2无线电测向基本技术
无线电测向课件
C A
B
无线电测向运动基本技术
四、比音量技术: 在距电台很近时,利用测向机音量随距离变化大的特性确 定电台位置的方法,称作比音量。
比音量技术是在出现干扰,造成测向机指向模糊、混乱、 无法正常使用方向跟踪等技术时使用的一种方法。 它有两种方法: 1、扫音量。 2、跑音量。
无线电测向运动基本技术
比音量:
方向跟踪时,容易出现从电台附近越过而并未察觉的情况。 这时运动员虽已跑过电台,但测向机磁性天线指示的方向线, 由于变化不大而未能及时发现,造成反方向跟踪,越跑越远, 直至耳机中音量明显减弱时才会发觉。避免的办法是在跟踪 中,80米波段的测向机多打几次单向,2米波段的测向机多 翻转180°测听。判断大音面是否已转向到后面。 宁可勿走,宁过勿欠,这是迅速到位的最基本要求,切 记尚未到位便进行搜索,耽误时间。
无线电测向运动基本技术
测出电台方向线的基本方法: 2米波段测向机可用主瓣一次定向,即收到 需测电台信号后,转动360°,停留在面朝声 音最大的方向上,左右摆动机器,声音最大 时测向机所指方向即为电台方向。
无线电测向运动基本技术
二、方向跟踪技术:
方向跟踪:沿测向机指示的电台方向,边跑边测,带信号 接近并找到电台的方法叫方向跟踪。 由于短距离测向竞赛的信号源处于连续发信状态,因此该 技术是最常用的,最重要的基本技术。
1、扫音量:在距电台数米内,因信号强度猛增,无法分辨 双向小音点,失去了方向性时使用的一种方法。
无线电测向运动基本技术
比音量:
具体步骤: 将测向机直立天线抽出,按下单向开关,将持机臂伸长向 周围做弧形扫动,寻找音量最大的方向,并沿此方向边扫边 前进,直到找到电台。
无线电测向运动基本技术
比音量:
无线电测向原理
无线电测向原理无线电测向是一种利用无线电波进行信号测向的技术,它可以用于确定信号的方向和位置。
无线电测向技术在军事、民用通信、天文学等领域都有着重要的应用。
本文将介绍无线电测向的原理及其在实际中的应用。
首先,我们来了解一下无线电测向的基本原理。
无线电测向的基本原理是利用天线接收信号,并通过对接收到的信号进行分析,确定信号的方向和位置。
在实际的应用中,通常会使用多个天线来接收信号,通过对比不同天线接收到的信号强度和相位差异,可以计算出信号的方向和位置。
无线电测向技术主要包括两种方法,一种是方位测向,另一种是距离测向。
方位测向是通过对接收到的信号进行方位角的测量,确定信号的方向;而距离测向则是通过对接收到的信号进行距离的测量,确定信号的位置。
这两种方法可以单独应用,也可以结合起来进行综合测向。
在实际的无线电测向系统中,通常会采用多种测向技术相结合的方式,以提高测向的准确度和可靠性。
例如,可以通过使用多个天线阵列来实现高精度的方位测向;同时结合多普勒效应来实现距离测向。
这样可以在不同的环境和条件下,实现更加灵活和精准的测向。
无线电测向技术在军事领域有着广泛的应用。
在军事侦察、雷达导航、通信干扰监测等方面,都需要使用无线电测向技术来获取目标的方向和位置信息。
同时,在民用通信领域,无线电测向技术也可以用于无线电定位、无线电导航等应用。
此外,无线电测向技术还可以应用于天文学领域,用于天体信号的测向和观测。
总的来说,无线电测向技术是一种重要的信号测向技术,它可以通过对接收到的无线电信号进行分析,确定信号的方向和位置。
在实际的应用中,无线电测向技术可以应用于军事、民用通信、天文学等多个领域,具有着重要的意义和价值。
随着无线电技术的不断发展,无线电测向技术也将会得到进一步的完善和应用。
无线电测向基本技巧
无线电测向基本技巧 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】无线电测向基本技术短距离无线电测向的基本方法和基本技术,可归纳为下列几个方面:一、收测电台信号1、收听电台信号当不了解被收听电台信号的强度时,如在起点收听首台或找到某台后收测下号台(应迅速离开该台十余米),可将音量旋到最大,边转动测向机,边调整频率旋钮,听到信号后,首先辩认台号是不是你现在需要寻找的电台呼号,然后缓慢地左右细调,使声音最大,音调悦耳。
最后,将音量旋钮旋至适当位置,进行测向。
2、测出电台方向线的基本方法:(1)80米波段测向的基本方法:单向—双向法:按下单向开关,使本机大音面作环向扫动,同时旋转频率钮,当耳机内出现需要测收的电台信号且声音最大时,测向机大音面所指方向即为电台方向。
这一过程称测单向。
由于大音面是一个较大的扇面,难以准确地确定电台方向线,因此在单向测完后要松开单向开关,用磁性天线的小音点(即磁棒)对着电台并左右摆动,声音最小时磁棒所指方向,即为电台的准确方向。
后面的这个过程称为测双向。
双向—单向法:先不按单向开关,用磁性天线收到电台信号后,水平旋转测向机,找出小音点(或称哑点线)获得电台所在直线,然后按下单向开关并转动测向机90°,在此位置上,反复迅速的旋转测向机180°,比较声音大小,声音大时,本机单向大音面所指的方向,即为电台的方向。
最后再用双向小音点瞄准。
(2)2米波段测向的基本方法:单向法(也叫主瓣一次测向法):当2米波段测向机收到电台信号后,转动天线360,依靠尖锐的主瓣方向图(此时引向器的前引伸方向声音最大),即可明确地测出电台方向线。
若发现主瓣与后瓣难以分清(在前后两个方向上声音大小差不多),可将测向机音量关小,举过头顶,在主、后瓣两个方向上翻转天线(见图,应注意保持天线所在面与地面的平行),反复对比两边的音量大小,防止测反方向。
无线电测向原理
无线电测向原理
无线电测向原理是一种通过测量无线电信号到达接收器的方向来确定信号发射源位置的技术。
该原理基于电磁波传播的特性,利用接收器接收到的信号的方向性信息来定位信号源。
无线电测向原理的关键在于利用多个接收器或天线阵列来接收同一个信号。
通过测量接收到信号的时间差和信号强度的变化,可以计算出信号的到达角度。
这种测向方式被称为时差测向和幅度比测向。
时差测向是基于接收到信号的时间差来测量信号到达的角度。
当信号到达不同的接收器或天线时,会产生微小的时间差。
通过计算这些时间差,可以确定信号的到达角度。
幅度比测向则是基于接收到信号的强度变化来测量信号到达的角度。
当信号到达不同的接收器或天线时,由于传播路径的不同,信号的强度会发生变化。
通过计算这些幅度变化,可以确定信号的到达角度。
无线电测向原理常用于无线电定位、无线电导航、无线电干扰源定位等领域。
它的应用范围广泛,可以用于定位无线通信设备、监测无线电信号、解决无线电干扰问题等。
总的来说,无线电测向原理通过测量接收到的信号的方向性信息来确定信号发射源的位置。
它是一种基于电磁波传播特性的技术,可以在无线通信、定位、干扰源定位等领域发挥重要作用。
无线电测向基本技术
无线电测向基本技术无线电测向运动作为一项科技体育竞技项目,同其它竞技体育项目一样,具有鲜明的竞技特征。
具体来说,一是参加者必须共同遵守统一的竞赛规则,二是竞赛活动表现出强烈的竞争特点,三是每一个参加者在赛前和竞赛过程中要采取一系列措施,力求使自己的体力、智力、技术在比赛中得到最好的表现和发挥,以创造优异成绩,压倒对手,夺取胜利。
竞技体育的这些特点表明它不同于娱乐和游戏,也不同于健身体育和康复体育。
它要求参加者从事系统的科学的训练,全面掌握各种技术,锻炼并提高自己的体力和智力去适应运动竞赛的需要。
无疑,技术训练是任何一项科技体育运动员训练的重要内容之一。
一、无线电测向技术的内容无线电测向运动对参加者的运动素质的要求无疑是很高的。
以往曾有人以为,只要运动素质发展全面,体力充沛,跑得快,便可以成为优秀测向运动员。
近几年,随着竞赛规则的修改,测向技术及相关理论的发展,特别是通过历年优秀运动员的观察和统计结果的分析,使越来越多的测向运动爱好者转而赞同这样一种观点:运动素质是运动和发挥技术、提高运动成绩的基础,测向技术水平才是创造优异成绩的关键。
在本课里,将按起点技术、途中技术、近台区技术、地形学知识的顺序,向大家介绍无线电测向的各种技术。
第四讲再介绍技术训练的方法。
在学习有关技术,投入训练之前,先粗略地了解一下无线电测向技术构成是有好处的。
知道了总的轮廓,在学习一个单项技术时,可以了解它在整体技术中所处的地位;在学习一项综合技术(例如近台区测向)时,可以知道它是由哪些基本技术或单项技术所构成。
这样,既可以提高运动员参加枯燥的基本技术训练的自觉性,也有助于教练员把训练安排得更合理、更系统。
无线电测向技术如果以竞赛过程的先后分,可以划为以下三项:(1)起点测向包括起点前技术、起点测向、离开起点三部分。
(2)途中测向包括首找台及找台顺序的确定、到位技术、途中跑及道路选择三部分。
(3)近台区测向近台区测向包含内容较多,许多基本技术和单项技术都可能在近台区得到综合运用。
小升初无线电测向
小升初无线电测向无线电测向是一种利用无线电信号的传播特性来确定信号源位置的技术。
在小升初考试中,无线电测向也是一个重要的考点。
下面,我们来了解一下关于无线电测向的基本知识。
一、无线电测向的原理无线电测向是利用无线电信号传播时的信号强度、相位差等特性来确定信号源的位置。
当一个无线电信号源发出信号时,信号会在空间中传播并到达接收器。
通过接收机测量到的信号参数,例如信号强度、相位差等,结合接收机的方向性,可以计算出信号源的位置。
二、无线电测向的应用无线电测向在现实生活中有着广泛的应用。
最常见的应用就是无线电定位系统,例如GPS系统。
通过多个接收器接收到的信号强度差异,可以确定接收器所在的位置。
此外,无线电测向还可以用于电磁波辐射监测、通信干扰定位等领域。
三、无线电测向的方法无线电测向主要有三种方法:信号强度测向、相位测向和多基站测向。
1. 信号强度测向:这是最简单也是最常用的测向方法。
通过测量信号强度,比较不同接收器的信号强度差异来确定信号源的位置。
但是由于信号的传播受到环境等因素的影响,信号强度测向的精度较低。
2. 相位测向:相位测向是通过测量接收到的信号相位差来确定信号源的位置。
相位测向的精度较高,但需要较为复杂的算法和设备支持。
3. 多基站测向:多基站测向是利用多个接收器同时接收信号,并通过测量不同接收器之间的信号时差来确定信号源的位置。
多基站测向的精度较高,但需要多个接收器的支持。
四、无线电测向的局限性无线电测向虽然在定位和测向方面有着广泛的应用,但也存在一些局限性。
首先,信号的传播受到环境等因素的影响,如建筑物、地形等会对信号传播产生阻碍或反射,影响测向的精度。
其次,测向设备的成本较高,对设备的要求也较高,限制了无线电测向的推广应用。
无线电测向是一种通过测量无线电信号参数来确定信号源位置的技术。
在小升初考试中,了解无线电测向的原理、应用和方法是很重要的。
希望通过本文的介绍,可以为大家对无线电测向有一个初步的了解。
无线电测向原理
无线电测向原理无线电测向是利用无线电波的传播特性,通过对信号的接收和处理,确定信号的方向的一种技术。
无线电测向原理是基于电磁波传播的基本原理和天线接收信号的特性,通过对接收到的信号进行分析,确定信号的来向。
下面将从无线电测向的基本原理、测向系统的组成和测向方法等方面进行介绍。
首先,无线电测向的基本原理是基于电磁波的传播特性。
当电磁波在空间中传播时,会受到地形、建筑物等物体的影响而产生衍射、反射等现象,这些现象会使信号在接收端产生多径效应,从而导致信号的强度和相位发生变化。
利用这些变化,可以通过信号处理技术确定信号的方向。
其次,测向系统通常由天线、接收机、信号处理器和显示器等组成。
天线是接收信号的装置,不同类型的天线适用于不同频率的信号接收。
接收机是用于接收信号的设备,它可以将接收到的信号转换成电信号,并将其传送给信号处理器。
信号处理器是用于对接收到的信号进行处理和分析的设备,它可以提取信号的特征参数,并通过计算确定信号的方向。
显示器则用于显示测向结果,通常以图形或数字的形式呈现。
最后,无线电测向的方法主要包括干扰测向、方位测向和跟踪测向等。
干扰测向是指利用干扰信号的特征参数确定干扰源的位置,通常用于无线电干扰的监测和定位。
方位测向是指确定信号来向的方向,通常用于通信情报收集和无线电定位。
跟踪测向是指对移动目标进行实时跟踪,通常用于雷达导航和目标追踪等应用。
综上所述,无线电测向是一种利用无线电波的传播特性,通过对信号的接收和处理,确定信号方向的技术。
它的原理是基于电磁波的传播特性,测向系统由天线、接收机、信号处理器和显示器等组成,测向方法主要包括干扰测向、方位测向和跟踪测向等。
无线电测向技术在通信情报、无线电干扰监测和雷达导航等领域有着重要的应用价值。
二战期间的电子对抗(17)
二战期间的电子对抗(17)马岩第二次世界大战中,无线电已被交战各国广泛使用,对信号源进行测向定位的技术也迅速发展起来。
而且,随着各国军队机械化程度的提高,传统导航的效率、精度和有效距离都已无法满足军事活动的要求,无线电技术也当仁不让地进入了导航领域。
今天,我们就来看一看二战期间无线电测向与导航的发展。
基本技术的演进早在1888年,著名科学家海因里希·赫兹在证实电磁波存在的一系列实验中便使用了环状天线。
在实验中,环状天线展示出了与偶极子天线完全相反的方向特性,当环状面与电波平行时,天线接收到的信号最强,而环状面与电波垂直时,天线接收到的信号强度为0。
20世纪初,人们开始利用环状天线的方向特性来为辐射源定位。
早期的无线电发射机大多工作在中长波段,由于较长的波长与大地的耦合作用小,非常适于远距离传播,所以在1900~1910年间,长波信号测向是无线电研究的主要项目之一。
同时,天线的效率还取决于尺寸大小与工作波长的关系。
绝大多数天线的长度至少要达到波长的四分之一,在实际应用中,尺寸达到二分之一波长的“半波偶极子”非常常见。
而要在长波波段“吃得开”,环状天线的直径往往很大,通常还要用多个环相连接来增强信号。
早期的测向系统采用了一个可以旋转的环状天线,操作手首先将接收机调谐到一个已知的无线电发射台,而后旋转天线直到信号消失,此时天线与发射机的方向垂直,但只靠一次测向无法确定发射机在天线的哪一边,所以操作手需要进行多次测向或依靠其它导航信息来确定发射机的方位。
1909年,埃托雷·贝里尼和亚历山德罗·托西的一项发明让无线电测向技术又前进了关键的一步。
“贝里尼-托西”或称“B-T”测向仪使用了两个垂直放置的三角环状天线。
天线接收到的信号被传送到缠绕在木质框架上的线圈中,在这个易拉罐大小的框架中,信号被原样“重建”,安装在这里的一个独立的环状天线对重建的信号进行测向。
在这个精妙的设计中,由于主天线无需转动,测向装置的实用性大大提高,很快就在航海导航中推广开来。
无线电测向技术的创新与突破
无线电测向技术的创新与突破无线电测向技术作为一种用于确定特定无线电源位置的技术手段,在近年来得到了广泛的应用和发展。
随着科技的不断进步,人们对无线电测向技术的需求也越来越高。
本文将探讨无线电测向技术的创新与突破,以及对社会和科技领域的影响。
一、无线电测向技术的基础无线电测向技术是一种利用电磁波传播的特性来确定信号源位置的技术手段。
它通过接收多个接收器之间的信号差异,利用三角定位原理,精确定位无线电源所在的位置。
无线电测向技术的主要应用领域包括通信、无线感知、导航以及安全等。
二、无线电测向技术的创新之处最先进的无线电测向技术在以下几个方面进行了创新与突破:1. 信号定位精度的提高通过对接收到的信号进行精确测量和分析,新一代的无线电测向技术能够实现对无线电源位置的高精度定位。
这对于通信基站的优化配置、无线标签的精确定位以及导航系统的发展都具有重要意义。
2. 高频段的探测能力随着移动通信技术的发展,无线电测向技术也相应迎来了高频段的探测能力。
这使得无线电测向技术在接收信号的灵敏度和定位精度上都有了显著的提升,为无线通信系统的建设和维护提供了更强大的支持。
3. 复杂环境下的适应能力在城市等复杂环境中,无线电测向技术需要面对诸如建筑物、地形和其他无线信号的干扰。
通过引入自适应信号处理算法和多传感器融合技术,无线电测向技术可以更好地适应复杂环境下的无线信号测量和定位需求。
三、无线电测向技术的应用前景无线电测向技术的创新与突破将对社会和科技领域产生重大影响。
1. 通信领域的优化通过无线电测向技术的定位能力,可以对移动通信基站进行优化和调整,提高通信网络的覆盖范围和信号质量。
同时,对无线信号的精确定位还有助于减少通信干扰,提高通信系统的容量和可靠性。
2. 安全领域的应用在安全领域,无线电测向技术可以用于监测和定位无线信号的发射源,帮助监控部门对可疑无线信号源进行快速定位和处理。
这对于预防恶意无线通信和保护信息安全具有重要作用。
无线电测向基本知识
无线电测向运动做为一项竞技体育项目,同其它竞技体育项目一样,具有鲜明的竞技特征。
具体来说,一是参加者必须共同遵守统一的竞赛规则,二是竞赛活动表现出强烈的竞争特点,三是每一个参加者在赛前和竞赛过程中要采取一系列措施,力求使自己的体力、智力、技术在比赛中得到最好的表现和发挥,以创造优异成绩,压倒对手,夺取胜利。
竞技体育的这些特点表明它不同于娱乐和游戏,也不同于健身体育和康复体育。
它要求参加者从事系统的科学的训练,全面掌握各种技术,锻炼并提高自己的体力和智力去适应运动竞赛的需要。
无疑,技术训练是任何一项竞技体育运动员训练的重要内容之一。
无线电测向运动对参加者的运动素质的要求无疑是很高的。
以往曾有人以为,只要运动素质发展全面,体力充沛,跑得快,便可以成为优秀测向运动员。
近几年,随着竞赛规则的修改,测向技术及相关理论的发展,特别是通过历年优秀运动员的观察和统计结果的分析,使越来越多的测向运动爱好者转而赞同这样一种观点:运动素质是运动和发挥技术、提高运动成绩的基础,测向技术水平才是创造优异成绩的关键。
在这一章里,将按起点技术、途中技术、近台区技术、地形学知识的顺序,向读者介绍无线电测向的各种技术。
下一章再介绍技术训练的方法。
在学习有关技术,投入训练之前,先粗略地了解一下无线电测向技术构成是有好处的。
知道了总的轮廓,在学习一个单项技术时,可以了解它在整体技术中所处的地位;在学习一项综合技术(例如近台区测向)时,可以知道它是由哪些基本技术或单项技术所构成。
这样,既可以提高运动员参加枯燥的基本技术训练的自觉性,也有助于教练员把训练安排得更合理、更系统。
无线电测向技术如果以竞赛过程的先后分,可以划为以下三项:(1)起点测向包括起点前技术、起点测向、离开起点三部分。
(2)途中测向包括首找台及找台顺序的确定、到位技术、途中跑及道路选择三部分。
(3)近台区测向近台区测向包含内容较多,许多基本技术和单项技术都可能在近台区得到综合运用。
无线电测向原理基本技术
磁性天线平行于地面放置,并接收垂直极化波;电波从左向右传播,其磁场方向(图中虚线所示)必定垂直于电波传播方向并与地面平行;磁棒轴线与电波传播方向的夹角为θ。
则磁性天线的输出感应电势E磁随θ的变化而变化。
当磁棒轴线对准电台,磁棒轴线与电波传播方向平行(θ=0°、θ=180°),磁场方向与磁棒轴线垂直,即磁力线与天线线圈截面平行,磁力线无法顺着磁棒穿过线圈,线圈中没有变化的磁力线,线圈感应电势为零,即e磁=0。
耳机声音最小,甚至完全没有声音,此时磁性天线正对着电台的那个面,称小音面或小音点、哑点;当磁棒轴线与电台的面成一定的角度,磁场方向也与磁棒成一定的角度,会有部分磁力线穿过线圈,线圈中有一定感应电势输出,即e磁为某一定值,耳机声音不是最小,音量会随着角度的变化而变化。
所以,在测向运动中,只要旋转测向机的磁性天线,找出“哑点”(或小音点),发射台必定位于磁棒轴线所指的直线上,也就是说,利用磁性天线可确定电台所在的直线,但不能确定在直线的哪一边,这就是通常所说的测“双向”。
单方向的测定:具有双值性的测向机在实际测向运动中是不能使用的。
为了使运动员在任何一个测向点,都可获得电台明确的“线”和“面”就要求测向机天线具有单值性。
磁性天线和直立天线组成的复合天线是具有单方向性的天线。
当测出电台所在在直线时,运用直线天线和磁棒天线,按下单向按钮,磁性天线转动一周时,只有一个方向使信号消失;也只有一个方向信号最强。
这样就克服了磁性天线的双值性,获得了单方向性能。
我们把信号强的这个面叫单向大音面,简称大音面。
利用大音面就可直接定出电台在那一边。
无线电测向技术(二)——站点安装
安装其它设备 , 必须要将其 限制在测 向天线底部6 。锥角 0 范 围内 ( 图 1 。同时 , 见 ) 天线站 点要远 离各类可能 反射 电
磁信号的物体 。 如果测 向天线安 装在建筑物
+ 甚 线 E雠 ii
,
或 电视发射通常采用 的是水平极化 天线发射信号 , 不适 合 作为这类测 向站点 的参考站 ( 参考 方向 ) 。
图 2在户外 型机柜 中集成测 向设备
中目 线 电 2 o , o 6
l ; j ; I
维普资讯
3 图4 。 、 ) 户外型机柜可以 固定在靠近测 向天线 的平 台上 , 可通过光纤 网等高速 网络对设备进行遥控 。户外型机柜 内 置 了加热和冷却系统 , 可保证机柜内部的设施工作在最佳 的环境温度中。 机箱的冷却 系统是其 内部 的风扇 , 保证机
维普资讯
( 上期 ) 接
在天线杆上安装天线时 ,应首 先考虑将 VHF UHF / 天线安装在天线杆的顶端 。 如果将 天线安装在天线杆的一
侧, 将会导致相 当大 的测 向误 差 。 如要在测 向天线的下方
测 向天线安装得越高 , 向覆盖范 围就会 越大 。 测 然而 ,
场且 信号场 强足够 强的场 地。
无线 电波会受 其传播路径 上障碍物 的反射 , 向机测 测 量的是信号的实际到达 角 , 以测向天线应安装在 电波传 所 播受影响最小的位 置。 下面介绍一下测 向站 点的选择标准 。 通常情况 下 , 天
线的安装位置越低 , 周围障碍物 如建筑物等对测 向所造成 的影响就会越大 。所 以 ,天线安 装必须 遵从一系列规则 ,
无线电测向原理
无线电测向原理一、导言随着无线电技术的不断发展和应用的广泛推广,无线电测向原理作为无线通信领域的重要技术,已经在许多领域发挥了重要作用。
本文将围绕无线电测向原理展开全面、详细、完整且深入的探讨。
二、无线电测向原理概述无线电测向原理是通过测量和分析无线电信号的特性来判断信号源的方位和位置的技术。
它利用接收到的无线电信号的强度、到达时间差、多普勒效应等特征参数,运用三边测量、多边测量等方法进行位置定位。
无线电测向原理可以应用于通信系统的无线网络规划与优化、无线电频谱监测、无线电定位和导航等领域。
2.1 无线电测向原理的基本流程无线电测向原理的基本流程包括信号接收、信号测量和信号处理三个步骤。
首先,无线电接收器接收到信号源发出的无线电信号;然后,通过测量信号的强度、到达时间差和多普勒效应等参数,得到信号源的位置信息;最后,通过信号处理算法对测量得到的信号参数进行分析和处理,得出信号源的方位和位置。
2.2 无线电测向原理的关键技术在无线电测向原理中,有一些关键技术对于实现高精度的测向结果非常重要。
2.2.1 天线阵列技术天线阵列技术是无线电测向原理中常用的一种技术,它通过使用多个天线元件组成的阵列,来实现对信号的方向敏感性。
通过对不同天线元件接收到的信号进行加权、相位差分析等处理,可以较准确地确定信号的方向。
2.2.2 超宽带技术超宽带技术是一种通过在时间域上产生极短脉冲信号来实现测向的技术。
它具有带宽宽、抗干扰能力强的特点,可以实现对信号的高精度测向。
2.2.3 多传感器数据融合技术多传感器数据融合技术是指将来自多个不同传感器的数据进行集成和处理,以提高测向精度和鲁棒性。
通过利用不同传感器的特点和优势,可以更好地抑制噪声、提高信号检测和估计的性能。
三、无线电测向原理的应用领域无线电测向原理作为一项重要的技术,已经在许多领域得到了广泛的应用。
3.1 通信系统无线网络规划与优化在通信系统的无线网络规划与优化中,无线电测向原理可以用于确定基站的布设位置和方位,优化无线网络的覆盖范围和质量。
无线电测向基础原理.
1 无线电测向基础1.1 示向度为了确定某个目标的方位,必须确定连接该目标至已知坐标的点的直线同某个起始方向(起始线之间的夹角。
例如,在点X 上有一个须要确定方位的目标,而点A 的地理坐标已知,那么,点X 和点A 的连线同地理正北方向之间的夹角A a 称为示向度(图1-1。
这就是说,示向度是以已知地理坐标的观测点A 的地球子午线的指北方向沿顺针方向旋转至点A 与被测目标连线所转过的角度。
其取值范围:0≤示向度<360°。
无线电测向是用无线电技术手段确定来波..的示向度。
请注意,无线电测向设备所测定的是来波..的示向度(到达角,由于电波传播中可能出现的不正常现象会导致其等相位面畸变,因而来波的到达角未必是其辐射源所在的方位。
图1-1 测向与定位1.2 交会定位只在一个已知地理坐标的点测向,只能得到一条方位线,而不能得到一个定位点。
为了实现定位,必须产生两条或两条以上相互独立的方位线。
例如,点X 有一个须要确定位置的目标,而点A 与点B 的地理坐标已知,那么,由点A 和点B 测得示向度A a 和B a 与相应的方位线A LOP 和B LOP ,方位线A LOP 与B LOP 的交点,就认为是目标位置(图1-1。
如果用n 条方位线交会定位,那么,由于测向误差的影响,在目标真实位置W 周围将得出最多可达m 个交会点。
m 由下式得出:21(-=n n m (1-1a式中,n ——用于交会定位的方位线的条数。
目标真实位置w 仅以一定的概率位于这些交点所构成的多边形内。
这个概率121--=n n n p (1-2式中,n ——用于交会定位的方位线的条数。
n p 随着用于交会定位的方位线的条数的增多而增大。
表1-1是根据式(1-2制得的。
表1-1 目标位于方位线交点多边形内的概率与方位线条数的关系1.3 电磁波电磁场是相互联系着的电场与磁场的总和。
由发射天线辐射出来的无线电波的电磁场是行波场:电磁场的相位随着电波传播的路程成比例地变化,而幅度变化比较小。
无线电测向及应用
无线电测向及应用无线电测向是一种通过测量无线电信号到达接收器的力度和方向来确定发送器位置的技术。
它是一个重要的无线通信工程技术,在军事、民用通信、航空航天等领域都有广泛的应用。
下面我将介绍一些关于无线电测向的基本原理、常用方法和应用领域。
无线电测向的基本原理是通过接收器接收到的信号的力度和到达时间差来确定信号的来源方向。
在无线电测向系统中,通常会使用多个接收天线,将接收到的信号和信号到达时间差进行计算和分析,从而确定信号的方向。
这些接收天线可以以不同形式布置,如线性阵列、圆形阵列等。
常见的无线电测向方法包括干扰测向、信标测向和多普勒测向。
干扰测向是指通过对干扰信号的特征进行测量和分析,确定其来源方向。
这种方法通常用于无线电窃听、干扰源定位等应用。
信标测向是通过接收到的信标信号的力度和到达时间差来确定信标的位置。
这种方法通常用于无线定位系统、定位导航系统等应用。
多普勒测向是通过测量接收到的信号频率的变化,确定信号源的速度、运动方向和位置。
这种方法通常用于雷达、航空航天等应用。
在军事领域,无线电测向被广泛应用于通信情报获取、电子战、空中战术等领域。
通过对敌方通信无线电信号进行测向分析,可以确定敌方通信的位置和通信线路,为军事作战提供情报支持。
在电子战中,无线电测向可以用于探测和定位敌方无线电干扰源,采取相应的对抗措施。
在空中战术中,无线电测向可以用于确定敌方无线电信号的来源,对敌方通信进行干扰和破坏。
在民用通信领域,无线电测向被应用于定位导航、安全防范、频谱管理等方面。
定位导航系统如GPS可以通过无线电测向和测距原理进行卫星定位,实现精确定位和导航功能。
安全防范系统如无线电监控系统可以通过无线电测向和监测原理对可疑信号进行定位和跟踪,保障安全防范工作。
频谱管理系统通过无线电测向对无线电信号进行监测和测量,实现对频谱资源的合理管理和利用。
在航空航天领域,无线电测向被应用于飞行导航、空中交通控制等方面。
无线电测向基础知识
无线电测向基础知识嘿,朋友们!今天咱来聊聊无线电测向这玩意儿。
你说这无线电测向像不像捉迷藏啊?只不过我们要找的不是人,而是那看不见摸不着的无线电信号!想象一下,你站在一片广阔的地方,手里拿着个测向仪,就像拿着个神奇的魔法棒,要去探寻那神秘的无线电信号从哪儿来。
这多有意思呀!无线电测向可不光是好玩哦,它还特别有用呢!比如说在野外探险的时候,如果迷路了,通过无线电测向说不定就能找到回家的路呢,这可比瞎转悠靠谱多了吧!那怎么才能玩好无线电测向呢?首先得熟悉你手里的那个测向仪,就像熟悉你的好朋友一样。
知道它的各种功能,怎么调呀,怎么看呀。
这就好比你要和朋友一起完成一个任务,你得先知道朋友擅长啥,对吧?然后呢,得学会听信号。
那信号的声音可不一样哦,有的强,有的弱,有的声音尖,有的声音闷。
你得仔细听,用心去分辨,就像分辨不同人的声音一样。
这可需要点耐心和细心呢,要是马马虎虎的,那可就找不到啦!还有啊,得会判断方向。
这就像你在迷宫里找出口,得知道往哪儿走。
通过听信号的强弱变化,来判断信号源的大致方向。
这可不简单哦,但只要多练习,你肯定能掌握的。
你说这无线电测向是不是很神奇?它能让我们像侦探一样,通过一些小小的线索,找到隐藏在空气中的秘密。
在玩无线电测向的过程中,还能锻炼我们的身体呢!你得跑来跑去呀,一会儿这边,一会儿那边,不知不觉就运动了。
而且还能锻炼我们的思维能力,让我们的脑子转得更快,更聪明。
哎呀,这无线电测向真的是太棒啦!它让我们既能享受探索的乐趣,又能学到好多知识和技能。
朋友们,快来一起加入无线电测向的大家庭吧,让我们一起在无线电的世界里尽情玩耍,尽情探索!总之,无线电测向就是这么一个有趣又有用的东西,你还在等什么呢?赶紧行动起来吧!。
无线电测向基础原理.
1 无线电测向基础1.1 示向度为了确定某个目标的方位,必须确定连接该目标至已知坐标的点的直线同某个起始方向(起始线之间的夹角。
例如,在点X 上有一个须要确定方位的目标,而点A 的地理坐标已知,那么,点X 和点A 的连线同地理正北方向之间的夹角A a 称为示向度(图1-1。
这就是说,示向度是以已知地理坐标的观测点A 的地球子午线的指北方向沿顺针方向旋转至点A 与被测目标连线所转过的角度。
其取值范围:0≤示向度<360°。
无线电测向是用无线电技术手段确定来波..的示向度。
请注意,无线电测向设备所测定的是来波..的示向度(到达角,由于电波传播中可能出现的不正常现象会导致其等相位面畸变,因而来波的到达角未必是其辐射源所在的方位。
图1-1 测向与定位1.2 交会定位只在一个已知地理坐标的点测向,只能得到一条方位线,而不能得到一个定位点。
为了实现定位,必须产生两条或两条以上相互独立的方位线。
例如,点X 有一个须要确定位置的目标,而点A 与点B 的地理坐标已知,那么,由点A 和点B 测得示向度A a 和B a 与相应的方位线A LOP 和B LOP ,方位线A LOP 与B LOP 的交点,就认为是目标位置(图1-1。
如果用n 条方位线交会定位,那么,由于测向误差的影响,在目标真实位置W 周围将得出最多可达m 个交会点。
m 由下式得出:21(-=n n m (1-1a式中,n ——用于交会定位的方位线的条数。
目标真实位置w 仅以一定的概率位于这些交点所构成的多边形内。
这个概率121--=n n n p (1-2式中,n ——用于交会定位的方位线的条数。
n p 随着用于交会定位的方位线的条数的增多而增大。
表1-1是根据式(1-2制得的。
表1-1 目标位于方位线交点多边形内的概率与方位线条数的关系1.3 电磁波电磁场是相互联系着的电场与磁场的总和。
由发射天线辐射出来的无线电波的电磁场是行波场:电磁场的相位随着电波传播的路程成比例地变化,而幅度变化比较小。
无线电测向的方法
无线电测向技术简介测定电波来波方向,往往需要以几个位置不同的测向站(台)组网测向,用各测向站的示向度(线)进行交汇。
条件允许时,也可以用移动测向站,在不同位置依次分时交测。
无线电测向的方法无线电测向一般有以下几种方法:2.1、幅度比较式测向体制幅度比较式测向体制的工作原理是:依据电波在行进中,利用测向天线阵或测向天线的方向特性,对不同方向来波接收信号幅度的不同,测定来波方向。
幅度比较式测向体制的特点:测向原理直观明了,一般来说系统相对简单,体积小,重量轻,价格便宜。
存在间距误差和极化误差,抗波前失真的能力受到限制。
频率覆盖范围、测向灵敏度、准确度、测向时效、抗多径能力和抗干扰能力等重要指标,要根据具体情况做具体分析。
2.2、干涉仪测向体制干涉仪测向体制的测向原理是:依据电波在行进中,从不同方向来的电波到达测向天线阵时,在空间上各测向天线单元接收的相位不同,因而相互间的相位差也不同,通过测定来波相位和相位差,即可确定来波方向。
在干涉仪测向方式中,是直接测量测向天线感应电压的相位,而后求解相位差,其数学公式与幅度比较式测向的公式十分相似。
相关干涉仪测向:是干涉仪测向的一种,它的测向原理是:在测向天线阵列工作频率范围内和360度方向上,各按一定规律设点,同时在频率间隔和方位间隔上,建立样本群,在测向时,将所测得的数据与样本群进行相关运算和插值处理,以获得来波信号方向。
干涉仪测向体制的特点:采用变基线技术,可以使用中、大基础天线阵,采用多信道接收机、计算机和FFT技术,使得该体制测向灵敏度高,测向准确度高,测向速度快,可测仰角,有一定的抗波前失真能力。
该体制极化误差不敏感。
干涉仪测向是当代比较好的测向体制,由于研制技术较复杂、难度较大,因此造价较高。
干涉仪测向对接收信号的幅度不敏感,测向天线在空间的分布和天线的架设间距,比幅度比较式测向灵活,但又必须遵循某种规则。
例如:可以是三角形,也可以是五边形,还可以是L形等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节无线电测向基本技术
短距离无线电测向的基本方法和基本技术,可归纳为下列几个方面:
一、收测电台信号
1、收听电台信号
当不了解被收听电台信号的强度时,如在起点收听首找台或找某台后收测下号台(应迅速离开该台十余米),可将音量旋至最大,边转动测向机,边调整频率旋钮,听到信号后,首先辨认台号是不是你现在需要寻找的电台呼号,然后缓慢的左右细调,使声音最大,音调悦耳。
最后,将音量旋钮旋至适当位置,进行测向。
2、测出电台方向线的基本方法
单向一双向法:按前述的持机方法持机,按下单向开关,使本机大音面作环向扫动,同时旋转频串钮,当耳机内出现需要测收的电台信号且声音最大时,侧向机大音面所指方向即为电台方向.这一过程称测单向。
由于大音面是一个较大的扇面,难以准确地确定电台方向线,因此在单向测向后要松开单向开关,用磁性天线的小音点(即磁棒)对着电台并左右摆动,声音最小时磁捧所指方向,即为电台的准确方向。
后面的这个过程称测双向。
双向一单向法:先不按单向开关,用磁性天线收到电台信号后,水平旋转溅向机,找出小音点(或称哑点线)获得电台所在直线,然后按下单向开关并转动测向机如90度,在此位置上,反复迅速的旋转测向机180度。
比较声音大小,声音大时,本机单向大音面所指的方向,即为电台的方向。
二、方向蹬踪
沿测向机指示的电台方向,边跑边测,直接接近并找到电台的方法叫方向跟踪。
由于80米波段测向机双向小音点方向线(或称哑点线)清晰准确,因此跟踪时多使用此方向线。
在地形简单、障碍较少的情况,方向跟踪时可快速奔跑,并在跑动中左右强动测向机,不仔的校正方向(注意随时调小音量)。
方向跟踪时,容易出现从电台附近越过而并未觉察的情况,这时运动员虽己跑过电台,但测向机磁性天线指示的方向线,由于变化不大而未能及时发现,造成反方向跟踪,越跑越远,甚至耳机音量明显减弱时才会发觉。
避免的办法是在跟踪中打儿次单向,判断大音面是否己转向到后面
宁跑勿走,宁过勿欠,这是迅速到位的最基本要求,切忌尚未到位便进行搜索。
耽误时间。
三、交叉定点
在不同的测向点测出两条或两条以上的方向线,依靠方向线的交点确定电台位置的方法,叫交叉定点。
具体方法如图4—1所示。
运动员在A 点测出一条方向线,记住这条线上前方的方位物。
再沿图示方向跑至B 点,
用双向(此时己无需再测单向)测
出另一条方向线。
两条方向线的
交点即为电台位置。
图4—1 交叉定点
四、比音量
在距电台很近时,利用测向机音量随距离变化大的特性确定电台位置的方法,称作比音量。
比音量技术是在出现干扰,造成测向机指向模糊、混乱、无法正常使用方向跟踪等技术时使用的一种方法。
比音量有两种方法:
1、扫音量
将测向机直立天线抽出,按下单向开关,将持机臂伸长向周围做弧形扫动,寻得音量最大的方向,并沿此方项边扫边进,直至找到电台。
2、跑音量
这是在近台区出现严重于扰,无法测出方向线时才使用的一种方法.具体步骤是:将测向机音量调小,在可疑区反复奔跑。
五、电波的反射及注意事项
由于短距离测向多在市内或近郊进行,电波的反射不能不引起特别的注意。
与反射有关的因索主要有以下儿点:
1、山地对电波的反射,石山为最,土山较弱,且山势超陡反射越厉害。
2、高大的楼房容易反射电波。
3、电线及高压电线对电波进行辐射。
总之,如进入上述区城,出现方向模糊不清,指向错误多变,交点不定,信号忽强忽弱时,应马上意识到己进入反射区,要立即退出,再找新测向点。
A
B。