附表:参照附表,则下列结论正确的是( )①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”; ②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”; ③采用系统抽样方法比采用简单随机抽样方法更好;3.841 6.635 10.828k 2() 0.050 0.010 0.001P K k ≥班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________④采用分层抽样方法比采用简单随机抽样方法更好; A .①③ B .①④ C .②③ D .②④7. 已知函数f (x )=是R 上的增函数,则a 的取值范围是( )A .﹣3≤a <0B .﹣3≤a ≤﹣2C .a ≤﹣2D .a <08. 某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天. 甲说:我在1日和3日都有值班; 乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是( ) A .2日和5日 B .5日和6日C .6日和11日D .2日和11日9. 已知抛物线28y x =与双曲线2221x y a-=的一个交点为M ,F 为抛物线的焦点,若5MF =,则该双曲线的渐近线方程为A 、530x y ±=B 、350x y ±=C 、450x y ±=D 、540x y ±=10.复数=( )A .B .C .D .11.函数的定义域是( )A .[0,+∞)B .[1,+∞)C .(0,+∞)D .(1,+∞)12.在数列{a n }中,a 1=3,a n+1a n +2=2a n+1+2a n (n ∈N +),则该数列的前2015项的和是( ) A .7049 B .7052 C .14098 D .14101二、填空题13.若关于x ,y 的不等式组(k 是常数)所表示的平面区域的边界是一个直角三角形,则k= .14.已知点A (﹣1,1),B (1,2),C (﹣2,﹣1),D (3,4),求向量在方向上的投影.15.设全集U={0,1,2,3,4},集合A={0,1,2},集合B={2,3},则(∁U A )∪B= .16.【盐城中学2018届高三上第一次阶段性考试】已知函数()()ln f x x x ax =-有两个极值点,则实数a 的取值范围是.17.执行如图所示的程序框图,输出的所有值之和是 .【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.18.定积分sintcostdt=.三、解答题19.已知向量(+3)⊥(7﹣5)且(﹣4)⊥(7﹣2),求向量,的夹角θ.20.设定义在(0,+∞)上的函数f(x)=ax++b(a>0)(Ⅰ)求f(x)的最小值;(Ⅱ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=,求a,b的值.21.已知f(α)=,(1)化简f(α);(2)若f(α)=﹣2,求sinαcosα+cos2α的值.22.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AD,点F是棱PD的中点,点E为CD的中点.(1)证明:EF∥平面PAC;(2)证明:AF⊥EF.23.中国高铁的某个通讯器材中配置有9个相同的元件,各自独立工作,每个元件正常工作的概率为p(0<p <1),若通讯器械中有超过一半的元件正常工作,则通讯器械正常工作,通讯器械正常工作的概率为通讯器械的有效率(Ⅰ)设通讯器械上正常工作的元件个数为X,求X的数学期望,并求该通讯器械正常工作的概率P′(列代数式表示)(Ⅱ)现为改善通讯器械的性能,拟增加2个元件,试分析这样操作能否提高通讯器械的有效率.24.(本题满分14分)已知函数x a x x f ln )(2-=.(1)若)(x f 在]5,3[上是单调递减函数,求实数a 的取值范围;(2)记x b x a x f x g )1(2ln )2()()(--++=,并设)(,2121x x x x <是函数)(x g 的两个极值点,若27≥b , 求)()(21x g x g -的最小值.临泉县第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:∵l1:x+y﹣7=0和l2:x+y﹣5=0是平行直线,∴可判断:过原点且与直线垂直时,中的M到原点的距离的最小值∵直线l1:x+y﹣7=0和l2:x+y﹣5=0,∴两直线的距离为=,∴AB的中点M到原点的距离的最小值为+=3,故选:A【点评】本题考查了两点距离公式,直线的方程,属于中档题.2.【答案】B【解析】解:当a=0时,f(x)=﹣2x+2,符合题意当a≠0时,要使函数f(x)=ax2+2(a﹣1)x+2在区间(﹣∞,4]上为减函数∴⇒0<a≤综上所述0≤a≤故选B【点评】本题主要考查了已知函数再某区间上的单调性求参数a的范围的问题,以及分类讨论的数学思想,属于基础题.3.【答案】C【解析】解:不等式(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立,即(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立若m+1=0,显然不成立若m+1≠0,则解得a.故选C.【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需.4.【答案】C【解析】解:∵点P的直角坐标为,∴ρ==2.再由1=ρcosθ,﹣=ρsinθ,可得,结合所给的选项,可取θ=﹣,即点P的极坐标为(2,),故选C.【点评】本题主要考查把点的直角坐标化为极坐标的方法,属于基础题.5.【答案】C【解析】解:∵对任意x,y∈R,都有f(x)•f(y)=f(x+y),∴令x=n,y=1,得f(n)•f(1)=f(n+1),即==f(1)=,∴数列{a n}是以为首项,以为等比的等比数列,∴a n=f(n)=()n,∴S n==1﹣()n∈[,1).故选C.【点评】本题主要考查了等比数列的求和问题,解题的关键是根据对任意x,y∈R,都有f(x)•f(y)=f(x+y)得到数列{a n}是等比数列,属中档题.6.【答案】D【解析】解析:本题考查独立性检验与统计抽样调查方法.,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,②正确;该地区老年由于9.967 6.635人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,④正确,选D.7.【答案】B【解析】解:∵函数是R上的增函数设g(x)=﹣x2﹣ax﹣5(x≤1),h(x)=(x>1)由分段函数的性质可知,函数g(x)=﹣x2﹣ax﹣5在(﹣∞,1]单调递增,函数h(x)=在(1,+∞)单调递增,且g(1)≤h(1)∴∴解可得,﹣3≤a≤﹣2故选B8.【答案】C【解析】解:由题意,1至12的和为78,因为三人各自值班的日期之和相等,所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日,故选:C.【点评】本题考查分析法,考查学生分析解决问题的能力,比较基础.9.【答案】A【解析】:依题意,不妨设点M在第一象限,且Mx0,y0,由抛物线定义,|MF|=x0+p2,得5=x0+2.∴x0=3,则y20=24,所以M3,26,又点M在双曲线上,∴32a2-24=1,则a 2=925,a=35,因此渐近线方程为5x±3y=0.10.【答案】A【解析】解:===,故选A.【点评】本题考查复数的代数形式的乘除运算,本题解题的关键是掌握除法的运算法则,本题是一个基础题.11.【答案】A【解析】解:由题意得:2x﹣1≥0,即2x≥1=20,因为2>1,所以指数函数y=2x为增函数,则x≥0.所以函数的定义域为[0,+∞)故选A【点评】本题为一道基础题,要求学生会根据二次根式的定义及指数函数的增减性求函数的定义域.12.【答案】B【解析】解:∵a n+1a n+2=2a n+1+2a n(n∈N+),∴(a n+1﹣2)(a n﹣2)=2,当n≥2时,(a n﹣2)(a n﹣1﹣2)=2,∴,可得a n+1=a n﹣1,因此数列{a n}是周期为2的周期数列.a1=3,∴3a2+2=2a2+2×3,解得a2=4,∴S2015=1007(3+4)+3=7052.【点评】本题考查了数列的周期性,考查了计算能力,属于中档题.二、填空题13.【答案】﹣1或0.【解析】解:满足约束条件的可行域如下图阴影部分所示:kx﹣y+1≥0表示地(0,1)点的直线kx﹣y+1=0下方的所有点(包括直线上的点)由关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,可得直线kx﹣y+1=0与y轴垂直,此时k=0或直线kx﹣y+1=0与y=x垂直,此时k=﹣1综上k=﹣1或0故答案为:﹣1或0【点评】本题考查的知识点是二元一次不等式(组)与平面区域,其中根据已知分析出直线kx﹣y+1=0与y 轴垂直或与y=x垂直,是解答的关键.14.【答案】【解析】解:∵点A (﹣1,1),B (1,2),C (﹣2,﹣1),D (3,4), ∴向量=(1+1,2﹣1)=(2,1),=(3+2,4+1)=(5,5);∴向量在方向上的投影是==.15.【答案】 {2,3,4} .【解析】解:∵全集U={0,1,2,3,4},集合A={0,1,2}, ∴C U A={3,4}, 又B={2,3},∴(C U A )∪B={2,3,4}, 故答案为:{2,3,4}16.【答案】.【解析】由题意,y ′=ln x +1−2mx令f ′(x )=ln x −2mx +1=0得ln x =2mx −1,函数()()ln f x x x mx =-有两个极值点,等价于f ′(x )=ln x −2mx +1有两个零点, 等价于函数y =ln x 与y =2mx −1的图象有两个交点,,当m =12时,直线y =2mx −1与y =ln x 的图象相切, 由图可知,当0<m <12时,y =ln x 与y =2mx −1的图象有两个交点,则实数m 的取值范围是(0,12),故答案为:(0,12).17.【答案】54【解析】根据程序框图可知循环体共运行了9次,输出的x 是1,3,5,7,9,11,13,15, 17中不是3的倍数的数,所以所有输出值的和54171311751=+++++.18.【答案】 .【解析】解: 0sintcostdt=0sin2td (2t )=(﹣cos2t )|=×(1+1)=.故答案为:三、解答题19.【答案】【解析】解:∵向量(+3)⊥(7﹣5)且(﹣4)⊥(7﹣2),∴=0,+8=0,∴=,化为,代入=0,化为: +16﹣cos 2θ,∴,∴θ=或.【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题.20.【答案】【解析】解:(Ⅰ)f (x )=ax++b ≥2+b=b+2当且仅当ax=1(x=)时,f (x )的最小值为b+2(Ⅱ)由题意,曲线y=f (x )在点(1,f (1))处的切线方程为y=,可得:f (1)=,∴a++b=①f'(x )=a ﹣,∴f ′(1)=a ﹣=②由①②得:a=2,b=﹣121.【答案】【解析】解:(1)f (α)===﹣tanα;…5(分)(2)∵f(α)=﹣2,∴tanα=2,…6(分)∴sinαcosα+cos2α====.…10(分)22.【答案】【解析】(1)证明:如图,∵点E,F分别为CD,PD的中点,∴EF∥PC.∵PC⊂平面PAC,EF⊄平面PAC,∴EF∥平面PAC.(2)证明:∵PA⊥平面ABCD,CD⊂平面ABCD,又ABCD是矩形,∴CD⊥AD,∵PA∩AD=A,∴CD⊥平面PAD.∵AF⊂平面PAD,∴AF⊥CD.∵PA=AD,点F是PD的中点,∴AF⊥PD.又CD∩PD=D,∴AF⊥平面PDC.∵EF⊂平面PDC,∴AF⊥EF.【点评】本题考查了线面平行的判定,考查了由线面垂直得线线垂直,综合考查了学生的空间想象能力和思维能力,是中档题.23.【答案】【解析】解:(Ⅰ)由题意可知:X~B(9,p),故EX=9p.在通讯器械配置的9个元件中,恰有5个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有6个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有7个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有8个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有9个元件正常工作的概率为:.通讯器械正常工作的概率P′=;(Ⅱ)当电路板上有11个元件时,考虑前9个元件,为使通讯器械正常工作,前9个元件中至少有4个元件正常工作.①若前9个元素有4个正常工作,则它的概率为:.此时后两个元件都必须正常工作,它的概率为:p2;②若前9个元素有5个正常工作,则它的概率为:.此时后两个元件至少有一个正常工作,它的概率为:;③若前9个元素至少有6个正常工作,则它的概率为:;此时通讯器械正常工作,故它的概率为:P″=p2++,可得P″﹣P′=p2+﹣,==.故当p=时,P″=P′,即增加2个元件,不改变通讯器械的有效率;当0<p时,P″<P′,即增加2个元件,通讯器械的有效率降低;当p时,P″>P′,即增加2个元件,通讯器械的有效率提高.【点评】本题考查二项分布,考查了相互独立事件及其概率,关键是对题意的理解,属概率统计部分难度较大的题目.24.【答案】【解析】【命题意图】本题综合考查了利用导数研究函数的单调问题,利用导数研究函数的最值,但本题对函数的构造能力及运算能力都有很高的要求,判别式的技巧性运用及换元方法也是本题的一大亮点,本题综合性很强,难度大,但有梯次感.(2)∵x b x x x b x a x a x x g )1(2ln 2)1(2ln )2(ln )(22--+=--++-=,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年临泉一中高考数学选择题专项训练(一模)抽选各地名校试卷,经典试题,有针对性的应对高考数学考点中的难点、重点和常规考点进行强化训练。

第 1 题:来源:重庆市铜梁一中2019届高三数学10月月考试题理定义行列式运算:,若将函数的图象向右平移错误!未找到引用源。

()个单位后,所得图象对应的函数为奇函数,则的最小值是()A.B.错误!未找到引用源。

C.错误!未找到引用源。

D.【答案】D第 2 题:来源:四川省宜宾第三中学2019届高三数学11月月考试题理(含解析)函数的图象如图所示,为了得到的图象,只需将的图象上所有点()个单位长度.A. 向右平移B. 向右平移C. 向左平移D. 向左平移【答案】A【解析】由图可知,,所以,有,得,所以,要想得到,只需将的图象上所有点向右平移即可,故选A.点睛:已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求.第 3 题:来源:河南省天一大联考2017届高三数学上学期期末考试试题理如图,已知长方体的体积为6,的正切值为,当的值最小时,长方体外接球的表面积为A. B. C. D.【答案】C第 4 题:来源:甘肃省兰州第一中学2018_2019学年高一数学上学期期中试题.定义运算:,则函数的值域为A.R B.(0,+∞) C.[1,+∞) D.(0,1]【答案】D第 5 题:来源:宁夏石嘴山市2018届高三数学上学期期中试题理一个体积为的正三棱柱的三视图如图所示, 则该三棱柱的侧视图的面积为()A. B.4 C. D. 6【答案】A第 6 题:来源:高中数学阶段通关训练(二)(含解析)新人教A版选修1_1设P,Q分别为圆x2+=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是( )A.5B.+C.7+D.6【答案】D.圆心M(0,6),设椭圆上的点为Q(x,y),则===,当y=-∈[-1,1]时,=5.所以=5+=6.第 7 题:来源:江西省赣州市章贡区2018届高三数学上学期第一次阶段测试试题理设集合,.若,则 ( )A. B. C.D.【答案】C.第 8 题:来源:云南省昆明市2016_2017学年高二数学下学期期中试卷文(含解析)为了得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向上平行移动个单位长度 D.向下平行移动个单位长度【答案】A【考点】HJ:函数y=Asin(ωx+φ)的图象变换;3O:函数的图象.【分析】根据函数图象平移“左加右减“的原则,结合平移前后函数的解析式,可得答案.【解答】解:由已知中平移前函数解析式为y=sinx,平移后函数解析式为:y=sin(x+),可得平移量为向左平行移动个单位长度,第 9 题:来源:广东省深圳市红岭中学2019届高三数学第四次模拟考试试题理如图是三棱锥DABC的三视图,点O在三个视图中都是所在边的中点,则异面直线DO和AB所成角的余弦值等于A. B. C. D.【答案】A第 10 题:来源:西藏日喀则市2017_2018学年高二数学上学期期中试题试卷及答案在等差数列中,已知则等于A.15 B.33 C.51 D.63【答案】D第 11 题:来源: 2019年普通高等学校招生全国统一考试文科数学(全国卷Ⅲ)(含答案)2019年普通高等学校招生全国统一考试文科数学(全国卷Ⅲ)(含答案)设是定义域为R的偶函数,且在单调递减,则A.(log3)>()>()B.(log3)>()>()C.()>()>(log3)D.()>()>(log3)【答案】.C第 12 题:来源:宁夏六盘山2018届高三数学上学期第一次月考试题理“”是“直线与直线垂直”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要【答案】C第 13 题:来源:黑龙江省大庆实验中学2018_2019学年高二数学10月月考试题理已知一个几何体的三视图如图所示(单位:cm),那么这个几何体的侧面积是()A. B. C. D.【答案】C第 14 题:来源:青海省西宁市2017_2018学年高一数学9月月考试题试卷及答案下列图象中表示函数图象的是()(A) (B) (C )(D)【答案】C第 15 题:来源: 2017年高考仿真卷•数学试卷含答案(一)理科若数列{an}满足=d(n∈N*,d为常数),则称数列{an}为调和数列.已知数列为调和数列,且x1+x2+…+x20=200,则x5+x16=( )A.10B.20C.30D.40【答案】B 解析∵数列为调和数列,=xn+1-xn=d.∴{xn}是等差数列.又x1+x2+…+x20=200=,∴x1+x20=20.又x1+x20=x5+x16,∴x5+x16=20.第 16 题:来源:山东省桓台县2018届高三数学9月月考试题理已知集合,则M∪N=()A. B. C. D.【答案】A第 17 题:来源:重庆市2017届高三下第一次月段考试数学试题(理科)含答案.下列说法正确的是A. 是的必要不充分条件B. “”为真命题是“为真命题”的必要不充分条件C. 命题,使得的否定是,D.命题,则是真命题【答案】A第 18 题:来源:吉林省长春市第十一高中2018_2019学年高二数学上学期期末考试试题理下列说法错误的是()A.命题:“”,则:“”B.命题“若,则”的否命题是真命题C.若为假命题,则为假命题D. 若是的充分不必要条件,则是的必要不充分条件【答案】C第 19 题:来源: 2016_2017学年宁夏银川市勤行高二数学下学期第一次(3月)月考试题试卷及答案理曲线在点处切线的斜率等于()A. B.C. D.【答案】B第 20 题:来源:黑龙江省双鸭山市2017_2018学年高一数学上学期期中试题试卷及答案下列函数中,在定义域上既是奇函数又是增函数的为()A. B. C. D.【答案】D第 21 题:来源:山西省应县2017_2018学年高一数学上学期第四次月考试题试卷及答案1001101(2)与下列哪个值相等( )A.115(8) B.113(8)C.114(8) D.116(8)【答案】A第 22 题:来源:黑龙江省齐齐哈尔市2018届高三数学8月月考试题理试卷及答案已知集合A={x|y=},B={x|x2﹣x>0},则A∩B=()A.{x|x≥0} B.{x|0<x<1} C.{x|x>1} D.{x|x<0或x>1}【答案】C第 23 题:来源:福建省平潭县新世纪学校2018_2019学年高二数学下学期第一次月考试题理设函数可导,则等于( )A. B. C. D.【答案】C【解析】分析:将原式化简,利用导数的定义求解即可.详解:由,,故选C.点睛:本题考查导数的定义,考查函数在某点处的导数,考查转化与划归思想,意在考查对基础知识的掌握情况,属于简单题.第 24 题:来源:黑龙江省哈尔滨市呼兰区第一中学2019届高三数学上学期第一次月考试题理设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B等于( )A.(-1,1) B.(-1,+∞) C.(0,1) D.(0,+∞)【答案】.B第 25 题:来源:湖北省荆州市2018届高三数学上学期第一次双周考试题理试卷及答案已知,若的任何一条对称轴与轴交点的横坐标都不属于区间,则的取值范围是()A. B. C. D.【答案】C第 26 题:来源:广东省普宁市华美实验学校2018_2019学年高一数学下学期期中试题在中,有命题①;②;③若,则为等腰三角形;④若,则为锐角三角形. 上述命题正确的有()个A. 个B. 个C. 个D. 个【答案】B第 27 题:来源:山东省济南第一中学2017届高三数学10月阶段测试试题文(含解析).已知函数,其中为实数,为的导函数. 若,则的值为A. 2B. 3C. -2D. -3【答案】B【解析】由已知,,.故选B.第 28 题:来源:重庆市万州三中2018_2019学年高一数学下学期期中试题已知船在灯塔北偏东且到的距离为,船在灯塔西偏北且到的距离为,则两船的距离为 ( )A. B. C.D.【答案】C第 29 题:来源: 2016_2017学年重庆市九校联考高一数学下学期5月月考试卷试卷及答案理(含解析)若a<0<b,且,则下列不等式:①|b|>|a|;②a+b>0;③;④中,正确的不等式有()A.1个 B.2个 C.3个 D.4个【答案】A【考点】72:不等式比较大小.【分析】利用不等式的基本性质求解即可.【解答】解:若a<0<b,且,则﹣b>a,∴﹣a>b>0>﹣b>a,∴|a|>|b|,a+b<0, +=﹣(+)<﹣2=﹣2,由可得ab>2b2﹣a2,即+>1,显然不成立,故不成立,故正确的不等式只有③,故选:A.第 30 题:来源: 2019高中数学第一章三角函数单元质量评估(含解析)新人教A版必修4已知函数f(x)=tan ωx在内是减函数,则实数ω的取值范围是 ( )A.(0,1]B.[-1,0)C.[-2,0)D.【答案】B第 31 题:来源: 2016_2017学年广西钦州市高新区高一数学下学期期中试题试卷及答案为了考察两个变量x和y之间的线性相关性,甲、乙两个同学各自独立做了10次和15次试验,并且利用线性回归方法,求得回归直线为l1和l2,已知在两人的试验中发现对变量x的观测数据的平均值恰好相等,都为s,对变量y的观测数据的平均值也恰好相等,都为t,那么下列说法正确的是( )A.直线l1和直线l2有交点(s,t)B.直线l1和直线l2相交,但交点未必是点(s,t)C.直线l1和直线l2由于斜率相等,所以必定平行D.直线l1和直线l2必定重合【答案】A第 32 题:来源:陕西省西安市第二十五中学2016-2017学年高一数学上学期期末考试试题试卷及答案已知圆心为C(6,5),且过点B(3,6)的圆的方程为()A. B.C. D.【答案】A第 33 题:来源:江西省新余市第四中学、宜春中学2017届高三数学下学期开学联考试题试卷及答案理已知,,则曲线为椭圆的概率是()A. B. C. D.【答案】D第 34 题:来源:山东省临沂市第十九中学2019届高三数学第三次质量调研考试试题理设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为A.y=-2xB. y=-xC. y=xD. y=2x【答案】C第 35 题:来源:陕西省西安市第二十五中学2016-2017学年高一数学上学期期末考试试题试卷及答案已知直线的方程为,则圆上的点到直线的最大距距离是()A.1 B.4 C.5 D.6 【答案】D第 36 题:来源:四川省绵阳市江油中学2018_2019学年高一数学下学期期中试题理设为锐角,,,若与共线,则角( )A. B. C.D.【答案】 B第 37 题:来源:北京市西城区2016_2017学年高一数学下学期期中试题试卷及答案已知O为直角坐标系原点,P,Q的坐标满足不等式组,则cos∠POQ的最小值为()A. B. C. D. 0 【答案】 A第 38 题:来源: 2016-2017学年重庆市璧山中学高二数学上学期期中试题试卷及答案理已知圆C:x2+y2+mx-4=0的面积被直线x-y+3=0平分,则实数m的值为( )A.8 B.-4 C.6 D.无法确定【答案】C第 39 题:来源: 2019年普通高等学校招生全国统一考试理科数学(全国卷Ⅰ)(含答案)已知三棱锥P−ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为A. B. C.D.【答案】D第 40 题:来源:广东省天河区普通高中2017_2018学年高一数学10月月考试题试卷及答案05 点为圆内弦的中点,则直线的方程为()A. B. C. D.【答案】C。

相关文档
最新文档