不等式与函数练习题
不等式与函数像的综合练习题
不等式与函数像的综合练习题1. 设函数 $f(x) = \frac{1}{3}x^3 - 2x^2 - 3x + 4$,求函数 $f(x)$ 的最小值和最大值,并分别求得最小值和最大值时的 $x$ 值。
解析:首先求得函数 $f(x)$ 的导数 $f'(x) = x^2 - 4x - 3$。
令 $f'(x) =0$,解得 $x = -1$ 或 $x = 3$。
将这两个关键点代入 $f(x)$,得到 $f(-1) = 6$ 和 $f(3) = -2$。
所以,函数 $f(x)$ 的最小值为 $-2$(最小值点为$x = 3$),最大值为 $6$(最大值点为 $x = -1$)。
2. 求不等式 $2x^2 + 5x - 3 < 0$ 的解集。
解析:先求出不等式左边的二次函数 $g(x) = 2x^2 + 5x - 3$ 的零点,令 $g(x) = 0$,解得 $x = -3$ 或 $x = \frac{1}{2}$。
将这两个关键点代入 $g(x)$,得到 $g(-3) = 0$ 和 $g\left(\frac{1}{2}\right) = \frac{1}{2}$。
接下来,通过绘制函数图像或利用函数的凸凹性质,判断不等式的解集。
分析可知,当 $x < -3$ 时,$g(x) > 0$;当 $-3 < x < \frac{1}{2}$ 时,$g(x) < 0$;当 $x > \frac{1}{2}$ 时,$g(x) > 0$。
所以,不等式 $2x^2 + 5x - 3 < 0$ 的解集为 $-3 < x < \frac{1}{2}$。
3. 已知函数 $h(x) = \sqrt{x+4}$,求函数 $h(x)$ 的定义域和值域。
解析:由于函数 $h(x)$ 中有根号,所以要求根号内的实数值非负,即 $x + 4 \geq 0$。
一次函数与方程、不等式练习题
19.2.3 一次函数与方程、不等式一、选择题。
1.若直线y=2x +n 与y=mx-1相交于点(1,-2),则( ). A .m=12,n=-52 B .m=12,n=-1; C .m=-1,n=-52 D .m=-3,n=-32 2.方程2x -3y+6=0可变形为 ( )A 232-=x yB 232+=x yC 232+-=x yD 232--=x y 3.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( )A . 012302=--=-+y x y xB . 0123012=--=--y x y x C . 0523012=-+=--y x y x D . 01202=--=-+y x y x 4.如图,一次函数21y x =+的图象与y kx b =+的图象相交于点A ,则方程组21y x y kx b=+⎧⎨=+⎩的解是( ) · · · ··1 2 3 1 2 xy0 -1 ·A .31x y =⎧⎨=⎩B .73x y =⎧⎨=⎩C .37x y =⎧⎨=⎩D .13x y =⎧⎨=⎩ 5.一次函数1y kx b =+与2y x a =+的图像如图,则下列结论:①k<0;②a<0;③b<0;④方程kx b x a +=+的解为x=3;⑤当x<3时,12y y <.正确的个数是( )A .0B .1C .2D .36.如图所示,一次图数y =-x +3与一次函数y =2x +m 图象交于点(2,n ),则关于x 的不等式组3023x x m x -+⎧⎨+-+⎩>>的解集为( )A .<2x -B .23x -<<C .3x >D .2x >-7.如图,一次函数y =kx +b (k ≠0),的图象经过A (2,0)、B (0,−2)两点,则关于x 的不等式kx +b <0的解集是( )A .x >2B .x <2C .−2<x <2D .−2≤x ≤28.如图所示,一次函数y kx b =+(k ,b 是常数,且0k ≠)与正比例函数y mx =(m 是常数,且0m ≠)的图象相交于点()1,2M ,下列判断不正确的是( )A .关于x 的方程mx kx b =+的解是1x =B .关于,x y 的方程组00mx y kx y b -=⎧⎨-+=⎩的解是12x y =⎧⎨=⎩ C .当0x <时,函数y kx b =+的值比函数y mx =的值大D .关于x 的不等式()m k x b ->的解集是1x <二、填空题。
函数方程不等式练习题
函数方程不等式练习题一、函数部分1. 求函数 $f(x) = 2x^3 3x^2 + 4x 5$ 在区间 $[1, 2]$ 上的最大值和最小值。
2. 判断函数 $f(x) = \frac{1}{x1}$ 的奇偶性。
3. 计算函数 $f(x) = \sqrt{x^2 5x + 6}$ 的定义域。
4. 已知函数 $f(x) = \log_2(x3)$,求 $f^{1}(x)$。
5. 讨论函数 $f(x) = x^2 4x + 3$ 在区间 $(0, +\infty)$ 上的单调性。
二、方程部分1. 解方程 $2x^3 3x^2 + x 1 = 0$。
2. 求方程组 $\begin{cases} 2x + 3y = 7 \\ 4x 5y = 1\end{cases}$ 的解。
3. 解分式方程 $\frac{1}{x1} + \frac{2}{x+2} = 3$。
4. 已知方程 $x^2 (a+2)x + a + 1 = 0$ 有两个实数根,求实数 $a$ 的取值范围。
5. 解方程组 $\begin{cases} x + y = 5 \\ xy = 6\end{cases}$。
三、不等式部分1. 解不等式 $3x 7 > 2x + 1$。
2. 已知不等式 $x^2 4x + 3 > 0$,求 $x$ 的取值范围。
3. 解不等式组 $\begin{cases} 2x 3y > 6 \\ x + 4y \leq 8 \end{cases}$。
4. 讨论不等式 $x^2 (a+2)x + a + 1 > 0$ 在实数集上的解集。
5. 已知不等式 $|x 3| < 2$,求 $x$ 的取值范围。
四、综合应用题1. 已知函数 $f(x) = x^2 2x + 1$,求证:对于任意实数 $x$,都有 $f(x) \geq 0$。
2. 设函数 $g(x) = \frac{1}{x2}$,求解不等式 $g(x) < 0$。
高中数学一元二次函数方程和不等式真题
(每日一练)高中数学一元二次函数方程和不等式真题单选题1、若不等式ax 2+bx +2>0的解集是{x |−12<x <13},则ax +b >0的解集为( )A .(−∞,−16)B .(−∞,16)C .(−16,+∞)D .(16,+∞) 答案:A分析:利用根于系数的关系先求出a,b ,再解不等式即可. 不等式ax 2+bx +2>0的解集是{x |−12<x <13}则根据对应方程的韦达定理得到:{(−12)+13=−ba(−12)⋅13=2a , 解得{a =−12b =−2,则−12x −2>0的解集为(−∞,−16) 故选:A2、已知x >0,y >0,且x +y =2,则下列结论中正确的是( ) A .2x+2y 有最小值4B .xy 有最小值1C .2x +2y 有最大值4D .√x +√y 有最小值4 答案:A分析:利用基本不等式和不等式的性质逐个分析判断即可解:x>0,y>0,且x+y=2,对于A,2x +2y=12(x+y)(2x+2y)=2+xy+yx≥2+2√xy⋅yx=4,当且仅当x=y=1时取等号,所以A正确,对于B,因为2=x+y≥2√xy,所以xy≤1,当且仅当x=y=1时取等号,即xy有最大值1,所以B错误,对于C,因为2x+2y≥2√2x⋅2y=2√2x+y=4,当且仅当x=y=1时取等号,即2x+2y有最小值4,所以C 错误,对于D,因为(√x+√y)2=x+y+2√xy≤2(x+y)=4,当且仅当x=y=1时取等号,即√x+√y有最大值4,所以D错误,故选:A3、若正实数a,b,满足a+b=1,则b3a +3b的最小值为()A.2B.2√6C.5D.4√3答案:C分析:化简b3a +3b=b3a+3a+3bb=b3a+3ab+3,然后利用基本不等式求解即可根据题意,若正实数a,b,满足a+b=1,则b3a +3b=b3a+3a+3bb=b3a+3ab+3≥2√b3a⋅3ab+3=5,当且仅当b=3a=34时等号成立,即b3a +3b的最小值为5;故选:C小提示:此题考查基本不等式的应用,属于基础题4、设a>b>1,y1=b+1a+1,y2=ba,y3=b−1a−1,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y2<y3<y1答案:C分析:利用作差法先比较y1,y2,再比较y2,y3即可得出y1,y2,y3的大小关系.解:由a>b>1,有y1﹣y2=b+1a+1−ba=ab+a−ab−b(a+1)a=a−b(a+1)a>0,即y1>y2,由a>b>1,有y2﹣y3=ba −b−1a−1=ab−b−ab+aa(a−1)=a−ba(a−1)>0,即y2>y3,所以y1>y2>y3,故选:C.5、下列命题正确的是()A.若ac>bc,则a>b B.若ac=bc,则a=bC.若a>b,则1a <1bD.若ac2>bc2,则a>b答案:D分析:由不等式性质依次判断各个选项即可.对于A,若c<0,由ac>bc可得:a<b,A错误;对于B,若c=0,则ac=bc=0,此时a=b未必成立,B错误;对于C,当a>0>b时,1a >0>1b,C错误;对于D,当ac2>bc2时,由不等式性质知:a>b,D正确.故选:D.6、已知y=(x−m)(x−n)+2022(n>m),且α,β(α<β)是方程y=0的两实数根,则α,β,m,n的大小关系是()A.α<m<n<βB.m<α<n<βC.m<α<β<n D.α<m<β<n答案:C分析:根据二次函数图像特点,结合图像平移变换即可得到答案.∵α,β为方程y=0的两实数根,∴α,β为函数y=(x−m)(x−n)+2022的图像与x轴交点的横坐标,令y1=(x−m)(x−n),∴m,n为函数y1=(x−m)(x−n)的图像与x轴交点的横坐标,易知函数y=(x−m)(x−n)+2022的图像可由y1=(x−m)(x−n)的图像向上平移2022个单位长度得到,所以m<α<β<n.故选:C.7、若(x−a)2<4成立的一个充分不必要条件是1+12−x≤0,则实数a的取值范围为()A.(−∞,4]B.[1,4]C.(1,4)D.(1,4]答案:D分析:解一元二次不等式、分式不等式求得题设条件为真时对应x的范围,再根据条件的充分不必要关系求参数a的取值范围.由(x−a)2<4,可得:a−2<x<a+2;由1+12−x =3−x2−x≤0,则{(x−2)(x−3)≤02−x≠0,可得2<x≤3;∵(x−a)2<4成立的一个充分不必要条件是1+12−x≤0,∴{a−2≤2a+2>3,可得1<a≤4.故选:D.8、已知−1≤x+y≤1,1≤x−y≤5,则3x−2y的取值范围是()A.[2,13]B.[3,13]C.[2,10]D.[5,10]答案:A分析:设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,求出m,n 的值,根据x +y,x −y 的范围,即可求出答案.设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,所以{m −n =3m +n =−2,解得:{m =12n =−52,3x −2y =12(x +y )+52(x −y ), , 因为−1≤x +y ≤1,1≤x −y ≤5,所以3x −2y =12(x +y )+52(x −y )∈[2,13], 故选:A.9、y =x +4x (x ≥1)的最小值为( )A .2B .3C .4D .5 答案:C分析:利用均值不等式求解即可.因为y =x +4x(x ≥1),所以x +4x≥2√x ×4x=4,当且仅当x =4x即x =2时等号成立.所以当x =2时,函数y =x +4x 有最小值4. 故选:C.10、若a >0,b >0,则下面结论正确的有( ) A .2(a 2+b 2)≤(a +b)2B .若1a+4b=2,则 a +b ≥92C .若ab +b 2=2,则a +b ≥4D .若a +b =1,则ab 有最大值12答案:B分析:对于选项ABD 利用基本不等式化简整理求解即可判断,对于选项C 取特值即可判断即可. 对于选项A :若a >0,b >0,由基本不等式得a2+b2≥2ab,即2(a2+b2)≥(a+b)2,当且仅当a=b时取等号;所以选项A不正确;对于选项B:若a>0,b>0,1 2×(1a+4b)=1,a+b=12×(1a+4b)(a+b)=12(5+ba+4ab)≥12(5+2√ba⋅4ab)=92,当且仅当1a +4b=2且ba=4ab,即a=32,b=3时取等号,所以选项B正确;对于选项C:由a>0,b>0,ab+b2=b(a+b)=2,即a+b=2b,如b=2时,a+b=22=1<4,所以选项C不正确;对于选项D:ab≤(a+b2)2=14,当且仅当a=b=12时取等则ab有最大值14,所以选项D不正确;故选:B填空题11、a>b>c,n∈N∗,且1a−b +1b−c≥na−c恒成立,则n的最大值为__.答案:4分析:将不等式变形分离出n,不等式恒成立即n大于等于右边的最小值;由于a−c=a−b+b−c,凑出两个正数的积是常数,利用基本不等式求最值.解:由于1+1≥n恒成立,且a>c即n ≤a−c a−b+a−c b−c恒成立只要n ≤a−c a−b +a−cb−c 的最小值即可 ∵ a−ca−b +a−cb−c =a−b+b−c a−b+a−b+b−c b−c=2+b −c a −b +a −bb −c∵a >b >c∴a −b >0,b −c >0,故(a−ca−b +a−cb−c )≥4,因此n ≤4 所以答案是:4.12、x −y ≤0,x +y −1≥0,则z =x +2y 的最小值是___________. 答案:32##1.5分析:分析可得x +2y =32(x +y )−12(x −y ),利用不等式的基本性质可求得z =x +2y 的最小值.设x +2y =m (x +y )+n (x −y )=(m +n )x +(m −n )y ,则{m +n =1m −n =2 ,解得{m =32n =−12, 所以,z =x +2y =32(x +y )−12(x −y )≥32,因此,z =x +2y 的最小值是32.所以答案是:32.13、若正数a ,b 满足1a+1b=1,则4a−1+16b−1的最小值为__.答案:16分析:由条件可得1b−1=ab ,1a−1=ba ,代入所求式子,再由基本不等式即可求得最小值,注意等号成立的条件. 解:因为正数a ,b 满足1a +1b =1, 则有1a =1−1b =b−1b,则有1b−1=ab,1 b =1−1a=a−1a,即有1a−1=ba,则有4a−1+16b−1=4ba+16ab≥2√4ba⋅16abb=16,当且仅当4ba =16ab即有b=2a,又1a+1b=1,即有a=32,b=3,取得最小值,且为16.所以答案是:16.14、命题p:∀x∈R,x2+ax+a≥0,若命题p为真命题,则实数a的取值范围为___________. 答案:[0,4]分析:根据二次函数的性质判别式解题即可.∀x∈R,要使得x2+ax+a≥0,则Δ=a2−4a≤0,解得0≤a≤4.若命题p为真命题,则实数a的取值范围为[0,4].所以答案是:[0,4].15、已知a,b,c均为正实数,且aba+2b ⩾13,bcb+2c⩾14,cac+2a⩾15,那么1a+1b+1c的最大值为__________.答案:4分析:本题目主要考察不等式的简单性质,将已知条件进行简单变形即可因为a,b,c均为正实数,所以由题可得:0<a+2bab ≤3,0<b+2cbc≤4,0<c+2aac≤5,即0<1b+2a≤3,0<1c+2b≤4,0<1a +2c≤5,三式相加得:0<3(1a+1b+1c)≤12,所以0<1a+1b+1c≤4所以1a +1b+1c的最大值为4所以答案是:416、已知关于x的不等式−x2+6ax−3a2≥0(a>0)的解集为[x1,x2],则x1+x2+3ax1x2的最小值是___________. 答案:2√6分析:由题知x 1+x 2=6a,x 1x 2=3a 2,进而根据基本不等式求解即可. 解:因为关于x 的不等式−x 2+6ax −3a 2≥0(a >0)的解集为[x 1,x 2], 所以x 1,x 2是方程−x 2+6ax −3a 2=0(a >0)的实数根, 所以x 1+x 2=6a,x 1x 2=3a 2, 因为a >0,所以x 1+x 2+3ax 1x 2=6a +1a ≥2√6,当且仅当6a =1a ,即a =√66时等号成立, 所以x 1+x 2+3ax1x 2的最小值是2√6所以答案是:2√617、已知a >b >0,那么当代数式a 2+4b (a−b )取最小值时,点P (a,b )的坐标为______答案:(2,1)分析:根据题意有b(a −b)≤(b+a−b 2)2,当且仅当b =a −b ,即a =2b 时取等号,所以a 2+4b (a−b )≥a 2+16a 2≥16,结合a >b >0以及两个不等式等号成立的条件可求出a,b 的值,从而可求得答案 解:由a >b >0,得a −b >0,所以b(a −b)≤(b+a−b 2)2=a 24,当且仅当b =a −b ,即a =2b 时取等号,所以a 2+4b (a−b )≥a 2+16a 2≥16,其中第一个不等式等号成立的条件为a =2b ,第二个不等式等号成立的条件为a 2=16a 2,所以当a 2+4b (a−b )取最小值时,{a 2=16a 2a =2b a >b >0,解得{a =2b =1所以点P (a,b )的坐标为(2,1), 所以答案是:(2,1)小提示:关键点点睛:此题考查基本不等式的应用,解题的关键是多次使用基本不等式,但不要忽视每次取等号的条件,考查计算能力,属于中档题18、已知实数x ,y ,满足{−1≤x +y ≤4,2≤x −y ≤3,则z =2x −3y 的取值范围是________.(用区间表示)答案:[3,8]分析:直接用x +y,x −y 表示出2x −3y ,然后由不等式性质得出结论. 2x −3y =m(x +y)+n(x −y)=(m +n )x +(m −n )y ,则{m +n =2m −n =−3 解得{m =−12n =52 ,则2x −3y =−12(x +y)+52(x −y), 又−1≤x +y ≤4,2≤x −y ≤3, −2≤−12(x +y )≤12, 5≤52(x −y )≤152∴5−2≤2x −3y ≤12+152,即3≤2x −3y ≤8, 所以答案是:[3,8].19、 设x >0,y >0,x +2y =4,则(x+1)(2y+1)xy的最小值为__________.答案:92.分析:把分子展开化为(x+1)(2y+1)xy=2xy+x+2y+1xy=2xy+5xy=2+5xy,再利用基本不等式求最值.由x +2y =4,得x +2y =4≥2√2xy ,得xy ≤2(x+1)(2y+1)xy=2xy+x+2y+1xy=2xy+5xy=2+5xy ≥2+52=92,等号当且仅当x=2y,即x=2,y=1时成立.故所求的最小值为92.小提示:使用基本不等式求最值时一定要验证等号是否能够成立.20、已知∀a∈[0,2]时,不等式ax2+(a+1)x+1−32a<0恒成立,则x的取值范围为__________.答案:(−2,−1)分析:由题意构造函数关于a的函数f(a)=(x2+x−32)a+x+1,则可得{f(0)<0f(2)<0,从而可求出x的取值范围.由题意,因为当a∈[0,2],不等式ax2+(a+1)x+1−32a<0恒成立,可转化为关于a的函数f(a)=(x2+x−32)a+x+1,则f(a)<0对任意a∈[0,2]恒成立,则满足{f(0)=x+1<0f(2)=2x2+2x−3+x+1<0,解得−2<x<−1,即x的取值范围为(−2,−1).所以答案是:(−2,−1)解答题21、已知关于x的不等式ax2−x+1−a≤0.(1)当a∈R时,解关于x的不等式;(2)当a∈[2,3]时,不等式ax2−x+1−a≤0恒成立,求x的取值范围.答案:(1)答案见解析;(2)[−12,1].分析:(1)不等式ax2−x+1−a≤0可化为(x−1)(ax+a−1)≤0,然后分a=0,a<0,0<a<12,a =12,a >12五种情况求解不等式; (2)不等式ax 2−x +1−a ≤0对a ∈[2,3]恒成立,把a 看成自变量,构造函数f (a )=(x 2−1)a +(−x +1),则可得{f (2)≤0f (3)≤0,解不等式组可求出x 的取值范围 解:(1)不等式ax 2−x +1−a ≤0可化为(x −1)(ax +a −1)≤0,当a =0时,不等式化为x −1≥0,解得x ≥1,当a <0时,不等式化为(x −1)(x −1−a a )≥0, 解得x ≤1−a a ,或x ≥1;当a >0时,不等式化为(x −1)(x −1−a a )≤0; ①0<a <12时,1−a a >1,解不等式得1≤x ≤1−a a , ②a =12时,1−a a =1,解不等式得x =1, ③a >12时,1−a a <1,解不等式得1−a a ≤x ≤1.综上,当a =0时,不等式的解集为{x|x ≥1},当a <0时,不等式的解集为{x |x ≤1−a a或x ≥1}, 0<a <12时,不等式的解集为{x|1≤x ≤1−a a }, a =12时,不等式的解集为{x|x =1},a >12时,不等式的解集为{x|1−a a ≤x ≤1}.(2)由题意不等式ax 2−x +1−a ≤0对a ∈[2,3]恒成立,可设f (a )=(x 2−1)a +(−x +1),a ∈[2,3],则f (a )是关于a 的一次函数,要使题意成立只需:{f (2)≤0f (3)≤0 ⇒{2x 2−x −1≤03x 2−x −2≤0, 解得:−12≤x ≤1,所以x 的取值范围是[−12,1].22、设y =f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=2x −x 2.(1)求当x <0时,f (x )的解析式;(2)请问是否存在这样的正数a ,b ,当x ∈[a,b ]时,g (x )=f (x ),且g (x )的值域为[1b ,1a ]?若存在,求出a ,b 的值;若不存在,请说明理由.答案:(1)当x <0时,f (x )=x 2+2x (2)a =1,b =1+√52分析:(1)根据函数的奇偶性f (x )=−f (−x ),求解解析式即可;(2)根据题意,结合函数单调性,将问题转化为a ,b (0<a <b )是方程−x 2+2x =1x 的两个根的问题,进而解方程即可得答案.(1)当x <0时,−x >0,于是f (−x )=2(−x )−(−x )2=−2x −x 2.因为y =f (x )是定义在R 上的奇函数,所以f (x )=−f (−x )=−(−2x −x 2)=2x +x 2,即f (x )=2x +x 2(x <0).(2)假设存在正实数a 、b ,当x ∈[a,b ]时,g(x)=f(x)且g(x)的值域为[1b ,1a ], 根据题意,g (x )=−x 2+2x (x >0),因为g (x )=−x 2+2x =−(x −1)2+1≤1 ,则0<1a ≤1,得a ≥1.又函数g (x )在[1,+∞)上是减函数,所以{g(a)=1a g(b)=1b ,由此得到:a,b (1≤a <b )是方程−x 2+2x =1x的两个根, 解方程求得a =1,b =1+√52所以,存在正实数a =1,b =1+√52,当x ∈[a,b ]时,g(x)=f(x)且g(x)的值域为[1b ,1a ]。
一次函数与方程不等式专项练习60题(有答案)15页
一次函数与方程、不等式专项练习60题(有答案)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A .x=2 B.y=2 C.x=﹣1 D.y=﹣12.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A .x<B.x<3 C.x>D.x>33.如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是()A .x>0 B.x<0 C.x>1 D.x<14.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式a(x﹣1)﹣b >0的解集为()A .x<﹣1 B.x>﹣1 C.x>1 D.x<15.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1<y2的x的取值范围为()A .x>1 B.x>2 C.x<1 D.x<26.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x<k1x+b的解集为()A .x<﹣1 B.x>﹣1 C.x>2 D.x<27.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为()A .x<﹣2 B.﹣2<x<﹣1 C.﹣2<x<0 D.﹣1<x<08.已知整数x满足﹣5≤x≤5,y1=x+1,y2=﹣2x+4,对任意一个x,m都取y1,y2中的较小值,则m的最大值是()A .1 B.2 C.24 D.﹣99.如图,直线y1=与y2=﹣x+3相交于点A,若y1<y2,那么()A .x>2 B.x<2 C.x>1 D.x<110.一次函数y=3x+9的图象经过(﹣,1),则方程3x+9=1的解为x=_________.11.如图,已知直线y=ax+b,则方程ax+b=1的解x=_________.12.如图,一次函数y=ax+b的图象经过A,B两点,则关于x的方程ax+b=0的解是_________.13.已知直线与x轴、y轴交于不同的两点A和B,S△AOB≤4,则b的取值范围是_________.14.已知关于x的方程mx+n=0的解是x=﹣2,则直线y=mx+n与x轴的交点坐标是_________.15.已知ax+b=0的解为x=﹣2,则函数y=ax+b与x轴的交点坐标为_________.16.一次函数y=kx+b的图象如图所示,则关于x的方程kx+b=0的解为______,当x______时,kx+b<0.17.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是_________.18.一元一次方程0.5x+1=0的解是一次函数y=0.5x+1的图象与_________的横坐标.19.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_________.20.一次函数y1=kx+b与y2=x+a的图象如图,则方程kx+b=x+a的解是_________.21.一次函数y=2x+2的图象如图所示,则由图象可知,方程2x+2=0的解为_________.22.一次函数y=ax+b的图象过点(0,﹣2)和(3,0)两点,则方程ax+b=0的解为_________.23.方程3x+2=8的解是x=_________,则函数y=3x+2在自变量x等于_________时的函数值是8.24.一次函数y=ax+b的图象如图所示,则一元一次方程ax+b=0的解是x=_________.25.观察下表,估算方程1700+150x=2450的解是_________.x的值 1 2 3 4 5 6 7 …1700+150x的值1850 2000 2150 2300 2450 2600 2750 …26.已知y1=3x+1,y2=21-3x,当x取何值时,y1比21y2小2.27.计算:(4a﹣3b)•(a﹣2b)28.我们知道多项式的乘法可以利用图形的面积进行解释,如(2a+b)(a+b)=2a2+3ab+b2就能用图1或图2等图形的面积表示:(1)请你写出图3所表示的一个等式:_________.(2)试画出一个图形,使它的面积能表示:(a+b)(a+3b)=a2+4ab+3b2.29.如图,直线l是一次函数y=kx+b的图象,点A、B在直线l上.根据图象回答下列问题:(1)写出方程kx+b=0的解;(2)写出不等式kx+b>1的解集;(3)若直线l上的点P(m,n)在线段AB上移动,则m、n应如何取值.30.当自变量x的取值满足什么条件时,函数y=﹣2x+7的值为﹣2.31.如图,过A点的一次函数y=kx+b的图象与正比例函数y=2x的图象相交于点B,则不等式0<2x<kx+b的解集是()A .x<1 B.x<0或x>1 C.0<x<1 D.x>132.已知关于x的一次函数y=kx+b(k≠0)的图象过点(2,0),(0,﹣1),则不等式kx+b≥0的解集是()A .x≥2 B.x≤2 C.0≤x≤2 D.﹣1≤x≤233.当自变量x的取值满足什么条件时,函数y=3x﹣8的值满足y>0()A .x=B.x≤C.x>D.x≥﹣34.已知函数y=8x﹣11,要使y>0,那么x应取()A .x>B.x<C.x>0 D.x<035.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有下列3个结论:①a>0;②b>0;③x >﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是()A .0 B.1 C.2 D.336.如图,直线y=ax+b经过点(﹣4,0),则不等式ax+b≥0的解集为_________.37.如图,直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,则不等式﹣3≤﹣2x﹣5<kx+b的解集是_________.38.如图所示,函数y=ax+b和a(x﹣1)﹣b>0的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是_________.39.如图,直线y=ax+b与直线y=cx+d相交于点(2,1),直线y=cx+d交y轴于点(0,2),则不等式组ax+b<cx+d <2的解集为_________.40.如图,直线y=kx+b经过点(2,1),则不等式0≤x<2kx+2b的解集为_________.41.一次函数y=kx+b的图象如图所示,由图象可知,当x_________时,y值为正数,当x_________时,y为负数.42.如图,直线y=kx+b经过A(1,2),B(﹣2,﹣1)两点,则不等式x<kx+b<2的解集为_________.43.如果直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,则不等式x≥kx+b≥﹣2的解集为:_________.44.如图,直线y=kx+b与x轴交于点(﹣3,0),且过P(2,﹣3),则2x﹣7<kx+b≤0的解集_________.45.已知一次函数y=ax﹣b的图象经过一、二、三象限,且与x轴交于点(﹣2,0),则不等式ax>b的解集为_________.46.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,O),则关于x的不等式a(x﹣l)﹣b >0的解集为_________.47.如图,直线y=ax+b经过A(﹣2,﹣5)、B(3,0)两点,那么,不等式组2(ax+b)<5x<0的解集是_________.48.已知函数y1=2x+b与y2=ax﹣3的图象交于点P(﹣2,5),则不等式y1>y2的解集是_________.49.如图,直线y=kx+b经过A(2,0),B(﹣2,﹣4)两点,则不等式y>0的解集为_________.50.已知点P(x,y)位于第二象限,并且y≤x+4,x、y为整数,符合上述条件的点P共有6个.51.作出函数y=2x﹣4的图象,并根据图象回答下列问题:(1)当﹣2≤x≤4时,求函数y的取值范围;(2)当x取什么值时,y<0,y=0,y>0;(3)当x取何值时,﹣4<y<2.52.画出函数y=2x+1的图象,利用图象求:(1)方程2x+1=0的根;(2)不等式2x+1≥0的解;(3)求图象与坐标轴的两个交点之间的距离.53.用画函数图象的方法解不等式5x+4<2x+10.54.画出函数y=3x+12的图象,并回答下列问题:(1)当x为什么值时,y>0;(2)如果这个函数y的值满足﹣6≤y≤6,求相应的x的取值范围.55.如图,直线y=x+1和y=﹣3x+b交于点A(2,m).(1)求m、b的值;(2)在所给的平面直角坐标系中画出直线y=﹣3x+b;(3)结合图象写出不等式﹣3x+b<x+1的解集是_________.56.如图,图中是y=a1x+b1和y=a2x+b2的图象,根据图象填空.的解集是_________;的解集是_________;的解集是_________.57.在平面直角坐标系x0y中,直线y=kx+b(k≠0)过(1,3)和(3,1)两点,且与x轴、y轴分别交于A、B 两点,求不等式kx+b≤0的解.58.用图象法解不等式5x﹣1>2x+5.59.(1)在同一坐标系中,作出函数y1=﹣x与y2=x﹣2的图象;(2)根据图象可知:方程组的解为_________;(3)当x_________时,y2<0.(4)当x_________时,y2<﹣2(5)当x_________时,y1>y2.60.做一做,画出函数y=﹣2x+2的图象,结合图象回答下列问题.函数y=﹣2x+2的图象中:(1)随着x的增大,y将_________填“增大”或“减小”)(2)它的图象从左到右_________(填“上升”或“下降”)(3)图象与x轴的交点坐标是_________,与y轴的交点坐标是_________(4)这个函数中,随着x的增大,y将增大还是减小?它的图象从左到右怎样变化?(5)当x取何值时,y=0?(6)当x取何值时,y>0?一次函数与方程不等式60题参考答案:1.∵一次函数y=kx+b的图象与x轴的交点为(﹣1,0),∴当kx+b=0时,x=﹣1.故选C.2.∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<;故选A3.由一次函数的图象可知,此函数是减函数,∵一次函数y=kx+b的图象与y轴交于点(0,1),∴当x<0时,关于x的不等式kx+b>1.故选B.4.∵一次函数y=ax+b的图象过第一、二、四象限,∴b>0,a<0,把(2,0)代入解析式y=ax+b得:0=2a+b,解得:2a=﹣b =﹣2,∵a(x﹣1)﹣b>0,∴a(x﹣1)>b,∵a<0,∴x﹣1<,∴x<﹣1,故选A5.由图象可知,当x<1时,直线y1落在直线y2的下方,故使y1<y2的x的取值范围是:x<1.故选C.6.两条直线的交点坐标为(﹣1,2),且当x>﹣1时,直线l2在直线l1的下方,故不等式k2x<k1x+b的解集为x>﹣1.故选B7.不等式2x<kx+b<0体现的几何意义就是直线y=kx+b上,位于直线y=2x上方,x轴下方的那部分点,显然,这些点在点A与点B之间.故选B8.联立两函数的解析式,得:,解得;即两函数图象交点为(1,2),在﹣5≤x≤5的范围内;由于y1的函数值随x的增大而增大,y2的函数值随x的增大而减小;因此当x=1时,m值最大,即m=2.故选B9.从图象上得出,当y1<y2时,x<2.故选B.10.方程3x+9=1的解,即函数y=3x+9中函数值y=1时,x的值.∵一次函数y=3x+9的图象经过(﹣,1),即函数值是1时,自变量x=﹣.因而方程3x+9=1的解为x=﹣11.根据图形知,当y=1时,x=4,即ax+b=1时,x=4.∴方程ax+b=1的解x=412.由图可知:当x=2时,函数值为0;因此当x=0时,ax+b=0,即方程ax+b=0的解为:x=213.由直线与x轴、y轴交于不同的两点A和B,令x=0,则y=b,令y=0,则x=﹣2b,∴S△AOB=×2b2=b2≤4,解得:﹣2≤b≤2且b≠0,故答案为:﹣2≤b≤2且b≠014.∵方程的解为x=﹣2,∴当x=﹣2时mx+n=0;又∵直线y=mx+n与x轴的交点的纵坐标是0,∴当y=0时,则有mx+n=0,∴x=﹣2时,y=0.∴直线y=mx+n与x轴的交点坐标是(﹣2,0)15.∵ax+b=0的解为x=﹣2,∴函数y=ax+b与x轴的交点坐标为(﹣2,0),故答案为:(﹣2,0)16.从图象上可知则关于x的方程kx+b=0的解为的解是x=﹣3,当x<﹣3时,kx+b<0.故答案为:x=﹣3,x<﹣317.根据题意,知点P(﹣2,﹣5)在函数y=2x+b的图象上,∴﹣5=﹣4+b,解得,b=﹣1;又点P(﹣2,﹣5)在函数y=ax﹣3的图象上,∴﹣5=﹣2a﹣3,解得,a=1;∴由方程2x+b=ax﹣3,得2x﹣1=x﹣3,解得,x=﹣2;故答案是:x=﹣218.∵0.5x+1=0,∴0.5x=﹣1,∴x=﹣2,∴一次函数y=0.5x+1的图象与x轴交点的横坐标为:x=﹣2,故答案为:x轴交点.19.根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax+b=1的解x=4.故答案为:420.一次函数y1=kx+b与y2=x+a的图象的交点的横坐标是3,故方程的解是:x=3.故答案是:x=321.由一次函数y=2x+2的图象知:y=2x+2经过点(﹣1,0),∴方程2x+2=0的解为:x=﹣1,故答案为:x=﹣1.22.一次函数y=ax+b 的图象过点(0,﹣2)和(3,0)两点,∴b=﹣2,3a+b=0,解得:a=,∴方程ax+b=0可化为:x ﹣2=0,∴x=3.23.解方程3x+2=8得到:x=2,函数y=3x+2的函数值是8.即3x+2=8,解得x=2,因而方程3x+2=8的解是x=2 即函数y=3x+2在自变量x 等于2时的函数值是8.故填2、8 24.∵一次函数y=ax+b 的图象与x 轴交点的横坐标是﹣2,∴一元一次方程ax+b=0的解是:x=﹣2.故填﹣225.设y=1700+150x ,由图中所给的表可知:当x=5时,y=1700+150x=2450,∴方程1700+150x=2450的解是5. 故答案为:526.∵y 1比21 y 2小2.,y 1=3x +1, y 2=21-3x ∴3x +1= 21(21-3x )-2=41-23x-2 两边都乘12得,4x+12=3-18x-24,移项及合并得22x=-33,解得x=-1.5,当x=-1.5时,y 1比21 y 2小2. 27.原式=4a •a ﹣8ab ﹣3ab+6b •b=4a 2﹣11ab+6b 228.(1)∵长方形的面积=长×宽,∴图3的面积=(a+2b )(2a+b )=2a 2+5ab+2b 2,故图3所表示的一个等式:(a+2b )(2a+b )=2a 2+5ab+2b 2,故答案为:(a+2b )(2a+b )=2a 2+5ab+2b 2;(2)∵图形面积为:(a+b )(a+3b )=a 2+4ab+3b 2,∴长方形的面积=长×宽=(a+b )(a+3b ),由此可画出的图形为:29.函数与x 轴的交点A 坐标为(﹣2,0),与y 轴的交点的坐标为(0,1),且y 随x 的增大而增大.(1)函数经过点(﹣2,0),则方程kx+b=0的根是x=﹣2;(2)函数经过点(0,1),则当x >0时,有kx+b >1,即不等式kx+b >1的解集是x >0;(3)线段AB 的自变量的取值范围是:﹣2≤x ≤2,当﹣2≤m ≤2时,函数值y 的范围是0≤y ≤2, 则0≤n ≤2.30. 函数y=﹣2x+7中,令y=﹣2,则﹣2x+7=﹣2,解得:x=4.5.31.一次函数y=kx+b 经过A 、B 两点,∴,解得:k=﹣,b=3. 故:y=﹣,∵0<2x <﹣,解得:0<x <1.故选C32.由于x 的一次函数y=kx+b (k ≠0)的图象过点(2,0),且函数值y 随x 的增大而增大,∴不等式kx+b ≥0的解集是x ≥2.故选A33.函数y=3x ﹣8的值满足y >0,即3x ﹣8>0,解得:x >.故选C34.函数y=8x ﹣11,要使y >0,则8x ﹣11>0,解得:x >.故选A .35. 由图象可知,a >0,故①正确;b >0,故②正确;当x >﹣2是直线y=3x+b 在直线y=ax ﹣2的上方,即x >﹣2是不等式3x+b >ax ﹣2,故③正确.故选D .36.由图象可以看出:当x ≥﹣4时,y ≥0,∴不等式ax+b ≥0的解集为x ≥﹣4,故答案为:x ≥﹣437.∵直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,∴,解得,∴不等式变为﹣3≤﹣2x﹣5<﹣x﹣3,解得﹣2<x≤﹣1,故答案为﹣2<x≤﹣138.∵函数y=ax+b和a(x﹣1)﹣b>0的图象相交于(﹣1,1),(2,2)两点,∴根据图象可以看出,当y1>y2时,x的取值范围是x>2或x<﹣1,故答案为:x<﹣1或x>239. 如图,直线y=ax+b与直线y=cx+d相交于点(2,1),直线y=cx+d交y轴于点(0,2),则不等式组ax+b<cx+d<2的解集为(0,2).40.由直线y=ax+b与直线y=cx+d相交于点(2,1),直线y=cx+d交y轴于点(0,2),根据图象即可知不等式组ax+b<cx+d<2的解集为(0,2),故答案为:(0,2).41. 一次函数y=kx+b的图象如图所示,由图象可知,当x x>﹣3时,y值为正数,当x x<﹣3时,y为负数.42.由图形知,一次函数y=kx+b经过点(﹣3,0),(0,2)故函数解析式为:y=x+2,令y>0,解得:x>﹣3,令y<0,解得:x<﹣3.故答案为:x>﹣3,x<﹣343.直线y=kx+b经过A(2,1)和B(﹣1,﹣2)两点,可得:,解得;则不等式组x≥kx+b≥﹣2可化为x≥x﹣1≥﹣2,解得:﹣1≤x≤244.直线y=kx+b与x轴交于点(﹣3,0),且过P(2,﹣3),∴结合图象得:kx+b≤0的解集是:x≥﹣3,∵2x﹣7<﹣3,∴x<2,∴2x﹣7<kx+b≤0的解集是:﹣3≤x<2,故答案为:﹣3≤x<245.如右图所示:不等式ax>b的解集就是求函数y=ax﹣b>0,当y>0时,图象在x轴上方,则不等式ax>b的解集为x>﹣2.故答案为:x>﹣2.46.∵一次函数y=ax+b的图象过第一、二、四象限,∴b>0,a<0,把(2,0)代入解析式y=ax+b得:0=2a+b,解得:2a=﹣b,=﹣2,∵a(x﹣1)﹣b>0,∴a(x﹣1)>b,∵a<0,∴x﹣1<,∴x<﹣147.把A(﹣2,﹣5)、B(3,0)两点的坐标代入y=ax+b,得﹣2a+b=﹣5,3a+b=0,解得:a=1,b=﹣3.解不等式组:2(x﹣3)<5x<0,得:﹣2<x<0.故答案为:﹣2<x<048.由图象可知x>﹣2时,y1>y2;故答案为x>﹣249.∵一次函数y=kx+b的图象经过A、B两点,由图象可知:直线从左往右逐渐上升,即y随x的增大而增大,又A(2,0),所以不等式y>0的解集是x>2.故答案为x>250.∵已知点P(x,y)位于第二象限,∴x<0,y>0,又∵y≤x+4,∴0<y<4,x<0,又∵x、y为整数,∴当y=1时,x可取﹣3,﹣2,﹣1,当y=2时,x可取﹣1,﹣2,当y=3时,x可取﹣1.则P坐标为(﹣1,1),(﹣1,2),(﹣1,3),(﹣2,1),(﹣2,2),(﹣3,1)共6个.故答案为:651.当x=0时,y=﹣4,当y=0时,x=2,即y=2x﹣4过点(0,﹣4)和点(2,0),过这两点作直线即为y=2x﹣4的图象,从图象得出函数值随x的增大而增大;(1)当x=﹣2时,y=﹣8,当x=4,y=4,∴当﹣2≤x≤4时,函数y的取值范围为:﹣8≤y≤4;(2)由于当y=0时,x=2,∴当x<2时,y<0,当x=2时,y=0,当x>2时,y>0;(3)∵当y=﹣4时,x=0;当y=2时,x=3,∴当x的取值范围为:0<x<3时,有﹣4<y<2.52.列表:描点,过(0,1)和(﹣,0)两点作直线即可得函数y=2x+1的图象,如图:(1)由图象看出当x=﹣时,y=0,即2x+1=0,所以x=﹣是方程2x+1=0的解;(2)不等式2x+1≥0的解应为函数图象上不在x轴下方的点的横坐标,所以x≥﹣是不等式2x+1≥0的解;(3)由勾股定理得它们之间的距离为53.令y1=5x+4,y2=2x+10,对于y1=5x+4,当x=0时,y=4;当y=0时,x=﹣,即y1=5x+4过点(0,4)和点(﹣,0),过这两点作直线即为y1=5x+4的图象;对于y2=2x+10,当x=0时,y=10;当y=0时,x=﹣5,即y2=2x+10过点(0,10)和点(﹣5,0),过这两点作直线即为y2=2x+10的图象.图象如图:由图可知当x<2时,不等式5x+4<2x+10成立.54. 当x=0时,y=12;当y=0时,x=﹣4,即y=3x+12过点(0,12)和点(﹣4,0),过这两点作直线即为y=3x+12的图象,从图象得出函数值随x的增大而增大;(1)函数图象经过点(﹣4,0),并且函数值y随x的增大而增大,因而当x>﹣4时y>0;(2)函数经过点(﹣6,﹣6)和点(﹣2,6)并且函数值y随x的增大而增大,因而函数y的值满足﹣6≤y≤6时,相应的x的取值范围是:﹣6≤x≤﹣2.55.(1)根据题意得:解得:(2)画出直线如图:(3)自变量的取值范围是:x>2.56.由题意知:由图象知y=a1x+b1>0时有x>﹣3,函数y=a2x+b2>0时有x<1,∴不等式组的解集的解集为:﹣3<x<1;故答案为:﹣3<x<1;由题知:由图象知y=a1x+b1<0时有x<﹣3,根据函数图象知y=a2x+b2<0时有x<1,∴不等式组的解集为:x<﹣3;故答案为:x<﹣3;由题意知:根据函数图象知y=a1x+b1<0时有x<﹣3,根据函数图象知y=a2x+b2<0时有x>1,∴不等式组的解集是空集;故答案为:空集57.∵直线y=kx+b(k≠0)过(1,3)和(3,1)两点,∴,解得:,∴直线AB的解析式为:y=﹣x+4,∵当y=0时,x=4,∴A(4,0),∴不等式kx+b≤0的解集为:x<4.58.5x﹣1>2x+5可变形为x﹣2>0,画一次函数y=x﹣2的图象,如图所示:根据图象可得:当y>0时,图象在x轴的上方,故x>2.59.(1)解:如图所示:.(2)解:由图象可知:方程组的解为,故答案为:.(3)解:根据题意得:x﹣2<0,解得:x<2,故答案为:<2.(4)解:根据题意得:x﹣2<﹣2,解得:x<0,故答案为:<0.(5)解:根据题意得:﹣x>x﹣2,解得:x<1,故答案为:x<1.60.函数y=﹣2x+2的图象为:(1)由图象知:随着x的增大,y将减小.(2)由图象知:图象从左向右下降.(3)由图象知:与x轴的交点坐标是(1,0),与y轴的交点坐标是(0,2).(4)由图象知:这个函数中,随着x的增大,y将减小,图象从左向右下降.(5)由图象知:当x=1时,y=0.(6)由图象知:当x<1时,y>0.。
(完整版)一元一次不等式与一次函数习题精选(含答案)
一元一次不等式与一次函数1.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()(5)A.x<B.x<3 C.x>D.x>32.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式a(x﹣1)﹣b >0的解集为()A.x<﹣1 B.x>﹣1 C.x>1 D.x<13.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1<y2的x的取值范围为()A.x>1 B.x>2 C.x<1 D.x<24.直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c 的解集为()A.x>1 B.x<1 C.x>﹣2 D.x<﹣25.如图,一次函数y=kx+b的图象经过A、B两点,则kx+b>0解集是()A.x>0 B.x>﹣3 C.x>2 D.﹣3<x<26.如图,函数y=kx和y=﹣x+3的图象相交于(a,2),则不等式kx<﹣x+3的解集为()A.x<B.x>C.x>2 D.x<27.(如图,直线l是函数y=x+3的图象.若点P(x,y)满足x<5,且y>,则P点的坐标可能是()A.(4,7)B.(3,﹣5)C.(3,4)D.(﹣2,1)8.如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是()A.x<5 B.x>5 C.x<﹣4 D.x>﹣49.如图,一次函数y=kx+b的图象经过点(2,0)与(0,3),则关于x的不等式kx+b>0的解集是()(10) (11)A.x<2 B.x>2 C.x<3 D.x>310.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有下列3个结论:①a>0;②b>0;③x >﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是()A.0B.1C.2D.3二.填空题(共8小题)11.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为_________.12.如图,l1反映了某公司的销售收入与销量的关系,l2反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入>成本)时,销售量必须_________.(13) (14) (15)13.如图,函数y=2x和y=ax+5的图象相交于A(m,3),则不等式2x<ax+5的解集为_________.14.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m>kx﹣1的解集为_________.15.如图,直线y1=kx+b与直线y2=mx交于点P(1,m),则不等式mx>kx+b的解集是_________.16.如图,已知函数y=x+b和y=ax+3的图象相交于点P,则关于x的不等式x+b<ax+3的解集为_________.(17) (18)17.如图,直线y=kx+b经过点A(﹣1,1)和点B(﹣4,0),则不等式0<kx+b<﹣x的解集为_________.18.如图,直线y=kx+b交坐标轴于A(﹣3,0)、B(0,5)两点,则不等式﹣kx﹣b<0的解集是_________.三.解答题19.在平面直角坐标系中,直线y=kx﹣15经过点(4,﹣3),求不等式kx﹣15≥0的解.20.如图,直线l1与l2相交于点P,点P横坐标为﹣1,l1的解析表达式为y=x+3,且l1与y轴交于点A,l2与y轴交于点B,点A与点B恰好关于x轴对称.(1)求点B的坐标;(2)求直线l2的解析表达式;(3)若点M为直线l2上一动点,直接写出使△MAB的面积是△PAB的面积的的点M的坐标;(4)当x为何值时,l1,l2表示的两个函数的函数值都大于0?21.已知:直线l1的解析式为y1=x+1,直线l2的解析式为y2=ax+b(a≠0);两条直线如图所示,这两个图象的交点在y轴上,直线l2与x轴的交点B的坐标为(2,0)(1)求a,b的值;(2)求使得y1、y2的值都大于0的取值范围;(3)求这两条直线与x轴所围成的△ABC的面积是多少?(4)在直线AC上是否存在异于点C的另一点P,使得△ABC与△ABP的面积相等?请直接写出点P的坐标.22.如图,直线y=kx+b经过点A(0,5),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4≥kx+b的解集.AACBBAAAAD﹣2<x<﹣1.大于4.x<.x>﹣1.x>1.x<1.﹣4<x<﹣1.x>﹣19 x≥5.20.解:(1)当x=0时,x+3=0+3=3,∴点A的坐标是(0,3),∵点A与点B恰好关于x轴对称,∴B点坐标为(0,﹣3);(2)∵点P横坐标为﹣1,∴(﹣1)+3=,∴点P的坐标是(﹣1,),设直线l2的解析式为y=kx+b,则,解得,∴直线l2的解析式为y=﹣x﹣3;(3)∵点P横坐标是﹣1,△MAB的面积是△PAB的面积的,∴点M的横坐标的长度是,①当横坐标是﹣时,y=(﹣)×(﹣)﹣3=﹣3=﹣,②当横坐标是时,y=(﹣)×﹣3=﹣﹣3=﹣,∴M点的坐标是(﹣,﹣)或(,﹣);(4)l1:y=x+3,当y=0时,x+3=0,解得x=﹣6,l2:y=﹣x﹣3,当y=0时,﹣x﹣3=0,解得x=﹣,∴当﹣6<x<﹣时,l1、l2表示的两个函数的函数值都大于0.21 解:(1)由直线l1的解析式为y1=x+1,可求得C(0,1);解得:.(2)由(1)知,直线l2:y=﹣x+1;∵y1=x+1>0,∴x>﹣1;∵;∴﹣1<x<2.(3)由题意知A(﹣1,0),则AB=3,且OC=1;∴S△ABC=AB•OC=.(4)由于△ABC、△ABP同底,若面积相等,则P点纵坐标为﹣1,代入直线l1可求得:P的坐标为(﹣2,﹣1).22. 解:(1)∵直线y=﹣kx+b经过点A(5,0)、B(1,4),∴,解方程组得,∴直线AB的解析式为y=﹣x+5;(2)∵直线y=2x﹣4与直线AB相交于点C,∴解方程组,解得,∴点C的坐标为(3,2);(3)由图可知,x≥3时,2x﹣4≥kx+b.。
一元一次不等式与一次函数练习
一元一次不等式与一次函数练习练习一:一、选择题1.已知函数y =8x -11,要使y >0,那么x 应取( )A .x >B .x <C .x >0D .x <02.已知一次函数y =kx +b 的图像,如图所示,当x <0时,y 的取值范围是( •) A .y >0B .y <0C .-2<y <0D .y <-23.已知y 1=x -5,y 2=2x +1.当y 1>y 2时,x的取值范围是( )A .x >5B .x <C .x <-6D .x >-6 4.已知一次函数的图象如图所示,当x <1时,y 的取值范围是( )A .-2<y <0B .-4<y <0C .y <-2D .y <-45.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论①k <0;②a >0;③当x <3 时,y 1<y 2中,正确的个数是( )A .0 B .1 C .2 D .36.如图,直线交坐标轴于A,B 两点,则不等式的解集是( )A .x >-2B .x >3C .x <-2D .x <37.已知关于x 的不等式ax +1>0(a≠0)的解集是x <1,则直线y =ax +1与x 轴的交点是( )A .(0,1)B .(-1,0)C .(0,-1)D .(1,0)6题 8题81181112y kx b =+y kx b =+0kx b +>xb +x)x +akx +b5题 题 题14题8.直线:与直线:在同一平面直角坐标系中的图象如图所示,则关于的不等式的解为( )A 、x >-1B 、x <-1C 、x <-2D 、无法确定二、填空题9.若一次函数y =(m -1)x -m +4的图象与y 轴的交点在x 轴的上方,则m 的取值范围是________.10.如图,某航空公司托运行李的费用与托运行李的重量的关系为一次函数,由图可知行李的重量只要不超过________千克,就可以免费托运.11.当自变量x 时,函数y =5x +4的值大于0;当x 时,函数y =5x +4的值小于0.12.已知2x -y =0,且x -5>y ,则x 的取值范围是________.13.如图,已知函数y =3x +b 和y =ax -3的图象交于点P(-2,-5),则根据图象可得不等式3x +b >ax -3的解集是_______________.14.如图,一次函数y 1=k 1x +b 1与y 2=k 2x +b 2的图象相交于A (3,2),则不等式(k 2-k 1)x +b 2-b 1>015.已知关于x 的不等式kx -2>0(k≠0)的解集是x <-3,则直线y =-kx +2与x•轴的交点是__________.16.已知不等式-x +5>3x -3的解集是x <2,则直线y =-x +5与y =3x -3•的交点坐标是_________.三、能力提升17.已知:y 1=x+3,y 2=-x+2,求满足下列条件时x 的取值范围:(1)y 1 <y 2 (2)2y 1-y 2≤41l 1y k x b =+2l 2y k x =x 12k x b k x +>(千克)10题ax -3 13题18.在同一坐标系中画出一次函数y 1=-x +1与y 2=2x -2的图象,并根据图象回答下列问题:(1)写出直线y 1=-x +1与y 2=2x -2的交点P 的坐标.(2)直接写出:当x 取何值时y 1>y 2;y 1<y 2四、聚沙成塔如果x ,y 满足不等式组,那么你能画出点(x ,y )所在的平面区域吗?练习二:一、选择题1.荆门市的中小学每学年都要举行春季体育达标运动会,为进一步科学地指导学生提高运动成绩,某体育老师在学校的春季达标运动会上根据一名同学 1 500m 跑的测试情况汇成下图,图中OA 是一条折线段,图形反映的是这名同学跑的距离与时间的关系,由图可知下列说法错误的是( )A .这名同学跑完1 500m 用了6分钟,最后一分钟跑了300m ;B .这名同学的速度越来越快;C .这名同学第3至第5分钟的速度最慢;D .这名同学第2、第3这两分钟的速度是一样的.2.某种商品的进价为800元,出售时标价为1200元,后来由于商品积压,商品准备打折出售,但要保证利润率不低于5%,则至多可打( )A .6折 B .7折 C .8折 D .9折3.一次函数y =2x -4与x 轴的交点坐标为(2,0),则一元一次不等式2x -4≤0的解集应是( )A .x≤2B .x <2C .x≥2D .x >23050x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩(1题4.小明用100元钱去购买笔记本和钢笔共30件,如果每支钢笔5元,每个笔记本2元,那么小明最多能买______支钢笔.A.12 B。
基本不等式和三角函数练习
基本不等式和三角函数练习一、选择题1.63)a -≤≤的最大值为 ( ) A.9 B.29 C.3 D. 223 2.设正实数x,y,z 满足x 2-3xy+4y 2-z =0.则当xyz取得最大值时,212x y z +-的最大值为( ) A.0 B.1 C.94D.3 3.设正实数z y x ,,满足04322=-+-z y xy x ,则当zxy取得最大值时, 2x y z +-的最大值为( )A.0B.98C.2D.944.若2x +2y =1,则x+y 的取值范围是 ( )A .[]0,2B .[]2,0-C .[)2,-+∞D .(],2-∞-8.若正数,a b 满足1a b +=,则11a b +--的最小值为 ( )A .4B .6C .9D .1610.已知log 2a +log 2b ≥1,则3a +9b 的最小值为__________.11.若实数x 、y 满足x 2+y 2+xy =1,则x +y 的最大值是__________.12. 已知正实数,x y 满足ln ln 0x y +=,且22(2)4k x y x y +≤+恒成立,则k 的最大值是________. 13.设a + b = 2, b >0, 则1||2||a a b+的最小值为 .14.设a + b = 2, b >0, 则当a = 时, 1||2||a a b+取得最小值.15. 设b a ,为正实数,则ba bb a a +++2的最小值为 。
16.在锐角△ABC 中,已知内角A 、B 、C 所对的边分别为a 、b 、c ,向量m =(2sin(A +C ),3),n =⎝ ⎛⎭⎪⎫cos2B ,2cos 2B 2-1,且向量m 、n 共线.(1)求角B 的大小; (2)如果b =1,求△ABC 的面积S △ABC 的最大值.17、在,,ABC a b c ∆中,分别为内角A,B,C 的对边.已知:)()22sin sin sin ,A C a b B ABC -=-∆的外(1)求角C 和边c ;(2)求ABC ∆的面积S 的最大值并判断取得最大值时三角形的形状.18、在△ABC 中,内角A ,B ,C 所对的边分别为a,b,c.已知24sin 4sin sin 22A B A B -+=+(I )求角C 的大小; (2)若c =ABC ∆面积的最大值基本不等式和三角函数练习一、选择题1. 63)a -≤≤的最大值为 ( ) A.9 B.29 C.3 D.223 【解析】选B. 当6-=a 或3=a 时, 0)6)(3(=+-a a ,当36<<-a 时,29263)6)(3(=++-≤+-a a a a ,当且仅当,63+=-a a 即23=a 时取等号.2.设正实数x,y,z 满足x 2-3xy+4y 2-z =0.则当xyz取得最大值时,212x y z +-的最大值为( ) A.0 B.1 C.94D.3 【解析】选B. 由22340x xy y z -+-=,得2234z x xy y =-+. 所以2214343xy xy x y z x xy y y x ==-++-1≤=,当且仅当4x y y x =,即2x y =时取等号此时22y z =, 1)(max =zxy.xy y y z y x 2122212-+=-+)211(2)11(2y y x y -=-=211122412y y ⎛⎫+- ⎪⎪≤= ⎪⎪⎝⎭. 3.设正实数z y x ,,满足04322=-+-z y xy x ,则当zxy取得最大值时, 2x y z +-的最大值为( )A.0B.98C.2D.94【解析】 选C. 由22340x xy y z -+-=,得2234z x xy y =-+.所以1342344322=-⋅≥-+=+-=xyy x x y y x xy y xy x xy z ,当且仅当4x y y x =, 即2x y =时取等号此时22y z =,所以()222222242222222=⎪⎭⎫⎝⎛-+≤-=-=-+=-+y y y y y y y y y z y x ,当且仅当y=2-y 时取等号.4.若2x +2y =1,则x+y 的取值范围是 ( )A .[]0,2B .[]2,0-C .[)2,-+∞D .(],2-∞-【解析】选D. 2x +2y =1,所以2x+y ≤14,即2x+y ≤2-2,所以x+y ≤-2.8.若正数,a b 满足1a b +=,则11a b +--的最小值为 ( ) A .4 B .6 C .9 D .16时取等号,又2x +1y =1,此时x =4,y =2.∴(x +2y )min =8,要使x +2y >m 2+2m 恒成立,只需(x +2y )min >m 2+2m 成立,即8>m 2+2m ,解得-4<m <2.答案:D二、填空题10.已知log 2a +log 2b ≥1,则3a +9b 的最小值为__________.解析:log 2a +log 2b =log 2(ab ).∵log 2a +log 2b ≥1,∴ab ≥2且a >0,b >0.3a +9b =3a +32b ≥23a ·32b =23a +2b ≥2322ab≥232×2=18,当且仅当a =2b ,即a =2,b =1时等号成立.∴3a +9b 的最小值为18.答案:1811.若实数x 、y 满足x 2+y 2+xy =1,则x +y 的最大值是__________.解析:∵xy ≤14(x +y )2,∴1=x 2+y 2+xy =(x +y )2-xy ≥(x +y )2-14(x +y )2=34(x +y )2,∴(x +y )2≤43,∴-233≤x +y ≤233,当x =y =33时,x +y 取得最大值233.答案:23312. 已知正实数,x y 满足ln ln 0x y +=,且22(2)4k x y x y +≤+恒成立,则k 的最大值是________.213.设a + b = 2, b >0, 则1||2||a a b+的最小值为 .【解题指南】将1||2||a a b+中的1由a + b 代换,再由均值不等式求解.【解析】因为a + b = 2, b >0,所以1||||||2||4||4||4||++=+=++a ab a a b a a b a b a a b||214||4||4||≥+⨯=+a b a a a a b a ,当且仅当||4||=b a a b 时等号成立,此时2=-a ,或23=a , 若2=-a ,则314||4+=a a ,若23=a ,则51.4||4+=a a 所以1||2||a a b +的最小值为3.4【答案】3414.设a + b = 2, b >0, 则当a = 时, 1||2||a a b+取得最小值.【解题指南】将1||2||a a b+中的1由a + b 代换,再由均值不等式求解.【解析】因为a + b = 2, b >0,所以1||||||2||4||4||4||++=+=++a ab a a b a a b a b a a b||214||4||4||≥+⨯=+a b a a a a b a ,当且仅当||4||=b a a b 时等号成立,此时2=-a ,或23=a ,若2=-a ,则314||4+=a a ,若23=a ,则51.4||4+=a a 所以1||2||a a b +取最小值时,2=-a . 【答案】-215. 设b a ,为正实数,则ba bb a a +++2的最小值为 。
高中试卷-2.2 基本不等式 练习(1)(含答案)
第二章 一元二次函数、方程和不等式2.2等式性质与不等式性质(共2课时)(第1课时)一、选择题1.(2019·内蒙古集宁一中高一期末)下列不等式一定成立的是( )A .a b2B .a b 2≤C .x +1x ≥2D .x 2+1x 2≥2【答案】D【解析】当a ,b ,x 都为负数时,A,C 选项不正确.当a ,b 为正数时,B 选项不正确.根据基本不等式,有x 2+1x 2≥=2,故选D.2.(2019山东师范大学附中高一期中)已知x >0,函数9y x x=+的最小值是( )A .2B .4C .6D .8【答案】C【解析】∵x >0,∴函数96y x x =+³=,当且仅当x=3时取等号,∴y 的最小值是6.故选:C .3.(2019广东高一期末)若正实数a ,b 满足a +b =1,则下列说法正确的是( )A .ab 有最小值14BC .1a +1b 有最小值4D .a 2+b 2【答案】C【解析】∵a >0,b >0,且a +b =1;∴1=a +b ≥∴ab ≤14;∴ab 有最大值14,∴选项A 错误;=a +b =1+1+=2,∴B 项错误.1a+1b ==1ab ≥4,∴1a +1b 有最小值4,∴C 正确;a 2+b 2=(a +b )2―2ab =1―2ab ≥1―2×14=12,∴a 2+b 2的最小值是12,不是∴D 错误.4.(2019·柳州市第二中学高一期末)若x >―5,则x +4x 5的最小值为( )A .-1B .3C .-3D .1【解析】x +4x5=x +5+4x 5―5≥2×2―5=―1,当且仅当x =―3时等号成立,故选A.5.(2019吉林高一月考)若()12f x x x =+- (2)x >在x n =处取得最小值,则n =( )A .52B .3C .72D .4【答案】B 【解析】:当且仅当时,等号成立;所以,故选B.6.(2019·广西桂林中学高一期中)已知5x 2³,则f(x)= 24524x x x -+-有A .最大值B .最小值C .最大值1D .最小值1【答案】D【解析】()()()2211112122222x f x x x x -+éù==-+³=ê--ëû当122x x -=-即3x =或1(舍去)时, ()f x 取得最小值1二、填空题7.(2019·宁夏银川一中高一期末)当1x £-时,1()1f x x x =++的最大值为__________.【答案】-3.【解析】当1x £-时,()11[(1)111f x x x x x =+=--+--++又1(1)21x x -+-³+,()11[(1)1311f x x x x x =+=--+--£-++,故答案为:-38.(2019·上海市北虹高级中学高一期末)若0m >,0n >,1m n +=,且41m n+的最小值是___.【答案】9【解析】∵0m >,0n >,1m n +=,4()5414519n m m n m n m n m n æö\+=++=+++=ç÷èø…,当且仅当12,33n m == 时“=”成立,故答案为9.9.(2019·浙江高一期末)已知0a >,0b >,若不等式212ma b a b+³+恒成立,则m 的最大值为【答案】9.【解析】由212m a b a b +³+得()212m a b a b æö£++ç÷èø恒成立,而()212225a b a b a b b a æö++=++ç÷èø5549³+=+=,故9m £,所以m 的最大值为9.10.(2019·浙江高一月考)设函数24()(2)(0)f x x x x x=-++>.若()4f x =,则x =________.【答案】2【解析】因为2(2)0y x =-³,当2x =时,取最小值;又0x >时,44y x x=+³=,当且仅当06(,),即2x =时,取最小值;所以当且仅当2x =时,24()(2)f x x x x=-++取最小值(2)4f =.即()4f x =时,2x =.故答案为2三、解答题11.(2016·江苏高一期中)已知a >0,b >0,且4a +b =1,求ab 的最大值;(2)若正数x ,y 满足x +3y =5xy ,求3x +4y 的最小值;(3)已知x <54,求f (x )=4x -2+145x -的最大值;【答案】(1)的最大值;(2)的最小值为5;(3)函数的最大值为【解析】(1),当且仅当,时取等号,故的最大值为(2),当且仅当即时取等号(3)当且仅当,即时,上式成立,故当时,函数的最大值为.12.(2019·福建高一期中)设0,0,1a b a b >>+= 求证:1118a b ab++³ 【答案】可以运用多种方法。
不等式与一次函数专题练习
不等式与一次函数专题练习题型一:方程、不等式的直接应用:典型例题1、李晖到“宁泉牌”服装专卖店做社会调查.了解到商店为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:假设月销售件数为x件,月总收入为y元,销售1件奖励a元,营业员月基本工资为b元.(1)求a,b的值;(2)若营业员小俐某月总收入不低于1800元,则小俐当月至少要卖服装多少件?对应练习:1.开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?2.自2008年爆发全球金融危机以来,部分企业受到了不同程度的影响,为落实“促民生、促经济”政策,济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下表是甲、乙两位职工今年五月份的工资情况信息:(1)试求工资分配方案调整后职工的月基本保障工资和销售每件产品的奖励金额各多少元?(2)若职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品?题型二:方案设计:典型例题2、迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?典型例题3、“5.12”四川汶川大地震的灾情牵动全国人民的心,某市A、B两个蔬菜基地得知四川C、D 两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨,B蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C、D两个灾民安置点.从A地运往C、D两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元.设从地运往处的蔬菜为x吨.x的值;(2)设A、B两个蔬菜基地的总运费为w元,写出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C地的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线的运费不变,试讨论总运费最小的调运方案.对应练习:1.某冰箱厂为响应国家“家电下乡”号召,计划生产A、B两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于 4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:(1)冰箱厂有哪几种生产方案?(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学.其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.2.光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.•现将这50台联合收割机派往A,B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见下表:(1)设派往A地区x台乙型联合收割机,农机租赁公司这50台联合收割机一天获得的租金为y(元),求y与x之间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议.3.某食品加工厂,准备研制加工两种口味的核桃巧克力,即原味核桃巧克力和益智核桃巧克力.现有主要原料可可粉410克,核桃粉520克.计划利用这两种主要原料,研制加工上述两种口味的巧克力共50块.加工一块原味核桃巧克力需可可粉13克,需核桃粉4克;加工一块益智核桃巧克力需可可粉5克,需核桃粉14克.加工一块原味核桃巧克力的成本是1.2元,加工一块益智核桃巧克力的成本是2元.设这次研制加工的原味核桃巧克力x块.(1)求该工厂加工这两种口味的巧克力有哪几种方案?(2)设加工两种巧克力的总成本为y元,求y与x的函数关系式,并说明哪种加工方案使总成本最低?总成本最低是多少元?题型三:不等式与一次函数的实际应用:典型例题4、某学校计划租用6辆客车送一批师生参加一年一度的哈尔滨冰雕节,感受冰雕艺术的魅力.现有甲、乙两种客车,它们的载客量和租金如下表.设租用甲种客车x辆,租车总费用为y元.(1)求出y(元)与x(辆)之间的函数关系式,指出自变量的取值范围;(2)若该校共有240名师生前往参加,领队老师从学校预支租车费用1650元,试问预支的租车费用是否可以结余?若有结余,最多可结余多少元?典型例题5、送家电下乡活动开展后,某家电经销商计划购进A、B、C三种家电共70台,每种家电至少要购进8台,且恰好用完资金45000元.设购进A种家电x台,B种家电y台.三种家电的进价和预售价如下表:(1)用含x,y的式子表示购进C种家电的台数;(2)求出y与x之间的函数关系式;(3)假设所购进家电全部售出,综合考虑各种因素,该家电经销商在购销这批家电过程中需另外支出各种费用共1000元.对应练习:1.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?。
高中数学第二章一元二次函数方程和不等式专项训练题(带答案)
高中数学第二章一元二次函数方程和不等式专项训练题单选题1、实数a,b 满足a >b ,则下列不等式成立的是( ) A .a +b <ab B .a 2>b 2C .a 3>b 3D .√a 2+b 2<a +b 答案:C分析:利用不等式的性质逐一判断即可. A ,若a =1,b =0,则a +b >ab ,故A 错误; B ,若a =1,b =−2,则a 2<b 2,故B 错误;C ,若a >b ,则a 3−b 3=(a −b )(a 2+ab +b 2)=(a −b )[(a +b 2)2+3b 24]>0,所以a 3>b 3,故C 正确;D ,若a =1,b =−2,则√a 2+b 2>a +b ,故D 错误. 故选:C2、若a,b,c ∈R ,则下列命题为假命题的是( ) A .若√a >√b ,则a >b B .若a >b ,则ac >bc C .若b >a >0,则1a >1b D .若ac 2>bc 2,则a >b 答案:B分析:根据不等式的性质逐一分析各选项即可得答案. 解:对A :因为√a >√b ,所以a >b ≥0,故选项A 正确;对B :因为a >b ,c ∈R ,所以当c >0时,ac >bc ;当c =0时,ac =bc ;当c <0时,ac <bc ,故选项B 错误;对C :因为b >a >0,所以由不等式的性质可得1a>1b >0,故选项C 正确;对D :因为ac 2>bc 2,所以c 2>0,所以a >b ,故选项D 正确. 故选:B.3、若x >53,则3x +43x−5的最小值为( )A .7B .4√3C .9D .2√3 答案:C分析:利用基本不等式即可求解. 解:∵x >53, ∴3x −5>0,则3x +43x−5=(3x −5)+43x−5+5≥2√(3x −5)⋅43x−5+5=9, 当且仅当3x −5=2时,等号成立, 故3x +43x−5的最小值为9,故选:C .4、已知2<a <3,−2<b <−1,则2a −b 的范围是( ) A .(6,7)B .(5,8)C .(2,5)D .(6,8) 答案:B分析:由不等式的性质求解即可.,故4<2a <6,1<−b <2,得5<2a −b <8 故选:B5、已知a,b >0,a +4b =ab ,则a +b 的最小值为( ) A .10B .9C .8D .4 答案:B分析:由题可得4a +1b =1,根据a +b =(a +b )(4a +1b )展开利用基本不等式可求.∵a,b >0,a +4b =ab ,∴4a +1b =1, ∴a +b =(a +b )(4a +1b )=4b a +a b +5≥2√4b a ⋅ab +5=9,当且仅当4ba =ab 时等号成立,故a +b 的最小值为9. 故选:B.23,21<<-<<-a b6、已知两个正实数x ,y 满足x +y =2,则1x+9y+1的最小值是( )A .163B .112C .8D .3 答案:A分析:根据题中条件,得到1x +9y+1=13(1x +9y+1)[x +(y +1)],展开后根据基本不等式,即可得出结果. 因为正实数x,y 满足x +y =2,则1x +9y+1=13(1x +9y+1)[x +(y +1)]=13(10+y+1x+9x y+1)≥13(10+2√y+1x⋅9x y+1)=163,当且仅当y+1x=9xy+1,即x =34,y =54时,等号成立.故选:A .小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.7、关于x 的方程x 2+2(m −1)x +m 2−m =0有两个实数根α,β,且α2+β2=12,那么m 的值为( ) A .−1B .−4C .−4或1D .−1或4 答案:A分析:α2+β2=(α+β)2−2α⋅β,利用韦达定理可得答案. ∵关于x 的方程x 2+2(m −1)x +m 2−m =0有两个实数根, ∴Δ=[2(m −1)]2−4×1×(m 2−m )=−4m +4⩾0, 解得:m ⩽1,∵关于x 的方程x 2+2(m −1)x +m 2−m =0有两个实数根α,β, ∴α+β=−2(m −1),α⋅β=m 2−m ,∴α2+β2=(α+β)2−2α⋅β=[−2(m −1)]2−2(m 2−m )=12,即m 2−3m −4=0,解得:m =−1或m =4(舍去). 故选:A.8、已知实数x ,y 满足x 2+y 2=2,那么xy 的最大值为( ) A .14B .12C .1D .2 答案:C分析:根据重要不等式x 2+y 2≥2xy 即可求最值,注意等号成立条件.由x 2+y 2=2≥2xy ,可得xy ≤1,当且仅当x =y =1或x =y =−1时等号成立. 故选:C. 多选题9、下面所给关于x 的不等式,其中一定为一元二次不等式的是( ) A .3x +4<0B .x 2+mx -1>0 C .ax 2+4x -7>0D .x 2<0 答案:BD分析:利用一元二次不等式的定义和特征对选项逐一判断即可.选项A 是一元一次不等式,故错误;选项B ,D ,不等式的最高次是二次,二次项系数不为0,故正确;当a =0时,选项C 是一元一次不等式,故不一定是一元二次不等式,即错误. 故选:BD.10、已知a >0,b >0,且a 2+b 2=2,则下列不等式中一定成立的是( ) A .ab ≥1B .a +b ≤2 C .lga +lgb ≤0D .1a +1b ≤2 答案:BC分析:对于AD ,举例判断,对于BC ,利用基本不等式判断 解:对于A ,令a =√22,b =√62满足a 2+b 2=2,则ab =√22×√62=√32<1,所以A 错误,对于B ,因为(a +b)2=a 2+b 2+2ab =2+2ab ≤2+a 2+b 2=4,所以a +b ≤2,当且仅当a =b =1时取等号,所以B 正确,对于C ,因为lga +lgb =lgab ≤lg a 2+b 22=lg1=0,当且仅当a =b =1时取等号,所以C 正确,对于D ,令a =√22,b =√62满足a 2+b 2=2,则1a +1b =√2+√63≈1.414+0.8165>2,所以D 错误,故选:BC11、已知a >0,b >0,且a +b =1,则( ) A .a 2+b 2≥12B .2a−b >12C .log 2a +log 2b ≥−2D .√a +√b ≤√2 答案:ABD分析:根据a +b =1,结合基本不等式及二次函数知识进行求解. 对于A ,a 2+b 2=a 2+(1−a )2=2a 2−2a +1=2(a −12)2+12≥12, 当且仅当a =b =12时,等号成立,故A 正确;对于B ,a −b =2a −1>−1,所以2a−b >2−1=12,故B 正确;对于C ,log 2a +log 2b =log 2ab ≤log 2(a+b 2)2=log 214=−2,当且仅当a =b =12时,等号成立,故C 不正确; 对于D ,因为(√a +√b)2=1+2√ab ≤1+a +b =2,所以√a +√b ≤√2,当且仅当a =b =12时,等号成立,故D 正确; 故选:ABD小提示:本题主要考查不等式的性质,综合了基本不等式,指数函数及对数函数的单调性,侧重考查数学运算的核心素养.12、下列选项中正确的是( ) A .不等式a +b ≥2√ab 恒成立B .存在实数a ,使得不等式a +1a ≤2成立 C .若a ,b 为正实数,则ba +ab ≥2D .若正实数x ,y 满足,则2x +1y ≥821x y +=答案:BCD分析:根据基本不等式的条件与“1”的用法等依次讨论各选项即可得答案. 解:对于A选项,当a<0,b<0时不成立,故错误;对于B选项,当a<0时,a+1a =−[(−a)+(−1a)]≤2,当且仅当a=−1等号成立,故正确;对于C选项,若a,b为正实数,则ba >0,ab>0,所以ba+ab≥2√ba⋅ab=2,当且仅当a=b时等号成立,故正确;对于D选项,由基本不等式“1”的用法得2x +1y=(2x+1y)(x+2y)=4+4yx+xy≥4+2√4yx⋅xy=8,当且仅当x=2y时等号成立,故正确.故选:BCD13、已知函数f(x)=x2−2(a−1)x+a,若对于区间[−1,2]上的任意两个不相等的实数x1,x2,都有f(x1)≠f(x2),则实数a的取值范围可以是()A.(−∞,0]B.[0,3]C.[−1,2]D.[3,+∞)答案:AD解析:对于区间[−1,2]上的任意两个不相等的实数x1,x2,都有f(x1)≠f(x2),分析即f(x)在区间[−1,2]上单调,利用二次函数的单调区间判断.二次函数f(x)=x2−2(a−1)x+a图象的对称轴为直线x=a−1,∵任意x1,x2∈[−1,2]且x1≠x2,都有f(x1)≠f(x2),即f(x)在区间[−1,2]上是单调函数,∴a−1≤−1或a−1≥2,∴a≤0或a≥3,即实数a的取值范围为(−∞,0]∪[3,+∞).故选:AD小提示:(1)多项选择题是2020年高考新题型,需要要对选项一一验证.(2)二次函数的单调性要看开口方向、对称轴与区间的关系.填空题14、已知三个不等式:①ab>0,②ca >db,③bc>ad,用其中两个作为条件,剩下的一个作为结论,则可组成______个真命题. 答案:3分析:根据题意,结合不等式性质分别判断①、②、③作为结论的命题的真假性即可. 由不等式性质,得{ab >0c a >d b ⇒{ab >0bc−ad ab>0⇒bc >ad ;{ab >0bc >ad ⇒c a >d b ;{ca>d bbc >ad⇒{bc−adab>0bc >ad⇒ab >0.故可组成3个真命题.所以答案是:3.15、命题p:∀x ∈R ,x 2+ax +a ≥0,若命题p 为真命题,则实数a 的取值范围为___________. 答案:[0,4]分析:根据二次函数的性质判别式解题即可.∀x ∈R ,要使得x 2+ax +a ≥0,则Δ=a 2−4a ≤0,解得0≤a ≤4. 若命题p 为真命题,则实数a 的取值范围为[0,4]. 所以答案是:[0,4]. 16、a >b >c ,n ∈N ∗,且1a−b+1b−c≥n a−c恒成立,则n 的最大值为__.答案:4分析:将不等式变形分离出n ,不等式恒成立即n 大于等于右边的最小值;由于a −c =a −b +b −c ,凑出两个正数的积是常数,利用基本不等式求最值. 解:由于1a−b+1b−c≥n a−c恒成立,且a >c即恒成立 只要的最小值即可∵a −c a −b +a −c b −c =a −b +b −c a −b +a −b +b −cb −c=2+b −c a −b +a −bb −c∵a >b >ca c a cn a b b c --≤+--a c a cn a b b c --≤+--∴a −b >0,b −c >0,故(a−c a−b +a−cb−c )≥4,因此n ≤4 所以答案是:4. 解答题17、(1)已知x >1,求4x +1+1x−1的最小值;(2)已知0<x <1,求x (4−3x )的最大值. 答案:(1)9;(2)43.分析:(1)由于x −1>0,则4x +1+1x−1=4(x −1)+1x−1+5,然后利用基本不等式求解即可, (2)由于0<x <1,变形得x (4−3x )=13⋅(3x )⋅(4−3x ),然后利用基本不等式求解即可. (1)因为x >1,所以x −1>0,所以4x +1+1x−1=4(x −1)+1x−1+5≥2√4(x −1)⋅1x−1+5=9, 当且仅当4(x −1)=1x−1,即x =32时取等号,所以4x +1+1x−1的最小值为9.(2)因为0<x <1,所以x (4−3x )=13⋅(3x )⋅(4−3x )≤13(3x+4−3x 2)2=43,当且仅当3x =4−3x ,即x =23时取等号,故x (4−3x )的最大值为43.18、在△ABC 中,内角A ,B ,C 对边分别为a ,b ,c ,已知2acosB =2c −b . (1)求角A 的值;(2)若b =5,AC⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =−5,求△ABC 的周长; (3)若2bsinB +2csinC =bc +√3a ,求△ABC 面积的最大值. 答案:(1)A =π3;(2)20;(3)3√34. 解析:(1)利用正弦定理及两角和的正弦公式展开,可得,可求得角A 的值;(2)根据向量的数量积及余弦定理分别求出a,c ,即可求得周长;1cos 2A(3)将利用正弦定理将角化成边,再利用余弦定理结合基本不等式可求得面积的最值; (1)∵2acosB =2c −b ⇒2sinA ⋅cosB =2sinC −sinB ,∴2sinA ⋅cosB =2⋅sin(A +B)−sinB =2(sinA ⋅cosB +cosA ⋅sinB)−sinB , ∴,∵0<A <π,∴A =π3;(2)∵AC⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ ⋅(AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )=AC ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ 2 =c ⋅5⋅cos π3−52=52c −25=−5⇒c =8,在△ABC 中利用余弦定理得:a 2=b 2+c 2−2b ⋅c ⋅cosA =52+82−2⋅5⋅8⋅12=49, ∴a =7,∴ΔABC 的周长为:5+8+7=20; (3)∵bsinB =csinC =asinA =√32=2√3a3,∴sinB =√32ba,sinC =√32ca, ∴2b ⋅√32⋅b a+2c ⋅√32⋅ca=bc +√3a ,∴√3(b 2+c 2−a 2)=abc ⇒√3⋅cosA =a2⇒√3⋅12=a2⇒a =√3, ∴√3(b 2+c 2−3)=√3bc ⇒b 2+c 2=3+bc , ∴3+bc ⩾2bc ⇒bc ⩽3,等号成立当且仅当, △ABC 面积的最大值为(12bcsinA)max=3√34. 小提示:本题考查三角恒等变换、正余弦定理在解三角形中的应用,求解时注意选择边化成角或者角化成边的思路.1cos 2A =b c =。
高考数学专题复习训练 函数与不等式试题
智才艺州攀枝花市创界学校2021届高考数学专题复习训练函数与不等式一、函数与不等式一.选择题1.二次函数f (x )图象的对称轴为x =2,它经过点(2,3),且当32<-x 时,f (x )0>恒成立.那么的二次函数的解析式是〔〕A .f (x )=-x 2+4x -1B.f (x )=-x 2+4x +1 C.14)(2---=x x x f D.f (x )=x 2-4x +12.函数)(x f 是定义在R 上的以3为周期的奇函数,且0)2(=f .那么方程)(x f =0在区间〔0,6〕内实数解的数目 〔〕A .最少5个B .最少4个C .最多5个D .最多4个3240xx x-≥的解集是 〔〕A .[-2,2]B .]2,0()0,3[⋃-C .[-2,0)⋃(0,2]D .]3,0()0,3[⋃-)210(0log 2,在<-x x a 内恒成立,那么实数a 的取值范围是〔〕5.f (x )是定义在区间[-c ,c ]上的奇函数,其图象如下列图:令g (x )=af (x )+b ,给出以下关于函数g (x )①假设a <0,b=0,那么函数g (x )的图象关于原点对称;②假设a =-1,-2<b <0,那么方程g (x )=0有大于2的实根;③假设a ≠0,b =2,那么方程g (x )=0有两个实根; ④假设a ≥1,b <2,那么方程g (x )=0有三个实根.()A .1B .2C .3D .46.方程f (x ,y)=0的曲线如下列图,那么方程f (2-x ,y)=0的曲线是()p :函数)2(log 25.0a x x y ++=的值域为Rq :函数x a y )25(--=是减函数。
假设p 或者qp 且q a 的取值范围是〔〕A .a ≤1B .a <2C .1<a <2D .a ≤1或者a ≥28.假设函数y=f(x)的图象可由函数y=1-10x的图象绕坐标原点O 逆时针旋转2π得到,那么f(x)=() A..1-lgx.B.1+lgxC.lg(1-x)D.lg(x+1) 9.方程lgx +x =3的解所在的区间为〔〕A.(0,1)B.(1,2)C.(2,3)D.(3,+∞) 10.p=,112++a a Q=a 2–a+1,那么P ,Q 的大小关系是〔〕 A .P>QB .P<QC .P Q ≤D .不能确定11.(理)设函数xax x f -=)(在区间),1(+∞上是增函数,那么实数a 的取值范围是〔〕 A .),1(+∞-B .),1[+∞-C .),0[+∞D .),0(+∞ (文)设函数ax ax x f --=1)(在区间),0(+∞上是增函数,那么实数a 的取值范围是〔〕 A .]0,(-∞B .]0,1(-C .)1,1(-D .)0,1(- 12.(理)正数n m b a ,,,满足1,=+≠n m b a .设.,b n a m Q nb ma P +=+=那么Q P ,的大小关系正确的选项是() A .P>QB .P<QC .P Q ≤D .P Q ≥(文)设实数y x n m ,,,满足ny mx b y x a n m +=+=+则,,2222的最大值为〔〕A .)(21b a + B .2221b a +C .222b a +D .ab二.填空题13.假设不等式x >ax+3/2的解集是4<x<m,那么a=;m=.14.a >b ,a ·b =1那么ba b a -+22的最小值是.15.函数3313)(312++-=+x x f x x 满足10)(=m f ,那么)(m f -=.16.设函数f (x )的图象关于点A 〔0,1〕对称,且存在反函数f -1(x ).f (-1)=0,那么f -1(2)=.三.解答题17.a >0,b >0,x ∈R 且P=2sin xa ·2cos xb,Q =a +b ,试比较P 与Q 的大小,并说明理由。
高考数学函数与不等式好题单选100训练含详解
高考数学函数与不等式好题单选100训练1.已知函数()f x =A ,集合15{|}B x x =<<-,则集合A B 中整数的个数是( ) A .1B .2C .3D .42.设集合{A x y ==,124xB x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则()RAB =( )A .∅B .12x x ⎧⎫≤-⎨⎬⎩⎭C .{}1x x >-D .112x x ⎧⎫-≤≤-⎨⎬⎩⎭3.1≥x 是12x x+≥的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.“13m <<”是“方程2211m 3x y m 表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.函数2()22x xx f x -=+的图象大致是( )A .B .C .D .6.设函数()2,0,0⎧≥=⎨-<⎩x x f x x x ,则()2f f -⎡⎤⎣⎦的值是( ).A .2 B .3 C .4D .57.函数()()01f x x =- ) A .()1,+∞B .()2,-+∞C .()()2,11,-⋃+∞D .R8.已知集合102x M xx -⎧⎫=<⎨⎬+⎩⎭,{}21,N y y x x M ==-∈,则M N =( )A .∅B .()2,3-C .[)1,1-D .()0,19.函数2212x xy -⎛⎫= ⎪⎝⎭的值域为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎤-∞ ⎥⎝⎦C .10,2⎛⎤⎥⎝⎦D .(]0,210.已知函数2(1)21f x x x +=++,那么(1)f x -=( ) A .2x B .21x + C .221x x -+D .221x x --11.已知函数()212x f x x +=+,则()3f =( )A .17B .12C .8D .312.已知0a >且1a ≠,函数()()233,1log ,1a a x a x f x x x ⎧--+<=⎨≥⎩,满足12x x ≠时,恒有()()12120f x f x x x ->-成立,那么实数a 的取值范围( )A .()1,2B .51,3⎛⎤ ⎥⎝⎦C .()1,+∞D .5,24⎡⎫⎪⎢⎣⎭13.下列函数中,既是偶函数,又在()0,∞+上单调递增的是( ) A .cos y x = B .211y x =+ C .22x x y -=-D .ln y x =14.若()2f x x x =+,则满足()()1f a f a -≤的a 的取值范围是( )A .1,2⎛⎤-∞ ⎥⎝⎦B .10,2⎛⎤⎥⎝⎦C .1,2⎡⎫+∞⎪⎢⎣⎭D .1,12⎡⎤⎢⎥⎣⎦15.已知()f x 为奇函数,当0x ≥时,()24xf x x m =-+,则当0x <时,()f x =( )A .241x x --+B .241x x ----C .241x x --+-D .241x x --++16.下列函数既是奇函数又是增函数的是( ) A .sin y x =B .2x y =C .2log y x =D .3y x =17.设定义在R 上的奇函数()f x 满足,对任意12,(0,)x x ∈+∞,且12x x ≠都有()()21210f x f x x x -<-,且(3)0f =,则不等式2()3()0f x f x x+-≥的解集为( )A .(,3][3,)-∞-+∞B .[3,0)[3,)-+∞C .(,3](0,3]-∞-D .[3,0)(0,3]-18.已知函数()32x f x x =+,则不等式2332f m m ⎛⎫-< ⎪⎝⎭的解集为( ).A .12,2⎛⎫- ⎪⎝⎭ B .()1,2,2⎛⎫-∞-⋃+∞ ⎪⎝⎭C .1,22⎛⎫- ⎪⎝⎭D .()1,2,2⎛⎫-∞-⋃+∞ ⎪⎝⎭19.已知定义域为R 的函数()f x 满足()()0f x f x +-=,且(2)()f x f x +=-,若3245f ⎛⎫= ⎪⎝⎭,则20214f ⎛⎫= ⎪⎝⎭( )A .25B .25-C .35D .53-20.已知()f x 是R 上的奇函数,且(2)()f x f x +=,当(0,1)x ∈时,()41=-x f x ,则72f ⎛⎫=⎪⎝⎭( ) A .-1B .0C .1D .221.已知函数())3f x x =-,若()1f a =-,则()f a -=( ) A .-7B .-6C .-5D .-422.已知函数()21x x x f k =-+在[]2,5上具有单调性,则k 的取值范围是( )A .[]2,5B .[]4,10C .(][),410,-∞⋃+∞D .(][),22,-∞-+∞23.已知0.20.30.30.30.2,2,a b c ===,则它们的大小关系是( ) A .a b c <<B .b a c <<C .c a b <<D .b c a <<24.已知x ,(0,)∈+∞y ,3124yx -⎛⎫= ⎪⎝⎭,则xy 的最大值为( )A .2B .98C .32D .9425.下列各式正确的是( )A 2=-B .C 34()x y =+ D .2122n n m m ⎛⎫= ⎪⎝⎭26.已知0m > )A .54mB .52mC .mD .127.已知函数()e 1e 1x x f x -=+,则( )A .函数()f x 是奇函数,在区间()0,∞+上单调递增B .函数()f x 是奇函数,在区间(),0∞-上单调递减C .函数()f x 是偶函数,在区间()0,∞+上单调递减D .函数()f x 非奇非偶,在区间(),0∞-上单调递增 28.log 5(log 3(log 2x ))=0,则12x -等于( )A BC D .2329.函数()22x xy x -=-的图象关于( )对称A .x 轴B .y 轴C .原点D .直线y x =30.设()f x 是定义在R 上的奇函数,且当0x >时,3(2)x f x =-,则(1)f -=( ) A .1B .1-C .14D .114-31.若()f x 为偶函数,()g x 为奇函数,且()()3xf xg x +=,则()f x 的图象大致为( )A .B .C .D .32.设函数()f x =2x f ⎛⎫⎪⎝⎭的定义域为( )A .(],4∞-B .(],1-∞C .(]0,4D .(]0,133.已知函数(2)x y f =的定义城为[]1,1-.则函数2(lo )g y f x =的定义域为( )A .[-1,1]B .[12,2]C .[1,2]D .4]34.已知函数()21xf +的定义域为()3,5,则函数()21f x +的定义域为( )A .()1,2B .()9,33C .()4,16D .()3,535.设2log 5a =,0.52b =,4log 10c =,则a ,b ,c 的大小关系为( ) A .b c a <<B .c b a <<C .b a c <<D .c a b <<36.若实数x ,y 满足2021202120222022x y x y ---<-,则( ) A .1x y> B .1x y< C .0x y -<D .0x y ->37.已知()1,2x ∀∈,不等式()2log 21220xx m +++>恒成立,则实数m 的取值范围为( )A .()10,-+∞B .[)10,-+∞C .()3,-+∞D .[)3,∞-+38.当102x <<时,4log xa x <,则a 的取值范围是( )A .(0B .1)C .,1)D .39.心理学家有时使用函数()()1e ktL t A -=-来测定在时间t (单位:min )内能够记的量L ,其中A 表示需要记忆的量,k 表示记忆率.假设一个学生有100个单词要记忆,记忆率0.02k =,则该学生要求记忆50个单词大约需要( )(ln 20.7≈)A .28minB .35minC .42minD .49min40.已知1ea =,ln 77b =,ln 55c =,则a ,b ,c 的大小关系为( )A .b c a <<B .a c b <<C .b a c <<D .c b a <<41.已知实数b 满足23b =,则函数()2xf x x b =+-的零点所在的区间是( )A .()1,0-B .()0,1C .()1,2D .()2,342.43lg8-+( )A .1B .1-C .12D .12-43.已知实数a ,b ,c 满足1.5 3.1a =,50.1b =,422log 16log e c =,则( ) A .c a b >>B .a c b >>C .b a c >>D .c b a >>44.设()f x 为偶函数,且当0x >时,()1ln f x x =+,则当0x <时,()f x =( ) A .()1ln x ---B .()1ln x -+-C .()l ln x +-D .()1ln x --45.设()f x =12x f ⎛+⎫⎪⎝⎭的定义域为( )A .3,14⎛⎤ ⎥⎝⎦B .[)1,+∞C .1,02⎛⎤- ⎥⎝⎦D .[)0,∞+46.函数()()()21log 21a f x x -=+在区间1,02⎛⎫- ⎪⎝⎭内恒有()0f x >,则a 的取值范围是( )A .1a <<B .1a<1a <<-C .a>2<D.a <<47.函数()lg 1f x ⎛= ⎝的值域为( )A .(),-∞+∞B .()(),00,-∞⋃+∞C .(),0-∞D .()0,∞+48.已知函数()1lg 3xf x x ⎛⎫=- ⎪⎝⎭有两个零点1x 、2x ,则下列关系式正确的是( )A .1201x x <<B .121=x xC .1212x x <<D .122x x ≥49.函数()()213log f x x x =-的单调递减区间为( )A .12⎛⎫-∞ ⎪⎝⎭,B .12⎛⎫+∞ ⎪⎝⎭, C .102⎛⎫ ⎪⎝⎭,D .102⎛⎫- ⎪⎝⎭, 50.若函数()()log 0,1a f x x a a =>≠的反函数的图象过点()1,3,则()2log 8f =( ) A .1-B .1C .2D .351.已知函数f (x )=(3m -2)xm +2(m ∈R )是幂函数,则函数g (x )=log a (x -m )+1(a >0,且a ≠1)的图象所过定点P 的坐标是( ) A .(2,1) B .(0,2) C .(1,2)D .(-1,2)52.定义在R 上的偶函数()f x 满足()()2f x f x =-,当[]0,1x ∈时,()21xf x =-,则函数()()()sin 2πx f g x x =-在区间15,22⎡⎤-⎢⎥⎣⎦上的所有零点的和是( )A .10B .8C .6D .453.已知函数()22,0lg ,0x x x f x x x ⎧+≤⎪=⎨>⎪⎩,则函数()()11g x f x =--的零点个数为( ).A .1B .2C .3D .454.设函数()y f x =在R 上可导,则()()11lim 3x f x f x∆→+∆-=∆( )A .()1f 'B .()113f ' C .()31f 'D .以上都不对55.已知函数()e (1)x f x x f -'=,则曲线()y f x =在点(1,(1))f 处的切线方程为( ) A .2e y x =B .2e 2e y x =-C .2e e y x =+D .2e 3e y x =-56.对于函数()ln f x x x =,以下判断正确的是( ) A .无极大值无极小值 B .在()1,+∞是增函数C .()f x 有两个不同的零点D .其图象在点()1,0处的切线的斜率为057.已知()f x 为偶函数,且当x >0时,()1x f x e x -=+,则曲线()y f x =在()()1,1f --处的切线斜率是( ) A .-2B .-1C .-eD .e58.若曲线1e x y -=与曲线y ==a ( )A B C .2eD .1e59.函数()3321e xf x x =++,其导函数记为()f x ',则()()()()2022202220222022f f f f ''++---的值是( ) A .3B .2C .1D .060.已知函数()()2223ln 9f x f x x x '=-+(()f x '是()f x 的导函数),则()1f =( )A .209-B .119-C .79D .16961.已知函数()312f x x x =-,则( )A .函数()f x 在(),0∞-上单调递增B .函数()f x 在(),∞∞-上有两个零点C .函数()f x 有极大值16D .函数()f x 有最小值16-62.已知定义在R 上的函数()f x 满足:()()0xf x f x '+>,且()12f =,则()2e e x xf >的解集为( ) A .()0,+∞B .()ln2,+∞C .()1,+∞D .0,163.已知f (x )为R 上的可导函数,其导函数为()'f x ,且对于任意的x ∈R ,均有()()'0f x f x +>,则( )A .e -2 021f (-2 021)>f (0),e 2 021f (2 021)<f (0)B .e -2 021f (-2 021)<f (0),e 2 021f (2 021)<f (0)C .e -2 021f (-2 021)>f (0),e 2 021f (2 021)>f (0)D .e -2 021f (-2 021)<f (0),e 2 021f (2 021)>f (0)64.已知函数()2e 1x f x x a =+-()a R ∈有两个极值点,则实数a 的取值范围为( )A .1,0e ⎛⎫- ⎪⎝⎭B .2,0e ⎛⎫- ⎪⎝⎭C .1,e ⎛⎫-+∞ ⎪⎝⎭D .2,e ⎛⎫-+∞ ⎪⎝⎭65.函数 ()y f x =的导函数()y f x ='的图象如图所示,给出下列命题:∈3-是函数()y f x =的极值点; ∈1-是函数()y f x =的最小值点; ∈()y f x =在区间()3,1-上单调递增; ∈()y f x =在0x =处切线的斜率小于零. 以上正确命题的序号是( ) A .∈∈B .∈∈C .∈∈D .∈∈66.已知函数ln ()xf x x x=-,则( ) A .()f x 的单调递减区间为(0,1) B .()f x 的极小值点为1 C .()f x 的极大值为1-D .()f x 的最小值为1-67.已知函数32()1f x x ax x =-+--在(,)-∞+∞上是单调递减函数,则实数a 的取值范围是( )A .(), -∞⋃+∞B .⎡⎣C .(,)-∞⋃+∞D .(68.函数()cos 2x f x x =-在,2ππ⎡⎤-⎢⎥⎣⎦上的最小值为( )A .2π-B .12π+ C .-1 D .12π-69.已知函数()32132x ax f x ax =+++既有极大值,又有极小值,则实数a 的取值范围是( ) A .()0,4B .[]0,4C .()(),04,-∞⋃+∞D .(][),04,-∞+∞70.已知函数()8sin 26f x x π⎛⎫=- ⎪⎝⎭,(]0,4x π∈,则()f x 所有极值点的和为( )A .223πB .13πC .17πD .503π71.如图是函数()32f x x bx cx d =+++的大致图象,则2212x x +=( )A .23B .43C .83D .12372.已知2x =是2()2ln 3f x x ax x =+-的极值点,则()f x 在1,33⎡⎤⎢⎥⎣⎦上的最大值是( )A .92ln 32-B .52-C .172ln 318--D .2ln 24-73.设a R ∈,若不等式ln ax x >在()1,x ∞∈+上恒成立,则实数a 的取值范围是( ) A .()0,∞+B .1,e ⎛⎫+∞ ⎪⎝⎭C .()1,∞+D .()e,+∞74.某制药公司生产某种胶囊,其中胶囊中间部分为圆柱,且圆柱高为l ,左右两端均为半球形,其半径为r ,若其表面积为S ,则胶囊的体积V 取最大值时r =( )ABCD75.若函数21()2f x x a x =--,当13x ≥时,()0f x ≤恒成立,则a 的取值范围( )A .(],3-∞B .[)3,+∞C .25,3⎛⎤-∞ ⎥⎝⎦D .25,3⎡⎫+∞⎪⎢⎣⎭76.已知函数2()ln 2a f x x x =+,若对任意两个不等的正数1x ,2x ,都有1212()()4f x f x x x -≥-恒成立,则a 的取值范围为( )A .[)4∞+,B .()4.∞+C .(]4∞-,D .()4∞-,77.若函数()1ln f x x a x=+-在区间()1,e 上只有一个零点,则常数a 的取值范围为( ) A .1a ≤B .a e >C .111a e <<+D .11a e<<78.数列{}n a 为等差数列,且2020202204a a x π+=⎰,则()2021201920212023a a a a ++=( ) A .1B .3C .6D .1279.在()()*1nx n N +∈二项展开式中2x 的系数为15,则10n x dx ⎰( )A .17B .7C .15D .10380.已知函数()3f x x =,()g x = )A .23B .3C .32D .51281.下列不等式成立的是( ) A .若a b >,则22ac bc > B .若a b >,则11a b< C .若0a b <<,则22a ab b << D .若a b >,则33a b >82.已知25a b ≤+≤,21a b -≤-≤,则3a b -的取值范围是( ) A .[]1,4- B .[]2,7- C .[]7,2-D .[]2,783.若παβπ-<<<,则αβ-的取值范围是( ) A .22παβπ-<-< B .02αβπ<-<C .20παβ-<-<D .{}084.某小型服装厂生产一种风衣,日销售量x (件)与单价P (元)之间的关系为P =160-2x ,生产x 件所需成本为C (元),其中C =500+30x ,若要求每天获利不少于1300元,则日销量x 的取值范围是( ) A .20≤x ≤30,x ∈N * B .20≤x ≤45,x ∈N * C .15≤x ≤30,x ∈N *D .15≤x ≤45,x ∈N *85.当02x ≤≤时,若220x x a --≥恒成立,则实数a 的取值范围是( )A .(],1-∞-B .(],0-∞C .(),1-∞-D .(),0-∞86.若关于x 的不等式2830x x a --+≤在15x ≤≤内有解,则实数a 的取值范围是( ) A .10a ≤B .19a ≥C .10a ≥D .19a ≤87.已知命题p :[]1,1x ∃∈-,2330x x a --->;q :x R ∀∈,230x x a -+≠,若p 为假命题,q 为假命题,则实数a 的取值范围为( ) A .3,52⎡⎤⎢⎥⎣⎦B .[]0,2-C .[]1,2D .91,4⎡⎤⎢⎥⎣⎦88.已知全集U =R ,2511x A x x ⎧⎫-=≤⎨⎬-⎩⎭,则UA( )A .(]1,2B .(](),12,-∞+∞C .[)1,2D .()[),12,-∞+∞89.22132x x x +≥-+的解集是( )A .{}12x x <≤B .{10x x -≤<或}23x <≤C .{}04x x ≤≤D .{01x x ≤<或}24x <≤90.若变量,x y 满足约束条件50,20,4,x y x y y +-≥⎧⎪-+≤⎨⎪≤⎩则32z x y =-的最小值为( )A .5-B .72-C .52-D .2-91.设0,0m n >>,且21m n +=,则11m n+的最小值为( ) A .4B.3C.3+D .692.已知函数()2sin 4sin 9sin 2x x f x x -+=-,则函数()f x ( )A.有最小值B.有最大值-C .有最大值92-D .没有最值93.已知a ,b 为正实数,且228a b ab ++=,则2+a b 的最小值为( ) A .4B .92C .5D .11294.若2x >,则2242x x y x -+=-的最小值为( )A .4B .5C .6D .895.设0,0m n >>,且2520m n +=,则mn 的最大值为( )A B .C .10D .2096.已知0t >,函数y = ) A .1B .2C .3D .497.一元二次方程()25400ax x a ++=≠有一个正根和一个负根的一个充分不必要条件是( ) A .0a <B .0a >C .2a <-D .1a >98.不等式20ax x c -+>的解集为{21}x x -<<∣,函数2y ax x c =-+的图象大致为( )A .B .C .D .99.设实数m ,n 分别满足2192010m m ++=,220190n n ++=且1m n ⋅≠,则232mn m n++的值为( ) A .3719B .3719-C .319D .319-100.已知函数()ln x f x x=,若关于x 的方程()()210f x af x a ++-=⎡⎤⎣⎦仅有一个实数解,则实数a 的取值范围是( ) A .()2,1e e --B .(]1,1e -C .()1,1e -D .()1,2e e -参考答案:1.C 【解析】 【分析】根据根式的性质及解一元二次不等式求定义域A ,再应用集合交运算求A B ,即可知整数的个数. 【详解】由题设,230x x -≥,可得定义域{|0A x x =≤或3}x ≥,所以{|10A B x x =-<≤或35}x ≤<,故其中整数元素有{0,3,4}共3个. 故选:C 2.D 【解析】 【分析】 求出集合A 、B ,B R,再由交集的运算可得答案.【详解】设集合{{}{}3101===+≥=≥-A x y x x x x ,{}21122242-⎧⎫⎧⎫⎪⎪⎛⎫=<=<=>-⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎪⎪⎩⎭xx B x x x x ,则1|2⎧⎫=≤-⎨⎬⎩⎭R B x x ,所以()1|12⎧⎫=-≤≤-⎨⎬⎩⎭RAB x x .故选:D. 3.A 【解析】 【分析】 由12x x+≥得0x >,进而根据充分不必要条件求解即可. 【详解】解:12x x +≥等价于2210x x x-+≥,即()()222110x x x x x -+=-≥,所以0x >,即不等式12x x+≥的解集为0x >, 所以1≥x 是0x >充分不必要条件. 所以1≥x 是12x x+≥的充分不必要条件 故选:A 4.B 【解析】 【分析】根据方程2211m 3x y m 表示椭圆13m <<,且m ≠2,再判断必要不充分条件即可. 【详解】解:方程22113x ym m +=--表示椭圆满足103013m m m m ->⎧⎪-<⎨⎪-≠-+⎩,解得13m <<,且m ≠2所以“13m <<”是“方程2211m 3x y m 表示椭圆”的必要不充分条件. 故选:B 5.D 【解析】 【分析】根据函数的奇偶性排除AC 选项,特殊值检验排除排除B 选项,进而可求出结果. 【详解】由于函数2()22x x x f x -=+的定义域为R ,且()()22()2222x x x x x x f x f x ----===++, 所以()f x 为偶函数,故排除AC 选项;5525800(5)221025f -==+,4416256(4)22257f -==+, 由于()(5)4f f <,因此()f x 在()0,∞+上不是单调递增,故排除B 选项, 故选:D. 6.C 【解析】根据x 的范围代入相应的解析式即可. 【详解】函数()2,0,0⎧≥=⎨-<⎩x x f x x x ,则()()224f f f ⎡⎤-==⎣⎦. 故选:C . 7.C 【解析】 【分析】根据函数解析式,列出满足的条件,解得答案. 【详解】由已知1020102x x x -≠⎧⎪+≠⎪⎨⎪≥⎪+⎩,解得2x >-且1x ≠,所以()f x 的定义域为()()2,11,-⋃+∞,故选:C . 8.C 【解析】 【分析】分别求出集合,M N ,再根据交集的定义即可得出答案. 【详解】解:()(){}{}10120212x M xx x x x x x -⎧⎫=<=-+<=-<<⎨⎬+⎩⎭, {}{}21,13N y y x x M y y ==-∈=-≤<, 则{}[)111,1M N x x ⋂=-≤<=-. 故选:C. 9.D 【解析】 【分析】令22t x x =-,则12ty ⎛⎫= ⎪⎝⎭,转求二次函数与指数函数的值域即可.令22t x x =-,则12ty ⎛⎫= ⎪⎝⎭,∈()222111t x x x =-=--≥-,∈(],2120ty ⎛⎫⎪⎭∈= ⎝,∈函数2212x xy -⎛⎫= ⎪⎝⎭的值域为(]0,2,故选:D 10.C 【解析】 【分析】采用换元即可求出答案. 【详解】令11t x x t =+⇒=-,则22()(1)2(1)1f t t t t =-+-+=,22(1)(1)21f x x x x -=-=-+. 故选:C. 11.C 【解析】 【分析】先利用换元法求()f x 的解析式,再代入3x =计算即可. 【详解】解:设1t x =+,则1x t =-,从而()12122(1)221t t f t t t t --=+-=+-+,即()12221x f x x x -=+-+,故()31232323149618f -=+-⨯+=+-+=.故选:C. 12.D 【解析】 【分析】由题可知函数()f x 在区间R 上为增函数,则f (x )在x =1左右两侧均为增函数,且左侧在x =1出函数值小于或等于右侧在x =1出函数值. 【详解】由题可知函数()f x 在区间R 上为增函数, 则()2012330a a a a ⎧-⎪⎨⎪--≤⎩>>+,解可得524a ≤:<.故选:D. 13.D 【解析】 【分析】根据基本初等函数的单调性、奇偶性以及函数奇偶性的定义逐项判断,可得出合适的选项. 【详解】对于A 选项,函数cos y x =为偶函数,且在()0,∞+上不单调; 对于B 选项,令()211f x x =+,该函数的定义域为R ,()()()221111f x f x x x -===+-+, 所以,函数211y x =+为偶函数,且该函数在()0,∞+上单调递减; 对于C 选项,令()22x x g x -=-,该函数的定义域为R ,()()22x xg x g x --=-=-,所以,函数22x x y -=-为奇函数;对于D 选项,令()ln h x x =,该函数的定义域为{}0x x ≠,()()ln ln h x x x h x -=-==, 所以,函数ln y x =为偶函数,当0x >时,ln y x =,故函数ln y x =在()0,∞+上为增函数. 故选:D. 14.C 【解析】 【分析】通过分析函数的奇偶性及单调可解决问题.【详解】因为()2()f x x x f x -=+=,且函数()f x 的定义域为R ,故函数()f x 为定义域R 上的偶函数,又当0x >时,()2f x x x =+在(0,)+∞上单调递增,所以()()1f a f a -≤,则有|1|||a a -≤,解得12a ≥. 故选:C 15.C 【解析】 【分析】根据奇函数的性质()()f x f x =--即可算出答案. 【详解】因为()f x 为奇函数,所以()010f m =-=,即1m =.当0x <时,0x ->,()()()224141x x f x f x x x --⎡⎤=--=---+=-+-⎣⎦. 故选:C 16.D 【解析】 【分析】根据给定条件利用奇偶性定义判断排除,再利用函数单调性判断作答. 【详解】指数函数2x y =,对数函数2log y x =都是非奇非偶函数,即选项B ,C 都不正确; 正弦函数sin y x =是R 上的奇函数,但在定义域R 上不单调,选项A 不正确; 幂函数3y x =是R 上的奇函数,且在R 上单调递增,选项D 正确. 故选:D 17.A 【解析】 【分析】根据函数奇偶性和单调性之间的关系解不等式即可求解. 【详解】因为对任意()12,0,x x ∈+∞,且12x x ≠都有()()21210f x f x x x -<-,所以函数在()0,∞+上单调递减,又()f x 是在R 上的奇函数,则在(),0∞-上也单调递减, 由()30f =,则()30f -=,2()3()2()3()()0f x f x f x f x f x x x x +---==≥,当0x >时,()0f x ≤,即()()3f x f ≤解得3x ≥, 当0x <时,()0f x ≥,即()()3f x f ≥-,解得3x ≤-, 综上,不等式的解集为(][),33,∞∞--⋃+, 故选:A. 18.C 【解析】 【分析】判断函数()32x f x x =+的单调性,又()13f =,所以将不等式转化为()2312f m m f ⎛⎫-< ⎪⎝⎭,利用函数的单调性求解关于m 的一元二次不等式即可. 【详解】因为()32x f x x =+在R 上单调递增,()13f =,所以不等式2332f m m ⎛⎫-< ⎪⎝⎭等价于()2312f m m f ⎛⎫-< ⎪⎝⎭,得2312m m -<,即22320m m --<,解得122m -<<.故选:C . 19.A 【解析】 【分析】根据(2)()f x f x +=-,()()0f x f x +-=,得到(4)()f x f x +=求解. 【详解】因为(2)()f x f x +=-,()()0f x f x +-=,所以()()f x f x -=-, 所以(2)()f x f x +=-,所以(4)(2)()f x f x f x +=-+=,所以2021505411505444f f f⨯+⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,1112641144f f ⎛⎫⎛⎫=⨯++=+ ⎪ ⎪⎝⎭⎝⎭,1321445f f ⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭.故选:A 20.A 【解析】 【分析】利用函数()f x 的性质,将72f ⎛⎫⎪⎝⎭变形为12f⎛⎫- ⎪⎝⎭,再利用题目提供的解析式计算即可. 【详解】 解:()f x 是R 上的奇函数,且(2)()f x f x +=,当(0,1)x ∈时,()41=-x f x1272331241121222221f f f f f f⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=+==-+=-=-=--=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 故选:A. 21.C 【解析】 【分析】根据题意,求出()f x -的解析式,再根据对数的运算可知()()6f x f x +-=-,即可求解. 【详解】解:∈())3f x x =-,∈())3f x x -=-,则()()6f x f x +-=-, ∈()1f a =-,∈()5f a -=-. 故选:C. 22.C 【解析】由函数()21x x x f k =-+,求得对称轴的方程为2k x =,结合题意,得到22k ≤或52k≥,即可求解. 【详解】由题意,函数()21x x x f k =-+,可得对称轴的方程为2k x =, 要使得函数()f x 在[]2,5上具有单调性, 所以22k ≤或52k≥,解得4k ≤或10k ≥.故选:C. 23.B 【解析】 【分析】根据幂函数、指数函数的性质判断大小关系. 【详解】由00.30.20.20.3020.30.20.2210.3c a b >===>>>==, 所以b a c <<. 故选:B 24.B 【解析】 【分析】由已知结合指数的运算可得,23x y +=,然后根据21122()222x y xy x y +=⨯⨯≤可求最值.【详解】解:x ,(0,)∈+∞y ,且3212()24x y y --==,32x y ∴-=-,即23x y +=,∴则21129(2)()2228x y xy x y +=⨯≤=,当且仅当322x y ==时取得最大值98. 故选:B . 25.A【分析】根据根式的性质,结合分数幂指数与根式的互化公式、指数幂的公式进行逐一判断即可. 【详解】A :因为3(2)8-=-2-,因此本选项正确; B:因为=C133344()()y x y x ≠+=+,所以本选项不正确;D :因为222n n m m -⎛⎫= ⎪⎝⎭,所以本选项不正确,故选:A 26.C 【解析】 【分析】把根式化为分数指数幂进行运算. 【详解】 0m >m===.故选:C . 27.A 【解析】 【分析】先判断()f x 的奇偶性,然后结合复合函数的单调性判断()f x 的单调性,由此确定正确选项. 【详解】()()1e e 1e 1e e 1e 1e 1e xx x x x x x xf x f x -------=-=-==+++,故()f x 是奇函数. 又()e 1221e 1e 1x x x f x +-==-++,由复合函数单调性可知()f x 单调递增.故选:A 28.C【分析】根据对数运算公式得到log 3(log 2x )=1,进而得到log 2x =3,x =8,根据指数幂运算可得到结果. 【详解】∈log 5(log 3(log 2x ))=0,∈log 3(log 2x )=1,∈log 2x =3,∈x =23=8,∈11228x --==故选:C. 29.B 【解析】 【分析】判断函数的奇偶性即可得函数图象的对称性. 【详解】函数()22x xy x -=-的定义域为R ,又()()()()2222x x x xf x x x f x ---=--=-=, 所以()22x xy x -=-为偶函数, 函数()22x xy x -=-的图象关于y 轴对称故选:B. 30.A 【解析】 【分析】根据函数的奇偶性,得出()()11f f -=-,即可求解. 【详解】因为0x >时,()23xf x =-,由题意函数()f x 为奇函数,所以()()111(23)1f f -=-=--=.故选:A.【解析】 【分析】根据函数的奇偶性可得()()3xf xg x --=,即可求解()f x 解析式,通过排除可得答案.【详解】解:由()()3xf xg x +=得:()()3x f x g x --+-=,即()()3x f x g x --=,由()()()()33x x f x g x f x g x -⎧+=⎪⎨-=⎪⎩解得:()332x x f x -+=,由3312x x -+≥=,排除BC . 由指数函数的性质(指数爆炸性)排除D . 故选:A 32.A 【解析】 【分析】先求出()f x 的定义域,再令2x满足()f x 的定义域范围求出x 的范围即可得2x f ⎛⎫⎪⎝⎭的定义域. 【详解】由903x -≥即39x ≤可得2x ≤ 所以()f x 的定义域为{}2|x x ≤, 令22x≤,可得4x ≤,所以函数2x f ⎛⎫⎪⎝⎭的定义域为(],4∞-, 故选:A . 33.D 【解析】 【分析】抽象函数求解定义域,要满足同一对应法则下取值范围相同,定义域是x 的取值范围. 【详解】因为[]1,1x ∈-,所以1,222x⎡⎤∈⎢⎥⎣⎦,故21,2log 2x ⎡⎤∈⎢⎥⎣⎦,解得:x ⎤∈⎦. 故选:D 34.C 【解析】计算()219,33x+∈,根据抽象函数定义域得到92133x <+<,解得答案.【详解】当()3,5x ∈时,()219,33x+∈,故92133x <+<,解得416x <<.故选:C. 35.A 【解析】 【分析】利用指对数函数的性质比较a ,b ,c 的大小. 【详解】由22444log 5log 42log 16log 10log 8 1.5b a c =>==>=>>= 所以b c a <<. 故选:A 36.C 【解析】 【分析】由指数函数的性质可知()20212022x xf x -=-是R 上的增函数;根据题意可知2021202220212022x x y y ---<-,即()()f x f y <,再根据函数的单调性,可得x y <,由此即可得到结果. 【详解】令()20212022x xf x -=-,由于2021,2022x x y y -==-均为R 上的增函数,所以()20212022x xf x -=-是R 上的增函数,因为2021202120222022x y x y ---<-,所以2021202220212022x x y y ---<-, 即()()f x f y <, 所以x y <,所以0x y -<. 故选:C . 37.D【分析】分析可知()22220x x m ++>对任意的()1,2x ∈恒成立,利用二次不等式的性质可得出关于实数m 的不等式,即可得解. 【详解】由已知可得()22120x xm ⨯++>,则()22220x x m ++>对任意的()1,2x ∈恒成立,因为()22,4x∈,所以,22220m ++≥,解得3m ≥-.故选:D. 38.C 【解析】 【分析】分类讨论1a >和01a <<两种情况,根据对数和指数函数的单调性结合4log xa x <得出a 的取值范围. 【详解】 解:由题意可得: 当1a >时,结合102x <<可得:log 04x a x <<,不满足题意; 当01a <<时,log a y x =在区间1(0,)2上单调递减,4x y =在区间1(0,)2上单调递增,满足题意4log xa x <时有:1214log ()2a ,即:1log ()22a .求解不等式可得实数a 的取值范围是:. 故选:C 39.B 【解析】 【分析】将100A =,0.02k =,()50L t =代入等式()()1e ktL t A -=-,求出t 的值,即可得解.【详解】令()0.02501001e t-=-,可得50ln 235=≈t .40.A 【解析】 【分析】根据实数的结构形式,构造函数,利用导数判断单调性,最后进行比较大小即可. 【详解】 设2ln 1ln ()(0)()x xf x x f x x x -'=>⇒=, 当e x >时,()0,()f x f x '<单调递减,1(e)e a f ==,ln 7(7)7b f ==,ln 5(5)5c f ==,因为75e >>,所以(7)(5)(e)f f f <<,即b c a <<,故选:A . 41.B 【解析】 【分析】由已知可得2log 3b =,结合零点存在定理可判断零点所在区间. 【详解】由已知得2log 3b =,所以()22log 3xf x x =+-,又()122121log 3log 3021f -=-=----<,()02220log 31log 300f =+-=-<, ()12221log 33log 301f =+-=-> ()22222log 36log 302f =+-=->, ()32223log 311log 303f =+-=->,所以零点所在区间为()0,1, 故选:B. 42.A 【解析】 【分析】根据对数的运算算出结果即可.【详解】433232495lg8lg lg16lg(495)lg1494916⨯⨯+=-+⨯==⨯,故选:A43.B【解析】【分析】先通过对数的运算性质和换底公式将c化简,进而通过中间量0和1并结合对数函数的单调性确定出a,b,c的范围,然后比较出大小.【详解】依题意,()1.5log 3.11,a=∈+∞,()5log0.1,0b=∈-∞,()2422222log4211ln20,1ln elog e log e log eln2c=====∈,故a c b>>.故选:B.44.C【解析】【分析】利用偶函数的定义经计算即可得解.【详解】因()f x为偶函数,且当0x>时,()1lnf x x=+,因此,当0x<时,0x>-,()()1ln()f x f x x=-=+-,所以()1ln()f x x=+-.故选:C45.C【解析】【分析】先求得()f x的定义域,然后求得12xf⎛+⎫⎪⎝⎭的定义域.【详解】依题意30431,344,14x x x <-≤<≤<≤,所以()f x 的定义域为3,14⎛⎤⎥⎝⎦,所以03111,04,22214x x x <≤--+≤<≤<, 所以函数12x f ⎛+⎫ ⎪⎝⎭的定义域为1,02⎛⎤- ⎥⎝⎦.故选:C 46.B 【解析】 【分析】通过换元得到()()21log 0,0,1a y t t -=>∈,根据对数函数的性质可得2201112a a <-<⇒<<,解出不等式即可得到结果. 【详解】函数()()()21log 21a f x x -=+,令()210,1t x =+∈,()()21log 0,0,1a y t t -=>∈ 根据对数函数的性质可得2201112a a <-<⇒<<解得1a <<1a <<-. 故选:B. 47.D 【解析】 【分析】 利用换元法,令t=,则0t >,从而可得111t =+>,然后利用对数的单调性可求得答案 【详解】 设t=,则0t >,∈111t =+>, ∈()lg 1lg 10t⎛=+> ⎝,∈函数()lg 1f x⎛= ⎝的值域为()0,∞+,故选:D .48.A【解析】【分析】转化为两个函数图像相交问题,结合图形可得.【详解】()1lg 3x f x x ⎛⎫=- ⎪⎝⎭的零点即为函数lg y x =与13xy ⎛⎫= ⎪⎝⎭的交点横坐标,如图. 记213x m ⎛⎫ ⎪⎝=⎭,则23lg lg x x m =-=,210m x =,310m x -= 所以023101x x == 由图知1301x x <<<所以1201x x <<故选:A49.C【解析】【分析】先求出函数的定义域,再根据复合函数的单调性的判断方法,“同增异减”求得函数的递减区间.【详解】令2t x x =- ,则由20t x x =->,得01x << , 而函数13log y t = 是单调减函数,要求213()log ()f x x x =-的单调递减区间, 就要求2t x x =-的递增区间,而2t x x =-的递增区间为1(,)2-∞ , 故213()log ()f x x x =-得单调递减区间为102⎛⎫ ⎪⎝⎭,,故选:C.50.B【解析】【分析】利用同底的指数函数与对数函数互为反函数求出a 值,再借助对数运算即可作答.【详解】依题意,函数()()log 0,1a f x x a a =>≠的反函数是x y a =,即函数x y a =的图象过点()1,3,则3a =,()3log f x x =,于是得()2323log 8log (log 8)log 31f ===,所以()2log 81f =.故选:B51.A【解析】【分析】根据幂函数的定义,结合对数函数的性质进行求解即可.【详解】解:∈函数f (x )=(3m -2)xm +2(m ∈R )是幂函数,∈3m -2=1,∈m =1,∈g (x )=log a (x -1)+1,令x -1=1得x =2,此时g (2)=log a 1+1=1,∈函数g (x )的图象所过定点P 的坐标是(2,1),故选:A .52.A【解析】【分析】数形结合,函数()f x 与()sin 2πy x =在区间15,22⎡⎤-⎢⎥⎣⎦上的交点横坐标即为g (x )的零点,根据对称性即可求零点之和.如图所示,()f x 与()sin 2πy x =在区间15,22⎡⎤-⎢⎥⎣⎦上一共有10个交点,且这10个交点的横坐标关于直线1x =对称,所以()g x 在区间15,22⎡⎤-⎢⎥⎣⎦上的所有零点的和是10. 故选:A .53.C【解析】【分析】通过解法方程()0g x =来求得()g x 的零点个数.【详解】由()0g x =可得()11f x -=.当0x ≤时,2211x x x +=⇒=-1x =-,当0x >时,lg 110x x =⇒=或110x =.故112x x -=-=()g x 的零点,1109x x -=⇒=-是()g x 的零点,1911010x x -=⇒=是()g x 的零点. 综上所述,()g x 共有3个零点.故选:C54.B【解析】根据极限的定义计算.【详解】由题意()()()()00111111lim lim (1)333x x f x f f x f f x x ∆→∆→+∆-+∆-'==∆∆. 故选:B .55.D【解析】【分析】由导数的几何意义得出切线方程.【详解】()e e x x f x x ='+,则(1)2e,(1)e 2e e f f ==-=-',由点斜式得2e 3e y x =-.故选:D.56.B【解析】【分析】求函数的导数,结合函数单调性,极值,函数零点的性质分别进行判断即可.【详解】函数()ln f x x x =定义域为()0,∞+,()1ln f x x '=+,令()0f x '=,则1=x e ,故D 错误; 当10x e <<时,()'0f x <,函数为减函数, 当1x e>时,()'0f x >,函数()f x 为增函数,故B 正确; 当1=x e 时,函数取得极大值,极大值为f (1e )1e =-,故A 错误, 作出函数的图象,可知C 错误.故选:B57.A【解析】【分析】利用偶函数求0x <的解析式再求导,根据导数的几何意义即可求()()1,1f --处的切线斜率.【详解】设0x <,则0x ->,1()e x f x x ---=-,又()f x 为偶函数,∈1()e x f x x --=-,则对应导函数为1()e 1x f x --'=--,∈()12f '-=-,即所求的切线斜率为2-故选:A58.A【解析】【分析】设公共点为(),P s t ,根据导数的几何意义可得出关于a 、s 的方程组,即可解得实数a 、s 的值.【详解】设公共点为(),P s t ,1e x y -=的导数为1e x y -'=,曲线1e x y -=在(),P s t 处的切线斜率1e s k -=,y =y ',曲线y =(),P s t处的切线斜率k =因为两曲线在公共点P处有公共切线,所以1e s -=1e s t -=,t =所以11e e s s --⎧=⎪⎨⎪=⎩=12s =,所以112e -=,解得a =故选:A .59.A【解析】【分析】求出()f x ',计算出()()f x f x -+以及()()f x f x ''-=,即可得解.【详解】()3321e x f x x =++,则()()222223e 3e 3666e 12e e e 21e x x x x x x x f x x x x -'=-=-=-+++++, 所以,()()()()3331e 333e 32231e 1e 1e 1e e 1e x x x x x xx x f x f x x x --+-+=-+++=+==+++++, ()()()223366e e 2e e 2x x x x f x x x f x --''-=⨯--=-=++++, 因此,()()()()20222022202220223f f f f ''++---=.故选:A.60.D【解析】【分析】对函数进行求导,求出(3)2f '=,再令1x =代入解析式,即可得到答案;【详解】'41()2(3)9f x f x x'∴=-+,∴41(3)2(3)33f f ''=-+(3)1f '⇒=, 22()2ln 9f x x x x ∴=-+,216(1)299f ∴=-=, 故选:D.61.C【解析】【分析】对()f x 求导,研究()f x 的单调性以及极值,再结合选项即可得到答案.【详解】()'2312f x x =-,由()'0f x >,得2x <-或2x >,由()'0f x <,得22x -<<,所以()f x 在(),2-∞-上递增,在()2,2-上递减,在()2,+∞上递增,所以极大值为(2)160f -=>,极小值为(2)160f =-<,所以()f x 有3个零点,且()f x 无最小值.故选:C62.A【解析】【分析】令()()g x xf x =,利用导数可判断其单调性,从而可解不等式()2e e x xf >. 【详解】设()()g x xf x =,则()()()0g x xf x f x ''=+>,故()g x 为R 上的增函数,而()2e e x x f >可化为()()e e 211x x f f >=⨯即()()g e 1x g >, 故e 1x >即0x >,所以不等式()2e ex x f >的解集为()0,+∞, 故选:A.63.D【解析】【分析】通过构造函数法,结合导数确定正确答案.【详解】构造函数()()()()()''e ,e 0x x F x f x F x f x f x ⎡⎤=⋅=+⋅>⎣⎦,所以()F x 在R 上递增,所以()()()()20210,02021F F F F -<<,即()()()()20212021e 20210,0e 2021f f f f -⋅-<<⋅.故选:D64.B【解析】【分析】将函数有两个极值点转化为其导数有两个零点进行求解即可.【详解】对原函数求导得,()2e x f x x a '=+,因为函数()()2e 1x f x x a a R =+-∈有两个极值点,所以()0f x '=有两个不等实根,即2e 0x x a +=有两个不等实根, 亦即2e x x a -=有两个不等实根. 令()2e x x g x =,则()()21e xx g x -'= 可知()g x 在(),1-∞上单调递增,在()1,+∞上单调递减,所以()()max 21eg x g ==, 又因为当0x <时,()0g x <,当0x >时,()0g x >, 所以2e 0a a ⎧-<⎪⎨⎪->⎩,解得20e a -<<, 即a 的范围是2,0e ⎛⎫- ⎪⎝⎭. 故选:B65.C【解析】【分析】根据导函数图象可判定导函数的符号,从而确定函数的单调性,得到极值点,以及根据导数的几何意义可知在某点处的导数即为在该点处的切线斜率.【详解】根据导函数图象可知:当(),3x ∈-∞-时,()0f x '<,在()3,1x ∈-时,()0f x '≥, ∴函数()y f x =在(),3-∞-上单调递减,在()3,1-上单调递增,故∈正确;则3-是函数()y f x =的极小值点,故∈正确;在()3,1-上单调递增,∴1-不是函数()y f x =的最小值点,故∈不正确;函数()y f x =在0x =处的导数大于0,∴切线的斜率大于零,故∈不正确.故选:C .66.C【解析】【分析】对函数()f x 求导,即可得到()f x 的单调区间与极值点,即可判断.【详解】 解:因为ln ()x f x x x =-,所以2221ln 1ln ()1x x x f x x x---=-=',令2()1ln x x x ϕ=--,则1()20x x xϕ'=--<,所以2()1ln x x x ϕ=--在(0,)+∞上单调递减, 因为()10ϕ=,所以当01x <<时,()0x ϕ>,即()0f x '>;当1x >时,()0x ϕ<,即()0f x '<,所以()f x 的单调递增区间为(0,1),单调递减区间为(1,)+∞,故()f x 的极大值点为1,()()11f x f ==-极大值,即()()max 11f x f ==-,不存在最小值.故选:C .67.B【解析】【分析】求出函数的导数,根据函数()f x 在()-∞+∞,上是单调递减函数,由()0f x '≤在()-∞+∞,上恒成立求解.【详解】解:()321f x x ax x =-+--,()2321f x x ax ∴=-+-',因为函数()f x 在()-∞+∞,上是单调递减函数, 所以()0f x '≤在()-∞+∞,上恒成立,。
第二章一元二次函数、方程和不等式章节练习
第二章 一元二次函数、方程和不等式章节练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合*{|2}N M x x =∈≤,则以下关系正确的是( ) A .0M ∈ B .2M ∉ C .{0,1,2}M ⊆D .{0,1,2}M2.设R x ∈,则“0x >”是“3x >”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既不充分又非必要条件3.比较()23x -与()()24x x --的大小( ) A .无法比较大小 B .()()()2324x x x ->-- C .()()()2324x x x -=--D .()()()2324x x x -<--4.不等式()()130x x ++<的解集是( ) A .RB .∅C .{31}xx -<<-∣ D .{3xx <-∣,或1}x >- 5.已知1a >,则41a a +-的最小值是( ) A.5B .6C .D .6.已知命题p :∀x >0,总有(x +1)ln x >1,则¬p 为( ) A .∃x 0≤0,使得(x 0+1)ln x 0≤1 B .∃x 0>0,使得(x 0+1)ln x 0≤1 C .∃x 0>0,总有(x 0+1)ln x 0≤1 D .∃x 0≤0,总有(x 0+1)ln x 0≤17.已知二次函数2y ax bx c =++的图象如图所示,则不等式20ax bx c ++>的解集是( )A .{}21x x -<<B .{|2x x <-或1}x >C .{}21x x -≤≤D .{|2x x ≤-或1}x ≥8.已知对于任意实数2,20x kx x k -+>恒成立,则实数k 的取值范围是( ) A .1k > B .11k -<< C .1k <-D .1k >-二、多选题9.已知0,0a b <>,那么下列不等式中一定成立的是( ) A .0b a -> B .a b > C .2a ab >D .11ab<10.与不等式220x x -+>的解集相同的不等式有( ) A .220x x --<+ B .22320x x -+> C .230x x -+≥D .220x x +->11.以下结论正确的是( )A .函数21x y x+=的最小值是2B .若a ,R b ∈且0ab >,则2b aa b+≥C .若x ∈R ,则22132x x +++的最小值为3D .函数()120y x x x=++<的最大值为0 12.下列说法正确的是( )A .已知0<x 12<,则x (1﹣2x )的最大值为18B .当43x <时,13134y x x =-+-的最大值是1 C .若13a <<,25b <<,则231a b -+的取值范围是14<<-x D .若()227M a a =-+,()()23N a a =--,则M N <三、填空题13.不等式262x x -->的解集为______. 14.(4)(3)0x x --≥的解集是_______. 15.不等式013≤+-x x 的解集是_____. 16.已知23M x x =-,233N x x =-+-,则M ,N 的大小关系是 _____.四、解答题17.比较下列各组中两个代数式的大小:(1)256x x ++与2259x x ++; (2)2(3)x -与(2)(4)x x --;18.求下列不等式的解集(1)2560x x --> (2)2690x x -+>(3)230x x -+-> (4) 0)3)(2(<-+x x19.求下列不等式的解集:(1)2690x x ++>; (2)230x x ->; (3)325x x ->-.20.已知正数,a b 满足1a b +=. (1)求ab 的取值范围; (2)求28a b+的最小值.21.设集合{}1A x x a =-<<,{}260B x x x =+-<,全集R U =.(1)若4a =,求A B ;(2)若A B A =,求a 的取值范围.22.如图,某人计划用篱笆围成一个一边靠墙(墙足够长)的矩形菜园.设菜园的长为x 米,宽为y 米.(1)若菜园面积为36平方米,则x ,y 为何值时,所用篱笆总长最小? (2)若使用的篱笆总长为30米,求2x yxy +。
高一上数学不等式与函数综合测试题
高一上数学不等式与函数综合测试题一、单项选择题1.已知a>b,c<d,下列式子正确的是()A.a+c>b+dB.a-c>b-dC.ad>bcD.ad>b c2.若x+1x-1<0,则x的取值范围是()A.{x|-1<x<1}B.{x|x<-1}C.{x|x<-1或x>1}D.{x|x>1}3.已知x>0,则3x+4x有()A.最大值2 3B.最小值2 3C.最大值4 3D.最小值4 34.若a ,b ,c ,d ∈R ,且a>b ,c<d ,则下列式子正确的是( ) A.a -c>b -d B.a +c>b +d C.a c =b d D.a -d>b -c5.已知log2x =-1,则x -2等于( ) A.4 B.2 C.14 D.126.若x ∈R ,下列不等式一定成立的是( ) A.x 5<x 2 B.5-x >2-x C.x2>0D.(x +1)2>x2+x +17.已知x>0,则x+x-1的()A.最小值为2B.最大值为2C.最小值为1D.最大值为18.已知m>0,则m+16m取得最小值时,当且仅当m=()A.2B.4C.8D.169.若a,b,c∈R,且a>b,则下列不等式成立的是()A.c a< c bB.ac>bcC.c-a<c-bD.ac2>bc210.不等式|2x-1|>-1的解集为()A.RB.∅C.(0,1)D.(0,+∞)11.若根式3x2-5x +2没有意义,则x 的取值范围是( )A.2,13⎡⎤⎢⎥⎣⎦B.(-∞,0)C.2,13⎛⎫ ⎪⎝⎭D.2,3⎛⎫-∞ ⎪⎝⎭∪(1,+∞) 12.与不等式x -21-x ≥0同解的不等式是( )A.(x -2)(1-x )≥0B.1≤x ≤2C.1-x x -2≥0D.x -2x -1≤0 13.已知a -b<0,a>0,那么a ,b ,-a ,-b 的大小关系是( ) A.a>b>-b>-aB.b>a>-a>-bC.a>-b>-a>bD.a>-b>b>-a14.不等式|2x+5|<1的解集是()A.(-3,-2)B.(2,3)C.(-2,3)D.(-∞,-3)∪(2,+∞)15.若a∈[-2,4],则-a的取值区间为()A.[-2,4]B.[2,4]C.[-4,-2]D.[-4,2]16.不等式1-2x<3的解集为()A.{x|x>-1}B.{x|x>1}C.{x|x<-1}D.{x|x<1}17.下列大小关系中,恒成立的是()A.x+3>x+4B.4-x>3-xC.x2≥2x-1D.0<x218.方程x2-4x=0的根是()A.0B.4C.4或0D.-419.已知m>2,下列不等式中正确的是()A.m+2>2B.m-2<0C.m-1>2D.m-4<-220.集合A={x|x<2或x≥5}用区间表示为()A.(-∞,2)∪[5,+∞)B.(2,5]C.(-∞,2]∪[5,+α)D.(2,5) 二、填空题21.不等式组⎩⎪⎨⎪⎧x +3<0,x -1>0的解集是.22.不等式x +22x -1≤0的解集是 .23.不等式|x|>8的解集是 .24.如果x +y =-4,x -y =8,那么代数式x2-y2= . 25.若关于x 的不等式组23335x x x a >-⎧⎨->⎩有实数解,则a 的取值范围是 .26.函数f (x )=x +4x (x>0)的最小值为 . 27.方程3(x -2)2=27的根是 .28.已知-1<x<3,2<y<5,则3x -2y 的取值范围是 . 29.若a >b >1,则a -b a +b -2.(填“>”或“<”) 30.已知xy=2,则x2+4y2的最小值是 . 三、解答题31.解不等式组⎩⎪⎨⎪⎧4x -5≤3x +2,2x +8≥2-x.32.解不等式:(1)|2x-3|≤4; (2)|4-3x|>2.33.已知3a+b∈(-5,5),且a-3b∈(-5,-1),试确定a,b 的取值范围.34.解下列一元二次方程.(1)3x2+2 6 x-2=0;(2)(x-3)(x+1)=5.35.比较x(x-4)与(x-2)2的大小.答案一、单项选择题1.B2.A3.D4.A5.A6.B7.A【提示】利用均值定理变形公式a+b≥2ab.8.B【分析】∵当m=16m 时m+16m取得最小值,即m2=16又m>0,∴m=4,故选B.9.C 【提示】用特殊值c =0,即可排除A 、B 、D. 10.A 【提示】因为|2x -1|≥0恒成立,故选A.11.C 【提示】由题意得3x2-5x +2<0,即(3x -2)(x -1)<0,得23<x <1.12.D 【提示】由不等式x -21-x ≥0可知x ≠1,故可排除A 、B 、C ;将不等式两边同时乘以-1,得选项D 中的不等式. 13.B14.A 【提示】|2x +5|<1-1<2x +5<1-3<x<-2.故选A15.D 【提示】不等式两边同乘-1,不等号要变号. 16.A 【提示】1-2x<3⇒-2x<3-1⇒-2x<2⇒x>-1. 17.C 【提示】由作差法得(x -1)2≥0.故选C.18.C 【提示】原方程化为x(x -4)=0,解得x =0或x =4. 19.A 【提示】由不等式的基本性质可得. 20.A 二、填空题 21.∅22.122x x ⎧⎫≤<⎨⎬⎩⎭23.(-∞,-8)∪(8,+∞) 24.-3225.(-∞,4)【提示】解不等式组32335353x x x a x a x <⎧>-⎧⎪+⎨⎨->>⎩⎪⎩得又因为不等式组有实数解,所以53a +<3,解得a <4.26.427.x1=5,x2=-128.(-13,5)【提示】∵-1<x<3,2<y<5,∴-3<3x<9,-10<-2y<-4,∴-3-10<3x -2y<9-4,即-13<x +y<5. 29.<【提示】b>1⇒2b>2⇒-2b<-2. 30.8 三、解答题 31.{x|-2≤x≤7}32.解:(1)原不等式等价于-4≤2x -3≤4, ∴-1≤2x≤7,解得-12≤x≤72,∴原不等式的解集是1722x x ⎧⎫≤≤⎨⎬⎩⎭.(2)原不等式等价于4-3x>2或4-3x<-2,解得x<23或x>2, ∴原不等式的解集是223x x x ⎧⎫<>⎨⎬⎩⎭或. 33.解:∵-5<3a +b<5,∴-15<9a +3b<15.又∵-5<a -3b<-1,∴-20<10a<14,即-2<a<75.∵-5<a -3b<-1,∴3<9b -3a<15.又∵-5<3a +b<5,∴-2<10b<20,即-15<b<2.综上所述,a ∈(-2,75),b ∈(-15,2).34.解:(1)∵a =3,b =2 6 ,c =-2,∴b2-4ac =(2 6 )2-4×3×(-2)=48.∴x=2b a -± =-26±482×3=-6±233,∴x1=-6+233,x2=-6-233.(2)原方程可化为x2-2x=8,两边同时加上1,得x2-2x+1=8+1,即(x-1)2=9,∴x-1=3或x-1=-3,∴原方程的解为x1=4,x2=-235.解∶2(4)(2)x x x---()22444x x x x=---+=4因为4>0,所以2(4)(2).x x x->-。
一元一次不等式与一次函数习题精选(含答案)
一元一次不等式与一次函数(一)1.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()(5)A.x<B.x<3 C.x>D.x>32.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式a(x﹣1)﹣b>0的解集为()A.x<﹣1 B.x>﹣1 C.x>1 D.x<1 3.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1<y2的x的取值范围为()A.x>1 B.x>2 C.x<1 D.x<24.直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c的解集为()A.x>1 B.x<1 C.x>﹣2 D.x<﹣25.如图,一次函数y=kx+b的图象经过A、B两点,则kx+b>0解集是()A.x>0 B.x>﹣3 C.x>2 D.﹣3<x<2 6.如图,函数y=kx和y=﹣x+3的图象相交于(a,2),则不等式kx<﹣x+3的解集为()A.x<B.x>C.x>2 D.x<2 7.(如图,直线l是函数y=x+3的图象.若点P(x,y)满足x<5,且y>,则P点的坐标可能是()(6)(8)A.(4,7)B.(3,﹣5)C.(3,4)D.(﹣2,1)8.如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是()A.x<5 B.x>5 C.x<﹣4 D.x>﹣49.如图,一次函数y=kx+b的图象经过点(2,0)与(0,3),则关于x的不等式kx+b>0的解集是()(10)(11)A.x<2 B.x>2 C.x<3 D.x>310.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有下列3个结论:①a>0;②b>0;③x>﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是()A.0B.1C.2D.3二.填空题(共8小题)11.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为_________.12.如图,l1反映了某公司的销售收入与销量的关系,l2反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入>成本)时,销售量必须_________.(13)(14)(15)13.如图,函数y=2x和y=ax+5的图象相交于A(m,3),则不等式2x<ax+5的解集为_________.14.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m>kx﹣1的解集为_________.15.如图,直线y1=kx+b与直线y2=mx交于点P(1,m),则不等式mx>kx+b的解集是_________.16.如图,已知函数y=x+b和y=ax+3的图象相交于点P,则关于x的不等式x+b<ax+3的解集为_________.(17)(18)17.如图,直线y=kx+b经过点A(﹣1,1)和点B(﹣4,0),则不等式0<kx+b<﹣x的解集为_________.18.如图,直线y=kx+b交坐标轴于A(﹣3,0)、B(0,5)两点,则不等式﹣kx﹣b<0的解集是_________.三.解答题19.在平面直角坐标系中,直线y=kx﹣15经过点(4,﹣3),求不等式kx﹣15≥0的解.20.如图,直线l1与l2相交于点P,点P横坐标为﹣1,l1的解析表达式为y=x+3,且l1与y轴交于点A,l2与y轴交于点B,点A与点B恰好关于x轴对称.(1)求点B的坐标;(2)求直线l2的解析表达式;(3)若点M为直线l2上一动点,直接写出使△MAB的面积是△PAB的面积的的点M的坐标;(4)当x为何值时,l1,l2表示的两个函数的函数值都大于0?21.已知:直线l1的解析式为y1=x+1,直线l2的解析式为y2=ax+b(a≠0);两条直线如图所示,这两个图象的交点在y轴上,直线l2与x轴的交点B的坐标为(2,0)(1)求a,b的值;(2)求使得y1、y2的值都大于0的取值范围;(3)求这两条直线与x轴所围成的△ABC的面积是多少?(4)在直线AC上是否存在异于点C的另一点P,使得△ABC与△ABP的面积相等?请直接写出点P的坐标.22.如图,直线y=kx+b经过点A(0,5),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4≥kx+b的解集.AACBBAAAAD﹣2<x<﹣1.大于4.x<.x>﹣1.x>1.x<1.﹣4<x<﹣1.x>﹣19 x≥5.20. 解:(1)当x=0时,x+3=0+3=3,∴点A的坐标是(0,3),∵点A与点B恰好关于x轴对称,∴B点坐标为(0,﹣3);(2)∵点P横坐标为﹣1,∴(﹣1)+3=,∴点P的坐标是(﹣1,),设直线l2的解析式为y=kx+b,则,解得,∴直线l2的解析式为y=﹣x﹣3;(3)∵点P横坐标是﹣1,△MAB的面积是△PAB的面积的,∴点M的横坐标的长度是,①当横坐标是﹣时,y=(﹣)×(﹣)﹣3=﹣3=﹣,②当横坐标是时,y=(﹣)×﹣3=﹣﹣3=﹣,∴M点的坐标是(﹣,﹣)或(,﹣);(4)l1:y=x+3,当y=0时,x+3=0,解得x=﹣6,l2:y=﹣x﹣3,当y=0时,﹣x﹣3=0,解得x=﹣,∴当﹣6<x<﹣时,l1、l2表示的两个函数的函数值都大于0.21 解:(1)由直线l1的解析式为y1=x+1,可求得C(0,1);则依题意可得:,解得:.(2)由(1)知,直线l2:y=﹣x+1;∵y1=x+1>0,∴x>﹣1;∵;∴﹣1<x<2.(3)由题意知A(﹣1,0),则AB=3,且OC=1;∴S△ABC=AB•OC=.(4)由于△ABC、△ABP同底,若面积相等,则P点纵坐标为﹣1,代入直线l1可求得:P的坐标为(﹣2,﹣1).22. 解:(1)∵直线y=﹣kx+b经过点A(5,0)、B(1,4),∴,解方程组得,∴直线AB的解析式为y=﹣x+5;(2)∵直线y=2x﹣4与直线AB相交于点C,∴解方程组,解得,∴点C的坐标为(3,2);(3)由图可知,x≥3时,2x﹣4≥kx+b.。
高三数学一轮复习《一元二次函数、方程和不等式》练习题 (含答案)
高三数学一轮复习《一元二次函数、方程和不等式》练习题 (含答案) 等式性质与不等式性质一、单选题1.下列运用等式的性质,变形不正确的是( ) A.若x =y ,则x +5=y +5 B.若a =b ,则ac =bc C.若a b cc=,则a =b D.若ax =ay ,则x =y 2.下列不等式中,正确的是( )A.若a >b ,c >d ,则a +c >b +dB.若a >b ,则a +c <b +cC.若a >b ,c >d ,则ac >bdD.若a >b ,c >d ,则a b cd> 3. (x 2+1)2与x 4+x 2+1的大小关系为( )A. (x 2+1)2≥x 4+x 2+1B. (x 2+1)2>x 4+x 2+1C.(x 2+1)2≤x 4+x 2+1D. (x 2+1)2<x 4+x 2+1 4. 若m <n ,p <q 且(p -m )(p -n )<0,(q -m )(q -n )<0,则( ) A. m <p <q <n B. p <m <q <n C. m<p <n <q D. p <m <n <q 5.设0<α<β<2π,则α-β的取值范围是( ) A. (,0)-∞ B. (,0)2π- C. (,)22ππ- D. (,)2π+∞6.若b <a <0,则下列不等式正确的个数为( )①a b >; ②110a b +>; ③11b a a b+<+; ④22a a b b <-A.1B.2C.3D.4 二、多选题7.对于实数a ,b ,c ,其中正确的命题为( )A.若a >b ,则ac <bcB.若ac 2>bc 2,则a >bC.若a <b <0,则a 2>ab >b 2D.若c>a>b >0,则a bc a c b>-- 8.下列四个条件能使“11a b<”成立的有( )A. b >0>aB. 0>a >bC. a >0>bD. a >b >0 三、填空题9.建筑学规定:民用住宅的窗户面积必须小于地板的面积,但按采光标准,窗户面积与地板面积之比应不小于10%,并且这个比值越大,住宅的采光条件越好.如果我们将窗户与地板同时增加相等的一个面积数,那么住宅的采光条件是__________(填“变好了”或“变坏了”).10.已知a >b , 11a b ab-<-同时成立,则ab 应满足的条件是__________.11.若a 是三个正数a ,b ,c 中的最大的数,且“a c bd<,则a +d 与b +c 的大小关系是___________.基本不等式及其应用一、单选题 1. 22(2)2y x x x =+>-的最小值是( ) A.4 B.6 C.8 D. 1 2.若式子4(0,0)a y x x a x=+>>当且仅当x =2时取得最小值,则实数a 的值为( )A.12B. 24C. 16D.36 3.已知实数x ,y 满足x 2+y 2=1,则xy 的最大值是( )A.1B.2 C. 2 D. 124.下列各函数中,最小值为2的是( )A. 1y xx=+ B. y =C. 2y =D. 43,131y x x x =+-<<- 5.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为8x 天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A.60件B.80件C.100件D.120 件 6.设a >1,b >2,ab =2a +b ,则a +b 的最小值为( )A. B. 1 C. 2 D. 3 二、多选题7.下列结论正确的是( )A.当x >02≥ B. 当x >2时1x x+的最小值是2 C.当54x <时, 14245x x -+-的最小值是5 D.设x >0,y >0,且x+y =2,则14xy+的最小值是928.下列说法正确的有( ) A.不等式a b +≥恒成立 B.存在a ,使得不等式1a a+≤2成立 C.若a ,b ∈(0,+∞),则2a b b a+≥ D.若正实数x ,y 满足x +2y =1,则18xy ≤ 三、填空题9.设x >-1,则231x x y x ++=+的最小值为_________.10.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是___________. 11.已知a,b 都为正实数,且113ab+=,则ab 的最小值是_________;1bab+的最大值是________.二次函数与一元二次方程、不等式一、单选题1.二次函数2(0)y ax bx c a =++≠的图象如图所示,则y >0的解集为( )A. {x |-2<x <1}B. {x |-1<x <2}C. {x |1<x ≤2}D. {x |x <0或x >3}2.若关于x 的一元二次方程2410ax x --=有实数根,则a 满足( ) A. a ≥-4且a ≠0 B. a >4且a ≠0 C. a ≥4 D.a ≠03.下列不等式的解集是空集的是( )A. x 2-x +1>0B.-2x 2+x +1>0C. 2x -x 2>5D. x 2+x >2 4.已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则( ) A. A B ⊆ B. B A ⊆ C. A B = D. A B ⋂=∅ 5.设a ∈R ,则“a >1”是“a 2>a "的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件6.已知命题“0x ∃∈R ,使得200210ax x ++<成立”为真命题,则实数a 满足( )A. [0,1)B. (-∞,1)C. [1,+∞)D. (一∞,1] 二、多选题7.关于x 的不等式ax 2- (a +1)x +1>0的解集可能是( ) A. {1}x x < B. 1{1}x x x a<>或 C. 1{1}x x a << D. 1{1}x x x a<>或 8.下列四个解不等式,正确的有( ) A.不等式2x 2-x -1>0的解集是{x |x >2或x <1} B.不等式-6x 2-x +2≤0的解集是21{}32x x x ≤-≥或C.若不等式ax 2 +8ax +21<0的解集是{x |-7<x <-1},那么a 的值是3D.关于x 的不等式x 2+ px -2<0的解集是(q ,1),则p+q 的值为-1 三、填空题9.已知一元二次不等式f (x )<0的解集为{x |x <-2或x >3},则f (x )>0的解集为______________.10.如果方程ax 2+bx +c =0的两根为-2和3,且a <0,那么不等式ax 2+bx +c >0的解集为_____________.11.若不等式x 2-4x > 2ax +a 对一切实数x 都成立,则实数a 的取值范围是___________本章检测一、单选题1.已知集合A ={x |x 2 +2x >0},B ={x |x 2+2x -3<0},则A∩B=( ) A. (-3,1) B. (-3,-2) C. R D. (-3,-2)∪(0,1)2.已知a <0,0<b <1,则下列结论正确的是( ) A. a >ab B. a >ab 2 C. ab <ab 2 D. ab >ab 23.不等式3121xx ≤+的解集为( ) A. (,1]-∞ B. 1[,1]2- C. 1(,1]2- D. 1(,)[1,)2-∞-⋃+∞4.使不等式2x 2-5x -3≥0成立的一个充分不必要条件是( ) A. 0x ≥ B. 0x <或2x > C. {1,3,5}x ∈- D. 12x ≤-或3x ≥ 5.若方程x 2+ax +a =0的一根小于-2,另一根大于-2,则实数a 的取值范围是( )A. (4,+∞)B. (0,4)C. (-∞,0)D. (-∞,0)∪(4,+∞) 6.若关于x 的方程x 2- 4ax +3a 2 =0(a >0)的两个根为x 1,x 2,则1212ax x x x ++的最小值是( )A.33C. 3D. 3二、多选题7.给出下列四个命题,其中正确的命题是( )A.若a b >且11a b>,则0ab > B.若0c a b >>>,则a bc a c b>-- C.若0a b c >>>,则b b c a a c +<+ D.若1a b +=,则114a b+≥8.若正数a ,b 满足a +b =2ab ,则( )A.1ab> B. 2a b+≥ C. 243a b+≥+1ab-≤三、填空题9.已知x<0,-1<y<0,用不等号将x,xy,xy2从大到小排列得___________.10.已知关于x的二次函数y= (m+3)x2-4x-1与x轴有交点,则m的取值范围是_____________.11. 已知a,b∈R,a2+b2-ab=2,则a+b的最大值为_______,ab的取值范围是__________参考答案等式性质与不等式性质1.D2.A3.A4.A5.B6.B7.BCD8.ABD9.变好了10.a b>0或ab<-111.a+d>b+c基本不等式及其应用1.C2.C3.D4.B5.B6.D7.AD8.BCD9.110.[9,)+∞11.449二次函数与一元二次方程、不等式1.B2.A3.C4.B5.A6.B7.ABCD8.BCD9.{23}x x-<<10.{23}x x-<<11.(-4,-1)一元二次函数、方程和不等式1.D2.C3.C4.C5.A6.C7.BC8.BD9.xy>xy2>x10.{73}m m m≥-≠-且11.2 [,2]3-。
函数性质解不等式练习题
函数性质解不等式练习题一、基本不等式求解1. 解不等式:2x 3 > 52. 解不等式:3(x 2) ≤ 63. 解不等式:4 2(x + 1) > x 34. 解不等式:5 3x < 2x + 15. 解不等式:7 2(2x 3) ≥ 3x + 4二、一元二次不等式求解1. 解不等式:x^2 5x + 6 > 02. 解不等式:2x^2 3x 2 < 03. 解不等式:x^2 4x + 4 ≤ 04. 解不等式:x^2 6x + 9 > 05. 解不等式:4x^2 12x + 9 < 0三、分式不等式求解1. 解不等式:x / (x 2) > 12. 解不等式:1 / (x + 3) ≤ 2 / (x 1)3. 解不等式:(x 4) / (x + 1) < 04. 解不等式:2 / (3x 5) ≥ 1 / (x 2)5. 解不等式:(x + 2) / (x 3) > (x 1) / (x + 4)四、绝对值不等式求解1. 解不等式:|x 5| > 32. 解不等式:|2x + 1| ≤ 43. 解不等式:|3x 2| < 55. 解不等式:|2x 7| > x + 2五、综合不等式求解1. 解不等式组:2x 3 > 5,3x + 1 < 72. 解不等式组:x^2 4x + 3 > 0,x / (x 2) ≤ 13. 解不等式组:|x 4| < 3,2x 5 > x + 14. 解不等式组:3(x 2) ≤ 6,1 / (x + 1) > 2 / (x 3)5. 解不等式组:4 2(x + 1) > x 3,|2x 7| < x + 2六、指数不等式求解1. 解不等式:2^x > 162. 解不等式:3^(2x1) ≤ 273. 解不等式:4^(x2) > 1/164. 解不等式:5^(x+1) < 255. 解不等式:2^(x3) ≥ 1/8七、对数不等式求解1. 解不等式:log_2(x) > 32. 解不等式:log_3(3x 2) ≤ 13. 解不等式:log_10(x + 5) > 14. 解不等式:log_5(2x 1) < 25. 解不等式:log_7(x 3) ≥ 0八、三角不等式求解1. 解不等式:sin(x) > 1/22. 解不等式:cos(x) ≤ 03. 解不等式:tan(x) > 15. 解不等式:3cos(x) + 2 > 2九、多项式不等式求解1. 解不等式:x^3 4x^2 + 3x > 02. 解不等式:2x^4 5x^3 3x^2 < 03. 解不等式:3x^3 + 4x^2 x ≤ 04. 解不等式:4x^4 12x^3 + 9x^2 > 05. 解不等式:5x^3 15x^2 + 10x < 0十、复合不等式求解1. 解不等式:(x 1)(x + 2) > 02. 解不等式:(2x + 3)(3x 4) ≤ 03. 解不等式:(3x 1)(x 5) < 04. 解不等式:(4x + 5)(x 2) ≥ 05. 解不等式:(5x 3)(2x + 1) > 0答案一、基本不等式求解1. x > 42. x ≤ 23. x < 24. x > 25. x ≤ 1二、一元二次不等式求解1. x < 2 或 x > 32. x < 1 或 x > 24. x ≠ 35. 3/2 < x < 2三、分式不等式求解1. x > 2 或 x < 32. x < 3 或 x > 13. 1 < x < 44. x < 5/2 或 x > 25. x < 1 或 x > 4四、绝对值不等式求解1. x < 2 或 x > 82. 3/2 ≤ x ≤ 5/23. 7/2 < x < 3/24. x ≤ 3 或 x > 45. x > 7/3 且x ≠ 5五、综合不等式求解1. x > 4 且 x < 22. x = 1 或 x > 33. 1 < x < 7 且x ≠ 24. x ≤ 3 且 x > 25. x > 3/2 且x ≠ 5/2六、指数不等式求解1. x > 42. x ≤ 34. x < 25. x ≥ 4七、对数不等式求解1. x > 82. 1/3 ≤ x ≤ 33. x > 1004. x < 5√5/25. x > 3八、三角不等式求解1. 30° < x < 150°2. 90° < x < 270°3. 45° < x < 135° 或225° < x < 315°4. 30° < x < 150°5. 0° < x < 120° 或240° < x < 360°九、多项式不等式求解1. x < 1 或 x > 32. x < 0 或 x > 3/23. x = 0 或1 ≤ x ≤ 34. x < 3/2 或 x > 35. x < 0 或 1 < x < 3十、复合不等式求解1. x < 2 或 x > 12. 3/2 ≤ x ≤ 4/33. x < 5/3 或 x > 14. x ≤ 5/4 或x ≥ 25. x < 5/2 或 x > 3/5。
集合不等式函数练习题
集合不等式函数练习题1. 已知集合A={x|x^2-4x+3<0},求集合A的解集。
2. 函数f(x)=x^3-3x^2+2x,求函数f(x)的单调区间。
3. 集合B={x|x^2-2x-3≤0},集合C={x|x^2+x-6<0},求集合B∩C。
4. 函数g(x)=2x^2-4x+3,判断函数g(x)在区间(-∞, 2)上的单调性。
5. 集合D={x|x^2-6x+8<0},集合E={x|x^2-x-6>0},求集合D∪E。
6. 函数h(x)=x^3-6x^2+11x-6,求函数h(x)的极值点。
7. 集合F={x|x^2-4x+7>0},集合G={x|x^2+2x-8≤0},求集合F∩G。
8. 函数k(x)=x^4-4x^3+6x^2-4x+1,求函数k(x)的零点。
9. 集合H={x|x^3-x^2-2x+2>0},集合I={x|x^3+x^2-4x-4<0},求集合H∪I。
10. 函数l(x)=x^5-5x^4+10x^3-10x^2+5x-1,求函数l(x)的拐点。
11. 集合J={x|x^2-5x+6<0},求集合J的补集。
12. 函数m(x)=x^3-3x^2+4x-2,求函数m(x)的单调增区间。
13. 集合K={x|x^2+3x-10=0},集合L={x|x^2-x-6=0},求集合K∩L。
14. 函数n(x)=2x^3-6x^2+5x+1,求函数n(x)的极值点。
15. 集合M={x|x^3-2x^2-5x+6>0},集合N={x|x^3+2x^2-x-6<0},求集合M∪N。
16. 函数o(x)=x^4-6x^3+11x^2-6x+2,求函数o(x)的零点。
17. 集合P={x|x^2-7x+10<0},求集合P的解集。
18. 函数q(x)=x^3-2x^2-5x+6,求函数q(x)的单调减区间。
19. 集合R={x|x^2-2x-8>0},集合S={x|x^2+4x+3≤0},求集合R∩S。
中职教育数学《不等式和函数》测试
第二章:不等式一、填空题:(每空2分)1、设72<-x ,则<x 。
2、设732<-x ,则<x 。
3、设b a <,则2+a 2+b ,a 2 b 2。
4、不等式042<+x 的解集为: 。
5、不等式231>-x 的解集为: 。
6、已知集合)6,2(=A ,集合(]7,1-=B ,则=B A ,=B A7、已知集合)4,0(=A ,集合(]2,2-=B ,则=B A ,=B A8、不等式组⎩⎨⎧<->+4453x x 的解集为: 。
9、不等式062<--x x 的解集为: 。
10、不等式43>+x 的解集为: 。
二、选择题(每题3分)1、不等式732>-x 的解集为( )。
A .5>x B.5<x C.2>x D.2<x2、不等式02142≤-+x x 的解集为( )。
A .(][)+∞-∞-,37, B. []3,7- C. (][)+∞-∞-,73, D. []7,3-3、不等式123>-x 的解集为( )。
A .()+∞⎪⎭⎫ ⎝⎛-∞-,131, B. ⎪⎭⎫ ⎝⎛-1,31 C. ()+∞⎪⎭⎫ ⎝⎛∞-,131, D. ⎪⎭⎫ ⎝⎛1,31 4、不等式组⎩⎨⎧<->+0302x x 的解集为( ).A .()3,2- B. ()2,3- C. φ D. R5、已知集合()2,2-=A ,集合()4,0=B ,则=B A ( )。
A .()4,2- B. ()0,2- C. ()4,2 D. ()2,06、要使函数42-=x y 有意义,则x 的取值范围是( )。
A .[)+∞,2 B.(][)+∞-∞-,22, C.[]2,2- D. R7、不等式0122≥++x x 的解集是( )。
A .{}1- B.R C.φ D. ()()+∞--∞-,11,8、不等式()()043<-+x x 的解集为( )。