2016年南三县9年级下数学统考参考答案
南三县期末联考九年级数学参考答案及评分意见
南三县期末联考九年级数学参考答案及评分意见二、填空题(每小题3分,共18分)三、解答题(共66分)注:1.阅卷时应按步计分,每步只设整分;2.如有其它解法,只要正确,都可参照评分标准,各步相应给分. 19.解:设k y k x 3,2== 2分 则yx y x 22+-=kk k k 322322⨯+-⨯ 4分=kk 8=81 6分20.作图正确得6分;若以O 为位似中心,作出的图形的边长缩小了2倍,则得3分.21.解:S阴影=)1119(36012022-⨯⨯π=π80 m26分22.解:(1) ∵OE ⊥A C ,垂足为E ,∴AE=EC , 2分 ∵A O=BO , ∴OE=12BC=25 4分(2)∠A=12∠BOC=25°, 5分在Rt △AOE 中,sinA=OAOE ,∴︒==25sin 5.2sin AOE OA 6分∵∠AOC=180°-50°=130° ∴弧AC 的长=130 2.5180sin 25⨯︒π≈13.4 8分23.解:在ABC Rt ∆中ACBC CAB =∠sin∴43.775.10945sin ≈⨯︒==AB BC m 3分 在ABD Rt ∆中ABBD DAB =∠tan∴11.1345.10945sin 60tan 60tan ≈⨯︒⨯︒=⨯︒=AB BD m 6分 ∴7.56≈-=BC BD CD m 8分24.解:(1)是; 1分在等腰直角三角形ABC 中 ︒=∠=∠45C B 2分 ∵BAF BAF B AFC ∠+︒=∠+∠=∠45BAF BAF FAG BAG ∠+︒=∠+∠=∠45∴BAG AFC ∠=∠ 4分 ∵︒=∠=∠45C B∴△ABG ~△ACF 5分 (2)不变; 6分∵△ABG ~△ACF ∴CFAB ACBG =∴CF BG ∙=1=∙AB AC 10分25.解:(1)设反比例函数的解析式x k y =()0≠k 1分 由题意得,把B 点坐标(5,2)代入xk y =, 2=5k 解得10=k∴该反比例函数的解析式为xy 10= 3分把5=y 代入xy 10=得2=x∴52≤≤x 4分 (2)设二次函数的解析式2)5(2+-=x a y )0(≠a 5分 把C 点(7,1.5)代入2)5(2+-=x a y 得 6分5.124=+a ,解得81-=a∴该二次函数的解析式为2)5(812+--=x y 7分把0=y 代入2)5(812+--=x y 得1,921==x x (舍去)∴95≤≤x 8分 (3)729=-=d 10分26.解:(1)由题意可知C (0,-3),12=-ab ,∴ 抛物线的解析式为y = ax 2-2ax -3(a >0), 过M 作MN ⊥y 轴于N ,连结CM ,则MN = 1,5=CM ,∴ CN = 2,于是m =-1. 2分 同理可求得B (3,0),把B (3,0)代入y = ax 2-2ax -3 4分 ∴0369=--a a ,得 a = 1,∴ 抛物线的解析式为y = x 2-2x -3. 5分(2)存在三个点P 1(0,0),P 2(0,31),P 3(9,0),使得以P 、A 、C 为顶点的三角形与△BCE 相似. 8分(每个1分) (3)由(1)得 E (1,-4),D (0,1),B (3,0).∴ 在△BCE 中,23=BC ,2=CE ,52=BE在△BOD 中,3=OB , 1=OD ,10=BD ∴ 2323==OB BC ,212==ODCE ,21052==BDBE∴ BDBE ODCE OBBC ==,∴ △BOD ∽△BCE 10分 得 ∠CBE =∠OBD =β,因此 sin (α-β)= sin (∠DBC -∠OBD )= sin ∠OBC =22=BCCO 12分。
浙江省宁波市南三县中考数学模拟试卷(4)含答案解析
浙江省宁波市南三县中考数学模拟试卷(4)一.选择题(共10小题,满分30分,每小题3分)1.(3分)计算:﹣15÷(﹣5)结果正确的是()A.75 B.﹣75 C.3 D.﹣32.(3分)下列交通标志图案中,是中心对称图形的是()A.B.C.D.3.(3分)书架上有a本经济类书,7本数学书,b本小说,5本电脑游戏类书.现某人随意从架子上抽取一本书,若得知取到经济类或者数学书的机会为,则a,b的关系为()A.a=b﹣2 B.a=b+12 C.a+b=10 D.a+b=124.(3分)如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()A.主视图B.俯视图C.左视图D.一样大5.(3分)下列运算中正确的是()A.a5+a5=2a10B.a5•a5=2a10C.(﹣4a﹣1)(4a﹣1)=1﹣16a2D.(a﹣2b)2=a2﹣4b26.(3分)如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76°B.78°C.80°D.82°7.(3分)抛物线y=x2+4x+5是由抛物线y=x2+1经过某种平移得到,则这个平移可以表述为()A.向左平移1个单位B.向左平移2个单位C.向右平移1个单位D.向右平移2个单位8.(3分)下列命题中,真命题的个数有()①如果两条直线都与第三条直线平行,那么这两条直线也互相平行.②过直线外一点有且只有一条直线与这条直线平行.③两条直线被第三条直线所截,同旁内角互补.④内错角相等,两直线平行.A.4 B.3 C.2 D.19.(3分)如图:二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于C点,若AC⊥BC,则a的值为()A.﹣ B.﹣ C.﹣1 D.﹣210.(3分)如图,AB为⊙O的直径,过B作⊙O的切线,在该切线上取点C,连接AC交⊙O于D,若⊙O的半径是6,∠C=36°,则劣弧AD的长是()A.πB.πC.πD.3π二.填空题(共6小题,满分24分,每小题4分)11.(4分)据最新统计,苏州市常住人口约为1062万人.数据10 620 000用科学记数法可表示为.12.(4分)分解因式:a2﹣a+2=.13.(4分)教室里有几名学生,这个时候一位身高170厘米的老师走进了教室,使得教室里所有人的平均身高从140厘米变成了145厘米,使得所有人的平均体重从35千克变成了39千克,则老师的体重是千克.14.(4分)如图,在Rt△ABC中,∠ACB=90°,半径为1的圆A与边AB相交于点D,与边AC相交于点E,连接DE并延长,与线段BC的延长线交于点P.已知tan∠BPD=,CE=2,则△ABC的周长是.15.(4分)如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是.16.(4分)已知在平面直角坐标系中有两点A(0,1),B(﹣1,0),动点P在反比例函数y=的图象上运动,当线段PA与线段PB之差的绝对值最大时,点P 的坐标为.三.解答题(共8小题,满分66分)17.(6分)化简计算①π0+2﹣1﹣﹣|1﹣|②﹣2③﹣(+2)④3﹣9+3⑤÷﹣×+.18.(6分)解不等式组;19.(6分)已知:如图,在▱ABCD中,DE平分∠ADB,交AB于E,BF平分∠CBD,交CD于F.(1)求证:△ADE≌△CBF;(2)当AD与BD满足什么关系时,四边形DEBF是矩形?请说明理由.20.(8分)如图,反比例函数y=(k≠0,x<0)的图象过等边△AOB的顶点A.已如点B在x轴上,且B(﹣4,0).(1)求反比例函数的表达式;(2)若要使点B在上述反比例函数的图象上,需将△AOB向上平移多少个单位长度?21.(8分)某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)求共抽取了多少名学生的征文;(2)将上面的条形统计图补充完整;(3)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少;(4)如果该校九年级共有1200名学生,请估计选择以“友善”为主题的九年级学生有多少名.22.(10分)如图,已知A、B是⊙O上两点,△OAB外角的平分线交⊙O于另一点C,CD⊥AB交AB的延长线于D.(1)求证:CD是⊙O的切线;(2)E为的中点,F为⊙O上一点,EF交AB于G,若tan∠AFE=,BE=BG,EG=3,求⊙O的半径.23.(10分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?24.(12分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y 轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC 上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.浙江省宁波市南三县中考数学模拟试卷(4)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:﹣15÷(﹣5)=3,故选:C.2.【解答】解:四张交通标志图案的卡片中,只有第三张为中心对称图形.故选:C.3.【解答】解:由已知可得a+7=,解得a+2=b,即a=b﹣2.故选A.4.【解答】解:如图,该几何体正视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图.故选:C.5.【解答】解:A、a5+a5=2a5,故本选项错误;B、a5•a5=a10,故本选项错误;C、(﹣4a﹣1)(4a﹣1)=(﹣1)2﹣(4a)2=1﹣16a2,故本选项正确;D、(a﹣2b)2=a2﹣4ab+4b2,故本选项错误;故选:C.6.【解答】解:如图,分别过K、H作AB的平行线MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=∠ABK,∠SH C=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故选:B.7.【解答】解:原抛物线的顶点为(0,1),新抛物线的顶点为(﹣2,1),∴是抛物线y=x2+1向左平移2个单位得到,故选:B.8.【解答】解:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行是真命题.②过直线外一点有且只有一条直线与这条直线平行是真命题.③两条平行线被第三条直线所截,同旁内角互补是假命题.④内错角相等,两直线平行是真命题.故选:B.9.【解答】解:设A(x1,0)(x1<0),B(x2,0)(x2>0),C(0,t),∵二次函数y=ax2+bx+2的图象过点C(0,t),∴t=2;∵AC⊥BC,∴OC2=OA•OB,即4=|x1x2|=﹣x1x2,根据韦达定理知x1x2=,∴a=﹣.故选:A.10.【解答】解:连接BD,OD,∵AB为圆O的直径,∴∠ADB=90°,∵BC与圆O相切,∴AB⊥BC,即∠ABC=90°,∵∠C=36°,∴∠ABD=36°,∵OB=OD,∴∠ABD=∠ODB=36°,∴∠AOD=72°,则劣弧AD的长为=π.故选:C.二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:数据10 620 000用科学记数法可表示为1.062×107,故答案为:1.062×107.12.【解答】解:a2﹣a+2=(a2﹣6a+9)=(a﹣3)2.故答案为:(a﹣3)2.13.【解答】解:设学生人数为x名,依题意有140x+170=145(x+1),解得x=5,39×(5+1)﹣35×5=234﹣175=59(千克).答:老师的体重是59千克.故答案为:59.14.【解答】解:过D点作DQ⊥AC于点Q.则△DQE与△PCE相似,设AQ=a,则QE=1﹣a.∴且tan∠BPD=,∴DQ=2(1﹣a).∵在Rt△ADQ中,据勾股定理得:AD2=AQ2+DQ2即:12=a2+【2(1﹣a)】2,解之得a=1(不合题意,舍去),或a=.∵△ADQ与△ABC相似,∴====.∴AB=5AD=5,BC=5DQ=4,AC=5AQ=3,∴三角形ABC的周长是:AB+BC+AC=5+4+3=12;故答案为:12.15.【解答】解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∴DE=,故答案为:.16.【解答】解:如图,设直线AB的解析式为y=kx+b,将A(0,1)、B(﹣1,0)代入,得:,解得:,∴直线AB的解析式为y=x+1,直线AB与双曲线y=的交点即为所求点P,此时|PA﹣PB|=AB,即线段PA与线段PB之差的绝对值取得最大值,由可得或,∴点P的坐标为(1,2)或(﹣2,﹣1),故答案为:(1,2)或(﹣2,﹣1).三.解答题(共8小题,满分66分)17.【解答】解:①原式=1+﹣﹣(﹣1)=2﹣.②原式=2+1﹣2=1.③原式=2﹣2﹣2=﹣2.④原式=12﹣3+6=15.⑤原式=4﹣+2=4+.18.【解答】解:由①得:x>,由②得:x<8,故不等式组的解集为:<x<8.19.【解答】证明:(1)∵▱ABCD,∴AD=BC,∠A=∠C,AD∥BC,∴∠ADB=∠CBD,∵DE平分∠ADB,BF平分∠CBD,∴∠ADE=∠CBF,在△ADE与△CBF中,∴△ADE≌△CBF(ASA),(2)当AD=BD时,∵DE平分∠ADB,∴DE⊥BE,∴∠DEB=90°,∵△ADE≌△CBF,∴DE=BF,∵∠EDB=∠DBF,∴DE∥BF,∴四边形DEBF是平行四边形,∵∠DEB=90°,∴平行四边形DEBF是矩形.20.【解答】解:(1)过A作AD⊥OB于D,∵B(﹣4,0),∴OB=4,∵△AOB是等边三角形,∴OD=2,AD==2,∵反比例函数y=(k≠0,x<0)的图象过等边三角形AOB的顶点A,∴A(﹣2,2),∴k=﹣2×2=﹣4,∴反比例函数的表达式为:y=﹣;(2)∵B(﹣4,0),∵当x=﹣4时,y=﹣=,∴要使点B在上述反比例函数的图象上,需将△AOB向上平移个单位长度.21.【解答】解:(1)本次调查共抽取的学生有3÷6%=50(名).(2)选择“友善”的人数有50﹣20﹣12﹣3=15(名),条形统计图如图所示:(3)∵选择“爱国”主题所对应的百分比为20÷50=40%,∴选择“爱国”主题所对应的圆心角是40%×360°=144°;(4)该校九年级共有1200名学生,估计选择以“友善”为主题的九年级学生有1200×30%=360名.22.【解答】(1)证明:连接OC,如图,∵BC平分∠OBD,∴∠OBD=∠CBD,∵OB=OC,∴∠OBC=∠OCB,∴∠OCB=∠CBD,∴OC∥AD,而CD⊥AB,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连接OE交AB于H,如图,∵E为的中点,∴OE⊥AB,∵∠ABE=∠AFE,∴tan∠ABE=tan∠AFE=,∴在Rt△BEH中,tan∠HBE==设EH=3x,BH=4x,∴BE=5x,∵BG=BE=5x,∴GH=x,在Rt△EHG中,x2+(3x)2=(3)2,解得x=3,∴EH=9,BH=12,设⊙O的半径为r,则OH=r﹣9,在Rt△OHB中,(r﹣9)2+122=r2,解得r=,即⊙O的半径为.23.【解答】解:(1)由函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B 到甲地的距离与行驶时间的关系;(2)(330﹣240)÷60=1.5(千米/分);(3)设L1为s1=kt+b,把点(0,330),(60,240)代入得k=﹣1.5,b=330所以s1=﹣1.5t+330;设L2为s2=k′t,把点(60,60)代入得k′=1所以s2=t;(4)当t=120时,s1=180,s2=120330﹣180﹣120=30(千米);所以2小时后,两车相距30千米;(5)当s1=s2时,﹣1.5t+330=t解得t=132即行驶132分钟,A、B两车相遇.24.【解答】解:(1)当x=0,y=3,∴C(0,3).设抛物线的解析式为y=a(x+1)(x﹣).将C(0,3)代入得:﹣a=3,解得:a=﹣2,∴抛物线的解析式为y=﹣2x2+x+3.(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.∵OC=3,AO=1,∴tan∠CAO=3.∴直线AC的解析式为y=3x+3.∵AC⊥BM,∴BM的一次项系数为﹣.设BM的解析式为y=﹣x+b,将点B的坐标代入得:﹣×+b=0,解得b=.∴BM的解析式为y=﹣x+.将y=3x+3与y=﹣x+联立解得:x=﹣,y=.∴MC=BM═=.∴△MCB为等腰直角三角形.∴∠ACB=45°.(3)如图2所示:延长CD,交x轴与点F.∵∠ACB=45°,点D是第一象限抛物线上一点,∴∠ECD>45°.又∵△DCE与△AOC相似,∠AOC=∠DEC=90°,∴∠CAO=∠ECD.∴CF=AF.设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.∴F(4,0).设CF的解析式为y=kx+3,将F(4,0)代入得:4k+3=0,解得:k=﹣.∴CF的解析式为y=﹣x+3.将y=﹣x+3与y=﹣2x2+x+3联立:解得:x=0(舍去)或x=.将x=代入y=﹣x+3得:y=.∴D(,).。
2016届九年级(下)期末数学试卷(解析版)
原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!玉壶存冰心,朱笔写师魂。
——冰心《冰心》李度一中陈海思2015-2016学年九年级(下)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.在数1,0,﹣1,﹣2中,最小的数是()A.1 B.0 C.﹣1 D.﹣22.下列运算正确的是()A.a3•a2=a5 B.a6÷a2=a3 C.(a3)2=a5 D.(3a)3=3a33.已知一个几何体的三视图如图所示,则该几何体是()A.圆柱B.圆锥C.球D.棱柱4.若式子在实数范围内有意义,则x的取值范围是()A.x<2 B.x>2 C.x≤2 D.x≥25.如图,圆锥的母线长为2,底面圆的周长为3,则该圆锥的侧面积为()A.3π B.3 C.6π D.66.下列事件为必然事件的是()A.如果a,b是实数,那么a•b=b• aB.抛掷一枚均匀的硬币,落地后正面朝上C.汽车行驶到交通岗遇到绿色的信号灯D.口袋中装有3个红球,从中随机摸出一球,这个球是白球7.正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK 上,正方形BEFG的边长为4,则△DEK的面积为()A.10 B.12 C.14 D.168.如图,点A、B为直线y=x上的两点,过A、B两点分别作y轴的平行线交双曲线(x>0)于点C、D两点.若BD=2AC,则4OC2﹣0D2的值为()A.5 B.6 C.7 D.8二、填空题(共10小题,每小题3分,满分30分)9.的相反数是.10.分解因式:x2y﹣y= .11.据报载,2014年我国发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示.12.一组数据3,9,4,9,5的众数是.13.等腰三角形的两边长分是3和7,则其周长为.14.一个四边形四条边顺次为a,b,c,d且a2+b2+c2+d2=2ac+2bd,则这个四边形是.15.已知直线y=ax与双曲线y=交于点A(x1,y1),B(x2,y2),则﹣x1y2+3x2y1= .16.已知点P为(6,8),A为(1,4),B为(3,2).若过点P的直线y=x+b 与线段AB有公共点,则b的取值范围是.17.网格中的每个小正方形的边长都是1△ABC每个顶点都在网格的交点处,则sinA= .18.如图,在正方形ABCD中,△AEF的顶点E,F分别在BC、CD边上,高AG与正方形的边长相等,连BD分别交AE、AF于点M、N,若EG=4,GF=6,BM=,则MN的长为.三、解答题(共10小题,满分96分)19.(1)计算: +(﹣)﹣1﹣sin45°+(﹣2)0(2)解方程:.20.先化简,再求值:( +)•(x2﹣1),其中x=.21.某高校学生会发现学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?22.商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.23.如图,在△ABC中,以AB为直径的⊙O交AC于点D,过点D作DE⊥BC于点E,且∠BDE=∠A.(1)判断DE与⊙O的位置关系并说明理由;(2)若AC=16,tanA=,求⊙O的半径.24.如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P (n,2),与x轴交于点A(﹣4,0),与y轴交于点C,PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.25.如图所示,小明家小区空地上有两棵笔直的树CD、EF.一天,他在A处测得树顶D的仰角∠DAC=30°,在B处测得树顶F的仰角∠FBE=45°,线段BF恰好经过树顶D.已知A、B两处的距离为2米,两棵树之间的距离CE=3米,A、B、C、E四点在一条直线上,求树EF的高度.(≈1.7,≈1.4,结果保留一位小数)26.小明开了一家网店,进行社会实践,计划经销甲、乙两种商品.若甲商品每件利润10元,乙商品每件利润20元,则每周能卖出甲商品40件,乙商品20件.经调查,甲、乙两种商品零售单价分别每降价1元,这两种商品每周可各多销售10件.为了提高销售量,小明决定把甲、乙两种商品的零售单价都降价x 元.(1)直接写出甲、乙两种商品每周的销售量y(件)与降价x(元)之间的函数关系式:y甲= ,y乙= ;(2)求出小明每周销售甲、乙两种商品获得的总利润W(元)与降价x(元)之间的函数关系式?如果每周甲商品的销售量不低于乙商品的销售量的,那么当x定为多少元时,才能使小明每周销售甲、乙两种商品获得的总利润最大?27.问题背景两角和(差)的正切公式是数学公式中的重要公式:即:tan(α+β)= tan(α﹣β)=(α、β的取值应使公式有意义)(1)直接运用:tan75°=tan(30°+45°)= ;tan15°=tan(45°﹣30°)=(2)灵活运用:已知tanα,tanβ是方程2x2﹣3x+1=0的根,求tan(α+β)的值.(3)拓展运用①如图1,三个相同的正方形相接,求证:α+β=45°.②如图2,两座建筑物AB、CD的高度分别是9m和15m,从建筑物AB的顶部A看建筑物CD的张角∠CAD=45°,求建筑物AB和CD的底部之间的距离BD.28.在平面直角坐标系中,已知抛物线y=ax2+bx+c经过点A(﹣3,0),B(1,0),C(0,3)三点.(1)求抛物线的解析式.(2)在抛物线上是否存在点P,使tan∠PBA=?若存在,求点P坐标及△PAB 的面积.(3)将△COB沿x轴负方向平移1.5个单位至△FGH处,求△FGH与△AOC的重叠面积.(4)若点D、E分别是抛物线的对称轴l上的两动点,且纵坐标分别为n,n+6,求CE+DB的最小值及此时D、E的坐标.2015-2016学年九年级(下)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.在数1,0,﹣1,﹣2中,最小的数是()A.1 B.0 C.﹣1 D.﹣2【考点】有理数大小比较.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣2<﹣1<0<1,故选:D.2.下列运算正确的是()A.a3•a2=a5 B.a6÷a2=a3 C.(a3)2=a5 D.(3a)3=3a3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别根据同底数幂的除法,熟知同底数幂的除法及乘方法则、合并同类项的法则、幂的乘方与积的乘方法则对各选项进行计算即可.【解答】解:A、原式=a2+3=a5,故本选项正确;B、原式=a6﹣2=a4,故本选项错误;C、原式=a6,故本选项错误;D、原式=27a3,故本选项错误.故选:A.3.已知一个几何体的三视图如图所示,则该几何体是()A.圆柱B.圆锥C.球D.棱柱【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,从而得出答案.【解答】解:俯视图为圆的几何体为球,圆锥,圆柱,再根据其他视图,可知此几何体为圆柱.故选:A.4.若式子在实数范围内有意义,则x的取值范围是()A.x<2 B.x>2 C.x≤2 D.x≥2【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数,即可求解.【解答】解:根据题意得:x﹣2≥0,解得:x≥2.故选:D.5.如图,圆锥的母线长为2,底面圆的周长为3,则该圆锥的侧面积为()A.3π B.3 C.6π D.6【考点】圆锥的计算.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】解:根据题意得该圆锥的侧面积=×2×3=3.故选:B.6.下列事件为必然事件的是()A.如果a,b是实数,那么a•b=b• aB.抛掷一枚均匀的硬币,落地后正面朝上C.汽车行驶到交通岗遇到绿色的信号灯D.口袋中装有3个红球,从中随机摸出一球,这个球是白球【考点】随机事件.【分析】分别利用随机事件和必然事件以及不可能事件的定义分析得出即可.【解答】解:A、如果a,b是实数,那么a•b=b•a,是必然事件,符合题意;B、抛掷一枚均匀的硬币,落地后正面朝上,是随机事件,不合题意;C、汽车行驶到交通岗遇到绿色的信号灯,是随机事件,不合题意;D、口袋中装有3个红球,从中随机摸出一球,这个球是白球,是不可能事件,不合题意.故选:A.7.正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK 上,正方形BEFG的边长为4,则△DEK的面积为()A.10 B.12 C.14 D.16【考点】正方形的性质;三角形的面积.【分析】连DB,GE,FK,则DB∥GE∥FK,再根据正方形BEFG的边长为4,可求出S△DGE=S△GEB,S△GKE=S△GFE,再由S阴影=S正方形GBEF即可求出答案.【解答】解:如图,连DB,GE,FK,则DB∥GE∥FK,在梯形GDBE中,S△DGE=S△GEB(同底等高的两三角形面积相等),同理S△GKE=S△GFE.∴S阴影=S△DGE+S△GKE,=S△GEB+S△GEF,=S正方形GBEF,=4×4=16故选:D.8.如图,点A、B为直线y=x上的两点,过A、B两点分别作y轴的平行线交双曲线(x>0)于点C、D两点.若BD=2AC,则4OC2﹣0D2的值为()A.5 B.6 C.7 D.8【考点】反比例函数综合题.【分析】延长AC交x轴于E,延长BD交x轴于F.设A、B的横坐标分别是a,b,点A、B为直线y=x上的两点,A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.根据BD=2AC即可得到a,b的关系,然后利用勾股定理,即可用a,b表示出所求的式子从而求解.【解答】解:延长AC交x轴于E,延长BD交x轴于F.设A、B的横坐标分别是a,b,∵点A、B为直线y=x上的两点,∴A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.∵C、D两点在交双曲线(x>0)上,则CE=,DF=.∴BD=BF﹣DF=b﹣,AC=a﹣.又∵BD=2AC∴b﹣=2(a﹣),两边平方得:b2+﹣2=4(a2+﹣2),即b2+=4(a2+)﹣6.在直角△OCE中,OC2=OE2+CE2=a2+,同理OD2=b2+,∴4OC2﹣0D2=4(a2+)﹣(b2+)=6.故选B.二、填空题(共10小题,每小题3分,满分30分)9.的相反数是.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:的相反数是,故答案为:.10.分解因式:x2y﹣y= y(x+1)(x﹣1).【考点】提公因式法与公式法的综合运用.【分析】观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2﹣1符合平方差公式,利用平方差公式继续分解可得.【解答】解:x2y﹣y,=y(x2﹣1),=y(x+1)(x﹣1),故答案为:y(x+1)(x﹣1).11.据报载,2014年我国发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为 2.5×107 .【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将25000000用科学记数法表示为2.5×107.故答案为:2.5×107.12.一组数据3,9,4,9,5的众数是9 .【考点】众数.【分析】根据众数的定义:一组数据中出现次数最多的数据即可得出答案.【解答】解:这组数据中出现次数最多的数据为:9.故众数为9.故答案为:9.13.等腰三角形的两边长分别是3和7,则其周长为17 .【考点】等腰三角形的性质.【分析】因为边为3和7,没明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:分两种情况:当3为底时,其它两边都为7,3、7、7可以构成三角形,周长为17;当3为腰时,其它两边为3和7,3+3=6<7,所以不能构成三角形,故舍去,所以等腰三角形的周长为17.故答案为:17.14.一个四边形四条边顺次为a,b,c,d且a2+b2+c2+d2=2ac+2bd,则这个四边形是平行四边形.【考点】配方法的应用;平行四边形的判定.【分析】等号右边有2ac和2bd,可移到等号的左边,作为完全平方式的第二项,把等号左边整理为两个完全平方式相加等于0的形式,让底数为0可得四边形边长的关系,进而可得四边形的形状.【解答】解:a2+b2+c2+d2=2ac+2bd,(a2﹣2ac+c2)+(b2﹣2bd+d2)=0,(a﹣c)2+(b﹣d)2=0,∴a﹣c=0,b﹣d=0,∴a=c,b=d.∴四边形是平行四边形,故答案为平行四边形.15.已知直线y=ax与双曲线y=交于点A(x1,y1),B(x2,y2),则﹣x1y2+3x2y1= ﹣2 .【考点】反比例函数与一次函数的交点问题.【分析】首先解两个解析式组成的方程组求得x1、x2以及对应的y1和y2的值,然后代入求解即可.【解答】解:根据题意得:ax=,即ax2=1,则x2=,则x1=,则y1=;x2=﹣,则y2=﹣,则﹣x1y2+3x2y1=﹣×(﹣)+3×(﹣)=1﹣3=﹣2.故答案为﹣2.16.已知点P为(6,8),A为(1,4),B为(3,2).若过点P的直线y=kx+b 与线段AB有公共点,则b的取值范围是﹣4≤b≤3.2 .【考点】两条直线相交或平行问题.【分析】分别求出直线PA与PB的解析式,即可得到b的取值范围.【解答】解:设直线PA的解析式为y=kx+b,则,解得,所以直线PA的解析式为y=x+3.2;设直线PB的解析式为y=mx+n,则,解得,所以直线PB的解析式为y=2x﹣4;∵过点P的直线y=kx+b与线段AB有公共点,∴b的取值范围是﹣4≤b≤3.2.故答案为﹣4≤b≤3.2.17.网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sinA= .【考点】锐角三角函数的定义;三角形的面积;勾股定理.【分析】根据各边长得知△ABC为等腰三角形,作出BC、AB边的高AD及CE,根据面积相等求出CE,根据正弦是角的对边比斜边,可得答案.【解答】解:如图,作AD⊥BC于D,CE⊥AB于E,由勾股定理得AB=AC=2,BC=2,AD=3,可以得知△ABC是等腰三角形,由面积相等可得, BC•AD=AB•CE,即CE==,sinA===,故答案为:.18.如图,在正方形ABCD中,△AEF的顶点E,F分别在BC、CD边上,高AG与正方形的边长相等,连BD分别交AE、AF于点M、N,若EG=4,GF=6,BM=,则MN的长为.【考点】正方形的性质;勾股定理.【分析】连接GM,GN,由AG=AB=AD,利用“HL”证明△AGE≌△ABE,△AGF≌△ADF,从而有BE=EG=4,DF=FG=6,设正方形的边长为a,在Rt△CEF中,利用勾股定理求a的值,再利用勾股定理求正方形对角线BD的长,再证明△ABM≌△AGM,△ADN≌△AGN,得出MG=BM,NG=ND,∠MGN=∠MGA+∠NGA=∠MBA+∠NDA=90°,在Rt△GMN中,利用勾股定理求MN的值.【解答】解:如图,连接GM,GN,∵AG=AB,AE=AE,∴△AGE≌△ABE,同理可证△AGF≌△ADF,∴BE=EG=4,DF=FG=6,设正方形的边长为a,在Rt△CEF中,CE=a﹣4,CF=a﹣6,由勾股定理,得CE2+CF2=EF2,即(a﹣4)2+(a﹣6)2=102,解得a=12或﹣2(舍去负值),∴BD=12,易证△ABM≌△AGM,△ADN≌△AGN,∴MG=BM=3,NG=ND=12﹣3﹣MN=9﹣MN,∠MGN=∠MGA+∠NGA=∠MBA+∠NDA=90°,在Rt△GMN中,由勾股定理,得MG2+NG2=MN2,即(3)2+(9﹣MN)2=MN2,解得MN=5.故答案为:5.三、解答题(共10小题,满分96分)19.(1)计算: +(﹣)﹣1﹣sin45°+(﹣2)0(2)解方程:.【考点】实数的运算;零指数幂;负整数指数幂;解分式方程;特殊角的三角函数值.【分析】(1)原式第一项利用算术平方根定义计算,第二项利用负整数指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用零指数幂法则计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=3﹣2﹣×+1=3﹣2﹣1+1=1;(2)去分母得:3x+3=2x﹣2,解得:x=﹣5,经检验x=﹣5是分式方程的解.20.先化简,再求值:( +)•(x2﹣1),其中x=.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•(x2﹣1)=2x+2+x﹣1=3x+1,当x=时,原式=.21.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000 名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用没有剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.【解答】解:(1)这次被调查的同学共有400÷40%=1000(名);故答案为:1000;(2)剩少量的人数是;1000﹣400﹣250﹣150=200,补图如下;(3)18000×=3600(人).答:该校18000名学生一餐浪费的食物可供3600人食用一餐.22.商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.【考点】列表法与树状图法;概率公式.【分析】(1)由商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他恰好买到雪碧和奶汁的情况,再利用概率公式即可求得答案.【解答】解:(1)∵商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同,∴他去买一瓶饮料,则他买到奶汁的概率是:;故答案为:;(2)画树状图得:∵共有12种等可能的结果,他恰好买到雪碧和奶汁的有2种情况,∴他恰好买到雪碧和奶汁的概率为: =.23.如图,在△ABC中,以AB为直径的⊙O交AC于点D,过点D作DE⊥BC于点E,且∠BDE=∠A.(1)判断DE与⊙O的位置关系并说明理由;(2)若AC=16,tanA=,求⊙O的半径.【考点】切线的判定.【分析】(1)连接DO,BD,如图,由于∠BDE=∠A,∠A=∠ADO,则∠ADO=∠EDB,再根据圆周角定理得∠ADB=90°,所以∠ADO+∠ODB=90°,于是得到∠ODB+∠EDB=90°,然后根据切线的判定定理可判断DE为⊙O的切线;(2)利用等角的余角相等得∠ABD=∠EBD,加上BD⊥AC,根据等腰三角形的判定方法得△ABC为等腰三角形,所以AD=CD=AC=8,然后在Rt△ABD中利用正切定义可计算出BD=6,再根据勾股定理计算出AB,从而得到⊙O的半径.【解答】解:(1)DE与⊙O相切.理由如下:连接DO,BD,如图,∵∠BDE=∠A,∠A=∠ADO,∴∠ADO=∠EDB,∵AB为⊙O的直径,∴∠ADB=90°,∴∠ADO+∠ODB=90°,∴∠ODB+∠EDB=90°,即∠ODE=90°,∴OD⊥DE,∴DE为⊙O的切线;(2)∵∠BDE=∠A,∴∠ABD=∠EBD,而BD⊥AC,∴△ABC为等腰三角形,∴AD=CD=AC=8,在Rt△ABD中,∵tanA==,∴BD=×8=6,∴AB==10,∴⊙O的半径为5.24.如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P (n,2),与x轴交于点A(﹣4,0),与y轴交于点C,PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.【考点】反比例函数综合题.【分析】(1)由AC=BC,且OC⊥AB,利用三线合一得到O为AB中点,求出OB的长,确定出B坐标,从而得到P点坐标,将P与A坐标代入一次函数解析式求出k与b的值,确定出一次函数解析式,将P坐标代入反比例解析式求出m的值,即可确定出反比例解析式;(2)假设存在这样的D点,使四边形BCPD为菱形,根据菱形的特点得出D点的坐标.【解答】解:(1)∵AC=BC,CO⊥AB,A(﹣4,0),∴O为AB的中点,即OA=OB=4,∴P(4,2),B(4,0),将A(﹣4,0)与P(4,2)代入y=kx+b得:,解得:k=,b=1,∴一次函数解析式为y=x+1,将P(4,2)代入反比例解析式得:m=8,即反比例解析式为y=;(2)假设存在这样的D点,使四边形BCPD为菱形,如图所示,连接DC与PB交于E,∵四边形BCPD为菱形,∴CE=DE=4,∴CD=8,将x=8代入反比例函数y=得y=1,∴D点的坐标为(8,1)∴则反比例函数图象上存在点D,使四边形BCPD为菱形,此时D坐标为(8,1).25.如图所示,小明家小区空地上有两棵笔直的树CD、EF.一天,他在A处测得树顶D的仰角∠DAC=30°,在B处测得树顶F的仰角∠FBE=45°,线段BF恰好经过树顶D.已知A、B两处的距离为2米,两棵树之间的距离CE=3米,A、B、C、E四点在一条直线上,求树EF的高度.(≈1.7,≈1.4,结果保留一位小数)【考点】解直角三角形的应用-仰角俯角问题.【分析】设CD=xm,先在Rt△BCD中,由于∠DBC=45°,则根据等腰直角三角形的性质得BC=CD=x,再在Rt△DAC中,利用正切定义得到x+2=x,解得x=+1,即BC=CD=+1,然后在Rt△FBE中根据等腰直角三角形的性质得FE=BE=BC+CE ≈5.7.【解答】解:设CD=xm,在Rt△BCD中,∵∠DBC=45°,∴BC=CD=x,在Rt△DAC中,∵∠DAC=30°,∴tan∠DAC=,∴x+2=x,解得x=+1,∴BC=CD=+1,在Rt△FBE中,∵∠DBC=45°,∴FE=BE=BC+CE=+1+3≈5.7.答:树EF的高度约为5.7m.26.小明开了一家网店,进行社会实践,计划经销甲、乙两种商品.若甲商品每件利润10元,乙商品每件利润20元,则每周能卖出甲商品40件,乙商品20件.经调查,甲、乙两种商品零售单价分别每降价1元,这两种商品每周可各多销售10件.为了提高销售量,小明决定把甲、乙两种商品的零售单价都降价x 元.(1)直接写出甲、乙两种商品每周的销售量y(件)与降价x(元)之间的函数关系式:y甲= 10x+40 ,y乙= 10x+20 ;(2)求出小明每周销售甲、乙两种商品获得的总利润W(元)与降价x(元)之间的函数关系式?如果每周甲商品的销售量不低于乙商品的销售量的,那么当x定为多少元时,才能使小明每周销售甲、乙两种商品获得的总利润最大?【考点】二次函数的应用.【分析】(1)根据题意可以列出甲、乙两种商品每周的销售量y(件)与降价x (元)之间的函数关系式;(2)根据每周甲商品的销售量不低于乙商品的销售量的,列出不等式求出x 的取值范围,根据题意列出二次函数的解析式,根据二次函数的性质求出对称轴方程,得到答案.【解答】解:(1)由题意得,y甲=10x+40;y乙=10x+20;(2)由题意得,W=(10﹣x)(10x+40)+(20﹣x)(10x+20)=﹣20x2+240x+800,由题意得,10x+40≥(10x+20)解得x≤2,W=﹣20x2+240x+800=﹣20(x﹣6)2+1520,∵a=﹣20<0,∴当x<6时,W随x增大而增大,∴当x=2时,W的值最大.答:当x定为2元时,才能使小明每周销售甲、乙两种商品获得的总利润最大.27.问题背景两角和(差)的正切公式是数学公式中的重要公式:即:tan(α+β)= tan(α﹣β)=(α、β的取值应使公式有意义)(1)直接运用:tan75°=tan(30°+45°)= 2+;tan15°=tan(45°﹣30°)= 2﹣(2)灵活运用:已知tanα,tanβ是方程2x2﹣3x+1=0的根,求tan(α+β)的值.(3)拓展运用①如图1,三个相同的正方形相接,求证:α+β=45°.②如图2,两座建筑物AB、CD的高度分别是9m和15m,从建筑物AB的顶部A看建筑物CD的张角∠CAD=45°,求建筑物AB和CD的底部之间的距离BD.【考点】解直角三角形的应用.【分析】(1)利用tan(α+β)=,tan(α﹣β)=计算即可;(2)由根与系数的关系得出tanα+tanβ=,tanα•tanβ=,再代入tan(α+β)=,计算即可求解;(3)①利用网格结构,根据正切函数的定义得出tanα=,tanβ=,然后求出tan(α+β)==1,即可证明α+β=45°;②过A作AE⊥CD于E,则ABDE是矩形,DE=AB=9,CE=6.设BD=AE=xm,∠CAE=α,∠DAE=β,根据正切函数的定义得出tanα==,tanβ==.由tan(α+β)=tan45°=1,得出方程=1,解方程即可.【解答】(1)解:tan75°=tan(30°+45°)===2+;tan15°=tan(45°﹣30°)===2﹣.故答案为2+;2﹣;(2)解:∵tanα,tanβ是方程2x2﹣3x+1=0的根,∴tanα+tanβ=,tanα•tanβ=,∴tan(α+β)===3;(3)①证明:∵tanα=,tanβ=,∴tan(α+β)====1,∴α+β=45°;②解:如图,过A作AE⊥CD于E,则ABDE是矩形,DE=AB=9,CE=CD﹣DE=15﹣9=6.设BD=AE=xm,∠CAE=α,∠DAE=β,α+β=∠CAD=45°.在Rt△CAE中,tanα==,在Rt△DAE中,tanβ==.∵tan(α+β)=tan45°=1,∴=1,整理得x2﹣15x﹣54=0,解得x1=18,x2=﹣3(不合题意舍去),经检验,x=18是原方程的根,也符合题意.答:建筑物AB和CD的底部之间的距离BD为18m.28.在平面直角坐标系中,已知抛物线y=ax2+bx+c经过点A(﹣3,0),B(1,0),C(0,3)三点.(1)求抛物线的解析式.(2)在抛物线上是否存在点P,使tan∠PBA=?若存在,求点P坐标及△PAB 的面积.(3)将△COB沿x轴负方向平移1.5个单位至△FGH处,求△FGH与△AOC的重叠面积.(4)若点D、E分别是抛物线的对称轴l上的两动点,且纵坐标分别为n,n+6,求CE+DB的最小值及此时D、E的坐标.【考点】二次函数综合题.【分析】(1)设交点式y=a(x+3)(x﹣1),然后把C点坐标代入求出a即可得到抛物线解析式;(2)作PH⊥x轴于H,如图1,设P(t,﹣t2﹣2t+3),分类讨论:利用tan∠PBA==得到=,或=,然后分别解方程求出t得到P点坐标,再利用三角形面积公式计算对应的△PAB的面积;(3)FG、FH分别交AC于N、M,如图2,利用待定系数法求出直线BC的解析式为y=﹣3x+3,再利用直线平移的规律得到直线FH的解析式为y=﹣3x﹣,利用点平移的规律得到H(﹣,0),G(﹣,0),接着通过解方程组得M(﹣,),然后根据三角形面积公式,利用△FGH与△AOC的重叠面积=S△MAO﹣S△ANG进行计算即可;(4)把C点沿y轴向下平移6个单位得到G(0,﹣3),连结AG交抛物线的对称轴(直线x=﹣1)于D,连结DB,易得四边形CEDG为平行四边形,则DG=CE,由于DB+CE=DA+DG=AG,根据两点之间线段最短可判断此时DB+CE最小,根据勾股定理可计算出最小值,接着求出直线AG的解析式,然后确定D点和E点坐标.【解答】解:(1)设抛物线解析式为y=a(x+3)(x﹣1),把C(0,3)代入得a•3•(﹣1)=3,解得a=﹣1,所以抛物线的解析式为y=﹣(x+3)(x﹣1),即y=﹣x2﹣2x+3;(2)存在.作PH⊥x轴于H,如图1,tan∠PBA==,设P(t,﹣t2﹣2t+3),当点P在x轴上方时, =,整理得3t2+5t﹣8=0,解得t1=1(舍去),t2=﹣,此时P点坐标为(﹣,),S△PAB=•(1+3)•=;当点P在x轴下方时, =,整理得3t2+7t﹣10=0,解得t1=1(舍去),t2=﹣,此时P点坐标为(﹣,﹣),S△PAB=•(1+3)•=;综上所述,P点坐标为(﹣,),S△PAB=;P点坐标为(﹣,﹣),S △PAB=;(3)FG、FH分别交AC于N、M,如图2,设直线BC的解析式为y=mx+n,把C(0,3),B(1,0)代入得,解得,所以直线BC的解析式为y=﹣3x+3,把直线y=﹣3x+3向左平移个单位得到直线FH的解析式为y=﹣3(x+)+3=﹣3x﹣,点B平移到H(﹣,0),点O平移得到G(﹣,0)易得直线AC的解析式为y=x+3,△OAC为等腰直角三角形,则△ANG为等腰直角三角形,所以NG=AG=3﹣=,解方程组得,则M(﹣,),所以△FGH与△AOC的重叠面积=S△MAO﹣S△ANG=×(﹣+3)×﹣××=;(4)把C点沿y轴向下平移6个单位得到G(0,﹣3),连结AG交抛物线的对称轴(直线x=﹣1)于D,连结DB,如图3,则DB=DA,DE=CG,所以四边形CEDG为平行四边形,则DG=CE,所以DB+CE=DA+DG=AG,此时DB+CE最小,最小值为=3,设直线AG的解析式为y=px+q,把A(﹣3,0),G(0,﹣3)代入得,解得,所以直线AG的解析式为y=﹣x﹣3,当x=﹣1时,y=﹣x﹣3=﹣2,则D(﹣1,﹣2),E(﹣1,4).2016年5月1日【素材积累】1、人生只有创造才能前进;只有适应才能生存。
2016届九年级(下)入学考试数学试卷(解析版)
2021 -2021年九年级|| (下)入学考试数学试卷一、选择题:(本大题12个小题,每题4分,共48分)每个小题都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卡上对应位置中.1.△ABC中,AC =4 ,BC =3 ,AB =5 ,那么sinA = ()A.B.C.D.2.用配方法解方程x2+4x﹣5 =0 ,以下配方正确的选项是()A.(x +2 )2=1 B.(x +2 )2=5 C.(x +2 )2=9 D.(x +4 )2=9 3.以下式子,正确的选项是()A.3 +=3B.(+1 ) (﹣1 ) =1C.2﹣1=﹣2 D.x2+2xy﹣y2= (x﹣y )24.在▱ABCD中,假设∠A:∠B =1:2 ,那么∠A的度数是()A.60°B.90°C.120°D.150°5.一个等腰三角形的两条边长分别为3和8 ,那么这个等腰三角形的周长为()A.11 B.14 C.19 D.14或196.二次函数y =﹣2 (x﹣4 )2﹣5的开口方向、对称轴分别是()A.开口向上、直线x =﹣4 B.开口向上、直线x =4C.开口向下、直线x =﹣4 D.开口向下、直线x =47.如图,在⊙O中,∠AOB =50° ,那么∠ACB = ()A.30°B.25°C.50°D.40°8.如图,在△ABC中,AB =BC ,∠B =30° ,DE垂直平分BC ,那么∠ACD的度数为()A.30°B.45°C.55°D.75°9.某校九年级|| (1 )班有7个合作学习小组,各学习小组的人数分别为:5 ,6 ,6 ,x ,7 ,8 ,9 ,这组数据的平均数是7 ,那么这组数据的中位数是()A.6 B.7 C.8 D.910.以下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,… ,依次规律,图⑩中黑色正方形的个数是()A.32 B.29 C.28 D.2611.如图,在平面直角坐标系中,将矩形OABC沿对角线OB对折,使点A (,0 )落在点A1处,点B的坐标是(,1 ) ,那么点A1的坐标是()A.(,) B.(,) C.(,2 ) D.(,)12.如图,在平面直角坐标系系中,直线y =k1x +2与x轴交于点A ,与y轴交于点C ,与反比例函数y =在第|一象限内的图象交于点B ,连接B0.假设S△OBC=1 ,tan∠BOC =,那么k2的值是()A.﹣3 B.1 C.2 D.3二.填空(本大题6个小题,每题4分共24分)13.方程(x﹣2 )2=4的根是.14.计算:2cos60°﹣tan45°=.15.一个菱形的两条对角线长分别为6cm和8cm ,那么这个菱形的面积为cm2.16.在某时刻的阳光照耀下,身高160cm的阿美的影长为80cm ,她身旁的旗杆影长5m ,那么旗杆高为m.17.从﹣1 ,0 ,1 ,2 ,3这五个数中,随机抽取一个数记为m ,那么使关于x的不等式组有解,并且使函数y = (m﹣1 )x2+2mx +m +2与x轴有交点的概率为.18.在▱ABCD中,AB<BC ,∠B =30° ,AB =2,将△ABC沿AC翻折至||△AB′C ,使点B′落在▱ABCD所在的平面内,连接B′D.假设△AB′D是直角三角形,那么BC的长为.三.解答题(本大题2小题,每题7分,共14分)解答时每题必须给出必要的演算过程或推理步骤.19.解二元一次方程组.20.为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级||篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.九年级||一班在8场比赛中得到13分,问九年级||一班胜、负场数分别是多少?四、解答题:(本大题4个小题,每题10分,共40分,解答题时每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线). )21.先化简,再求值:(﹣)÷,其中x =tan60°+2.22.2021年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心开展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级||全体学生中随机抽取了假设干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答以下问题:(1 )本次抽取的学生人数是;扇形统计图中的圆心角α等于;补全统计直方图;(2 )被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.23."村村通公路〞工程是国|家为支持新农村建设的一项重大举措,为了落实这一举措,重庆潼南县政府方案在南北方向的A、B两村之间建一条公路AB.公路AB的一侧有C村,在公路AB上的M处测得C村在M的南偏东37°方向上,从M向南走270米到达N处,测得C村在N的东南方向上,且C村周围800米范围内为油菜花田,那么方案修建的公路AB 是否会穿过油菜花田,请说明理由(参考数据:sin37°≈0.8 ,cos37°≈0.8 ,tan37°≈0.75 )24.长宽比为(n为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图①所示.操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G 处,折痕为BH.操作2:将AD沿过点G的直线折叠,使点A ,点D分别落在边AB ,CD上,折痕为EF.那么四边形BCEF为矩形.证明:设正方形ABCD的边长为1 ,那么BD =.由折叠性质可知BG =BC =1 ,∠AFE =∠BFE =90° ,那么四边形BCEF为矩形.∴∠A =∠BFE.∴EF∥AD.∴,即,∴.∴.∴四边形BCEF为矩形.阅读以上内容,答复以下问题:(1 )在图①中,所有与CH相等的线段是,tan∠HBC的值是;(2 )四边形BCEF为矩形,模仿上述操作,得到四边形BCMN ,如图② ,求证:四边形BCMN为矩形;(3 )将图②中的矩形BCMN沿用(2 )中的方式操作3次后,得到一个"矩形〞,那么n的值是.五、解答题(本大题2个小题,每题12分,共24分)解答时每题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.25.:四边形ABCD中,AD∥BC ,AD =AB =CD ,∠BAD =120° ,点E是射线CD上的一个动点(与C、D不重合) ,将△ADE绕点A顺时针旋转120°后,得到△ABE′ ,连接EE′.(1 )如图1 ,∠AEE′=°;(2 )如图2 ,如果将直线AE绕点A顺时针旋转30°后交直线BC于点F ,过点E作EM∥AD 交直线AF于点M ,写出线段DE、BF、ME之间的数量关系;(3 )如图3 ,在(2 )的条件下,如果CE =2 ,AE =,求ME的长.26.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,∠AOC的平分线交AB于点D ,E为BC的中点,A (0 ,4 )、C (5 ,0 ) ,二次函数y =x2+bx +c的图象抛物线经过A ,C两点.(1 )求该二次函数的表达式;(2 )F、G分别为x轴,y轴上的动点,顺次连接D、E、F、G构成四边形DEFG ,求四边形DEFG周长的最||小值;(3 )抛物线上是否在点P ,使△ODP的面积为12 ?假设存在,求出点P的坐标;假设不存在,请说明理由.2021 -2021年九年级|| (下)入学考试数学试卷参考答案与试题解析一、选择题:(本大题12个小题,每题4分,共48分)每个小题都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卡上对应位置中.1.△ABC中,AC =4 ,BC =3 ,AB =5 ,那么sinA = ()A.B.C.D.【考点】锐角三角函数的定义;勾股定理的逆定理.【分析】先根据直角三角形的三边长判断出三角形的形状,再根据锐角三角函数的定义求解即可.【解答】解:∵△ABC中,AC =4 ,BC =3 ,AB =5 ,即42+32=52 ,∴△ABC是直角三角形,∠C =90°.sinA ==.应选A.2.用配方法解方程x2+4x﹣5 =0 ,以下配方正确的选项是()A.(x +2 )2=1 B.(x +2 )2=5 C.(x +2 )2=9 D.(x +4 )2=9 【考点】解一元二次方程-配方法.【分析】先将原方程进行配方,然后选项进行对照,即可得到正确选项.【解答】解:x2+4x﹣5 =0 ,配方,得(x +2 )2=9.应选C.3.以下式子,正确的选项是()A.3 +=3B.(+1 ) (﹣1 ) =1C.2﹣1=﹣2 D.x2+2xy﹣y2= (x﹣y )2【考点】二次根式的乘除法;负整数指数幂.【分析】根据二次根式的加减、负整数指数幂和完全平方公式判断.【解答】解:A、不是同类二次根式,不能相加,故错误;B、正确;C、原式=,故错误;D、与完全平方公式不符,故错误.应选B.4.在▱ABCD中,假设∠A:∠B =1:2 ,那么∠A的度数是()A.60°B.90°C.120°D.150°【考点】平行四边形的性质.【分析】根据平行四边形的根本性质可知,平行四边形的邻角互补,由可得,∠A、∠B是邻角,故∠A可求解.【解答】解:∵▱ABCD ,∴∠A +∠B =180° ,而∠A:∠B =1:2∴∠A =60° ,∠B =120°∴∠A =60°.应选A.5.一个等腰三角形的两条边长分别为3和8 ,那么这个等腰三角形的周长为() A.11 B.14 C.19 D.14或19【考点】等腰三角形的性质;三角形三边关系.【分析】分3是腰长与底边长两种情况讨论求解即可.【解答】解:①3是腰长时,三角形的三边分别为3、3、8 ,∵3 +3 =6<8 ,∴此时不能组成三角形;②3是底边长时,三角形的三边分别为3、8、8 ,此时能组成三角形,所以,周长=3 +8 +8 =19 ,综上所述,这个等腰三角形的周长是19.应选C.6.二次函数y =﹣2 (x﹣4 )2﹣5的开口方向、对称轴分别是()A.开口向上、直线x =﹣4 B.开口向上、直线x =4C.开口向下、直线x =﹣4 D.开口向下、直线x =4【考点】二次函数的性质.【分析】抛物线解析式为顶点式,可根据顶点式求抛物线的开口方向,对称轴.【解答】解:由y =﹣2 (x﹣4 )2﹣5可知,二次项系数为﹣2<0 ,∴抛物线开口向下,对称轴为直线x =4 ,应选D.7.如图,在⊙O中,∠AOB =50° ,那么∠ACB = ()A.30°B.25°C.50°D.40°【考点】圆周角定理.【分析】直接根据圆周角定理求解即可.【解答】解:∠ACB =∠AOB =×50°=25°.应选:B.8.如图,在△ABC中,AB =BC ,∠B =30° ,DE垂直平分BC ,那么∠ACD的度数为()A.30°B.45°C.55°D.75°【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据等腰三角形的性质得到∠A =∠ACB =75° ,根据线段垂直平分线的性质得到BD =CD ,求得∠DCE =∠B =30° ,即可得到结论.【解答】解:∵AB =BC ,∠B =30° ,∴∠A =∠ACB =75° ,∵DE垂直平分BC ,∴BD =CD ,∴∠DCE =∠B =30° ,∴∠ACD =∠ACB =∠DCB =45° ,应选B.9.某校九年级|| (1 )班有7个合作学习小组,各学习小组的人数分别为:5 ,6 ,6 ,x ,7 ,8 ,9 ,这组数据的平均数是7 ,那么这组数据的中位数是()A.6 B.7 C.8 D.9【考点】中位数;算术平均数.【分析】根据题意首||先求出x的值,再利用中位数的定义求出答案.【解答】解:∵5 ,6 ,6 ,x ,7 ,8 ,9 ,这组数据的平均数是7 ,∴5 +6 +6 +x +7 +8 +9 =7×7 ,解得:x =8 ,故这组数据按从小到大排列:5 ,6 ,6 ,7 ,8 ,8 ,9 ,那么这组数据的中位数是:7.应选:B.10.以下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,… ,依次规律,图⑩中黑色正方形的个数是()A.32 B.29 C.28 D.26【考点】规律型:图形的变化类.【分析】仔细观察图形,找到图形的个数与黑色正方形的个数的通项公式后代入n =11后即可求解.【解答】解:观察图形发现:图①中有2个黑色正方形,图②中有2 +3× (2﹣1 ) =5个黑色正方形,图③中有2 +3 (3﹣1 ) =8个黑色正方形,图④中有2 +3 (4﹣1 ) =11个黑色正方形,… ,图n中有2 +3 (n﹣1 ) =3n﹣1个黑色的正方形,当n =10时,2 +3× (10﹣1 ) =29 ,应选B.11.如图,在平面直角坐标系中,将矩形OABC沿对角线OB对折,使点A (,0 )落在点A1处,点B的坐标是(,1 ) ,那么点A1的坐标是()A.(,) B.(,) C.(,2 ) D.(,)【考点】翻折变换(折叠问题);坐标与图形性质.【分析】由可得∠AOB =30° ,翻折后找到相等的角及相等的边,在直角三角形中,利用勾股定理可求得答案.【解答】解:过A1作A1D⊥OA ,∵A (,0 ) ,B的坐标是(,1 ) ,∴OA =,AB =1 ,在Rt△OAB中,OB ==2 ,AB =1 ,∴AB =OB ,∵△AOB是直角三角形,∴∠AOB =30° ,OB为折痕,∴∠A1OB =∠AOB =30° ,OA1=OA =,Rt△OA1D中,∠OA1D =30° ,∴OD =×=,A1D =×=,∴点A1的坐标(,).应选B.12.如图,在平面直角坐标系系中,直线y =k1x +2与x轴交于点A ,与y轴交于点C ,与反比例函数y =在第|一象限内的图象交于点B ,连接B0.假设S△OBC=1 ,tan∠BOC =,那么k2的值是()A.﹣3 B.1 C.2 D.3【考点】反比例函数与一次函数的交点问题.【分析】首||先根据直线求得点C的坐标,然后根据△BOC的面积求得BD的长,然后利用正切函数的定义求得OD的长,从而求得点B的坐标,求得结论.【解答】解:∵直线y =k1x +2与x轴交于点A ,与y轴交于点C ,∴点C的坐标为(0 ,2 ) ,∴OC =2 ,∵S△OBC=1 ,∴BD =1 ,∵tan∠BOC =,∴=,∴OD =3 ,∴点B的坐标为(1 ,3 ) ,∵反比例函数y =在第|一象限内的图象交于点B ,∴k2=1×3 =3.应选D.二.填空(本大题6个小题,每题4分共24分)13.方程(x﹣2 )2=4的根是 4 ,0.【考点】解一元二次方程-直接开平方法.【分析】根据方程的特点,用直接开平方法解一元二次方程即可.【解答】解:(x﹣2 )2=4 ,x﹣2 =±2 ,解得:x1=4 ,x2=0.故答案为:4 ,0.14.计算:2cos60°﹣tan45°=0.【考点】特殊角的三角函数值.【分析】将特殊角的三角函数值直接代入即可求解.【解答】解:2cos60°﹣tan45°=2×﹣1 =0.15.一个菱形的两条对角线长分别为6cm和8cm ,那么这个菱形的面积为24cm2.【考点】菱形的性质.【分析】根据菱形的面积等于两对角线乘积的一半求得其面积即可.【解答】解:∵一个菱形的两条对角线长分别为6cm和8cm ,∴这个菱形的面积=×6×8 =24 (cm2 ).故答案为:24.16.在某时刻的阳光照耀下,身高160cm的阿美的影长为80cm ,她身旁的旗杆影长5m ,那么旗杆高为10m.【考点】相似三角形的应用.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】解:根据相同时刻的物高与影长成比例,设旗杆的高度为x m ,那么160:80 =x:5 ,解得x =10.故答案是:10.17.从﹣1 ,0 ,1 ,2 ,3这五个数中,随机抽取一个数记为m ,那么使关于x的不等式组有解,并且使函数y = (m﹣1 )x2+2mx +m +2与x轴有交点的概率为.【考点】概率公式;解一元一次不等式组;抛物线与x轴的交点.【分析】首||先解不等式以及利用二次函数与x轴交点个数和△的关系分别得出m的取值范围,进而利用概率公式求出即可.【解答】解:∵x +1≤m ,解得;x≤m﹣1 ,2﹣x≤2m ,解得:x≥2﹣2m ,∴使关于x的不等式组有解,那么m﹣1≥2﹣2m ,解得:m≥1 ,∵使函数y = (m﹣1 )x2+2mx +m +2与x轴有交点,∴b2﹣4ac4m2﹣4 (m﹣1 ) (m +2 ) =﹣4m +8≥0 ,解得:m≤2 ,∴m的取值范围是:1≤m≤2 ,∴从﹣1 ,0 ,1 ,2 ,3这五个数中,随机抽取一个数记为m ,符合题意的有1 ,2 ,故使关于x的不等式组有解,并且使函数y = (m﹣1 )x2+2mx +m +2与x 轴有交点的概率为.故答案为:.18.在▱ABCD中,AB<BC ,∠B =30° ,AB =2,将△ABC沿AC翻折至||△AB′C ,使点B′落在▱ABCD所在的平面内,连接B′D.假设△AB′D是直角三角形,那么BC的长为4或6.【考点】翻折变换(折叠问题);平行四边形的性质.【分析】在▱ABCD中,AB<BC ,要使△AB′D是直角三角形,有两种情况:∠B′AD =90°或∠AB′D =90° ,画出图形,分类讨论即可.【解答】解:当∠B′AD =90°AB<BC时,如图1 ,∵AD =BC ,BC =B′C ,∴AD =B′C ,∵AD∥BC ,∠B′AD =90° ,∴∠B′GC =90° ,∵∠B =30° ,AB =2,∴∠AB′C =30° ,∴GC =B′C =BC ,∴G是BC的中点,在Rt△ABG中,BG =AB =×2=3 ,∴BC =6;当∠AB′D =90°时,如图2 ,∵AD =BC ,BC =B′C ,∴AD =B′C ,∵由折叠的性质:∠BAC =90° ,∴AC∥B′D ,∴四边形ACDB′是等腰梯形,∵∠AB′D =90° ,∴四边形ACDB′是矩形,∴∠BAC =90° ,∵∠B =30° ,AB =2,∴BC =AB÷=2×=4 ,∴当BC的长为4或6时,△AB′D是直角三角形.故答案为:4或6.三.解答题(本大题2小题,每题7分,共14分)解答时每题必须给出必要的演算过程或推理步骤.19.解二元一次方程组.【考点】解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:②﹣①得:5y =5 ,即y =1 ,把y =1代入①得:x =3 ,那么方程组的解为.20.为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级||篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.九年级||一班在8场比赛中得到13分,问九年级||一班胜、负场数分别是多少?【考点】一元一次方程的应用.【分析】设胜了x场,那么负了(8﹣x )场,根据得分为13分可列方程求解.【解答】解:设胜了x场,那么负了(8﹣x )场,根据题意得:2x +1• (8﹣x ) =13 ,x =5 ,8﹣5 =3.答:九年级||一班胜、负场数分别是5和3.四、解答题:(本大题4个小题,每题10分,共40分,解答题时每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线). )21.先化简,再求值:(﹣)÷,其中x =tan60°+2.【考点】分式的化简求值;特殊角的三角函数值.【分析】原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分得到最||简结果,把x的值代入计算即可求出值.【解答】解:原式=[﹣]•=•=•=,当x =tan60°+2 =+2时,原式=.22.2021年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心开展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级||全体学生中随机抽取了假设干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答以下问题:(1 )本次抽取的学生人数是30;扇形统计图中的圆心角α等于144°;补全统计直方图;(2 )被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.【考点】列表法与树状图法;扇形统计图;利用频率估计概率.【分析】(1 )根据题意列式求值,根据相应数据画图即可;(2 )根据题意列表,然后根据表中数据求出概率即可.【解答】解:(1 )6÷20% =30 , (30﹣3﹣7﹣6﹣2 )÷30×360 =12÷30×26 =144° ,答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;故答案为:30 ,144°;补全统计图如下列图:(2 )根据题意列表如下:设竖列为小红抽取的跑道,横排为小花抽取的跑道,小红小花 1 2 3 4 51 (2 ,1 ) (3 ,1 ) (4 ,1 ) (5 ,1 )2 (1 ,2 ) (3 ,2 ) (4 ,2 ) (5 ,2 )3 (1 ,3 ) (2 ,3 ) (4 ,3 ) (5 ,3 )4 (1 ,4 ) (2 ,4 ) (3 ,4 ) (5 ,4 )5 (1 ,5 ) (2 ,5 ) (3 ,5 ) (4 ,5 )记小红和小花抽在相邻两道这个事件为A ,∴.23."村村通公路〞工程是国|家为支持新农村建设的一项重大举措,为了落实这一举措,重庆潼南县政府方案在南北方向的A、B两村之间建一条公路AB.公路AB的一侧有C村,在公路AB上的M处测得C村在M的南偏东37°方向上,从M向南走270米到达N处,测得C村在N的东南方向上,且C村周围800米范围内为油菜花田,那么方案修建的公路AB 是否会穿过油菜花田,请说明理由(参考数据:sin37°≈0.8 ,cos37°≈0.8 ,tan37°≈0.75 )【考点】解直角三角形的应用-方向角问题.【分析】此题要求的实际上是C到AB的距离,过C点作CD⊥AB ,CD就是所求的线段,由于CD是条公共直角边,可用CD表示出MD ,ND ,然后根据MN的长,来求出CD的长.【解答】解:如图,过C点作CD⊥AB于D ,由题可知:∠CND =45° ,∠CMD =37°.设CD =x千米,tan∠CMD =,那么MD =.tan∠CND =,那么ND ==x ,∵MN =270米,∴MD﹣ND =MN ,即tan37°x﹣x =270 ,∴﹣x =270 ,解得x =810.∵810米>800米,∴方案修建的公路AB是不会穿过油菜花田.答:方案修建的公路AB是不会穿过油菜花田.24.长宽比为(n为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图①所示.操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G 处,折痕为BH.操作2:将AD沿过点G的直线折叠,使点A ,点D分别落在边AB ,CD上,折痕为EF.那么四边形BCEF为矩形.证明:设正方形ABCD的边长为1 ,那么BD =.由折叠性质可知BG =BC =1 ,∠AFE =∠BFE =90° ,那么四边形BCEF为矩形.∴∠A =∠BFE.∴EF∥AD.∴,即,∴.∴.∴四边形BCEF为矩形.阅读以上内容,答复以下问题:(1 )在图①中,所有与CH相等的线段是GH、DG,tan∠HBC的值是﹣1;(2 )四边形BCEF为矩形,模仿上述操作,得到四边形BCMN ,如图② ,求证:四边形BCMN为矩形;(3 )将图②中的矩形BCMN沿用(2 )中的方式操作3次后,得到一个"矩形〞,那么n的值是6.【考点】几何变换综合题.【分析】(1 )设CH =GH =DG =x ,根据DC =DH +CH =1 ,列出方程即可求出HC ,然后运用三角函数的定义求出tan∠HBC的值.(2 )只需借鉴阅读中证明"四边形BCEF为矩形〞的方法就可解决问题.(3 )利用(2 )中结论,寻找规律可得到n的值.【解答】解:(1 )如图①中,由折叠可得:DG =HG ,GH =CH ,∴DG =GH =CH.设HC =x ,那么DG =GH =x.∵∠DGH =90° ,∴DH =x ,∴DC =DH +CH =x +x =1 ,解得x =﹣1.∴tan∠HBC ===﹣1.故答案为:GH、DG ,;(2 )如图②中,∵BC =1 ,EC =BF =,∴BE ==由折叠可得BP =BC =1 ,∠FNM =∠BNM =90° ,∠EMN =∠CMN =90°.∵四边形BCEF是矩形,∴∠F =∠FEC =∠C =∠FBC =90° ,∴四边形BCMN是矩形,∠BNM =∠F =90° ,∴MN∥EF ,∴=,即BP•BF =BE•BN ,∴1×=BN ,∴BN =,∴BC:BN =1:=:1 ,∴四边形BCMN是的矩形;(3 )同理可得:将矩形沿用(2 )中的方式操作1次后,得到一个"矩形〞,将矩形沿用(2 )中的方式操作1次后,得到一个"矩形〞,将矩形沿用(2 )中的方式操作1次后,得到一个"矩形〞,所以将图②中的矩形BCMN沿用(2 )中的方式操作3次后,得到一个"矩形〞.故答案为6.五、解答题(本大题2个小题,每题12分,共24分)解答时每题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.25.:四边形ABCD中,AD∥BC ,AD =AB =CD ,∠BAD =120° ,点E是射线CD上的一个动点(与C、D不重合) ,将△ADE绕点A顺时针旋转120°后,得到△ABE′ ,连接EE′.(1 )如图1 ,∠AEE′=30°;(2 )如图2 ,如果将直线AE绕点A顺时针旋转30°后交直线BC于点F ,过点E作EM∥AD 交直线AF于点M ,写出线段DE、BF、ME之间的数量关系;(3 )如图3 ,在(2 )的条件下,如果CE =2 ,AE =,求ME的长.【考点】几何变换综合题.【分析】(1 )根据旋转性质以及三角形内角和定理即可解决.(2 )根据EM∥FE′可以得==,再根据AN =NE ,BE′=DE即可得到线段DE、BF、ME之间的关系.(3 )通过辅助线求出线段E′F =7 ,E′Q =9 ,再由(2 )的结论得到ME的长.【解答】解:(1 )∵△ABE′是由△ADE绕点A顺时针旋转120°得到,∴∠EAE′=120° ,AE =AE′ ,∴∠E′=∠AEE′==30° ,故答案为30°.(2 )①当点E在CD上时,DE +BF =2ME ,理由如下:如图1 ,当点E在线段CD上,AF交EE′于N ,∵∠EAF =30° ,∠EAE′=120 ,∴∠E′AN =90° ,∴E′N =2AN ,∵∠NAE =∠NEA =30° ,∴NA =NE ,E′N =2EN ,∵EM∥FE′ ,∴==,∵BE′=DE ,∴E′F =2ME ,∴DE +BF =2ME.②当点E在CD延长线上,0°<∠EAD∠30°时,BF﹣DE =2ME ,理由如下:如图2 ,∵∠EAF =30° ,∠EAE′=120 ,∴∠E′AN =90° ,∴E′N =2AN ,∵∠NAE =∠NEA =30° ,∴NA =NE ,E′N =2EN ,∵EM∥FE′ ,∴==,∵BE′=DE ,∴E′F =2ME ,∴BF﹣DE =2ME.③当30°<∠EAD∠90°时,DE +BF =2ME ,理由如下:如图3 ,∵∠EAM =30° ,∠EAE′=120 ,∴∠E′AN =90° ,∴E′N =2AN ,∵∠NAE =∠NEA =30° ,∴NA =NE ,E′N =2EN ,∵EM∥FE′ ,∴==,∵BE′=DE ,∴E′F =2ME ,∴BF +DE =2ME.④当90°<∠EAD<120°时,DE﹣BF =2ME ,理由如下:如图4 ,∵∠EAM =30° ,∠EAE′=120 ,∴∠E′AN =90° ,∴E′N =2AN ,∵∠NAE =∠NEA =30° ,∴NA =NE ,E′N =2EN ,∵EM∥FE′ ,∴==,∵BE′=DE ,∴E′F =2ME ,∴DE﹣BF =2ME.(3 )如图5 ,作AG⊥BC于点G ,DH⊥BC于H ,AP⊥EE′于P ,EQ⊥BC于Q ,∵AD∥BC ,AD =AB =CD ,∠BAD =120° ,易知四边形AGHD是矩形,在△AGB和△DHC中,,∴△AGB≌△DHC ,∴BG =HC ,AD =GH ,∵∠ABE′=∠ADC =120° ,∴点E′、B、C共线,设AD =AB =CD =x ,那么GH =x ,BG =CH =x , 在RT△EQC中,CE =2 ,∠ECQ =60° ,∴CQ =EC =1 ,EQ =,∴E′Q =BC +BE′﹣CQ =3x﹣3 ,在RT△APE中,AE =2,∠AEP =30° ,∴AP =,PE =,∵AE =AE′ ,AP⊥EE′ ,∴PE =PE′=,∴EE′=2,在RT△E′EQ中,E′Q ==9 ,∴3x﹣3 =9 ,∴x =4 ,∴DE =BE′=2 ,BC =8 ,BG =2 ,∴E′G =4 ,∵∠AE′G =′AE′F ,∠AGE′=∠FAE′ ,∴△AGE′∽△FAE′ ,∴,∴,∴E′F =7 ,∴BF =E′F﹣E′B =7﹣2 =5 ,∵DE +BF =2ME ∴ME =.26.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,∠AOC的平分线交AB于点D ,E为BC的中点,A (0 ,4 )、C (5 ,0 ) ,二次函数y =x2+bx +c的图象抛物线经过A ,C两点.(1 )求该二次函数的表达式;(2 )F、G分别为x轴,y轴上的动点,顺次连接D、E、F、G构成四边形DEFG ,求四边形DEFG周长的最||小值;(3 )抛物线上是否在点P ,使△ODP的面积为12 ?假设存在,求出点P的坐标;假设不存在,请说明理由.【考点】二次函数综合题.【分析】(1 )根据待定系数法,可得函数解析式;(2 )延长EC至||E′ ,使E′C =EC ,延长DA至||D′ ,使D′A =DA ,连接D′E′ ,交x轴于F点,交y轴于G点,那么有:GD =GD′ ,EF =E′F ,从而得:(DG +GF +EF +ED )的最||小值=D′E′+DE ,求出D′E′与DE的长即可得到答案.(3 )根据三角形的面积,首||先求得点P到OD的距离,然后过点O作OF⊥OD ,使OF等于点P到OD的距离,过点F作FG∥OD ,求得FG的解析式,然后再求直线FG与抛物线交点的坐标即可得到点P的坐标.【解答】解:(1 )将A (0 ,4 )、C (5 ,0 )代入二次函数y =x2+bx +c ,得,解得.故二次函数的表达式y =x2﹣x +4;(2 )如图:延长EC至||E′ ,使E′C =EC ,延长DA至||D′ ,使D′A =DA ,连接D′E′ ,交x轴于F点,交y 轴于G点,GD =GD′EF =E′F ,=D′E′+DE ,(DG +GF +EF +ED )最||小由E点坐标为(5 ,2 ) ,BC的中点;D (4 ,4 ) ,直角的角平分线上的点;得D′ (﹣4 ,4 ) ,E (5 ,﹣2 ).由勾股定理,得DE ==,D′E′==,=D′E′+DE =+;(DG +GF +EF +ED )最||小(3 )如以下列图:OD =.∵S△ODP的面积=12 ,∴点P到OD的距离==3.过点O作OF⊥OD ,取OF =3,过点F作直线FG∥OD ,交抛物线与点P1 ,P2 ,在Rt△OGF中,OG ===6 ,∴直线GF的解析式为y =x﹣6.将y =x﹣6代入y =得:x﹣6 =,解得:,,将x1、x2的值代入y =x﹣6得:y1=,y2=∴点P1 (,) ,P2 (,)如以下列图所示:过点O作OF⊥OD ,取OF =3,过点F作直线FG交抛物线与P3 ,P4 ,在Rt△PFO中,OG ==6∴直线FG的解析式为y =x +6 ,将y =x +6代入y =得:x +6 =解得:,y1=x1+6 =,y2=x2+6 =∴p3 (,) ,p4 (,)综上所述:点P的坐标为:(,)或(,)或(,)或(,).2021年4月15日。
2015-2016学年九年级(下)第三次质检数学试卷
2015-2016学年九年级(下)第三次质检数学试卷参考答案与试题解析一、选择题1.如图所示的几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】常规题型.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:几何体的主视图是:故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.2.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则sinB的值等于()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据勾股定理,可得AB的长,根据在直角三角形中,锐角的正弦为对边比斜边,可得答案.【解答】解:在Rt△ABC中,由勾股定理,得AB==5.sinB==,故选:C.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则()A.这个球一定是黑球B.摸到黑球、白球的可能性的大小一样C.这个球可能是白球D.事先能确定摸到什么颜色的球【考点】可能性的大小.【分析】根据概率公式先求出摸出黑球和白球的概率,再进行比较即可得出答案.【解答】解:∵布袋中有除颜色外完全相同的11个球,其中10个黑球、1个白球,∴从布袋中随机摸出一个球是黑球的概率为,摸出一个球是白球的概率为,∴A、这个球一定是黑球,错误;B、摸到黑球、白球的可能性的大小一样,错误;C、这个球可能是白球,正确;D、事先能确定摸到什么颜色的球,错误;故选:C.【点评】此题考查了可能性大小以及概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时是绿灯的概率是()A.B.C.D.【考点】概率公式.【分析】由一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,直接利用概率公式求解即可求得答案.【解答】解:∵一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴你抬头看信号灯时是绿灯的概率是: =.故选C.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.5.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3 B.m<3 C.m<3且m≠2D.m≤3且m≠2【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义得到m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,然后解不等式组即可得到m的取值范围.【解答】解:∵关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,∴m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,解得m≤3,∴m的取值范围是m≤3且m≠2.故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6.面积为2的直角三角形一直角边长为x,另一直角边长为y,则y与x的变化规律用图象大致表示为()A.B.C.D.【考点】反比例函数的应用;反比例函数的图象.【分析】根据题意有:xy=4;故y与x之间的函数图象为反比例函数,且根据x y实际意义x、y应大于0,其图象在第一象限.【解答】解:∵ xy=4,∴xy=4,∴y=(x >0,y >0),当x=1时,y=4,当x=4时,y=1,故选:C .【点评】考查了反比例函数的图象及应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.7.已知反比例函数y=的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2.则m 的取值范围是( )A .m <0B .m >0C .mD .m【考点】二次函数图象上点的坐标特征.【专题】计算题.【分析】根据反比例函数图象上点的坐标特征得x 1=,x 2=,而x 1<x 2<0时,y 1<y 2,则2﹣5m <0,然后解不等式即可.【解答】解:∵反比例函数y=的图象上有A (x 1,y 1)、B (x 2,y 2), ∴x 1=,x 2=,∵x 1<x 2<0时,y 1<y 2,∴2﹣5m <0,∴m>.故选D .【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数图象上点的坐标满足其解析式.8.如图,△ABC 为⊙O 的内接三角形,∠AOB=100°,则∠ACB 的度数为( )A.100°B.130°C.150°D.160°【考点】圆周角定理.【分析】首先在优弧AB上取点D,连接AD,BD,然后由圆周角定理,求得∠D的度数,又由圆的内接四边形的性质,求得∠ACB的度数.【解答】解:在优弧AB上取点D,连接AD,BD,∵∠AOB=100°,∴∠D=∠AOB=50°,∴∠ACB=180°﹣∠D=130°.故选B.【点评】此题考查了圆周角定理以及圆的内接四边形的性质.注意准确作出辅助线是解此题的关键.9.如图,在▱ABCD中,E是AB的中点,EC交BD于点F,则△BEF与△DCF的面积比为()A.B.C.D.【考点】相似三角形的判定与性质;平行四边形的性质.【专题】计算题.【分析】先根据平行四边形的性质得AB∥CD,AB=CD,而E是AB的中点,BE=AB=CD,再证明△BEF∽△DCF,然后根据相似三角形的性质可计算的值.【解答】解:∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,∵E是AB的中点,∴BE=AB=CD;∵BE∥CD,∴△BEF∽△DCF,∴=()2=.故选C.【点评】本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用相似三角形的性质时主要利用相似比计算相应线段的长.10.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是()A.B.C.D.2【考点】正多边形和圆.【专题】压轴题.【分析】首先设⊙O的半径是r,则OF=r,根据AO是∠EAF的平分线,求出∠COF=60°,在Rt△OIF中,求出FI的值是多少;然后判断出OI、CI的关系,再根据GH∥BD,求出GH的值是多少,再用EF的值比上GH的值,求出的值是多少即可.【解答】解:如图,连接AC、BD、OF,,设⊙O的半径是r,则OF=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,∵OA=OF,∴∠OFA=∠OAF=30°,∴∠COF=30°+30°=60°,∴FI=r•sin60°=,∴EF=,∵AO=2OI,∴OI=,CI=r﹣=,∴,∴,∴=,即则的值是.故选:C.【点评】此题主要考查了正多边形与圆的关系,要熟练掌握,解答此题的关键是要明确正多边形的有关概念:①中心:正多边形的外接圆的圆心叫做正多边形的中心.②正多边形的半径:外接圆的半径叫做正多边形的半径.③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.④边心距:中心到正多边形的一边的距离叫做正多边形的边心距.二、填空题11.从﹣1,0,1,2四个数中任意取出两个数,这两个数和为负数的概率是.【考点】列表法与树状图法.【专题】计算题.【分析】先画树状图展示所有,12种等可能的结果数,再找出两个数和为负数的结果数,然后根据概率公式计算.【解答】解:画树状图为:,共有12种等可能的结果数,其中两个数和为负数的结果数为2,所以两个数和为负数的概率==.故答案为.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.12.已知二次函数y=x2+bx+c的图象经过点(﹣1,0),(4,0),则c= ﹣4 .【考点】待定系数法求二次函数解析式.【专题】计算题.【分析】由于已知抛物线与x轴的交点坐标,则可用交点式表示解析式为y=(x+1)(x﹣4),然后变形为一般式即可得到c的值.【解答】解:抛物线的解析式为y=(x+1)(x﹣4),即y=x2﹣3x﹣4,所以c=﹣4.故答案为﹣4.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.13.某小区2014年底绿化面积为1000平方米,计划2016年底绿化面积要达到1440平方米,如果每年绿化面积的增长率相同,那么这个增长率是 20% .【考点】一元二次方程的应用.【专题】增长率问题.【分析】一般用增长后的量=增长前的量×(1+增长率),如果设人均年收入的平均增长率为x ,根据题意即可列出方程.【解答】解:设平均增长率为x ,根据题意可列出方程为:1000(1+x )2=1440. 解得:(1+x )2=1.44.1+x=±1.2.所以x 1=0.2,x 2=﹣2.2(舍去).故x=0.2=20%.答:这个增长率为20%,故答案为:20%【点评】本题主要考查了一元二次方程的应用,在解题时要根据已知条件找出等量关系,列出方程是本题的关键.14.如图是一几何体的三视图,则这个几何体的全面积是 33π .【考点】圆锥的计算;由三视图判断几何体.【分析】首先确定几何体的形状,根据三视图中提供的数据即可计算.【解答】解:几何体是圆锥,底面直径是6,则底面周长是6π,母线长是8.则侧面积是:×6π×8=24π,底面面积是:9π.则全面积是:24π+9π=33π.故答案为:33π.【点评】本题主要考查了三视图,以及圆锥的侧面积的计算,正确根据三视图确定圆锥的底面直径以及母线长是解题的关键.15.如图,要拧开一个边长为a=12mm的六角形螺帽,扳手张开的开口b至少要12mm.【考点】正多边形和圆.【分析】根据题意,即是求该正六边形的边心距的2倍.构造一个由半径、半边、边心距组成的直角三角形,且其半边所对的角是30度,再根据锐角三角函数的知识求解.【解答】解:如图所示:设正多边形的中心是O,其一边是AB,∴∠AOB=∠BOC=60°,∴OA=OB=A B=OC=BC,∴四边形ABCO是菱形,∵AB=12mm,∠AOB=60°,∴cos∠BAC=,∴AM=12×=6,∵OA=OC,且∠AOB=∠BOC,∴AM=MC=AC,∴AC=2AM=12mm.故答案为:12.【点评】本题考查了正多边形和圆的知识、三角函数;构造一个由半径、半边、边心距组成的直角三角形,熟练运用锐角三角函数进行计算是解决问题的关键.16.如图,Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转一定角度后得△EDC,点D在AB边上,斜边DE交AC于点F,则图中阴影部分面积为.【考点】旋转的性质.【分析】先根据已知条件求出AC的长及∠B的度数,再根据图形旋转的性质及等边三角形的判定定理判断出△BCD的形状,进而得出∠DCF的度数,由直角三角形的性质可判断出DF 是△ABC的中位线,由三角形的面积公式即可得出结论.【解答】解:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AB=2BC=4,AC=2,∵△EDC是△ABC旋转而成,∴B C=CD=BD=AB=2,∵∠B=60°,∴△BCD是等边三角形,∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE⊥AC,∴DE∥BC,∵BD=AB=2,∴DF是△ABC的中位线,∴DF=BC=×2=1,CF=AC=×2=,=DF×CF=×=.∴S阴影【点评】考查的是图形旋转的性质及直角三角形的性质、三角形中位线定理及三角形的面积公式,熟知图形旋转的性质是解答此题的关键,即:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.17.如图,矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP相似时,DP= 1或4或2.5 .【考点】相似三角形的判定;矩形的性质.【专题】分类讨论.【分析】需要分类讨论:△APD∽△PBC 和△PAD∽△PBC,根据该相似三角形的对应边成比例求得DP 的长度.【解答】解:①当△APD∽△PBC 时,=,即=, 解得:PD=1,或PD=4;②当△PAD∽△PBC 时,=,即=,解得:DP=2.5.综上所述,DP 的长度是1或4或2.5.故答案是:1或4或2.5.【点评】本题考查了矩形的性质,相似三角形的判定与性质.对于动点问题,需要分类讨论,以防漏解.18.如图所示,n+1个直角边长为1的等腰直角三角形,斜边在同一直线上,设△B 2D 1C 1的面积为S 1,△B 3D 2C 2的面积为S 2,…,△B n+1D n C n 的面积为S n ,则S 1= ,S n = (用含n 的式子表示).【考点】相似三角形的判定与性质;三角形的面积;等腰直角三角形.【专题】压轴题;规律型.【分析】连接B 1、B 2、B 3、B 4、B 5点,显然它们共线且平行于AC 1,依题意可知△B 1C 1B 2是等腰直角三角形,知道△B 1B 2D 1与△C 1AD 1相似,求出相似比,根据三角形面积公式可得出S 1,同理:B 2B 3:AC 2=1:2,所以B 2D 2:D 2C2=1:2,所以S 2=×=,同样的道理,即可求出S 3,S 4…S n .【解答】解:∵n+1个边长为1的等腰三角形有一条边在同一直线上,∴S △AB1C1=×1×1=,连接B 1、B 2、B 3、B 4、B 5点,显然它们共线且平行于AC 1∵∠B 1C 1B 2=90°∴A 1B 1∥B 2C 1∴△B 1C 1B 2是等腰直角三角形,且边长=1,∴△B 1B 2D 1∽△C 1AD 1,∴B 1D 1:D 1C 1=1:1,∴S 1=×=,故答案为:;同理:B 2B 3:AC 2=1:2,∴B 2D 2:D 2C 2=1:2,∴S 2=×=,同理:B 3B 4:AC 3=1:3,∴B 3D 3:D 3C 3=1:3,∴S 3=×=,∴S 4=×=,…∴S n =故答案为:.【点评】本题主要考查相似三角形的判定和性质,等腰直角三角形的定义和性质、三角形的面公式等知识点、本题关键在于作好辅助线,得到相似三角形,求出相似比,就很容易得出答案了,意在提高同学们总结归纳的能力.三、解答题(第19题10分,第20题12分,共22分)19.如图,方格纸中每个小正方形的边长都是单位1,△ABC 在平面直角坐标系中的位置如图所示.(1)将△ABC 绕点O 顺时针方向旋转90°后得△A 1B 1C 1,画出△A 1B 1C 1并直接写出点C 1的坐标为 (2,3) ;(2)以原点O 为位似中心,在第四象限画一个△A 2B 2C 2,使它与△ABC 位似,并且△A 2B 2C 2与△ABC 的相似比为2:1.【考点】作图-位似变换;作图-旋转变换.【专题】作图题.【分析】(1)利用网格特点和旋转的性质画出点A 、B 、C 的对应点A 1、B 1、C 1,从而得到△A 1B 1C 1;(2)利用关于原点中心对称的点的特征特征,把A 、B 、C 点的横纵坐标都乘以﹣2得到A 2、B 2、C 2的坐标,然后描点即可得到△A 2B 2C 2.【解答】解:(1)如图,△A 1B 1C 1为所作,点C 1的坐标为(2,3);(2)如图,△A 2B 2C 2为所作.故答案为(2,3).【点评】本题考查了位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.也考查了旋转变换.20.(1)计算:sin30°+3tan60°﹣cos245°.(2)如图,在Rt△ABC中,∠C=90°,∠ABC=75°,D在AC上,DC=6,∠DBC=60°,求AD 的长.【考点】解直角三角形;特殊角的三角函数值.【分析】(1)将特殊角的三角函数值代入求解;(2)根据三角函数的定义和直角三角形的解法解答即可.【解答】解:(1)sin30°+3tan60°﹣cos245°===;(2)Rt△DBC 中,sin∠DBC=,sin60°=,,BD=4,∠ABD=∠AB C﹣∠DBC=75°﹣60°=15°,∠A+∠ABC=90°,∠A=90°﹣∠ABC=90°﹣75°=15°,∴∠ABD=∠A,∴AD=BD=4.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.四、21.我市某蔬菜生产基地在气温较低时,用装有恒温系统的大鹏栽培一种在自然光照且温度为18℃的条件下生长最快的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线y=的一部分.请根据图中信息解析下列问题:(1)求y与x的函数关系式;(2)当x=16时,大棚内的温度约为多少度?【考点】反比例函数的应用;一次函数的应用.【分析】(1)需要分类讨论:AD段为直线;AB段平行于x轴的直线;BC段为双曲线的一部分,利用待定系数法求解即可;(2)把x=16代入反比例函数解析式进行解答.【解答】解:(1)设AD解析式是y=mx+n(m≠0),则,解得,∴y=5x+8.∵双曲线y=经过B(12,18),∴18=,解得k=216.∴y=.综上所述,y与x的函数解析式为:y=;(2)当x=16时,y==13.5.答:当x=16时,大棚内的温度约为13.5度.【点评】此题主要考查了反比例函数的应用,求函数解析式时,一定要结合图形,对自变量x的取值范围进行分类讨论,以防漏解或错解.22.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若⊙O的半径为3,求阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)连接OA ,如图,先根据圆周角定理得到∠AOC=2∠B=120°,则∠AOP=60°,再计算出∠OCA 的度数,接着利用AP=AC 得到∠P=∠ACO=30°,然后根据三角形内角和可计算出∠PAO=90°,于是利用切线的判定定理可判断PA 是⊙O 的切线;(2)在Rt△AOP 中,利用含30度的直角三角形三边的关系得到PO=2OA=6,PA=OA=3,然后根据三角形面积公式和扇形面积公式,利用S 阴影部分=S △PAO ﹣S 扇形OAD 进行计算即可.【解答】(1)证明:连接OA ,如图,∵∠AOC=2∠B=120°,∴∠AOP=60°,∵OA=OC,∴∠OCA=∠OAC=(180°﹣120°)=30°,∵AP=AC,∴∠P=∠ACO=30°,∴∠PAO=180°﹣30°﹣60°=90°,∴OA⊥PA,∴PA 是⊙O 的切线;(2)解:在Rt△AOP 中,PO=2OA=6,PA=OA=3,∴S 阴影部分=S △PAO ﹣S 扇形OAD =•3•3﹣=.【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形面积公式.五、(本题12分)23.如图,某数学活动小组要测量楼AB 的高度,楼AB 在太阳光的照射下在水平面的影长BC 为6米,在斜坡CE 的影长CD 为13米,身高1.5米的小红在水平面上的影长为1.35米,斜坡CE 的坡度为1:2.4,求楼AB 的高度.(坡度为铅直高度与水平宽度的比)【考点】解直角三角形的应用-坡度坡角问题.【分析】作DN⊥AB,垂足为N,作CM⊥DN,垂足为M,设CM=5x,根据坡度的概念求出CM、DM,根据平行线的性质列出比例式,计算即可.【解答】解:作DN⊥AB,垂足为N,作CM⊥DN,垂足为M,则CM:MD=1:2.4=5:12,设CM=5x,则MD=12x,由勾股定理得CD==13x=13∴x=1∴CM=5,MD=12,四边形BCMN为矩形,MN=BC=6,BN=CM=5,太阳光线为平行光线,光线与水平面所成的角度相同,角度的正切值相同,∴AN:DN=1.5:1.35=10:9,∴9AN=10DN=10×(6+12)=180,AN=20,AB=20﹣5=15,答:楼AB的高度为15米.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h 和水平宽度l的比是解题的关键,注意平行线的性质的应用.六、(本题12分)24.某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y甲(万元)与进货量x(吨)近似满足函数关系y甲=0.3x;乙种水果的销售利润y乙(万元)与进货量x(吨)近似满足函数关系y乙=ax2+bx(其中a≠0,a,b为常数),且进货量x为1吨时,销售利润y乙为1.4万元;进货量x为2吨时,销售利润y乙为2.6万元.(1)求y乙(万元)与x(吨)之间的函数关系式.(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t吨,请你写出这两种水果所获得的销售利润之和W(万元)与t(吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?【考点】二次函数的应用.【分析】(1)根据题意列出二元一次方程组,求出a、b的值即可求出函数关系式的解.(2)已知w=y甲+y乙=0.3(10﹣t)+(﹣0.1t2+1.5t),用配方法化简函数关系式即可求出w的最大值.【解答】解:(1)由题意,得:解得∴y乙=﹣0.1x2+1.5x.(2)W=y甲+y乙=0.3(10﹣t)+(﹣0.1t2+1.5t)∴W=﹣0.1t2+1.2t+3.W=﹣0.1(t﹣6)2+6.6.∴t=6时,W有最大值为6.6.∴10﹣6=4(吨).答:甲、乙两种水果的进货量分别为4吨和6吨时,获得的销售利润之和最大,最大利润是6.6万元.【点评】本题考查学生利用二次函数解决实际问题的能力,注意二次函数的最大值往往要通过顶点坐标来确定.七、(本题12分)25.如图①,C为线段BE上的一点,分别以BC和CE为边在BE的同侧作正方形ABCD和正方形CEFG,M、N分别是线段AF和GD的中点,连接MN(1)线段MN和GD的数量关系是MN=DG ,位置关系是MN⊥DG;(2)将图①中的正方形CEFG绕点C逆时针旋转90°,其他条件不变,如图②,(1)的结论是否成立?说明理由;(3)已知BC=7,CE=3,将图①中的正方形CEFG绕点C旋转一周,其他条件不变,直接写出MN的最大值和最小值.【考点】四边形综合题;直角三角形斜边上的中线;三角形中位线定理;正方形的性质;梯形中位线定理;相似形综合题.【专题】探究型.【分析】(1)连接FN并延长,与AD交于点S,如图①,易证△SDN≌△F GN,则有DS=GF,SN=FN,然后运用三角形中位线定理就可解决问题;(2)过点M作MT⊥DC于T,过点M作MR⊥BC于R,连接FC、MD、MG,如图②,根据平行线分线段成比例可得BR=GR=BG,DT=ET=DE,根据梯形中位线定理可得MR=(FG+AB),MT=(EF+AD),从而可得MR=MT,RG=TD,由此可得△MRG≌△MTD,则有MG=MD,∠RMG=∠TMD,则有∠RMT=∠GMD,进而可证到△DMG是等腰直角三角形,然后根据等腰三角形的性质和直角三角形斜边上的中线等于斜边的一半,就可解决问题;(3)连接GM到点P,使得PM=GM,延长GF、AD交于点Q,连接AP,DP,DM如图③,易证△APD≌△CGD,则有PD=DG,根据等腰三角形的性质可得DM⊥PG,根据直角三角形斜边上的中线等于斜边的一半可得MN=DG.要求MN的最大值和最小值,只需求DG的最大值和最小值,由GC=CE=3可知点G在以点C为圆心,3为半径的圆上,再由DC=BC=7,就可求出DG的最大值和最小值.【解答】解:(1)连接FN并延长,与AD交于点S,如图①.∵四边形ABCD和四边形EFGC都是正方形,∴∠D=90°,AD=DC,GC=GF,AD∥BE∥GF,∴∠DSN=∠GFN.在△SDN和△FGN中,,∴△SDN≌△FGN,∴DS=GF,SN=FN.∵AM=FM,∴MN∥AS,MN=AS,∴∠MNG=∠D=90°,MN=(AD﹣DS)=(DC﹣GF)=(DC﹣GC)=DG.故答案为MN=DG,MN⊥DG;(2)(1)的结论仍然成立.理由:过点M作MT⊥DC于T,过点M作MR⊥BC于R,连接FC、MD、MG,如图②,则A、F、C共线,MR∥FG∥AB,MT∥EF∥AD.∵AM=FM,∴BR=GR=BG,DT=ET=DE,∴MR=(FG+AB),MT=(EF+AD).∵四边形ABCD和四边形EFGC都是正方形,∴FG=GC=EC=EF,AB=BC=DC=AD,∴MR=MT,RG=TD.在△MRG和△MTD中,,∴△MRG≌△MTD,∴MG=MD,∠RMG=∠TMD,∴∠RMT=∠GMD.∵∠MRC=∠RCT=∠MTC=90°,∴四边形MRCT是矩形,∴∠RMT=90°,∴∠GMD=90°.∵MG=MD,∠GMD=90°,DN=GN,∴MN⊥DG,MN=DG.(3)连接GM到点P,使得PM=GM,延长GF、AD交于点Q,连接AP,DP,DM如图③,在△AMP和△FMG中,,∴△AMP≌△FMG,∴AP=FG,∠APM=∠FGM,∴AP∥GF,∴∠PAQ=∠Q,∵∠DOG=∠ODQ+∠Q=∠OGC+∠GCO,∠ODQ=∠OGC=90°,∴∠Q=∠GCO,∴∠PAQ=∠GCO.∵四边形ABCD和四边形EFGC都是正方形,∴DA=DC,GF=GC,∴AP=CG.在△APD和△CGD中,,∴△APD≌△CGD,∴PD=DG.∵PM=GM,∴DM⊥PG.∵DN=GN,∴MN=DG.∵GC=CE=3,∴点G在以点C为圆心,3为半径的圆上,∵DC=BC=7,∴DG的最大值为7+3=10,最小值为7﹣3=4,∴MN的最大值为5,最小值为2.【点评】本题主要考查了全等三角形的判定与性质、正方形的性质、三角形中位线定理、平行线分线段成比例、梯形中位线定理、等腰直角三角形的判定与性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、圆的定义、平行线的判定与性质等知识,综合性强,有一定的难度,证到△DMG是等腰直角三角形是解决第(2)小题的关键,证到MN=DG 是解决第(3)小题的关键.八、(本题14分)26.如图,直线y=﹣x+3与x轴交于A点,与y轴交于B点,对称轴为x=1的抛物线经过A、B两点,与x轴的另一个交点为C,抛物线与对称轴交于D点,连接CE、CB、BD.(1)求抛物线的解析式;(2)求证:BD∥CE;(3)在直线AB上是否存在点P,使以B、D、P为顶点的三角形与△BCE相似?若存在,直接写出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得B、A点坐标,根据函数值相等的点关于对称轴对称,可得C点坐标,根据待定系数法,可得函数解析式;(2)根据相似三角形的判断与性质,可得∠BDF=∠CEG,根据平行线的判定,可得答案;(3)根据相似三角形的判定与性质,可得关于m的方程,根据解方程,可得m的值,根据自变量与函数值的对应关系,可得答案.【解答】解:(1)当x=0时,y=3,即B点(0,3),当y=0时,x=3,即A点坐标为(3,0),由A、C关于x=1对称,得C(﹣1,0).设抛物线的解析式为y=ax2+bx+c,将A、B、C坐标代入,得,解得,抛物线的解析式为y=﹣x2+2x+3;(2)证明:如图1,作BF⊥DE于F,F点的坐标为(1,3),D(1,4),BF=1,DF=4﹣3=1;当x=1时,y=﹣1+3=2,即E点坐标为(1,2),G(1,0),EG=2,CG=2.==,∠BFD=∠CGE=90°,∴△BFD∽△CGE,∴∠BDF=∠CEG,∴BD∥CE;(3)如图2,设P点坐标为(m,﹣m+3),E(1,2),B(0,3),由勾股定理,得BE==,CE==2,PB==﹣m,BD==,由△BDP∽△ECB,=,即=,解得m=﹣,﹣m+3=,即P(﹣,),在直线AB上存在点P,使以B、D、P为顶点的三角形与△BCE相似,P(﹣,).【点评】本题考查了二次函数综合题,利用待定系数法求函数解析式;利用相似三角形的判定与性质得出∠BDF=∠CEG是解题关键;利用相似三角形的对应边成比例得出关于m的方程是解题关键.。
2015~2016学年度第二学期九年级质量检测(一)数学试题参考答案
2015~2016学年度第二学期九年级质量检测(一)数学试题参考答案及评分标准(注:若有其他正确答案请参照此标准赋分)一、选择题(本大题共8个小题,每小题2分,共16分)二、填空题(本大题共8个小题,每小题3分,共24分) 9.3.12×10610.6元,6元(没有单位也可) 11. 13m <12. 22.5-x -15≥15×10% 或%1015155.22≥--x13. ①③④ 14.6 15. 22或111 16. 24031 三、解答题(本大题共2个小题,每小题6分,共12分) 17. 解:方法1:原式=(1)(1)11x x x x x x -⎡⎤--÷⎢⎥++⎣⎦=1(1)1(1)x x x x x x +⎡⎤--⋅⎢⎥+-⎣⎦=11x x x x +--=22(1)1(1)(1)x x x x x x --=--(或21x x-). ……………5分 当2x =-时,原式=111(1)(2)(21)6x x ==--⨯--.……………………………6分方法2:原式=2(1)11x x x x x x -⎡⎤--÷⎢⎥++⎣⎦=22(1)(1)111xx x x x x x x⎡⎤-++-⋅⎢⎥++-⎣⎦ =222(1)11x x x x x x ⎡⎤--+⋅⎢⎥+-⎣⎦=2111x x x x +⋅+-=21x x-(或1(1)x x -). ……………………………5分 当2x =-时,原式=22111(2)(2)6x x ==----. ……………………………6分18.(1)作图如下:(注:不写结论不扣分)则四边形AEMF 为所求作的菱形. ……………………………2分 说明:作图方法不唯一,如:可作边BC 的垂直平分线. (2)由作图知,∠BAM=∠CAM ,又∵△ABC 是等腰三角形, ∴BM=CM ,∵E 、F 是AB 、AC 的中点,∴AE=12AB, AF=12AC . ∴EM 、FM 是△ABC 的中位线. ∴EM ∥AC ,MF ∥AB .∴四边形AEMF 是平行四边形. ∵AB=AC, ∴AE=AF .∴四边形AEMF 为菱形. ……………………………6分四、解答题(本大题共2个小题,每小题7分,共14分) 19.解:(1)20,20-2-3-4-5-4=2(个). 补图正确……………………2分(2)4100%=20%20⨯. 360°×20%=72°.所以圆心角的度数为72°. ……4分(3)平均每班患流感人数为122233445564420x ⨯+⨯+⨯+⨯+⨯+⨯==(人).则45个班中共有45×4=180(人).答:估计该校此次患流感的人数为180人. …………………………………7分20. 解:(1)用列表法列出两次抽出的数字的所有可能结果如下:第1次第2次-1 -2 1 2M E FBCA 第18题图第19题图2名 1名 4名 3名 5名 抽查班级患流感人数条形统计图班级个数65 4 3 2 1 0图2第22题图 B A D 10m C ……………………………4分(2)由(1)得,所有可能出现的结果共16种,每种情况出现的可能性相同,其中点P 落在双曲线xy 2=上的情况有4种,分别是(-1,-2)、(-2,-1)、(1,2)、(2,1), 所以点P 落在双曲线x y 2=上的概率是=16441. ……………………………7分21.解:(1)设这项工程规定的时间为x 天,则314xx x +=+. ……………………4分 解得x =12.经检验:x =12是原方程的解.答:规定的工期是12天. …………………………6分 (2)选择方案3. 理由如下:方案1付款:2.8×12=33.6(万元). 方案2:耽误工期,不符合要求; 方案3付款:2.8×3+2×12=32.4(万元).答:方案3节省工程款. …………………………8分 22. 解:不需要砍掉.理由如下:根据题意,在Rt △ABC 中,∵∠ABC=90°,∠CAB=45°,CB=10,∴tan45°=ABBC. ∴AB=10. ………………… 2分在Rt △BCD 中,∵∠CDB=37°,CB=10,∴tan37°=BDBC. ……………4分∴340=BD . ……………5分 ∴AD =BD -AB =31010340=-. ……………………6分 ∵310+3=319<9, 所以离原坡脚9m 处的大树不需要砍掉.……………………8分 六、解答题(本大题共2个小题,每小题8分,共16分) 23.(1)证明:∵AD 平分∠EAC ,-1 (-1,-1) (-2,-1) (1,-1) (2,-1) -2 (-1,-2) (-2,-2) (1,-2) (2,-2) 1 (-1,1) (-2,1) (1,1) (2,1) 2(-1,2)(-2,2)(1,2)(2,2)∴∠EAD=∠DAC.∵四边形AFBC内接于圆,∴∠FBC=180°-∠FAC.∵∠DAC=180°-∠FAC,∴∠DAC=∠FBC.∵∠EAD=∠FAB=∠FCB,∴∠FBC=∠FCB. ……………………4分(2)解:∵AB是圆的直径,∴∠ACB=∠ACD= 90°.∵∠D=30°,∴∠DAC=60°.…………………5分∵AD平分∠EAC,∴∠EAC=∠DAC=120°.∴∠BAC=180°-∠EAC=60°.∵BC=3,sin∠BAC= sin 60°=BC,AB∴…………………8分24.解:(1)由题意得y=20+2(x-1),即y=2x+18 (1≤x≤10). …………………2分(2)由题意知,当y=28时,18+2x=28,解得x=5. ……………………3分当1≤x≤5时,W=(1400-1000)×(18+2x),即W=800x+7200. ………………………4分∵800>0,W随着x的增大而增大,∴当x=5时,W最大值=11200;………………………5分当5<x≤10时,W =(1400-1000)×(2x+18)-20×[(2x+18)-28] (2x+18),即W=-80x2+480x+10800. ………………………6分将这个函数配方,得W =-80(x-3)2+11520,∴当x=3时,W最大=11520,但x=3不在5<x≤10之内,由函数图象的开口向下,当x≥3时,W随x的增大而减小,在5<x≤10之内时当x=6时,W最大=-80(6-3)2+11520=10800. ……7分∵11200>10800,∴第5天时该厂获得利润最大,最大利润为11200元.………………………8分七、解答题(本题共10分)25.解:(1)①证明:作AH⊥BF,垂足为点H,∵BF⊥BC,第26题图 ∴∠AHB =∠HBC=∠ACB=90°. ∴四边形ACBH 为矩形. ∵AC=BC ,∴四边形ACBH 为正方形.∴AH=BC=AC=BH ,∠CAH=∠DAE=90°. ∴∠CAD=∠HAE=90°-∠CAE . 又∵∠ACD=∠AHE=90°, ∴△ACD ≌△AHE (ASA ).∴AD=AE . ………………………………5分 ②BD+BE=2BC . ………………………………6分 ∵△ACD ≌△AHE , ∴CD=HE .∴BD -BC=BH -BE=BC -BE .∴BD+BE=2BC . ………………………………8分 (2)当D 在BC 边上时,BD+BE=2BC ;当D 在CB 延长线上时,BE -BD=2BC . ………………………………10分 八、解答题(本题共12分)26. 解:(1)由直线y=3x+3可知B 点坐标(0,3),A 点坐标(-1,0),∴AB=10.由C 点坐标(0,1)可得AC =2. ∵∠ADB=∠ABC, ∠BAC=∠BAD , ∴△ABC ∽△ADB . ∴ AB 2=AC•AD .∴AD=52. …………………………1分 如图,过点D 作DM ⊥x 轴于点M , ∵OC ∥MD ,∴OC ACMD AD=. ∴MD=5.∴D 点坐标(4,5) ∵抛物线过点B(0,3),则可设抛物线解析式为y=2ax + 把A (-1,0) D(4,5)代入表达式中,得 3164a b a b -+⎧⎨+⎩,25.2b -⎪=⎪⎩∴所示抛物线表达式为y=215322x x -++. …………………5分 (2) 由已知易得直线AD 的表达式为y=x+1, 可设P (x ,x+1),则H (x ,325x 21-2++x ),第25题图 x y O BA D CM所以PH=215322x x -++-x -1= 825.解得 x 1= x 2=23. ………………7分把x=23代入y=215322x x -++,得y=458.∴点H 的坐标为(23,458). …………………… 9分(3) A '(1,338), ………………10分7322m -≤≤,54588n ≤≤. …………………………12分。
2016届九年级(下)期中数学试卷(解析版)
九年级(下)期中数学试卷学校:班级:教师:科目:得分:一、选择题(每小题3分,共30分)1.如果a与﹣2的和为0,那么a是()A.2 B.C.﹣D.﹣22.下列运算正确的是()A.a3•a2=a6B.(﹣a2)3=﹣a6 C.(ab)3=ab3D.a8÷a2=a43.在等边三角形、正方形、菱形和等腰梯形中,是中心对称图形的个数为()A.1个B.2个C.3个D.4个4.下面四个几何体中,俯视图为四边形的是()A.B.C.D.5.下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件B.想了解某种饮料中含色素的情况,宜采用抽样调查C.数据1,1,2,2,3的众数是3D.一组数据的波动越大,方差越小6.从1~9这九个自然数中任取一个,是2的倍数的概率是()A.B.C.D.7.下列关于x的一元二次方程中一定有实数根的是()A.x2﹣2x+4=0 B.x2+2x+4=0 C.x2﹣2x﹣4=0 D.x2+4=08.在半径等于4cm的圆内有长为4cm的弦,则此弦所对的圆周角为()A.60°B.120°C.30°或150°D.60°或120°9.在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.10.如图,边长为2a的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A. a B.a C.D.二、填空题(共8小题,每小题3分,满分24分)11.4是的算术平方根.12.因式分解:x2y﹣y=.13.函数中,自变量x的取值范围是.14.如图,AB∥CD,∠C=20°,∠A=55°,则∠E=.15.已知a﹣2b=﹣2,则4﹣2a+4b的值为.16.某市南线路段的304盏太阳能路灯一年大约可节电226 900千瓦时,226 900千瓦时用科学记数法表示为千瓦时(保留两个有效数字).17.已知扇形的圆心角为120°,半径为15cm,则扇形的弧长为cm(结果保留π).18.如图,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y轴的平行线,与反比例函数的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连结OB1、OB2、OB3,那么图中阴影部分的面积之和为.三、解答题(本大题共76分)19.计算:.20.先化简,再求值:,其中.21.解不等式组,并把解集在数轴上表示出来.22.解方程:.23.如图,在△ABC中,AB=AC,点O是BC的中点,连接AO,在AO的延长线上取一点D,连接BD,CD(1)求证:△ABD≌△ACD;(2)当AO与AD满足什么数量关系时,四边形ABDC是菱形?并说明理由.24.吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康、有消息称,我国准备从2011年元月一日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下统计图:根据统计图解答:(1)同学们一共随机调查了多少人?(2)请你把统计图补充完整;(3)如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是多少?假定该社区有1万人,请估计该地区大约有多少人支持“警示戒烟”这种方式?25.如图,在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持10海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一不明国籍的渔船C,求此时渔船C与海监船B的距离是多少.(结果保留根号)26.如图,AB为⊙O直径,E为⊙O上一点,∠EAB的平分线AC交⊙O于C点,过C点作CD⊥AE的延长线于D点,直线CD与射线AB交于P点.(1)求证:DC为⊙O切线;(2)若DC=1,AC=,①求⊙O半径长;②求PB的长.27.如图,一次函数y=kx+2的图象与反比例函数的图象交于点P,点P在第一象限,PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,.(1)求点D的坐标及BD长;(2)求一次函数与反比例函数的解析式;(3)根据图象直接写出当x>0时,一次函数的值大于反比例函数值的x的取值范围;(4)若双曲线上存在一点Q,使以B、D、P、Q为顶点的四边形是直角梯形,请直接写出符合条件的Q点的坐标.28.“绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x=1时的y值表示7:00时的存量,x=2时的y值表示8:00时的存量…依此类推.他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.时段x 还车数(辆)借车数(辆)存量y(辆)6:00﹣7:00 1 45 5 1007:00﹣8:00 2 43 11 n……………根据所给图表信息,解决下列问题:(1)m=,解释m的实际意义:;(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;(3)已知9:00~10:O0这个时段的还车数比借车数的3倍少4,求此时段的借车数.29.如图,等腰三角形OAB的一边OB在x轴的正半轴上,点A的坐标为(6,8),OA=OB,动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,动点Q从原点O出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,过点Q作x轴的平行线分别交OA,AB于E,F,设动点P,Q同时出发,当点P到达点B时,点Q也停止运动,他们运动的时间为t秒(t≥0).(1)点E的坐标为,F的坐标为;(2)当t为何值时,四边形POFE是平行四边形;(3)是否存在某一时刻,使△PEF为直角三角形?若存在,请求出此时t的值;若不存在,请说明理由.2015-2016学年九年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.如果a与﹣2的和为0,那么a是()A.2 B.C.﹣D.﹣2【考点】相反数.【分析】根据相反数的概念,互为相反数的两个数和为0,即可得出答案.【解答】解:由题意得a﹣2=0,则a=2.故选A.2.下列运算正确的是()A.a3•a2=a6B.(﹣a2)3=﹣a6 C.(ab)3=ab3D.a8÷a2=a4【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】利用同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相乘,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、应为a3•a2=a5,故A错误;B、(﹣a2)3=﹣a6,故B正确;C、应为(ab)3=a3b3,故C错误;D、应为a8÷a2=a6,故D错误.故选:B.3.在等边三角形、正方形、菱形和等腰梯形中,是中心对称图形的个数为()A.1个B.2个C.3个D.4个【考点】中心对称图形.【分析】根据中心对称图形的概念进而判断得出答案.【解答】解:在等边三角形、正方形、菱形和等腰梯形中,是中心对称图形有正方形、菱形共有2个.故选:B.4.下面四个几何体中,俯视图为四边形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】俯视图是指从物体上面看,所得到的图形.【解答】解:A、圆柱的俯视图是圆;B、三棱锥的俯视图是三角形;C、球的俯视图是圆;D、正方体的俯视图是四边形.故选D.5.下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件B.想了解某种饮料中含色素的情况,宜采用抽样调查C.数据1,1,2,2,3的众数是3D.一组数据的波动越大,方差越小【考点】随机事件;全面调查与抽样调查;众数;方差.【分析】利用必然事件的定义、普查和抽样调查的特点、众数的定义、方差的定义即可作出判断.【解答】解:A、打开电视,正在播放《新闻联播》是随机事件,故本选项错误,B、想了解某饮料中含色素的情况,应用抽样调查,故本选项正确,C、数据1,1,2,2,3的众数是1、2,故本选项错误,D、一组数据的波动越大,方差越大,故本选项错误,故选B.6.从1~9这九个自然数中任取一个,是2的倍数的概率是()A.B.C.D.【考点】概率公式.【分析】先从1~9这九个自然数中找出是2的倍数的有2、4、6、8共4个,然后根据概率公式求解即可.【解答】解:1~9这九个自然数中,是2的倍数的数有:2、4、6、8,共4个,∴从1~9这九个自然数中任取一个,是2的倍数的概率是:.故选B.7.下列关于x的一元二次方程中一定有实数根的是()A.x2﹣2x+4=0 B.x2+2x+4=0 C.x2﹣2x﹣4=0 D.x2+4=0【考点】根的判别式.【分析】分别求出每个一元二次方程根的判别式△与0的关系,进而选择正确的选项.【解答】解:A、x2﹣2x+4=0,△=4﹣4×4=﹣12<0,此选项错误;B、x2+2x+4=0,△=4﹣4×4=﹣12<0,此选项错误;C、x2﹣2x﹣4=0,△=4+4×4=20>0,此选项正确;D、x2+4=0,△=0﹣4×4=﹣16<0,此选项错误;故选C.8.在半径等于4cm的圆内有长为4cm的弦,则此弦所对的圆周角为()A.60°B.120°C.30°或150°D.60°或120°【考点】圆周角定理;解直角三角形.【分析】先画图,再根据垂径定理得出AC,根据三角函数得出∠O,由圆周角定理得出答案.【解答】解:如图,过点O作OD⊥AB,交⊙O于点D,交AB于点C,∵OA=4,AB=4,∴AC=2,∴sin∠O==,∴∠O=60°,∴∠E=60°,∴∠F=120°,故选D.9.在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】本题主要考查一次函数和二次函数的图象所经过的象限的问题,关键是m的正负的确定,对于二次函数y=ax2+bx+c,当a>0时,开口向上;当a<0时,开口向下.对称轴为x=,与y轴的交点坐标为(0,c).【解答】解:解法一:逐项分析A、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,与图象不符,故A选项错误;B、由函数y=mx+m的图象可知m<0,对称轴为x===<0,则对称轴应在y轴左侧,与图象不符,故B选项错误;C、由函数y=mx+m的图象可知m>0,即函数y=﹣mx2+2x+2开口方向朝下,与图象不符,故C选项错误;D、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x===<0,则对称轴应在y轴左侧,与图象相符,故D选项正确;解法二:系统分析当二次函数开口向下时,﹣m<0,m>0,一次函数图象过一、二、三象限.当二次函数开口向上时,﹣m>0,m<0,对称轴x=<0,这时二次函数图象的对称轴在y轴左侧,一次函数图象过二、三、四象限.故选:D.10.如图,边长为2a的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A. a B.a C.D.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明∴△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【解答】解:如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=AB,∴HB=BG,又∵MB旋转到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根据垂线段最短,MG⊥CH时,MG最短,即HN最短,此时∵∠BCH=×60°=30°,CG=AB=×2a=a,∴MG=CG=×a=,∴HN=,故选:D.二、填空题(共8小题,每小题3分,满分24分)11.4是16的算术平方根.【考点】算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵42=16,∴4是16的算术平方根.故答案为:16.12.因式分解:x2y﹣y=y(x+1)(x﹣1).【考点】提公因式法与公式法的综合运用.【分析】首先提公因式y,再利用平方差进行二次分解即可.【解答】解:原式=y(x2﹣1)=y(x+1)(x﹣1),故答案为:y(x+1)(x﹣1).13.函数中,自变量x的取值范围是x≠﹣5.【考点】函数自变量的取值范围.【分析】根据分式的意义,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x+5≠0,解得x≠﹣5.故答案为x≠﹣5.14.如图,AB∥CD,∠C=20°,∠A=55°,则∠E=35°.【考点】平行线的性质.【分析】根据平行线的性质求出∠EFD,根据三角形外角性质得出∠E=∠EFD﹣∠C,代入求出即可.【解答】解:∵AB∥CD,∠A=55°,∴∠EFD=∠A=55°,∵∠C=20°,∴∠E=∠EFD﹣∠C=55°﹣20°=35°,故答案为:35°.15.已知a﹣2b=﹣2,则4﹣2a+4b的值为8.【考点】代数式求值.【分析】原式后两项提取﹣2变形后,将已知等式的值代入计算即可求出值.【解答】解:∵a﹣2b=﹣2,∴4﹣2a+4b=4﹣2(a﹣2b)=4+4=8.故答案为:816.某市南线路段的304盏太阳能路灯一年大约可节电226 900千瓦时,226 900千瓦时用科学记数法表示为 2.3×105千瓦时(保留两个有效数字).【考点】科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.题中226 900有6位整数,n=6﹣1=5.有效数字是从左边第一个不是0的数字起后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:226 900=2.269×105≈2.3×105.故答案为:2.3×105.17.已知扇形的圆心角为120°,半径为15cm,则扇形的弧长为10πcm(结果保留π).【考点】弧长的计算.【分析】根据弧长公式计算.【解答】解:l===10πcm.18.如图,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y轴的平行线,与反比例函数的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连结OB1、OB2、OB3,那么图中阴影部分的面积之和为.【考点】反比例函数系数k的几何意义.【分析】先根据反比例函数上的点向x轴、y轴引垂线形成的矩形面积等于反比例函数的|k|,得到S△OB1C1=S△OB2C2=S△OB3C3=|k|=2,再根据相似三角形的面积比等于相似比的平方得到3个阴影部分的三角形的面积从而求得面积和.【解答】解:根据题意可知S△OB1C1=S△OB2C2=S△OB3C3=|k|=2,∵OA1=A1A2=A2A3,A1B1∥A2B2∥A3B3∥y轴,设图中阴影部分的面积从左向右依次为s1,s2,s3则s1=|k|=2,∵OA1=A1A2=A2A3,∴s2:S△OB2C2=1:4,s3:S△OB3C3=1:9,∴图中阴影部分的面积分别是s1=2,s2=,s3=,∴图中阴影部分的面积之和=2++=2.故答案为:2.三、解答题(本大题共76分)19.计算:.【考点】实数的运算;零指数幂;负整数指数幂.【分析】分别根据绝对值的性质、负整数指数幂的运算法则及数的开方法则分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=3+1﹣2+3=5.20.先化简,再求值:,其中.【考点】分式的化简求值;二次根式的化简求值.【分析】先将括号内通分,合并;再将除法问题转化为乘法问题;约分化简后,在原式有意义的条件下,代入计算即可【解答】解:===,当时,原式===.21.解不等式组,并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】对不等式2﹣x>0,移项得x<2,对不等式两边乘以6,然后再移项、合并同类项解出不等式的解,再根据不等式组解集的口诀:大小小大中间找,来求出不等式组的解.【解答】解:由题意,解不等式①,得x<2,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<2.不等式组的解集在数轴上表示如下:22.解方程:.【考点】解分式方程.【分析】由于x2﹣4=(x+2)(x﹣2),本题的最简公分母是(x+2)(x﹣2),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.【解答】解:方程两边同乘(x﹣2)(x+2),得:x(x+2)﹣(x2﹣4)=1,化简,得2x=﹣3,∴x=,检验:当x=时,(x﹣2)(x+2)≠0,∴x=是原方程的根.23.如图,在△ABC中,AB=AC,点O是BC的中点,连接AO,在AO的延长线上取一点D,连接BD,CD(1)求证:△ABD≌△ACD;(2)当AO与AD满足什么数量关系时,四边形ABDC是菱形?并说明理由.【考点】菱形的判定;全等三角形的判定与性质.【分析】(1)利用全等三角形的判定方法结合SAS得出即可;(2)利用菱形的判定方法对角线互相垂直且平分的四边形是菱形得出即可.【解答】(1)证明:∵AB=AC,点O是BC的中点,∴∠BAO=∠CAO,在△ABD和△ACD中∵,∴△ABD≌△ACD(SAS);(2)解:当AO=AD时,四边形ABDC是菱形.理由:∵AO=AD,∴AO=DO,又∵BO=CO,AO⊥BC,∴四边形ABDC是菱形.24.吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康、有消息称,我国准备从2011年元月一日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下统计图:根据统计图解答:(1)同学们一共随机调查了多少人?(2)请你把统计图补充完整;(3)如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是多少?假定该社区有1万人,请估计该地区大约有多少人支持“警示戒烟”这种方式?【考点】扇形统计图;用样本估计总体;条形统计图.【分析】(1)根据替代品戒烟30人占总体的10%,即可求得总人数;(2)根据求得的总人数,结合扇形统计图可以求得药物戒烟的人数,从而求得警示戒烟的人数,再根据各部分的人数除以总人数,即可求得各部分所占的百分比;(3)根据扇形统计图中“强制戒烟”的百分比即可回答其概率,再进一步根据样本估计总体.【解答】解:(1)30÷10%=300(人).∴一共调查了300人.(2)由(1)可知,总人数是300人.药物戒烟:300×15%=45(人);警示戒烟:300﹣120﹣30﹣45=105(人);105÷300=35%;强制戒烟:120÷300=40%.完整的统计图如图所示:(3)设该市发支持“强制戒烟”的概率为P,由(1)可知,P=120÷300=40%=0.4.支持“警示戒烟”这种方式的人有10000•35%=3500(人).25.如图,在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持10海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一不明国籍的渔船C,求此时渔船C与海监船B的距离是多少.(结果保留根号)【考点】解直角三角形的应用-方向角问题.【分析】首先过点B作BD⊥AC于D,由题意可知,∠BAC=45°,∠ABC=90°+15°=105°,则可求得∠ACD的度数,然后利用三角函数的知识求解即可求得答案.【解答】解:由题意可知,∠BAC=45°,∠ABC=90°+15°=105°,∴∠ACB=180°﹣∠BAC﹣∠ABC=30°.作BD⊥AC于D.在Rt△ABD中,(海里),在Rt△BCD中,(海里).答:此时渔船C与海监船B的距离是海里.26.如图,AB为⊙O直径,E为⊙O上一点,∠EAB的平分线AC交⊙O于C点,过C点作CD⊥AE的延长线于D点,直线CD与射线AB交于P点.(1)求证:DC为⊙O切线;(2)若DC=1,AC=,①求⊙O半径长;②求PB的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)连结OC,如图,由AC平分∠EAB得到∠1=∠2,加上∠2=∠3,则∠1=∠3,于是可判断OC∥AD,由于CD⊥AD,所以OC⊥CD,则根据切线的判定定理得到DC为⊙O切线;(2)①连结BC,如图,在Rt△ACD中利用勾股定理计算出AD=2,再Rt△ACD∽Rt△ABC,利用相似比计算出AB=,从而得到⊙O半径长为;②证明△EOC∽△EAD,然后利用相似比可计算出BE的长.【解答】(1)证明:连结OC,如图,∵AC平分∠EAB,∴∠1=∠2,∵OA=OC,∴∠2=∠3,∴∠1=∠3,∴OC∥AD,∵CD⊥AD,∴OC⊥CD,∴DC为⊙O切线;(2)解:①连结BC,如图,在Rt△ACD中,∵CD=1,AC=,∴AD==2,∵AB为直径,∴∠ACB=90°,∵∠1=∠2,∴Rt△ACD∽Rt△ABC,∴AC:AB=AD:AC,即:AB=2:,∴AB=,∴⊙O半径长为;②∵OC∥AD,∴△EOC∽△EAD,∴=,即=,∴BE=.27.如图,一次函数y=kx+2的图象与反比例函数的图象交于点P,点P在第一象限,PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,.(1)求点D的坐标及BD长;(2)求一次函数与反比例函数的解析式;(3)根据图象直接写出当x>0时,一次函数的值大于反比例函数值的x的取值范围;(4)若双曲线上存在一点Q,使以B、D、P、Q为顶点的四边形是直角梯形,请直接写出符合条件的Q点的坐标.【考点】反比例函数综合题;反比例函数图象上点的坐标特征;反比例函数与一次函数的交点问题;直角梯形;相似三角形的判定与性质.【分析】(1)把x=0代入y=kx+2即可求出D的坐标;根据相似三角形的判定得出=,求出AP,即可求出BD;(2)根据三角形PBD的面积求出P的坐标,把P的坐标分别代入一次函数和反比例函数的解析式求出即可;(3)根据图象上P的坐标求出即可;(4)作DQ∥x轴,把y=2代入反比例函数的解析式,求出即可.【解答】解:(1)在y=kx+2中,当x=0,得:y=2,∴点D的坐标是(0,2),∵AP∥OD,∴△PAC∽△DOC,∵=,∴==,∴AP=6,∵BD=6﹣2=4,答:点D的坐标是(0,2),BD的长是4.(2)∵S△PBD=PB•BD=×PB×4=4,∴BP=2,∴P(2,6),把P(2,6)分别代入y=kx+2和y=得:k=2,m=12,∴一次函数的解析式是y=2x+2,反比例函数的解析式是y=,(3)由图形可知一次函数的值大于反比例函数值的x的取值范围是x>2.(4)Q(6,2).28.“绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x=1时的y值表示7:00时的存量,x=2时的y值表示8:00时的存量…依此类推.他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.时段x 还车数(辆)借车数(辆)存量y(辆)6:00﹣7:00 1 45 5 100 7:00﹣8:00 2 43 11 n ……………根据所给图表信息,解决下列问题:(1)m=60,解释m的实际意义:该停车场当日6:00时的自行车数;(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;(3)已知9:00~10:O0这个时段的还车数比借车数的3倍少4,求此时段的借车数.【考点】二次函数的应用.【分析】(1)根据题意m+45﹣5=100,说明6点之前的存量为60;(2)先求出n的值,然后利用待定系数法确定二次函数的解析式;(3)设9:00~10:O0这个时段的借车数为x辆,则还车数为(3x﹣4)辆,把x=3代入y=﹣4x2+44x+60得到8:00~9:00的存量为156;把x=4代入y=﹣4x2+44x+60得到9:00~10:00的存量为172,所以156﹣x+(3x﹣4)=172,然后解方程即可.【解答】解:(1)m+45﹣5=100,解得m=60,即6点之前的存量为60.m表示该停车场当日6:00时的自行车数;(2)n=100+43﹣11=132,设二次函数的解析式为y=ax2+bx+c,把(1,100),(2,132)、(0,60)代入得,解得,所以二次函数的解析式为y=﹣4x2+44x+60(x为1﹣12的整数);(3)设9:00~10:O0这个时段的借车数为x辆,则还车数为(3x﹣4)辆,把x=3代入y=﹣4x2+44x+60得y=﹣4×32+44×3+60=156,把x=4代入y=﹣4x2+44x+60得y=﹣4×42+44×4+60=172,即此时段的存量为172,所以156﹣x+(3x﹣4)=172,解得x=10,答:此时段借出自行车10辆.29.如图,等腰三角形OAB的一边OB在x轴的正半轴上,点A的坐标为(6,8),OA=OB,动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,动点Q从原点O出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,过点Q作x轴的平行线分别交OA,AB于E,F,设动点P,Q同时出发,当点P到达点B时,点Q也停止运动,他们运动的时间为t秒(t≥0).(1)点E的坐标为(t,t),F的坐标为(10﹣t,t);(2)当t为何值时,四边形POFE是平行四边形;(3)是否存在某一时刻,使△PEF为直角三角形?若存在,请求出此时t的值;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)过点A作AD⊥OB,由点A的坐标为(6,8),可得OD=6,AD=8,然后由勾股定理得:OA=10,由OA=OB可得:OB=10,进而可得:BD=4,进而可得点B的坐标为:(10,0),然后设OA的关系式:y=kx,然后将A(6,8)代入即可得直线OA的关系式,然后设直线AB的关系式为:y=kx+b,然后将A,B两点代入,即可确定直线AB的关系式,由过点Q作x轴的平行线分别交OA,AB于E,F,可知点Q、E、F三点的纵坐标相等均为t,然后由点E在OA上,点F在AB上,将点E、F的纵坐标分别代入对应的关系式,即可得到得到点E、F的坐标;(2)由EF∥OP,欲使四边形POFE是平行四边形,只需EF=OP即可,从而可得关于t的等式,解答即可;(3)分三种情况讨论:①PE⊥EF,②PE⊥PF,③EF⊥PF即可.【解答】解:(1)过点A作AD⊥OB,垂足为D,如图1,∵点A的坐标为(6,8),∴OD=6,AD=8,由勾股定理得:OA=10,∵OA=OB,∴OB=10,∴BD=4,∴点B的坐标为:(10,0),设直线OA的关系式:y=kx,将A(6,8)代入上式,得:6k=8,解得:k=,所以直线OA的关系式:y=x,设直线AB的关系式为:y=kx+b,将A,B两点代入上式得:,解得:,所以直线AB的关系式为:y=﹣2x+20,∵过点Q作x轴的平行线分别交OA,AB于E,F,∴点Q、E、F三点的纵坐标相等,∵动点Q从原点O出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,∴t秒后,OQ=t,OP=2t,∴Q、E、F三点的纵坐标均为t,将点E的纵坐标t代入y=x,得:x=t,∴E点的坐标为:(,t),将点E的纵坐标t代入y=﹣2x+20,得:x=10﹣t,∴F点的坐标为:(10﹣t,t),故答案为:(t,t),(10﹣t,t);(2)由(1)知:E(t,t),F(10﹣t,t),∴EF=10﹣t﹣t=10﹣t,∵四边形POFE是平行四边形,∴EF∥OP,且EF=OP,即10﹣t=2t,解得:t=,∴当t为时,四边形POFE是平行四边形;(3)过点E作EM⊥OB,垂足为M,过点F作FN⊥OB,垂足为N,可得四边形EMNF是矩形,如图2,①当EF⊥PF时,PE2+PF2=EF2,由(1)知:OM=t,EM=FN=t,ON=10﹣t,EF=10﹣,∴PM=,PN=10﹣,∵PE2=ME2+MP2,PF2=PN2+FN2,∴t2+(t)2+(10﹣t)2+t2=(10﹣)2,解得:t1=0(舍去),t2=;②当PE⊥EF时,如图3,可得四边形EPNF是矩形,∵四边形EPNF是矩形,∴EF=PN,即:EF=ON﹣OP,∴10﹣=10﹣﹣2t,解得t=0(舍去);③当EF⊥PF时,如图4,可得四边形EMPF是矩形,∵四边形EMPF是矩形,∴EF=MP,即EF=OP﹣OM,∴10﹣=2t﹣t,解得:t=4,∴当t=和4时,使△PEF为直角三角形.2016年8月8日。
初三下册数学试卷及参考答案精编
初三下册数学试卷及参考答案精编一、选择题(本大题共10小题,每小题4分,共40分.) 在每小题给出的四个选项中,只有一项是符合题意的,请把你认为正确的选项前字母填写在该题后面的括号中.1.下列几何图形中,一定是轴对称图形的有( )A.2个B.3个C.4个D.5个2.今年5月,随着第四条水泥熟料生产线的点火投产,芜湖海螺水泥熟料已达年产6000000吨,用科学记数法可记作() A.吨B.吨 C.吨 D.吨3.如果,则= ( )A.B.1C.D.24.下列计算中,正确的是()A.B.C.D.5.如图,在△ABC中ADBC,CEAB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3、AE=4,则CH的长是( )A.1B.2C.3D.46.已知关于x的一元二次方程有两个不相等的实数根,则m的取值范围是( )A.-1B.-2C.m0D.m07.筹建中的安徽芜湖核电站芭茅山厂址位于长江南岸繁昌县狄港镇,距离繁昌县县城约17km,距离芜湖市区约35km,距离无为县城约18km,距离巢湖市区约50km,距离铜陵市区约36km,距离合肥市区约99km.以上这组数据17、35、18、50、36、99的中位数为().A.18B.50C.35D.35.58.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D 的边长为()A.cm B.4cm C.cm D.3cm9.函数中自变量x的取值范围是()A.B.3C.且x D.10.如图,Rt△ABC绕O点旋转90得Rt△BDE,其中ACB=E= 90,AC=3,DE=5,则OC的长为()A.B.C.D.二、填空题(本大题共6小题,每小题5分,共30分)11.已知是一元二次方程的一个根,则方程的另一个根是.12.在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图象如图所示,P(5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是米.13.据芜湖市××局6月5日发布的2019年环境状况公报,去年我市城市空气质量符合国家二级标准.请根据图中数据计算出该年空气质量达到一级标准的天数是天.(结果四舍五入取整数).14.因式分解:15.如图,,以为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD 的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q.则16.定义运算@的运算法则为:x@y=,则三、解答题(本大题共8小题,共80分.)解答应写明文字说明和运算步骤.17.(本题共两小题,每小题6分,满分12分)(1)计算:(2)解不等式组18.(本小题满分8分)芜湖供电公司分时电价执行时段分为平、谷两个时段,平段为8:00~22:00,14小时,谷段为22:00~次日8:00,10小时.平段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮0.25元,小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费42.73元.(1)问小明该月支付的平段、谷段电价每千瓦时各为多少元?(2)如不使用分时电价结算,5月份小明家将多支付电费多少元?19.(本小题满分8分)如图,在△ABC中,AD是BC上的高,(1)求证:AC=BD;(2)若,BC=12,求AD的长.20.(本小题满分8分)已知多边形ABDEC是由边长为2的等边三角形ABC和正方形BDEC组成,一圆过A、D、E三点,求该圆半径的长. 21.(本小题满分10分)如图,在直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P点一侧);(2)求线段BC的对应线段所在直线的解析式.22.(本小题满分10分)一园林设计师要使用长度为4L的材料建造如图1所示的花圃,该花圃是由四个形状、大小完全一样的扇环面组成,每个扇环面如图2所示,它是以点O为圆心的两个同心圆弧和延长后通过O点的两条直线段围成,为使得绿化效果最佳,还须使得扇环面积最大.(1)求使图1花圃面积为最大时R-r的值及此时花圃面积,其中R、r分别为大圆和小圆的半径;(2)若L=160m,r=10m,求使图2面积为最大时的值.23.(本小题满分12分)阅读以下材料,并解答以下问题.完成一件事有两类不同的方案,在第一类方案中有m种不同的方法,在第二类方案中有n种不同的方法.那么完成这件事共有N= m + n种不同的方法,这是分类加法计数原理;完成一件事需要两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法.那么完成这件事共有N=mn种不同的方法,这就是分步乘法计数原理.如完成沿图1所示的街道从A 点出发向B点行进这件事(规定必须向北走,或向东走),会有多种不同的走法,其中从A点出发到某些交叉点的走法数已在图2填出.(1)根据以上原理和图2的提示,算出从A出发到达其余交叉点的走法数,将数字填入图2的空圆中,并回答从A点出发到B点的走法共有多少种?(2)运用适当的原理和方法算出从A点出发到达B点,并禁止通过交叉点C的走法有多少种?(3)现由于交叉点C道路施工,禁止通行.求如任选一种走法,从A点出发能顺利开车到达B点(无返回)概率是多少?24.(本小题满分12分)已知圆P的圆心在反比例函数图象上,并与x轴相交于A、B两点.且始终与y轴相切于定点C(0,1).(1)求经过A、B、C三点的二次函数图象的解析式;(2)若二次函数图象的顶点为D,问当k为何值时,四边形ADBP为菱形.参考答案一、选择题(本大题共10小题,每题4分,满分40分) 题号12345678910答案BCCDAADACB二、填空题(本大题共6小题,每题5分,满分30分)11.12.0.513.11714.15.616.6三、解答题(本大题共8小题,共80分)解答应写明文字说明和运算步骤.17.(本小题满分12分)(1)解:原式=4分. 6分(2)解:解不等式①,得:x 2分解不等式②,得x要练说,得练看。
2016-2017学年人教版九年级数学下期末综合检测试卷含答案
2016-2017学年人教版九年级数学下期末综合检测试卷含答案期末综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.(2015·乐山中考)如图所示,l1∥l2∥l3,两条直线与这三条平行线分别交于点A,B,C和D,E,F,已知=,则的值为()A. B. C. D.2.(2015·青岛中考)如图所示,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是()A.x<-2或x>2B.x<-2或0<x<2C.-2<x<0或0<x<2D.-2<x<0或x>23.在△ABC中,∠C=90°,AB=5,BC=3,则cos A的值是()A. B. C. D.4.(2015·南充中考)如图所示的是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()5.(2015·丽水中考)如图所示,点A为∠α边上任意一点,过A作AC⊥BC于点C,过C作CD⊥AB于点D,下列用线段比表示cos α的值,错误的是()A. B.C. D.6.(2015·南充中考)如图所示,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔为2海里的点A处.如果海轮沿正南方向航行到灯塔的正东位置,那么海轮航行的距离AB长是()A.2海里B.2sin 55°海里C.2cos 55°海里D.2tan 55°海里7.如图所示,把△ABC沿AB边平移到△A'B'C'的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC面积的一半,若AB=,则此三角形移动的距离AA'是()A.-1B.C.1D.8.(2015·湖州中考)如图所示,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB 的长是()A.4B.2C.8D.49.(2015·乐山中考)如图所示,已知△ABC的三个顶点均在格点上,则sin A的值为()A. B. C. D.10.如图所示,直线l和反比例函数y=(k>0)的图象的一支交于A,B两点,P是线段AB上的点(不与A,B重合),过点A,B,P分别向x 轴作垂线,垂足分别是C,D,E,连接OA,OB,OP,设△AOC面积是S1,△BOD面积是S2,△POE面积是S3,则()A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S3二、填空题(每小题4分,共24分)11.已知角α为锐角,且sin(α-10°)=,则α=.12.(2015·广州中考)如图所示,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE,若BE=9,BC=12,则cos C=.13.如图所示,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则A的对应点C的坐标为.14.(2015·连云港中考)如图所示的是一个几何体的三视图,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为.15.(2015·宁波中考)如图所示,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼的C处测得旗杆底端B的俯角为45°,旗杆顶端A的仰角为30°,若旗杆与教学楼的距离为9 m,则旗杆AB的高度是m.(结果保留根号)16.(2015·宁波中考)如图所示,已知点A,C在反比例函数y=(a>0)的图象上,点B,D在反比例函数y=(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a-b的值是.三、解答题(共66分)17.(6分)计算.(1)(2015·乐山中考)-+-4cos 45°+(-1)2015;(2)(2015·浙江中考)-1-4cos 30°+-.18.(6分)分别画出图中立体图形的三视图.19.(8分)(2015·广州中考)已知反比例函数y=-的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图所示,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.20.(8分)(2015·安徽中考)如图所示,平台AB高为12 m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(≈1.7).21.(9分)如图所示的为一几何体的三视图.(1)写出这个几何体的名称;(2)任意画出这个几何体的一种表面展开图;(3)若长方形的高为10 cm,正三角形的边长为4 cm,求这个几何体的侧面积.22.(9分)(2015·自贡中考)如图所示,我市某中学课外活动小组的同学利用所学知识去测量釜溪河沙湾段的宽度.小宇同学在A处观测对岸C点,测得∠CAD=45°,小英同学在距A处50米远的B处测得∠CBD=30°,请你根据这些数据算出河宽.(精确到0.01米,参考数据:≈1.414,≈1.732)23.(10分)(2015·泸州中考)如图所示,一次函数y=kx+b(k<0)的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为3. (1)求该一次函数的解析式;(2)若反比例函数y=的图象与该一次函数的图象交于二、四象限内的A,B两点,且AC=2BC,求m的值.24.(10分)如图所示,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,线段AB为半圆O的直径,将Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,DF与BC交于点H.(1)求BE的长;(2)求Rt△ABC与Rt△DEF重叠(阴影)部分的面积.【答案与解析】1.D(解析:∵=,∴=,由平行线分线段成比例可得==.)2.D(解析:由点A与点B关于原点成中心对称,可得点B的横坐标为-2,由图可得y1>y2时,-2<x<0或x>2.故选D.)3.D(解析:由勾股定理可得AC=4,所以cos A==.故选D.)4.A(解析:根据三视图的画法可知正六棱柱的主视图为3个矩形,且旁边的两个矩形的宽是中间的矩形的宽的一半.故选A.)5.C(解析:∵AC⊥BC,CD⊥AB,∴∠α+∠BCD=∠ACD+∠BCD,∴∠α=∠ACD,在Rt△BCD中,cos α=,在Rt△ABC中,cos α=,在Rt△ACD中,cos α=.故选C.)6.C(解析:由题意可得PA=2,∠A=55°,∵cos A=,∴AB=AP·cos 55°=2cos55°.故选C.)7.A(解析:设BC与A'C'交于点E,由平移的性质知AC∥A'C',∴△BEA'∽△BCA,∴∶=A'B2∶AB2=1∶2,∵AB=,∴A'B=1,∴AA'=AB-A'B=-1.故选A.)8.C(解析:如图所示,连接OC,∵大圆的弦AB切小圆于点C,∴OC⊥AB,且AB=2AC,∵OD=2,∴OC=2,∵tan∠OAB=,∴AC=4,∴AB=8.故选C.)9.B(解析:如图所示,连接BE,根据图形可知AE==2,AB==,BE=∴AE2+BE2=AB2,∴BE⊥AE,∴sinA===.故选B.)10.D(解析:由题意可得A,B都在双曲线y=的一支上,则有S1=S2;而A,B之间,直线在双曲线上方,故S1=S2<S3.故选D.)11.70°(解析:由特殊角的三角函数值可得α-10°=60°,所以α=70°.故填70°.)12.(解析:∵DE是BC的垂直平分线,∴CE=BE=9,BD=DC=6,在Rt△CDE中,cos C===.故填.)13.(3,3)(解析:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴A的对应点C的坐标为(3,3).)14.8π(解析:这个几何体为圆锥,圆锥的母线长为4,底面圆的直径为4,所以这个几何体的侧面展开图的面积=×4π×4=8π.故填8π.)15.(解析:在Rt△ACD中,∵tan∠ACD=,∴tan30°=,∴AD=9×=3,在Rt△BCD中,∵∠BCD=45°,∴BD=CD=9,∴AB=AD+BD=3+9(m).故填.)16.6(解析:如图所示,由题意知a-b=2OE,且a-b=3OF,又OE+OF=5,∴OE=3,OF=2,∴a-b=6.故填6.)17.解:(1)原式=+2-4×-1=-1=-.(2)原式=2+-4×+=1.18.解:如图所示.19.解:(1)该函数图象的另一支所在象限是第三象限.∵图象位于第一、三象限,∴m-7>0,∴m>7,∴m的取值范围是m>7.(2)设A 的坐标为(x,y),∵点B与点A关于x轴对称,∴B点坐标为(x,-y),∴AB的距离为2y,∵S=6,∴·2y·x=6,∴xy=6,∵y=-,∴xy=m-7,∴m-7=6,∴m=13.20.解:过点B作BE⊥CD于点E,根据题意,得∠DBE=45°,∠CBE=30°.∵AB⊥AC,CD⊥AC,∴四边形ABEC为矩形.∴CE=AB=12.在Rt△CBE中,tan∠CBE=,∴BE==12.在Rt△BDE中,由∠DBE=45°,得DE=BE=12.∴CD=CE+DE=12(+1)≈32.4.答:楼房CD的高度约为32.4 m.21.解:(1)正三棱柱.(2)如图所示.(3)3×10×4=120(cm2).∴这个几何体的侧面积为120 cm2.22.解:如图所示,过C作CE⊥AB于E,设CE=x米,在Rt△AEC中,∠CAE=45°,AE=CE=x,在Rt△EBC中,∠CBE=30°,BE=CE=x,∴x=x+50,解得x=25+25≈68.30.答:河宽约为68.30米.23.解:(1)∵一次函数y=kx+b(k<0)的图象经过点C(3,0),∴3k+b=0①,点C到y轴的距离是3,∵一次函数y=kx+b的图象与y轴的交点是(0,b),∴×3×b=3,解得b=2.把b=2代入①,解得k=-,则一次函数的解析式是y=-x+2.(2)作AD⊥x轴于点D,BE⊥x轴于点E,则AD∥BE.∴△ACD∽△BCE,∴==2,∴AD=2BE.设B点纵坐标为-n,则A 点纵坐标为2n.∵直线AB的解析式为y=-x+2,∴A(3-3n,2n),B-.∵反比例函数y=的图象经过A,B两点,∴(3-3n)·2n=·(-n),解得n1=2,n2=0(不合题意,舍去),∴m=(3-3n)·2n=-3×4=-12.24.解:(1)如图所示,连接OG,∵EF与半圆O相切于点G,∴OG=2.由勾股定理得BC=5,∵△DEF是由△ABC平移所得,∴BC=EF=5,∠OGE=∠FDE=90°.∵∠E=∠E,∴△OGE∽△FDE,∴=,∴OE=,∴BE=.(2)由(1)知DB=DE-BE=4-=,∵DH∥AC,∴△DHB∽△ACB.∴阴影==.∵S△ACB=6,∴S阴影=.。
2016届九年级下学期联考数学试题
2015-2016学年第二学期初三年级质量检测漂市一中 钱少锋数学(2016-02)说明:1. 全卷共2页,分两部分,第一部分为选择题,第二部分为非选择题。
2. 考试时间90分钟,满分100分,全卷共23小题.。
3. 请将姓名、考号、答案和解答过程等写在答题卷指定位置上。
4. 考试结束,监考人员将答题卷收回。
第一部分 选择题(本部分共12小题, 每小题3分,共36分,每小题给出的四个选项,只有一项是正确的)1.方程x2=3x 的根是A .3B .﹣3或0C .3或0D .02.如图是一个几何体的俯视图,则该几何体可能是A .B .C .D .[来源:学&科&网Z&X&X&K]3.若反比例函数y=﹣的图象经过点A (3,m ),则m 的值是A .﹣3B .3C .31D .314.在Rt △ABC 中,∠C=90°,a=4,b=3,则cosA 的值是 A . B . C . D .5.如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是 A . B . C . D .6.如图,在同一时刻,身高1.6米的小丽在阳光下的影长为2.5米, 一棵大树的影长为5米,则这棵树的高度为 A .7.8米 B .3.2米C .2.3米D .1.5米[来源:Z*xx*]7.某种商品原价是100元,经两次降价后的价格是90元.设平均每次降价的百分率为x ,可列方程为A .100x (1﹣2x )=90B .100(1+2x )=90C .100(1+x )2=90D .100(1﹣x )2=908.关于二次函数2)3(212---=x y 的图象与性质,下列结论错误的是A .抛物线开口方向向下B .当x=3时,函数有最大值-2C .当x >3时,y 随x 的增大减小D .抛物线可由221x y =经过平移得到9.正方形ABCD 的一条对角线长为8A .24 B .32 C .6410.如图,Rt △AOC 的直角边OC 在x 轴上,∠ACO=90o,反比例函数xky =经过另一条直角边AC 的中点D ,3=∆AOC S ,则k= A .2 B .4 C .6 D .311.如图,二次函数y=ax2+bx+c 的图象与x 则下列结论正确的个数有①ac <0 ② 2a+b=0 ③4a+2b+c >0 ④ 对于任意x 均有ax2+bx ≥a+bA .1B .2C .3D .412.如图,矩形ABCD 中,AE 平分∠BAD 交BC 于E ,∠CAE=15°,则下列结论:△ODC 是等边三角形; ②BC=2AB ;③∠AOE=135°; ④S △AOE=S △OE , 其中正确的结论的个数有OxyAC DA .1B .2C .3D .4第二部分 非选择题 填空题(本题共4小题,每小题3分,共12分) 13.=045cos 214.关于的一元二次方程(k ﹣1)x2﹣2x+1=0有两个不相等的 实数根,则实数k 的取值范围是 .15.如图,已知矩形OABC 与矩形ODEF 是位似图形, P 是位似中心,若点B 的坐标为(2,4),点E 的坐标 为(﹣1,2),则点P 的坐标为16.如图,矩形ABCD 中,AD=4,∠CAB=30o ,点P 是线段AC 上的动点,点Q 是线段CD 上动点, 则AQ+QP 的最小值是解答题(本题共7小题,其中第17小题5分,第18小题6分,第19小题7分,第20小题8分, 第21小题8分,第22小题9分,第23小题9分,共52分)17.计算:002)4(60sin 231)21(-+++----π18.九年级(1)班现要从A 、B 两位男生和C 、D 两位女生中,选派学生代表本班参加全校“中华好诗词”大赛.(1)如果选派一位学生代表参赛,求选派到的代表是A 的概率;(2)如果选派两位学生代表参赛,求恰好选派一男一女两位同学参赛的概率.19.2013年9月23日强台风“天兔”登录深圳,伴随着就是狂风 暴雨。
2016届九年级下学期开学数学试卷【解析版】
2020届九年级下学期开学数学试卷学校:班级:教师: 科目:得分:一、选择题(共10小题,每小题3分,共30分)1.下列各数中,负数是()A.﹣(1﹣2)B.﹣1﹣1C.(﹣1)0D.1﹣22.下列运算正确的是()A.﹣3(x﹣1)=﹣3x﹣1 B.﹣3(x﹣1)=﹣3x+1 C.﹣3(x﹣1)=﹣3x﹣3 D.﹣3(x﹣1)=﹣3x+33.下列命题中,不正确的是()A.对角线相等的平行四边形是矩形B.有一个角为60°的等腰三角形是等边三角形C.正方形的两条对角线相等且互相垂直平分D.直角三角形斜边上的高等于斜边的一半4.不等式组的解集在数轴上表示为()A. B. C. D.5.如图,8×8方格纸的两条对称轴EF,MN相交于点O,图a到图b的变换是()A.绕点O旋转180°B.先向上平移3格,再向右平移4格C.先以直线MN为对称轴作轴对称,再向上平移4格D.先向右平移4格,再以直线EF为对称轴作轴对称6.如图,将宽为1cm的纸条沿BC折叠,使∠CAB=45°,则折叠后重叠部分的面积为()A.cm2B.cm2C.cm2D.cm27.三军受命,我解放军各部队奋力抗战地救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到小镇只有唯一通道,且路程为24km,如图是他们行走的路线关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是()A.1 B.2 C.3 D.48.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是()A. B. C. D.9.四边形ABCD中,AC和BD交于点E,若AC平分∠DAB,且AB=AE,AC=AD,有以下四个命题:①AC⊥BD;②BC=DE;③∠DBC=∠DAB;④AB=BE=AE.其中命题一定成立的是()A.①② B.②③ C.①③ D.②④10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确的结论有()A.2个B.3个C.4个D.5个二、填空题(共10小题,每小题3分,共30分)11.分解因式:m2n﹣n= .12.若一次函数y=(2﹣m)x﹣2的函数值y随x的增大而减少,则m的取值范围是.13.某市高新技术产业产值突破110亿元,数据“110亿”用科学记数法可表示为.14.关于x的一元二次方程x2﹣4x+8sinα=0的两根相等,且α是锐角,则∠α= 度.15.如图,已知梯形ABCD中,AD∥BC,∠B=30°,∠C=60°,AD=4,AB=3,则下底BC的长为.16.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若sin∠D BC=,则BC的长是cm.17.如图,△P1OA1,△P2A1A2是等腰直角三角形,点P1,P2在函数y=(x>0)的图象上,斜边O A1,A1A2都在x轴上,则点A2的坐标是.18.如图,△ABC中,∠BAC=90°,AB=AC.P是AB的中点,正方形ADEF的边在线段CP上,则正方形ADEF与△ABC的面积的比为.19.如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域的面积为.20.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图所示的方式放置.点A1,A2,A3,…,和点C1,C2,C3,…,分别在直线y=kx+b(k>0)和x轴上,已知点B1、B2的坐标分别为B1(1,1),B2(3,2),则B8的坐标是.三、解答题21.(1)计算:(﹣1)2013﹣|﹣|﹣(﹣)﹣2+2sin45°﹣(π﹣3.14)0+(2)先化简,再求值:•+,其中x满足x2﹣3x+2=0.22.在建筑楼梯时,设计者要考虑楼梯的安全程度,如图(1),虚线为楼梯的斜度线,斜度线与地板夹角为倾角为θ,一般情况下,倾角θ愈小,楼梯的安全度就越高.如图(2),设计者为提高楼梯安全度,要把楼梯倾角由θ1减至θ2,这样楼梯占用地板的长度d1增加到d2,已知d1=4m,∠θ1=4 5°,∠θ2=30°,求楼梯占用地板的长度增加了多少?23.如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F.(1)求证:四边形ABCD是正方形;(2)当AE=2EF时,判断FG与EF有何数量关系?并证明你的结论.24.如图,已知反比例函数的图象经过点(,8),直线y=﹣x+b经过该反比例函数图象上的点Q(4,m).(1)求上述反比例函数和直线的函数表达式;(2)设该直线与x轴、y轴分别相交于A、B两点,与反比例函数图象的另一个交点为P,连接0P、OQ,求△OPQ的面积.25.我市的重大惠民工程﹣﹣公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=﹣x+5,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=﹣x+(x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单2(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元.26.如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D,E分别是边AB,AC的中点,点P从点D出发沿DE方向运动,过点P作PQ⊥BC于Q,过点Q作QR∥BA交AC于R,当点Q与点C重合时,点P停止运动.设BQ=x,QR=y.(1)求点D到BC的距离DH的长;(2)求y关于x的函数关系式(不要求写出自变量的取值范围);(3)若△PQR是以QR为底边的等腰三角形,求的x值.27.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.2020届九年级下学期开学数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.下列各数中,负数是()A.﹣(1﹣2)B.﹣1﹣1C.(﹣1)0D.1﹣2【考点】负整数指数幂;零指数幂.【专题】计算题.【分析】依次计算出各选项的值,然后判断结果为负数的选项.【解答】解:A、﹣(1﹣2)=1,为正数,故本选项错误;B、﹣1﹣1=﹣1,为负数,故本选项正确;C、(﹣1)0=1,为正数,故本选项错误;D、1﹣2=1,为正数,故本选项错误;故选B.【点评】此题考查了负整数指数幂及零指数幂的知识,属于基础题,解答本题的关键是正确运算出各项的值,难度一般.2.下列运算正确的是()A.﹣3(x﹣1)=﹣3x﹣1 B.﹣3(x﹣1)=﹣3x+1 C.﹣3(x﹣1)=﹣3x﹣3 D.﹣3(x﹣1)=﹣3x+3【考点】去括号与添括号.【分析】去括号时,要按照去括号法则,将括号前的﹣3与括号内每一项分别相乘,尤其需要注意,﹣3与﹣1相乘时,应该是+3而不是﹣3.【解答】解:根据去括号的方法可知﹣3(x﹣1)=﹣3x+3.故选D.【点评】本题属于基础题,主要考查去括号法则,理论依据是乘法分配律,容易出错的地方有两处,一是﹣3只与x相乘,忘记乘以﹣1;二是﹣3与﹣1相乘时,忘记变符号.本题直指去括号法则,没有任何其它干扰,掌握了去括号法则就能得分,不掌握就不能得分.3.下列命题中,不正确的是()A.对角线相等的平行四边形是矩形B.有一个角为60°的等腰三角形是等边三角形C.正方形的两条对角线相等且互相垂直平分D.直角三角形斜边上的高等于斜边的一半【考点】命题与定理.【分析】根据矩形的判定方法对A矩形判断;根据等边三角形的判定对B进行判断;根据正方形的性质对C进行判断;根据直角三角形斜边上的中线性质对D进行判断.【解答】解:A、对角线相等的平行四边形是矩形是正确的,不符合题意;B、有一个角为60°的等腰三角形是等边三角形是正确的,不符合题意;C、正方形的两条对角线相等且互相垂直平分是正确的,不符合题意;D、直角三角形斜边上的中线等于斜边的一半,故原来的命题不正确.故选D.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.4.不等式组的解集在数轴上表示为()A. B. C. D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:由得:x≤2.由2﹣x<3得:x>﹣1.所以不等式组的解集为﹣1<x≤2.故选C.【点评】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.如图,8×8方格纸的两条对称轴EF,MN相交于点O,图a到图b的变换是()A.绕点O旋转180°B.先向上平移3格,再向右平移4格C.先以直线MN为对称轴作轴对称,再向上平移4格D.先向右平移4格,再以直线EF为对称轴作轴对称【考点】利用轴对称设计图案.【分析】根据平移和轴对称的性质,结合图形,对选项进行一一分析,排除错误答案.【解答】解:A、绕点O旋转180°,两条对称轴EF,MN不可能相交于点O,故此选项错误;B、平移后的图形与b形状不同,故此选项错误;C、先以直线MN为对称轴作轴对称,其中平移后与b形状不同,故此选项错误;D、先向右平移4格,再以直线EF为对称轴作轴对称,故此选项正确.故选:D.【点评】本题考查图形的平移变换和旋转性质即轴对称的性质.注意这些变换都不改变图形的形状和大小.注意结合图形解题的思想.6.如图,将宽为1cm的纸条沿BC折叠,使∠CAB=45°,则折叠后重叠部分的面积为()A.cm2B.cm2C.cm2D.cm2【考点】翻折变换(折叠问题).【分析】先根据题意得出△ABC是一个顶角为45°的等腰三角形,即∠A=45°,AC=AB,过C作CD ⊥AB,垂足为D,根据三角函数定义求出AC,AB,然后就可以求出△ABC面积.【解答】解:∵纸条的两边互相平行,∴∠1=∠BAC=45°,∴∠ABC===67.5°,同理可得,∠ACB=67.5°,∴△ABC是一个顶角为45°的等腰三角形,即∠A=45°,AC=AB.作CD⊥AB,垂足为D,则CD=1.∵sin∠A=,∴AC===AB,∴S△ABC=×AB×CD=,∴折叠后重叠部分的面积为cm2.故选B.【点评】本题考查的是图形折叠的性质,熟知图形翻折不变性的性质是解答此题的关键.7.三军受命,我解放军各部队奋力抗战地救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到小镇只有唯一通道,且路程为24km,如图是他们行走的路线关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是()A.1 B.2 C.3 D.4【考点】一次函数的应用.【专题】压轴题;阅读型;图表型.【分析】本题主要考查的是分段函数的应用,应结合函数的图形,按不同的时间段进行逐段分析.【解答】解:由图可知:甲、乙的起始时间分别为0h和2h;因此甲比乙早出发2小时;在3h﹣4h这一小时内,甲的函数图象与x轴平行,因此在行进过程中,甲队停顿了一小时;两个函数有两个交点:①甲行驶4.5小时、乙行驶2.5小时时,两函数相交,因此乙队出发2.5小时后追上甲队;②甲行驶6小时、乙行驶4小时后,两函数相交,此时两者同时到达目的地.所以在整个行进过程中,乙队用的时间为4小时,行驶的路程为24千米,因此它的平均速度为6km/h .这四个同学的结论都正确,故选D.【点评】本题考查了识别函数图象的能力,是一道较为简单的题,观察图象提供的信息,再分析这四位同学的结论.8.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是()A. B. C. D.【考点】列表法与树状图法.【专题】转化思想.【分析】列举出所有情况,看两次都摸到红球的情况占总情况的多少即可.【解答】解:∴一共有12种情况,有2种情况两次都摸到红球,∴两次都摸到红球的概率是=.故选:C.【点评】列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.四边形ABCD中,AC和BD交于点E,若AC平分∠DAB,且AB=AE,AC=AD,有以下四个命题:①AC⊥BD;②BC=DE;③∠DBC=∠DAB;④AB=BE=AE.其中命题一定成立的是()A.①② B.②③ C.①③ D.②④【考点】全等三角形的判定与性质;等边三角形的性质.【专题】压轴题.【分析】根据等腰三角形的性质,等边三角形的判定,圆内接四边形的性质,全等三角形的性质判断各选项是否正确即可.【解答】解:∵AB=AE,一个三角形的直角边和斜边一定不相等,∴AC不垂直于BD,①错误;利用边角边定理可证得△ADE≌△ABC,那么BC=DE,②正确;由△ADE≌△ABC可得∠ADE=∠ACB,那么A,B,C,D四点共圆,∴∠DBC=∠DAC=∠DAB,③正确;△ABE不一定是等边三角形,那么④不一定正确;②③正确,故选B.【点评】此题主要考查了全等三角形的性质,以及直角三角形中斜边最长;全等三角形的对应边相等;等边三角形的三边相等.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确的结论有()A.2个B.3个C.4个D.5个【考点】二次函数图象与系数的关系.【专题】压轴题;数形结合.【分析】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0;当x=﹣1时图象在x轴下方得到y=a﹣b+c=0,即a+c=b;对称轴为直线x=1,可得x=2时图象在x轴上方,则y=4a+2b+c>0;利用对称轴x=﹣=1得到a=﹣b,而a﹣b+c<0,则﹣b﹣b+c<0,所以2c<3b;开口向下,当x=1,y有最大值a+b+c,得到a+b+c>a m2+bm+c,即a+b>m(am+b)(m≠1).【解答】解:开口向下,a<0;对称轴在y轴的右侧,a、b异号,则b>0;抛物线与y轴的交点在x 轴的上方,c>0,则abc<0,所以①不正确;当x=﹣1时图象在x轴下方,则y=a﹣b+c=0,即a+c=b,所以②不正确;对称轴为直线x=1,则x=2时图象在x轴上方,则y=4a+2b+c>0,所以③正确;x=﹣=1,则a=﹣b,而a﹣b+c=0,则﹣b﹣b+c=0,2c=3b,所以④不正确;开口向下,当x=1,y有最大值a+b+c;当x=m(m≠1)时,y=am2+bm+c,则a+b+c>am2+bm+c,即a +b>m(am+b)(m≠1),所以⑤正确.故选:A.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0)的图象,当a>0,开口向上,函数有最小值,a<0,开口向下,函数有最大值;对称轴为直线x=﹣,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c>0,抛物线与y轴的交点在x轴的上方;当△=b2﹣4ac>0,抛物线与x轴有两个交点.二、填空题(共10小题,每小题3分,共30分)11.分解因式:m2n﹣n= n(m+1)(m﹣1).【考点】提公因式法与公式法的综合运用.【分析】观察原式,找到公因式n,提取公因式后发现m2﹣1符合平方差公式,再利用平方差公式继续分解即可.【解答】解:m2n﹣n,=n(m2﹣1),=n(m+1)(m﹣1).【点评】本题考查了提公因式法与公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.若一次函数y=(2﹣m)x﹣2的函数值y随x的增大而减少,则m的取值范围是m>2 .【考点】一次函数图象与系数的关系.【分析】根据一次函数y=(2﹣m)x﹣2的增减性知m﹣1<0,通过解不等式即可求得m的取值范围.【解答】解:∵函数y=(2﹣m)x﹣2是一次函数,且y随x的增大而减少,∴2﹣m<0,解得,m>2.故答案为:m>2.【点评】本题考查了一次函数图象与系数的关系.:在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.13.某市高新技术产业产值突破110亿元,数据“110亿”用科学记数法可表示为 1.1×1010.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:将110亿用科学记数法表示为:1.1×1010.故答案为:1.1×1010.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<1 0,n为整数,表示时关键要正确确定a的值以及n的值.14.关于x的一元二次方程x2﹣4x+8sinα=0的两根相等,且α是锐角,则∠α= 30 度.【考点】根的判别式;特殊角的三角函数值.【分析】已知方程有两相等实数根,则其根的判别式△=0.由此可以得到关于sinα的方程,解方程求出sinα后再求α的度数.【解答】解:∵a=1,b=﹣4,c=8sinα,∴△=b2﹣4ac=16﹣32sinα=0,∴sinα=,∴α=30°.【点评】一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.15.如图,已知梯形ABCD中,AD∥BC,∠B=30°,∠C=60°,AD=4,AB=3,则下底BC的长为10 .【考点】梯形.【专题】压轴题.【分析】过A作AE∥CD,把梯形分成平行四边形和直角三角形,利用平行四边形的对边相等得到C E=AD,所以BE可以求出,在直角三角形中,根据∠B=30°,利用勾股定理求出BE,BC的长也就可以求出了.【解答】解:如图,过A作AE∥CD交BC于点E,∵AD∥BC,∴四边形AECD是平行四边形,∴CE=AD=4,∵∠B=30°,∠C=60°,∴∠BAE=90°,∴AE=BE(直角三角形30°角所对的直角边等于斜边的一半),在Rt△ABE中,BE2=AB2+AE2,即BE2=(3)2+(BE)2,BE2=27+BE2,BE2=36,解得BE=6,∴BC=BE+EC=6+4=10.故答案为:10.【点评】通过作腰的平行线,把梯形分成平行四边形和直角三角形,再利用直角三角形30°角所对的直角边等于斜边的一半和勾股定理求解,考虑本题的突破口在于两个已知角的和是90°.16.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若sin∠D BC=,则BC的长是 4 cm.【考点】解直角三角形.【专题】计算题;压轴题.【分析】根据线段垂直平分线的性质进行等量转换,运用三角函数定义解直角三角形.【解答】解:AB的垂直平分线MN交AC于D,∴AD=BD.∵sin∠DBC==,设CD=3a,则BD=5a,AC=AD+CD=BD+CD=8,∴a=1,∴CD=3,BD=5,BC=4.【点评】此题考查了线段垂直平分线性质和三角函数定义的应用.17.如图,△P1OA1,△P2A1A2是等腰直角三角形,点P1,P2在函数y=(x>0)的图象上,斜边O A1,A1A2都在x轴上,则点A2的坐标是(,0).【考点】反比例函数图象上点的坐标特征;等腰直角三角形.【专题】数形结合.【分析】作P1B⊥y轴,P1A⊥x轴,根据等腰直角三角形的性质解答即可.【解答】解:作P1B⊥y轴,P1A⊥x轴,∵△P1OA1,△P2A1A2是等腰直角三角形,∴AP1=BP1,A1D=DA2=DP2,则OA•OB=4,∴OA=OB=AA1=2,OA1=4,设A1D=x,则有(4+x)x=4,解得x=﹣2+2,或x=﹣2﹣2(舍去),则OA2=4+2x=4﹣4+4=4,A2坐标为(4,0).故答案为:(4,0).【点评】本题考查等腰三角形的性质与反比例函数的性质的综合,一定经过某点的函数应符合这个点的横纵坐标.18.如图,△ABC中,∠BAC=90°,AB=AC.P是AB的中点,正方形ADEF的边在线段CP上,则正方形ADEF与△ABC的面积的比为.【考点】正方形的性质;勾股定理;等腰直角三角形.【分析】设AC与EF交于点M,首先根据∠BAC=90°,∠DAF=90°,可知∠PAD=∠MAF,根据SAS 证明△PAD≌△MAF,可得AP=AM,已知P为AB中点,则知道M为AC中点,又可证明△AFM≌△CEM,得出M为EF中点,设FM=x,则EF=AD=2x,根据勾股定理得出AP=x,则AB=2x,分别求出△ABC的面积和正方形ADEF的面积,即可求出它们的比值.【解答】解:设AC与EF交于点M,∵∠BAC=90°,∠DAF=90°,∴∠PAD=∠MAF,在△PAD和△MAF中,,∴△PAD≌△MAF,则AP=AM,∵P为AB中点,AB=AC,∴M为AC中点,在△AFM和△CEM中,,∴△AFM≌△CEM,则M为EF中点,设FM=x,则EF=AD=2x,∴AM==x,则AB=AC=2AM=2x,∴S△ABC=×2x•2x=10x2,S正方形ADEF=2x•2x=4x2.则正方形ADEF与△ABC的面积的比为==.故答案为:.【点评】本题考查了正方形的性质,涉及了全等三角形的证明,勾股定理的运用,解题关键是根据各边之间的关系求出两图形的面积.19.如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域的面积为12 .【考点】二次函数图象与几何变换.【分析】根据平移的性质得出四边形APP′A′是平行四边形,进而得出AD,PP′的长,求出面积即可.【解答】解:连接AP,A′P′,过点A作AD⊥PP′于点D,由题意可得出:AP∥A′P′,AP=A′P′,∴四边形APP′A′是平行四边形,∵抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3),平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),∴PO==2,∠AOP=45°,又∵AD⊥OP,∴△ADO是等腰直角三角形,∴PP′=2×2=4,∴AD=DO=sin45°•OA=×3=,∴抛物线上PA段扫过的区域的面积为:4×=12.故答案为:12.【点评】此题主要考查了二次函数图象与几何变换以及平行四边形面积求法和勾股定理等知识,根据已知得出AD,PP′是解题关键.20.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图所示的方式放置.点A1,A2,A3,…,和点C1,C2,C3,…,分别在直线y=kx+b(k>0)和x轴上,已知点B1、B2的坐标分别为B1(1,1),B2(3,2),则B8的坐标是(28﹣1,28﹣1)或(255,128).【考点】一次函数综合题.【专题】压轴题;规律型.【分析】首先利用待定系数法求得直线的解析式,然后分别求得B1,B2,B3…的坐标,可以得到规律:B n(2n﹣1,2n﹣1),据此即可求解.【解答】解:∵B1的坐标为(1,1),点B2的坐标为(3,2),∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,∴A1的坐标是(0,1),A2的坐标是:(1,2),代入y=kx+b得:,解得:,则直线的解析式是:y=x+1.∵A1B1=1,点B2的坐标为(3,2),∴点A3的坐标为(3,4),∴A3C2=A3B3=B3C3=4,∴点B3的坐标为(7,4),∴B1的纵坐标是:1=20,B1的横坐标是:1=21﹣1,∴B2的纵坐标是:2=21,B2的横坐标是:3=22﹣1,∴B3的纵坐标是:4=22,B3的横坐标是:7=23﹣1,∴B n的纵坐标是:2n﹣1,横坐标是:2n﹣1,则B n(2n﹣1,2n﹣1).∴B8的坐标是:(28﹣1,28﹣1),即(255,128).故答案为:(28﹣1,28﹣1)或(255,128).【点评】此题主要考查了待定系数法求函数解析式和坐标的变化规律.此题难度较大,注意正确得到点的坐标的规律是解题的关键.三、解答题21.(1)计算:(﹣1)2013﹣|﹣|﹣(﹣)﹣2+2sin45°﹣(π﹣3.14)0+(2)先化简,再求值:•+,其中x满足x2﹣3x+2=0.【考点】分式的化简求值;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】(1)先算乘方,绝对值,负指数幂,特殊角的三角函数,0次幂以及开方,再算加减;(2)先化简分式,进一步根据式子的特点整理,整体代入求得答案即可.【解答】解:(1)原式=﹣1﹣﹣4+2×﹣1+2=﹣1﹣﹣4+﹣1+2=﹣4;(2)原式=•+=x+=∵x2﹣3x+2=0,∴x2+2=3x∴原式=3.【点评】此题考查分式的化简求值,实数的混合运算,掌握运算方法是解决问题的关键.22.在建筑楼梯时,设计者要考虑楼梯的安全程度,如图(1),虚线为楼梯的斜度线,斜度线与地板夹角为倾角为θ,一般情况下,倾角θ愈小,楼梯的安全度就越高.如图(2),设计者为提高楼梯安全度,要把楼梯倾角由θ1减至θ2,这样楼梯占用地板的长度d1增加到d2,已知d1=4m,∠θ1=4 5°,∠θ2=30°,求楼梯占用地板的长度增加了多少?【考点】解直角三角形的应用-坡度坡角问题.【专题】计算题.【分析】由题意得:增加部分是CD长,分别在Rt△ABC,Rt△ABD中利用三角函数的定义即可求出BC,BD长,然后利用已知条件即可求出CD长.【解答】解:在Rt△ABC中,BC=d1=4m,∠ACB=∠θ1=45°,∴AB=BC×tan45°=4tan45°=4m,在Rt△ABD中,BD=d2,∠ADB=θ2=30°,∴BD=AB÷tan30°=4÷=4m∴CD=d2﹣d1=BD﹣CB=(4﹣4)m.∴楼梯占用地板的长度增加了(4﹣4)m.【点评】此题考查的知识点是解直角三角形的应用,关键是当两个直角三角形共用一条线段时,应先利用三角函数算出这条线段的长度.23.如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F.(1)求证:四边形ABCD是正方形;(2)当AE=2EF时,判断FG与EF有何数量关系?并证明你的结论.【考点】相似三角形的判定与性质;全等三角形的判定与性质;矩形的性质;正方形的判定.【专题】几何综合题;压轴题.【分析】(1)由∠BAE=∠BCE,∠AED=∠CED,利用三角形外角的性质,即可得∠CBE=∠ABE ,又由四边形ABCD是矩形,即可证得△ABD与△BCD是等腰直角三角形,继而证得四边形ABCD 是正方形;(2)由题意易证得△ABE∽△FDE,△ADE∽△GBE,△ADF∽△GCF,由AE=2EF,利用相似三角形的对应边成比例,即可求得FG=3EF.【解答】(1)证明:∵∠CED是△BCE的外角,∠AED是△ABE的外角,∴∠CED=∠CBE+∠BCE,∠AED=∠BAE+∠ABE,∵∠BAE=∠BCE,∠AED=∠CED,∴∠CBE=∠ABE,∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠BAD=90°,AB=CD,∴∠CBE=∠ABE=45°,∴△ABD与△BCD是等腰直角三角形,∴AB=AD=BC=CD,∴四边形ABCD是正方形;(2)当AE=2EF时,FG=3EF.证明:∵四边形ABCD是正方形,∴AB∥CD,AD∥BC,∴△ABE∽△FDE,△ADE∽△GBE,∵AE=2EF,∴BE:DE=AE:EF=2,∴BG:AD=BE:DE=2,即BG=2AD,∵BC=AD,∴CG=AD,∵△ADF∽△GCF,∴FG:AF=CG:AD,即FG=AF=AE+EF=3EF.【点评】此题考查了相似三角形的判定与性质、矩形的性质,正方形的判定与性质、等腰直角三角形的性质以及三角形外角的性质.此题难度适中,注意数形结合思想的应用.24.如图,已知反比例函数的图象经过点(,8),直线y=﹣x+b经过该反比例函数图象上的点Q(4,m).(1)求上述反比例函数和直线的函数表达式;(2)设该直线与x轴、y轴分别相交于A、B两点,与反比例函数图象的另一个交点为P,连接0P、OQ,求△OPQ的面积.【考点】反比例函数综合题.【专题】综合题.【分析】(1)把点(,8)代入反比例函数,确定反比例函数的解析式为y=;再把点Q(4,m)代入反比例函数的解析式得到Q的坐标,然后把Q的坐标代入直线y=﹣x+b,即可确定b的值;(2)把反比例函数和直线的解析式联立起来,解方程组得到P点坐标;对于y=﹣x+5,令y=0,求出A点坐标,然后根据S△OPQ=S△AOB﹣S△OBP﹣S△OAQ进行计算即可.【解答】解:(1)把点(,8)代入反比例函数,得k=×8=4,∴反比例函数的解析式为y=;又∵点Q(4,m)在该反比例函数图象上,∴4•m=4,解得m=1,即Q点的坐标为(4,1),而直线y=﹣x+b经过点Q(4,1),∴1=﹣4+b,解得b=5,∴直线的函数表达式为y=﹣x+5;(2)联立,解得或,∴P点坐标为(1,4),对于y=﹣x+5,令y=0,得x=5,∴A点坐标为(5,0),∴S△OPQ=S△AOB﹣S△OBP﹣S△OAQ=×5×5﹣×5×1﹣×5×1=.【点评】本题考查了点在图象上,点的横纵坐标满足图象的解析式以及求两个图象交点的方法(转化为解方程组);也考查了利用面积的和差求图形面积的方法.25.我市的重大惠民工程﹣﹣公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=﹣x+5,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=﹣x+(x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单2(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元.【考点】二次函数的应用;待定系数法求一次函数解析式.【分析】(1)表格中x的值每增加1,对应z的值增加2,可知z是关于x的一次函数,利用待定系数法可求得函数关系式;(2)根据收取的租金=公租房面积×公租房的租金,分别就1≤x≤6、7≤x≤10列出函数关系式,配方找到最大值,比较可得.【解答】解:(1)由题意,z与x是一次函数关系,设z=kx+b(k≠0)把(1,50),(2,52)代入,得∴∴z=2x+48;(2)当1≤x≤6时,设收取的租金为W1百万元,则W1=()•(2x+48)==(x﹣3)2+243,∵﹣<0,∴当x=3时,W1最大=243(百万元);当7≤x≤10时,设收取的租金为W2百万元,则W2=()•(2x+48)==﹣(x﹣7)2+,∵<0,∴当x=7时,W2最大=(百万元),∵243>,∴第3年收取的租金最多,最多为243百万元.【点评】本题主要考查一次函数和二次函数的实际应用能力,根据题意找到相等关系是根本,列出函数关系式并会求其最值是关键.26.如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D,E分别是边AB,AC的中点,点P从点D出发沿DE方向运动,过点P作PQ⊥BC于Q,过点Q作QR∥BA交AC于R,当点Q与点C重合时,点P停止运动.设BQ=x,QR=y.(1)求点D到BC的距离DH的长;(2)求y关于x的函数关系式(不要求写出自变量的取值范围);。
2016年江苏省九年级下学期期中考试数学试题(附答案)
江苏省九年级下学期期中考试数学试题一. 仔细选一选 (本大题有10个小题, 每小题3分, 共30分)1.下列等式正确的是( ▲ )A .(-a 2)3=-a 5 B.a 8÷a 2=a 4 C.a 3+a 3=2a 3 D.(ab)4=a 4b 2.2014年某市启动了历史上规模最大的轨道交通投资建设,预计某市轨道交通投资将达51 800 000 000元人民币. 将51 800 000 000用科学记数法表示正确的是( ▲ )A. 5.18³1010B. 51.8³109C. 0.518³1011D. 518³1083.下面四个几何体中,左视图是四边形的几何体共有( ▲ )A. 1个B. 2个C. 3个D. 4个 4.不等式组21318x x --⎧⎨->⎩≥的解集在数轴上可表示为( ▲ )A . B.C. D.5.圆锥的底面半径为2,母线长为4,则它的侧面积为 ( ▲ ) A .8πB .π12C .43πD .4π6. 若一个多边形的内角和等于720,则这个多边形的边数是 ( ▲ )A .5B .6C .7D .87.为了解某班学生每天使用零花钱的情况,随机调查了15名同学,结果如下表:下列说法正确的是( ▲ )A .众数是5元B .平均数是2.5元C .极差是4元D .中位数是3元8. 如图,正六边形螺帽的边长是2cm ,这个扳手的开口a 的值应是( ▲ )A .32 cmB .3cmC .332 cm D .1cm9.如图,已知A 、B 两点的坐标分别为(-2,0)、(0,1),⊙C 的圆心坐标为(0,-1),半径为1.若D 是⊙C 上的一个动点,射线AD 与y 轴交于点E ,则△ABE 面积的最大值是( ▲ )A .3B .113C .103 D .4 10.设一元二次方程(x ﹣1)(x ﹣2)=m (m >0)的两实根分别为α,β,且α<β,则α,β满足( ▲ )A .1<α<β<2B .1<α<2<βC .α<1<β<2D .α<1且β>2二. 认真填一填 (本大题有8个小题, 每小题2分, 共16分)11.函数y =1x +2中自变量的取值范围是___▲___. 12. 因式分解:12-a = ▲ .0 1 2 3 412340 1 2 3 40 1 2 3 4第8题图第21题图FA B C DE 13.已知方程032=+-k x x 有两个相等的实数根,则k = ▲ .14. 已知抛物线223y x bx =-+的对称轴是直线1x =,则b 的值为 ▲ .15.如图,AB 是⊙O 的直径,CD 是⊙O 的弦.若∠BAC=23°,则∠ADC 的度数为 ▲ .16.如图,小红站在水平面上的点A 处,测得旗杆BC 顶点C 的仰角为60°,点A 到旗杆的水平距离为a 米.若小红的水平视线与地面的距离为b 米,则旗杆BC 的长为____▲____米。
2016届九年级(下)第二次段考数学试卷(解析版)
九年级(下)第二次段考数学试卷学校:班级:教师:科目:得分:一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.有理数﹣2016的相反数是()A.2016 B.﹣2016 C. D.﹣2.某市在一次扶贫助残活动中,共捐款3185800元,将3185800元用科学记数法表示(保留两个有效数字)为()A.3.1×106元B.3.1×105元C.3.2×106元D.3.18×106元3.下列运算正确的是()A.a3•a2=a6B.(a3)2=a5C.(a﹣b)(a+b)=a2﹣b2D.(a+b)2=a2+b24.函数y=中,自变量x的取值范围是()A.x≥﹣3 B.x≥﹣3且x≠1 C.x≠1 D.x≠﹣3且x≠15.下列说法正确的是()A.在一次抽奖活动中,“中奖概率是”表示抽奖100次就一定会中奖B.随机抛一枚硬币,落地后正面一定朝上C.同时掷两枚均匀的骰子,朝上一面的点数和为6D.在一副没有大小王的扑克牌中任意抽一张,抽到的牌是6的概率是6.已知圆锥底面半径为2,母线长为5,则圆锥的侧面积是()A.10πB.20πC.4πD.5π7.不等式组的解集是()A.x>1 B.x<3 C.1<x<3 D.无解8.如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长是()A.10m B. m C.15m D. m9.如图所示的△ABC中,∠ABC=90°,∠ACB=40°,AC∥BD,∠ABD=()A.40°B.50°C.140°D.130°10.二次函数y=ax2+bx+c的图象如图所示,则下列关系式不正确的是()A.a<0 B.abc<0 C.a+b+c>0 D.b2﹣4ac>0二、填空题(本大题共8小题,每小题3分,满分24分)11.化简: = .12.化简: = .13.时钟的时针在不停地旋转,从上午6时到上午9时,时针旋转的旋转角是度(填度数).14.甲、乙两台机床生产同一种零件,并且每天产量相等,在6天中每天生产零件中的次品数依次是:甲:3、0、0、2、0、1;乙:1、0、2、1、0、2.则甲、乙两台机床中性能较稳定的是.15.若m﹣n=2,m+n=5,则m2﹣n2的值为.16.如图,一次函数y=kx+b的图象与x轴的交点坐标为(2,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=2.其中说法正确的有(把你认为说法正确的序号都填上).17.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠FCD的度数为.18.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为.三、解答题(本大题共8小题,满分60分)19.计算:.20.解二元一次方程组.21.如图,在△ABC中,AD是中线,分别过点B、C作AD延长线及AD的垂线BE、CF,垂足分别为点E、F .求证:BE=CF.22.为了进一步了解义务教育阶段学生的体质健康状况,教育部对我市某中学九年级的部分学生进行了体质抽测,体质抽测的结果分为四个等级:优秀、良好、合格、不合格,根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息回答以下问题:(1)在扇形统计图中,“合格”的百分比为;(2)本次体质抽测中,抽测结果为“不合格”等级的学生有人;(3)若该校九年级有400名学生,估计该校九年级体质为“不合格”等级的学生约有人.23.如图,△ABC内接于⊙O,CA=CB,CD∥AB且与OA的延长线交于点D.(1)判断CD与⊙O的位置关系并说明理由;(2)若∠ACB=120°,OA=2.求CD的长.24.如图,已知A、B两点的坐标分别为A(0,2),B(2,0),直线AB与反比例函数y=的图象交于点C和点D(﹣1,a).(1)求直线AB和反比例函数的解析式;(2)求∠ACO的度数.25.如图,在矩形ABCD中,AD=4,AB=m(m>4),点P是AB边上的任意一点(不与A、B重合),连接PD,过点P作PQ⊥PD,交直线BC于点Q.(1)当m=10时,是否存在点P使得点Q与点C重合?若存在,求出此时AP的长;若不存在,说明理由;(2)若△PQD为等腰三角形,求以P、Q、C、D为顶点的四边形的面积S与m之间的函数关系式.(3)在原图中,连接AC,若PQ∥AC,求线段BQ的长(用含m的代数式表示)26.已知抛物线.(1)试说明:无论m为何实数,该抛物线与x轴总有两个不同的交点.(2)如图,当抛物线的对称轴为直线x=3时,抛物线的顶点为点C,直线y=x﹣1与抛物线交于A、B两点,并与它的对称轴交于点D.①抛物线上是否存在一点P使得四边形ACPD是正方形?若存在,求出点P的坐标;若不存在,说明理由;②平移直线CD,交直线AB于点M,交抛物线于点N,通过怎样的平移能使得以C、D、M 、N为顶点的四边形是平行四边形?2015-2016学年九年级(下)第二次段考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.有理数﹣2016的相反数是()A.2016 B.﹣2016 C. D.﹣【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2016的相反数是2016,故选:A.2.某市在一次扶贫助残活动中,共捐款3185800元,将3185800元用科学记数法表示(保留两个有效数字)为()A.3.1×106元B.3.1×105元C.3.2×106元D.3.18×106元【考点】科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 048576有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:3185800≈3.2×106.故选C.3.下列运算正确的是()A.a3•a2=a6B.(a3)2=a5C.(a﹣b)(a+b)=a2﹣b2D.(a+b)2=a2+b2【考点】平方差公式;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;平方差公式;完全平方公式对各选分析后利用排除法求解.【解答】解:A、a3•a2=a5,故本选项错误;B、(a3)2=a6,故本选项错误;C、(a﹣b)(a+b)=a2﹣b2,正确;D、(a+b)2=a2+2ab+b2,故本选项错误.故选C.4.函数y=中,自变量x的取值范围是()A.x≥﹣3 B.x≥﹣3且x≠1 C.x≠1 D.x≠﹣3且x≠1【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,x+3≥0且x﹣1≠0,解得x≥﹣3且x≠1.故选B.5.下列说法正确的是()A.在一次抽奖活动中,“中奖概率是”表示抽奖100次就一定会中奖B.随机抛一枚硬币,落地后正面一定朝上C.同时掷两枚均匀的骰子,朝上一面的点数和为6D.在一副没有大小王的扑克牌中任意抽一张,抽到的牌是6的概率是【考点】概率的意义.【分析】概率是表征随机事件发生可能性大小的量,是事件本身所固有的不随人的主观意愿而改变的一种属性.了解了概率的定义,然后找到正确答案.【解答】解:A、概率是针对数据非常多时,趋近的一个数,所以概率是,也不能够说明是抽100次就能抽到奖.故本选项错误.B、随机抛一枚硬币,落地后正面怎么一定朝上呢,应该有两种可能,故本选项错误.C、同时掷两枚均匀的骰子,朝上一面的点数和有多种可能性,故本选项错误.D、在一副没有大小王的扑克牌中任意抽一张,抽到6的概率是.故选D.6.已知圆锥底面半径为2,母线长为5,则圆锥的侧面积是()A.10πB.20πC.4πD.5π【考点】圆锥的计算.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】解:圆锥的侧面积=•2π•2•5=10π.故选A.7.不等式组的解集是()A.x>1 B.x<3 C.1<x<3 D.无解【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣1>0,得:x>1,解不等式x﹣3<0,得:x<3,∴不等式组的解集为:1<x<3,故选:C.8.如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长是()A.10m B. m C.15m D. m【考点】解直角三角形的应用-坡度坡角问题.【分析】由河堤横断面迎水坡AB的坡比是1:,可得到∠BAC=30°,所以求得AB=2BC,得出答案.【解答】解:河堤横断面迎水坡AB的坡比是1:,即tan∠BAC===,∴∠BAC=30°,∴AB=2BC=2×5=10m,故选:A.9.如图所示的△ABC中,∠ABC=90°,∠ACB=40°,AC∥BD,∠ABD=()A.40°B.50°C.140°D.130°【考点】平行线的性质.【分析】根据直角三角形两锐角互余的性质求出∠A,再根据两直线平行,内错角相等解答.【解答】解:∵∠ABC=90°,∠C=40°,∴∠A=90°﹣∠C=90°﹣40°=50°,∵BD∥AC,∴∠ABD=∠A=50°.故选:B.10.二次函数y=ax2+bx+c的图象如图所示,则下列关系式不正确的是()A.a<0 B.abc<0 C.a+b+c>0 D.b2﹣4ac>0【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:A、函数开口向下,则a<0正确;B、先由图象开口向下判断出a<0,由对称轴在y轴右侧得出b>0,与y轴交于负半轴,则c <0,故abc>0,故命题错误;C、当x=1时对应的点在想轴的上方,则函数值一定是正数,且当x=1是函数值是a+b+c,则a+b+c>正确;D、函数与x轴有两个不同的交点,则b2﹣4ac>0正确.故选B.二、填空题(本大题共8小题,每小题3分,满分24分)11.化简: = 1 .【考点】分式的加减法.【分析】根据同分母得分是加减运算法则计算即可求得答案.【解答】解: ===1.故答案为:1.12.化简: = 2﹣.【考点】分母有理化.【分析】本题需先找出分母的有理化因式,然后将分子、分母同时乘以分母的有理化因式进行计算.【解答】解: ==2﹣.故答案为:2﹣.13.时钟的时针在不停地旋转,从上午6时到上午9时,时针旋转的旋转角是90度(填度数).【考点】钟面角.【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【解答】解:从上午6时到上午9时,共3个小时;时针旋转了圆周,故旋转角是90度.14.甲、乙两台机床生产同一种零件,并且每天产量相等,在6天中每天生产零件中的次品数依次是:甲:3、0、0、2、0、1;乙:1、0、2、1、0、2.则甲、乙两台机床中性能较稳定的是乙.【考点】方差.【分析】先计算出甲乙的平均数,甲的平均数=乙的平均数=1,再根据方差的计算公式分别计算出它们的方差,然后根据方差的意义得到方差小的性能较稳定.【解答】解:甲的平均数=(3+0+0+2+0+1)=1,乙的平均数=(1+0+2+1+0+2)=1,∴S2甲= [(3﹣1)2+3×(0﹣1)2+(2﹣1)2+(1﹣1)2]=S2乙= [(2×(1﹣1)2+2×(0﹣1)2+2×(2﹣1)2]=,∴S2甲>S2乙,∴乙台机床性能较稳定.故答案为乙.15.若m﹣n=2,m+n=5,则m2﹣n2的值为10 .【考点】平方差公式;有理数的乘法.【分析】首先把多项式m2﹣n2利用平方差公式分解因式,然后代入已知条件即可求出其值.【解答】解:∵m2﹣n2=(m+n)(m﹣n),而m+n=5,m﹣n=2,∴m2﹣n2=5×2=10.故答案为10.16.如图,一次函数y=kx+b的图象与x轴的交点坐标为(2,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=2.其中说法正确的有①②③(把你认为说法正确的序号都填上).【考点】一次函数的性质;一次函数的图象;一次函数与一元一次方程.【分析】根据一次函数的性质,结合一次函数的图形进行解答.【解答】解:①因为一次函数的图象经过二、四象限,所以y随x的增大而减小,故本项正确②因为一次函数的图象与y轴的交点在正半轴上,所以b>0,故本项正确③因为一次函数的图象与x轴的交点为(2,0),所以当y=0时,x=2,即关于x的方程kx+b =0的解为x=2,故本项正确故答案为①②③.17.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠FCD的度数为20°.【考点】圆周角定理;垂径定理.【分析】根据垂径定理得出弧DE等于弧DF,再利用圆周角定理得出∠FCD=20°.【解答】解:∵⊙O的直径CD过弦EF的中点G,∴=,∴∠DCF=∠EOD,∵∠EOD=40°,∴∠FCD=20°,故答案为:20°.18.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为7 .【考点】翻折变换(折叠问题);勾股定理.【分析】先根据勾股定理求出BC的长,再根据图形翻折变换的性质得出AE=CE,进而求出△ABE的周长.【解答】解:∵在△ABC中,∠B=90°,AB=3,AC=5,∴BC===4,∵△ADE是△CDE翻折而成,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周长=AB+BC=3+4=7.故答案为:7.三、解答题(本大题共8小题,满分60分)19.计算:.【考点】负整数指数幂.【分析】直接利用绝对值的性质以及负整数指数幂的性质分别化简求出答案.【解答】解:原式=3﹣+=3.20.解二元一次方程组.【考点】解二元一次方程组.【分析】先用加减消元法求出x的值,再用代入消元法求出y的值即可.【解答】解:,①+②得,2x=2,解得x=1,把x=1代入①得,﹣1+y=7,解得y=8,故方程组的解为.21.如图,在△ABC中,AD是中线,分别过点B、C作AD延长线及AD的垂线BE、CF,垂足分别为点E、F .求证:BE=CF.【考点】全等三角形的判定与性质.【分析】利用CF∥BE和D是BC边的中点可以得到全等条件证明△BDE≌△CDF,从而得出结论.【解答】证明:∵D是BC边上的中点,∴BD=CD,又∵分别过点B、C作AD延长线及AD的垂线BE、CF,∴CF∥BE,∴∠E=∠CFD,∠DBE=∠FCD∴△BDE≌△CDF,∴CF=BE.22.为了进一步了解义务教育阶段学生的体质健康状况,教育部对我市某中学九年级的部分学生进行了体质抽测,体质抽测的结果分为四个等级:优秀、良好、合格、不合格,根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息回答以下问题:(1)在扇形统计图中,“合格”的百分比为40% ;(2)本次体质抽测中,抽测结果为“不合格”等级的学生有16 人;(3)若该校九年级有400名学生,估计该校九年级体质为“不合格”等级的学生约有128 人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用1减去其它各组的百分比,据此即可求解;(2)根据优秀的人数是8,所占的百分比是16%即可求得调查的总人数,利用总人数乘以对应的百分比即可求解;(3)利用总人数400乘以对应的百分比即可求解.【解答】解:(1)“合格”的百分比为1﹣12%﹣16%﹣32%=40%,故答案是:40%;(2)抽测的总人数是:8÷16%=50(人),则抽测结果为“不合格”等级的学生有:50×32%=16(人).故答案是:16;(3)该校九年级体质为“不合格”等级的学生约有400×32%=128(人).故答案是:128.23.如图,△ABC内接于⊙O,CA=CB,CD∥AB且与OA的延长线交于点D.(1)判断CD与⊙O的位置关系并说明理由;(2)若∠ACB=120°,OA=2.求CD的长.【考点】切线的判定与性质;勾股定理;垂径定理;圆周角定理.【分析】(1)连接OC,证明OC⊥DC,利用经过半径的外端且垂直于半径的直线是圆的切线判定切线即可;(2)利用等弧所对的圆心角相等和题目中的已知角得到∠D=30°,利用解直角三角形求得CD的长即可.【解答】解:(1)CD与⊙O相切.理由如下:如图,连接OC,∵CA=CB,∴=∴OC⊥AB,∵CD∥AB,∴OC⊥CD,∵OC是半径,∴CD与⊙O相切.(2)∵CA=CB,∠ACB=120°,∴∠ABC=30°,∴∠DOC=60°∴∠D=30°,∴OC=OD∵OA=OC=2,∴D0=4,∴CD==224.如图,已知A、B两点的坐标分别为A(0,2),B(2,0),直线AB与反比例函数y=的图象交于点C和点D(﹣1,a).(1)求直线AB和反比例函数的解析式;(2)求∠ACO的度数.【考点】反比例函数与一次函数的交点问题.【分析】(1)设直线AB的解析式为y=kx+b(k≠0),将A与B坐标代入求出k与b的值,确定出直线AB的解析式,将D坐标代入直线AB解析式中求出a的值,确定出D的坐标,将D坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;(2)联立两函数解析式求出C坐标,过C作CH垂直于x轴,在直角三角形OCH中,由OH与HC的长求出tan∠COH的值,利用特殊角的三角函数值求出∠COH的度数,在三角形AOB中,由OA与OB的长求出tan∠ABO的值,进而求出∠ABO的度数,由∠ABO﹣∠COH即可求出∠ACO的度数.【解答】解:(1)设直线AB的解析式为y=kx+b(k≠0),将A(0,2),B(2,0)代入得:,解得:,故直线AB解析式为y=﹣x+2,将D(﹣1,a)代入直线AB解析式得:a=+2=3,则D(﹣1,3),将D坐标代入y=中,得:m=﹣3,则反比例解析式为y=﹣;(2)联立两函数解析式得:,解得:或,则C坐标为(3,﹣),过点C作CH⊥x轴于点H,在Rt△OHC中,CH=,OH=3,tan∠COH==,∠COH=30°,在Rt△AOB中,tan∠ABO===,∠ABO=60°,∠ACO=∠ABO﹣∠COH=30°.25.如图,在矩形ABCD中,AD=4,AB=m(m>4),点P是AB边上的任意一点(不与A、B重合),连接PD,过点P作PQ⊥PD,交直线BC于点Q.(1)当m=10时,是否存在点P使得点Q与点C重合?若存在,求出此时AP的长;若不存在,说明理由;(2)若△PQD为等腰三角形,求以P、Q、C、D为顶点的四边形的面积S与m之间的函数关系式.(3)在原图中,连接AC,若PQ∥AC,求线段BQ的长(用含m的代数式表示)【考点】相似形综合题.【分析】(1)假设存在,从存在出发得到△PBC∽△DAP,利用相似三角形得到=,从而得到有关t的方程,求解即可得到答案;(2)由已知 PQ⊥PD,所以只有当DP=PQ时,△PQD为等腰三角形,根据等腰三角形的性质求得结论即可;(3)根据题意分△ABC∽△DAP和△PBQ∽△ABC两种情况列出比例式后即可用含有m的代数式表示出线段BQ的值即可.【解答】解:(1)假设当m=10时,存在点P使得点Q与点C重合(如下图),设AP=x∵PQ⊥PD∴∠DPC=90°,∴∠APD+∠BPC=90°,又∠ADP+∠APD=90°,∴∠BPC=∠ADP,又∠B=∠A=90°,∴△PBC∽△DAP,∴=,∴,∴x2﹣10x+16=0解得:x=2或8,∴存在点P使得点Q与点C重合,出此时AP的长2 或8.(2)由已知 PQ⊥PD,所以只有当DP=PQ时,△PQD为等腰三角形(如图),∴∠BPQ=∠ADP,又∠B=∠A=90°,∴△PBQ≌△DAP,∴PB=DA=4,AP=BQ=m﹣4,∴以P、Q、C、D为顶点的四边形的面积S与m之间的函数关系式为:S四边形PQCD=S矩形ABCD﹣S△DAP﹣S△QBP=DA×AB﹣×DA×AP﹣×PB×BQ=4m﹣×4×(m﹣4)﹣×4×(m﹣4)=16.(3)如下图,∵PQ∥AC,∴∠BPQ=∠BAC,∵∠BPQ=∠ADP,∴∠BAC=∠ADP,又∠B=∠DAP=90°,∴△ABC∽△DAP,∴=,即=,∴AP=.∵PQ∥AC,∴∠BPQ=∠BAC,∵∠B=∠B,∴△PBQ∽△ABC,=,即,∴BQ=4﹣.═══════题干有误吗?若有,请说明一下,若无,请解答一下,谢谢.═══════26.已知抛物线.(1)试说明:无论m为何实数,该抛物线与x轴总有两个不同的交点.(2)如图,当抛物线的对称轴为直线x=3时,抛物线的顶点为点C,直线y=x﹣1与抛物线交于A、B两点,并与它的对称轴交于点D.①抛物线上是否存在一点P使得四边形ACPD是正方形?若存在,求出点P的坐标;若不存在,说明理由;②平移直线CD,交直线AB于点M,交抛物线于点N,通过怎样的平移能使得以C、D、M 、N为顶点的四边形是平行四边形?【考点】二次函数综合题.【分析】(1)从函数的判别式出发,判别式总大于等于3,而证得;(2)①由直线y=x﹣1与抛物线交于A、B两点,求得点A,代入抛物线解析式得m,由直线AD的斜率与直线PC的斜率相等,求得点P坐标;②求得MN的坐标,从MN与CD的位置关系解得.【解答】解:(1)该函数的判别式=m2﹣4m+7=(m﹣2)2+3≥3∴该抛物线与x轴总有两个不同的交点.(2)由直线y=x﹣1与抛物线交于A、B两点,∴点A(1,0)代入二次函数式则m=3故二次函数式为:当抛物线的对称轴为直线x=3时,则y=﹣2,即顶点C为(3,﹣2),把x=3代入直线y=x﹣1则y=2,即点D(3,2)则AD=AC=2设点P(x,)由直线AD的斜率与直线PC的斜率相等则解得:x=3或x=5则点P(3,﹣2)(与点D重合舍去)或(5,0)经检验点(5,0)符合,所以点P(5,0)②设直线AB解析式为y=kx+b,将A(1,0),D(3,2)代入得直线AB:y=x﹣1,设M(a,a﹣1),N(a, a2﹣3a+),当以C、D、M、N为顶点的四边形是平行四边形,MN=CD,即|(a﹣1)﹣(a2﹣3a+)|= 4,解得a=4±或3或5,故把直线CD向右平移1+个单位或2个单位,向左平移﹣1个单位,能使得以C、D、M、N为顶点的四边形是平行四边形.2016年8月20日节日热闹:盛况空前普天同庆欢聚一堂人声鼎沸人山人海欢呼雀跃欢声雷动熙熙攘攘载歌载舞红旗招展火树银花灯火辉煌张灯结彩锣鼓喧天金鼓齐鸣看:盯瞧瞅瞟瞥望睹观赏窥顾盼端详注视鸟瞰浏览张望阅览欣赏观赏月光:皎洁的月光明亮的月光清冽的月光清幽的月光朦胧的月光柔和的月光惨淡的月光凄冷的月光月光如水月光如雪月光如银希望:期望盼望渴望奢望指望得表扬:得意扬扬洋洋得意神采飞扬心花怒放乐不可支喜上眉梢春风得意眉开眼笑受批评:心灰意冷垂头丧气郁郁寡欢心灰意懒一蹶不振建筑:金碧辉煌玲珑剔透古色古香庄严肃穆庭院幽深巍然耸立绿瓦红墙描龙绣凤气势磅礴栩俯瞰窥视探望远眺审视环顾扫视瞻仰左顾右盼瞻前顾后袖手旁观先睹为快望眼欲穿东张西望屏息凝视目不转睛成语中的反义词:藕断丝连转危为安左顾右盼阴差阳错争先恐后冬暖夏凉大同小异轻重缓急天南地北舍本逐末比喻手法成语:星罗棋布鳞次栉比玉洁冰清蚕食鲸吞狐朋狗友狼吞虎咽锦衣玉食中国:中华华夏九州四海神州大地长城内外大江南北读书和学习:如饥似渴学而不厌学无止境学以致用博览群书博学多才学海无涯朋友:伙伴同伴旅伴伴侣战友密友故友好友挚友新朋好友良师益友梅花:腊梅墨梅素梅冰肌玉骨疏影横斜暗香浮动清香远溢幽香沁人小溪:波纹粼粼清澈见底终年潺潺柳树:垂柳青青婀娜多姿依依多情花儿好看:绚丽烂漫妖艳素雅争奇斗艳鲜艳夺目花蕾满枝琼花玉叶色彩斑斓花团锦簇灿如云锦花儿好闻:芬芳幽香芳香浓郁清香四溢香气袭人沁人心脾清香袅袅香气扑鼻香飘十里日子:丰衣足食太平昌盛日出而作日入而息守望相助走兽:四肢轻快互相追逐连蹦带跳小巧玲珑乖巧驯良扬蹄飞奔腾空跃起庞然大物生龙活虎威风凛凛万千气象:晚霞朝晖红霞满天霞光万道闲云迷雾云雾缭绕星光灿烂晓风残月月凉如水月色朦胧月淡风清月明星稀皓月当空栩如生造型逼真琼楼玉宇布局合理亭台楼阁历史悠久中西合璧龙腾虎跃打比方成语:如醉如梦如泣如诉如火如荼如饥似渴如兄似弟如胶似漆如花似锦如狼似虎死:去世逝世长眠安息千古永别永诀与世长辞遇难牺牲捐躯殉职夭折圆寂羽化驾崩。
九年级数学学科参考答案
2016年南沙区初中毕业班综合测试参考答案及评分标准数学说明:1.本解答给出了一种解法供参考,如果考生的解法与本解答不同,各学校可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:(本大题考查基本知识和基本运算.共10小题,每小题3分,共30分)题号12345678910答案C D B A A C C B D A二、填空题:(本大题查基本知识和基本运算,体现选择性.共6小题,每小题3分,共18分)11.3.61×10812.120013.914.15π15.3或-116.y=12x三、解答题:(本大题共9小题,满分102分.解答须写出文字说明、证明过程和演算步骤.)17.(本小题满分9分)原式=2(x2﹣4)……………………………………………………………………4分=2(x+2)(x-2)………………………………………………………………9分18.(本小题满分9分)解答:解:(1)作图略………………………………………3分,证明:∵四边形ABCD是平行四边形……………………4分,∴∠B=∠D,AB=CD………………………………5分,∵AF⊥BC,CE⊥AD…………………………………6分∴∠AFB=∠CED…………………………………7分∴△BCE≌△DCF.………………………………9分CBA DEF19.(本小题满分10分)解:(1)A-B=1122---x xx ………………………………………1分=1)1(22--+x xx …………………………………………2分=222--+xx ……………………………………………3分=122-+x x …………………………………………………4分(2)A=B22-=-x x ……………………………………………………5分2(x+1)=x ……………………………………………………………7分2x+2=x………………………………………………………………8分x=-2……………………………………………………………9分经检验x=2是原方程的解。
2016-2017学年人教版九年级数学下期中综合检测试卷含答案
期中综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.已知点P(-12,2)在反比例函数y=kx(k≠0)的图象上,则k的值是()A.-12B.2C.1D.-12.关于反比例函数y=4x的图象,下列说法正确的是()A.必经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.两个分支关于原点成中心对称3.(2015·成都中考)如图所示,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1B.2C.3D.44.如图所示,平行四边形ABCD中,E是BC上一点,BE∶EC=2∶3,AE交BD于F,则BF∶FD等于()A.2∶5B.3∶5C.2∶3D.5∶75.(2015·自贡中考)若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=-1x图象上的点,并且y1<0<y2<y3,则下列各式中正确的是()A.x1<x2<x3B.x1<x3<x2C.x2<x1<x3D.x2<x3<x16.已知反比例函数y=ax(a≠0)的图象在每一象限内,y的值随x值的增大而减小,则一次函数y=-ax+a的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.如图所示,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为()A.3B.4C.5D.68.(2015·浙江中考)如图所示,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限.若反比例函数y=kx 的图象经过点B,则k的值是()A.1B.2C.√3D.2√39.如图所示,这是圆桌正上方的灯泡(看成一个点)发出的光线照射到桌面后在地面上形成影子(圆形)的示意图.已知桌面直径为1.2米,桌面离地面1米.若灯泡离地面3米,则地面上阴影部分的面积为() A.0.36π米2 B.0.81π米2C.2π米2D.3.24π米210.(2015·重庆中考)如图所示,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=3x的图象经过A,B两点,则菱形ABCD的面积为()A.2B.4C.2√2D.4√2二、填空题(每小题4分,共24分)11.反比例函数y=(m-2)x2m+1的函数值为13时,自变量x的值是.12.(2015·重庆中考)已知△ABC∽△DEF,且△ABC与△DEF的面积比为4∶1,则△ABC与△DEF对应边上的高之比为.13.如图所示,平行四边形ABCD中,点E是AD边的中点,BE交对角线AC于点F,若AF=2,则对角线AC 的长为.图象的每一支上,y都随x的增大而减小,则k的取值范围是.14.已知在反比例函数y=k-2015x的图象与一次函数y=2x+1的图象的一个交点是(1,k),则反比例函数的解析式15.反比例函数y=kx是.16.如图所示,在△ABC中,AB=6,AC=4,P是AC的中点,过P点的直线交AB于点Q,若以A,P,Q为顶点的三角形和以A,B,C为顶点的三角形相似,则AQ的长为.三、解答题(共66分)(k≠0)与一次函数y=mx+b(m<0)交于点A(1,2k-1).17.(7分)反比例函数y=kx(1)求反比例函数的解析式;(2)若一次函数与x轴交于点B,且△AOB的面积为3,求一次函数的解析式.18.(7分)如图所示,将图中的△ABC作下列运动,画出相应的图形,并指出三个顶点的坐标所发生的变化.(1)向上平移4个单位长度得到△A1B1C1;(2)关于y轴对称得到△A2B2C2;(3)以点A为位似中心,将△ABC放大为原来的2倍得到△A3B3C3.19.(8分)(2015·泰安中考)如图所示,在△ABC中,AB=AC,点P,D分别是BC,AC边上的点,且∠APD=∠B.(1)求证AC·CD=CP·BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.的图象相交于A(-1,4),B(2,n)两点,直线AB 20.(8分)(2015·泰安中考)一次函数y=kx+b与反比例函数y=mx交x轴于点D.(1)求一次函数与反比例函数的表达式;(2)如图所示,过点B作BC⊥y轴,垂足为C,连接AC交x轴于点E,求△AED的面积S.21.(8分)如图所示,已知△ABC,延长BC到D,使CD=BC.取AB的中点F,连接FD交AC于点E.的值;(1)求AEAC(2)若AB=18,FB=EC,求AC的长.22.(9分)某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x(单位:元)与日销售;(2)设经营此贺卡的销售利润为W元,求出W与x之间的函数关系式.若物价局规定此贺卡的单价最高不能超过10元,请你求出当日销售单价x定为多少时,才能获得最大日销售利润.23.(9分)如图所示,在Rt△ABC中,∠ACB=90°,以AC为直径的☉O与AB边交于点D,过点D作☉O的切线,交BC于点E.(1)求证点E是边BC的中点;(2)若EC=3,BD=2√6,求☉O的直径AC的长;(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.24.(10分)(2015·成都中考)如图所示,一次函数y=-x+4的图象与反比例函数y=kx(k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.【答案与解析】1.D(解析:将点P(-12,2)代入函数解析式,得k=-12×2=-1.故选D.)2.D(解析:把(1,1)代入,左边≠右边,故A错误;因为k=4>0,所以图象在第一、三象限,故B错误;沿x轴对折不重合,故C错误;两分支关于原点对称,故D正确.故选D.)3.B(解析:根据平行线分线段成比例,得ADDB =AEEC,即63=4EC,则EC=2.故选B.)4.A(解析:∵BE∶EC=2∶3,∴BE∶BC=2∶5,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴BE∶AD=2∶5,△ADF∽△EBF,∴BFFD =BEAD=25.故选A.)5.D(解析:∵k=-1<0,∴反比例函数图象在第二、四象限,且在每个象限内y随x的增大而增大,∵y1<0<y2<y3,∴x1>0,x2<x3<0,即x2<x3<x1.故选D.)6.C(解析:根据反比例函数的性质可知a>0,再根据一次函数的性质知y=-ax+a的图象经过第一、二、四象限,不经过第三象限.故选C.)7.C(解析:在△ABC中,∠C=90°,AC=8,BC=6,∴AB=√AC2+BC2=√82+62=10,又△ADE∽△ABC,则DE BC =ADAB,36=AD10,∴AD=3×106=5.故选C.)8.C(解析:如图所示,过B点作BD⊥x轴,垂足为D,∵△OAB是等边三角形,∴OB=OA=2,∴OD=1,BD=√3.∴点B 的坐标为(1,√3).∵反比例函数的图象经过点B,∴k=√3.故选C.)9.B (解析:设阴影部分的直径是x m ,则1.2∶x =2∶3,解得x =1.8,所以地面上阴影部分的面积S =πr 2=0.81π(米2).故选B.)10.D (解析:∵反比例函数的图象经过A ,B 两点,且A ,B 两点的纵坐标分别为3,1,∴点A 的坐标为(1,3),点B 的坐标为(3,1),过B 作BE ⊥AD ,垂足为E ,则AE =2,BE =2,根据勾股定理可得AB =2√2,又∵四边形ABCD 为菱形,∴AD =AB =2√2,∴菱形ABCD 的面积为AD ·BE =2√2×2=4√2.故选D.) 11.-9(解析:∵函数y =(m -2)x 2m+1是反比例函数,∴m -2≠0,且2m +1=-1,∴m =-1,∴y =-3x ,当y =13时,x =-9.故填-9.)12.2∶1(解析:∵△ABC 与△DEF 相似且面积比为4∶1,∴△ABC 与△DEF 的相似比为2∶1,∴△ABC 与△DEF 的对应边上的高之比为2∶1.故填2∶1.)13.6(解析:∵四边形ABCD 是平行四边形,点E 是AD 边的中点,∴△AEF ∽△CBF ,∴AE BC =AF FC ,12=2FC,∴FC =4,∴AC =6.故填6.)14.k >2015(解析:反比例函数y =k x的性质:当k >0时,图象在第一、三象限,且在每一象限内,y 随x 的增大而减小;当k <0时,图象在第二、四象限,且在每一象限内,y 随x 的增大而增大.由题意得k -2015>0,解得k >2015.)15.y =3x(解析:将(1,k )代入一次函数解析式y =2x +1,得k =2+1=3,把(1,3)代入y =k x,得k =3,则反比例函数解析式为y =3x.故填y =3x.)16.3或43(解析:当△ABC ∽△AQP 时,AQ AB =AP AC ,即AQ 6=24,AQ =3;当△ABC ∽△APQ 时,AP AB =AQ AC ,即26=AQ 4,AQ =43.故填3或43.)17.解:(1)把A (1,2k -1)代入y =k x(k ≠0),得1×(2k -1)=k ,解得k =1,∴反比例函数的解析式为y =1x. (2)∵k =1,∴点A 坐标为(1,1),∵S △AOB =12OB ×1=3,∴OB =6,又m <0,∴点B 的坐标为(6,0),把(1,1),(6,0)代入y =mx +b ,得{m +b =1,6m +b =0,解得{m =-15,b =65.∴一次函数解析式为y =-15x +65.18.解:如图所示.(1)平移后三个顶点的横坐标都不变,纵坐标都加4. (2)三个顶点的纵坐标不变,横坐标变为原来的相反数. (3)点A 的坐标不变,点B 的纵坐标不变,横坐标为原来横坐标加AB 的长,点C 的横坐标为原来横坐标加AB 的长,纵坐标为原来纵坐标加BC 的长.19.(1)证明:∵∠APC =∠BAP +∠B ,∠APC =∠APD +∠DPC ,∠APD =∠B ,∴∠BAP =∠DPC ,∵AB =AC ,∴∠B =∠C ,∴△ABP ∽△PCD ,∴AB PC =BPCD,∴AB ·CD =CP ·BP ,即AC ·CD =CP ·BP. (2)解:∵PD ∥AB ,∴△PCD ∽△BCA ,由①得△ABP ∽△PCD ,∴△ABP ∽△BCA ,∴AB BC =PBAC ,∴1012=PB10,∴PB =253.20.解:(1)把A (-1,4)代入反比例函数解析式y =m x,得m =-1×4=-4,∴反比例函数的解析式为y =-4x;把B (2,n )代入y =-4x ,得2n =-4,解得n =-2,∴B 点坐标为(2,-2),将A (-1,4)和B (2,-2)代入y =kx +b ,得{-k +b =4,2k +b =-2,解得{k =-2,b =2,∴一次函数的解析式为y =-2x +2. (2)∵BC ⊥y 轴,垂足为C ,B (2,-2),∴C 点坐标为(0,-2),设直线AC 的解析式为y =px +q (p ≠0),∵A (-1,4),C (0,-2),∴{-p +q =4,q =-2,解得{p =-6,q =-2,∴直线AC 的解析式为y =-6x -2,当y =0时,-6x -2=0,解得x =-13,∴E 点坐标为(-13,0),∵直线AB 的解析式为y =-2x +2,∴直线AB 与x 轴交点D 的坐标为(1,0),∴DE =1-(-13)=43,∴△AED 的面积S =12×43×4=83.21.解:(1)如图所示,连接FC ,AD.∵点F 是AB 的中点,CD =BC ,∴FC 是△ADB 的中位线,∴FC ∥AD ,FC =12AD ,∴△EFC ∽△EDA ,∴AE CE =AD FC =2,∴AE AC =23. (2)∵点F 是AB 的中点,AB =18,FB =EC ,∴EC =12AB =9.由(1)知AEEC =2,则AE9=2,∴AE =18,∴AC =AE +EC =18+9=27.21.解:(1)如图所示,连接FC ,AD.∵点F 是AB 的中点,CD =BC ,∴FC 是△ADB 的中位线,∴FC ∥AD ,FC =12AD ,∴△EFC ∽△EDA ,∴AE CE =AD FC =2,∴AE AC =23. (2)∵点F 是AB 的中点,AB =18,FB =EC ,∴EC =12AB =9.由(1)知AEEC =2,则AE9=2,∴AE =18,∴AC =AE +EC =18+9=27. 22.解:(1)设y =k x ,把点(3,20)代入得k =60,∴y =60x ,其他组数据也满足此关系式,故y =60x,图象略. (2)∵W =(x -2)y =60-120x,又∵x ≤10,∴当x =10时,日销售利润最大.23.(1)证明:如图所示,连接CD ,OD.∵DE 为切线,∴∠EDC +∠ODC =90°.∵∠ACB =90°,∴∠ECD +∠OCD =90°.又∵OD =OC ,∴∠ODC =∠OCD ,∴∠EDC =∠ECD ,∴ED =EC.∵AC 为直径,∴∠ADC =90°,∴∠BDE +∠EDC =90°,∠B +∠ECD =90°,∴∠B =∠BDE ,∴ED =EB ,∴EB =EC ,即点E 为边BC 的中点. (2)解:∵AC 为直径,∴∠ADC =∠ACB =90°,又∵∠B =∠B ,∴△ABC ∽△CBD ,∴AB BC =BCBD ,∴BC 2=BD ·BA.∴(2EC )2=BD ·BA ,即BA ·2√6=36,∴BA =3√6,在Rt △ABC 中,由勾股定理,得AC =√AB 2-BC 2=3√2. (3)解:△ABC 是等腰直角三角形.理由如下:∵四边形ODEC 为正方形,∴∠OCD =45°.∵AC 为直径,∴∠ADC =90°,∴∠CAD =90°-45°=45°,∴Rt△ABC 为等腰直角三角形.24.解:(1)由已知可得a =-1+4=3,k =1×a =1×3=3,∴反比例函数的表达式为y =3x ,联立{y =-x +4,y =3x,解得{x =3,y =1, 或{x =1,y =3.所以B (3,1). (2)如图所示,作B 点关于x 轴的对称点,得到B'(3,-1),连接AB'交x 轴于点P',连接P'B ,则有PA +PB =PA +PB'≥AB',当且仅当P 点和P'点重合时取等号.易得直线AB'的解析式为y =-2x +5,令y =0,得x =52,∴P'(52,0),即满足条件的P 的坐标为(52,0),设y =-x +4交x 轴于点C ,则C (4,0),∴S △PAB =S △APC -S △BPC =12×PC ×(y A -y B )=12×(4-52)×(3-1)=32.。
2016届九年级下学期入学数学试卷【解析版】
2021届九年级|下学期入学数学试卷一.选择题(共8小题)1.假设关于x的方程x2 +3x +a =0有一个根为﹣1 ,那么另一个根为()A.﹣2 B.2 C.4 D.﹣32.假设一次函数y =kx +b的图象经过第二、三、四象限,那么反比例函数y =的图象在() A.一、三象限B.二、四象限C.一、二象限D.三、四象限3.二次函数y =x2 +bx +c的图象如下图,假设y>0 ,那么x的取值范围是()A.﹣1<x<3 B.﹣1<x<4 C.x<﹣1或x>3 D.x<﹣1或x>44.两个相似三角形对应中线的比2:3 ,周长的和是20 ,那么两个三角形的周长分别为() A.8和12 B.9和11 C.7和13 D.6和145.以下各组中的四条线段成比例的是()A.a =1 ,b =3 ,c =2 ,d =4 B.a =4 ,b =6 ,c =5 ,d =10C.a =2 ,b =4 ,c =3 ,d =6 D.a =2 ,b =3 ,c =4 ,d =16.在三角形ABC中,∠C为直角,sinA =,那么tanB的值为()A.B.C.D.7.如图,将△ABC放在每个小正方形边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC ,能够完全覆盖这个三角形的最|小圆面半径是()A.B.C.2 D.8.丽华根据演讲比赛中九位评委所给的分数作了如下表格平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最|高分和一个最|低分,那么表中数据一定不发生变化的是()A.平均数B.众数 C.方差 D.中位数二.填空题(共8小题)9.如图1 ,是工人将货物搬运上货车常用的方法,把一块木板斜靠在货车车厢的尾部,形成一个斜坡,货物通过斜坡进行搬运.根据经验,木板与地面的夹角为20° (即图2中∠ACB =20° )时最|为适宜,货车车厢底部到地面的距离AB =1.5m ,木板超出车厢局部AD =0.5m ,那么木板CD的长度为.(参考数据:sin20°≈0.3420 ,cos20°≈0.9397 ,精确到0.1m ).10.如图,在直角坐标系中,△ABC的各顶点坐标为A (﹣1 ,1 ) ,B (2 ,3 ) ,C (0 ,3 ).现以坐标原点为位似中|心,作△A′B′C′ ,使△A′B′C′与△ABC的位似比为.那么点A的对应点A′的坐标为.11.如图,在平面直角坐标系中,点A的坐标(﹣2 ,0 ) ,△ABO是直角三角形,∠AOB =60°.现将Rt△ABO绕原点O按顺时针方向旋转到Rt△A′B′O的位置,那么此时边OB扫过的面积为.12.二次函数y =ax2 +bx的图象如图,假设一元二次方程ax2 +bx +m =0有实数根,那么m的最|大值为.13.如图,在平面直角坐标系中,过点M (﹣3 ,2 )分别作x轴、y轴的垂线与反比例函数y =的图象交于A ,B两点,那么四边形MAOB的面积为.14.小明设计了一个魔术盒,当任意实数对(a ,b )进入其中,会得到一个新的实数a2﹣2b +3.假设将实数(x ,﹣2x )放入其中,得到﹣1 ,那么x =.15.如图,PA ,PB是⊙O的两条切线,切点分别是A、B ,PA =10 ,CD是⊙O的切线,交PA于点C ,交PB于点D ,那么△PCD的周长是.16.如图,点A1 ,A2 ,… ,A2021在函数y =x2位于第二象限的图象上,点B1 ,B2 ,… ,B2021在函数y =x2位于第|一象限的图象上,点C1 ,C2 ,… ,C2021在y轴的正半轴上,假设四边形OA1C1B1、C1A2C2B2 ,… ,C2021A2021C2021B2021都是正方形,那么正方形C2021A2021C2021B2021的边长为.三.解答题(共10小题)17.用公式法解以下方程2x2 +6 =7x.18.计算:sin45° +cos230°﹣+2sin60°.19.如图,△ABC是直角三角形,∠ACB =90°.(1 )尺规作图:作⊙C ,使它与AB相切于点D ,与AC相交于点E ,保存作图痕迹,不写作法,请标明字母.(2 )在你按(1 )中要求所作的图中,假设BC =3 ,∠A =30° ,求的长.20.y =y1 +y2 ,y1与x成正比例,y2与x +2成反比例,且当x =﹣1时,y =3;当x =3时,y =7.求x =﹣3时,y的值.21.如图是一种躺椅及其简化结构示意图,扶手AB与座板CD都平行于地面,靠背DM与支架OE 平行,前支架OE与后支架OF分别与CD交于点G和点D ,AB与DM交于点N ,量得∠EOF=90° ,∠ODC =30° ,ON =40cm ,EG=30cm.(1 )求两支架落点E、F之间的距离;(2 )假设MN =60cm ,求躺椅的高度(点M到地面的距离,结果取整数).(参考数据:sin60° =,cos60° =,tan60° =≈1.73 ,可使用科学计算器)22.为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A ,B ,C ,D四个等级| ,其中相应等级|的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答以下问题:(1 )问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2 )估计这种电动汽车一次充电后行驶的平均里程数为多少千米?23.如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O ,弦CD与AB交于点F ,过点D作∠CDE ,使∠CDE =∠DFE ,交AB的延长线于点E.过点A作⊙O的切线交ED的延长线于点G.(1 )求证:GE是⊙O的切线;(2 )假设OF:OB =1:3 ,求AG的长.24."铁路建设助推经济开展〞,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1 )渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2 )专家建议:从平安的角度考虑,实际运行时速要比设计时速减少m% ,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加m小时,求m的值.25.在图1﹣﹣图4中,菱形ABCD的边长为3 ,∠A =60° ,点M是AD边上一点,且DM =AD ,点N是折线AB﹣BC上的一个动点.(1 )如图1 ,当N在BC边上,且MN过对角线AC与BD的交点时,那么线段AN的长度为.(2 )当点N在AB边上时,将△AMN沿MN翻折得到△A′MN ,如图2 ,①假设点A′落在AB边上,那么线段AN的长度为;②当点A′落在对角线AC上时,如图3 ,求证:四边形AM A′N是菱形;③当点A′落在对角线BD上时,如图4 ,求的值.26.如图,二次函数y =ax2 +x +c的图象与y轴交于点A (0 ,4 ) ,与x轴交于点B、C ,点C坐标为(8 ,0 ) ,连接AB、AC.(1 )请直接写出二次函数y =ax2 +x +c的表达式;(2 )判断△ABC的形状,并说明理由;(3 )假设点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4 )假设点N在线段BC上运动(不与点B、C重合) ,过点N作NM∥AC ,交AB于点M ,当△AMN 面积最|大时,求此时点N的坐标.2021届九年级|下学期入学数学试卷参考答案与试题解析一.选择题(共8小题)1.假设关于x的方程x2 +3x +a =0有一个根为﹣1 ,那么另一个根为()A.﹣2 B.2 C.4 D.﹣3【考点】根与系数的关系.【分析】根据一元二次方程根与系数的关系,利用两根和,两根积,即可求出a的值和另一根.【解答】解:设一元二次方程的另一根为x1 ,那么根据一元二次方程根与系数的关系,得﹣1 +x1 =﹣3 ,解得:x1 =﹣2.应选A.【点评】此题考查了一元二次方程根与系数的关系,方程ax2 +bx +c =0的两根为x1 ,x2 ,那么x1 +x2 =﹣,x1•x2 =.2.假设一次函数y =kx +b的图象经过第二、三、四象限,那么反比例函数y =的图象在()A.一、三象限B.二、四象限C.一、二象限D.三、四象限【考点】反比例函数的性质;一次函数的性质.【分析】先由一次函数的性质判断出k ,b的正负,再根据反比例函数的性质即可得出结果.【解答】解:∵一次函数y =kx +b的图象经过第二、三、四象限,∴k<0 ,b<0 ,kb>0 ,反比例函数y =中,kb>0 ,∴图象在一、三象限.应选A.【点评】此题考查了反比例函数的性质,应注意y =中k的取值.3.二次函数y =x2 +bx +c的图象如下图,假设y>0 ,那么x的取值范围是()A.﹣1<x<3 B.﹣1<x<4 C.x<﹣1或x>3 D.x<﹣1或x>4【考点】二次函数与不等式(组).【分析】求y>0时x的取值范围,就是二次函数的图象在x轴下方时对应的x的范围.【解答】解:根据图象可得x的范围是x<﹣1或x>3.应选C.【点评】此题考查了二次函数与不等式的关系,理解求y>0时x的取值范围,就是二次函数的图象在x轴下方时对应的x的范围是关键.4.两个相似三角形对应中线的比2:3 ,周长的和是20 ,那么两个三角形的周长分别为() A.8和12 B.9和11 C.7和13 D.6和14【考点】相似三角形的性质.【专题】计算题.【分析】根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比等于相似比得到两个相似三角形的周长的比为2:3 ,设这两个三角形的周长分别为2x ,3x ,那么2x +3x =20 ,然后解方程求出x后计算2x和3x即可.【解答】解:∵两个相似三角形对应中线的比2:3 ,∴两个相似三角形的周长的比为2:3 ,设这两个三角形的周长分别为2x ,3x ,那么2x +3x =20 ,解得x =4 ,∴2x =8 ,3x =12 ,即两个三角形的周长分别8和12.应选A.【点评】此题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比.5.以下各组中的四条线段成比例的是()A.a =1 ,b =3 ,c =2 ,d =4 B.a =4 ,b =6 ,c =5 ,d =10C.a =2 ,b =4 ,c =3 ,d =6 D.a =2 ,b =3 ,c =4 ,d =1【考点】比例线段.【分析】根据比例线段的概念,让最|小的和最|大的相乘,另外两条相乘,看它们的积是否相等即可得出答案.【解答】解:A.1×4≠3×2 ,故本选项错误;B.4×10≠6×5 ,故本选项错误;C.4×3 =2×6 ,故本选项正确;D.2×3≠1×4 ,故本选项错误;应选C.【点评】此题考查了比例线段,理解成比例线段的概念,注意在线段两两相乘的时候,要让最|小的和最|大的相乘,另外两条相乘,看它们的积是否相等进行判断.6.在三角形ABC中,∠C为直角,sinA =,那么tanB的值为()A.B.C.D.【考点】互余两角三角函数的关系.【分析】根据sinA =,可设BC =5x ,AB =13x ,利用勾股定理求出AC =12x ,再利用锐角三角函数的定义得出tanB的值.【解答】解:∵在Rt△ABC中,∠C =90° ,sinA =,∴可设BC =5x ,AB =13x ,∴AC ==12x ,∴tanB ===.应选C.【点评】此题考查的是锐角三角函数的定义及勾股定理的应用,正确得出各边之间的关系是解决问题的关键.7.如图,将△ABC放在每个小正方形边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC ,能够完全覆盖这个三角形的最|小圆面半径是()A.B.C.2 D.【考点】三角形的外接圆与外心.【专题】网格型.【分析】根据题意得出△ABC的外接圆的圆心位置,进而利用勾股定理得出能够完全覆盖这个三角形的最|小圆面的半径.【解答】解:如下图:点O为△ABC外接圆圆心,那么AO为外接圆半径,故能够完全覆盖这个三角形的最|小圆面的半径是:.应选A.【点评】此题主要考查了三角形的外接圆与外心,得出外接圆圆心位置是解题关键.8.丽华根据演讲比赛中九位评委所给的分数作了如下表格平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最|高分和一个最|低分,那么表中数据一定不发生变化的是()A.平均数B.众数 C.方差 D.中位数【考点】统计量的选择.【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最|高分和一个最|低分不影响中位数.【解答】解:去掉一个最|高分和一个最|低分对中位数没有影响,应选D.【点评】此题考查了统计量的选择,解题的关键是了解中位数的定义,难度不大.二.填空题(共8小题)9.如图1 ,是工人将货物搬运上货车常用的方法,把一块木板斜靠在货车车厢的尾部,形成一个斜坡,货物通过斜坡进行搬运.根据经验,木板与地面的夹角为20° (即图2中∠ACB =20° )时最|为适宜,货车车厢底部到地面的距离AB =1.5m ,木板超出车厢局部AD =0.5m ,那么木板CD的长度为4.9m.(参考数据:sin20°≈0.3420 ,cos20°≈0.9397 ,精确到0.1m ).【考点】解直角三角形的应用-坡度坡角问题.【专题】应用题.【分析】根据∠ACB的正弦函数和AB的长度求AC的长,再加上AD即可.【解答】解:由题意可知:AB⊥BC.∴在Rt△ABC中,sin∠ACB =,∴AC ===≈4.39 ,∴CD =AC +AD =4.39 +0.5 =4.89≈4.9 (m ).故答案为:4.9m.【点评】此题考查锐角三角函数的应用,属于理论联系实际的题目,难度不大,关键是根据三角函数值得到所求线段的相应的线段的长度.10.如图,在直角坐标系中,△ABC的各顶点坐标为A (﹣1 ,1 ) ,B (2 ,3 ) ,C (0 ,3 ).现以坐标原点为位似中|心,作△A′B′C′ ,使△A′B′C′与△ABC的位似比为.那么点A的对应点A′的坐标为(﹣,)或(,﹣).【考点】位似变换;坐标与图形性质.【分析】位似是特殊的相似,假设两个图形△ABC和△A′B′C′以原点为位似中|心,相似比是k ,△ABC上一点的坐标是(x ,y ) ,那么在△A′B′C′中,它的对应点的坐标是(kx ,ky )或(﹣kx ,﹣ky ).【解答】解:∵在△A′B′C′中,它的对应点的坐标是(kx ,ky )或(﹣kx ,﹣ky )∴A'的坐标为:(﹣,)或(,﹣).故答案为:(﹣,)或(,﹣).【点评】此题主要考查了位似变换,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.11.如图,在平面直角坐标系中,点A的坐标(﹣2 ,0 ) ,△ABO是直角三角形,∠AOB =60°.现将Rt△ABO绕原点O按顺时针方向旋转到Rt△A′B′O的位置,那么此时边OB扫过的面积为π.【考点】扇形面积的计算;坐标与图形性质;旋转的性质.【分析】根据点A的坐标(﹣2 ,0 ) ,可得OA =2 ,再根据含30°的直角三角形的性质可得OB的长,再根据性质的性质和扇形的面积公式即可求解.【解答】解:∵点A的坐标(﹣2 ,0 ) ,∴OA =2 ,∵△ABO是直角三角形,∠AOB =60° ,∴∠OAB =30° ,∴OB =OA =1 ,∴边OB扫过的面积为:=π.故答案为:π.【点评】此题考查了扇形的面积公式:S =,其中n为扇形的圆心角的度数,R为圆的半径) ,或S =lR ,l为扇形的弧长,R为半径.12.二次函数y =ax2 +bx的图象如图,假设一元二次方程ax2 +bx +m =0有实数根,那么m的最|大值为3.【考点】抛物线与x轴的交点.【分析】先根据抛物线的开口向上可知a>0 ,由顶点纵坐标为﹣3得出b与a关系,再根据一元二次方程ax2 +bx +m =0有实数根可得到关于m的不等式,求出m的取值范围即可.【解答】解:∵抛物线的开口向上,顶点纵坐标为﹣3 ,∴a>0.﹣=﹣3 ,即b2 =12a ,∵一元二次方程ax2 +bx +m =0有实数根,∴△ =b2﹣4am≥0 ,即12a﹣4am≥0 ,即12﹣4m≥0 ,解得m≤3 ,∴m的最|大值为3 ,故答案为3.【点评】此题考查的是抛物线与x轴的交点,根据题意判断出a的符号及a、b的关系是解答此题的关键.13.如图,在平面直角坐标系中,过点M (﹣3 ,2 )分别作x轴、y轴的垂线与反比例函数y =的图象交于A ,B两点,那么四边形MAOB的面积为10.【考点】反比例函数系数k的几何意义.【分析】设点A 的坐标为 (a ,b ) ,点B 的坐标为 (c ,d ) ,根据反比例函数y =的图象过A ,B 两点 ,所以ab =4 ,cd =4 ,进而得到S △AOC =|ab| =2 ,S △BOD =|cd| =2 ,S 矩形MCDO =3×2 =6 ,根据四边形MAOB 的面积 =S △AOC +S △BOD +S 矩形MCDO ,即可解答.【解答】解:如图 ,设点A 的坐标为 (a ,b ) ,点B 的坐标为 (c ,d ) ,∵反比例函数y =的图象过A ,B 两点 ,∴ab =4 ,cd =4 ,∴S △AOC =|ab| =2 ,S △BOD =|cd| =2 ,∵点M (﹣3 ,2 ) ,∴S 矩形MCDO =3×2 =6 ,∴四边形MAOB 的面积 =S △AOC +S △BOD +S 矩形MCDO =2 +2 +6 =10 ,故答案为:10.【点评】此题主要考查反比例函数的对称性和k 的几何意义 ,根据条件得出S △AOC =|ab| =2 ,S △BOD =|cd| =2是解题的关键 ,注意k 的几何意义的应用.14.小明设计了一个魔术盒 ,当任意实数对 (a ,b )进入其中 ,会得到一个新的实数a 2﹣2b +3.假设将实数 (x ,﹣2x )放入其中 ,得到﹣1 ,那么x = ﹣2 .【考点】解一元二次方程 -配方法.【专题】新定义.【分析】根据新定义得到x 2﹣2• (﹣2x ) +3 =﹣1 ,然后把方程整理为一般式 ,然后利用配方法解方程即可.【解答】解:根据题意得x 2﹣2• (﹣2x ) +3 =﹣1 ,整理得x 2 +4x +4 =0 ,(x +2 )2 =0 ,所以x 1 =x 2 =﹣2.故答案为﹣2.【点评】此题考查了解一元二次方程﹣配方法:将一元二次方程配成 (x +m )2 =n 的形式 ,再利用直接开平方法求解 ,这种解一元二次方程的方法叫配方法.15.如图,PA ,PB是⊙O的两条切线,切点分别是A、B ,PA =10 ,CD是⊙O的切线,交PA于点C ,交PB于点D ,那么△PCD的周长是20.【考点】切线长定理.【分析】根据切线长定理得出PA =PB =10 ,CA =CE ,DE =DB ,求出△PCD的周长是PC +CD +PD =PA +PB ,代入求出即可.【解答】解:∵PA、PB切⊙O于点A、B ,CD切⊙O于点E ,∴PA =PB =10 ,CA =CE ,DE =DB ,∴△PCD的周长是PC +CD +PD=PC +AC +DB +PD=PA +PB=10 +10=20.故答案为:20.【点评】此题考查了切线长定理的应用,关键是求出△PCD的周长=PA +PB.16.如图,点A1 ,A2 ,… ,A2021在函数y =x2位于第二象限的图象上,点B1 ,B2 ,… ,B2021在函数y =x2位于第|一象限的图象上,点C1 ,C2 ,… ,C2021在y轴的正半轴上,假设四边形OA1C1B1、C1A2C2B2 ,… ,C2021A2021C2021B2021都是正方形,那么正方形C2021A2021C2021B2021的边长为2021.【考点】二次函数综合题.【分析】根据正方形对角线平分一组对角可得OB1与y轴的夹角为45° ,然后表示出OB1的解析式,再与抛物线解析式联立求出点B1的坐标,然后求出OB1的长,再根据正方形的性质求出OC1 ,表示出C1B2的解析式,与抛物线联立求出B2的坐标,然后求出C1B2的长,再求出C1C2的长,然后表示出C2B3的解析式,与抛物线联立求出B3的坐标,然后求出C2B3的长,从而根据边长的变化规律解答即可.【解答】解:∵OA1C1B1是正方形,∴OB1与y轴的夹角为45° ,∴OB1的解析式为y =x联立,解得或,∴点B1 (1 ,1 ) ,OB1 ==,∵OA1C1B1是正方形,∴OC1 =OB1 =×=2 ,∵C1A2C2B2是正方形,∴C1B2的解析式为y =x +2 ,联立,解得,或,∴点B2 (2 ,4 ) ,C1B2 ==2,∵C1A2C2B2是正方形,∴C1C2 =C1B2 =×2=4 ,∴C2B3的解析式为y =x + (4 +2 ) =x +6 ,联立,解得,或,∴点B3 (3 ,9 ) ,C2B3 ==3,… ,依此类推,正方形C2021A2021C2021B2021的边长C2021B2021 =2021.故答案为:2021.【点评】此题考查了二次函数的对称性,正方形的性质,表示出正方形的边长所在直线的解析式,与抛物线解析式联立求出正方形的顶点的坐标,从而求出边长是解题的关键.三.解答题(共10小题)17.用公式法解以下方程2x2 +6 =7x.【考点】解一元二次方程-公式法.【专题】计算题.【分析】方程整理为一般形式,找出a ,b ,c的值,代入求根公式即可求出解.【解答】解:方程整理得:2x2﹣7x +6 =0 ,这里a =2 ,b =﹣7 ,c =6 ,∵△ =49﹣48 =1 ,∴x =,解得:x1 =2 ,x2 =.【点评】此题考查了解一元二次方程﹣公式法,熟练掌握求根公式是解此题的关键.18.计算:sin45° +cos230°﹣+2sin60°.【考点】特殊角的三角函数值.【分析】先把各特殊角的三角函数值代入,再根据二次根式混合运算的法那么进行计算即可.【解答】解:原式=•+ ()2﹣+2×=+﹣+=1 +.【点评】此题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.19.如图,△ABC是直角三角形,∠ACB =90°.(1 )尺规作图:作⊙C ,使它与AB相切于点D ,与AC相交于点E ,保存作图痕迹,不写作法,请标明字母.(2 )在你按(1 )中要求所作的图中,假设BC =3 ,∠A =30° ,求的长.【考点】作图-复杂作图;切线的性质;弧长的计算.【专题】作图题.【分析】(1 )过点C作AB的垂线,垂足为点D ,然后以C点为圆心,CD为半径作圆即可;(2 )先根据切线的性质得∠ADC =90° ,那么利用互余可计算出∠DCE =90°﹣∠A =60° ,∠BCD =90°﹣∠ACD =30° ,再在Rt△BCD中利用∠BCD的余弦可计算出CD =,然后根据弧长公式求解.【解答】解:(1 )如图,⊙C为所求;(2 )∵⊙C切AB于D ,∴CD⊥AB ,∴∠ADC =90° ,∴∠DCE =90°﹣∠A =90°﹣30° =60° ,∴∠BCD =90°﹣∠ACD =30° ,在Rt△BCD中,∵cos∠BCD =,∴CD =3cos30° =,∴的长==π.【点评】此题考查了作图﹣复杂作图:复杂作图是在五种根本作图的根底上进行作图,一般是结合了几何图形的性质和根本作图方法;解决此类题目的关键是熟悉根本几何图形的性质,结合几何图形的根本性质把复杂作图拆解成根本作图,逐步操作.也考查了切线的性质和弧长公式.20.y =y1 +y2 ,y1与x成正比例,y2与x +2成反比例,且当x =﹣1时,y =3;当x =3时,y =7.求x =﹣3时,y的值.【考点】待定系数法求反比例函数解析式.【分析】首|先根据正比例和反比例的定义可得y =kx +,再把x =﹣1 ,y =3;x =3 ,y =7代入得到关于k、m的方程组,再解可得k、m的值,进而可得y与x的解析式,再把x =﹣3代入计算出y的值即可.【解答】解:∵y1与x成正比例,∴y1 =kx ,∵y2与x +2成反比例,∴y2 =,∵y =y1 +y2 ,∴y =kx +,∵当x =﹣1时,y =3;当x =3时,y =7 ,∴,解得:,∴y =2x +,当x =﹣3时,y =2× (﹣3 )﹣5 =﹣11.【点评】此题主要考查了待定系数法求反比例函数解析式,关键是正确表示出y与x的关系式.21.如图是一种躺椅及其简化结构示意图,扶手AB与座板CD都平行于地面,靠背DM与支架OE 平行,前支架OE与后支架OF分别与CD交于点G和点D ,AB与DM交于点N ,量得∠EOF=90° ,∠ODC =30° ,ON =40cm ,EG=30cm.(1 )求两支架落点E、F之间的距离;(2 )假设MN =60cm ,求躺椅的高度(点M到地面的距离,结果取整数).(参考数据:sin60° =,cos60° =,tan60° =≈1.73 ,可使用科学计算器)【考点】解直角三角形的应用.【分析】(1 )利用平行线分线段成比例定理得出,利用平行四边形的判定与性质进而求出即可;(2 )利用四边形ONHE是平行四边形,进而得出NH =OE =50cm ,∠MHF =∠E =60° ,利用MP=110sin60°求出即可.【解答】解:(1 )连接EF.∵CD平行于地面,∴GD∥EF.∴.又∵AB∥EF ,∴AB∥CD.而OE∥DM ,那么四边形OGDN是平行四边形.∴OG =DN ,GD =ON.∵ON =40cm ,∠EOF =90° ,∠ODC =30° ,∴GD =40cm ,OG =GD =20cm ,又EG =30cm ,即,得EF =100cm.(2 )延长MD交EF于点H ,过点M作MP⊥EF于点P.∵四边形ONHE是平行四边形,∴NH =OE =50cm ,∠MHF =∠E =60°.由于MN =60cm ,∴MH =110cm.在Rt△MHP中,MP =MH•sin∠MHP ,即MP =110sin60° =110×=55≈95 (cm ).答:躺椅的高度约为95cm.【点评】此题主要考查了解直角三角形以及平行四边形的判定与性质等知识,熟练应用锐角三角函数关系是解题关键.22.为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A ,B ,C ,D四个等级| ,其中相应等级|的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答以下问题:(1 )问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2 )估计这种电动汽车一次充电后行驶的平均里程数为多少千米?【考点】条形统计图;扇形统计图;加权平均数.【分析】(1 )根据条形统计图和扇形图可知,将一次充电后行驶的里程数分为B等级|的有30辆电动汽车,所占的百分比为30% ,用30÷30%即可求出电动汽车的总量;分别计算出C、D所占的百分比,即可得到A所占的百分比,即可求出A的电动汽车的辆数,即可补全统计图;(2 )用总里程除以汽车总辆数,即可解答.【解答】解:(1 )这次被抽检的电动汽车共有:30÷30% =100 (辆) ,C所占的百分比为:40÷100×100% =40% ,D所占的百分比为:20÷100×100% =20% ,A所占的百分比为:100%﹣40%﹣20%﹣30% =10% ,A等级|电动汽车的辆数为:100×10% =10 (辆) ,补全统计图如下图:(2 )这种电动汽车一次充电后行驶的平均里程数为:230 ) =217 (千米) ,∴估计这种电动汽车一次充电后行驶的平均里程数为217千米.【点评】此题考查了条形统计图,以及扇形统计图,弄清题意是解此题的关键.23.如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O ,弦CD与AB交于点F ,过点D作∠CDE ,使∠CDE =∠DFE ,交AB的延长线于点E.过点A作⊙O的切线交ED的延长线于点G.(1 )求证:GE是⊙O的切线;(2 )假设OF:OB =1:3 ,求AG的长.【考点】切线的判定与性质.【分析】(1 )连接OD ,进而利用等腰三角形的性质以及切线的性质得出∠CDO +∠CDE =90° ,进而得出答案;(2 )首|先利用勾股定理得出DE的长,再利用相似三角形的判定与性质得出AG的长.【解答】(1 )证明:连接OD.∵OC =OD ,∴∠C =∠ODC ,∵OC⊥AB ,∴∠COF =90°∴∠OCD +∠CFO =90° ,∴∠ODC +∠CFO =90° ,∵∠EFD =∠FDE ,∠EFD =∠CDE ,∴∠CDO +∠CDE =90° ,∴DE为⊙O的切线;(2 )解:∵OF:OB =1:3 ,⊙O的半径为3 ,∴OF =1 ,∵∠EFD =∠EDF ,∴EF =ED ,在Rt△ODE中,OD =3 ,DE =x ,那么EF =x ,OE =1 +x ,∵OD2 +DE2 =EO2 ,∴32 +x2 = (x +1 )2 ,解得:x =4 ,∴DE =4 ,OE =5 ,∵AG为⊙O的切线,∴AG⊥AE ,∴∠GAE =90° ,∵∠OED =∠GEA ,∴Rt△EOD∽Rt△EGA ,∴==,即=,解得:AG =6.【点评】此题主要考查了相似三角形的判定与性质以及切线的判定与性质,正确得出Rt△EOD∽Rt△EGA是解题关键.24."铁路建设助推经济开展〞,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1 )渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2 )专家建议:从平安的角度考虑,实际运行时速要比设计时速减少m% ,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加m小时,求m的值.【考点】一元二次方程的应用;二元一次方程组的应用.【分析】(1 )利用"从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时〞,分别得出等式组成方程组求出即可;(2 )根据题意得出:(80 +120 ) (1﹣m% ) (8 +m ) =1600进而求出即可.【解答】解:(1 )设原时速为xkm/h ,通车后里程为ykm ,那么有:,解得:,答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米;(2 )由题意可得出:(80 +120 ) (1﹣m% ) (8 +m ) =1600 ,解得:m1 =20 ,m2 =0 (不合题意舍去) ,答:m的值为20.【点评】此题主要考查了二元一次方程组的应用以及一元二次方程的应用,根据题意得出正确等量关系是解题关键.25.在图1﹣﹣图4中,菱形ABCD的边长为3 ,∠A =60° ,点M是AD边上一点,且DM =AD ,点N是折线AB﹣BC上的一个动点.(1 )如图1 ,当N在BC边上,且MN过对角线AC与BD的交点时,那么线段AN的长度为.(2 )当点N在AB边上时,将△AMN沿MN翻折得到△A′MN ,如图2 ,①假设点A′落在AB边上,那么线段AN的长度为1;②当点A′落在对角线AC上时,如图3 ,求证:四边形AM A′N是菱形;③当点A′落在对角线BD上时,如图4 ,求的值.【考点】四边形综合题.【分析】(1 )过点N作NG⊥AB于G ,构造直角三角形,利用勾股定理解决问题;(2 )①利用线段中垂线的性质得到AN =A′N ,再由三角函数求得;②利用菱形的性质得到对角线平分每一组对角,得到∠DAC =∠CAB =30° ,根据翻折的性质得到AC⊥MN ,AM =A′M ,AN =A′N ,∠AMN =∠ANM =60° ,AM =AN ,AM =A′M =AN =A′N ,四边形AM A′N是菱形;③根据菱形的性质得到AB =AD ,∠ADB =∠ABD =60° ,求得∠NA′M =∠DMA′ +∠ADB ,证得A′M =AM =2 ,∠NA′M =∠A =60° ,得到∠NA′B =∠DMA′ ,利用三角形相似得到结果.【解答】解:(1 )如图1 ,过点N作NG⊥AB于G ,∵四边形ABCD是菱形,∴AD∥BC ,OD =OB ,∴==1 ,∴BN =DM =AD =1 ,∵∠DAB =60° ,∴∠NBG =60°∴BG =,GN =,∴AN ===;故答案为:;(2 )①当点A′落在AB边上,那么MN为AA′的中垂线, ∵∠DAB =60°AM =2 ,∴AN =AM =1 ,故答案为:1;②在菱形ABCD中,AC平分∠DAB ,∵∠DAB =60° ,∴∠DAC =∠CAB =30° ,∵△AMN沿MN翻折得到△A′MN ,∴AC⊥MN ,AM =A′M ,AN =A′N ,∴∠AMN =∠ANM =60° ,∴AM =AN ,∴AM =A′M =AN =A′N ,∴四边形AM A′N是菱形;③在菱形ABCD中,AB =AD ,∴∠ADB =∠ABD =60° ,∴∠BA′M =∠DMA′ +∠ADB ,∴A′M =AM =2 ,∠NA′M =∠A =60° ,∴∠NA′B =∠DMA′ ,∴△DMA′∽△BA′N ,∴=,∵MD =AD =1 ,A′M =2 ,∴=.【点评】此题考查了菱形的判定和性质,翻折的性质,线段垂直平分线的性质,相似三角形的判定和性质,角平分线的性质,关键是利用翻折的性质得到线段、角相等、三角形相似.26.如图,二次函数y =ax2 +x +c的图象与y轴交于点A (0 ,4 ) ,与x轴交于点B、C ,点C坐标为(8 ,0 ) ,连接AB、AC.(1 )请直接写出二次函数y =ax2 +x +c的表达式;(2 )判断△ABC的形状,并说明理由;(3 )假设点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4 )假设点N在线段BC上运动(不与点B、C重合) ,过点N作NM∥AC ,交AB于点M ,当△AMN 面积最|大时,求此时点N的坐标.【考点】二次函数综合题.【专题】压轴题.【分析】(1 )根据待定系数法即可求得;(2 )根据抛物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2 =20 ,AC2 =80 ,BC10 ,然后根据勾股定理的逆定理即可证得△ABC是直角三角形.(3 )分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x轴交于一个点,即可求得点N的坐标;(4 )设点N的坐标为(n ,0 ) ,那么BN =n +2 ,过M点作MD⊥x轴于点D ,根据三角形相似对应边成比例求得MD =(n +2 ) ,然后根据S△AMN =S△ABN﹣S△BMN得出关于n的二次函数,根据函数解析式求得即可.【解答】解:(1 )∵二次函数y =ax2 +x +c的图象与y轴交于点A (0 ,4 ) ,与x轴交于点B、C ,点C 坐标为(8 ,0 ) ,。
2016届九年级(下)段考数学试卷(一)(解析版)
上大附中何小龙2015-2016学年九年级(下)段考数学试卷(一)一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.下面的数中,与﹣3的和为0的是()A.3 B.﹣3 C.D.2.下列计算正确的是()A.a2•a4=a8 B. =±2 C. =﹣1 D.a4÷a2=a23.下列图形中,是中心对称图形的是()A.B.C.D.4.下列叙述正确的是()A.方差越大,说明数据就越稳定B.在不等式两边同乘或同除以一个不为0的数时,不等号的方向不变C.不在同一直线上的三点确定一个圆D.两边及其一边的对角对应相等的两个三角形全等5.函数的自变量x的取值范围是()A.x≤2 B.x≥2且x≠3 C.x≥2 D.x≤2且x≠36.若﹣5x2ym与xny是同类项,则m+n的值为()A.1 B.2 C.3 D.47.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35°B.45°C.55°D.65°8.如图,AB是⊙O的直径,BD、CD分别是过⊙O上点B、C的切线,且∠BDC=100°,连接AC,则∠A的度数是()A.15°B.30°C.40°D.45°9.如图,已知矩形ABCD中,AB=2,在BC上取一点E,沿AE将△ABE向上折叠,B点落在AD上的F点处,若四边形EFDC与矩形ABCD相似,则AD=()A.B.C.4 D.10.如图,每一幅图中均含有若干个正方形,第①个图形中含有1个正方形,第②个图形中含有5个正方形,按此规律下去,则第⑥个图象含有正方形的个数是()A.102 B.91 C.55 D.3111.如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A.B. C.D.12.如图,边长为2的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y=(x>0)的图象上,已知点B的坐标是(,),则k的值为()A.4 B.6 C.8 D.10二、填空题(本大题共6小题,每小题4分,满分24分)在每小题中,请将答案直接填在答题卷中对应得横线上.13.刚刚过去的2015年,中国旅游业实现了持续健康较快的发展,预计全年旅游总入可达2900000000000元,将数据2900000000000用科学记数法表示为.14.请计算:(1+π)0+(﹣)﹣2+2sin60°﹣|+1|= .15.如图是由若干个小正方形搭建的几何体的三视图,那么此几何体由个小正方形搭建而成.16.如图,在△ABC中,CA=CB,∠ACB=90°,AB=,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰好在弧EF上,则图中阴影部分的面积为(结果保留π).17.有七张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,O)的概率是.18.如图,将等腰Rt△GAE绕点A顺时针旋转60°得到△DAB,其中∠GAE=∠DAB=90°,GE与AD交于点M,过点D作DC∥AB交AE于点C.已知AF平分∠GAM,EH⊥AE交DC于点H,连接FH交DM于点N,若AC=2,则MN的值为.三、解答题:(本大题共2个小题,每小题7分,共14分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.19.解方程:.20.如图,在△ABC中,∠ABC=∠ACB,过A作AD⊥AB交BC的延长线于D,过C 作CE⊥AC使AE=BD.求证:∠E=∠D.四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.21.化简下列各式:(1)(x﹣1)2(x+1)2﹣1;(2)÷(﹣x+2)+.22.某数学兴趣小组将我校九年级某班学生一分钟跳绳的测试成绩进行了整理,分成5个小组(x表成绩,单位:次,且100≤x<200),根据测试成绩绘制出部分频数分布表和部分频数分布直方图,其中B、E两组测试成绩人数直方图的高度比为4:1,请结合下列图标中相关数据回答下列问题:测试成绩频数分布表组别成绩x次频数(人数)频率A 100≤x<120 5B 120≤x<140 bC 140≤x<160 15 30%D 160≤x<180 10E 180≤x<200 a(1)填空:a= ,b= ,本次跳绳测试成绩的中位数落在组(请填写字母);(2)补全频数分布直方图;(3)已知本班中甲、乙两位同学的测试成绩分别为185次、195次,现要从E 组中随机选取2人介绍经验,请用列表法或画树状图的方法,求出甲、乙两人中至少1人被选中的概率.23.对x,y定义了一种新运算T,规定T(x,y)=(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=,已知T (1,﹣1)=﹣2,T(4,2)=1.(1)求a,b的值;(2)若关于m的不等式组恰好有3个整数解,求p的取值范围.24.如图,我国某边防哨所树立了“祖国在我心中”建筑物,它的横截面为四边形BCNM,其中BC⊥CN,BM∥CN,建筑物顶上有一旗杆AB,士兵小明站在D处,由E点观察到旗杆顶部A的仰角为52°,底部B的仰角为45°,已知旗杆AB=2.8米,DE=1.8米.(参考数据:sin52°≈0.788,tan52°≈1.280)(1)求建筑物的高度BC;(2)建筑物长50米,背风坡MN的坡度i=1:0.5,为提高建筑物抗风能力,士兵们在背风坡填筑土石方加固,加固后建筑物顶部加宽4.2米,背风坡GH的坡度为i=1:1.5,施工10天后,边防居民为士兵支援的机械设备终于到达,这样工作效率提高到了原来的2倍,结果比原计划提前20天完成加固任务,士兵们原计划平均每天填筑土石方多少立方米?五、解答题:(本大题共2个小题,每小题12分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤.25.如图1,在正方形ABCD中,点P为AD延长线上一点,连接AC、CP,过点C 作CF⊥CP交于C,交AB于点F,过点B作BM⊥CF于点N,交AC于点M.(1)若AP=AC,BC=4,求S△ACP;(2)若CP﹣BM=2FN,求证:BC=MC;(3)如图2,在其他条件不变的情况下,将“正方形ABCD”改为“矩形ABCD”,且AB≠BC,AC=AP,取CP中点E,连接EB,交AC于点O,猜想:∠AOB与∠ABM 之间有何数量关系?请说明理由.26.如图1,在平面直角坐标系中,抛物线y=ax2+bx+c分别交 x轴于A(4,0)、B(1,0),交y轴于点C(0,﹣3),过点A的直线交抛物线与另一点D.(1)求抛物线的解析式及点D的坐标;(2)若点P为x轴上的一个动点,点Q在线段AC上,且Q点到x轴的距离为,连接PC、PQ,当△PCQ周长最小时,求出点P的坐标;(3)如图2,在(2)的结论下,连接PD,在平面内是否存在△A1P1D1,使△A1P1D1≌△APD(点A1、P1、D1的对应点分别是A、P、D,A1P1平行于y轴,点P1在点A1上方),且△A1P1D1的两个顶点恰好落在抛物线上?若存在,请求出点A1的横坐标m;若不存在,请说明理由.2015-2016学年九年级(下)段考数学试卷(一)参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.下面的数中,与﹣3的和为0的是()A.3 B.﹣3 C.D.【考点】有理数的加法.【分析】设这个数为x,根据题意可得方程x+(﹣3)=0,再解方程即可.【解答】解:设这个数为x,由题意得:x+(﹣3)=0,x﹣3=0,x=3,故选:A.2.下列计算正确的是()A.a2•a4=a8 B. =±2 C. =﹣1 D.a4÷a2=a2【考点】分式的基本性质;算术平方根;同底数幂的乘法;同底数幂的除法.【分析】根据同底数幂的乘法底数不变指数相加,算术平方根;分式的分子分母都乘以(或除以)同一个不为零的数,分式的值不变;同底数幂的除法底数不变指数相减,可得答案.【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、4的算术平方根根是2,故B错误;C、分子除以(x﹣y),分母除以(x+y),故C错误;D、同底数幂的除法底数不变指数相减,故D正确;故选:D.3.下列图形中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形进行分析即可.【解答】解:A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:A.4.下列叙述正确的是()A.方差越大,说明数据就越稳定B.在不等式两边同乘或同除以一个不为0的数时,不等号的方向不变C.不在同一直线上的三点确定一个圆D.两边及其一边的对角对应相等的两个三角形全等【考点】方差;不等式的性质;全等三角形的判定;确定圆的条件.【分析】利用方差的意义、不等号的性质、全等三角形的判定及确定圆的条件对每个选项逐一判断后即可确定正确的选项.【解答】解:A、方差越大,越不稳定,故选项错误;B、在不等式的两边同时乘以或除以一个负数,不等号方向改变,故选项错误;C、正确;D、两边及其夹角对应相等的两个三角形全等,故选项错误.故选:C.5.函数的自变量x的取值范围是()A.x≤2 B.x≥2且x≠3 C.x≥2 D.x≤2且x≠3【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≥0且x﹣3≠0,解得:x≤2且x≠3,自变量的取值范围x≤2,故选A.6.若﹣5x2ym与xny是同类项,则m+n的值为()A.1 B.2 C.3 D.4【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程等式,求出n,m的值,再相加即可.【解答】解:∵﹣5x2ym和xny是同类项,∴n=2,m=1,m+n=2+1=3,故选:C.7.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35°B.45°C.55°D.65°【考点】垂线;角平分线的定义.【分析】由射线OM平分∠AOC,∠AOM=35°,得出∠MOC=35°,由ON⊥OM,得出∠CON=∠MON﹣∠MOC得出答案.【解答】解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C.8.如图,AB是⊙O的直径,BD、CD分别是过⊙O上点B、C的切线,且∠BDC=100°,连接AC,则∠A的度数是()A.15°B.30°C.40°D.45°【考点】切线的性质.【分析】首先连接OC,由BD、CD分别是过⊙O上点B、C的切线,且∠BDC=100°,利用四边形内角和定理,即可求得∠AOC的度数,再利用圆周角定理,即可求得答案.【解答】解:连接OC,∵BD、CD分别是过⊙O上点B、C的切线,∴OB⊥BD,OC⊥CD,∵∠BDC=100°,∴在四边形OBDC中,∠BOC=360°﹣90°﹣90°﹣100°=80°,∴∠A=∠BOC=40°.故选C.9.如图,已知矩形ABCD中,AB=2,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点处,若四边形EFDC与矩形ABCD相似,则AD=()A.B.C.4 D.【考点】相似多边形的性质.【分析】可设AD=x,由四边形EFDC与矩形ABCD相似,根据相似多边形对应边的比相等列出比例式,求解即可.【解答】解:∵AB=1,设AD=x,则FD=x﹣2,FE=2,∵四边形EFDC与矩形ABCD相似,∴=,,解得x1=1+,x2=1﹣(不合题意舍去),经检验x1=1+是原方程的解.故选B.10.如图,每一幅图中均含有若干个正方形,第①个图形中含有1个正方形,第②个图形中含有5个正方形,按此规律下去,则第⑥个图象含有正方形的个数是()A.102 B.91 C.55 D.31【考点】规律型:图形的变化类.【分析】根据图形的变化规律可以得知每个图形比前一个图形多它序号的平方数个正方形,从而得出结论.【解答】解:结合图形可知,第②个图形比第①分图形多22个正方形,第③个比第②个多32个正方形,…,即多的个数为序号的平方数,∴第⑥个图象含有正方形的个数是1+22+32+42+52+62=91.故选B.11.如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A.B.C.D.【考点】动点问题的函数图象;等腰三角形的性质.【分析】分类讨论:当0<x≤1时,根据正方形的面积公式得到y=x2;当1<x ≤2时,ED交AB于M,EF交AB于N,利用重叠的面积等于正方形的面积减去等腰直角三角形MNE的面积得到y=x2﹣2(x﹣1)2,配方得到y=﹣(x﹣2)2+2,然后根据二次函数的性质对各选项进行判断.【解答】解:当0<x≤1时,y=x2,当1<x≤2时,ED交AB于M,EF交AB于N,如图,CD=x,则AD=2﹣x,∵Rt△ABC中,AC=BC=2,∴△ADM为等腰直角三角形,∴DM=2﹣x,∴EM=x﹣(2﹣x)=2x﹣2,∴S△ENM=(2x﹣2)2=2(x﹣1)2,∴y=x2﹣2(x﹣1)2=﹣x2+4x﹣2=﹣(x﹣2)2+2,∴y=,故选:A.12.如图,边长为2的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y=(x>0)的图象上,已知点B的坐标是(,),则k的值为()A.4 B.6 C.8 D.10【考点】正方形的性质;反比例函数图象上点的坐标特征;全等三角形的判定与性质.【分析】过点B作BE⊥y轴于E,过点D作DF⊥y轴于F,根据正方形的性质可得AB=AD,∠BAD=90°,再根据同角的余角相等求出∠BAE=∠ADF,然后利用“角角边”证明△ABE和△DAF全等,根据全等三角形对应边相等可得AF=BE,DF=AE,再求出OF,然后写出点D的坐标,再把点D的坐标代入反比例函数解析式计算即可求出k.【解答】解:如图,过点B作BE⊥y轴于E,过点D作DF⊥y轴于F,在正方形ABCD中,AB=AD,∠BAD=90°,∴∠BAE+∠DAF=90°,∵∠DAF+∠ADF=90°,∴∠BAE=∠ADF,在△ABE和△DAF中,,∴△ABE≌△DAF(AAS),∴AF=BE,DF=AE,∵正方形的边长为2,B(,),∴BE=,AE==,∴OF=OE+AE+AF=++=5,∴点D的坐标为(,5),∵顶点D在反比例函数y=(x>0)的图象上,∴k=xy=×5=8.故选:C.二、填空题(本大题共6小题,每小题4分,满分24分)在每小题中,请将答案直接填在答题卷中对应得横线上.13.刚刚过去的2015年,中国旅游业实现了持续健康较快的发展,预计全年旅游总收入可达2900000000000元,将数据2900000000000用科学记数法表示为2.9×1012 .【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将2900000000000用科学记数法表示为:2.9×1012.故答案为:2.9×1012.14.请计算:(1+π)0+(﹣)﹣2+2sin60°﹣|+1|= 9 .【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1+9+﹣﹣1=9,故答案为:915.如图是由若干个小正方形搭建的几何体的三视图,那么此几何体由 6 个小正方形搭建而成.【考点】由三视图判断几何体.【分析】根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行3列,故可得出该几何体的小正方体的个数.【解答】解:综合三视图,我们可得出,这个几何体的底层应该有4个小正方体,第二层应该有2个小正方体,因此搭成这个几何体的小正方体的个数为4+2=6个,故答案为:6.16.如图,在△ABC中,CA=CB,∠ACB=90°,AB=,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰好在弧EF上,则图中阴影部分的面积为﹣1 (结果保留π).【考点】扇形面积的计算.【分析】连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S 四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.【解答】解:连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=AB=,四边形DMCN是正方形,DM=1.则扇形FDE的面积==.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA,又∵DM⊥BC,DN⊥AC,∴DM=DN,∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN,在△DMG和△DNH中,,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=1.∴阴影部分的面积=﹣1.故答案为:﹣1.17.有七张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,O)的概率是.【考点】二次函数图象上点的坐标特征;根的判别式;概率公式.【分析】根据x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,得到△>0,求出a的取值范围,再求出二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,O)时的a的值,再根据概率公式求解即可.【解答】解:∵x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,∴△>0,∴[﹣2(a﹣1)]2﹣4a(a﹣3)>0,∴a>﹣1,将(1,O)代入y=x2﹣(a2+1)x﹣a+2得,a2+a﹣2=0,解得(a﹣1)(a+2)=0,a1=1,a2=﹣2.可见,符合要求的点为0,2,3.∴P=.故答案为:.18.如图,将等腰Rt△GAE绕点A顺时针旋转60°得到△DAB,其中∠GAE=∠DAB=90°,GE与AD交于点M,过点D作DC∥AB交AE于点C.已知AF平分∠GAM,EH⊥AE交DC于点H,连接FH交DM于点N,若AC=2,则MN的值为9﹣5.【考点】旋转的性质.【分析】作MK⊥AC,FT⊥AD垂足分别为K,T,证明△AGF≌△AEM,△AFT≌△AMK得到AF=AM,FT=MK=EK=DM,在RT△ADC中根据已知条件求出CD,AD,设MK=EK=x,根据AE=AK+EK列出方程求出x,在RT△HEC中求出HC,进而求出DH,再根据,求出DN,利用MN=AD﹣AM﹣DN求出MN.【解答】解:作MK⊥AC,FT⊥AD垂足分别为K,T,∵Rt△GAE绕点A顺时针旋转60°得到△DAB,∴∠GAD=∠CAB=60°,∵∠GAE=∠DAB=90°,AG=AE=AD=AB,∴∠DAC=30°,∠G=∠AEG=45°,∵AF平分∠GAD,∴∠GAF=∠FAT=30°,在△AGF和△AEM中,,∴△AGF≌△AEM,∴AF=AM在△AFT和△AMK中,,∴△AFT≌△AMK,∴AT=AK,∵AD=AE,∴DT=EK,∵∠KME=∠KEM=45°,∴MK=EK=DT=FT,设MK=KE=x,则AK=x,∵,∠DAC=30°,∴,AD=3,∴AE=AD=3,∴x+x=3x=,∴DT=DM=FH=MK=EK=,AM=3(﹣1),EC=2﹣3,在RT△HEC中,∵∠C=60°,EC=2﹣3,∴HC=2EC=4﹣6,DH=DC﹣HC=﹣(4﹣6)=6﹣3,设DN=y,∵DH∥FT,∴,∴,∴y=2﹣3,∴MN=AD﹣AM﹣DN=3﹣3(﹣1)﹣(2﹣3)=9﹣5.三、解答题:(本大题共2个小题,每小题7分,共14分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.19.解方程:.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:﹣6=x+2x﹣2,解得:x=﹣,经检验x=﹣是分式方程的解.20.如图,在△ABC中,∠ABC=∠ACB,过A作AD⊥AB交BC的延长线于D,过C 作CE⊥AC使AE=BD.求证:∠E=∠D.【考点】全等三角形的判定与性质.【分析】利用已知条件证明Rt△BAD≌Rt△ACE,根据全等三角形的对应角相等即可解答.【解答】解:∵∠ABC=∠ACB,∴AB=AC,∵AD⊥AB,CE⊥AC,∴∠BAD=∠ACE=90°,在Rt△BAD和Rt△ACE中,∴Rt△BAD≌Rt△ACE,∴∠E=∠D.四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.21.化简下列各式:(1)(x﹣1)2(x+1)2﹣1;(2)÷(﹣x+2)+.【考点】分式的混合运算;整式的混合运算.【分析】(1)根据平方差公式进行计算即可;(2)先对式子能分解因式的先分解因式,对括号内的先通分再相加,然后化简即可.【解答】解:(1)(x﹣1)2(x+1)2﹣1=[(x﹣1)(x+1)]2﹣1=(x2﹣1)2﹣1=x4﹣2x2+1﹣1=x4﹣2x2;(2)÷(﹣x+2)+=======.22.某数学兴趣小组将我校九年级某班学生一分钟跳绳的测试成绩进行了整理,分成5个小组(x表成绩,单位:次,且100≤x<200),根据测试成绩绘制出部分频数分布表和部分频数分布直方图,其中B、E两组测试成绩人数直方图的高度比为4:1,请结合下列图标中相关数据回答下列问题:测试成绩频数分布表组别成绩x次频数(人数)频率A 100≤x<120 5B 120≤x<140 bC 140≤x<160 15 30%D 160≤x<180 10E 180≤x<200 a(1)填空:a= 4 ,b= 32% ,本次跳绳测试成绩的中位数落在 C 组(请填写字母);(2)补全频数分布直方图;(3)已知本班中甲、乙两位同学的测试成绩分别为185次、195次,现要从E 组中随机选取2人介绍经验,请用列表法或画树状图的方法,求出甲、乙两人中至少1人被选中的概率.【考点】列表法与树状图法;频数(率)分布表;频数(率)分布直方图;中位数.【分析】(1)根据C的人数除以C所占的百分比,可得总人数,进而可求出A,D的所占百分比,则a,b的值可求;根据中位线的定义解答即可;(2)由(1)中的数据即可补全频数分布直方图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙两人中至少1人被选中的情况,再利用概率公式即可求得答案.【解答】解:(1)由题意可知总人数=15÷30%=50(人),所以D所占百分比=10÷50×100%=20%,A所占百分比=5÷50×100%=10%,因为B、E两组测试成绩人数直方图的高度比为4:1,所以5a=50﹣5﹣15﹣10,解得a=4,所以b=16÷50×100%=32%,因为B的人数是16人,所以中位线落在C组,故答案为4,32%,C;(2)由(1)可知补全频数分布直方图如图所示:(3)设甲为A,乙为B,画树状图为:由树状图可知从E组中随机选取2人介绍经验,则甲、乙两人中至少1人被选中的概率==.23.对x,y定义了一种新运算T,规定T(x,y)=(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=,已知T (1,﹣1)=﹣2,T(4,2)=1.(1)求a,b的值;(2)若关于m的不等式组恰好有3个整数解,求p的取值范围.【考点】解二元一次方程组;一元一次不等式组的整数解.【分析】(1)根据题中的新定义列出关于a与b的方程组,求出方程组的解即可得到a与b的值;(2)利用题中的新定义化简已知不等式组,表示出解集,由不等式组恰好有3个整数解,确定出p的范围即可.【解答】解:(1)根据题意得:,①+②得:3a=3,即a=1,把a=1代入①得:b=3;(2)根据题意得:,由①得:m≥﹣;由②得:m<,∴不等式组的解集为﹣≤m<,∵不等式组恰好有3个整数解,集m=0,1,2,∴2<≤3,解得:﹣2≤p<﹣.24.如图,我国某边防哨所树立了“祖国在我心中”建筑物,它的横截面为四边形BCNM,其中BC⊥CN,BM∥CN,建筑物顶上有一旗杆AB,士兵小明站在D处,由E点观察到旗杆顶部A的仰角为52°,底部B的仰角为45°,已知旗杆AB=2.8米,DE=1.8米.(参考数据:sin52°≈0.788,tan52°≈1.280)(1)求建筑物的高度BC;(2)建筑物长50米,背风坡MN的坡度i=1:0.5,为提高建筑物抗风能力,士兵们在背风坡填筑土石方加固,加固后建筑物顶部加宽4.2米,背风坡GH的坡度为i=1:1.5,施工10天后,边防居民为士兵支援的机械设备终于到达,这样工作效率提高到了原来的2倍,结果比原计划提前20天完成加固任务,士兵们原计划平均每天填筑土石方多少立方米?【考点】解直角三角形的应用-坡度坡角问题;分式方程的应用.【分析】(1)根据题意得出EF=BF,进而利用tan∠AEF=即可得出答案;(2)利用坡比的定义得出QN,QH的长,进而利用梯形面积求法求出总的土方量,进而得出答案.【解答】解:(1)如图所示:过点E作EF⊥BF交BC于点F,设EF=x,则EF=x,则根据题意可得:BF=x,同理可知tan∠AEF==≈1.28,解得:x=10,即BC=10+1.8=11.8(m).答:建筑物的高度BC为11.8m;(2)如图所示:过点M,G分别作MQ、GP垂直于CN,交CN于点Q、P,根据题意可得:PH=11.8×1.5=17.7(m),QN=5.9(m),可得:NH=17.7﹣5.9=11.8(m),故可得加固所需土石方为:(MG+NH)×PG=×11.8×(4.2+11.8)×50=4720,则根据题意可列方程:设原方程每天填筑土石方a立方米,=20+,解得:a=157.答:士兵们原计划平均每天填筑土石方157立方米.五、解答题:(本大题共2个小题,每小题12分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤.25.如图1,在正方形ABCD中,点P为AD延长线上一点,连接AC、CP,过点C 作CF⊥CP交于C,交AB于点F,过点B作BM⊥CF于点N,交AC于点M.(1)若AP=AC,BC=4,求S△ACP;(2)若CP﹣BM=2FN,求证:BC=MC;(3)如图2,在其他条件不变的情况下,将“正方形ABCD”改为“矩形ABCD”,且AB≠BC,AC=AP,取CP中点E,连接EB,交AC于点O,猜想:∠AOB与∠ABM 之间有何数量关系?请说明理由.【考点】四边形综合题.【分析】(1)由正方形的性质得出AB=BC=CD=4,∠ADC=∠CDP=∠ABC=∠BCD=90°,由勾股定理求出AC,得出AP,即可求出S△ACP;(2)在CF上截取NG=FN,连接BG,则CF﹣CG=2FN,证出∠BCF=∠DCP,由ASA 证明△BCF≌△DCP,得出CF=CP,证出CG=BM,由SAS证明△ABM≌△BCG,得出∠AMB=∠BGC,因此∠BMC=∠BGF,由线段垂直平分线的性质得出BF=BG,得出∠BFG=∠BGF,因此∠BMC=∠CBM,即可得出结论;(3)连接AE,先证出∠BCA=2∠PAE,再证明∴A、D、E、C四点共圆,由圆周角定理得出∠DCP=∠PAE,得出∠BCF=∠PAE,证出∠BCA=2∠ABM,然后由三角形的外角性质即可得出结论.【解答】(1)解:∵四边形ABC是正方形,∴AD∥BC,AB=BC=CD=4,∠ADC=∠CDP=∠ABC=∠BCD=90°,∴AC==4,∴AP=AC=×4=,∴S△ACP=AP×CD=××4=7;(2)证明:在CF上截取NG=FN,连接BG,如图1所示:则CF﹣CG=2FN,∵CF⊥CP,∴∠PCF=90°,∴∠BCF=∠DCP,在△BCF和△DCP中,,∴△BCF≌△DCP(ASA),∴CF=CP,∵CP﹣BM=2FN,∴CG=BM,∵∠ABC=90°,BM⊥CF,∴∠ABM=∠BCG,∠BFG=∠CBM,在△ABM和△BCG中,,∴△ABM≌△BCG(SAS),∴∠AMB=∠BGC,∴∠BMC=∠BGF,∵GN=FN,BM⊥CF,∴BF=BG,∴∠BFG=∠BGF,∴∠BMC=∠CBM,∴BC=MC;(3)解:∠AOB=3∠ABM;理由如下:连接AE,如图2所示:∵AC=AP,E是CP的中点,∴AE⊥CP,∠PAE=∠CAE,∵AD∥BC,∴∠BCA=∠PAC=2∠PAE,∵CF⊥CP,∴∠PCF=90°,∴∠BCF=∠DCP,∵∠ADC=∠AEC=90°,∴A、D、E、C四点共圆,∴∠DCP=∠PAE,∴∠BCF=∠PAE,又∵∠ABM=∠BCF,∴∠ABM=∠BCF=∠PAE,∴∠BCA=2∠ABM,∵∠AOB=∠BCF+∠BCA,∴∠AOB=3∠ABM.26.如图1,在平面直角坐标系中,抛物线y=ax2+bx+c分别交 x轴于A(4,0)、B(1,0),交y轴于点C(0,﹣3),过点A的直线交抛物线与另一点D.(1)求抛物线的解析式及点D的坐标;(2)若点P为x轴上的一个动点,点Q在线段AC上,且Q点到x轴的距离为,连接PC、PQ,当△PCQ周长最小时,求出点P的坐标;(3)如图2,在(2)的结论下,连接PD,在平面内是否存在△A1P1D1,使△A1P1D1≌△APD(点A1、P1、D1的对应点分别是A、P、D,A1P1平行于y轴,点P1在点A1上方),且△A1P1D1的两个顶点恰好落在抛物线上?若存在,请求出点A1的横坐标m;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)边A、B、C三点坐标代入解方程组即可.(2)求出点Q坐标,作点Q关于x轴的对称点Q′,连接CQ′交x轴于点P,此时△PCQ周长最小,求出直线CQ′即可解决问题.(3)分类讨论①当P1、D1在抛物线上时,由A1P1∥y轴,故不存在.②当P1、D1在抛物线上时,设P1(t,﹣t﹣3)则D1(t+, t2﹣t)或(t﹣, t2﹣t)列出方程即可解决.③当A1、D1在抛物线上时,设A1((m, m2﹣m﹣3)则D1(m+, m2﹣m+3)或(m﹣, m2﹣m+3),列出方程即可解决.【解答】解:(1)由题意得,解得.所以抛物线解析式为y=x2﹣x﹣3.由解得,所以点D坐标为(﹣2,).(2)∵直线AC为y=x﹣3,yQ=﹣,∴点Q坐标为(,﹣),点Q关于x轴的对称点Q′(,),连接CQ′交x 轴于点P,此时△PCQ周长最小,∵直线CQ′为y=3x﹣3,∴直线CQ′与x轴的交点P为(1,0).(3)当P1、D1在抛物线上时,由A1P1∥y轴,故不存在.当P1、D1在抛物线上时,设P1(t,﹣t﹣3)则D1(t+, t2﹣t)或(t﹣, t2﹣t).∴t2﹣t=(t+)2﹣(t+)﹣3,解得t=﹣,此时m=t=﹣,或t2﹣t=(t﹣)2﹣(t﹣)﹣3,解得t=,此时m=t=,当A1、D1在抛物线上时,设A1((m, m2﹣m﹣3)则D1(m+, m2﹣m+3)或(m﹣, m2﹣m+3).∴m2﹣m+3=(m+)2﹣(m+)﹣3,解得m=,或m2﹣m+3=(m﹣)2﹣(m﹣)﹣3,解得m=﹣.2016年4月19日【素材积累】1、不求与人相比,但求超越自己,要哭旧哭出激动的泪水,要笑旧笑出成长的性格。