玻璃纤维增强复合材料渐进损伤模拟仿真算法

合集下载

高强玻纤复合材料的Ⅰ型断裂韧性仿真与试验分析

高强玻纤复合材料的Ⅰ型断裂韧性仿真与试验分析

(b)断裂韧性 G=584J/m2
图 6 载荷 - 张开位移曲线
(a)0.25s
(b)0.5s
(c)0.75s
(d)1.0s
图 7 裂纹扩展过程
只有最终稳定区的数值。试验的最大载荷为 57.75N,仿真 的最大载荷为 61.76N,误差为 6.9%,同时通过对比断裂 韧性 G Ⅰ c 为 720J/m2 与 584 J/m2 的试验与仿真的结果(误 差分别为 8% 与 13.8%),试验与仿真吻合较好。
=
Kn
Ks
ε n
ε
s
tt
Kt ε t
(1)
式中,变量 tn、ts、tt 分别为界面法向和面外剪切方向的 名义应力;变量 εn、εs、εt 代表相应的名义应变,Kn、 Ks、Kt 为对应方向的刚度值。
本文层间单元损伤起始判据采用二次名义应力准则判
据,准则判据公式见公式 2。当法向与 2 个面外剪切方向的
◎ 61 万~ 200 万
中国科技信息 2021 年第 14 期·CHINA SCIENCE AND TECHNOLOGY INFORMATION Jul.2021 DOI:10.3969/j.issn.1001- 8972.2021.14.029
可实现度
可替代度
行业曲线
link
appraisement
应力比的平方和达到 1 时,层间损伤产生:
tn tn0
2
+
ts ts0
2
+
tt tt0
2
= 1
(2)
式中,变量 tn、ts、tt 分别为 1 个界面法向和 2 个面外 剪切方向的瞬时应力;变量 t0n、t0s、t0t 分别为 1 个界面法向和 2 个面外剪切方向的最大名义应力。

玻璃纤维增强环氧树脂复合材料的力学性能研究

玻璃纤维增强环氧树脂复合材料的力学性能研究

玻璃纤维增强环氧树脂复合材料的力学性能研究玻璃纤维增强环氧树脂复合材料(GF/EP)是一种具有较高强度和刚度的复合材料,具有广泛的应用领域,如航空航天、汽车、建筑等。

本文旨在研究GF/EP复合材料的力学性能,包括拉伸性能、弯曲性能和冲击性能。

首先,我们需要介绍GF/EP复合材料的制备方法。

一般来说,GF与EP树脂通过浸渍,层叠和固化的过程制备成复合材料。

在浸渍过程中,将玻璃纤维预先浸泡在环氧树脂中,使其充分浸润纤维,然后将多层的浸渍玻璃纤维叠加在一起,形成预定形状的复合材料。

最后,通过热固化或辐射固化使复合材料固化。

接下来,我们将研究GF/EP复合材料的拉伸性能。

拉伸性能主要包括拉伸强度和拉伸模量。

拉伸强度是指材料在拉伸过程中的最大承载能力,而拉伸模量是指材料在拉伸过程中的刚度。

通过拉伸试验可以获得拉伸曲线,通过分析拉伸曲线可以计算出拉伸强度和拉伸模量。

然后,我们将研究GF/EP复合材料的弯曲性能。

弯曲性能主要包括弯曲强度和弯曲模量。

弯曲强度是指材料在弯曲过程中的最大承载能力,而弯曲模量是指材料在弯曲过程中的刚度。

通过弯曲试验可以获得弯曲曲线,通过分析弯曲曲线可以计算出弯曲强度和弯曲模量。

最后,我们将研究GF/EP复合材料的冲击性能。

冲击性能主要包括冲击强度和冲击韧性。

冲击强度是指材料在冲击过程中吸收的最大能量,而冲击韧性是指材料在冲击过程中的延展性能。

通过冲击试验可以获得冲击曲线,通过分析冲击曲线可以计算出冲击强度和冲击韧性。

通过以上研究,可以得出GF/EP复合材料的力学性能。

这些性能可以与其他材料进行比较,评估复合材料的优势。

此外,还可以通过改变制备工艺或改变纤维含量等方式来改善复合材料的力学性能。

综上所述,本文研究了GF/EP复合材料的力学性能,包括拉伸性能、弯曲性能和冲击性能。

通过对这些性能的研究,可以评估复合材料的性能,并为进一步提高复合材料的性能提供参考。

纤维增强复合材料试验研究的数值模拟

纤维增强复合材料试验研究的数值模拟

纤维增强复合材料试验研究的数值模拟作者:康文;李红梅来源:《价值工程》2011年第05期摘要:国内外对于FRP虽然已经进行了大量的研究工作,但是在实际工程中仍然会出现很多不确定的因素。

复合材料由于受组成成分、生产工艺、粘合方式等因素影响,不同形状的材料和受力情况,复合材料的变形、挠度变化和破坏方式是不一致的。

本文对工字型GFRP梁进行室内实验和数值模拟,对GFRP梁的受力性能和破坏形态进行了研究。

Abstract: Although the FRP has been abundantly studied at home and abroad, there are many uncertain factors in practical projects. suffered from composition, processing technique, bonding methods and other influence factors, deformation, deflection change and failure mode of composite materials are not consistent with different shape and force of materials. This paper conducted indoor experiment and numerical simulation to H-shaped GFRP beam, and studied the mechanical properties and failure form.关键词: FRP;加载试验;数值模拟Key words: FRP;load test;numerical simulation中图分类号:TB3文献标识码:A文章编号:1006-4311(2011)05-0208-010引言复合材料[1]是由两种或者两种以上的单一材料,用物理或者化学的方法经人工复合而成的一种固体材料。

玻璃纤维复合材料雷击破损仿真与试验第一期

玻璃纤维复合材料雷击破损仿真与试验第一期
仿 真分 析 的正 确性 。
会¨ ’ 。随着 科 技 的进 步 和制 造 业 的 蓬 勃 发 展 , 复 合 材料 大量 应用 于先 进 飞 机 的生 产 设 计 之 中 , 某 些 飞机 的复合 材料 使 用量 可 达 2 5 %左 右 , 直 升机 的复 合 材料 最 高 用 量 可 达 5 0 %[ 3 1 。复 合 材 料 具 有 比强 度大、 比模量 高 、 抗 疲 劳 眭能好 、 耐 腐蚀 、 可 设计 性 强 等许 多 优异 的特性 _ 4 ; 但是 , 复 合材 料 的导 电性 能 极 差, 碳 纤维 复合 材 料 的导 电性 大 约 比铝 小 1 0 0 0倍 ,
4 3
仿 真 中采用 的模 型 为单 层 结 构 , 模 型 的参 数 设 置 如
表 1 所示 , 其 中, E 为弹性 模 量 , 为泊 松 比, G 为剪
切 模量 。
表 1 弹性性能参数表
T a b l e 1 P e f r o r ma n c e p a r a me t e r s o f t h e e l a s t i c
材 料板 在遭 受 雷击 后可 能 出现 的损伤 状态 。
( 2 )
1 . 3 数 值 仿 真 的载 荷 分 析
1 . 3 . 1 雷 电流分 量
其值为 2 × l 0 ( A × s ) , 它是衡量破坏程度 的关
键 因素 , 取决 于 系统 中能量 的储 备或 吸 收。
作用 时 间 t <5  ̄ 0 0 1 x s 。图 1 ( b ) 中 为雷 电流 达 到 峰 值 的时 间 ; 为雷 电流从 开始 到 衰 减 为 5 0 %峰值 的
时 间 。A的作 用 积分 ( 比能 ) W表达 式 为 :

纤维增强型复合材料断裂仿真分析

纤维增强型复合材料断裂仿真分析

黑 龙 江 省 教 育厅 科 技 项 目( 14 0 3 和 大 庆 市科 学 技 术 计 划 项 目( G 20 -2 ) 15 1 1 ) S G 0 80 7 。 戴 光 , ,9 4年 1 生 , 授 。黑 龙 江省 大庆 市 ,63 8 男 15 2月 教 13 1。
7 8

工 机
材 料压 力容器 , 暗 含 裂纹 生 长 可 能会 导 致 一 场 其
灾 难性 的爆 炸 … 。 如 果 已经 存 在 的 失 效 形 式 由 裂 纹扩展 引发 局 部 断裂 或 者 完全 断裂 , 对 构 件 将 和 构件所 处系统 造成 很大 的威胁 。运 用有 限元研
复 合材料 的拉 伸 损伤 与断 裂 行 为 , 过分 析 不 同 通
在 生产 过程 、 造工 程 、 工过 程及 服役过 程 建 施 中 , 构产生 的裂纹 通 常会引 发一些 灾难 , 结 例如 某
些 石 油 石 化 行 业 生 产 系 统 关 键 部 位 所 用 的 玻 璃 钢
现 象被 称 为声 发射 ( cut mi in 简 称 A A o scE s o , i s E) 或 应力波 发射 ( t s WaeE i i ) 。庄兴 民 Sr s v m s o e sn 等 运用声 发 射 检 测 技 术 研 究 了 聚 乙烯 自增 强
纹 情况 计算 的应 力 ) a为 裂 纹 尺 寸 ,, 形 状 系 , l为
数, 一般 与裂 纹长 度 、 度 以及位 置等有关 。对于 宽
基体 断裂 时考 虑单一 判据 即 可 , K =K 即 。 当裂
尖位 于 中心基体 时 ( 即形状 系数 Y=1 , ) 随着裂 纹
增加 , 体的承 载 面积减少 , 然裂尖 区域 的应力 基 必 集 中程度增 大 , 裂尖应 力增 加 。 对 于纤 维增 强 型 复合 材 料 , 常 基 体 是脆 性 通 的而且 易 于断裂 , 在 基 体 中的纤 维 能 加 强基 体 夹

纤维复合材料损伤过程的数值模拟_杨庆生

纤维复合材料损伤过程的数值模拟_杨庆生

第15卷第2期计算力学学报V o l.15No.2 1998年5月CHIN ESE JO U RN A L OF COM PU T AT IO NA L M ECHA NI CS M a y1998纤维复合材料损伤过程的数值模拟X 杨庆生 杨 卫 (北方交通大学土木工程系,北京,100044) (清华大学工程力学系,北京,100084)摘 要 利用界面断裂力学和有限元法数值模拟纤维增强复合材料的细观损伤过程,研究各种主要破坏模式之间的相互转变和影响,指出以断裂能和混合度表示的界面性能是控制复合材料损伤过程的主要细观参数。

分析了界面韧度对破坏性能的影响,探讨了基于破坏模式控制的复合材料韧度设计的新途径。

关键词 纤维复合材料;损伤过程;细观力学;界面断裂能;数值模拟;韧度设计分类号 V214.8;O242.211 引 言纤维复合材料的细观损伤机理非常复杂,细观损伤的发展对复合材料的增强增韧机理和宏观破坏性能具有重要的影响。

在纤维复合材料中细观损伤的模式很多,这些损伤模式之间存在复杂的相互作用,在损伤的演化中还存在模式之间的互相转变,在不同的变形阶段可能由不同的损伤模式起主要作用。

所以,非常有必要寻找能够同时模拟多种破坏模式的力学模型和数值方法。

在现有的研究中,往往针对单一的细观破坏模式,例如,基体开裂,界面脱粘或纤维拔出等,而且其破坏状态与几何构型是固定不变的。

事实上,复合材料的破坏方式非常复杂,存在多种破坏模式,其中可能有一种破坏模式是符合增强增韧原理的最优破坏模式,最优的破坏模式必然对应最优的微结构。

这正是人们所追求的。

而不符合力学原理的破坏模式应是力求避免的。

复合材料韧度设计的目的就是找到尽可能接近最优的破坏模式。

为此,对复合材料的破坏模式的预测和对多机理破坏过程的模拟是材料韧度设计的首要问题。

预测复合材料破坏模式和模拟破坏过程是一个非常困难的课题。

首先,复合材料的微结构的几何性质与物理性质非常复杂,不仅微结构参数多,而且它们之间存在严重的相互影响;其次,复合材料的破坏模式多,在一个破坏过程中有多种破坏机制起作用,而且破坏模式不断变化。

纤维增强复合材料的疲劳损伤模型及分析方法

纤维增强复合材料的疲劳损伤模型及分析方法

纤维增强复合材料的疲劳损伤模型及分析方法纤维增强复合材料具有比强度高、比刚度高等优良材料性能,广泛应用于航空、航天等领域。

静载荷作用下复合材料的强度、刚度研究已取得了很大成果,随之而来被静强度所覆盖的复合材料疲劳成为关注的重点。

复合材料的疲劳损伤机理比金属材料更加复杂,针对不同材料、不同组分,复合材料的疲劳特性及失效模式不尽相同。

纤维增强复合材料是由纤维、基体以及界面所组成的各向异性材料,在疲劳交变载荷作用下其结构内部会产生基体微裂纹、基纤界面脱粘、分层和纤维断裂等四种基本破坏模式以及由于不同损伤相互耦合作用而形成的诸多综合破坏形式。

因此,研究疲劳交变载荷作用下复合材料内部的损伤演化机理,对复合材料的疲劳寿命进行预测具有重要的理论和工程意义。

本文从连续损伤力学理论出发,研究不同加载方式作用下纤维增强复合材料的疲劳损伤机理,预测复合材料层合板的疲劳寿命。

具体研究工作如下:1.以连续损伤力学理论和Ladevèze理论方法为基础,研究纤维增强复合材料单向层合板内部疲劳损伤演化机理。

将纤维增强复合材料偏轴单向层合板的疲劳损伤分为面内轴向、横向和剪切三种损伤模式,建立含损伤复合材料单向层合板本构方程,揭示疲劳载荷作用下面内横向和剪切损伤的耦合机理。

根据热力学原理,利用Gibbs自由能函数得到多轴疲劳载荷作用下损伤驱动力的一般表达形式,进而得到纯横向拉伸和纯剪切疲劳交变载荷作用下的损伤驱动力。

以不可逆热动力学理论为基础,建立考虑面内轴向、横向和剪切耦合作用的三种损伤演化方程。

分别利用玻璃纤维增强复合材料0o、90o和45o偏轴单向层合板疲劳试验拟合面内轴向、横向和剪切损伤演化方程参数。

提出考虑面内轴向、横向和剪切损伤模式的疲劳失效判据,建立纤维增强复合材料单向层合板疲劳损伤模型,分析其内部疲劳损伤失效机理,利用数值解法预测纤维增强复合材料偏轴单向层合板的疲劳寿命并与试验结果比较,验证模型的正确性。

纤维增强复合材料层合板强度与疲劳渐进损伤分析

纤维增强复合材料层合板强度与疲劳渐进损伤分析

实验结果与分析
2、疲劳损伤与循环载荷的关系:实验结果表明,在循环载荷作用下,纤维增 强复合材料层合板内部会产生微小裂纹和损伤。随着循环载荷的增加,材料的疲 劳寿命会逐渐降低。
谢谢观看
材料选择
材料选择
在选择纤维增强复合材料时,需要考虑以下因素:
材料选择
1、成本:纤维增强复合材料的价格较高,因此在满足性能要求的前提下,应 选择成本较低的材料。
材料选择
2、工艺:不同的复合材料工艺会对材料的性能产生影响,例如采用不同的纤 维取向和铺设方式会影响材料的强度和疲劳性能。
材料选择
3、性能:纤维增强复合材料的性能取决于增强纤维和基体树脂的种类和性能。 例如,碳纤维具有高强度和高刚度,但价格较高;而玻璃纤维具有成本低、易加 工等优点,但强度和刚度较低。因此,在选择材料时需要综合考虑材料的性能和 成本因素。
实验方法
3、拉伸试验:拉伸试验是测定纤维增强复合材料层合板强度的重要方法。可 以采用哑铃型试样或短梁试样进行拉伸试验,测定层合板的拉伸强度和拉伸模量。
实验方法
4、疲劳试验:疲劳试验是测定纤维增强复合材料层合板疲劳性能的重要方法。 可以采用应力控制或应变控制的方式进行疲劳试验,测定层合板的疲劳寿命和疲 劳极限。在疲劳试验过程中需要对试样的表面进行处理,以减少表面缺陷对试验 结果的影响。
实验方法
实验方法
实验是研究纤维增强复合材料层合板强度与疲劳渐进损伤的重要手段。以下 是实验过程中需要使用的方法:
实验方法
1、纤维含量的测量:纤维含量是影响纤维增强复合材料性能的重要因素。可 以采用化学分析法、质量损失法、显微镜观察法等方法来测量纤维含量。
实验方法
2、层合板的制作:制作纤维增强复合材料层合板需要采用合适的制造工艺, 包括纤维的预处理、树脂的配制、纤维的铺设和层合板的成型等。在制作过程中 需要对各项工艺参数进行严格控制,以保证层合板的质量和性能。

纤维增强复合材料的数值模拟

纤维增强复合材料的数值模拟

纤维增强复合材料的数值模拟[摘要]本文研究的材料为市场常见的玻璃纤维环氧树脂基复合材料,这种材料具有较高的比强度,比刚度和耐久性,绝缘等特点。

本文通过对自行制作的不同铺层的复合材料试样进行性能试验,得出试验力-位移曲线图,实验之后就试验力-位移曲线图进行试样的强度和弯曲刚度计算和分析,还对各个试样的强度刚度进行对比分析。

本文除了进行模拟分析,逐一与实验对照,并得出结论。

[关键词]复合材料;数值模拟;玻璃纤维;环氧树脂Numerical Simulation of Fiber Reinforced CompositesAbstract This paper studies the materials for the market common glass fiber epoxy matrix composites,this material has a higher specific strength,specific stiffness and durability.The performance test was carried out on the self production of different ply composite specimens,draw the experimental force displacement curve,the test force displacement curve of specimen strength and flexural stiffness calculation and analysis,but also the strength of the samples at each stiffness ratio analysis was conducted to.In addition to simulation analysis,and conparation with the experiments one by one,and concluded.Key words:finite element;composite material;glassfiber;epoxy resin引言 (1)1复合材料及其应用简介 (2)1.1复合材料 (2)1.2复合材料的应用 (2)2有限元分析方法和ANSYS软件介绍 (4)2.1有限元分析方法应用简介 (4)2.2ANSYS软件 (4)3试样的制备及测试 (5)3.1复合材料试样的制备 (5)3.2实验设备 (7)3.3实验方法 (7)3.4有限元分析 (11)3.4.1确定材料参数 (11)3.4.2定义壳体截面 (12)3.4.3建立模型 (12)3.4.4模拟设置 (12)3.4.5模拟结果 (12)3.4.6实验结果与模拟结果对比 (14)结束语 (15)致谢语 (16)参考文献 (17)材料可分为金属,无机非金属,有机高分子材料等,各种材料都有各自的性能特点。

复合材料渐进损伤退化本构模型

复合材料渐进损伤退化本构模型

复合材料渐进损伤退化本构模型随着工程领域的不断发展和复杂化,使用复合材料的应用范围越来越广泛。

由于复合材料具有高强度、高刚度和轻质化的优点,因此在航空航天、汽车、船舶和民用工程等领域得到广泛应用。

然而,复合材料在使用过程中往往会受到各种外部载荷的作用,导致材料内部的损伤逐渐积累和发展。

对于这种渐进损伤退化的行为,建立本构模型能够更好地描述材料的力学性能,并有效预测材料的寿命。

1. 复合材料的渐进损伤退化行为复合材料的渐进损伤退化行为是指材料在长期受载作用下逐渐累积损伤并导致力学性能的退化。

这种行为在复材料的结构设计和寿命预测中具有重要意义。

复合材料的渐进损伤退化行为主要包括疲劳、开裂、层间剥离、纤维断裂等多种损伤模式。

这些损伤模式的发展会导致材料强度和刚度的下降,最终影响材料的使用性能和寿命。

2. 复合材料的本构模型复合材料的本构模型是描述材料力学性能的数学模型,能够通过一定的数学方程和参数来描述材料的应力-应变关系。

传统的本构模型多是基于线性弹性理论建立的,无法很好地描述复合材料的损伤退化行为。

针对复合材料的渐进损伤退化行为,需要建立能够描述损伤发展过程的非线性本构模型。

3. 渐进损伤退化本构模型的建立为了更好地描述复合材料的渐进损伤退化行为,研究人员提出了许多渐进损伤退化本构模型。

这些模型主要基于断裂力学、塑性损伤理论、细观本构理论等原理建立,并结合了材料的微观结构和损伤机理。

常见的渐进损伤退化本构模型包括本构关系修正法、能量释放率法、损伤张量法、微裂纹模型等。

这些模型能够有效地描述复合材料在渐进损伤过程中的力学行为,并为材料的寿命预测提供更准确的方法。

4. 渐进损伤退化本构模型的应用渐进损伤退化本构模型在复合材料的结构设计和寿命预测中具有重要应用价值。

通过建立适合复合材料损伤特性的本构模型,可以更准确地预测材料的寿命和使用性能。

在工程实践中,这些本构模型还可以用于分析复合材料结构在不同载荷下的损伤演化和寿命预测,为材料的设计和改进提供重要参考依据。

纤维增强复合材料结构的层间和层内损伤分析

纤维增强复合材料结构的层间和层内损伤分析
IM 经 验
纤维增强复合材料结构的层间和 层内损伤分析
撰文 / 中国航空综合技术研究所 刘秦智
本文介绍了一种针对纤维增强复合材料结构的高级损伤分析的解决方案,该方法包含成熟的复合材料结构层间和层内损 伤的材料模型和判据,能够针对铺层的损伤失效模式进行分析。本文首先介绍了复材层间和层内损伤模型,然后通过对一个 标准复材曲梁进行虚拟的四点弯曲试验,验证了所应用方法的准确性。
本文首先介绍了经典的层间和层内失效的模型及判据, 然后以复合材料曲梁四点弯曲为例,研究层间失效和层内失 效的建模和分析方法,并将分析结果与试验结果进行比对。
二、层间失效模型
对于层间失效的分析,包含断裂力学分析方法和粘接 单元分析方法,相比较而言粘接单元方法既能分析复合材料 结构是否会发生分层破坏,而且能模拟整个层间失效和裂纹 扩展的过程,因此是一种更加常用的方法。粘接单元方法是 在层与层之间添加粘接单元,定义粘接单元相关的模型属性,
并基于文dⅡ和 dⅢ,分别代表Ⅰ型、Ⅱ型和Ⅲ 型三种不同的层间失效模式。
层间失效的理论判据如下:
(1) k0 Ⅰ为非损伤刚度。与之相对应的粘接单元模型本构关 系如下:
(2)
损伤广义力 Y 可以通过关于 dⅠ的表达式(1)推导得出。 对于多向加载的情况,层间损伤的演化为与三个层间断裂韧 性 GⅠC ,GⅡC和 GⅡC有关,这三个变量分别对应三种不同的层 间失效模式,分别为张开型(Ⅰ 型)、滑开型(Ⅱ 型)和撕 开型(Ⅲ型)。等效的损伤广义力 Y 表示为:
如图 3 所示,在曲梁的横截面中,各层厚度是不均匀的, 尤其是在弯曲的区域。这种厚度的变化在模型中应该被考虑 到,因为他对弯曲刚度和结构失效行为有影响。粘接单元的 特性可以从参考资料 Brauner C 和 SAMCEF 中查到。

玻璃纤维增强复合材料的应用及研究现状

玻璃纤维增强复合材料的应用及研究现状

实施例 6
3 17
93 3
对比例 1
2 75
78 5
对比例 2
2 69
75 5
入、 注塑成型、 层压成型、 缠绕成 型、 真 空 辅 助 成
型、 手糊成型等工艺 [30] ꎮ 由于不同成型工艺制备过
程中温度、 树脂含量的不同ꎬ 最终制备的材料会有很
大差异ꎬ 可根据制备材料的性能、 复杂程度等选择合
高、 密度低、 抗冲击性好、 质量控制更加可靠ꎮ
表 3 LFT 价格变动趋势
所示ꎮ 结果表明: 制备的高效防水玻璃纤维材料机械
强度好ꎬ 且具有优异的憎水性能ꎮ
表 2 测试样品的力学性能
测试样
强度 / N / m
憎水率 / %
实施例 1
1 036
98 6
实施例 2
1 056
99 2
实施例 3
1 026
此基础上ꎬ Gurusideswar 等 [39] 也采 用 落 锤 加 载 系 统
对 GF / EP 复 合 材 料 进 行 试 验ꎬ 研 究 0 000 1 / s 到
图 2 玻璃纤维含量对 GF / EP 力学性能的影响
450 / s 的中低应变率对 GF / EP 复合材料层合板的拉伸
重点ꎮ 本文介绍了新研发的玻璃纤维和树脂ꎬ 研究了应用不同成型加工工艺制备的玻璃纤维增强复合材料在性能上存在的差异、
并对玻璃纤维增强复合材料的力学性能、 疲劳性能、 在航空航天和交通运输等领域的应用和发展潜力进行了较为全面的归纳
总结ꎮ
关键词: 玻璃纤维ꎻ 复合材料ꎻ 力学性能ꎻ 疲劳性能
中图分类号: TB332 文献标识码: A 文章编号: 1005-5770 (2021) S1-0009-09

玻纤增强塑料断裂失效试验与仿真研究

玻纤增强塑料断裂失效试验与仿真研究
【关键词 】 玻纤增强塑料 失效准则 正向断裂 剪切 断裂 LS—DYNA
doi:10.3969/j.issn.1007-4554.2018.06.10
0 引 言
聚丙烯(PP)材料具有很多优点 ,如密度小 、价 格低 、易 加 工 、可 回收 、可 与 多 种 材 料 很 好 地 配 混 等 。发 达 国家 汽 车 工 业 单 车 PP材 料 的 用 量 达 到 40 kg,占整 车 塑 料材 料 应 用量 的 1/3,成 为 汽 车 上 用量 最 大 的 塑 料 材 料 。但 PP材 料 也 存 在 一 些 弱 点 ,如 低 温 脆 性 、低 温 抗 冲击 性 能 差 、成 型 收缩 率 大 、易老 化 等 。 因此 ,在 生 产 加 工 时 ,人 们 通 常会 对其 进 行 改 性 ,添 加 橡 胶 、滑 石 粉 、玻 璃 纤 维 等 。 其 中 ,玻 璃纤 维 增 强 PP材 料具 有 较 高 的弹 性模 量 和 抗 拉 强 度 ,成 为 汽 车 中 以 塑 代 钢 的 首 选 材 料 。
玻 纤 增 强 塑 料 断 裂 失 效 试 验 与仿 真公司技术中心 ,上海 201804)
【摘要】 文章旨在通过研究玻纤增强PP材料的断裂失效特性表征及仿真预测,以期在汽车结构设计早
期规避风险 点。以 PP—GF30为研究对 象 ,首 先通 过全 面的材 料力 学试 验来表 征其 弹塑性 及 断裂失 效行 为 ,然 后采用 LS—DYNA MAT—ADD—EROSION模块 中的 DIEC失效模 型对 PP—GF30的断裂失 效行为进 行仿 真预测 。 最后通过设计 子系统试验对 DIEC失效模型进行验证 。结果表 明 ,DIEC失效模 型可 以准确 预测 PP—GF30的断 裂 失 效 行 为 。 该 研 究 方 法 可 推 广 到 其 它 塑 料 材 料 的 断 裂 失 效 仿 真 预 测 中 。

玻璃纤维增强复合材料铣削工艺实验研究

玻璃纤维增强复合材料铣削工艺实验研究

玻璃纤维增强复合材料铣削工艺实验研究玻璃纤维增强复合材料(GFRP)是一种由玻璃纤维和树脂基体组成的复合材料。

由于其高强度、轻质和耐腐蚀性等特点,GFRP在航空航天、汽车制造、建筑和船舶制造等领域得到广泛应用。

然而,由于其特殊的材料性质,GFRP的加工和铣削工艺较为复杂,需要进行深入的实验研究。

本文旨在对GFRP铣削工艺进行实验研究,探究最佳的铣削条件和参数,以提高加工效率和质量。

首先,确定实验所需的GFRP试样。

选择合适的GFRP板材,根据实验要求切割成合适大小的试样,保证其表面光洁度和尺寸精度。

接下来,进行铣削工艺参数的选择。

根据GFRP的特性和要求,确定合适的切削速度、进给速度和刀具类型。

可以采用正交试验来确定最佳参数组合。

通过多次实验,测量切削力、表面粗糙度和加工效率等指标,对实验结果做出评价和分析。

然后,进行铣削工艺实验。

在合适的铣削设备上,根据选定的工艺参数进行实际加工。

在加工过程中,及时记录和监测切削力、刀具磨损和表面粗糙度等指标,以便对加工过程进行调整和优化。

最后,对实验结果进行分析和总结。

根据实验数据,绘制切削力曲线和表面粗糙度曲线,评价不同工艺参数对切削性能的影响。

对比分析不同参数组合的加工效果,找出最佳的铣削工艺参数。

同时,针对实验过程中可能存在的问题,提出解决方案和改进措施。

通过以上的实验研究,可以得到适用于GFRP铣削的最佳工艺参数,提高GFRP的加工效率和质量。

同时,为进一步研究GFRP的加工工艺和优化提供了基础数据和参考。

希望本文的实验研究能够对GFRP工程应用和材料加工领域的相关研究者有所帮助。

玻纤增强复合材料蠕变的分数阶maxwell模型

玻纤增强复合材料蠕变的分数阶maxwell模型

玻纤增强复合材料蠕变的分数阶maxwell模型
玻纤增强复合材料的蠕变行为是由于材料中的聚合物基质在长期负载下受到分子间相互作用而出现的。

为了描述这种行为,可以采用分数阶Maxwell模型。

分数阶Maxwell模型是一个常见的非线性力学模型,可以描述材料的蠕变行为。

该模型可以用以下方程表示:
$$\frac{\partial^\alpha \sigma(t)}{\partial
t^\alpha}+\frac{\sigma(t)}{\tau}=E \epsilon(t)$$。

其中,$\sigma$是应力,$\epsilon$是应变,$\tau$是材料的松弛时间,$E$是弹性模量,$\alpha$是材料的分数阶指数。

在这个模型中,$\alpha=1$表示经典的Maxwell模型;$\alpha<1$表示材料的蠕变行为更显著,即更容易发生蠕变;$\alpha>1$表示材料的蠕变行为较小。

使用该模型可以很好地预测玻纤增强复合材料的蠕变行为,提高材料的设计和使用效果。

纤维增强复合材料损伤诊断及鉴定系统设计

纤维增强复合材料损伤诊断及鉴定系统设计

纤维增强复合材料损伤诊断及鉴定系统设计近年来,纤维增强复合材料(FRC)在航天、航空、能源、汽车、电子和建筑等领域得到了广泛应用。

FRC有着优秀的物理机械性能、超强的热稳定性、良好的耐腐蚀性能等特点,是传统金属材料的理想替代品。

随着FRC的应用不断扩大和深入,对其损伤诊断及鉴定系统的需求也日益增强。

FRC在使用过程中,可能会遭受外力、温度等因素的影响,导致内部纤维的断裂、黏结剂的破裂、材料的剥离、裂缝的发生等多种不同形式的损伤。

如何有效地检测这些损伤,成为了FRC材料鉴定技术的重要研究方向。

本文主要围绕FRC的损伤诊断及鉴定系统设计展开讨论,希望能够对此领域的研究和应用起到一定的推动作用。

一、纤维增强复合材料的损伤诊断技术FRC的损伤诊断技术主要是通过无损检测手段实现的。

常见的无损检测技术包括超声波检测、热红外检测、磁粉检测、X射线检测等。

这些技术各自的原理和应用范畴不同,但都可以在不破坏材料本身的前提下,对材料内部的损伤进行有效的检测和表征。

超声波检测技术是一种基于声波传播原理的无损检测技术。

通过对探测器发射的超声波信号在材料中的传播和反弹进行分析,可以得到材料内部的缺陷信息,从而确定材料的完整性和内部结构。

超声波检测技术在FRC的损伤诊断中应用广泛,具有检测速度快、可靠性高等优点。

但是其在材料结构复杂、曲率较大等情况下的应用受到了一定的限制。

热红外检测技术是一种基于物体热辐射特性的无损检测技术。

通过对材料表面的热辐射进行监测和分析,可以得到材料内部的热分布信息,并进一步获得材料的损伤信息。

热红外检测技术具有检测范围广、响应速度快等优点,在FRC的损伤诊断中也有一定的应用。

但是其需要对材料进行激励,信号反馈的准确性和可靠性受到一定的影响。

磁粉检测技术是一种基于磁粉吸附原理的无损检测技术。

通过对材料表面施加磁场,使磁粉附着在材料表面,从而形成磁路,对材料内部的缺陷进行检测。

磁粉检测技术在FRC的损伤诊断中也有一定的应用,其优点是操作简便、成本低廉。

纤维增强复合材料界面脱粘的数值模拟研究

纤维增强复合材料界面脱粘的数值模拟研究

纤维增强复合材料界面脱粘的数值模拟研究纤维增强复合材料(FiberReinforcedComposites,FRCs)具有优异的力学性能和轻质化特性,因此在航空、航天、汽车、体育器材等领域得到了广泛应用。

然而,FRCs的界面脱粘问题一直是研究的热点和难点之一。

本文采用数值模拟方法,对FRCs界面脱粘问题进行研究,旨在为FRCs的设计和制造提供理论支持和技术指导。

一、FRCs界面脱粘的研究现状FRCs界面脱粘是指纤维与基体之间的粘结断裂现象。

界面脱粘会导致FRCs的力学性能下降,甚至失效。

因此,对FRCs界面脱粘问题的研究一直是材料科学和工程领域的热点和难点之一。

目前,对FRCs界面脱粘的研究主要分为实验和数值模拟两种方法。

实验方法包括剪切实验、剥离实验、拉伸实验等,可以直接观测到FRCs的断裂和破坏过程。

然而,实验方法存在着成本高、操作复杂、数据量有限等问题。

因此,数值模拟方法成为了研究FRCs界面脱粘问题的重要手段。

数值模拟方法可以通过建立数学模型,模拟FRCs界面脱粘的力学行为,预测界面脱粘的发生和扩展过程,为FRCs的设计和制造提供理论支持和技术指导。

常见的数值模拟方法包括有限元法、分子动力学模拟、连续介质力学模型等。

二、数值模拟方法的原理和应用本文采用有限元法进行FRCs界面脱粘的数值模拟研究。

有限元法是一种数值计算方法,将复杂的物理问题离散化为有限个单元,通过求解单元之间的相互作用力和变形,得到整体的物理行为。

有限元法具有计算精度高、计算速度快、适用范围广等优点,已经成为材料科学和工程领域的常用方法。

在本文中,我们建立了FRCs界面脱粘的有限元模型,模拟了不同纤维与基体之间的粘结强度和界面裂纹扩展过程。

通过对模型进行参数分析和数值计算,得到了FRCs界面脱粘的力学行为和破坏机理,为FRCs的设计和制造提供了理论支持和技术指导。

三、数值模拟结果和分析本文的数值模拟结果表明,FRCs界面脱粘的破坏过程可以分为界面剪切和界面裂纹扩展两个阶段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A progressive damage simulation algorithm for GFRP composites under cyclic loading.Part I:Material constitutive modelElias N.Eliopoulos,Theodore P.Philippidis ⇑Department of Mechanical Engineering &Aeronautics,University of Patras,P.O.Box 1401,GR 26504Panepistimioupolis,Rio,Greecea r t i c l e i n f o Article history:Received 19August 2010Received in revised form 24January 2011Accepted 30January 2011Available online 4February 2011Keywords:A.Polymer–matrix composites (PMCs)B.FatigueC.Damage mechanicsC.Finite element analysis (FEA)D.Life predictiona b s t r a c tA life prediction algorithm and its implementation for a thick-shell finite element formulation for GFRP composites under constant or variable amplitude loading is introduced in this work.It is a distributed damage model in the sense that constitutive material response is defined in terms of meso-mechanics for the unidirectional ply.The algorithm modules for non-linear material behaviour,pseudo-static load-ing–unloading–reloading response,Constant Life Diagrams and strength and stiffness degradation due to cyclic loading were implemented on a robust and comprehensive experimental database for a unidirec-tional glass/epoxy ply.The model,based on property definition in the principal coordinate system of the constitutive ply,can be used,besides life prediction,to assess strength and stiffness of any multidirec-tional laminate after arbitrary,constant or variable amplitude multi-axial cyclic loading.Numerical pre-dictions were corroborated satisfactorily by test data from constant amplitude fatigue of glass/epoxy laminates of various stacking sequences.Ó2011Elsevier Ltd.All rights reserved.1.IntroductionLife prediction and stress analysis for structures made of com-posite laminates under variable amplitude multi-axial cyclic loads still remain an open issue.For structural composite parts of the aeronautical,naval and wind turbine rotor blade industries,among others,elastic stability and fatigue constitute the dominant analy-ses for design and dimensioning.Even in structures where ultimate load design cases are predominant,verification of fatigue strength and life prediction are prerequisite for design approval and certifi-cation purposes.For damage tolerant design considerations,the effect of local failure and stiffness degradation due to cyclic loading,causing stress redistribution,should be investigated.As the complicated geometry of the real structure and the existence of multiple con-fined domains in its volume with different in essence mechanical properties render the analytical stress and strain calculations impossible,a numerical method,e.g.finite elements (FE)is in order.There are relatively few works published on the subject,most of them in the last two decades.Based on the Internal State Variable Approach of Lee et al.[1],Harris and co-workers [2,3]have pre-sented possibly the first contribution in the field.The approach fol-lowed by Harris and co-workers is of the ‘‘ply-to-laminate’’type in which all constitutive formulation takes place at the ply level.Pre-diction of life,strength or stiffness for a laminate of any stacking sequence,composed of the building ply is in general possible.Per-haps,the most complete work of that type of approach was pub-lished by Shokrieh and Lessard [4,5],based however,on linear material response.In the present work,a continuum damage mechanics method is implemented in a ply-to-laminate life prediction scheme for com-posite laminates under cyclic loading.As a result of failure onset driven by the stress at a point,a set of appropriate stiffness degra-dation rules is applied,resulting in a modified stiffness tensor,typ-ical of the damaged medium.This effective medium description requires besides sudden stiffness degradation,gradual strength and stiffness degradation as well due to cyclic load,expressed as a function of the number of cycles,n.It certainly requires an important experimental effort,besides efficient modelling,to cover the various loading conditions,e.g.tension–tension (T–T),tension–compression (T–C),etc.,at various stress ratio,R ,values and mate-rial principal directions.To assess conditions of incipient failure in a specific mode,com-patible with certain defect type and respective stiffness degrada-tion strategy,the failure criteria by Puck and co-workers [6,7],were implemented.The material model consists also of the detailed description of fatigue strength in each principal material direction and in-plane shear,for several R -values to ease the implementation of Constant Life Diagram (CLD)formulations.A detailed load step-by-step simulation of each cycle is foreseen in the realization of the algorithm.Non-linear material response of the unidirectional (UD)ply is taken into account,introducing0266-3538/$-see front matter Ó2011Elsevier Ltd.All rights reserved.doi:10.1016/pscitech.2011.01.023Corresponding author.Tel.:+302610969450/997235;fax:+302610969417.E-mail address:philippidis@mech.upatras.gr (T.P.Philippidis).appropriate models derived byfitting experimental data.In the numerical analysis,non-linearity is modelled by implementing a piece-wise linear incremental stress–strain constitutive law.The algorithm is implemented for various element formulations of a commercial FE code.Results of an earlier development stage of the method by means of FE were presented by Philippidis et al.[8].A version of the algorithm considering homogenous stressfields and proceeding by means of Classical Lamination Theory(CLT) assumptions was presented by Philippidis and Eliopoulos[9],pre-dicting the mechanical behaviour of multidirectional(MD)lami-nates subjected to various loading conditions.An earlier linear version of the method,considering also homogenous stressfields, was presented by Passipoularidis et al.[10].An extensive compar-ison of life prediction,strength and stiffness degradation numerical results with experimental data,validating thus the proposed algo-rithm,was presented in the second part of this work[11].2.Constitutive lawsThe progressive damage simulator for life prediction under cyc-lic complex stress presented in this work was devised for glass/ epoxy composites typical of those used in the wind turbine rotor blade industry.It relies on material data from a huge experimental effort in the frame of an EC-funded research project that resulted in a comprehensive material property database with test results from static,cyclic and residual strength experiments under axial and multi-axial loading conditions.All data are free for download (http://www.wmc.eu/optimatblades.php)in the official OPTIMAT BLADES site along with the relevant reports.2.1.Ply response under quasi-static monotonic loadingThe basic building block of all laminates considered is the glass/ epoxy UD ply.Characterization of constituentfibre and matrix materials along with cured composite technical characteristics, e.g.fibre volume fraction,glass transition temperature etc.were reported in[12].Static tests were performed both parallel and transverse to thefibres and also in shear.Most of the data were also published by Antoniou et al.[13].The in-plane shear strength was obtained through v-notched Iosipescu tests;see Megnis and Brøndsted[14].To take into account the highly non-linear material behaviour observed transversely to thefibres,mainly in compression and un-der in-plane shear,incremental stress–strain equations were implemented,retaining the validity of the generalized Hooke law for each individual interval:d r1¼E11ÀE2t1212d e1þm12E2t1ÀE2t1212d e2d r2¼m12E2t1À2tE1212d e1þE2t1À2tE1212d e2d r6¼G12t d e6ð1ÞIn the above equations,E1and m12were considered constant up to failure,while the tangential elastic moduli E2t and G12t were given by the non-linear constitutive relation introduced by Richard and Blacklock[15]:E2t¼d r2d e2¼E o21Àr2r o2n21n2þ1G12t¼d r6e6¼G o121Àr6r o6n61n6þ1ð2ÞThe parameters E o2;r o2;n2were found different in tension and compression[13].Numerical values for all the above constants were summarized in Table1.Mean values of the ply in-plane failure stresses were given in Table2.By X,Y and S the respective strengths in thefibre direction,transversely and in-plane shear were denoted.All numerical values of Tables1and2were derived from data of at least25coupon tests per mechanical property. 2.2.Loading–unloading–reloading(L–U–R)Engineering elastic constants appearing in the constitutive rela-tions,Eq.(1),are valid for monotonic loading conditions.Upon unloading,the stiffness changes and must be again defined exper-imentally.It was further observed that stiffness decreases upon re-peated L–U–R cycles,depending on the stress level previously reached.As reported by Philippidis et al.[8],the stiffness reduction is more severe for matrix dominated response,e.g.in-plane shear and transverse loading to thefibres,see Fig.1.Stiffness reduction due to L–U–R cycles when loading parallel to thefibres was negligible.This type of stiffness degradation was measured by means of dedicated experiments performed in the frame of this work;ISO 14129coupons of[±45]S lay-up were used for the in-plane shear tests while the OB(OPTIMAT BLADES)coupon geometry was adopted for transverse to thefibres tensile and compressive tests. Strain was recorded during the L–U–R tests using strain gauges. The elastic modulus was determined as the slope of the linear regression model of each stress–strain loop.The values from a test were normalized with respect to the modulus of thefirst cycle and plotted vs.the normalized(with respect to the nominal strength value)stress level,see Fig.2.The stiffness degradation models were determined with non-linear regression applied on the normalized stiffness-stress data from all tests and given by:Table1Elastic constants(in MPa).OB_UD glass/epoxy.E1=37,950m12=0.28E oir oin iEðTÞ2t15,035753EðCÞ2t15,262188 2.18 G12t550067 1.3Table2Failure stress(in MPa).OB_UD glass/epoxy.X T X C Y T Y C S 7766865416580E.N.Eliopoulos,T.P.Philippidis/Composites Science and Technology71(2011)742–749743E2t E o2¼1Àð1Àa2Þr2Y Tb2;G12tG o12¼1Àð1Àa6Þr6Sb6ð3Þwhere Y T and S stand for the tensile strength transversely to thefi-bres and in-plane shear strength respectively derived from tests onthe ISO14129coupons.Since values of E o2or G o12presented slightvariations for the different coupon tests,the respective values from Table1were implemented along with Eq.(3).The parameters a2,b2 were found different in tension and compression.Numerical values for all the above constants were summarized in Table3.When thefirst of Eq.(3)is used to determine the compressive elastic modulus transverse to thefibres,the tensile strength,Y T, should be replaced by the corresponding compressive one,Y C.2.3.Progressive stiffness degradationIn-plane stiffness of the lamina is degrading due to several rea-sons,e.g.sudden stiffness reduction due to some kind of failure occurrence or progressive stiffness reduction due to cyclic loading. In general,the latter is non-linear and several formulations were proposed in the literature to describe it.As presented by Philippidis et al.[8],during constant amplitude(CA)cyclic tests[16,17],load–displacement data corresponding to ca.10cycles were recorded periodically and were transformed to respective stress–strain data, e.g.see Fig.3a where experimental data from CA cyclic loading of a [907]T coupon at a stress ratio R=À1(T–C)were shown.The calcu-lated strain was proved to be accurate by comparing with exten-someter data for low stiffness specimens as of[16,17]where no tab debonding occurred during the test.The stiffness of the coupon at thefirst cycle of each periodically recorded block of cycles was determined as the slope of the linear regression model of the respective stress–strain loop.These stiffness values were normal-ized with respect to the stiffness of thefirst cycle and plotted vs. the normalized number of cycles with respect to the number of cycles at failure.For example,for the case of a[907]T coupon,said results from all available stress levels at R=0.1andÀ1were pre-sented in Fig.3b.Due to the high experimental scatter it was thought more appropriate to select a representative group of data forfitting the material model,e.g.in Fig3b the solid line data cor-responding to R=À1and stress level of24.3MPa were chosen for the tensile transverse modulus.The stiffness degradation models were determined with non-linear regression applied on the nor-malized stiffness-cycle number data from these representative load cases,Fig.4a.A similar procedure was also followed to deriveTable3Parameter values for L–U–R stiffness degradation models,Eq.(3).a ib iEðTÞ2t0.88 1.60EðCÞ2t0.65 2.77G12t0.38 1.40744 E.N.Eliopoulos,T.P.Philippidis/Composites Science and Technology71(2011)742–749R =0.1,were used together as they exhibited similar stiffness deg-radation [9].Numerical values for all the above constants were presented in Table 4.Since the modulus values at the first cycle from the different coupons tested were different,E 2t (1)and G 12t (1)in Eq.(4)were substituted by the respective,to the stress level,reloading stiffness values as given by Eq.(3).For CA testing in the fibre direction,axial strain was measured with extensometers in four UD coupons [18].Description of this type of tests can be found in [19].Progressive stiffness degradation during cyclic loading parallel to the fibres was not important (1–2%),as shown in Fig.5and thus it was neglected in the numer-ical model.2.3.1.Pre-failure material modelsIn case that no failure was detected in an integration point,the simulated ply response and especially the description of stiffness evolution for VA cyclic loading were expressed by combining the constitutive relations presented in the above.For each stress tensor component at the k th loading step it is examined if it corresponds to loading,i.e.|r i (k )|P |r i (k À1)|,i =1,2,6or else to unloading.In the former case,if r i (k )is higher than the global maximum stress,r i G max or lower than the global minimum stress,r i G min ,the initial material behaviour under quasi-static loading,presented in Section 2.1is assumed.That is,constant modulus E 1and Poisson ratio v 12while E 2t and G 12t are functions of r 2(k )and r 6(k )as ex-pressed by Eq.(2).If r i (k )lies between the global minimum and maximum stress,the material response is assumed linear elastic while the reload elastic properties are used,Eq.(3),calculated at the global maximum or minimum stress,degraded according to the stiffness reduction models due to cyclic loading,i.e.Eq.(4).In the case of unloading,elastic properties slightly higher than in reloading were introduced to account for an increasing perma-nent strain due to cyclic loading.In the routine this is realized by multiplying by a number slightly higher than one the reloading stiffness values for E 2t and G 12t .The specific value depends on the numerical implementation,see comments in Part II [11].The above was illustrated in Fig.6. A–B:Initial loading.Stress is always greater than its previous global maximum value,so the non-linear material behaviour under quasi-static loading is used.B–C–D:Stress cycling under CA or VA.Stress values remain between their global minimum and maximum values,0and r i Gmax respectively,so the reload and unload elastic properties were used,gradually degrading with increasing number of cycles.D–E:Stress becomes greater than its previous global maximum value r i Gmax ,so the initial material behaviour is assumed,etc.Table 4Parameter values for the progressive stiffness degradation models,Eq.(4).c id i E ðT Þ2t0.75 3.17E ðC Þ2t0.950.62G 12t0.681.65E.N.Eliopoulos,T.P.Philippidis /Composites Science and Technology 71(2011)742–7497452.3.2.Post-failure material modelsUpon failure onset in some loading step,the stiffness degrades depending on the failure mode observed and the changes apply for the next loading step.Iffibres break under either tensile or com-pressive stress,the three engineering elastic constants,E1,E2t and G12t drop to zero.If matrix damage modes occur,also called in-ter-fibre failure(IFF)by Puck and co-workers[6,7],then only E2t and G12t drop to zero.Afterfibres failure(FF),the unload behaviour for all three stress tensor components remains as in the material without failure,see Section2.3.1.If reloading occurs before any stress tensor compo-nent has changed sign,the respective modulus,i.e.E1,E2t,or G12t drops to zero.If the stress has changed sign once,the correspond-ing modulus remains always at zero.The above was illustrated in Fig.7.A:Stress level at which FF mode was detected.A–B:If r i(k)stands for loading,the corresponding engineering elastic constant drops to zero.B–C,C–D,E–F:Unloading using the unloading elastic properties. C–E:If reloading is encountered before stress has changed sign, the elastic property drops to zero.D,F:Following unloading a stress tensor component changes sign.The corresponding elastic property drops and remains henceforth at zero.In case of matrix failure,IFF damage modes,E1remains un-affected and only the normal stress transverse to thefibres and the in-plane shear component are taken into account in the stiff-ness degradation model.Once IFF has occurred,the material is assumed to retain both its unload and reload properties as for the undamaged material,i.e.given by Eqs.(3)and(4),provided that the stress components r2 or r6remain below its previous values at failure or IFF is not de-tected again.In the latter case,both engineering elastic constants E2t and G12t are set to zero.If however only the value of the normal stress transverse to thefibres r2or the in-plane shear stress r6 exceeds its value for which IFF has been predicted last time,the respective elastic property drops to zero(E2t or G12t)and the pro-cess is continued.With respect to Fig.8,illustrating the above, the following characteristics can be noted.A:Stress level at which IFF wasfirst detected.A–B:Loading is continued;both E2and G12drop to zero.B–C–D:No IFF is predicted again.Stress component remains lower than its value at failure.The reload and unload elastic properties of the undamaged material are used,gradually degraded with the number of cycles.D–E:IFF is predicted once more or stress r2or r6becomes equal or greater than its value when IFF was predicted.The cor-responding elastic property drops to zero.E–F:The process is continued and the elastic properties are set again to its undamaged values for stress cycles of lower max values than previously.3.Strength degradation due to cyclic loadingStatic strength degradation or residual strength after fatigue in composites has been intensively investigated the last30years. Numerous research groups have developed a variety of models; an appraisal of their effectiveness has been recently presented by Philippidis and Passipoularidis[20].From the processing of the experimental data,the main conclu-sions were derived and formulated as guidelines for further devel-opment[21].First,the residual strength in both principal material directions of the UD glass/epoxy is not affected when cyclic stress of the opposite sign is applied,i.e.tensile strength is not reduced under purely compressive cycles and vice versa.A similar trend was also observed by Nijssen[22]from tests on afibre dominated MD laminate made of the same UD glass/epoxy material.The tensile and the in-plane shear static strength experienced degradation of up to40%when tested at a nominal life fraction of 80%[20,21].The compressive residual strength on the other hand did not show significant degradation in all types of loading and material directions.Concerning the many theoretical models con-sidered in[20],it was demonstrated in a clear manner that the com-plexity of a model is not related to the accuracy of its predictions [21].In addition,it was also proved that life prediction results un-der VA loading were not very sensitive to which residual strength model,of those examined was used as damage metric[23].746 E.N.Eliopoulos,T.P.Philippidis/Composites Science and Technology71(2011)742–749Therefore,the models used herein to describe the phenomenon are two:For the modelling of tensile residual strength along the principal material directions,under T–T or T–C cyclic loading,as well as of in-plane shear strength,the linear degradation model proposed by Broutman and Sahu [24]was implemented.Besides being the simplest one available,it requires no residual strength testing while at the same time it has been proven to produce al-ways safe residual strength predictions under various stress condi-tions and lay-ups [23].The compressive strength,both parallel and transversely to the fibres has been shown not to degrade significantly due to fatigue,especially when the specimens were subjected to tensile cyclic stress.Nevertheless,in modelling the compressive residual strength under C–C or T–C cyclic loading,a degradation equation simulating constant strength throughout the life with a sudden drop near failure (sudden death)was implemented.According to the above observations the residual strength mod-el in the principal coordinate system of the unidirectional glass/epoxy layer due to cyclic loading is given by a different set of equa-tions,depending on the value of the cyclic stress ratio,R .The fol-lowing set of equations is valid for 06R <1:X T r ¼X T ÀðX T Àr 1max ÞnN 1;X C r ¼X C ;Y T r ¼Y T ÀðY T Àr 2max ÞnN 2;Y C r ¼Y C ;S r ¼S ÀðS Àr 6max ÞnN 6:ð5ÞFor À16R <0:X T r ¼X T ÀðX T Àr 1max ÞnN 1X C r ¼X C ÀðX C Àj r 1min jÞn1 kY T r ¼Y T ÀðY T Àr 2max Þn2Y C r ¼Y C ÀðY C Àj r 2min jÞnN 2kS r ¼S ÀðS Àr 6max ÞnN 6:ð6ÞFor R e (À1,À1],the same set of Eq.(6)is valid with the excep-tion of the relation for the residual shear strength which is now gi-ven by:S r ¼S ÀðS Àj r 6min jÞnN 6ð7ÞFinally,for R e [1,+1):X T r ¼X T ;X C r ¼X C ÀðX C Àj r 1min jÞnN 1kY T r ¼Y T ;Y C r¼Y C ÀðY C Àj r 2min jÞn 2 k S r ¼S ÀðS Àj r 6min jÞn6ð8ÞX T (C )r and Y T (C )r is the tensile (compressive)residual strength parallel and transverse to the fibres respectively,while S r is the residual shear strength.r 1max ,r 2max and r 6max are the maximum cyclic stresses applied for n cycles and N i ,i =1,2,6,the correspond-ing fatigue life at the specific stress level.In all the above equations for compressive residual strength,expressed by the ‘‘sudden death’’relation,the exponent k assumes a high value,e.g.50.Concerning fatigue strength prediction,it has to be recalled that the methodology used in FADAS is of the ply-to-laminate type with progressive damage modelling.In such an approach failure is con-sidered at the ply level and a static limit condition may be usedwhere however,material strength parameters are replaced by the corresponding residual strength values which are in general functions of the number of cycles and the type of loading.For the cases studied in this work,numerical results were derived by implementing the Puck criteria [6]in the FADAS routine.For the variety of parameters implemented in the limit conditions,guide-lines and typical values were given by Puck et al.[7].The values used in the present version were presented in Table 5of [13].Since the criterion is used for cyclic stresses,the lamina strength values given in Table 2must be replaced by the corresponding residual strength values presented in this section.4.Constant Life Diagrams and S–N curvesThe life prediction methodology presented herein was intro-duced for multiaxial VA fatigue.Therefore,characterization of fati-gue behaviour in the principal coordinate system of the orthotropic UD ply must take place for several R -values and then by using an appropriate interpolation scheme define the ‘‘Constant Life Dia-gram’’or else define the number of cycles to failure,N,for every possible cycle.A great number of CA cyclic tests were performed [16,17,19]and the respective S–N curves parallel,transversely to the fibre and in shear,at three stress ratios R were obtained.The R -ratios for which tests were performed are R =0.1,À1and 10which apart from being proposed by wind turbine rotor blade certification bodies as GL or DNV cover a minimum range of fatigue conditions,both in tension and compression.For in-plane shear fatigue strength tests were performed only for R =0.1and the common assumption that shear strength in the principal material system of an orthotropic medium does not depend on the sign of the shear stress along with the Goodman approach led to a symmetric CLD.The S–N curves obtained were of the form:r a ¼r o N ðÀ1Þð9ÞIn the above relation,r a stands for the alternating component ofthe cyclic stress,N for the number of cycles to failure while con-stants r o and k ,depending on the R -ratio and the stress component were given in Table 5.Fatigue behaviour at different stress ratios were obtained by linear interpolation between the already known S–N curves as de-scribed by Philippidis and Vassilopoulos [25].5.FE implementation of FAtigue DAmage Simulator (FADAS)Constitutive equations and models presented in the previous sections,2–4,form the necessary input data set at the UD ply level.This is all required by FADAS to predict static and fatigue strength,residual strength and stiffness after arbitrary multiaxial VA cyclic loading of any multidirectional laminate made of the basic UD ply.The actual implementation was based on a glass/epoxy UD material typical of wind turbine rotor blade applications.For alter-native materials,a new data set has to be defined;however it is be-lieved that most of the existing material models can still be useful for an initial estimation.Table 5S-N curve parameters for the OB_UD glass/epoxy.Rr 1r 2r 6r o (MPa)k r o (MPa)k r o (MPa)k 0.1500.810.0350.28.6338.111.06À1972.28.0587.58.43N/A N/A 10289.526.0888.524.32N/AN/AE.N.Eliopoulos,T.P.Philippidis /Composites Science and Technology 71(2011)742–749747Once these data are implemented,the algorithm proceeds by means of FE for the stress analysis using a Reissner–Mindlin shell formulation.With this type of analysis,selected instead of solid 3D modelling to keep computational time realistic,delamination onset and propagation cannot be simulated.A generalflowchart of the algorithm is shown in Fig.9.Further details on the imple-mentation of the various modules shown in the diagram are given in[11].6.ConclusionsAn anisotropic non-linear constitutive model implementing progressive damage concepts to predict the residual strength/stiff-ness and life of composite laminates subjected to multiaxial VA cyclic loading was presented.In-plane mechanical properties of the material were fully characterized at the ply level while static or fatigue strength of any multidirectional stacking sequence can be predicted.The implementation of the method in a commercial FE code, simulating fatigue damage progression in a composite laminate was presented in[11].Strength and stiffness degradation were modelled using simple and cost-effective schemes,while the fail-ure criterion of Puck along with post-failure behaviour of the mate-rial,was implemented.The model has been verified through a series of constant amplitude fatigue tests on different lay-ups,sim-ulating a variety of plane stress combinations and failure modes. These results indicated that the FADAS algorithm actually predicts satisfactorily fatigue strength and stiffness degradation under CA loading of prismatic specimens under axial loads.In its current version,the model has limitations;it neglects the eventual3D character of the stress and strainfields which could lead to additional failure modes,e.g.delaminations.In addition the viscous nature of the marix material was not taken explicitly into account,thus important effects on actual material perfor-mance such as the strain rate and loading frequency or the hygro-thermal conditions were also overlooked.AcknowledgementsResearch was funded in part by the European Commission in the framework of the research programme Integrated Wind Turbine Design(UPWIND),Contract No:019945,SES6.Partial funding was also provided by the General Secretariat of Research and Technology(GSRT)of the Greek Ministry of Development, Contract No.F.K.C037.References[1]Lee JW,Allen DH,Harris CE.Internal state variable approach for predictingstiffness reductions infibrous laminated composites with matrix cracks.J Compos Mater1989;23:1273–91.[2]Coats TW,Harris CE.Experimental verification of a progressive damage modelfor IM7/5260laminates subjected to tension-tension fatigue.J Compos Mater 1995;29(3):280–305.[3]Lo DC,Coats TW,Harris CE,Allen DH.Progressive damage analysis oflaminated composite(PDALC).A computational model implemented in the NASA COMETfinite element code.NASA TM-4724;1996.[4]Shokrieh MM,Lessard LB.Progressive fatigue damage modelling of compositematerials.Part I:modeling.J Compos Mater2000;34(13):1056–80.[5]Shokrieh MM,Lessard LB.Progressive fatigue damage modelling of compositematerials.Part II:material characterization and model verification.J Compos Mater2000;34(13):1081–116.[6]Puck A,Schürmann H.Failure analysis of FPF laminates by means of physicallybased phenomenological pos Sci Technol1998;58:1045–67. [7]Puck A,Kopp J,Knops M.Guidelines for the determination of the parameters inPuck’s action plane strength pos Sci Technol2002;62:371–8. [8]Philippidis TP,Eliopoulos EN,Antoniou AE,Passipoularidis VA.Material modelincorporating loss of strength and stiffness due to fatigue.UpWind project.Contract No.:019945(SES6)[Deliverable3.3.1,2007].[9]Philippidis TP,Eliopoulos EN.A progressive damage mechanics algorithm forlife prediction of composite materials under cyclic complex stress.In: Vassilopoulos AP,editor.Fatigue life prediction of composites and composite structures.Woodhead Publishing Ltd and CRC Press;2010.p.390–436 [chapter11].[10]Passipoularidis VA,Philippidis TP,Brøndsted P.Fatigue life prediction incomposites using progressive damage modeling under block and spectrum loading.Int J Fatigue2011;33:132–44.[11]Eliopoulos EN,Philippidis TP.A progressive damage simulation algorithm forGFRP composites under cyclic loading.Part II:FE implementation and model pos Sci Technol2011;71:750–7.。

相关文档
最新文档