(完整版)高二双曲线练习题及答案(整理)总结
高二双曲线练习题及答案(整理)
1 / 1 高二数学双曲线同步练习一、选择题(本大题共10小题,每小题5分,共50分)1.给出下列曲线:①4x +2y -1=0; ②x 2+y 2=3; ③1222=+y x ④1222=-y x ,其中与直线 y=-2x -3有交点的所有曲线是 ( ) A .①③ B .②④ C .①②③ D .②③④2.若直线过点(3,0)与双曲线224936x y -=只有一个公共点,则这样的直线有( )A .1条B .2条C .3条D .4条3.方程221()23x y k k k -∈-+R =表示双曲线的充要条件是( ) A.2k >或3k <- B.3k <-C.2k >D.32k -<<4.方程11122=-++ky k x 表示双曲线,则k 的取值范围是 ( ) A .11<<-k B .0>k C .0≥k D .1>k 或1-<k5. 双曲线14122222=--+m y m x 的焦距是 ( ) A .4 B .22 C .8D .与m 有关7. 双曲线的两条准线将实轴三等分,则它的离心率为( ) A .23 B .3 C .34 D . 3 8.焦点为()6,0,且与双曲线1222=-y x 有相同的渐近线的双曲线方程是 ( ) A .1241222=-y x B .1241222=-x y C .1122422=-x y D .1122422=-y x 7.9.过双曲线191622=-y x 左焦点F 1的弦AB 长为6,则2ABF ∆(F 2为右焦点)的周长是( ) A .28 B .22C .14D .12 10.已知双曲线方程为1422=-y x ,过P (1,0)的直线L 与双曲线只有一个公共点,则L 的条数共有( )A .4条B .3条C .2条D .1条二、填空题(本题共4小题,每小题6分,共24分)11.双曲线)0,0(12222>>=-b a b y a x 的一条渐近线方程为y=x 34,则离心率为_______ 12.双曲线的一个焦点为F ,虚轴一个端点为B ,若直线FB 与该双曲线一渐近线垂直,求离心率为____________13.直线1+=x y 与双曲线13222=-y x 相交于B A ,两点,则AB =__________________. 14.过点)1,3(-M 且被点M 平分的双曲线1422=-y x 的弦所在直线方程为 15.动点P 与点1(0,5)F -与点2(0,5)F 满足126PF PF -=,则点P 的轨迹方程为。
双曲线专题 (优秀经典练习题及答案详解)
双曲线专题一、学习目标:1.理解双曲线的定义;2.熟悉双曲线的简单几何性质;3.能根据双曲线的定义和几何性质解决简单实际题目.二、知识点梳理定 义1、到两个定点1F 与2F 的距离之差的绝对值等于定长(小于21F F )的点的轨迹2、到定点F 与到定直线l 的距离之比等于常数()1>e ee (>1)的点的轨迹标准方程-22a x 22b y =1()0,0>>b a -22a y 22bx =1()0,0>>b a 图 形性质范围a x ≥或a x -≤,R y ∈R x ∈,a y ≥或a y -≤对称性 对称轴: 坐标轴 ;对称中心: 原点渐近线x a by ±=x b a y ±=顶点 坐标 ()0,1a A -,()0,2a A ()b B -,01,()b B ,02 ()a A -,01,()a A ,02()0,1b B -,()0,2b B焦点 ()0,1c F -,()0,2c F()c F -,01,()c F ,02轴 实轴21A A 的长为a 2 虚轴21B B 的长为b 2离心率1>=ace ,其中22b a c += 准线准线方程是c a x 2±=准线方程是ca y 2±=三、课堂练习1、双曲线方程为2221x y -=,则它的右焦点坐标为( )A 、2,02⎛⎫ ⎪ ⎪⎝⎭B 、5,02⎛⎫⎪ ⎪⎝⎭C 、6,02⎛⎫⎪ ⎪⎝⎭D 、()3,01.解析:C2.设椭圆C 1的离心率为,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )A . ﹣=1B .﹣=1C .﹣=1D .﹣=12.解析A :在椭圆C 1中,由,得椭圆C 1的焦点为F 1(﹣5,0),F 2(5,0),曲线C 2是以F 1、F 2为焦点,实轴长为8的双曲线, 故C 2的标准方程为:﹣=1,故选A .3.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( ) A.14 B.35 C.34 D.453.解析C :依题意得a =b =2,∴c =2. ∵|PF 1|=2|PF 2|,设|PF 2|=m ,则|PF 1|=2m .又|PF 1|-|PF 2|=22=m . ∴|PF 1|=42,|PF 2|=2 2. 又|F 1F 2|=4,∴cos ∠F 1PF 2=422+222-422×42×22=34.故选C.4.已知双曲线的两个焦点为F 1(﹣,0)、F 2(,0),P 是此双曲线上的一点,且PF 1⊥PF 2,|PF 1|•|PF 2|=2,则该双曲线的方程是( ) A.﹣=1 B.﹣=1 C.﹣y 2=1D.x 2﹣=14.解析C :解:设双曲线的方程为﹣=1. 由题意得||PF 1|﹣|PF 2||=2a ,|PF 1|2+|PF 2|2=(2)2=20.又∵|PF 1|•|PF 2|=2, ∴4a 2=20﹣2×2=16 ∴a 2=4,b 2=5﹣4=1.所以双曲线的方程为﹣y 2=1.故选C .5.已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1B.x 25-y 220=1C.x 280-y 220=1D.x 220-y 280=1 5.解析A :设焦距为2c ,则得c =5.点P (2,1)在双曲线的渐近线y =±ba x 上,得a =2b .结合c=5,得4b 2+b 2=25, 解得b 2=5,a 2=20,所以双曲线方程为x 220-y 25=1. 6.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( )A. 2 B .2 2 C .4 D .86.解析C :设等轴双曲线方程为x 2-y 2=a 2,根据题意,得抛物线的准线方程为x =-4,代入双曲线的方程得16-y 2=a 2,因为|AB |=43,所以16-(23)2=a 2,即a 2=4,所以2a =4,所以选C. 7.平面直角坐标系xOy 中,已知双曲线x 24-y 212=1上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为________.7.解析:双曲线的右焦点(4,0),点M (3,15)或(3,-15),则点M 到此双曲线的右焦点的距离为4.8.以知F 是双曲线221412x y -=的左焦点,(1,4),A P 是双曲线右支上的动点,则PF PA + 的最小值为 。
双曲线经典练习题总结(带答案)
双曲线经典练习题总结(带答案)一、选择题1.以椭圆x 216+y 29=1的顶点为顶点,离心率为2的双曲线方程为( C )A .x 216-y 248=1B .y 29-x 227=1C .x 216-y 248=1或y 29-x 227=1D .以上都不对[解析] 当顶点为(±4,0)时,a =4,c =8,b =43,双曲线方程为x 216-y 248=1;当顶点为(0,±3)时,a =3,c =6,b =33,双曲线方程为y 29-x 227=1.2.双曲线2x 2-y 2=8的实轴长是( C ) A .2 B .22 C .4 D .42[解析] 双曲线2x 2-y 2=8化为标准形式为x 24-y 28=1,∴a =2,∴实轴长为2a =4.3.(全国Ⅱ文,5)若a >1,则双曲线x 2a 2-y 2=1的离心率的取值范围是( C )A .(2,+∞)B .(2,2 )C .(1,2)D .(1,2)[解析] 由题意得双曲线的离心率e =a 2+1a. ∴c 2=a 2+1a 2=1+1a2.∵a >1,∴0<1a 2<1,∴1<1+1a2<2,∴1<e < 2.故选C .4.(2018·全国Ⅲ文,10)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,则点(4,0)到C的渐近线的距离为( D ) A .2 B .2 C .322D .22[解析] 由题意,得e =ca=2,c 2=a 2+b 2,得a 2=b 2.又因为a >0,b >0,所以a =b ,渐近线方程为x ±y =0,点(4,0)到渐近线的距离为42=22, 故选D .5.(2019·全国Ⅲ卷理,10)双曲线C :x 24-y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若|PO |=|PF |,则△PFO 的面积为( A ) A .324B .322C .22D .32[解析] 双曲线x 24-y 22=1的右焦点坐标为(6,0),一条渐近线的方程为y =22x ,不妨设点P 在第一象限,由于|PO |=|PF |,则点P 的横坐标为62,纵坐标为22×62=32,即△PFO 的底边长为6,高为32,所以它的面积为12×6×32=324.故选A . 6.若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则C 的离心率为( A ) A .2 B .3 C .2D .233[解析] 设双曲线的一条渐近线方程为y =ba x ,圆的圆心为(2,0),半径为2,由弦长为2得出圆心到渐近线的距离为22-12= 3.根据点到直线的距离公式得2b a 2+b 2=3,解得b 2=3a 2. 所以C 的离心率e =ca =c 2a 2=1+b 2a2=2.故选A . 二、填空题7.(2019·江苏卷,7)在平面直角坐标系xOy 中,若双曲线x 2-y 2b 2=1(b >0)经过点(3,4),则该双曲线的渐近线方程是 [解析] 因为双曲线x 2-y 2b 2=1(b >0)经过点(3,4),所以9-16b 2=1(b >0),解得b =2,即双曲线方程为x 2-y 22=1,其渐近线方程为y =±2x .8.双曲线x 24+y 2k =1的离心率e ∈(1,2),则k 的取值范围是__-12<k <0__.[解析] 双曲线方程可变形为x 24-y 2-k =1,则a 2=4,b 2=-k ,c 2=4-k ,e =ca =4-k2.又因为e ∈(1,2),即1<4-k2<2,解得-12<k <0. 三、解答题9.(1)求与椭圆x 29+y 24=1有公共焦点,且离心率e =52的双曲线的方程;(2)求实轴长为12,离心率为54的双曲线的标准方程.[解析] (1)设双曲线的方程为x 29-λ-y 2λ-4=1(4<λ<9),则a 2=9-λ,b 2=λ-4,∴c 2=a 2+b 2=5,∵e =52,∴e 2=c 2a 2=59-λ=54,解得λ=5, ∴所求双曲线的方程为x 24-y 2=1.(2)由于无法确定双曲线的焦点在x 轴上还是在y 轴上,所以可设双曲线标准方程为x 2a 2-y 2b 2=1(a >0,b >0)或y 2a 2-x 2b 2=1(a >0,b >0).由题设知2a =12,c a =54且c 2=a 2+b 2,∴a =6,c =152,b 2=814.∴双曲线的标准方程为x 236-y 2814=1或y 236-x 2814=1.B 级 素养提升一、选择题1.如果椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,那么双曲线x 2a 2-y 2b 2=1的离心率为( A )A .52B .54C .2D .2[解析] 由已知椭圆的离心率为32,得a 2-b 2a 2=34,∴a 2=4b 2.∴a 2+b 2a 2=5b 24b 2=54.∴双曲线的离心率e =52. 2.双曲线x 2-y 2m =1的离心率大于2的充分必要条件是( C )A .m >12B .m ≥1C .m >1D .m >2[解析] 本题考查双曲线离心率的概念,充分必要条件的理解. 双曲线离心率e =1+m >2,所以m >1,选C .3.(多选题)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1、F 2是C 的两个焦点.若MF 1→·MF 2→<0,则y 0的取值可能是( BC ) A .-1 B .0 C .12D .1[解析] 由双曲线方程可知F 1(-3,0)、F 2(3,0), ∵MF 1→·MF 2→<0,∴(-3-x 0)(3-x 0)+(-y 0)(-y 0)<0, 即x 20+y 20-3<0,∴2+2y 20+y 20-3<0,y 20<13, ∴-33<y 0<33,故选BC . 4.(多选题)将离心率为e 1的双曲线C 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线C 2,则( BD ) A .对任意的a ,b ,e 1>e 2 B .当a <b 时,e 1>e 2 C .对任意的a ,b ,e 1<e 2 D .当a >b 时,e 1<e 2[解析] 由条件知e 21=c 2a 2=1+b 2a2,e 22=1+⎝ ⎛⎭⎪⎫b +m a +m 2,当a >b 时,b +m a +m >ba ,∴e 21<e 22.∴e 1<e 2.当a <b 时,b +m a +m <ba ,∴e 21>e 22.∴e 1>e 2.所以,当a >b 时,e 1<e 2;当a <b 时,e 1>e 2. 二、填空题5.(2019·课标全国Ⅰ理,16)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A →=AB →,F 1B →·F 2B →=0,则C 的离心率为__2__.[解析] 双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±ba x ,∵F 1B →·F 2B →=0,∴F 1B ⊥F 2B ,∴点B 在⊙O :x 2+y 2=c 2上,如图所示,不妨设点B 在第一象限,由⎩⎪⎨⎪⎧y =b ax x 2+y 2=c2a 2+b 2=c 2x >0,得点B (a ,b ),∵F 1A →=AB →,∴点A 为线段F 1B 的中点,∴A ⎝⎛⎭⎪⎫a -c 2,b 2,将其代入y =-b a x 得b 2=⎝⎛⎭⎫-b a ×a -c 2.解得c =2a ,故e =ca=2.6.已知双曲线x 29-y 2a =1的右焦点为(13,0),则该双曲线的渐近线方程为__y =±23x __.[解析] 由已知得9+a =13,即a =4,故所求双曲线的渐近线为y =±23x .三、解答题7.焦点在x 轴上的双曲线过点P (42,-3),且点Q (0,5)与两焦点的连线互相垂直,求此双曲线的标准方程.[解析] 因为双曲线焦点在x 轴上,所以设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),F 1(-c,0)、F 2(c,0).因为双曲线过点P (42,-3), 所以32a 2-9b2=1.①又因为点Q (0,5)与两焦点的连线互相垂直, 所以QF 1→·QF 2→=0,即-c 2+25=0. 所以c 2=25.② 又c 2=a 2+b 2,③所以由①②③可解得a 2=16或a 2=50(舍去). 所以b 2=9,所以所求的双曲线的标准方程是x 216-y 29=1. 8.(2020·云南元谋一中期中)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F (c,0).(1)若双曲线的一条渐近线方程为y =x 且c =2,求双曲线的方程;(2)以原点O 为圆心,c 为半径作圆,该圆与双曲线在第一象限的交点为A ,过A 作圆的切线,其斜率为-3,求双曲线的离心率.[解析] (1)由题意,ba =1,c =2,a 2+b 2=c 2,∴a 2=b 2=2,∴双曲线方程为x 22-y 22=1.(2)由题意,设A (m ,n ),则k OA =33,从而n =33m ,m 2+n 2=c 2,∴A (32c ,c 2), 将A (32c ,c 2)代入双曲线x 2a 2-y 2b 2=1得:3c 24a 2-c 24b 2=1,∴c 2(3b 2-a 2)=4a 2b 2,且c 2=a 2+b 2,∴(a 2+b 2)(3b 2-a 2)=4a 2b 2, ∴3b 4-2a 2b 2-a 4=0,∴3(b a )4-2(ba )2-1=0,∴b 2a 2=1从而e 2=1+b 2a 2=2,∴e = 2.。
双曲线经典练习题总结(带答案)
双曲线经典练习题总结(带答案)一、选择题1.以椭圆x 216+y 29=1的顶点为顶点,离心率为2的双曲线方程为( C )A .x 216-y 248=1B .y 29-x 227=1C .x 216-y 248=1或y 29-x 227=1D .以上都不对[解析] 当顶点为(±4,0)时,a =4,c =8,b =43,双曲线方程为x 216-y 248=1;当顶点为(0,±3)时,a =3,c =6,b =33,双曲线方程为y 29-x 227=1.2.双曲线2x 2-y 2=8的实轴长是( C ) A .2 B .22 C .4 D .42[解析] 双曲线2x 2-y 2=8化为标准形式为x 24-y 28=1,∴a =2,∴实轴长为2a =4.3.(全国Ⅱ文,5)若a >1,则双曲线x 2a 2-y 2=1的离心率的取值范围是( C )A .(2,+∞)B .(2,2 )C .(1,2)D .(1,2)[解析] 由题意得双曲线的离心率e =a 2+1a. ∴c 2=a 2+1a 2=1+1a2.∵a >1,∴0<1a 2<1,∴1<1+1a2<2,∴1<e < 2.故选C .4.(2018·全国Ⅲ文,10)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,则点(4,0)到C的渐近线的距离为( D ) A .2 B .2 C .322D .22[解析] 由题意,得e =ca=2,c 2=a 2+b 2,得a 2=b 2.又因为a >0,b >0,所以a =b ,渐近线方程为x ±y =0,点(4,0)到渐近线的距离为42=22, 故选D .5.(2019·全国Ⅲ卷理,10)双曲线C :x 24-y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若|PO |=|PF |,则△PFO 的面积为( A ) A .324B .322C .22D .32[解析] 双曲线x 24-y 22=1的右焦点坐标为(6,0),一条渐近线的方程为y =22x ,不妨设点P 在第一象限,由于|PO |=|PF |,则点P 的横坐标为62,纵坐标为22×62=32,即△PFO 的底边长为6,高为32,所以它的面积为12×6×32=324.故选A . 6.若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则C 的离心率为( A ) A .2 B .3 C .2D .233[解析] 设双曲线的一条渐近线方程为y =ba x ,圆的圆心为(2,0),半径为2,由弦长为2得出圆心到渐近线的距离为22-12= 3.根据点到直线的距离公式得2b a 2+b 2=3,解得b 2=3a 2. 所以C 的离心率e =ca =c 2a 2=1+b 2a2=2.故选A . 二、填空题7.(2019·江苏卷,7)在平面直角坐标系xOy 中,若双曲线x 2-y 2b 2=1(b >0)经过点(3,4),则该双曲线的渐近线方程是 [解析] 因为双曲线x 2-y 2b 2=1(b >0)经过点(3,4),所以9-16b 2=1(b >0),解得b =2,即双曲线方程为x 2-y 22=1,其渐近线方程为y =±2x .8.双曲线x 24+y 2k =1的离心率e ∈(1,2),则k 的取值范围是__-12<k <0__.[解析] 双曲线方程可变形为x 24-y 2-k =1,则a 2=4,b 2=-k ,c 2=4-k ,e =ca =4-k2.又因为e ∈(1,2),即1<4-k2<2,解得-12<k <0. 三、解答题9.(1)求与椭圆x 29+y 24=1有公共焦点,且离心率e =52的双曲线的方程;(2)求实轴长为12,离心率为54的双曲线的标准方程.[解析] (1)设双曲线的方程为x 29-λ-y 2λ-4=1(4<λ<9),则a 2=9-λ,b 2=λ-4,∴c 2=a 2+b 2=5,∵e =52,∴e 2=c 2a 2=59-λ=54,解得λ=5, ∴所求双曲线的方程为x 24-y 2=1.(2)由于无法确定双曲线的焦点在x 轴上还是在y 轴上,所以可设双曲线标准方程为x 2a 2-y 2b 2=1(a >0,b >0)或y 2a 2-x 2b 2=1(a >0,b >0).由题设知2a =12,c a =54且c 2=a 2+b 2,∴a =6,c =152,b 2=814.∴双曲线的标准方程为x 236-y 2814=1或y 236-x 2814=1.B 级 素养提升一、选择题1.如果椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,那么双曲线x 2a 2-y 2b 2=1的离心率为( A )A .52B .54C .2D .2[解析] 由已知椭圆的离心率为32,得a 2-b 2a 2=34,∴a 2=4b 2.∴a 2+b 2a 2=5b 24b 2=54.∴双曲线的离心率e =52. 2.双曲线x 2-y 2m =1的离心率大于2的充分必要条件是( C )A .m >12B .m ≥1C .m >1D .m >2[解析] 本题考查双曲线离心率的概念,充分必要条件的理解. 双曲线离心率e =1+m >2,所以m >1,选C .3.(多选题)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1、F 2是C 的两个焦点.若MF 1→·MF 2→<0,则y 0的取值可能是( BC ) A .-1 B .0 C .12D .1[解析] 由双曲线方程可知F 1(-3,0)、F 2(3,0), ∵MF 1→·MF 2→<0,∴(-3-x 0)(3-x 0)+(-y 0)(-y 0)<0, 即x 20+y 20-3<0,∴2+2y 20+y 20-3<0,y 20<13, ∴-33<y 0<33,故选BC . 4.(多选题)将离心率为e 1的双曲线C 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线C 2,则( BD ) A .对任意的a ,b ,e 1>e 2 B .当a <b 时,e 1>e 2 C .对任意的a ,b ,e 1<e 2 D .当a >b 时,e 1<e 2[解析] 由条件知e 21=c 2a 2=1+b 2a2,e 22=1+⎝ ⎛⎭⎪⎫b +m a +m 2,当a >b 时,b +m a +m >ba ,∴e 21<e 22.∴e 1<e 2.当a <b 时,b +m a +m <ba ,∴e 21>e 22.∴e 1>e 2.所以,当a >b 时,e 1<e 2;当a <b 时,e 1>e 2. 二、填空题5.(2019·课标全国Ⅰ理,16)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A →=AB →,F 1B →·F 2B →=0,则C 的离心率为__2__.[解析] 双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±ba x ,∵F 1B →·F 2B →=0,∴F 1B ⊥F 2B ,∴点B 在⊙O :x 2+y 2=c 2上,如图所示,不妨设点B 在第一象限,由⎩⎪⎨⎪⎧y =b ax x 2+y 2=c2a 2+b 2=c 2x >0,得点B (a ,b ),∵F 1A →=AB →,∴点A 为线段F 1B 的中点,∴A ⎝⎛⎭⎪⎫a -c 2,b 2,将其代入y =-b a x 得b 2=⎝⎛⎭⎫-b a ×a -c 2.解得c =2a ,故e =ca=2.6.已知双曲线x 29-y 2a =1的右焦点为(13,0),则该双曲线的渐近线方程为__y =±23x __.[解析] 由已知得9+a =13,即a =4,故所求双曲线的渐近线为y =±23x .三、解答题7.焦点在x 轴上的双曲线过点P (42,-3),且点Q (0,5)与两焦点的连线互相垂直,求此双曲线的标准方程.[解析] 因为双曲线焦点在x 轴上,所以设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),F 1(-c,0)、F 2(c,0).因为双曲线过点P (42,-3), 所以32a 2-9b2=1.①又因为点Q (0,5)与两焦点的连线互相垂直, 所以QF 1→·QF 2→=0,即-c 2+25=0. 所以c 2=25.② 又c 2=a 2+b 2,③所以由①②③可解得a 2=16或a 2=50(舍去). 所以b 2=9,所以所求的双曲线的标准方程是x 216-y 29=1. 8.(2020·云南元谋一中期中)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F (c,0).(1)若双曲线的一条渐近线方程为y =x 且c =2,求双曲线的方程;(2)以原点O 为圆心,c 为半径作圆,该圆与双曲线在第一象限的交点为A ,过A 作圆的切线,其斜率为-3,求双曲线的离心率.[解析] (1)由题意,ba =1,c =2,a 2+b 2=c 2,∴a 2=b 2=2,∴双曲线方程为x 22-y 22=1.(2)由题意,设A (m ,n ),则k OA =33,从而n =33m ,m 2+n 2=c 2,∴A (32c ,c 2), 将A (32c ,c 2)代入双曲线x 2a 2-y 2b 2=1得:3c 24a 2-c 24b 2=1,∴c 2(3b 2-a 2)=4a 2b 2,且c 2=a 2+b 2,∴(a 2+b 2)(3b 2-a 2)=4a 2b 2, ∴3b 4-2a 2b 2-a 4=0,∴3(b a )4-2(ba )2-1=0,∴b 2a 2=1从而e 2=1+b 2a 2=2,∴e = 2.。
高二数学双曲线练习题及答案
高二数学双曲线练习题及答案下面是一份高二数学双曲线练习题及答案的文章,请你仔细阅读:高二数学双曲线练习题及答案双曲线是数学中重要的曲线之一,在高二数学学习中也占有重要地位。
为了帮助同学们更好地掌握双曲线知识,我们提供一些练习题以及答案,供同学们进行巩固和练习。
题目一:已知双曲线C的方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,焦点F在y轴上,顶点坐标为(0, a),离心率为 $\frac{1}{\sqrt{2}}$,求双曲线C的方程。
答案一:由双曲线的性质可知,焦点到顶点的距离与焦点到曲线上一点的距离之比等于离心率。
设F的坐标为(0, c),则离心率为:$\frac{CF}{Ca}=\frac{1}{\sqrt{2}}$由焦点的坐标可得c=a(1/√2)由离心率的定义可得:$\sqrt{a^2-c^2}=\frac{a}{\sqrt{2}}$解得a^2=4c^2。
将焦点的坐标带入,得到方程:$\frac{x^2}{a^2}-\frac{y^2}{4c^2}=1$题目二:已知双曲线C的一支渐近线方程为y=3x-2,焦点的坐标为(1,0),求双曲线C的方程。
答案二:由双曲线的性质可得,双曲线的渐近线的斜率为圆心到焦点连线的斜率。
设焦点坐标为(F, 0),则斜率为:k = tanα,其中α为双曲线的倾斜角又由渐近线y=3x-2可得,圆心到焦点连线的斜率为3因此,k=3=tanα,则α为60度,倾斜角为60度。
由焦点坐标可知,焦点在(x1, y1)上,即(1,0)由双曲线的方程性质可得,双曲线的公式为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$根据双曲线标准方程,我们可以将双曲线方程改写为:$\frac{(y-y1)^2}{a^2}-\frac{(x-x1)^2}{b^2}=1$代入焦点坐标(1,0)得到:$\frac{y^2}{a^2}-\frac{(x-1)^2}{b^2}=1$将双曲线的倾斜角代入,可得:$\frac{y^2}{a^2}-\frac{(x-1)^2}{b^2}-\frac{(y-x)^2}{a^2}=1$化简得:$\frac{2x^2+2xy+2x+2y^2-4y}{a^2}=0$这样得到了双曲线C的方程。
高二数学双曲线试题答案及解析
高二数学双曲线试题答案及解析1.双曲线3x-y=9的渐近线方程是 .【答案】y=±x【解析】根据题意,首先将方程变形为标准式方程,即由双曲线3x-y=9,得到,那么可知 ,故可知答案为y=±x【考点】双曲线的几何性质点评:本题主要考查利用双曲线的方程以及双曲线的有关性质2.已知焦点在轴上的双曲线的渐近线方程是,则双曲线的离心率是()A.B.C.D.【答案】B【解析】因为双曲线的焦点在轴上,所以,所以双曲线的离心率是:。
【考点】双曲线的简单性质;双曲线离心率的求法。
点评:求圆锥曲线的离心率是常见题型,常用方法:①直接利用公式;②利用变形公式:(椭圆)和(双曲线)③根据条件列出关于a、b、c的关系式,两边同除以a,利用方程的思想,解出。
3.设双曲线的一个焦点为,虚轴的一个端点为,如果直线与该双曲线的一条渐进线垂直,那么此双曲线的离心率为()A.B.C.D.【答案】D【解析】设该双曲线方程为=1(a>0,b>0),可得它的渐近线方程为y=±x,焦点为F(c,0),点B(0,b)是虚轴的一个端点∴直线FB的斜率为k=FB∵直线FB与直线y=x互相垂直,∴-×=-1,得b2=ac∵b2=c2-a2,∴c2-a2=ac,两边都除以a2,整理得e2-e-1=0解此方程,得e=,∵双曲线的离心率e>1,∴e=,故选D。
【考点】本题主要考查双曲线的标准方程与简单几何性质等知识。
点评:本题给出双曲线的焦点与虚轴一端的连线与渐近线垂直,求它的离心率,着重考查了双曲线的标准方程与简单几何性质等知识,属于中档题.4.已知点、,直线与相交于点,且它们的斜率之积为,则点的轨迹方程为()A.B.C.D.【答案】B【解析】设M(x,y),则,所以.5.已知F1、F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是 .【答案】【解析】:解:依题意可知双曲线的焦点为F1(-c,0),F2(c,0)∴F1F2=2c∴三角形高是 3 cM(0, c)所以中点N(-, c)代入双曲线方程得b2c2-3a2c2=4a2b2再结合a,b,c关系得到离心率为6.双曲线的渐近线方程是()A.B.C.D.【答案】A【解析】中令等号右边为0,得7.已知双曲线的焦点为F1、F2,点M在双曲线上,且MF1x轴,则F1到直线F2M的距离为 ( )A.;B.;C.;D.【答案】C【解析】MF1x轴,8.双曲线的渐近线方程为y=,则双曲线的离心率为。
高二双曲线 - (答案)
第6讲双曲线随堂演练巩固1.已知双曲线2212yxa-=的一条渐近线为y=,则实数a的值为( )B.2D.4【答案】D【解析】由题意,=所以a=4.2.下列双曲线中,离心率为32的是( )A.2212x y-= B.2212yx-=C.22145yx-= D.22154yx-=【答案】C【解析】选项A1a b c,==,==所以e=ca==;选项B1a b c,=,===所以e=ca=选项C23a b c,=,===,所以32cea==;选项D23a b c,==,==,所以e=ca=.3.已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB的中点为N(-12,-15),则E的方程为( )A.22136yx-= B.22145yx-=C.22163yx-= D.22154yx-=【答案】B【解析】设双曲线的标准方程为22221(0yx aa b-=>,b>0),由题意知2239c a b=,+=,设1122()()A x yB x y,,,,则有:22112222222211x ya bx ya b⎧-=,⎪⎪⎨⎪-=,⎪⎩两式作差得:22212122221212()124()155y y b x x b bx x a y y a a-+-===,-+-又直线AB的斜率是1501123--=,--所以将2245b a=代入229a b+=得2245a b=,=.所以双曲线的标准方程是22145y x -=. 4.(2011山东高考,文15)已知双曲线22221(0y x a a b-=>,b >0)和椭圆221169y x +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .【答案】22143y x -= 【解析】由题意知22169a b +=-,即227a b +=, ①2=即22274a b a+=, ② 由①②得2243a b =,=.∴双曲线方程为22143y x -=.课后作业夯基 基础巩固1.(2011安徽高考,文3)双曲线2228x y -=的实轴长是( )A.2B. C.4D.【答案】C【解析】双曲线方程2228x y -=化为标准形式为24x -218y =,∴24a =.∴a =2.∴实轴长2a =4.2.已知双曲线的方程为22221(0y x a a b-=>,b >0),点A,B 在双曲线的右支上,线段AB 经过双曲线的右焦点2F ,|AB |1m F =,为左焦点,则△1ABF 的周长为( )A.2a +2mB.4a +2mC.a +mD.2a +4m【答案】B【解析】由双曲线的定义可知 |1AF |-|2AF |=2a ,|1BF |-|2BF |=2a , ∴|1AF |+|1BF |-(|2AF |+|2BF |)=4a . 又∵|2AF |+|2BF |=|AB |=m ,∴△1ABF 的周长为|1AF |+|1BF |+|AB |=4a +2m .3.双曲线221mx y +=的虚轴长是实轴长的2倍,则m 等于( ) A.14-B.-4C.4D.14【答案】A【解析】∵221mx y +=可化为2211x y +=, 即2211x y -=,-∴2211a b m =,=-. 由题意22(2)b a ,=⋅,∴224b a =,即14m -=.∴14m =-.4.已知双曲线与椭圆221925y x +=的焦点相同,且它们的离心率之和等于145,则双曲线的方程为( )A.221124y x -= B.2214y x -= C.221412y x -= D.22112x y -= 【答案】C【解析】由于在椭圆221925y x +=中22259a b ,=,=,所以216c =,即c =4.又椭圆的焦点在y 轴上,所以其焦点坐标为(0,4)±,离心率45e =.根据题意知,双曲线的焦点也应在y 轴上,坐标为(04),±,且其离心率等于144255-=.故设双曲线的方程为22221(0y x a a b -=>,b >0),且c =4,所以a =12c =22222412a b c a ,=,=-=,于是双曲线的方程为221412y x -=.5.(2012山东临沂月考)若椭圆22221(y x a b a b +=>>0)的离心率为则双曲线22221y x a b-=的渐近线方程为( ) A.12y x =±B.2y x =±C.4y x =±D.14y x =±【答案】A=所以224a b =. 故双曲线的方程可化为222214y x b b-=, 故其渐近线方程为12y x =±.6.若在双曲线22221(0y x a a b-=>,b >0)的右支上到原点O 和右焦点F 的距离相等的点有两个,则双曲线的离心率的取值范围是( )A.e >B.1e <<C.eD.1<e <2 【答案】C【解析】由于到原点O 和右焦点F 的距离相等的点在线段OF 的垂直平分线上,其方程为2c x =,依题意,直线2c x =与双曲线的右支有两个交点,故应满足2c a >,即2c a >,得e >2,选C.7.双曲线22221(0y x a a b-=>,b >0)的离心率是2,则213b a +的最小值等于( )D.【答案】A【解析】依题意2c a =,所以2224a b a+=,得223b a =,于是221311333b a a a a a ++==+≥=当且仅当13a a=,即a ,故213b a+ 8.已知双曲线22221(0y x a a b-=>,b >0)的右焦点为F ,若过点F 且倾斜角为60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A.(1,2)B.(-1,2)C.(2),+∞D.[2),+∞ 【答案】D 【解析】过F 的直线l 与双曲线的右支有且只有一个交点,则其斜率为正的渐近线的倾斜角应不小于直线l 的倾斜角,已知直线l 的倾斜角是60,从而b a ≥故2c a≥.9.已知过点P (-2,0)的双曲线C 与椭圆221259y x +=有相同的焦点,则双曲线C 的渐近线方程是 .【答案】y =【解析】由题意,双曲线C 的焦点在x 轴上且为12(40)(40)F F -,,,,∴c =4. 又双曲线过点P (-2,0),∴a =2.∴b ==∴其渐近线方程为b y x a=±=.10.已知圆C:22x y +-6x -4y +8=0.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 .【答案】221412y x -= 【解析】圆C:22648x y x y +--+=0与y 轴没有交点.由20680y x x =⇒-+=,得圆C 与坐标轴的交点分别为(2,0),(4,0),则a 22412c b =,=,=,所以双曲线的标准方程为221412y x -=. 11.在直角坐标系xOy 中,过双曲线22221(0y x a a b-=>,b >0)的左焦点F 作圆222x y a +=的一条切线(切点为T )交双曲线右支于点P ,若M 为FP 的中点,则|OM |-|MT |= .【答案】b -a【解析】设双曲线的右焦点为1F ,连接1PF ,在△1PFF 中,M 、O 分别是PF 、1FF 的中点,所以|OM |-|MT |=12|1PF |-1(2|PF |-|TF |1)(2=-|PF |-|1PF |)+|TF |=b -a .12.若双曲线的渐近线方程为34y x =±,求双曲线的离心率.【解】设双曲线的实半轴长、虚半轴长、半焦距、离心率分别为a 、b 、c 、e .(1)若双曲线的焦点在x 轴上,则34b a =,b =34a ,c =54a ==.故5544ac e a a ===.(2)若双曲线的焦点在y 轴上,则34a b =,b =43a ,c =5a ==.故5353ac e a a ===.综上可知,双曲线的离心率为54或53.13.如图所示,一双曲线的中心在坐标原点,焦点在x 轴上1F ,、2F 分别为其左、右焦点.双曲线的左支上有一点123P F PF π,∠=,且△12PF F 的面积为又双曲线的离心率为2,求该双曲线的方程.【解】设此双曲线方程为22221(0yx a a b-=>,b >0),1200(0)(0)()F c F c P x y -,,,,,.在△12PF F 中,由余弦定理,得|12F F |2=|1PF |2+|2PF |22-|1PF |⋅|2PF |⋅c os 3π=(|1PF |-|2PF |2)+|1PF |⋅|2PF |, 即2244c a =+|1PF |⋅|2PF |.又∵12PF F S=∴1|1PF |⋅|2PF |⋅sin3π= ∴|1PF |⋅|2PF |=8.∴22448c a =+,即22b =. 又∵2c e a ==,∴223a =.∴双曲线的方程为223122y x -=. 14.已知双曲线C:221(01)1y x λλλ-=<<-的右焦点为B,过点B 作直线交双曲线C 的右支于M 、N 两点,试确定λ的范围,使0OM ON ⋅=,点O 为坐标原点. 【解】设1122()()M x y N x y ,,,.由已知易求B(1,0),①当MN 垂直于x 轴时,MN 的方程为x =1, 设000(1)(1)(0)M y N y y ,,,->, 由0OM ON ⋅=,得01y =, ∴M (1,1),N (1,-1).又M (1,1),N (1,-1)在双曲线上,∴2111101λλλλλ-=⇒+-=⇒=-.∵01λ<<,∴λ=②当MN 不垂直于x 轴时,设MN 的方程为y =k(x -1).由 2211(1)y x y k x λλ⎧-=,⎪-⎨⎪=-,⎩得2222[(1)]2(1)(1)()0k x k x k λλλλλ--+---+=. 由题意知:2(1)0k λλ--≠,∴221212222(1)(1)()(1)(1)k k x x x x k k λλλλλλλ----++=,=----. 于是22212122(1)(1)(1)k y y k x x k λλλ=--=,-- ∵0OM ON ⋅=,且M 、N 在双曲线右支上.∴ 12121212000x x y y x x x x +=⎧⎪+>⎨⎪>⎩ ⇒ 222(1)11k k λλλλλλ-⎧=⎪+-.⎨⎪>-⎩⇒ 22(1)1110λλλλλλλλ-⎧>⎪-+-⎨⎪+->⎩23λ⇒<<.由①②,23λ≤<.拓展延伸15.已知双曲线22221(0y x a a b-=>,b >0)的离心率e直线l 过A(a ,0)、B(0,-b )两点,原点O 到l.(1)求双曲线的方程;(2)过点B 作直线m 交双曲线于M 、N 两点,若OM ⋅ON =-23,求直线m 的方程.【解】(1)依题意,直线l 的方程为1yx ab+=,-即bx -ay -ab =0,由原点O 到直线lab ==.又c e ==∴1b a =,=故所求双曲线的方程为2213x y -=.(2)显然直线m 不与x 轴垂直,设m 的方程为y =k x -1,则点M 、N 的坐标11()x y ,、22()x y ,是方程组22113y kx x y =-,⎧⎪⎨-=⎪⎩ 的解.消去y ,得22(13)660k x kx -+-=, ① 依题设2130k ,-≠,由根与系数的关系,知12x x +1222663131k x x k k =,=,--112212()()OM ON x y x y x x ⋅=,⋅,=+12y y =12x x +21212(1)(1)(1)kx kx k x x --=+-12()k x x ++1=22226(1)63131k k k k +-+--1=2631k +- 1. ∵23OM ON ⋅=-,∴2612331k +=-,-即12k =±. 当12k =±时,方程①有两个不等的实数根,故直线m 的方程为112y x =-或y =112x --.。
高二数学双曲线练习及解析
高二数学双曲线练习及解析数学双曲线练习及解析11焦点在x轴上。
实轴是10,虚轴是82焦点在y轴上,焦距是10,虚轴长是8.3偏心率e=根部2,通过点m-5,3解:1焦点在x轴上。
实轴是10,虚轴是8所以a=5,b=4,方程为:x^2/25-y^2/16=12焦点在y轴上,焦距为10,虚轴长度为8c=5,b=4a^2=c^2-b^2=25-16=9所以方程是y^2/9-x^2/16=13离心率e=根号2,经过点m-5,3设方程为x^2/A^2-y^2/b^2=125/a^2-9/b^2=1承兑交单=√2,c^2=a^2+b^2解得a^2=b^2=16所以方程为;x^2/16-y^2/16=1数学双曲线的实践与分析21焦点在x轴上,虚轴长为12,离心率为5/4?2.顶点之间的距离为6,渐近线方程为y=+3/2x或-3/2x?解:1设双曲方程为x^2/A^2-y^2/b^2=1A>0,b>0根据题意2b=12,∴b=6∴b^2=36∵e^2=c^2/a^2=a^2+b^2/a^2=a^2+36/a^2=25/16双曲线方程是x^2/64-y^2/36=12设双曲线方程为x^2/a^2-y^2/b^2=1a>0,b>0或者Y^2/A^2-x^2/b^2=1A>0,b>0∵顶点间的距离为6∴2a=6∴a=3∴a^2=9∵ 渐近线方程为y=±3/2x∴y=±b/ax=±3/2x或y=±a/bx=±3/2x——B=9/2‰B^2=81/4或B=2‰B^2=4双曲线方程为x^2/9-4y^2/81=1或y^2/9-x^2/4=1。
《双曲线》练习试题经典(含答案解析)
《双曲线》练习题一、选择题:1.已知焦点在x轴上的双曲线的渐近线方程是y=±4x,则该双曲线的离心率是(A)A.17B.15C.174 D.1542.中心在原点,焦点在x轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为,则双曲线方程为(B)A.x2﹣y2=1 B.x2﹣y2=2 C.x2﹣y2=D.x2﹣y2=3.在平面直角坐标系中,双曲线C过点P(1,1),且其两条渐近线的方程分别为2x+y=0和2x﹣y=0,则双曲线C的标准方程为(B)A.B.C.或D.4.1(a>b>01有相同的焦点,则椭圆的离心率为( A )A B C D5.已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(A)A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)6.设双曲线=1(0<a<b)的半焦距为c,直线l过(a,0)(0,b)两点,已知原点到直线l的距离为,则双曲线的离心率为(A)A.2 B.C.D.7的圆相切,则双曲线的离心率为( A )A B C D8.双曲线虚轴的一个端点为M,两个焦点为F1、F2,∠F1MF2=120°,则双曲线的离心率为(B)A.3B.62 C.63D.339.已知双曲线221(0,0)x ym nm n-=>>的一个焦点到一条渐近线的距离是2,一个顶点到它的一条渐近线的,则m等于( D )A .9B .4C .2D .,310.已知双曲线的两个焦点为F 1(-10,0)、F 2(10,0),M 是此双曲线上的一点,且满足12120,||||2,MF MF MF MF ==则该双曲线的方程是( A )A.x 29-y 2=1 B .x 2-y 29=1 C.x 23-y 27=1D.x 27-y 23=1 11.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( C )A .4 2B .83C .24D .4812.过双曲线x 2-y 2=8的左焦点F 1有一条弦PQ 在左支上,若|PQ |=7,F 2是双曲线的右焦点,则△PF 2Q 的周长是( C ) A .28 B .14-82 C .14+8 2D .8 213.已知双曲线﹣=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( D ) A .﹣=1B .﹣=1 C .﹣=1 D .﹣=114.设双曲线﹣=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以F 2为圆心,|F 1F 2|为半径的圆与双曲线在第一、二象限内依次交于A ,B 两点,若3|F 1B |=|F 2A |,则该双曲线的离心率是( C ) A . B .C .D .215.过双曲线1222=-y x 的右焦点作直线l 交双曲线于A 、B 两点,若|AB|=4,则这样的直线共有( C )条。
双曲线经典练习题总结(带答案)
双曲线经典练习题总结(带答案)1.选择题1.以椭圆x^2/169 + y^2/64 = 1的顶点为顶点,离心率为2的双曲线方程为C,当顶点为(±4,0)时,a=4,c=8,b=√(a^2+c^2)=4√5,双曲线方程为x^2/16 - y^2/20 = 1;当顶点为(0,±3)时,a=3,c=6,b=√(a^2+c^2)=3√5,双曲线方程为y^2/9 - x^2/5 = 1,所以答案为C。
2.双曲线2x^2 - y^2 = 8化为标准形式为x^2/4 - y^2/8 = 1,所以实轴长为2a = 4,答案为C。
3.若a>1,则双曲线2x^2/a^2 - y^2 = 1的离心率的取值范围是C。
由双曲线方程得离心率e = √(a^2+1)/a,所以c^2 =a^2+b^2 = a^2(a^2+1)/(a^2-1),代入离心率公式得√(a^2+1)/a = 2,解得a = 2,所以答案为C。
4.已知双曲线C:2x^2/a^2 - 2y^2/b^2 = 1(a>0,b>0)的离心率为2,则点(4,0)到C的渐近线的距离为D。
由双曲线方程得离心率e = √(a^2+b^2)/a = 2,所以b^2 = 3a^2,又因为点(4,0)到渐近线的距离为c/a,所以c^2 = a^2+b^2 = 4a^2,代入双曲线方程得4x^2/a^2 - 2y^2/3a^2 = 1,化简得y^2 = 6x^2/5,所以渐近线方程为y = ±√(6/5)x,代入点(4,0)得距离为2√5,所以答案为D。
5.双曲线C:x^2/4 - y^2/16 = 1的右焦点坐标为F(6,0),一条渐近线的方程为y = x,设点P在第一象限,由于|PO| = |PF|,则点P的横坐标为4,纵坐标为3,所以△PFO的底边长为6,高为3,面积为9,所以答案为A。
6.若双曲线C:2x^2/a^2 - 2y^2/b^2 = 1(a>0,b>0)的一条渐近线被圆(x-2)^2 + y^2 = 4所截得的弦长为2,则b^2 = a^2-4,圆心为(2,0),半径为2,设截弦的两个交点为P和Q,则PQ = 2,所以PQ的中点M在圆上,即M为(5/2,±√(3)/2),所以PM = √(a^2-25/4)±√(3)/2,由于PM = PQ/2 = 1,所以(a^2-25/4)+(3/4) = 1,解得a = √(29)/2,所以答案为B。
高二数学双曲线试题答案及解析
高二数学双曲线试题答案及解析1.已知抛物线的准线与双曲线交于A,B两点,点F为抛物线的焦点,若为直角三角形,则双曲线的离心率是A.B.C.2D.3【答案】B【解析】抛物线的准线方程,设,焦点,由于为直角三角形,,,所以得,,.【考点】双曲线的离心率.2.已知双曲线方程,则过点和双曲线只有一个交点的直线有________条.【答案】【解析】由双曲线方程可知它是焦点在轴上的等轴双曲线,直线为它的渐近线,点在两个顶点之间,过可作与渐近线平行的两条直线,它们与此双曲线都各有一个公共点,但它们与双曲线是相交关系,此外过还可以作两条与双曲线右支都相切的直线,因此过点和双曲线只有一个交点的直线共有条,要注意两条是相交,另两条是相切,关注双曲线渐近线的特殊作用.【考点】直线与双曲线的位置关系.3.已知F是双曲线的左焦点,A为右顶点,上下虚轴端点B、C,若FB交CA于D,且,则此双曲线的离心率为().A . B. C. D.【答案】B.【解析】如图,由已知可得直线FB的方程为:,直线AC的方程为:,联立前两方程可得D点坐标为:,因此有,又,所以有,整理得,又,所以有:即,故.【考点】直线方程的交点问题,两点间的距离公式(或向量的模长公式),双曲线的性质(含离心率公式).4.在平面直角坐标系中,已知中心在坐标原点的双曲线经过点,且它的右焦点与抛物线的焦点相同,则该双曲线的标准方程为.【答案】.【解析】由于抛物线的焦点坐标为:,由已知得:双曲线C的右焦点F的坐标为,又因为双曲线C的中心在坐标原点,所以可设所求双曲线C的方程为:且,从而有:,故设所求双曲线C的方程为:.【考点】双曲线.5.已知P是双曲线的右支上一点,F1,F2分别为双曲线的左、右焦点,双曲线的离心率为e,下列命题正确的是( ).A.双曲线的焦点到渐近线的距离为; B.若,则e的最大值为;C.△PF1F2的内切圆的圆心的横坐标为a ;D.若∠F1PF2的外角平分线交x轴与M, 则.【答案】C【解析】的焦点坐标为,渐近线方程为,对于选项A, 焦点到渐近线的距离,故A错;对于选项B,设,若,令所以即解得.故B错;对于选项C:如图,设切点A,由切线长定理得:,即,所以,故△PF1F2的内切圆的圆心的横坐标为a,所以选项C正确对于选项D:由外角平分线定理得:,故选项D错误,故选项为C..【考点】渐近线方程;点到直线的距离公式;焦半径公式;外角平分线定理;合比定理.6.若双曲线的渐近线与方程为的圆相切,则此双曲线的离心率为.【答案】【解析】先根据双曲线方程求得双曲线的渐近线,进而利用圆心到渐近线的距离为圆的半径求得和的关系,进而利用求得和的关系,则双曲线的离心率可求.【考点】双曲线的简单性质.7.若抛物线的焦点与双曲线的右焦点重合,则p的值为()A.B.C.D.【答案】C【解析】双曲线的右焦点坐标为(2,0),而抛物线的焦点坐标为(,0),∴=2,p=4.【考点】抛物线与双曲线的焦点坐标.8.若抛物线的焦点与双曲线的右焦点重合,则的值为()A.2B.4C.8D.【答案】C【解析】抛物线的焦点F为(,0),双曲线的右焦点F2(4,0),由已知得=4,∴p=8.故选C.【考点】圆锥曲线的共同特征.9.设为双曲线的两个焦点,点在双曲线上且,则的面积是【答案】1【解析】由题意可得a=1,b=2,c=,得F2(0,),F1(0,-),又F1F22=20,|PF1-PF2|=4,由勾股定理可得:F1F22=PF12+PF22=(PF1-PF2)2+2PF1•PF2=16+2PF1•PF2,∴PF1•PF2=2,所以=1.故选B..【考点】双曲线的简单性质.10.在平面直角坐标系xOy中,已知焦点在x轴上的双曲线的渐近线方程为x±2y=0,则该双曲线的离心率为.【答案】【解析】因为焦点在x轴上的双曲线的渐近线方程为,所以【考点】双曲线渐近线方程11.双曲线的焦点到它的渐近线的距离为_________________;【答案】1【解析】由双曲线方程可知,则,即,所以焦点为,渐近线为。
高二数学双曲线试题(有答案)
高二数学双曲线试题一:选择题1.双曲线()2210x y mn m n -=≠的离心率为2,有一个焦点与椭圆2211625x y +=的焦点重合,则m 的值为( ) A . B .C .D .【答案】A2.以112422-=-y x 的焦点为顶点,顶点为焦点的椭圆方程为( ) A .1121622=+y x B .1161222=+y x C .141622=+y x D .116422=+y x 【答案】A3.设12F F 、分别是双曲线2213y x -=的两个焦点,P 是该双曲线上的一点,且123||4||PF PF =,则12PF F ∆的面积等于( )(A )45(B )315(C )53(D )210【答案】B4.已知双曲线的中心在坐标原点,两个焦点为F 1(﹣,0),F 2(,0),点P 是此双曲线上的一点,且•=0,||•||=4,该双曲线的标准方程是( ) A .B .C .D .解:设双曲线的方程为:﹣=1, ∵两焦点F 1(﹣,0),F 2(,0),且•=0,∴⊥,∴△F 1PF 2为直角三角形,∠P 为直角; ∴+===28;①又点P 是此双曲线上的一点, ∴||PF 1|﹣|PF 2||=2a ,∴+﹣2|PF1|•|PF2|=4a2,由||•||=4得|PF1|•|PF2|=4,∴+﹣8=4a2,②由①②得:a2=5,又c2==7,∴b2=c2﹣a2=2.∴双曲线的方程为:﹣=1,故选C.5.已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为()A.B.C.D.解:由已知条件易得直线l的斜率为k=k FN=1,设双曲线方程为,A(x1,y1),B(x2,y2),则有,两式相减并结合x1+x2=﹣24,y1+y2=﹣30得=,从而==1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,故选B.6.已知椭圆和双曲线有公共的焦点,那么双曲线的渐近线方程是()A.x=±B.y=C.x=D.y=解:∵椭圆和双曲线有公共焦点∴3m2﹣5n2=2m2+3n2,整理得m2=8n2,∴=2双曲线的渐近线方程为y=±=±x故选D7.已知中心在原点,焦点在x轴上的双曲线的离心率,其焦点到渐近线的距离为1,则此双曲线的方程为()A.﹣y2=1 B.﹣=1C.﹣y2=1D.x2﹣y2=1解:设双曲线的方程为,渐近线方程为∵双曲线的离心率,其焦点到渐近线的距离为1,∴,=1∴b=1,a=∴双曲线的方程为﹣y2=1故选A.8.已知抛物线y2=8x的准线与双曲线相交于A,B两点,点F是抛物线的焦点,若双曲线的一条渐近线方程是,且△FAB是直角三角形,则双曲线的标准方程是()A.B.C.D.解:依题意知抛物线的准线x=﹣2.代入双曲线方程得y=±.双曲线的一条渐近线方程是,∴则不妨设A (﹣2,),F (2,0)∵△FAB 是等腰直角三角形, ∴=4,解得:a=,b=4∴c 2=a 2+b 2=2+16=20, ∴双曲线的标准方程是故选C9..已知椭圆2222:1(0)x y C a b a b+=>>的离心学率为3.双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为(A )22182x y += (B )221126x y += (C )221164x y += (D )221205x y += 【答案】D【解析】因为椭圆的离心率为23,所以23==a c e ,2243a c =,222243b a ac -==,所以2241a b =,即224b a =,双曲线的渐近线为x y ±=,代入椭圆得12222=+bx a x ,即1454222222==+b x b x b x ,所以b x b x 52,5422±==,2254b y =,b y 52±=,则第一象限的交点坐标为)52,52(b b ,所以四边形的面积为16516525242==⨯⨯b b b ,所以52=b ,所以椭圆方程为152022=+y x ,选D. 10.设F 1,F 2分别是双曲线的左、右焦点.若双曲线上存在点A ,使∠F 1AF 2=90°,且|AF 1|=3|AF 2|,则双曲线离心率为( ) A .B .C .D .解:设F 1,F 2分别是双曲线的左、右焦点.若双曲线上存在点A ,使∠F 1AF 2=90°,且|AF 1|=3|AF 2|,设|AF 2|=1,|AF 1|=3,双曲线中2a=|AF 1|﹣|AF 2|=2,,∴离心率,故选B .11.设双曲线的﹣个焦点为F ;虚轴的﹣个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )A .B .C .D .解:设双曲线方程为,则F (c ,0),B (0,b )直线FB :bx+cy ﹣bc=0与渐近线y=垂直,所以,即b 2=ac所以c 2﹣a 2=ac ,即e 2﹣e ﹣1=0, 所以或(舍去)12.已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值围是( C )A.33(,)33- B.(3,3)- C.33[,]33- D.[3,3]-13.如图,F 1,F 2分别是双曲线C :22221x y a b-=(a,b >0)的左、右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交与点M ,若|MF 2|=|F 1F 2|,则C 的离心率是A.33 B 。
(word)《双曲线》典型例题12例(含标准答案)
《双曲线》典型例题12例典型例例1讨论= i表示何种圆锥曲线,它们有何共同特征. 2\_k 9-k分析:由于R H9,R H25,贝IJR的取值范围为R <9, 9vRv25, k <25 , 分别进行讨论.解:(1)当R <9时,25-R >0,9-k >0,所给方程表示椭圆,此时a2 =25-k , b'=9-k, c2=a2-b2=16,这些椭圆有共同的焦点(一4, 0), (4, 0).(2)当9vRv25时,25-《>0, 9-《<0,所给方程表示双曲线,此时,a2 =25-k , b~ =9-k , c2 =a2 4-Z?2 =16 ,这些双曲线也有共同的焦点(—4,0),)(4, 0).(3)Rv25, R = 9, k = 25吋,所给方程没有轨迹.说明:将具有共同焦点的一系列圆锥曲线.称为同焦点圆锥曲线系,不妨取一些R值,画出其图形,体会一下儿何图形所带给人们的美感.典型例题二例2根据下列条件,求双曲线的标准方程.(1)过点,且焦点在坐标轴上.(2)C=yf6 ,经过点(一5, 2),焦点在X轴上.(3)与双曲线三—22 = 1有相同焦点,且经过点(3^2,2)解:(1)设双曲线方程为-4-^ = 1•・• P、。
两点在双曲线上,*> r・•・所求双曲线方程为菩+辱=116 9说明:采取以上“巧设”可以避免分两种情况讨论,得“巧求啲目的.(2) T 焦点在x 轴上,c = V6 ,・••设所求双曲线方程为:—-^- = 1 (其中Ov 久V6) A 6 —A•・•双曲线经过点(一5, 2), -一 =1 2 6-2・・・/1 = 5或久=30 (舍去)・・・所求双曲线方程是—-r = 1 5说明:以上简单易行的方法给我们以明快、简捷的感觉.(3)设所求双曲线方程为: 丄——=1(0</1<16)16-A 4 + 2•・•双曲线过点(3屁),•••几=4或久=一14 (舍)・・・所求双曲线方程为器违“ 说明:(1)注意到了与双曲线二-二=i 有公共焦点的双曲线系方程为16 4-」一=1后,便有了以上巧妙的设法.16-X 4 + X(2)寻找一种简捷的方法,须有牢固的基础和一定的变通能力,这也是在 我们教学中应该注重的一个重要方而.典型例题三例3已知双曲线卫-匸=1的右焦点分别为什、化,点P 在双曲线上的左9 16 -支上且『斤『耳| = 32,求牛PF,的大小.9 225 —I ----- /n = -16n = 9分析:一般地,求一个角的大小,通常要解这个角所在的三角形.解:•・•点P在双曲线的左支上・・・|昭-啓1 = 6:.\PF l[+\PF2『一2『引P可=36・・・|耐+啓『=100・.•応=4C2= 4(a2 +矿)=100・•・ ZFfF, = 90°说明:(1)巧妙地将双曲线的定义应用于解题当中,使问题得以简单化.(2)题冃的“点P在双曲线的左支上”这个条件非常关键,应引起我们的重视,若将这一条件改为“点P在双曲线上”结论如何改变呢?请读者试探索.典型例题四*7例4已知仟、化是双曲线= 1的两个焦点,点p在双曲线上且满足ZFfF. = 90°,求山/代的面积.分析:利用双曲线的定义及中的勾股定理可求的面积.解:VP为双曲线—-F = l上的一个点且尸「化为焦点.4 ・・••阳 - |P 坊 || =加=4,応耳 | = 2c = 245I ZFfF: = 90°・••在RZF化中,『斤f+『览『=応&『=20・・・㈣-阿『=附+阿-2|P引P鬥=16・•・20_2|呵阴=16・・・|卩斤卜『耳| = 2・・・Sw耳弓阿|・|P可=1说明;双曲线定义的应用在解题中起了关键性的作用.典型例题五例5已知两点斤(-5,0)、化(5,0),求与它们的距离差的绝对值是6的点的轨迹.分析:问题的条件符合双曲线的定义,可利用双曲线定义直接求出动点轨迹.解:根据双曲线定义,可知所求点的轨迹是双曲线.*•' c = 5 > a = 3h~ =c2_a2 =52 -32 =42 = 16・••所求方程乂-乂=1为动点的轨迹方程,且轨迹是双曲线.9 16说明:(1)若清楚了轨迹类型,则用定义直接求出其轨迹方程可避免用坐标法所带來的繁琐运算.(2)如遇到动点到两个定点距离之差的问题,一般可采用定义去解.典型例题六例 6 在^ABC中,BC=2,且sinC-sinB = 1sinA ,求点 A 的轨迹.2分析:要求点A的轨迹,需借助其轨迹方程,这就要涉及建立坐标系问题, 如何建系呢?解,以BC所在直线为x轴,线段BC的中垂线为y轴建立平面直角坐标系, 则〃(一1,0), C(LO)・设A(x, y),由sinC-sinB = gsin A及止弦定理可得:\AB\-\AC[ = ^\BC\ = 1I BC=2・••点A在以3、C为焦点的双曲线右支上设双曲线方程为:•>r二-匚= l(a>0・b>0)4・•・所求双曲线方程为4x2-^ = l3•・・网_阳=1>0/. x > —2・••点A的轨迹是双曲线的一支上挖去了顶点的部分典型例题七例7求下列动圆圆心M的轨迹方程:(1)与OC:(x+2)2 + y2 = 2 内切,且过点A(2,0)(2)与G)G: x2+(y-l)2=l#OC:: F + (y + l):=4 茴]夕卜切.(3)与ocXx+s^ + r=9外切,且与©c2:(x-3)2+r = 1 内切.分析:这是圆与圆相切的问题,解题时要抓住关键点,即圆心与切点和关键线段,即半径与圆心距离.如果相切的OC^ OC,的半径为/;、□且/;>/;,则当它们外切时,|qoJ = /; + i当它们内切时,解题中要注意灵活运用双曲线的定义求出轨迹方程.解:设动圆M的半径为广(1) 与OM内切,点A在OC外\MC\ = r-41^ \M/\ = r t \M^-\MC\ = j2・••点M的轨迹是以C、A为焦点的双曲线的左支,且有:a = , c = 2 »b2 =c2 -a2 =—2 2- •>・•・双曲线方程为2x2 -竽=心<-V2)(2)・・・0M与Oq、(DC,都外切|A/q| = r + l, |A/G| = r+2,|A/G|-|A/CJ = 1・••点M的轨迹是以q为焦点的双曲线的上支,且有:1 ,厂、r 3a = — , c = l, =—2 4・•・所求的双曲线的方程为:.r 4x2(、3)4y --------- = 1 y > —3 I/4 丿(3) TOM与OC\外切,且与(DC,内切|A/q| = r + 3, |MG| = r-l, |A/q|-|MG| = 4・••点M的轨迹是以C\、C,为焦点的双曲线的右支,且有:a = 2, c = 3, b2 =c2 -a2 = 5・・・所求双曲线方程为:4 5 V 7说明:(1)“定义法”求动点轨迹是解析几何中解决点轨迹问题常用而重要的方法.(2)巧妙地应用“定义法”可使运算量大大减小,提高了解题的速度与质量.(3)通过以上题日的分析,我们体会到了,灵活准确地选择适当的方法解决问题是我们无休止的追求目标.典型例题八例8 在周长为48的直角三角形A/PN中,ZMPN=90。
双曲线练习题带答案,知识点总结(基础版)
双曲线重难点复习一.知识点总结双曲线:平面内与两个定点1F 、2F 的距离的差的绝对值等于常数2a (其中122a F F <)1 a 半实轴长;b 半虚轴长;c 半焦距;a 、b 、c 之间满足c a b =+. e 叫做椭圆的离心率,ce a=且1e >.e 越大,双曲线的张口就越大.2.实轴和虚轴等长的双曲线叫做等轴双曲线,其离心率e =渐近线方程为y x =±3.y y=0b ax x y x a b±=±焦点在轴上和在轴上的渐近线方程分别为和,容所以常把双曲线标准方程右边的常数写成,分解因式即得渐近易记错,线方程。
4.双曲线的焦点到渐近线的距离为b.122ta 5n2.PF F S b θ= 焦点三角形的面积22222222222222226.1010x y x y a b a b x y x y b a b aλλλλ-=-=≠-=-=≠与双曲线有共同渐近线的双曲线方程可以表示为();与双曲线有共同渐近线的双曲线方程可以表示为().1.已知F 为双曲线C :116922=-y x 的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________. 442.已知双曲线22221(0)x y a b a b-=>>的焦距为20x y +=垂直,则双曲线的方程为A. 2214x y -=B. 2214y x -= C. 22331205x y -= D. 22331520x y -= 【答案】A【解析】由题可知2c =,则c =.渐近线方程为12y x =,则12b a =.又222c a b =+可得,224,1a b ==.所以双曲线的方程为2214x y -=;故本题答案选A .视频3.已知O 为坐标原点,设F 1,F 2分别是双曲线x 2−y 2=1的左、右焦点,点P 为双曲线左支上任一点,自点F 1作∠F 1PF 2的平分线的垂线,垂足为H ,则|OH |=( ) A. 1 B. 2 C. 4 D. 12【答案】A【解析】延长F 1H 交PF 2于点Q ,由角分线性质可知|PF 1|=|PQ |,根据双曲线的定义,||PF 1|−|PF 2||=2,从而|QF 2|=2,在ΔF 1QF 2中,OH 为其中位线,故|OH |=1.故选A.点睛:对于圆锥曲线问题,善用利用定义求解,注意数形结合,画出合理草图,巧妙转化.4.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,||43AB =,则C 的实轴长为( ) A ..4 D .85.设双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12F F A 、,是双曲线渐近线上的一点,212AF F F ⊥,原点O 到直线1AF 的距离为113OF ,则渐近线的斜率为(A (B (C )1或1-(D )2或2- D6.已知双曲线x 2-23y =1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则1PA ·2PF的最小值为________.-27.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为M (-12,-15),则E 的方程为( )A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1D.x 25-y 24=1 答案 B解析 由已知易得l 的斜率为k =k FM =1.设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),A (x 1,y 1),B (x 2,y 2),则有⎩⎨⎧x 21a 2-y 21b 2=1,x 22a 2-y 22b2=1,两式相减并结合x 1+x 2=-24,y 1+y 2=-30,得y 1-y 2x 1-x 2=4b 25a 2,从而4b 25a2=1,即4b 2=5a 2.又a 2+b 2=9,解得a 2=4,b 2=5,故选B. 8与双曲线622=-y x的左支交于不同的两点,()A .()11-, C【答案】C试题分析:联立方程2226y kx x y =+⎧⎨-=⎩得()2214100k x kx ---=…① 若直线y=kx+2与双曲线622=-y x 的左支交于不同的两点,则方程①有两个不等的负根k 9.经过双曲线4−y 2=1右焦点的直线与双曲线交于A ,B 两点,若 AB =4,则这样的直线的条数为( )A. 4条B. 3条C. 2条D. 1条 【答案】B【解析】由双曲线x 24−y 2=1,可得a =2,b =1,若AB 只与双曲线右支相交时,AB 的最小值距离是通径长度为2b 2a=1,∵AB =4>1,∴此时有两条直线符合条件;若AB 只与双曲线两支相交时,此时AB 的最小距离是实轴两顶点的即距离长度为2a =4,距离无最大值;∵AB =4,∴此时有1条直线符合条件;综上可得,共有3条直线符合条件,故选B.10.P 是双曲线C :x 2−y 2=2左支上一点,直线l 是双曲线C 的一条渐近线,P 在l 上的射影为Q ,F 2是双曲线C 的右焦点,则 PF 2 + PQ 的最小值为( ) A.22B. 2C. 3 2D. 2+22【答案】C【解析】由题知|PF 2|−|PF 1|=2a =2 2,则|PF 2|+|PQ |=|PF 1|+|PQ |+2 2,由对称性,当F 1,P ,Q 在同一直线上时|PF 1|+|PQ |最小,由渐近线方程y =x ,|F 1O |=2知|F 1Q |= 2 则|PF 2|+|PQ |的最小值为3 2.故本题答案选C .11.点P 是双曲线22221(0,0)x y a b a b -=>>上的点,12,F F 是其焦点,双曲线的离心率是54,且12•0PF PF = ,若12F PF ∆的面积是9,则a b +的值等于() A. 4 B. 7 C. 6 D. 5 【答案】B【解析】双曲线的离心率是5344c b a a ==⇒=,120PF PF ⋅=1212,PF PF PFF ∴⊥∴ 的面积121219182S PF PF PF PF =⋅=∴⋅=,. 在12PF F 中,由勾股定理可得222222*********||2?4369c PF PF PF PF PF PF a a b a =+=-+=+∴+=+(),,34b a ∴=∴=,,7a b ∴+=,故选 C .12.若双曲线C :x 2a2−y 2b 2=1(a >0,b >0)的一条渐近线被圆 x −2 2+y 2=4所截得的弦长为2,则C 的离心率为( ) A. 2 B. C. D. 2 33【答案】A【解析】由几何关系可得,双曲线x 2a 2−y 2b 2=1 a >0,b >0 的渐近线方程为bx ±ay =0,圆心 2,0 到渐近线距离为d = 2−12= 3,则点 2,0 到直线bx +ay =0的距离为d =22=2b c= 3,即4(c 2−a 2)c =3,整理可得c 2=4a 2,双曲线的离心率e = c 2a = 4=2.故选A .13.右焦点分别为12,F F ,过1F 作倾斜角为030的直线与y 轴和双曲线右支分别交于两点,若点A 平分1F B ,则该双曲线的离心率是()C. 2D.【答案】A14.右焦点分别为12,F F ,焦距为2(0)c c >,且120AOB ∠= ,其中O 为原点,则双曲线的离心率为()A. 2B. 【答案】C 【解析】如下图:,(0a >,0b >),过其左焦点F 作x 轴的垂线,交双曲两点,若双曲线的右顶点在以AB 为直径的圆内,则双曲线离心率的取值范围是()B. ()1,2C.D. ()2,+∞ 【答案】D【解析】AB 是双曲线通径,即2222a a cbc a +<=-,2220c ac a -->,即,故选D .16.设1F ,2F 分别为椭圆1C :221122111(0)x y a b a b +=>>与双曲线2C :222222221(0,0)x y a b a b -=>>的公共焦点,它们在第一象限内交于点M ,1290F MF ∠=︒,若椭圆的离心率134e =,则双曲线2C 的离心率2e 的值为()A. 92B. 2C. 32D. 54【答案】B【解析】设12,m MF n MF ==,所以1122122{{ 2m n a m a am n a n a a+==+∴-==-,由1290F MF ∠= 得()()()()222222212121222c m n a a a a a a =+=++-=+,222222212121222222121122a a a a c a a c c c e e +∴=+∴==+=+,1234e e =∴= 17.已知双曲线C :x 2a −y 2b =1(a >0,b >0),F 1,F 2分别为其左、右焦点,过F 1的直线l 与双曲线C 的左、右两支分别交于A ,B 两点,若|AB |:|BF 2|:|AF 2|=3:4:5,则双曲线C 的离心率为( )A. 2B. 4C. 13D. 15 【答案】A 【解析】∵|AB|:|BF 2|:|AF 2|=3:4:5,不妨令 AB =3, BF 2 =4,|AF 2|=5, ∵|AB |2+|BF 2|2=|AF 2|2 ,∴∠ABF 2=90∘又由双曲线的定义得:|BF 1|−|BF 2|=2a ,|AF 2|−|AF 1|=2a ∴|AF 1|+3−4=5−|AF 1|,∴|AF 1|=3 ,|BF 1|−|BF 2|=3+3−4=2a ,∴a =1在RtΔBF 1F 2 中,|F 1F 2|2=|BF 1|2+|BF 2|2=62+42=52, 又|F 1F 2|2=4c 2,∴4c 2=52,∴c = 13 所以双曲线的离心率e =c = 13 ,故选C.18.已知12,F F 是双曲线的左右焦点,过2F 作双曲线一条渐近线的垂线,垂足为点A ,交另一条渐近线于点B ,且则该双曲线的离心率为B. D. 2【答案】A则A. 19.已知F 为双曲线的左焦点,定点A 为双曲线虚轴的一个端点,过,F A 两点的直线与双曲线的一条渐近线在y 轴右侧的交点为B ,若3A B F A = ,则此双曲线的离心率为__________.【解析】F 为双曲线的左焦点,定点A 为双曲线虚轴的一个端点,。
高二数学双曲线试题答案及解析
高二数学双曲线试题答案及解析1.已知双曲线方程,则过点和双曲线只有一个交点的直线有________条.【答案】【解析】由双曲线方程可知它是焦点在轴上的等轴双曲线,直线为它的渐近线,点在两个顶点之间,过可作与渐近线平行的两条直线,它们与此双曲线都各有一个公共点,但它们与双曲线是相交关系,此外过还可以作两条与双曲线右支都相切的直线,因此过点和双曲线只有一个交点的直线共有条,要注意两条是相交,另两条是相切,关注双曲线渐近线的特殊作用.【考点】直线与双曲线的位置关系.2.设是关于t的方程的两个不等实根,则过,两点的直线与双曲线的公共点的个数为( )A.0B.1C.2D.3【解析】关于t的方程的不同的两根为0,,不妨取=0,=,直线AB过原点,斜率为==,恰是双曲线的一条渐近线,故与该双曲线的公共点的个数为0,故选A.【考点】直线的方程,双曲线的渐近线,3.已知抛物线()的焦点为双曲线()的一个焦点,经过两曲线交点的直线恰过点,则该双曲线的离心率为()A.B.C.D.【答案】B【解析】抛物线()的焦点,它也是双曲线()的一个焦点,所以有①,由两曲线交点的直线恰过点,可知它们在第一象限的交点为,此点也在双曲线上,故有②,由①②消去,得,即,即,因为,所以,选择B,求离心率的值关键是寻找到关于的等式,然后转化到的方程,从而解出.【考点】圆锥曲线的性质4.过双曲线的左焦点作圆的两条切线,切点分别为、,双曲线左顶点为,若,则该双曲线的离心率为( )A.B.C.3D.2【答案】D.【解析】如图,根据对称性,,∴为等边三角形,∴,∴.【考点】双曲线离心率的计算.5.已知双曲线的虚轴长是实轴长的2倍,则实数的值是( ) A.B.C.D.【答案】C【解析】由方程表示双曲线知,又双曲线的虚轴长是实轴长的2倍,所以,即,所以故选C.【考点】双曲线的标准方程与简单几何性质.6.已知P是双曲线的右支上一点,F1,F2分别为双曲线的左、右焦点,双曲线的离心率为e,下列命题正确的是( ).A.双曲线的焦点到渐近线的距离为; B.若,则e的最大值为;C.△PF1F2的内切圆的圆心的横坐标为b ;D.若∠F1PF2的外角平分线交x轴与M, 则.【答案】D【解析】的焦点坐标为,渐近线方程为,对于选项A, 焦点到渐近线的距离,故A错;对于选项B,设,若,令所以即解得.故B错;对于选项C:如图,设切点A,由切线长定理得:,即,所以,故△PF1F2的内切圆的圆心的横坐标为a,所以选项C错.对于选项D:由外角平分线定理得:,故选D.【考点】渐近线方程;点到直线的距离公式;焦半径公式;外角平分线定理;合比定理.7.已知双曲线的一条渐近线方程为,则双曲线离心率=( ) A.B.C.D.【答案】A【解析】:∵双曲线的焦点在x轴上,∴渐近线方程为y=±,又∵渐近线方程为y=,∴∴∵,联立得:,化简得=.故选A【考点】双曲线的性质及其方程;渐近线方程;离心率8.已知双曲线的左右焦点分别是,过的直线与双曲线相交于、两点,则满足的直线有 ( )A.1条B.2条C.3条D.4条【答案】C【解析】由双曲线的标准方程可知点坐标为,过点斜率不存在的直线,即,与双曲线的交点,代入可求得为,则,又双曲线两顶点分别为,即实轴长为,结合图像,由双曲线的对称性知满足条件的直线还有两条.故共有三条直线满足条件.【考点】双曲线的几何性质.9.如果方程表示双曲线,那么实数的取值范围是()A.B.或C.D.或【答案】B【解析】由双曲线方程的标准形式可知,解得:或.【考点】本题考查双曲线标准方程的形式.10.是否同时存在满足下列条件的双曲线,若存在,求出其方程,若不存在,说明理由.(1)焦点在轴上的双曲线渐近线方程为;(2)点到双曲线上动点的距离最小值为.【答案】存在双曲线的方程满足题中的两个条件.【解析】先根据(1)的条件设出双曲线的方程,再设双曲线上的动点,然后利用两点间的距离公式得出,结合,最后化简得到,根据二次函数的图像与性质确定的最小值(含),并由计算出的值,如果有解并满足即可写出双曲线的方程;如果无解,则不存在满足要求的双曲线方程.试题解析:由(1)知,设双曲线为设在双曲线上,由双曲线焦点在轴上,,在双曲线上关于的二次函数的对称轴为即所以存在双曲线的方程满足题中的两个条件.【考点】1.双曲线的标准方程及其几何性质;2.二次函数的图像与性质.11.设抛物线的焦点与双曲线的上焦点重合,则p的值为【答案】8【解析】因为抛物线的焦点为,双曲线的焦点为,所以【考点】抛物线及双曲线的焦点12.双曲线的焦距是10,则实数的值是()A.B.4C.16D.81【答案】C【解析】由双曲线的方程,可得,而,所以由可得,故选C.【考点】双曲线的定义及其标准方程.13.双曲线的焦距为A.B.C.D.【答案】D【解析】由条件知,∴,∴.【考点】双曲线的定义.14.已知双曲线的渐近线方程为,虚轴长为4,则该双曲线的标准方程是【答案】【解析】根据题意知,若焦点在轴上,则,∴,∴方程是:;若焦点在轴上,则,∴,∴方程为:.【考点】双曲线的应用.15. .设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A.B.C.D.【答案】D【解析】设F(c,0),B(0,b),则直线FB的斜率是,相对应的渐近线的斜率为,由题可得∵,∴两边同除以ac得:即可解得离心率.【考点】双曲线的几何性质.16.若方程表示双曲线,则实数的取值范围是A.B.C.或D.以上答案均不对【答案】A【解析】解:,由方程表示双曲线,根据双曲线标准方程的特点,有解之得:,故选A.【考点】1双曲线的标准方程;2、一元二次不等式的解法.17.已知点是双曲线的两个焦点,过点的直线交双曲线的一支于两点,若为等边三角形,则双曲线的离心率为 .【答案】【解析】由双曲线的对称性可知为的中点,又因为为等边三角形,所以。
双曲线基础练习题(后附答案)
双曲线基础练习题(后附答案)一、选择题(每题5分)1.已知a=3,c=5,并且焦点在x 轴上,则双曲线的标准程是( )A .116922=+y x B. 116922=-y x C. 116922=+-y x 1916.22=-y x D 2.已知,5,4==c b 并且焦点在y 轴上,则双曲线的标准方程是( )A .191622=-y x B. 191622=+-y x C.116922=+y x D.116922=-y x 3..双曲线191622=-y x 上P 点到左焦点的距离是6,则P 到右焦点的距离是( ) A. 12 B. 14 C. 16 D. 184..双曲线191622=-y x 的焦点坐标是 ( ) A. (5,0)、(-5,0)B. (0,5)、(0,-5) C. (0,5)、(5,0) D.(0,-5)、(-5,0)5、方程6)5()5(2222=++-+-y x y x 化简得:A .116922=-y x B. 191622=+-y x C.116922=+y x D. 191622=-y x 6.已知实轴长是6,焦距是10的双曲线的标准方程是( )A ..116922=-y x 和116922=+-y x B. 116922=-y x 和191622=+-y x C. 191622=-y x 和191622=+-y x D. 1162522=-y x 和1251622=+-y x 7.过点A (1,0)和B ()1,2的双曲线标准方程( )A .1222=-y xB .122=+-y xC .122=-y x D. 1222=+-y x 8.P 为双曲线191622=-y x 上一点,A 、B 为双曲线的左右焦点,且AP 垂直PB ,则三角形PAB 的面积为( ) A . 9 B . 18 C . 24 D . 369.双曲线191622=-y x 的顶点坐标是 ( ) A .(4,0)、(-4,0) B .(0,-4)、(0,4)C .(0,3)、(0,-3) D .(3,0)、(-3,0)10.已知双曲线21==e a ,且焦点在x 轴上,则双曲线的标准方程是( ) A .1222=-y x B .122=-y x C .122=+-y x D. 1222=+-y x11.双曲线191622=-y x 的的渐近线方程是( ) A . 034=±y x B .043=±y x C .0169=±y x D .0916=±y x12.已知双曲线的渐近线为043=±y x ,且焦距为10,则双曲线标准方程是( )A .116922=-y x B. 191622=+-y x C.116922=+y x D. 191622=-y x 二、填空题(每题5分共20分)13.已知双曲线虚轴长10,焦距是16,则双曲线的标准方程是________________.14.已知双曲线焦距是12,离心率等于2,则双曲线的标准方程是___________________.15.已知16522=++-t y t x 表示焦点在y 轴的双曲线的标准方程,t 的取值范围是___________. 16.椭圆C 以双曲线122=-y x 焦点为顶点,且以双曲线的顶点作为焦点,则椭圆的标准方程是___________________三、解答题 1. 求以椭圆18522=+y x 的焦点为顶点,且以椭圆的顶点为焦点的双曲线的方程。
双曲线练习题及答案
运用双曲线的定义
例 1.若方程 x2 sin y 2 cos 1表示焦点在 y 轴上的双曲线,则角 所在象限是( )
A、第一象限
B、第二象限 C、第三象限 D、第四象限
练习 1.设双曲线 x2 y 2 1 上的点 P 到点 (5,0) 的距离为 15,则 P 点到 (5,0) 的距离是( ) 16 9
双曲线相关知识
双曲线的焦半径公式: 1:定义:双曲线上任意一点 P 与双曲线焦点的连线段,叫做双曲线的焦半径。 2.已知双曲线标准方程 x^2/a^2-y^2/b^2=1 点 P(x,y)在左支上 │PF1│=-(ex+a) ;│PF2│=-(ex-a) 点 P(x,y)在右支上 │PF1│=ex+a ;│PF2│=ex-a
A.7
B.23
C.5 或 23
D.7 或 23奎奎 奎奎奎 奎奎
例 2. 已知双曲线的两个焦点是椭圆 x 2 + 5y2 =1 的两个顶点,双曲线的两条准线分别通过椭圆的两个
10 32
焦点,则此双曲线的方程是( )。
(A) x 2 - y2 =1 (B) x 2 - y2 =1 (C) x 2 - y2 =1 (D) x 2 - y2 =1
课 1、[解析]设双曲线方程为 x2 4 y2 ,
当
0 时,化为
x2
y2
1, 2
5 10 20 , 4
4
当
0
时,化为
y2
y2
1 , 2
5 10 20 , 4
4
综上,双曲线方程为 x2 y2 1 或 y2 x2 1
ππ 3 3
π
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xyoxyoxyoxyo高二数学双曲线同步练习一、选择题(本大题共10小题,每小题5分,共50分)1.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( )A .椭圆B .线段C .双曲线D .两条射线2.方程11122=-++k y k x 表示双曲线,则k 的取值范围是( ) A .11<<-k B .0>k C .0≥k D .1>k 或1-<k3. 双曲线14122222=--+mym x 的焦距是 ( ) A .4 B .22 C .8 D .与m 有关4.已知m,n 为两个不相等的非零实数,则方程m x -y+n=0与n x 2+my 2=mn 所表示的曲线可能是5. 双曲线的两条准线将实轴三等分,则它的离心率为 ( )A .23 B .3 C .34 D .36.焦点为()6,0,且与双曲线1222=-y x 有相同的渐近线的双曲线方程是 ( )A .1241222=-y xB .1241222=-x yC .1122422=-x yD .1122422=-y x7.若a k <<0,双曲线12222=+--k b y k a x 与双曲线12222=-by a x 有( ) A .相同的虚轴 B .相同的实轴 C .相同的渐近线 D . 相同的焦点8.过双曲线191622=-y x 左焦点F 1的弦AB 长为6,则2ABF ∆(F 2为右焦点)的周长是( ) A .28 B .22C .14D .129.已知双曲线方程为1422=-y x ,过P (1,0)的直线L 与双曲线只有一个公共点,则L 的条数共有( )A .4条B .3条C .2条D .1条10.给出下列曲线:①4x +2y -1=0; ②x 2+y 2=3; ③1222=+y x ④1222=-y x ,其中与直线y=-2x -3有交点的所有曲线是 ( ) A .①③ B .②④ C .①②③ D .②③④ 二、填空题(本题共4小题,每小题6分,共24分)11.双曲线17922=-y x 的右焦点到右准线的距离为__________________________.12.与椭圆1251622=+y x 有相同的焦点,且两准线间的距离为310的双曲线方程为____________.13.直线1+=x y 与双曲线13222=-y x 相交于B A ,两点,则AB =__________________.4.过点)1,3(-M 且被点M 平分的双曲线1422=-y x 的弦所在直线方程为 .三、解答题(本大题共6题,共76分)15.求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程,并求此双曲线的离心率.(12分)16.双曲线()0222>=-a a y x 的两个焦点分别为21,F F ,P 为双曲线上任意一点,求证:21PF PO PF 、、成等比数列(O 为坐标原点).(12分)17.已知动点P 与双曲线x 2-y 2=1的两个焦点F 1,F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为-13.(1)求动点P 的轨迹方程;(2)设M (0,-1),若斜率为k (k ≠0)的直线l 与P 点的轨迹交于不同的两点A 、B ,若要使|MA |=|MB |,试求k 的取值范围.(12分)18.已知不论b 取何实数,直线y=k x +b 与双曲线1222=-y x 总有公共点,试求实数k 的取值范围.(12分)19.设双曲线C 1的方程为)0,0(12222>>=-b a by a x ,A 、B 为其左、右两个顶点,P 是双曲线C 1上的任意一点,引QB ⊥PB ,QA ⊥PA ,AQ 与BQ 交于点Q.(1)求Q 点的轨迹方程;(2)设(1)中所求轨迹为C 2,C 1、C 2的离心率分别为e 1、e 2,当21≥e 时,e 2的取值范围(14分)20.某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上).(14分)① ②参考答案一、选择题(本大题共10小题,每小题5分,共50分)题号 1 2 3 4 5 6 7 8 9 10 答案DDCCBBDABD11.47 12.14522=-x y 13.64 14.0543=-+y x三、解答题(本大题共6题,共76分)15.(12分)[解析]:设双曲线方程为:λ=-22169y x ,∵双曲线有一个焦点为(4,0),0>∴λ双曲线方程化为:2548161691169222=⇒=+⇒=-λλλλλy x ,∴双曲线方程为:1251442525622=-y x ∴455164==e .16.(12分)[解析]:易知2,2,===e a c a b ,准线方程:2a x ±=,设()y x P ,,则)2(21a x PF +=,)2(22a x PF -=,22y x PO +=,2222212)2(2a x a x PF PF -=-=⋅∴ 222222)(PO y x a x x =+=-+= 21PF PO PF 、、∴成等比数列.17.(12分)[解析]:(1)∵x 2-y 2=1,∴c = 2.设|PF 1|+|PF 2|=2a (常数a >0),2a >2c =22,∴a > 2由余弦定理有cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=(|PF 1|+|PF 2|)2-2|PF 1||PF 2|-|F 1F 2|22|PF 1||PF 2|=2a 2-4|PF 1||PF 2|-1∵|PF 1||PF 2|≤(|PF 1|+|PF 2|2)2=a 2,∴当且仅当|PF 1|=|PF 2|时,|PF 1||PF 2|取得最大值a 2.此时cos ∠F 1PF 2取得最小值2a 2-4a 2-1,由题意2a 2-4a 2-1=-13,解得a 2=3,123222=-=-=∴c a b∴P 点的轨迹方程为x23+y 2=1.(2)设l :y =kx +m (k ≠0),则由,⎪⎩⎪⎨⎧+==+m kx y y x 1322将②代入①得:(1+3k 2)x 2+6kmx +3(m 2-1)=0 (*)设A (x 1,y 1),B (x 2,y 2),则AB 中点Q (x 0,y 0)的坐标满足:x 0=x 1+x 22=-3km 1+3k 2,y 0=kx 0+m =m1+3k 2即Q (-3km 1+3k 2,m1+3k 2) ∵|MA |=|MB |,∴M 在AB 的中垂线上, ∴k l k AB =k ·m1+3k 2+1-3km 1+3k 2=-1 ,解得m =1+3k 22 …③ 又由于(*)式有两个实数根,知△>0,即 (6km )2-4(1+3k 2)[3(m 2-1)]=12(1+3k 2-m 2)>0 ④ ,将③代入④得12[1+3k 2-(1+3k 22)2]>0,解得-1<k <1,由k ≠0,∴k 的取值范围是k ∈(-1,0)∪(0,1).18.(12分)[解析]:联立方程组⎩⎨⎧=-+=1222y x b kx y 消去y 得(2k 2-1)x 2+4kb x +(2b 2+1)=0,当时,即22k ,0212±==-k 若b=0,则k φ∈;若bb x 22120b 2+±=⇒≠,不合题意. 当时,即22k ,0212±≠≠-k 依题意有△=(4kb)2-4(2k 2-1)(2b 2+1)>0,12222+<⇒b k 对所有实数b 恒成立,min 22)12(2+<∴b k ∴2k 2<1,得2222<<-k . 19.(14分)[解析]:(1)解法一:设P(x 0,y 0), Q(x ,y )Q⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+∴⊥⊥-)2(1)1(1,),0,(),0,(0000K K K K Θax y a x y a x y a x y PA QA PB QB a B a A)3(1:)2()1(22222200K K =-⋅-⨯ax y ax y 得由 2222222220000,1ab ax y by ax =-∴=-Θ4222242222,)3(a y b x a a a x y b =--=即得代入经检验点)0,(),0,(a a -不合,因此Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(除点(-a ,0),(a ,0)外). 解法二:设P(x 0,y 0), Q(x ,y), ∵PA ⊥QA ∴100-=-⋅-ax ya x y ……(1)连接PQ ,取PQ 中点R,))0,(),0,((,:0,,.1)(,1)3)(2()3(,1:)1()2(),2(,02|,||||,|21|||,|21||,,4222242222222222222220220220022000外除去点点轨迹方程为整理得不合题意时得代入把得代入把即轴上点在a a a y b x a Q a y b x a a x a x b y a x a x b y a x y a x y x a y y x x x x y R RB RA PQ RB PQ RA PB QB QA PA -=-∴=-≠-∴±==--=--=∴-=--==+∴∴=∴==∴⊥⊥ΘK K K K Θ11111 ,1)1(:)2(22222222422242222-+=-+=+=+==-e a c a b a a b a a e b a y a x C 的方程为得由解 21 ,21)2(11 ,22221≤<∴=-+≤∴≥e e e Θ20.(14分)[解析]:以接报中心为原点O ,正东、正北方向为x 轴、y 轴正向,建立直角坐标系.设A 、B 、C 分别是西、东、北观测点,则A (-1020,0),B (1020,0),C (0,1020)设P (x ,y )为巨响为生点,由A 、C 同时听到巨响声,得|PA|=|PB|,故P 在AC 的垂直平分线PO 上,PO 的方程为y=-x ,因B 点比A 点晚4s 听到爆炸声,故|PB|- |PA|=340×4=1360由双曲线定义知P 点在以A 、B 为焦点的双曲线12222=-b y a x 上, 依题意得a =680, c=1020,:,34056801020222222故双曲线方程为⨯=-=-=∴a c b 134056802222=⨯-y x用y=-x 代入上式,得5680±=x ,∵|PB|>|PA|,,5680,5680=-=∴y x10680),5680,5680(=-PO P 故即,答:巨响发生在接报中心的西偏北45°距中心m 10680处.。