高一数学函数检测题1
高一年级数学第二章《函数》提高测试题(一)
提高测试(一)(一)选择题(每小题4分:共24分)1.已知函数f (x )的定义域为[a :b ]且b >-a >0:则函数F (x )=f ( x )+f (-x )的定义域是( ).(A )[a :-a ] (B )(-∞:-a ) [a :+∞)(C )[-a :a ] (D )(-∞:a ) [-a :+∞)【答案】(A ).【点评】本题考查函数定义域的概念:F (x ) 的定义域应满足a ≤x ≤b :且a ≤-x ≤b : 即⎩⎨⎧-≤≤-≤≤ax b b x a 解答本题应正确在数轴上画出所示区域:借肋图形得到答案. 2.已知函数f (x )=a x +b 的图象经过点(1:7)其反函数f -1(x )的图象经过点(4:0):则f (x )的表达式是( ).(A )f (x )=3 x +4 (B )f (x )=4 x +3(C )f (x )=2 x +5 (D )f (x )=5 x +2【答案】(B ).【点评】运用f (x )和f -1 (x )的关系:f -1 (x )的图象经过(4:0)点:可知原来的函数f (x )必过点(0:4).3.已知f (x )=2 | x |+3:g (x )=4 x -5:若f [p (x )]=g (x ):则p (3)的值为( ).(A )2 (B )±2 (C )-2 (D )不能确定【答案】(B ).【点评】本题考察函数概念的对应法则:由已知:2 | p (x )|+3=4 x -5:所以| p (x )|=2 x -4:∴ | p (3)|=2:故 p (3)=±2.4.设f (x )=ax 7+bx 3+c x -5其中a :b :c 为常数:如f (-7)=7:则f (7)等于( ).(A )-17 (B )-7 (C )14 (C )21【答案】(A ).【点评】本题考察函数奇偶性的灵活运用:f (x )是一个非奇非偶函数:注意到:f (x )=g (x )-5:而g (x )是一个奇函数:由f (-7)=g (-7)-5=7:得g (-7)=-12:故f (7)=g (7)-5=-12-5=-17.5.已知1< x <d :令a =(log d x ) 2:b =log d (x 2 ):c =log d (log d x ):则( ).(A )c <b <c (B )a <c <b(C )c <b <a (D )c <a <b【答案】(D ).【点评】比较大小采用的方法之一是“中间值”法:如本题中将a :b :c 先与0比较:知a >0:b >0:而c <0.利用“函数的单调性”或“比较法”等可解.6.下列命题中:正确的命题是( ).(A )y =2 lg x 与y =lg x 2是同一个函数(B )已知f (x )是定义在R 上的一偶函数:且在[a :b ]上递增:则在[-b :-a ]上也递增(C )f (x )=| log 2 x |是偶函数(D )f (x )=log a (x x ++21)的奇函数【答案】(D ).【提示】(A )中两个函数的定义域不同:前者x >0:后者x ≠0:(B )中:在[-b :-a ]上应递减:(C )中f (x )的定义域是x >0:所以f (x )既不是奇函数也不是偶函数.(二)填空题(每小题5分:共25分)1.若函数y =612-x :x ∈[-2:-1]:则其反函f -1 (x )=______. 【答案】f -1 (x )=-x x 16+(-21≤x ≤-51). 【点评】要切实掌握好求反函数的一般步骤:还需特别注意:反解x 时:x 的取值范围:如本题中:由x 2=y1+6:求x 时:开方应取“负”.另外:求反函数:必须证明反函数的定义域:可通过求原函数的值域完成.2.已知函数f (x )的定义域是[-1:2] 则函数f (x 2)的定义域是________.【答案】[-2:2].【提示】解不等式:-1≤ x 2≤2可得.∴ 0≤ | x |≤2:∴ -2≤ x ≤2.3.已知f (n )=⎩⎨⎧<+≥-)10()]5([)10(3n n f f n n n ∈N :则f (5)的值等于________. 【答案】8.【点评】考查对对应法则f 的理解.f (5)=f [ f (5+5)]=f [ f (10)]=f (10-3)=f (7) =f [ f (7+5)]=f (12-3)=f [ f (9+5)]=f (14-3)=f (11)=11-3=8.4.函数y =2 lg (x -2)-lg (x -3)的最小值为_________.【答案】x =4时:y m i n =lg 4.5.方程log 2(9 x -1+7)=2+log 2(3 x -1+1)的解为________.【答案】x =1或x =2.由9 x -1+7=4(3 x -1+1):得(3x -1) 2-4 · 3 x -1+3=0:故3 x -1=1或3可解.(三)解答题(共4个小题:满分51分)1.(本题满分12分)设函数y =f (x )是定义在(-1:1)上的奇函数:且在[0:1)上是减函数:若f (t -1)+f (2 t -1)>0:求t 的取值范围.【略解】由已知:f (2 t -1)>-f (t -1)=f (1-t )(*):又f (x )在[0:1)上是减函数且是奇函数:∴ f (x )在(-1:1)上是减函数:故(*)式等价于:⎪⎩⎪⎨⎧-<-<-<-<-<-t t t t 1121111121 ⇔0<t <32为所求. 【点评】本题考查函数的奇偶性和单调性的应用.在由函数值的大小关系:利用单调性得两个自变量值之间的关系时:一定要将两个自变量落在同一个单调区间内.2.(本题满分13分)已知f (x )=log a xx -+11(a >0:a ≠1). (1)求f (x )的定义域:(2)判断f (x )的单调性:并予以证明:(3)求使f (x )>0的x 取值范围.【略解】(1)∵ xx -+11>0:∴ f (x )定义域为(-1:1). (2)设-1<x 1<x 2<1:则f (x 1)-f (x 2)=log a 1111x x -+-log a 2211x x -+=log a )1)(1()1)(1(2121x x x x +--+ =log a)()1()()1(12211221x x x x x x x x -+---- ∵ -1<x 1<x 2<1:∴ x 2-x 1>0:∴ (1-x 1x 2)+(x 2-x 1)>(1-x 1x 2)-(x 2-x 1)即 )()1()()1(12211221x x x x x x x x -+----<1. ∴ 当a >1 时:f (x 1)<f (x 2):在(-1:1)上是增函数.当0<a <1时:f (x 1)>f (x 2):在(-1:1)上是减函数.(3)当a >0时:欲f (x )>0:则有xx -+11>1:解得0<x <1. 当0<a <1时:欲f (x )>0:则有0<x x -+11<1:解得-1<x <0. 【点评】本题综合考查了函数的定义域:用定义证明函数的单调性:对数的有关概念及解不等式的问题.3.(本题满分13分)已知a ∈N :关于x 的方程lg (4-2 x 2)=lg (a -x )+1有实根:求a 及方程的实根.【略解】 由⎩⎨⎧>->-00242x a x 解得-2<x <2且x <a :又 方程4-2 x 2=10(a -x ):整理得:x 2-5 x +5 a -2=0:∆=25-4(5 a -2)≥0:得a ≤2033:又 a ∈N :∴ a =1.此时方程化为:x 2-5 x +3=0:∴ x =2135±: 又 -2<x <1:∴ x =2135-. 4.(本题满分13分)已知函数f (x )的定义域为全体实数:且对任意x 1:x 2∈R 有f (x 1)+f (x 2)=2 f (221x x +)f (221x x -) 成立:又知f (a )=0(a ≠0:a 为常数):但f (x )不恒等于0:求证:(1)f (x )是周期函数:并求出它的一个周期:(2)f (x )是偶函数:(3)对任意x ∈R :有f (2 x )=2 f 2(x )-1成立.【略解】(1)令x 1=x +2 a :x 2=x :由已知可得:f (x +2 a )+f (x )=2 f (22x a x ++)f (22x a x -+)=2 f (x +a )·f (a )=0: ∴ f (x +2 a )=-f (x ):从而f (x +4 a )=-f (x +2 a )=f (x ).∴ 4 a 是f (x )的一个周期.(2)令x 1=x :x 2=-x :则f (x )+f (-x )=2 f (0)f (x )再令x 1=x 2=x :则f (x )+f (x )=2 f (x )f (0).∴ f (x )+f (-x )=f (x )+f (x ).即 f (-x )=f (x ).∴ f (x )是偶函数.(3)由2 f (x )=2 f (x )f (0)且f (x )≠0:知f (0)=1.令x 1=2 x :x 2=0:则有f (2 x )+f (0)=2 f (x )f (x ):即 f (2 x )=2 f 2(x )-1得证.【点评】若函数f (x )对定义域内任意x 满足f (x +T )=f (x )(T 是一个不为零的常数):则f (x )是以T 为周期的函数.有关周期函数的概念在本章教材中还没有涉及到.。
高一数学必修一函数练习题
高一数学必修一函数练习题函数是高中数学中非常重要的概念,它描述了两个集合之间的一种对应关系。
下面为高一学生准备了一系列函数练习题,以帮助学生更好地理解和掌握函数的基本概念和性质。
练习题一:函数的定义域与值域1. 给定函数 \( f(x) = \frac{1}{x - 2} \),求其定义域。
2. 对于函数 \( g(x) = x^2 - 4x + 3 \),找出其值域。
练习题二:函数的单调性1. 判断函数 \( h(x) = x^3 - 3x \) 在 \( x \in (-\infty,\infty) \) 上的单调性。
2. 若函数 \( k(x) = 2x - 1 \) 在 \( x \in [0, 2] \) 上单调递增,求 \( k(x) \) 在 \( x \in [2, 4] \) 上的单调性。
练习题三:函数的奇偶性1. 判断函数 \( f(x) = |x| \) 是否为奇函数或偶函数。
2. 若函数 \( g(x) = x^2 + 1 \) 是偶函数,求证。
练习题四:复合函数1. 已知 \( f(x) = x^2 \) 和 \( g(x) = x + 3 \),求复合函数\( (f \circ g)(x) \)。
2. 若 \( h(x) = \sqrt{x} \) 和 \( k(x) = x - 1 \),求 \( (h \circ k)(x) \)。
练习题五:反函数1. 若 \( f(x) = 2x + 1 \),求其反函数 \( f^{-1}(x) \)。
2. 对于函数 \( g(x) = x^2 \),讨论其反函数的存在性。
练习题六:函数的图像与性质1. 画出函数 \( y = |x - 1| \) 的图像,并标出其顶点坐标。
2. 对于函数 \( y = x^3 \),描述其在 \( x = 0 \) 附近的图像变化趋势。
练习题七:函数的实际应用1. 某工厂生产的产品数量与时间的关系为 \( P(t) = 100t - 5t^2 \),求出生产量达到最大时的时间。
高一数学函数的应用测试题(含答案)
高一数学函数的应用测试题(含答案)高一数学函数的应用测试题(含答案)数学是研究现实世界空间形式和数量关系的一门科学。
小编准备了高一数学函数的应用测试题,具体请看以下内容。
一、选择题:本大题共12小题,每小题5分,共60分.1.函数的定义域是( )A.[1,+)B.45,+C.45,1D.45,1解析:要使函数有意义,只要得01,即45答案:D2.设a=20.3,b=0.32,c=logx(x2+0.3)(x1),则a,b,c的大小关系是()A.aC.c解析:∵a=20.321=2,且a=20.320=1,1∵x1,c=logx(x2+0.3)logxx2=2. cb.答案:B3.已知函数f(x)=ln(x+x2+1),若实数a,b满足f(a)+f(b-1)=0,则a+b等于()A.-1B.0C.1D.不确定解析:观察得f(x)在定义域内是增函数,而f(-x)=ln(-x+x2+1)=ln1x+x2+1=-f(x),f(x)是奇函数,则f(a)=-f(b-1)=f(1-b).a=1-b,即a+b=1.答案:C4.已知函数f(x)=-log2x (x0),1-x2 (x0),则不等式f(x)0的解集为()A.{x|0C.{x|-1-1}解析:当x0时,由-log2x0,得log2x0,即0当x0时,由1-x20,得-1答案:C5.同时满足两个条件:①定义域内是减函数;②定义域内是奇函数的函数是()A.f(x)=-x|x|B.f(x)=x3C.f(x)=sinxD.f(x)=lnxx解析:为奇函数的是A、B、C,排除D. A、B、C中在定义域内为减函数的只有A.答案:A6.函数f(x)=12x与函数g(x)= 在区间(-,0)上的单调性为()A.都是增函数B.都是减函数C.f(x)是增函数,g(x)是减函数D.f(x)是减函数,g(x)是增函数解析:f(x)=12x在x(-,0)上为减函数,g(x)= 在(-,0)上为增函数.答案:D7.若x(e-1,1),a=lnx,b=2lnx,c=ln3x,则()A.aC.b解析:a=lnx,b=2lnx=lnx2,c=ln3x.∵x(e-1,1),xx2.故ab,排除A、B.∵e-1lnx答案:C8.已知f(x)是定义在(-,+)上的偶函数,且在(-,0]上是增函数,若a=f(log47),,c=f(0.2-0.6) ,则a、b、c的大小关系是()A.cC.c解析:函数f(x)为偶函数,b=f(log123)=f(log23),c=f(0.2-0.6)=f(50.6).∵50.6log23=log49log47,f(x)在(0,+)上为减函数,f(50.6)答案:A9.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆),若该公司在这两地共销售15辆车,则能获得的最大利润为()A.45.606万元B.45.6万元C.46.8万元D.46.806万元解析:设在甲地销售x辆,则在乙地销售(15-x)辆,总利润L=L1+L2=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30,当x=3.0620.15=10.2时,L最大.但由于x取整数,当x=10时,能获得最大利润,最大利润L=-0.15102+3.0610+30=45.6(万元).答案:B10.若f(x)是定义在R上的偶函数,且满足f(x+3)=f(x),f(2)=0,则方程f(x)=0在区间(0,6)内解的个数的最小值是()A.5B.4C.3D.2解析:f(5)=f(2+3)=f(2)=0,又∵f(-2)=f(2)=0,f(4)=f(1)=f(-2)=0,在(0,6)内x=1,2,4,5是方程f(x)=0的根.答案:B11.函数f(x)=x+log2x的零点所在区间为()A.[0,18]B.[18,14]C.[14,12]D.[12,1]解析:因为f(x)在定义域内为单调递增函数,而在四个选项中,只有f14f120,所以零点所在区间为14,12.答案:C12.定义在R上的函数f(x)满足f(x+2)=3f(x),当x[0,2]时,f(x)=x2-2x,则当x[-4,-2]时,f(x)的最小值是()A.-19B.-13C.19D.-1解析:f(x+2)=3f(x),当x[0,2]时,f(x)=x2-2x,当x=1时,f(x)取得最小值.所以当x[-4,-2]时,x+4[0,2],所以当x+4=1时,f(x)有最小值,即f(-3)=13f(-3+2)=13f(-1)=19f(1)=-19.答案:A第Ⅱ卷(非选择共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.若函数f(x)=ax2+x+1的值域为R,则函数g(x)=x2+ax+1的值域为__________.解析:要使f(x)的值域为R,必有a=0.于是g(x)=x2+1,值域为[1,+).答案:[1,+)14.若f(x)是幂函数,且满足f(4)f(2)=3,则f12=__________. 解析:设f(x)=x,则有42=3,解得2=3,=log23,答案:1315.若方程x2+(k-2)x+2 k-1=0的两根中,一根在0和1之间,另一根在1和2之间,则实数k的取值范围是__________. 解析:设函数f(x)=x2+(k-2)x+2k-1,结合图像可知,f(0)0,f(1)0,f(2)0.即2k-10,1+(k-2)+2k-10,4+2(k-2)+2k-10,解得k12,k23,即1214,我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
高一数学函数试题及答案
高一数学函数试题及答案一、选择题1. 设函数f(x) = 2x² - 3x + 4,则f(-1)的值为多少?A. 1B. 5C. -7D. 11答案:C. -72. 已知函数g(x)的图像如下所示,那么在区间[-2, 2]上,g(x)的值域为:A. [-4, 4]B. [-3, 3]C. [-2, 2]D. [-1, 1]答案:A. [-4, 4]3. 若函数h(x) = 3x - 2, 则x = __ 是h(x) = 5的解。
A. -1B. 1C. 2D. 3答案:B. 1二、填空题1. 设函数f(x) = x³ + 2x² + ax + 5,若f(2) = 25,则a的值为 __。
答案:22. 函数y = 2x² - 3x + 1与x轴交点的个数为 __。
答案:23. 若函数f(x) = 2x + 3, g(x) = x² + 1,则(f ∘ g)(2)的值为 __。
答案:23三、解答题1. 设函数f(x) = x³ - 2x² + ax + 1,已知f(1) = 3和f(2) = 9,求a的值。
解:根据已知条件:f(1) = 3,代入函数f(x),得到1 - 2 + a + 1 = 3,化简得:a = 3。
f(2) = 9,代入函数f(x),得到8 - 8 + 2a + 1 = 9,化简得:2a = 8,解得a = 4。
所以,a的值为4。
2. 给定函数f(x) = 2x + 5和g(x) = x² - 3x + 2,请计算(f + g)(x)的表达式。
解: (f + g)(x) = f(x) + g(x)= (2x + 5) + (x² - 3x + 2)= x² - x + 7所以,(f + g)(x)的表达式为x² - x + 7。
四、解析题1. 已知函数f(x) = (x - 2)² + 1, 使用二次函数的知识,简要描述函数f(x)的图像特征。
高一数学必修1第三章《指数函数、对数函数和幂函数》测练题及解析
高一数学必修1第三章《指数函数、对数函数和幂函数》测练题(满分:150分;考试时间:100分钟)一、选择题(本大题共10小题. 每小题5分,共50分.在每小题给出的四个选项中,只有一个项是符合题目要求的) 1.指数函数y=a x 的图像经过点(2,16)则a 的值是 ( )A .41 B .21C .2D .4 2.化简)31()3)((656131212132b a b a b a ÷-的结果 ( )A .a 6B .a -C .a 9-D .29a3.在区间),0(+∞上不是增函数的是 ( )A.2x y =B.x y log 2=C.xy 2= D.122++=x x y 4.式子82log 9log 3的值为 ( ) A .23 B .32C .2D .3 5.已知0ab >,下面四个等式中:①lg()lg lg ab a b =+; ②lg lg lg a a b b=-;③b ab a lg )lg(212= ;④1lg()log 10ab ab =.其中正确命题的个数为 ( )A .0B .1C .2D .36.已知2log 0.3a =,0.32b =,0.20.3c =,则c b a ,,三者的大小关系是( ) A .a c b >> B .c a b >> C .c b a >> D .a b c >> 7.已知函数)(x f y =的反函数)21(log )(211-=-x x f,则方程1)(=x f 的解集是( )A .{1}B .{2}C .{3}D .{4} 8.图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =, l g d y o x =的图象,,,,a b c d 的关系是( )A. 0<a <b <1<d<cB. 0<b<a <1<c<dC. 0<d<c<1<a<bD. 0<c<d <1<a<bx9.函数y= | lg (x-1)| 的图象是 ( )10.给出幂函数①f (x )=x ;②f (x )=x 2;③f (x )=x 3;④f (x )=x ;⑤f (x )=1x .其中满足条件f 12()2x x + >12()()2f x f x + (x 1>x 2>0)的函数的个数是 ( )A .1个B .2个C .3个D .4个二、填空题(.每小题5分,共20分) 11.函数21()log (2)f x x =-的定义域是 .12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .13.函数)x 2x (log y 221-=的单调递减区间是_________________.14.关于函数21()lg (0,R)||x f x x x x +=≠∈有下列命题:①函数()y f x =的图象关于y 轴对称;②在区 间(,0)-∞上,函数()y f x =是减函数;③函数()y f x =的最小值为lg 2;④在区间(1,)+∞上,函 数()y f x =是增函数.其中正确命题序号为_______________. 三、解答题(6小题,共80分)15.(本小题满分12分)4160.2503432162322428200549-⨯+--⨯--()()()()16. (本小题满分12分)设函数421()log 1x x f x x x -⎧<=⎨>⎩,求满足()f x =41的x 的值.C17.(本小题满分14分)已知()2xf x =,()g x 是一次函数,并且点(2,2)在函数[()]f g x 的图象上,点(2,5)在函数[()]g f x 的图象上,求()g x 的解析式.18.(本小题满分14分)若0≤x ≤2,求函数y=523421+⨯--x x 的最大值和最小值.19.(本小题满分14分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为x 块玻璃后强度为y .(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的13以下? ( lg30.4771)≈20.(本小题满分14分)已知定义域为R 的函数12()22x x b f x +-+=+是奇函数.(1)求b 的值;(2)判断函数()f x 的单调性;(3)若对任意的R t ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.高一数学必修1第三章《指数函数、对数函数和幂函数》测练题参考答案及解析一、选择题1.D 解析:由a 2=16且a >0得a =42.C 解析:原式a ab ba9990653121612132-=-=-=-+-+3.C 解析:根据反比例函数的性质4.A 解析:因log 89=22232log 32log 3log 23=,故原式=23 5.B 解析:ab >0,故a 、b 同号;当a 、b 同小于0时,①②不成立;当ab =1时,④不成立,故只有③对。
【高一】高一数学上册函数的单调性测试题(含答案)
【高一】高一数学上册函数的单调性测试题(含答案)来函数的单调性检验姓名:得分:一、(每题5分,共5分)×12=60分)题号123456789101112答复1.在区间上为增函数的是:()a、 b。
C D2.已知函数,则与的大小关系是:()a、 >B.=C.<D.不确定3.下列命题:(1)若是增函数,则是减函数;(2)若是减函数,则是减函数;(3)若是增函数,是减函数,有意义,则为减函数,其中正确的个数有:()a、一,b、二,c、三,d、 04.函数f(x)在区间(-2,3)上是增函数,则y=f(x+5)的递增区间是()a、(3,8)b.(-7,-2)c.(-2,3)d.(0,5)5.函数f(x)=在区间(-2,+∞)上单调递增,则实数a的取值范围是()a、(0,)b.(,+∞)c、(-2,+∞)d、(-∞,-1)∪(1,+∞)6.已知定义域为r的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么下列式子一定成立的是()a、 f(-1)<f(9)<f(13)b.f(13)<f(9)<f(-1)c.f(9)<f(-1)<f(13)d.f(13)<f(-1)<f(9)7.如果已知该函数是区间上的减法函数,则实数的取值范围为()a.a≤3b.a≥-3c.a≤5d.a≥38.假设f(x)是区间(-上的增函数∞, + ∞), a、B∈ R和a+B≤ 0,以下不等式中正确的一个是()a.f(a)+f(b)≤-f(a)+f(b)]b.f(a)+f(b)≤f(-a)+f(-b)c、 f(a)+f(b)≥-f(a)+f(b)]d.f(a)+f(b)≥f(-a)+f(-b)9.定义在r上的函数y=f(x)在(-∞,2)上是增函数,且y=f(x+2)图象的对称轴是x=0,则()a、 f(-1)<f(3)b.f(0)>f(3)c.f(-1)=f(-3)d.f(2)<f(3)10.已知函数在上是单调函数,则的取值范围是()a、不列颠哥伦比亚省。
高一数学函数经典习题及答案
函 数 练 习 题【1】班级 姓名一、 求函数的定义域1、求下列函数的定义域:⑴33y x =+-⑵y =01(21)111y x x =+-++-2___________;3、若函数(1)f x +(21)f x -的定义域是;函数1(2)f x+的定义域为。
4、 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域 5、求下列函数的值域:⑴223y x x =+-()x R ∈⑵223y x x =+-[1,2]x ∈⑶311x y x -=+⑷311x y x-=+(5)x ≥ ⑸y =225941x x y x +=-+⑺31y x x=-++⑻2y x x =-⑼y =⑽4y =y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x =。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =_____()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间6、求下列函数的单调区间:⑴223y x x =++⑵y =⑶261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是;函数y =五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷x x f =)(,()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
高一数学函数试题及答案
高一数学函数试题及答案# 高一数学函数试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = x^2 - 3x + 2的最小值出现在x = ______。
A. 1B. 2C. 3D. 4答案:A2. 若函数g(x) = 2x + 3在区间[-1, 1]上是增函数,则g(x)在x = ______时取得最大值。
A. -1B. 0C. 1D. 2答案:C3. 函数h(x) = 3x^3 - 2x^2 + x - 5的导数h'(x)是 ______。
A. 9x^2 - 4x + 1B. 9x^2 - 4xC. 9x^2 + 4x + 1D. 9x^2 + 4x答案:A4. 若f(x) = 2x - 1,求f(3)的值是 ______。
A. 5B. 6C. 7D. 8答案:A5. 函数y = sin(x) + cos(x)的最大值是 ______。
A. 1B. √2C. 2D. √3答案:B6. 已知函数f(x) = x^3 - 2x^2 + x - 2,求f'(x) = ______。
A. 3x^2 - 4x + 1B. 3x^2 - 4xC. 3x^2 + 4x + 1D. 3x^2 + 4x答案:A7. 函数y = ln(x)的定义域是 ______。
A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. [0, +∞)答案:D8. 若函数f(x) = x^2 + 2x + 1可以表示为完全平方的形式,则f(x) = ______。
A. (x + 1)^2B. (x - 1)^2C. (x + 2)^2D. (x - 2)^2答案:A9. 函数y = 1/x的图像关于 ______ 轴对称。
A. xB. yC. 原点D. 都不是答案:B10. 函数f(x) = sin(x)在区间[0, π]上的值域是 ______。
A. [-1, 1]B. [0, 1]C. [1, 2]D. [0, 2]答案:B二、填空题(每题4分,共20分)11. 若函数f(x) = x^2 + 3x + 2的顶点坐标为(-3/2, -1),则f(x)可以表示为f(x) = ______。
高一数学必修1《第三章 函数的应用》单元测试题(含答案)
高一数学必修1《第三章 函数的应用》单元测试题(满分150分 时间 120分钟)班级:__________ 姓名:__________ 成绩:__________第Ⅰ卷(选择题,共50分)一、选择题 (每题5分,共50分) 1. 函数223y x x =--的零点是( )A .1,3-B .3,1-C .1,2D .不存在2. 方程1lg x x -=必有一个根的区间是( )A .(0.1,0.2)B .(0.2,0.3)C .(0.3,0.4)D .(0.4,0.5)3.下列函数中增长速度最快的是( )A.1100xy e =B .y=100ln xC .y=100xD .y=1002x ⋅4.已知函数2212341,2,21,2,x y y x y x y x==--=-=其中能用二分法求出零点的函数个数是( )A .1B .2C .3D .45. 若函数()f x 唯一的零点一定在三个区间(2,16)2824、(,)、(,)内,那么下列命题中正确的是( )A .函数()f x 在区间(2,3)内有零点B .函数()f x 在区间(2,3(3,4))或内有零点C .函数()f x 在区间(3,16)内有零点D .函数()f x 在区间(4,16)内无零点6. 如图表示人的体重与年龄的关系,则( )A .体重随年龄的增长而增加B .25岁之后体重不变C .体重增加最快的是15~25岁D .体重增加最快的是15岁之前7. 世界人口已超过60亿,若按千分之一的年增长率计算,则两年增长的人口约为( )A .120万B .1100万C .1200万D .12000万8. 已知函数()24f x mx =+,若在[]2,1-上存在0x 使0()0f x =,则实数m 的取值范围是( )A .5,42⎡⎤-⎢⎥⎣⎦B.(][),21,-∞-+∞C. []1,2-D. []2,1-9. 若商品进价每件40元,当售价为50元/件时,一个月能卖出500件,通过市场调查发现,若每件商品的单价每提高1元,则商品一个月的销售量会减少10件。
高一数学函数试题
高一数学函数试题1.已知,函数.若,则()A.B.C.D.【答案】A.【解析】首先由可得,,即①;然后根据可得,,即②.最后将①代入②可得,,即,故应选A.【考点】二次函数的求值.2.下列函数在上单调递增的是()A.B.C.D.【答案】D【解析】:对于A选项,函数在递减,故A不正确;对于B选项,函数在递减,在递增,故B不正确;对于C选项,函数在递减,故C不正确;对于D选项,函数在上单调递增,合题意综上知,D选项是正确选项【考点】本题考查指数函数、对数函数、幂函数、反比例函数等常见函数的单调性.3.已知函数().(1)证明:当时,在上是减函数,在上是增函数,并写出当时的单调区间;(2)已知函数,函数,若对任意,总存在,使得成立,求实数的取值范围.【答案】(1)证明详见解析,在是减函数,在是增函数;(2).【解析】(1)根据函数单调性的定义进行证明即①设;②作差:;③因式分解到最简;④根据条件判定符号;⑤作出结论,经过这五步即可证明在单调递减,同理可证在是增函数,最后由奇函数的性质得出;在是减函数,在是增函数;(2)先将“对任意,总存在,使得成立”转化为“函数在区间的值域包含了在区间的值域”,分别根据函数的单调性求出这两个函数的值域,最后由集合的包含关系即可得到的取值范围.试题解析:(1)证明:当时①设是区间上的任意两个实数,且,则∵,∴,∴,即∴在是减函数 4分②同理可证在是增函数 5分综上所述得:当时,在是减函数,在是增函数 6分∵函数是奇函数,根据奇函数图像的性质可得当时,在是减函数,在是增函数 8分(2)∵() 8分由(1)知:在单调递减,单调递增∴, 10分又∵在单调递减∴由题意知:于是有:,解得 12分.【考点】1.函数的单调性与最值;2.函数的奇偶性;3.函数的值域.4.已知函数()(Ⅰ)求函数的周期和递增区间;(Ⅱ)若,求的取值范围.【答案】(1)函数的单调递增区间为()(2)的取值范围为.【解析】(1)由题设由,解得,故函数的单调递增区间为()(2)由,可得考察函数,易知于是.故的取值范围为【考点】三角函数和差倍半公式及三角函数的图象和性质。
高一数学函数试题及答案
高一数学函数试题及答案一、选择题(每题3分,共15分)1. 函数f(x) = 2x + 3的值域是:A. (-∞, +∞)B. [3, +∞)C. (-∞, 3]D. [0, +∞)2. 已知函数f(x) = x^2 - 2x,x ∈ R,若f(x) = 0,则x的值为:A. 0B. 2C. -2D. 0 或 23. 函数y = sin(x) + cos(x)的周期是:A. πB. 2πC. π/2D. π/44. 若函数f(x) = |x| + 1是奇函数,则下列哪个函数也是奇函数:A. f(x) + 2B. f(x) - 2C. 2f(x)D. 3f(x)5. 已知f(x) = x^3 - 3x^2 + 2,求f(-1)的值是:A. 4B. 3C. 2D. 1二、填空题(每题2分,共10分)6. 若函数f(x) = 3x - 5的图象沿x轴向左平移2个单位,新的函数表达式为______。
7. 函数y = 2^x的反函数是______。
8. 函数f(x) = x^2 + 1在x = -1处的切线斜率是______。
9. 若函数f(x) = x^3 + ax^2 + bx + c的导数为f'(x) = 3x^2 + 2ax + b,当a = 2时,b的值为______。
10. 函数y = 1/x的图像关于______对称。
三、解答题(共75分)11. (15分)已知函数f(x) = x^2 - 4x + 4,求其在区间[0, 6]上的单调区间。
12. (15分)求函数f(x) = sin(x) - cos(x)的值域。
13. (15分)若函数f(x) = x^3 - 6x^2 + 9x + 2,求f'(x),并找出f(x)的极值点。
14. (15分)已知函数f(x) = 2x - 3,求f(x)的反函数,并证明其正确性。
15. (15分)证明函数f(x) = x^3在R上是增函数。
高一数学必修第一册《一元二次函数、方程和不等式》检测卷与答案
高一数学必修第一册《一元二次函数、方程和不等式》检测卷考试时间:120分钟;满分:150分一.选择题(共8小题,满分40分,每小题5分)1.(5分)若实数a,b满足>,则下列不等式成立的是()A.>B.+>+C.2>2D.B2>B22.已知条件G>1,条件G−2−2+3≤0,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知1≤+≤4,−1≤−≤2,则4−2的取值范围是()A.−4<<10B.−3<<6C.−2<<14D.−2≤≤104.若正实数、满足+=2,则1B的最小值为()A.0B.1C.2D.35.(5分)若关于的不等式2+B+>0的解集为(−∞,−1)∪(2,+∞),则不等式2+B−8r>0的解集为()A.(−4,1)∪(2,+∞)B.(−2,1)∪(4,+∞)C.(−∞,−2)∪(1,4)D.(−∞,−4)∪(1,2)6.(5分)甲、乙两名司机的加油习惯有所不同,甲每次加油都说“师傅,给我加300元的油”,而乙则说“师傅帮我把油箱加满”,如果甲、乙各加同一种汽油两次,两人第一次与第二次加油的油价分别相同,但第一次与第二次加油的油价不同,乙每次加满油箱,需加入的油量都相同,就加油两次来说,甲、乙谁更合算()A.甲更合算B.乙更合算C.甲乙同样合算D.无法判断谁更合算7.(5分)若关于的不等式2−+2+2<0的解集中恰有3个整数,则实数的取值范围为()A.−2,−1∪5,6B.−2,−1∪3,6C.−3,−1∪3,6D.−1∪4,68.(5分)已知正数、满足−1−2=2,不等式3+2>恒成立.则实数的取值范围是()A.−∞,4+62B.6+42,+∞C.−∞,7+43D.8+43,+∞二.多选题(共4小题,满分20分,每小题5分)9.(5分)已知−1<<6,3<<8,则下列结果正确的有()A.−13<<2B.2<+<14C.−4<−<−2D.−3<B<4810.(5分)∀∈,关于的不等式2−B+>0恒成立,则实数的值可以是()A.0B.1C.2D.311.(5分)下列结论中,正确的结论有()A.函数=+1的最小值是2B.如果>0,>0,+3+B=9,那么B的最大值为3 C.函数op=的最小值为52D.如果>0,>0,且1r1+11+=1,那么+的最小值为2 12.(5分)已知关于x的不等式B2+B+≤0的解集是U≤−2或≥6()A.<0B.不等式B2−B+<0的解集是U−16<<C.++>0D.不等式B+>0的解集是U<−3三.填空题(共4小题,满分20分,每小题5分)13.(5分)比较大小:2+(请从“<”“>”“=”中选择合适的符号填空)14.(5分)若>0,>0,且+=6,则4+1的最小值为.15.(5分)已知二次方程B2+B+=0(>0)的两根分别为2和4,则不等式B2+B+<0的解集为.16.(5分)设>0,>1,若+=2,且不等式4+1K1>2+8恒成立,则的取值范围是.四.解答题(共6小题,满分70分)17.(10分)解关于的不等式.(1)2+−6<0;(2)−22−≤−6(3)(−p(−2)>0.18.(12分)比较下列各题中两个代数式值的大小. (1)2+12与4+2+1;(2)2−22+2与>>0.19.(12分)证明下列不等式:(1)已知>>>,求证:1K<1K;(2)已知>>0,<<0,<0,求证:K>K.20.(12分)已知>0,>0,+=1,求下列代数式的最小值(1)1r2+1r2;(2)1(+1).21.(12分)甲、乙两地相距1000km,货车从甲地匀速行驶到乙地,速度不得超过100(km/h),若货车每小时的运输成本(以元为单位)由可变成本和固定成本组成,可变成本是速度km h的平方的34倍,固定成本为元.(1)将全程运输成本(元)表示为速度km h的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,货车应以多大的速度行驶?22.(12分)已知函数op=2−B+.(1)若不等式op>0的解集为(−∞,1)∪(3,+∞),求实数s的值;(2)当−1=0时,(i)解关于x的不等式>0;(i)若存在∈[1,2],使得≤0,求实数a的取值范围.高一数学必修第一册《一元二次函数、方程和不等式》检测卷答案一.选择题(共8小题,满分40分,每小题5分)1.(5分)若实数a,b满足>,则下列不等式成立的是()A.>B.+>+C.2>2D.B2>B2【解题思路】利用不等式的性质即可判断.【解答过程】由=1,=−2,=0<,故A错;2<2,故C错;B2=B2,故D错;由不等式的性质易知B正确.故选:B.2.已知条件G>1,条件G−2−2+3≤0,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解题思路】解一元二次不等式结合充分不必要条件的定义即可得解.【解答过程】由题意条件G>1,条件G−2−2+3≤0⇔≤−3或≥1,所以是的充分不必要条件.故选:A.3.已知1≤+≤4,−1≤−≤2,则4−2的取值范围是()A.−4<<10B.−3<<6C.−2<<14D.−2≤≤10【解题思路】利用+和−范围求出0≤2≤6,然后利用不等式的性质求解即可【解答过程】由−1≤−≤2,1≤+≤4,得0≤−++≤6,即0≤2≤6,−2≤2−≤4,所以−2≤2−+2≤10,即−2≤4−2≤10,故选:D.4.若正实数、满足+=2,则1B的最小值为()A.0B.1C.2D.3【解题思路】利用基本不等式可求得1B的最小值.【解答过程】因为正实数、满足+=2,则1B≥12=1,当且仅当=+=2时,即当==1时,等号成立,故1B的最小值为1.故选:B.5.(5分)若关于的不等式2+B+>0的解集为(−∞,−1)∪(2,+∞),则不等式2+B−8r>0的解集为()A.(−4,1)∪(2,+∞)B.(−2,1)∪(4,+∞)C.(−∞,−2)∪(1,4)D.(−∞,−4)∪(1,2)【解题思路】根据关于x的不等式B+<0的解集是U−1<<2,利用韦达定理可得=−1,=−2>0,进而求解.【解答过程】因为关于的不等式2+B+>0的解集为(−∞,−1)∪(2,+∞),所以2+B+=02,由韦达定理可得:=−1,=−2,所以2+B−8r>0>0,解得−2<<1或>4.所以原不等式的解集为(−2,1)∪(4,+∞),故选:B.6.(5分)甲、乙两名司机的加油习惯有所不同,甲每次加油都说“师傅,给我加300元的油”,而乙则说“师傅帮我把油箱加满”,如果甲、乙各加同一种汽油两次,两人第一次与第二次加油的油价分别相同,但第一次与第二次加油的油价不同,乙每次加满油箱,需加入的油量都相同,就加油两次来说,甲、乙谁更合算()A.甲更合算B.乙更合算C.甲乙同样合算D.无法判断谁更合算【解题思路】根据题意列出甲乙两次加油的平均单价,进而根据不等式即可求解.【解答过程】设两次的单价分别是s≠元/升,甲加两次油的平均单价为600300+300=21+1,单位:元/升,乙每次加油升,加两次油的平均单价为B+B2=r2,单位:元/升,因为>0,>0,≠,+=2++>2+=4,即21+1<r 2,即甲的平均单价低,甲更合算.故选:A.7.(5分)若关于的不等式2−+2+2<0的解集中恰有3个整数,则实数的取值范围为()A .−2,−1∪5,6B .−2,−1∪3,6C .−3,−1∪3,6D .−1∪4,6【解题思路】含参解一元二次不等式,分类讨论的范围确定整数解即可.【解答过程】由2−+2+2<0,得−−2<0,当=2时,不等式的解集为∅,不符合题意,舍去;当<2时,不等式的解集为<<2,此时若有3个整数解,此时,解集中的三个整数分别为1、0、−1,则需−2≤<−1;当>2时,不等式的解集为2<<,此时若有3个整数解,此时,解集中的三个整数分别为3、4、5,则需5<≤6综上:所以−2≤<−1或5<≤6,故选:A .8.(5分)已知正数、满足−1−2=2,不等式3+2>恒成立.则实数的取值范围是()A .−∞,4+62B .6+42,+∞C .−∞,7+43D .8+43,+∞【解题思路】由不等式3+2>恒成立,故只需3+2min>,由基本不等式的乘“1”法,结合已知求出3+2的最小值即可.【解答过程】因为−1−2=2,>0,>0,所以B =2+,即1+2=1,所以由基本不等式可得3+2=3+27+2+6≥7+=7+43,等号成立当且仅当2=6>0,>0−1−2=2即=1+233=2+3综上所述,3+2的最小值为7+43;因为不等式3+2>恒成立,所以实数的取值范围是−∞,7+43.故选:C.二.多选题(共4小题,满分20分,每小题5分)9.(5分)已知−1<<6,3<<8,则下列结果正确的有()A.−13<<2B.2<+<14C.−4<−<−2D.−3<B<48【解题思路】根据题意,利用不等式的基本性质,逐项判定,即可求解.【解答过程】对于A中,由3<<8,可得18<1<13,由不等式的性质,可得−13<<2,所以A正确;对于B中,由−1<<6,3<<8,根据不等式的性质,可得2<+<14,所以B正确;对于C中,由3<<8,可得−8<−<−3,所以−9<−<3,所以C错误;对于D中,由−1<<6,3<<8,可得−8<B<48,所以D错误.故选:AB.10.(5分)∀∈,关于的不等式2−B+>0恒成立,则实数的值可以是()A.0B.1C.2D.3【解题思路】结合一元二次不等式恒成立有Δ<0,即可求范围.【解答过程】∀∈,关于的不等式2−B+>0恒成立,所以Δ=2−4<0,解得0<<4,对照选项知实数的值可以是1,2,3.故选:BCD.11.(5分)下列结论中,正确的结论有()A.函数=+1的最小值是2B.如果>0,>0,+3+B=9,那么B的最大值为3C.函数op=的最小值为52D.如果>0,>0,且1r1+11+=1,那么+的最小值为2【解题思路】利用基本不等式对选项逐个判断即可得.【解答过程】对A:当J−1时,=−1−1=−2,所以最小值不是2,故A错误;对B:由已知可得9−B=+3≥23B,解得0<B≤3,所以0<B≤3,当且仅当=3时成立,此时B的最大值为3,故B正确;=2+4+,设2+4=,≥2,对C:函数op==+1在2,+∞上单调递增,所以=2时,取最大值52,故C正确;对D :+=+1++1−2=[(+1)+(+1)](1r1+1r1)−2=1+1−2+r1r1+r1r1≥=2,当且仅当=时取得最小值为2,故D 正确.故选:BCD .12.(5分)已知关于x 的不等式B 2+B +≤0的解集是U ≤−2或≥6()A .<0B .不等式B 2−B +<0的解集是U −16<<C .++>0D .不等式B +>0的解集是U <−3【解题思路】根据一元二次不等式的解集性质进行逐一判断即可.【解答过程】因为关于x 的不等式B 2+B +≤0的解集是U ≤−2或≥6,所以有<0−2+6=−−2×6=⇒<0=−4=−12,因此选项A 正确;B 2−B +<0⇒−12B 2+4B +<0⇒122−4−1<0⇒−16<<12,因此选项B 正确;++=−4−12=−15>0,因此选项C 正确;B +>0⇒−4B−12>0⇒+3>0⇒>−3,因此选项D 不正确,故选:ABC.三.填空题(共4小题,满分20分,每小题5分)13.(5分)比较大小:2+(请从“<”“>”“=”中选择合适的符号填空)【解题思路】将两数都平方,然后作差法比较大小即可.【解答过程】由(2+6)2=8+43,则(2+6)2−42=4(3−2)<0,所以(2+6)2<42⇒2+6<4.故答案为:<.14.(5分)若>0,>0,且+=6,则4+1的最小值为32.【解题思路】根据基本不等式的乘“1”法即可求解.【解答过程】由于>0,>0,所以4+1=+=+4+≥+=32,当且仅当4=,即=4,=2时等号成立,故答案为:.15.(5分)已知二次方程B2+B+=0(>0)的两根分别为2和4,则不等式B2+B+<0的解【解题思路】根据二次方程的两根可得、与的关系,可化简B2+B+<0为2−6+8<0,再解不等式可得答案.【解答过程】二次方程B2+B+=0(>0)的两根分别为2和4,可得2+4=−2×4=,即=−6=8,由B2+B+<0>0可得2−6+8<0,解得2<<4,所以不等式2−6+8<0的解集为U2<<4.故答案为:U2<<4.16.(5分)设>0,>1,若+=2,且不等式4+1K1>2+8的取值范围是−9,1【解题思路】首先根据已知条件得到+−1=1⋅+−1即可求得最小值,再解关于的一元二次不等式即可求得的取值范围.【解答过程】因为>0,>1,+=2,所以+−1=1,则4+1⋅+−1=5++K1≥5+=9,=K1时,即=23,=43时取等号,所以9>2+8,解得−9<<1.故答案为:−9,1.四.解答题(共6小题,满分70分)17.(10分)解关于的不等式.(1)2+−6<0;(2)−22−≤−6(3)(−p(−2)>0.【解题思路】由公式解不含参数的一元二次不等式,分类讨论解含参数的一元二次不等式.【解答过程】(1)不等式2+−6<0,即+3−2<0,解得−3<<2,所以不等式的解集为U−3<<2;(2)不等式−2,所以不等式的解集为{U≤−2或≥32};(3)不等式−−2>0,当>2时,解集为<2或>,当<2时,解集为<或>2,当=2时,解集为{U≠2}.18.(12分)比较下列各题中两个代数式值的大小.(1)2+12与4+2+1;(2)2−22+2与>>0.【解题思路】(1)(2)利用作差法,化简后和0比较,即可判断大小关系.【解答过程】(1)2+12−4+2+1=4+22+1−4+2+1=2≥0,∴2+12≥4+(2)2−22+2−K r==∵>>0,∴>0,+>0,2+2>0,>0,∴2−22+2>K r.19.(12分)证明下列不等式:(1)已知>>>,求证:1K<1K;(2)已知>>0,<<0,<0,求证:K>K.【解题思路】(1)依题意可得−>−>0,再根据不等式的性质证明;(2)利用作差法证明即可.【解答过程】(1)∵>>>,即>s−>−,∴−>−>0,则1K<1K.(2)∵>>0,<<0,<0,∴−>−>0,∴−>则−===>0,∴−>−.20.(12分)已知>0,>0,+=1,求下列代数式的最小值(1)1r2+1r2;(2)1(+1).【解题思路】(1)运用配凑和常值代换法将其转化,利用基本不等式即可求得;(2)展开变形成2+1B,再将1换成+2展开,即可利用基本不等式求解..【解答过程】(1)因>0,>0,+=1,则(+2)+(+2)=5,于是得1r2+1r2=15[(+2)+(+2)](1r2+1r2)=15(2+r2r2+r2r2)≥15(2+=45,当且仅当r2r2=r2r2,即==12时取“=”,所以,当==12时,1r2+1r2的最小值是45;(2)因>0,>0,+=1,则1(+1)=2+1B=2+(rp2B=2+2B+22B=+2+2≥2=22+2,当且仅当=2,即=2−2,=2−1时取“=”,所以当=2−2,=2−1时,1(+1)的最小值是22+2.21.(12分)甲、乙两地相距1000km,货车从甲地匀速行驶到乙地,速度不得超过100(km/h),若货车每小时的运输成本(以元为单位)由可变成本和固定成本组成,可变成本是速度km h的平方的34倍,固定成本为元.(1)将全程运输成本(元)表示为速度km h的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,货车应以多大的速度行驶?【解题思路】(12元,固定成本为a元,求和后乘以时间即可;(2)由(1)的结论,利用基本不等式求最小值作答.【解答过程】(12元,固定成本为a元,所用时间为1000,则=10002+=1000(0, 100].(2)由(1)得=1000≥1000×=10003,当且仅当34=,即=易知函数=34+在+∞上单调递增.又0<≤100,所以当0<≤7500时,货车以=的速度行驶,全程运输成本最小;当>7500时,货车以100km/h的速度行驶,全程运输成本最小.22.(12分)已知函数op=2−B+.(1)若不等式op>0的解集为(−∞,1)∪(3,+∞),求实数s的值;(2)当−1=0时,(i)解关于x的不等式>0;(i)若存在∈[1,2],使得≤0,求实数a的取值范围.【解题思路】(1)根据题意,转化为得到1和3是方程2−B+=0的两个实数根据,列出方程组,即可求解;(2)(i)由−1=0,求得=−(+1),把不等式>0,转化为(+1)[−(+1)]>0,分类讨论,即可求得不等式的解集;(i i)由(i)中不等式的解集,结合存在∈[1,2],使得≤0,分类讨论,即可求解.【解答过程】(1)解:由函数op=2−B+,因为不等式op>0的解集为(−∞,1)∪(3,+∞),可得1和3是方程2−B+=0的两个实数根据,则1+3=1×3=,解得=4,=3.(2)解:(i)由函数op=2−B+,因为−1=0,可得o−1)=1++=0,即=−(+1),所以op=2−B−(+1),由不等式>0,即2−B−(+1)=(+1)[−(+1)]>0,当+1>−1时,即>−2时,解得<−1或>+1;当+1=−1时,即=−2时,即为(+1)2>0解得≠−1;当+1<−1时,即<−2时,解得<+1或>1,综上可得,当>−2时,不等式解集为(−∞,−1)∪(+1,+∞);当=−2时,不等式的解集为(−∞,−1)∪(−1,+∞);当<−2时,不等式的解集为(−∞,+1)∪(−1,+∞).(i i)由(i)知,当>−2时,不等式>0解集为(−∞,−1)∪(+1,+∞),若存在∈[1,2],使得≤0,则满足+1≥1,解得≥0;当=−2时,不等式>0的解集为(−∞,−1)∪(−1,+∞),此时不存在∈[1,2],使得≤0;当<−2时,不等式>0的解集为(−∞,+1)∪(−1,+∞),此时不存在∈[1,2],使得≤0,综上可得,实数的取值范围为[0,+∞).。
高一数学:函数章节测试题(含解析)
函数章节测试卷(时间120,满分150)一.选择题1. 函数f (x )=)12(log 13-12++x x的定义域为( )A .(-21,0) B .(-21,+∞) C .(-21,0)∪(0,+∞) D .(-21,2) 2. 已知函数f (x )= ⎪⎩⎪⎨⎧≤>0,30,log 21x x x x ,则f (f (4))=( )A .-91B .-9C .91 D .93. 设a =log 54-log 52,b=3ln 32ln +,c=5lg 2110,则a ,b,c 的大小关系为( )A .a<b<cB .b <c<aC .c<a<bD .b <a <c4. 函数y=21x -1的图像关于x 轴对称的图像大致为( )5. 已知定义域为R 的偶函数f (x )在(-∞,0]上是减函数,且f (1)=2,则不等式f (log 2x )>2的解集为( )A .(2,+∞)B .(0,21)∪ (2,+∞) C .(0,22)∪ (2,+∞)D . (2,+∞)6. 设函数f (x )满足f (x+π)=f (x )+sin x ,当0≤x <π时,f (x )=0,则f (623π)=( ) A .21B .23C .0D .-217. 函数y=)106(log 231+-x x 在区间[1,2]上的最大值为( )A .0B .5log 31 C .2log 31D .18. 设函数f (x )=))((22b ax x x x +++,若对任意的x ,都有f (x )=f (2-x ),则f (x )的零点个数为( )A .5B .4C .3D .29. 已知函数f (x )= ⎩⎨⎧<≥+-0,0,3x a x a x x,是R 上的减函数,则实数a 的取值范围为( ) A .(0,1) B .(0,31] C .[31,1) D .[31,+∞) 10. 函数f (x )的图像与函数g (x )=x)21(的图像关于直线y=x 对称,则f (2x -x 2)的单调递减区间为( )A .(-∞,1)B .[1,+∞)C .(0,1)D .[1,2]11. 在如图所示的锐角三角形空地(底边长为40m ,高为40m )中,欲建一个面积不小于300m 2的内接矩形花园,则其边长x 的取值范围为( )A .[15,20]B .[12,25]C .[10,30]D .[20,30]12. 已知函数f (x )= ⎪⎩⎪⎨⎧≥+--<-1,2)2(1,)1(log 25x x x x ,则方程f (x+x 1-2)=a 的实根的个数不可能为( )A .5B .6C .7D .8二. 填空题13. 已知函数f (x )= ⎩⎨⎧<≥+0),(0,22x x g x x x 为奇函数,则f (g (-1))= . 14. 已知函数f (x )=x 2+mx -1,若对于任意的x ∈[m ,m+1]都有f (x )<0,则m 取值范围为 .15. 已知函数f (x )= ⎪⎩⎪⎨⎧∈-∈]3,1(,2329]1,0[,3x x x x ,当t ∈[0,1]时,f (f (t))∈[0,1],则t 取值范围为 . 16. 函数f (x )= ⎩⎨⎧≤+>+-0,140,2ln 2x x x x x x 的零点个数为 . 三.解答题17. 函数f (x )=ax)21(,a 为常数,且函数图像过点(-1,2). (1)求a 的值(2)若g (x )=x-4-2, 且g (x )=f (x ),求满足条件的x 的值。
必修一数学《函数的应用》经典习题(含答案解析)
必修一数学(第三章函数的应用)单元检测(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2020·洛阳高一检测)函数f(x)的图象如图所示,函数f(x)零点的个数为( )A.1个B.2个C.3个D.4个2.(2020·宜昌高一检测)若函数y=f(x)在区间[a,b]上的图象为连续不断的一条曲线,则下列说法正确的是( )A.若f(a)f(b)>0,不存在实数c∈(a,b)使得f(c)=0B.若f(a)f(b)<0,存在且只存在一个实数c∈(a,b)使得f(c)=0C.若f(a)f(b)>0,有可能存在实数c∈(a,b)使得f(c)=0D.若f(a)f(b)<0,有可能不存在实数c∈(a,b)使得f(c)=03.已知方程x=3-lgx,下列说法正确的是( )A.方程x=3-lgx的解在区间(0,1)内B.方程x=3-lgx的解在区间(1,2)内C.方程x=3-lgx的解在区间(2,3)内D.方程x=3-lgx的解在区间(3,4)内4.(2020·长沙高一检测)已知f(x)唯一的零点在区间(1,3),(1,4),(1,5)内,那么下面命题错误的是( )A.函数f(x)在(1,2)或[2,3]内有零点B.函数f(x)在(3,5)内无零点C.函数f(x)在(2,5)内有零点D.函数f(x)在(2,4)内不一定有零点5.(2020·临川高一检测)设x0是方程lnx+x=4的解,则x0在下列哪个区间内( )A.(3,4)B.(0,1)C.(1,2)D.(2,3)6.(2020·新余高一检测)下列方程在区间(0,1)存在实数解的是( )A.x2+x-3=0B.x+1=0C.x+lnx=0D.x2-lgx=07.(2020·郑州高一检测)函数f(x)=3x-log2(-x)的零点所在区间是( )A. B.(-2,-1)C.(1,2)D.8.某种型号的手机自投放市场以来,经过两次降价,单价由原来的2000元降到1280元,则这种手机的价格平均每次降低的百分率是( )A.10%B.15%C.18%D.20%9.向高为H的圆锥形漏斗注入化学溶液(漏斗下方口暂时关闭),注入溶液量V与溶液深度h的函数图象是( )10.若方程a x-x-a=0有两个解,则a的取值范围是( )A.(1,+∞)B.(0,1)C.(0,+∞)D.∅11.(2020·福州高一检测)若函数f的零点与g=4x+2x-2的零点之差的绝对值不超过0.25,则f可以是( )A.f=4x-1B.f=(x-1)2C.f=e x-1D.f=ln12.如图表示一位骑自行车者和一位骑摩托车者在相距80km的两城镇间旅行的函数图象,由图可知:骑自行车者用了6小时,沿途休息了1小时,骑摩托车者用了2小时,根据这个函数图象,推出关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发了1.5小时后,追上了骑自行车者.其中正确信息的序号是( )A.①②③B.①③C.②③D.①②二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2020·南昌高一检测)用“二分法”求方程x3-2x-5=0在区间[2,3]内的实根,取区间中点为x0=2.5,那么下一个有根的区间是.14.已知函数f(x)=若关于x的方程f(x)-k=0有唯一一个实数根,则实数k的取值范围是.15.若函数f(x)=lgx+x-3的近似零点在区间(k,k+1)(k∈Z)内,则k= .16.定义在R上的偶函数y=f(x),当x≥0时,y=f(x)是单调递减的,f(1)·f(2)<0,则y=f(x)的图象与x轴的交点个数是.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(2020·杭州高一检测)已知函数f(x)的图象是连续的,有如下表格,判断函数在哪几个区间上有零点.x -2 -1.5 -1 -0.5 0 0.5 1 1.5 2f(x) -3.51 1.02 2.37 1.56 -0.38 1.23 2.77 3.45 4.89 18.(12分)设f(x)=ax2+(b-8)x-a-ab的两个零点分别是-3,2.(1)求f(x).(2)当函数f(x)的定义域为[0,1]时,求其值域.19.(12分)用二分法求方程2x+x-8=0在区间(2,3)内的近似解.(精确度为0.1,参考数据:22.5≈5.657,22.25≈4.757,22.375≈5.187,22.4375≈5.417,22.75≈6.727) 20.(12分)(2020·潍坊高一检测)已知二次函数f(x)的图象过点(0,3),它的图象的对称轴为x=2,且f(x)的两个零点的平方和为10,求f(x)的解析式.21.(12分)(2020·徐州高一检测)在经济学中,函数f(x)的边际函数为Mf(x),定义为Mf(x)=f(x+1)-f(x),某公司每月最多生产100台报警系统装置,生产x台的收入函数为R(x)=3000x-20x2(单位:元),其成本函数为C(x)=500x+4000(单位:元),利润的函数等于收入与成本之差.求出利润函数p(x)及其边际利润函数Mp(x);判断它们是否具有相同的最大值;并写出本题中边际利润函数Mp(x)最大值的实际意义.22.(12分)A地某校准备组织学生及学生家长到B地进行社会实践,为便于管理,所有人员必须乘坐在同一列火车上;根据报名人数,若都买一等座单程火车票需17010元,若都买二等座单程火车票且花钱最少,则需11220元;已知学生家长与教师的人数之比为2∶1,从A到B的火车票价格(部分)如下表所示:(1)参加社会实践的老师、家长与学生各有多少人?(2)由于各种原因,二等座火车票单程只能买x张(x小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y与x之间的函数关系式.(3)请你做一个预算,按第(2)小题中的购票方案,购买单程火车票至少要花多少钱?最多要花多少钱?参考答案与解析1【解析】选D.由图象知与x轴有4个交点,则函数f(x)共有4个零点.2【解析】选C.f(a)f(b)<0时,存在实数c∈(a,b)使得f(c)=0,f(a)f(b)>0时,可能存在实数c∈(a,b)使得f(c)=0.3【解析】选C.2<3-lg2,3>3-lg3,又f(x)=x+lgx-3在(0,+∞)上是单调递增的,所以方程x=3-lgx的解在区间(2,3)内.4【解析】选C.f(x)唯一的零点在区间(1,3),(1,4),(1,5)内,则区间(1,3)内必有零点,(2,5)内不一定有零点,(3,5)内无零点,所以选C.5【解析】选D.令f(x)=lnx+x-4,由于f(2)=ln2+2-4<0,f(3)=ln3+3-4>0,f(2)·f(3)<0,又因为函数f(x)在(2,3)内连续,故函数f(x)在(2,3)内有零点,即方程lnx+x=4在(2,3)内有解.6【解题指南】先从好判断的一次方程、二次方程入手,不好求解的利用函数图象的交点进行判断.【解析】选 C.x2+x-3=0的实数解为x=和x=,不属于区间(0,1);x+1=0的实数解为x=-2,不属于区间(0,1);x2-lgx=0在区间(0,1)内无解,所以选C,图示如下:7【解析】选 B.f(x)=3x-log2(-x)的定义域为(-∞,0),所以C,D不能选;又f(-2)·f(-1)<0,且f(x)在定义域内是单调递增函数,故零点在(-2,-1)内.8【解析】选D.设平均每次降低的百分率为x,则2000(1-x)2=1280,解得x=0.2,故平均每次降低的百分率为20%.9【解析】选A.注入溶液量V随溶液深度h的增加增长越来越快,故选A.10【解析】选A.画出y1=a x,y2=x+a的图象知a>1时成立.11【解析】选A.f=4x-1的零点为x=,f=(x-1)2的零点为x=1,f=e x-1的零点为x=0,f=ln的零点为x=.现在我们来估算g=4x+2x-2的零点,因为g(0)= -1,g=1,g<0,且g(x)在定义域上是单调递增函数,所以g(x)的零点x∈,又函数f的零点与g=4x+2x-2的零点之差的绝对值不超过0.25,只有f=4x-1的零点适合.12【解析】选A.由图象可得:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时,正确;②骑自行车者是变速运动,骑摩托车者是匀速运动,正确;③骑摩托车者在出发了1.5小时后,追上了骑自行车者,正确.13【解析】令f(x)=x3-2x-5,f(2.5)·f(2)<0所以下一个有根的区间是(2,2.5). 答案:(2,2.5)14【解析】关于x的方程f(x)-k=0有唯一一个实数根,等价于函数y=f(x)与y=k 的图象有唯一一个交点,在同一个平面直角坐标系中作出它们的图象.由图象可知实数k的取值范围是[0,1)∪(2,+∞).答案:[0,1)∪(2,+∞)15【解析】由lgx+x-3=0,可得lgx=-x+3,令y1=lgx,y2=-x+3,结合两函数的图象,可大体判断零点在(1,3)内,又因为f(2)=lg2-1<0,f(3)=lg3>0,f(x)=lgx+x-3是单调递增函数,所以k=2.答案:216【解析】f(1)·f(2)<0,y=f(x)在区间(1,2)内有一个零点,由偶函数的对称性知,在区间(-2,-1)内也有一个零点,所以共有2个零点.答案:217【解析】因为函数的图象是连续不断的,并且由对应值表可知f·f<0,f·f(0)<0,f·f<0,所以函数f在区间(-2,-1.5),(-0.5,0)以及(0,0.5)内有零点.18【解析】(1)因为f(x)的两个零点分别是-3,2,所以即解得a=-3,b=5,f(x)=-3x2-3x+18.(2)由(1)知f(x)=-3x2-3x+18的对称轴x=-,函数开口向下,所以f(x)在[0,1]上为减函数,f(x)的最大值f(0)=18,最小值f(1)=12,所以值域为[12,18].19【解析】设函数f(x)=2x+x-8,则f(2)=22+2-8=-2<0,f(3)=23+3-8=3>0,所以f(2)·f(3)<0,说明这个函数在区间(2,3)内有零点x0,即原方程的解. 用二分法逐次计算,列表如下:区间中点的值中点函数近似值(2,3)2.50.157(2,2.5)2.25-0.993(2.25,2.5)2.375-0.438(2.375,2.5)2.437 5-0.145 5由表可得x0∈(2,2.5),x0∈(2.25,2.5),x0∈(2.375,2.5),x0∈(2.4375,2.5).因为|2.4375-2.5|=0.0625<0.1,所以方程2x+x-8=0在区间(2,3)内的近似解可取为2.4375.20【解析】设二次函数为f(x)=ax2+bx+c(a≠0).由题意知:c=3,-=2.设x1,x2是方程ax2+bx+c=0的两根,则+=10,所以(x1+x2)2-2x1x2=10,所以-=10,所以16-=10,所以a=1.代入-=2中,得b=-4.所以f(x)=x2-4x+3.21【解析】p(x)=R(x)-C(x)=-20x2+2500x-4000,x∈[1,100],x∈N,所以Mp(x)=p(x+1)-p(x)=[-20(x+1)2+2500(x+1)-4000]-(-20x2+2500x-4000),=2480-40x,x∈[1,100],x∈N;所以p(x)=-20+74125,x∈[1,100],x∈N,故当x=62或63时,p(x)max=74120(元),因为Mp(x)=2480-40x为减函数,当x=1时有最大值2440.故不具有相等的最大值.边际利润函数取最大值时,说明生产第二台机器与生产第一台的利润差最大.22【解析】(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,若都买二等座单程火车票且花钱最少,则全体学生都需买二等座火车票,依题意得:解得则2m=20,答:参加社会实践的老师、家长与学生各有10人、20人与180人.(2)由(1)知所有参与人员总共有210人,其中学生有180人,①当180≤x<210时,最经济的购票方案为:学生都买学生票共180张,(x-180)名成年人买二等座火车票,(210-x)名成年人买一等座火车票.所以火车票的总费用(单程)y与x之间的函数关系式为:y=51×180+68(x-180)+81(210-x),即y=-13x+13950(180≤x<210).②当0<x<180时,最经济的购票方案为:一部分学生买学生票共x张,其余的学生与家长、老师一起购买一等座火车票共(210-x)张.所以火车票的总费用(单程)y与x之间的函数关系式为:y=51x+81(210-x),即y=-30x+17010(0<x<180).(3)由(2)小题知,当180≤x<210时,y=-13x+13950,由此可见,当x=209时,y的值最小,最小值为11233元,当x=180时,y的值最大,最大值为11610元.当0<x<180时,y=-30x+17010,由此可见,当x=179时,y的值最小,最小值为11640元,当x=1时,y的值最大,最大值为16980元.所以可以判断按(2)小题中的购票方案,购买单程火车票至少要花11233元,最多。
高中数学 第三章 函数的概念与性质检测试题(含解析)新人教A版必修第一册-新人教A版高一第一册数学试
第三章检测试题时间:120分钟分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.设集合A={x|-4<x<3},B={x|x≤2},则A∩B=(B)A.(-4,3) B.(-4,2]C.(-∞,2] D.(-∞,3)解析:∵集合A={x|-4<x<3},B={x|x≤2},∴A∩B={x|-4<x≤2},用区间表示为(-4,2],故选B.2.函数f(x)=|x-1|的图象是(B)解析:代入特殊点,∵f(1)=0,∴排除A,C;又f(-1)=2,∴排除D.3.函数y=f(x)是R上的偶函数,且在(-∞,0]上是增函数,若f(a)≤f(2),则实数a 的取值X围是(D)A.a≤2 B.a≥-2C.-2≤a≤2 D.a≤-2或a≥2解析:∵y=f(x)是R上的偶函数,且在(-∞,0]上是增函数,∴y=f(x)在[0,+∞)上是减函数,由f(a)≤f(2),得f(|a|)≤f(2).∴|a|≥2,得a≤-2,或a≥2.4.若函数f(x)满足f(3x+2)=9x+8,则f(x)的解析式是(B)A.f(x)=9x+8B.f(x)=3x+2C.f(x)=-3x-4D .f (x )=3x +2或f (x )=-3x -4解析:令3x +2=t ,则3x =t -2,故f (t )=3(t -2)+8=3t +2. 5.已知函数y =f (2x )+2x 是偶函数,且f (2)=1,则f (-2)=( A ) A .5 B .4 C .3D .2解析:设g (x )=y =f (2x )+2x ,∵函数y =f (2x )+2x 是偶函数,∴g (-x )=f (-2x )-2x =g (x )=f (2x )+2x ,即f (-2x )=f (2x )+4x ,当x =1时,f (-2)=f (2)+4=1+4=5,故选A.6.已知函数f (x )的定义域为(0,+∞),且在(0,+∞)上单调递增,则不等式f (x )>f (2x -3)的解集是( D )A .(-∞,3)B .(3,+∞)C .(0,3) D.⎝⎛⎭⎫32 ,3 解析:本题考查函数的单调性.因为函数f (x )在(0,+∞)上单调递增,所以f (x )>f (2x -3)⇔x >2x -3>0,解得32<x <3,故选D.7.甲、乙两种商品在过去一段时间内的价格走势如图所示.假设某人持有资金120万元,他可以在t 1至t 4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计).如果他在t 4时刻卖出所有商品,那么他将获得的最大利润是( C )A .40万元B .60万元C .120万元D .140万元解析:要想获取最大利润,则甲的价格为6元时,全部买入,可以买120÷6=20万份,价格为8元时,全部卖出,此过程获利20×2=40万元;乙的价格为4元时,全部买入,可以买(120+40)÷4=40万份,价格为6元时,全部卖出,此过程获利40×2=80万元,∴共获利40+80=120万元,故选C.8.一个偶函数定义在[-7,7]上,它在[0,7]上的图象如图所示,下列说法正确的是( C )A .这个函数仅有一个单调增区间B .这个函数有两个单调减区间C .这个函数在其定义域内有最大值是7D .这个函数在其定义域内有最小值是-7解析:结合偶函数图象关于y 轴对称可知,这个函数在[-7,7]上有三个单调递增区间,三个单调递减区间,且定义域内有最大值7,无法判断最小值是多少.9.函数f (x )=x 2-2ax +a +2在[0,a ]上的最大值为3,最小值为2,则a 的值为( C ) A .0 B .1或2 C .1D .2解析:二次函数y =x 2-2ax +a +2的图象开口向上,且对称轴为x =a ,所以该函数在[0,a ]上为减函数,因此有a +2=3且a 2-2a 2+a +2=2,得a =1.10.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( A )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)解析:∵f (x )是偶函数,∴f (-2)=f (2).又∵任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,∴f (x )在[0,+∞)上是减函数.又∵1<2<3,∴f (1)>f (2)=f (-2)>f (3),故选A. 11.函数f (x )是定义在R 上的奇函数,下列命题:①f (0)=0;②若f (x )在[0,+∞)上有最小值-1,则f (x )在(-∞,0]上有最大值1;③若f (x )在[1,+∞)上为增函数,则f (x )在(-∞,-1]上为减函数;④若x >0时,f (x )=x 2-2x ,则x <0时,f (x )=-x 2-2x .其中正确命题的个数是( C ) A .1 B .2 C .3D .4解析:f (x )为R 上的奇函数,则f (0)=0,①正确;其图象关于原点对称,且在对称区间上具有相同的单调性,最值相反且互为相反数,所以②正确,③不正确;对于④,x <0时,-x >0,f (-x )=(-x )2-2(-x )=x 2+2x ,又f (-x )=-f (x ),所以f (x )=-x 2-2x ,故④正确.12.已知当x ∈[0,1]时,函数y =(mx -1)2的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值X 围是( B )A .(0,1]∪[23,+∞)B .(0,1]∪[3,+∞)C .(0,2)∪[23,+∞)D .(0,2]∪[3,+∞)解析:根据题意,知y =(mx -1)2在区间⎝⎛⎭⎫0,1m 上为减函数,⎝⎛⎭⎫1m ,+∞上为增函数,函数y =x +m 为增函数.分两种情况讨论:①当0<m ≤1时,有1m ≥1,在区间[0,1]上,y =(mx -1)2为减函数,且其值域为[(m -1)2,1],函数y =x +m 为增函数,其值域为[m,1+m ],此时两个函数的图象有1个交点,符合题意;②当m >1时,有1m <1,y =(mx -1)2在区间⎝⎛⎭⎫0,1m 上为减函数,⎝ ⎛⎭⎪⎪⎫1m 1上为增函数.函数y =x +m 为增函数,在x ∈[0,1]上,其值域为[m,1+m ],若两个函数的图象有1个交点,则有(m -1)2≥1+m ,解得m ≤0或m ≥3.又m 为正数,故m ≥3.综上所述,m 的取值X 围是(0,1]∪[3,+∞),故选B.第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.设函数f (x )=⎩⎪⎨⎪⎧x 2+2,x ≥2,2x ,x <2,已知f (x 0)=8,则x 0= 6.解析:∵当x ≥2时,f (x )≥f (2)=6, 当x <2时,f (x )<f (2)=4, ∴x 20+2=8(x 0≥2),解得x 0= 6.14.若函数f (x )=x(x +1)(2x -a )为奇函数,则a =2.解析:由题意知x ≠-1且x ≠a2.因为函数f (x )为奇函数,所以其定义域应关于原点对称,故x ≠1,即a2=1,a =2.15.设奇函数f (x )在(0,+∞)上为增函数且f (1)=0,则不等式f (x )-f (-x )x <0的解集为(-1,0)∪(0,1).解析:因为f (x )为奇函数,所以不等式f (x )-f (-x )x <0化为f (x )x<0,即xf (x )<0,f (x )的大致图象如图所示.所以xf (x )<0的解集为(-1,0)∪(0,1).16.已知f (x )=⎩⎪⎨⎪⎧x 2-2x +a ,x >1,(3-2a )x -1,x ≤1是R 上的单调递增函数,则实数a 的取值X 围为⎣⎡⎭⎫1,32.解析:f (x )=⎩⎪⎨⎪⎧(x -1)2+a -1,x >1,(3-2a )x -1,x ≤1,显然函数f (x )在(1,+∞)上单调递增.故由已知可得⎩⎪⎨⎪⎧3-2a >0,a -1≥(3-2a )×1-1,解得1≤a <32.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0为奇函数.(1)求f (-1)以及实数m 的值;(2)在给出的直角坐标系中画出函数y =f (x )的图象并写出f (x )的单调区间.解:(1)由已知得f (1)=1, 又f (x )为奇函数, 所以f (-1)=-f (1)=-1.又由函数表达式可知f (-1)=1-m ,所以1-m =-1,所以m =2. (2)y =f (x )的图象如图所示.y =f (x )的单调递增区间为[-1,1].y =f (x )的单调递减区间为(-∞,-1)和(1,+∞). 18.(12分)已知二次函数f (x )的最小值为1,且f (0)=f (2)=3. (1)求f (x )的解析式;(2)若f (x )在区间[2a ,a +1]上不单调,某某数a 的取值X 围;(3)在区间[-1,1]上,y =f (x )的图象恒在y =2x +2m +1的图象上方,试确定实数m 的取值X 围.解:(1)由f (0)=f (2)知二次函数f (x )关于直线x =1对称,又函数f (x )的最小值为1, 故可设f (x )=a (x -1)2+1, 由f (0)=3,得a =2. 故f (x )=2x 2-4x +3.(2)要使函数不单调,则2a <1<a +1, 则0<a <12.(3)由已知,即2x 2-4x +3>2x +2m +1, 化简得x 2-3x +1-m >0,设g (x )=x 2-3x +1-m ,则只要g (x )min >0,∵x ∈[-1,1],∴g (x )min =g (1)=-1-m >0,得m <-1.19.(12分)已知函数f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2xx -1.求:(1)f (x )的解析式;(2)f (x )在[2,6]上的最大值和最小值.解:(1)因为函数f (x )是定义在R 上的奇函数, 则当x >0时,-x <0,f (x )=-f (-x )=--2x -x -1=-2xx +1,所以f (x )的解析式为f (x )=⎩⎪⎨⎪⎧2xx -1,x ≤0,-2xx +1,x >0.(2)任取2≤x 1≤x 2≤6,则f (x 1)-f (x 2)=-2x 1x 1+1-⎝ ⎛⎭⎪⎫-2x 2x 2+1=2x 2x 2+1-2x 1x 1+1=2(x 2-x 1)(x 2+1)(x 1+1), 由2≤x 1<x 2≤6可得2(x 2-x 1)(x 2+1)(x 1+1)>0,即f (x 1)>f (x 2),所以f (x )在[2,6]上单调递减. 故当x =2时,f (x )取得最大值-43;当x =6时,f (x )取得最小值-127.20.(12分)已知函数f (x )=x 2-|x 2-ax -2|,a 为实数. (1)当a =1时,求函数f (x )在[0,3]上的最小值和最大值;(2)若函数f (x )在(-∞,-1)和(2,+∞)上单调递增,某某数a 的取值X 围. 解:(1)当a =1时,f (x )=⎩⎪⎨⎪⎧x +2,x <-1或x >2,2x 2-x -2,-1≤x ≤2,结合图象可知f (x )在⎣⎡⎦⎤0,14上单调递减,在⎣⎡⎦⎤14 ,3上单调递增, f (x )在[0,3]上的最小值为f ⎝⎛⎭⎫14=-178, f (x )在[0,3]上的最大值为f (3)=5. (2)令x 2-ax -2=0,∵Δ=a 2+8>0, 必有两根x 1=a -a 2+82,x 2=a +a 2+82, ∴f (x )=⎩⎪⎨⎪⎧ax +2,x <x 1或x >x 2,2x 2-ax -2,x 1≤x ≤x 2,若函数f (x )在(-∞,-1)和(2,+∞)上单调递增,则⎩⎪⎨⎪⎧a >0,a -a 2+82≥-1a 4≤2,即可,解得1≤a ≤8.21.(12分)我国是水资源比较贫乏的国家之一,各地采用价格调控等手段以达到节约用水的目的.某市用水收费标准是:水费=基本费+超额费+定额损耗费,且有如下三条规定:①若每月用水量不超过最低限量m 立方米时,只付基本费9元和每户每月定额损耗费a 元;②若每月用水量超过m 立方米时,除了付基本费和定额损耗费时,超过部分每立方米付n 元的超额费;③每户每月的定额损耗费a 不超过5元.(1)求每户每月水费y (元)与月用水量x (立方米)的函数关系式; (2)该市一家庭今年第一季度每月的用水量和支付的费用如下表所示:的值. 解:(1)依题意,得y =⎩⎪⎨⎪⎧9+a0<x ≤m , ①9+n (x -m )+a ,x >m . ②其中0<a ≤5.(2)∵0<a ≤5,∴9<9+a ≤14.由于该家庭今年一、二月份的水费均大于14元,故用水量4立方米,5立方米都大于最低限量m 立方米.将⎩⎪⎨⎪⎧ x =4,y =17和⎩⎪⎨⎪⎧x =5,y =23分别代入②, 得⎩⎪⎨⎪⎧17=9+n (4-m )+a , ③23=9+n (5-m )+a . ④ ③-④,得n =6.代入17=9+n (4-m )+a ,得a =6m -16.又三月份用水量为2.5立方米,若m <2.5,将⎩⎪⎨⎪⎧x =2.5,y =11代入②,得a =6m -13, 这与a =6m -16矛盾.∴m ≥2.5,即该家庭三月份用水量2.5立方米没有超过最低限量. 将⎩⎪⎨⎪⎧ x =2.5,y =11代入①,得11=9+a , 由⎩⎪⎨⎪⎧ a =6m -16,11=9+a ,解得⎩⎪⎨⎪⎧ a =2,m =3.∴该家庭今年一、二月份用水量超过最低限量,三月份用水量没有超过最低限量,且m =3,n =6,a =2.22.(12分)已知f (x )是定义在R 上的奇函数,且f (x )=x +m x 2+nx +1. (1)求m ,n 的值;(2)用定义证明f (x )在(-1,1)上为增函数;(3)若f (x )≤a 3对x ∈⎣⎡⎦⎤-13,13恒成立,求a 的取值X 围. 解:(1)因为奇函数f (x )的定义域为R ,所以f (0)=0.故有f (0)=0+m 02+n ×0+1=0, 解得m =0.所以f (x )=x x 2+nx +1. 由f (-1)=-f (1).即-1(-1)2+n ×(-1)+1=-112+n ×1+1, 解得n =0.所以m =n =0.(2)证明:由(1)知f (x )=x x 2+1,任取-1<x 1<x 2<1. 则f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1 =x 1(x 22+1)-x 2(x 21+1)(x 21+1)(x 22+1)=x 1x 22-x 2x 21+(x 1-x 2)(x 21+1)(x 22+1) =(x 1-x 2)(1-x 1x 2)(x 21+1)(x 22+1). 因为-1<x 1<1,-1<x 2<1, 所以-1<x 1x 2<1.故1-x 1x 2>0,又因为x 1<x 2, 所以x 1-x 2<0,故f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以函数f (x )在(-1,1)上为增函数.(3)由(2)知f (x )在(-1,1)上为增函数,所以函数f (x )在⎣⎡⎦⎤-13,13上为增函数, 故最大值为f ⎝⎛⎭⎫13=310.由题意可得a 3≥310,解得a ≥910. 故a 的取值X 围为⎣⎡⎭⎫910,+∞.。
高一数学必修一第二章基本初等函数综合素能检测及答案
第二章基本初等函数综合素能检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.函数y =log 12(x -1)的定义域是( )A .[2,+∞)B .(1,2]C .(-∞,2] D.⎣⎡⎭⎫32,+∞ [答案] B[解析] log 12(x -1)≥0,∴0<x -1≤1,∴1<x ≤2.故选B.2.(·浙江文,2)已知函数f (x )=log 2(x +1),若f (α)=1,则α=( ) A .0 B .1 C .1 D .3 [答案] B[解析] 由题意知,f (α)=log 2(α+1)=1,∴α+1=2,∴α=1.3.已知集合A ={y |y =log 2x ,x >1},B ={y |y =(12)x ,x >1},则A ∩B =( )A .{y |0<y <12} B .{y |0<y <1}C .{y |12<y <1} D .∅[答案] A[解析] A ={y |y >0},B ={y |0<y <12}∴A ∩B ={y |0<y <12},故选A.4.(·重庆理,5)函数f (x )=4x +12x 的图象( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称 [答案] D[解析] ∵f (-x )=2-x +12-x =2x +12x =f (x )∴f (x )是偶函数,其图象关于y 轴对称.5.(·辽宁文,10)设2a =5b =m ,且1a +1b=2,则m =( )A.10 B .10 C .20 D .100 [答案] A[解析] ∵2a =5b =m ∴a =log 2m b =log 5m ∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2 ∴m =10 选A.6.已知f (x )=⎩⎪⎨⎪⎧f (x +2) x ≤0log 12x x >0,则f (-8)等于( )A .-1B .0C .1D .2[答案] A[解析] f (-8)=f (-6)=f (-4)=f (-2)=f (0)=f (2)=log 122=-1,选A.7.若定义域为区间(-2,-1)的函数f (x )=log (2a -3)(x +2),满足f (x )<0,则实数a 的取值范围是( )A.⎝⎛⎭⎫32,2 B .(2,+∞) C.⎝⎛⎭⎫32,+∞ D.⎝⎛⎭⎫1,32 [答案] B[解析] ∵-2<x <-1,∴0<x +2<1, 又f (x )=log (2a -3)(x +2)<0, ∴2a -3>1,∴a >2.8.已知f (x )是偶函数,它在[0,+∞)上是减函数.若f (lg x )>f (1),则x 的取值范围是( )A .(110,1)B .(0,110)∪(1,+∞)C .(110,10) D .(0,1)∪(10,+∞)[答案] C[解析] ∵f (x )为偶函数, ∴f (lg x )>f (1)化为f (|lg x |)>f (1),又f (x )在[0,+∞)上为减函数,∴|lg x |<1,∴-1<lg x <1,∴110<x <10,选C.9.幂函数y =x m 2-3m -4(m ∈Z )的图象如下图所示,则m 的值为( )A .-1<m <4B .0或2C .1或3D .0,1,2或3[答案] D[解析] ∵y =x m 2-3m -4在第一象限为减函数 ∴m 2-3m -4<0即-1<m <4 又m ∈Z ∴m 的可能值为0,1,2,3. 代入函数解析式知都满足,∴选D.10.(09·北京理)为了得到函数y =lg x +310的图像,只需把函数y =lg x 的图像上所有的点( )A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度 [答案] C[解析] y =lg x +310=lg(x +3)-1需将y =lg x 图像先向左平移3个单位得y =lg(x +13)的图象,再向下平移1个单位得y =lg(x +3)-1的图象,故选C.11.已知log 12b <log 12a <log 12c ,则( ) A .2b >2a >2c B .2a >2b >2c C .2c >2b >2aD .2c >2a >2b[答案] A[解析] ∵由log 12b <log 12a <log 12c ,∴b >a >c , 又y =2x 为增函数,∴2b >2a >2c .故选A.12.若0<a <1,则下列各式中正确的是( )A .log a (1-a )>0B .a 1-a >1 C .log a (1-a )<0 D .(1-a )2>a 2 [答案] A[解析] 当0<a <1时,log a x 单调减,∵0<1-a <1,∴log a (1-a )>log a 1=0.故选A.[点评] ①y =a x 单调减,0<1-a <1,∴a 1-a <a 0=1. y =x 2在(0,1)上为增函数.当1-a >a ,即a <12时,(1-a )2>a 2;当1-a =a ,即a =12时,(1-a )2=a 2;当1-a <a ,即12<a <1时,(1-a )2<a 2.②由于所给不等式在a ∈(0,1)上成立,故取a =12时有log a (1-a )=log 1212=1>0,a 1-a=⎝⎛⎭⎫1212=22<1,(1-a )2-a 2=⎝⎛⎭⎫122-⎝⎛⎭⎫122=0, ∴(1-a )2=a 2,排除B 、C 、D ,故选A.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.函数y =a x (a >0,且a ≠1)在[1,3]上的最大值比最小值大a2,则a 的值是________.[答案] 22或62.[解析] 当a >1时,y =a x 在[1,3]上递增, 故a 3-a =a 2,∴a =62;当0<a <1时,y =a x 在[1,3]上单调递减,故a -a 3=a 2,∴a =22,∴a =22或62.[点评] 指数函数的最值问题一般都是用单调性解决.14.若函数f (2x )的定义域是[-1,1],则f (log 2x )的定义域是________. [答案] [2,4][解析] ∵y =f (2x )的定义域是[-1,1],∴12≤2x ≤2,∴y =f (x )的定义域是⎣⎡⎦⎤12,2,由12≤log 2x ≤2得,2≤x ≤4. 15.函数y =lg(4+3x -x 2)的单调增区间为________.[答案] (-1,32][解析] 函数y =lg(4+3x -x 2)的增区间即为函数y =4+3x -x 2的增区间且4+3x -x 2>0,因此所求区间为(-1,32].16.已知:a =x m,b =x m2,c =x 1m ,0<x <1,0<m <1,则a ,b ,c 的大小顺序(从小到大)依次是__________.[答案] c ,a ,b[解析] 将a =x m ,b =x m2,c =x 1m 看作指数函数y =x P (0<x <1为常数,P 为变量), 在P 1=m ,P 2=m 2,P 3=1m时的三个值,∵0<x <1,∴y =x P 关于变量P 是减函数,∵0<m <1,∴m 2<m <1m ,∴x m2>x m >x 1m ;∴c <a <b .三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)在同一坐标系中,画出函数f (x )=log 2(-x )和g (x )=x +1的图象.当f (x )<g (x )时,求x 的取值范围.[解析] f (x )与g (x )的图象如图所示;显然当x =-1时,f (x )=g (x ),由图可见,使f (x )<g (x )时,x 的取值范围是-1<x <0.18.(本题满分12分)把下列各数按从小到大顺序排列起来. ⎝⎛⎭⎫340,⎝⎛⎭⎫2334,⎝⎛⎭⎫-323,⎝⎛⎭⎫32-45,⎝⎛⎭⎫-433, log 2332,log 143,log 34,log 35,log 142.[分析] 先区分正负,正的找出大于1的,小于1的,再比较.[解析] 首先⎝⎛⎭⎫340=1;⎝⎛⎭⎫2334、⎝⎛⎭⎫32-45∈(0,1);log 35、log 34都大于1;log 2332=-1;⎝⎛⎭⎫-323,⎝⎛⎭⎫-433都小于-1,log 142=-12,-1<log 143<0. (1)⎝⎛⎭⎫32-45=⎝⎛⎭⎫2345,∵y =⎝⎛⎭⎫23x 为减函数,34<45,∴⎝⎛⎭⎫2334>⎝⎛⎭⎫2345=⎝⎛⎭⎫32-45;(2)∵y =x 3为增函数,-32<-43<-1,∴⎝⎛⎭⎫-323<⎝⎛⎭⎫-433<-1; (3)y =log 14x 为减函数,∴-12=log 142>log 143>log 144=-1;(4)y =log 3x 为增函数,∴log 35>log 34>log 33=1.综上可知,⎝⎛⎭⎫-323<⎝⎛⎭⎫-433<log 143<log 142<⎝⎛⎭⎫32-45<⎝⎛⎭⎫2334<⎝⎛⎭⎫340<log 34<log 35. 19.(本题满分12分)已知f (x ) 是偶函数,当x ≥0时,f (x )=a x (a >1),若不等式f (x )≤4的解集为[-2,2],求a 的值.[解析] 当x <0时,-x >0,f (-x )=a -x , ∵f (x )为偶函数,∴f (x )=a -x , ∴f (x )=⎩⎪⎨⎪⎧a x x ≥0⎝⎛⎭⎫1a x x <0,∴a >1,∴f (x )≤4化为⎩⎪⎨⎪⎧ x ≥0,a x ≤4,或⎩⎪⎨⎪⎧x <0⎝⎛⎭⎫1a x ≤4,∴0≤x ≤log a 4或-log a 4≤x <0,由条件知log a 4=2,∴a =2.20.(本题满分12分)在已给出的坐标系中,绘出同时符合下列条件的一个函数f (x )的图象.(1)f (x )的定义域为[-2,2];(2)f (x )是奇函数; (3)f (x )在(0,2]上递减;(4)f (x )是既有最大值,也有最小值; (5)f (1)=0.[解析] ∵f (x )是奇函数, ∴f (x )的图象关于原点对称,∵f (x )的定义域为[-2,2],∴f (0)=0,由f (x )在(0,2]上递减知f (x )在[-2,0)上递减, 由f (1)=0知f (-1)=-f (1)=0,符合一个条件的一个函数的图象如图.[点评] 符合上述条件的函数不只一个,只要画出符合条件的一个即可,再结合学过的一次、二次、幂、指、对函数可知,最简单的为一次函数.下图都是符合要求的.21.(本题满分12分)设a >0,f (x )=e xa +aex 是R 上的偶函数.(1)求a 的值;(2)证明f (x )在(0,+∞)上是增函数.[解析] (1)依题意,对一切x ∈R 有f (-x )=f (x )成立,即e x a +a e x =1aex +ae x ,∴⎝⎛⎭⎫a -1a ⎝⎛⎭⎫e x -1e x =0,对一切x ∈R 成立,由此得到a -1a=0,∴a 2=1,又a >0,∴a =1.(2)设0<x 1<x 2,f (x 1)-f (x 2)=ex 1-ex 2+1ex 1-1ex 2=(ex 2-ex 1)<0∴f (x 1)<f (x 2),∴f (x )在(0,+∞)上为增函数.22.(本题满分14分)某民营企业生产A 、B 两种产品,根据市场调查与预测,A 产品的利润与成正比,其关系如图1,B 产品的利润与的算术平方根成正比,其关系如图2(注:利润与单位:万元)(1)分别将A 、B 两种产品的利润表示为的函数关系式;(2)该企业已筹集到10万元资金,并全部投入A 、B 两种产品的生产,问:怎样分配这10万元,才能使企业获得最大利润,其最大利润约为多少万元?(精确到1万元)[解析] (1)设各x 万元时,A 产品利润为f (x )万元,B 产品利润为g (x )万元,由题设f (x )=k 1x ,g (x )=k 2x ,由图知f (1)=14,∴k 1=14,又g (4)=52,∴k 2=54,从而:f (x )=14x (x ≥0),g (x )=54x (x ≥0).(2)设A 产品投入x 万元,则B 产品投入10-x 万元;设企业利润为y 万元.y =f (x )+g (10-x )=x 4+5410-x (0≤x ≤10),令10-x =t ,则0≤t ≤10,∴y =10-t 24+54t =-14(t -52)2+6516(0≤t ≤10),当t =52时,y max =6516≈4,此时x =10-254=3.75.∴当A 产品投入3.75万元,B 产品投入6.25万元时,企业获得最大利润约4万元.。
高一数学函数单元测试题及答案
高一数学函数单元测试题及答案单元测试题一、填空题1、设全集U=Z,集合A={-1,1,2},B={-1,1,2},从A到B的一个映射为x→y=f(x)=x/|x|,其中x∈A,y∈B,P={y|y=f(x)},则B∩(C∪P)={-1,1}。
2、已知x1是方程x+lgx=3的根,x2是方程x+10=3的根,则x1+x2值为2.3、已知函数y=f(x)的图象关于直线x=-1对称,且当x>0时f(x)=x/1,则当x<-2时f(x)=-x/1.4、函数y=f(x)的反函数y=f^-1(x)的图像与y轴交于点P(0,2),则方程f(x)=0在[1,4]上的根是x=2.5、设f(x)=2log(x-1),x≥2;f(x)=3x-1,x<2,则f(f(2))的值为1.6、从甲城市到乙城市m分钟的电话费由函数f(m)=1.06×([m]+44)给出,其中[m]表示不大于m的最大整数(如[3]=3,[3.9]=3,[3.1]=3),则从甲城市到乙城市5.8分钟的电话费为7.7、函数f(x)=2-2/(x-1),x≤2;f(x)=1-x/2,x>2,则f(0)=-1.8、函数y=(1-x)/(1+x),x≠-1,的值域为(-1,1)。
9、若f(5/2x-1)=x-2,则f(125)=48.10、已知映射f:A→B,其中A=B=R,对应法则为f:x→y=x+2x+3.若对实数k∈B,在集合A中不存在原象,则k 的取值范围是(-3/2,-3)∪(-3,-2)∪(-2,-3/2)。
11、偶函数f(x)在(-∞,0)上是减函数,若f(-1)<f(lgx),则实数x的取值范围是(1,e)。
12、关于x的方程|x-4x+3|-a=0有三个不相等的实数根,则实数a的值是1/2.13、关于x的方程(2x-1)/(x+2)+a=1有正根,则实数a的取值范围是(-∞,1/2)。
二、改写后的答案1、已知集合A={-1,1,2},B={-1,1,2},全集U=Z,映射f:A→B,f(x)=x/|x|,其中x∈A,y∈B,P={y|y=f(x)},求B∩(C∪P)的值。
高一数学必修第一二章测试题及答案
第一.二章三角函数单元检测试卷一、选择题:本答题共12小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是符合题目要求的;1.在平行四边形ABCD 中,BD CD AB +-等于A .DBB .ADC .ABD .AC2.若|a |=2,|b |=5,|a +b |=4,则|a -b |的值A .13B .3C .42D .73.函数sin(2)3y x π=+图像的对称轴方程可能是A .6x π=-B .12x π=-C .6x π=D .12x π=5.点Ax,y 是300°角终边上异于原点的一点,则xy值为 333333函数)32sin(π-=x y 的单调递增区间是A .⎥⎦⎤⎢⎣⎡+-125,12ππππk k Z k ∈ B .⎥⎦⎤⎢⎣⎡+-1252,122ππππk k Z k ∈ C .⎥⎦⎤⎢⎣⎡+-65,6ππππk k Z k ∈ D .⎥⎦⎤⎢⎣⎡+-652,62ππππk k Z k ∈ 7.sin -310π的值等于 A .21B .-21C .23D .-238.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是 A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角9.函数x x y sin sin -=的值域是A .0B .[]1,1-C .[]1,0D .[]0,2-10.函数x x y sin sin -=的值域是A .[]1,1-B .[]2,0C .[]2,2-D .[]0,2-11.函数x x y tan sin +=的奇偶性是A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数 12.比较大小,正确的是 A .5sin 3sin )5sin(<<- B .5sin 3sin )5sin(>>-C .5sin )5sin(3sin <-<D .5sin )5sin(3sin >->二、填空题每小题5分,共20分13.终边在坐标轴上的角的集合为_________.14.已知扇形的周长等于它所在圆的周长的一半,则这个扇形的圆心角是________________. 15.已知角α的终边经过点P-5,12,则sin α+2cos α的值为______.16.一个扇形的周长是6厘米,该扇形的中心角是1弧度,该扇形的面积是________________. 三、解答题:本大题共6小题,共70分;解答应写出文字说明及演算步骤.; 17.8分已知tan 3α=-,且α是第二象限的角,求αsin 和αcos ; 18.10分已知3tan =α,计算ααααsin 3cos 5cos 2sin 4+-的值;19.12分求函数)32tan(π+=x y 的定义域和单调区间. 第一章三角函数单元检测试卷参考答案一、选择题每小题5分,共60分1----6、BBDCBA7----12、CCDCAB 二、填空题每小题5分,共20分13.{α|}Z n n ∈=,2πα14.rad )2(-π 132三、解答题共70分17.1sin ,cos αα==2tan 2α=18.解、∵3tan =α∴0cos ≠α∴原式=ααααααcos 1)sin 3cos 5(cos 1)cos 2sin 4(⨯+⨯- =ααtan 352tan 4+- =335234⨯+-⨯ =7519.解:函数自变量x 应满足πππk x +≠+232,z k ∈,即ππk x 23+≠,z k ∈所以函数的定义域是⎭⎬⎫⎩⎨⎧∈+≠z k k x x ,23ππ; 由ππk +-2<32π+x <ππk +2,z k ∈,解得ππk 235+-<x <ππk 23+,z k ∈所以,函数的单调递增区间是)23,235(ππππk k ++-,z k ∈;20.解:令t=cosx,则]1,1[t -∈所以函数解析式可化为:453y 2++-=t t =2)23(2+--t 因为]1,1[-∈t ,所以由二次函数的图像可知:当23=t 时,函数有最大值为2,此时Z k k x ∈++=k 611262,或ππππ 当t=-1时,函数有最小值为341-,此时Z k ∈+=k 2x ,ππ 21解:32π函数的最小正周期为 ,3322===∴ωπωπ即T又2-函数的最小值为 ,2=∴A 所以函数解析式可写为)3sin(2y ϕ+=x又因为函数图像过点95π,0, 所以有:0)953(sin 2=+⨯ϕπ解得35ππϕ-=k 323,ππϕπϕ-=∴≤或 所以,函数解析式为:)323sin(2y )33sin(2y ππ-=+=x x 或 22.解:Ⅰ8x π=是函数)(x f y =的图象的对称轴Ⅱ由Ⅰ知34πϕ=-,因此3sin(2)4y xπ=-由题意得3222,242k x k k Z πππππ-≤-≤+∈所以函数3sin(2)4y xπ=-的单调递增区间为Ⅲ由3sin(2)4y xπ=-可知故函数)(xfy=在区间[]0,π上的图象是。
高一数学函数单调性检测题
高一数学函数单调性检测题篇一:高一数学函数单调性测试题函数单调性检验一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.函数y=x-6x+10为()a.递减函数b.递增函数d.选递增再递减2c.先递减再递增22在下列函数组中,同一函数用()a.y?1,y?x十、b.YYc.y?x,y?三函数y?d.是吗x |,y?二2x?3x?2的定义域为().1111a。
(??,1]b.(??,2]c.(??,?)?(?,1]d.(?,?)?(?,1]22224下列函数在(-∞,0)上是递增的是()是吗??十、3b。
Y四xc.y??(x?1)2d.y?1?x25如果函数f(x)在,?1.如果以上是递增函数,则以下关系成立()af(?32)? f(?1)?f(-2)bf(?1)?f(?)?32) df(-2)?f(?323)2)?f(-2))?f(?1)cf(-2)?f(?1)?f(?6.区间[-2,2]上函数f(x)=-x2+2x+3的最大值和最小值为()a、4,3b、3,-5c、4,-5d、5,-57函数y==x2-6x+10是()a.递减函数b.递增函数d、选择增加然后减少()c.先递减再递增8在区间(0,+∞)上不是增函数的函数是a、 y=2x+1b.y=3x2+122c.y=d.y=2x+x+1x9已知函数f(x)=8+2x-x2。
如果G(x)=f(2-x2),那么函数G(x)()a.在区间(-1,0)上是减函数b.在区间(0,1)上是减函数c、它是区间(-2,0)上的递增函数。
D.它是区间(0,2)上的递增函数110函数f(x)|x |和G(x)?X(2?X)的增长范围为a.(??,0],(??,1]c、 [0,,(?,1]2()b.(??,0],[1,??)d[0,??),[1,??)11函数f(x)=4x-mx+5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f(1)等于a.-7b.1c、 17d.2512函数f(x)在区间(-2,3)上是增函数,则y=f(x+5)的递增区间是a、(3,8)b.(-7,2)c.(-2,3)d.(0,5)二、填空:13.函数y=(x-1)-2的减区间是____.14.函数y=1x+1的单调区间为___________.15.函数f(x)=2x2-3|x|的单调递减区间为_____16函数f(x)?x2?x的单调递减区间是____________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题精选
一、选择题
1.式子经过计算可得到 ( ).
A.B.C.D.
2.给出下列四个算式及运算结果:
①;②;
③;④
其中正确的有 ( )
A.1个B.2个C.3个D.4个
3.某工厂1999年12月份的产值是这样一月份产值的倍,则该厂在1999年度产值的月平均增长率()
A.B.C.D.
二、填空题
1. =__________.
2.化简: =__________.
3. =___________ .
4.要使式子有意义,则的取值范围是_______.
5.若,,则的值是____.
6.化成分数指数幂得___________.
7.若则的值为__________.
8.若,则的值为__________.
9..已知,,则 =_________, =__________.10.已知,则 =__________.
11.1992年底世界人口到达54.8亿,若人口的年平均增长率为 %,2000年底世界人口数为(亿),那么与的函数关系式是__________.
三、解答题
1.化简
(1) ;
(2)
2.计算求值
(1);(2) ;
(3).
3.化简
4.计算
5.化简
6.已知,求证:
7.已知,求
8.已知,求的值.
9.甲工厂去年上交利税40万元,今后5年内计划每年平均增长10%,乙工厂去年上交
利税比甲工厂少,今后5年内计划每年平均增长20%,这样从今年起,第二年乙工厂上交利税就能超过甲工厂,但是要到第三年末,才能使从今年开始的三年内上交的利税不少于甲工厂,求乙工作去年大约上交利税多少万元?(只精确到整数万元)
10.对于正整数、、()和实数、、、,若
,
且,则.
参考答案:
一、1.D;2.A;3. D
二、1.;2.;3.;4.
5.8 6.;7.2;8.
9., 1;10.;11.解:
三、1.(1)-1;(2)2.(1);(2)(3)
3.解:原式
说明:注意技巧的运用,如
4.解;原式,设,则原式
5.解:原式
6.解:由条件出发,
,从而得证,即
7.解:由得,,于是,原式或原式
8.
9.解:设乙厂去年大约上交利税万元,则由题意得
解得,故
乙厂去年上交利税34万元.
10.解:由于,则同理有
,,此三式相乘可得,,,均不为1,又且2,5,7均为质数,且,
,,,故.。